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We provide a new general scheme for the geometric quantisation of Sp(1)-
symmetric hyperkähler manifolds, considering Hilbert spaces of holomor-
phic sections with respect to the complex structures in the hyperkähler
2-sphere. Under properness of an associated moment map, or other finite-
ness assumptions, we construct unitary (super) representations of groups
acting by Riemannian isometries preserving the 2-sphere, and we study
their decomposition in irreducible components. We apply this scheme to
hyperkähler vector spaces, the Taub–NUT metric on R4, moduli spaces of
framed SU(r)-instantons on R4, and in part to the Atiyah–Hitchin manifold
of magnetic monopoles in R3.
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1. Introduction

The constructions of geometric quantisation offer a recipe for addressing problems
related to the quantum mechanics of an object moving in an arbitrary, possibly
curved, phase space [42; 89]. The process, abstracting canonical quantisation, is
fundamentally based on the structure of a symplectic manifold. Two of the main
goals are to obtain operators subject to commutation relations prescribed by the
Poisson bracket, and unitary representations of groups associated to Hamiltonian
flows. However, there are strong limitations to the extent to which these can be
achieved in general. One of the most typical problems is the need of a polarisation,
whose existence is generally not guaranteed, nor is its uniqueness ever satisfied.
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Furthermore, the choice of a particular polarisation poses serious constraints on
which functions and Hamiltonian flows can be quantised.

A common approach to this issue consists in considering instead a family of po-
larisations, parametrised by some smooth manifold. One then attempts to assemble
their corresponding quantum Hilbert spaces into a vector bundle and identify them
via the holonomy of some appropriate connection. In this framework, the natural
way to quantise Hamiltonian group actions is by automorphisms of the bundle
as a whole rather than of the individual vector spaces. A group representation is
then usually obtained by considering the space of (projectively) flat sections. The
prototypical example of this is the Hitchin connection [16; 45], further discussed
below. The latter also has a simple yet interesting adaptation to the case of a
symplectic linear space, providing a quantisation of its full symplectic group in the
form of a representation of a double cover of it, the metaplectic representation [89,
Chapter 10].

Because polarisations on a symplectic manifold often arise as compatible complex
structures, it is rather common in geometric quantisation to work with Kähler
manifolds [30; 89]. This approach has been successfully applied to a number
of moduli spaces arising from differential and algebraic geometry, representation
theory, and mathematical physics. Notable examples include unitary flat connec-
tions [16; 45] and vector bundles on Riemann surfaces, compact coadjoint orbits [53],
and polygons [29; 51]. Unitary flat connections in particular are a good example
of the scheme sketched above, as the moduli space comes with a family of Kähler
structures parametrised by the Teichmüller space. The construction of a projectively
flat connection in that setting is due to Hitchin [45] and Axelrod, Della Pietra, and
Witten [16] and was extended to a broader framework in later works [1; 3; 8]. The
role of flat connections in Chern–Simons theory [38; 86] also motivated further
study of the relation between geometric quantisation and other formulations of the
theory, including deformation quantisation [2; 6; 24; 52; 63; 78; 79] and other
approaches [9; 10; 11; 12; 59].

In many cases, spaces similar to those above, and related to interesting quanti-
sation problems, come with natural hyperkähler structures rather than just Kähler.
Some of these may be viewed as complexifications of those already mentioned,
e.g., flat connections for complex groups [5; 7; 63; 73; 87], Higgs bundles [4; 31;
35; 44; 80], semisimple/nilpotent (co)adjoint orbits in (dual) complex Lie alge-
bras [17; 55; 58], hyperpolygons, and Nakajima quiver varieties [41; 70]. Others,
on the other hand, arise independently of an underlying “real” version, including for
instance the Taub–NUT metrics on R4, moduli spaces of framed SU(r)-instantons
and magnetic monopoles, and the Nahm moduli spaces.

Crucially, complex structures on these spaces give rise to families of Kähler forms,
whose parametrising spaces come with their own Kähler structures — isomorphic
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to that of CP1. Unlike in the Kähler case, geometric quantisation does not directly
apply in this situation because no preferred symplectic structure is given in general.
What is more, many interesting symmetries of such spaces act by hyperkähler
rotations, i.e., by permuting the sphere of Kähler structures rather than fixing each
of them individually. If one of the symplectic forms is fixed by the action, one
may focus on that particular structure and apply quantisation with respect to it,
an approach that was carried out by Andersen, Gukov, and Pei [4] in the case of
the Hitchin moduli space. Nonetheless, one may still wish to obtain a version of
quantisation with respect to other Kähler forms, or to the hyperkähler structure as
a whole. In addition, the induced action on the sphere is in many cases transitive,
suggesting again that a more “global” approach should be taken in that situation.

The latter is precisely the setup that we are going to address in this work. Namely,
we shall consider a hyperkähler manifold M acted on by a compact Lie group G
by hyperkähler isometries and assume that the induced action on CP1 is transitive.
We will also assume that a smooth family of prequantum line bundles on M is
given, parametrised by CP1, together with a lifted equivariant G-action. Carrying
out geometric quantisation for each individual symplectic form will give rise to a
family of Hilbert spaces, typically of infinite dimension. We will then attempt to
use representation theory to “break down” these spaces into finite-dimensional com-
ponents and assemble each family into a vector bundle over CP1. We study these
objects explicitly and show that their structure is determined by the combinatorics
of irreducible subrepresentations in the Hilbert spaces. In particular, we construct
natural connections on these bundles and explicitly characterise their curvatures.
While the resulting connection on the overall family fails to be projectively flat, we
notice that it defines a holomorphic structure on it. Based on this, we propose a
definition of the overall quantum Hilbert space as the supercohomology of this object,
thus obtaining a natural G-representation as a space of sections of a bundle over CP1.

1A. Description of the main construction. Let us expand and detail the description
sketched above. Suppose a hyperkähler manifold M is given and that G is a compact
connected Lie group acting on it by hyperkähler rotations — by this we mean that
G acts on M by isometries which permute the Kähler structures on M ; we will
additionally require that the induced action be transitive. Since Kähler forms
are parametrised by CP1, this corresponds to a surjective group homomorphism
G ↠SO(3). As we shall see, this implies that G is covered by a product Sp(1)×G0,
with Sp(1) acting on CP1 in the usual way and G0 fixing all Kähler structures.

Since no preferred symplectic form is given on M , it makes little sense to talk
about a prequantum line bundle over the hyperkähler manifold. Instead, we will
assume that M is equipped with a Hermitian line bundle (L , h) and a prequantum
connection ∇q for each symplectic form ωq , depending smoothly on q ∈ CP1 in
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an appropriate sense (see Section 2B). We will further assume that the G-action
lifts to L in such a way as to permute the connections equivariantly.

If Mq denotes the Kähler manifold corresponding to q ∈ CP1, its geometric
quantisation consists of the Hilbert space Hq of L2 holomorphic sections of the
corresponding prequantum line bundle. The embedding into CP1

× L2(M, L)
defines a Hermitian structure on this family, viewed informally as a vector bundle
over CP1, together with a compatible connection and Sp(1)-equivariant G-action.
We study this object by decomposing each fibre Hq into isotypical components as
a representation of (appropriate subgroups of) Gq := StabG(q). By transitivity of
the Sp(1)-action, all these stabilisers are conjugated, and the respective isotypical
components form constant-rank subfamilies of H. The following is the central
theorem of our work.

Theorem 1.1 (see Theorem 2.11). Suppose that:

• M is a hyperkähler manifold.

• G is a connected compact Lie group acting on M by fixing the metric and
permuting the symplectic forms transitively.

• L → M is a Hermitian line bundle with a family of prequantum connections
as in Section 2B and a G-action covering that on M.

• ρ is an irreducible representation of Gq := StabG(ωq) for ωq one of the
symplectic forms on M.

• ρ has finite multiplicity m(ρ) in the space Hq of L2 holomorphic sections of
L → M with respect to the structure associated to ωq .

For each other symplectic form ωq ′ , denote by H(ρ)

q ′ the isotypical component in Hq ′

corresponding to ρ under the identification Gq ≃ Gq ′ by conjugation in G. Then
the collection of spaces H(ρ) has a canonical structure of Hermitian vector bundle
over CP1 with compatible connection. Moreover, for some integer d = dρ there
exists an isomorphism

(1) H(ρ)
≃ (Ld

⊗ Vρ)⊕mρ

preserving the Hermitian structure and connection, where Vρ = CP1
× Vρ carries

the trivial connection and L → CP1 is the standard degree-1 Sp(1)-equivariant
Hermitian line bundle with connection.

The result implies that, informally speaking, the family H decomposes as a sum
of vector bundles with connections, as long as the appropriate multiplicities are
finite. The holonomies of the various components may then be assembled to form
parallel transport operators on H. However, (1) also determines the curvature of the
connection on each component, which is proportional to the degree d . Consequently,
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the parallel transport operators on H depend essentially on the choice of paths on
the base and fail to unambiguously identify the different Hilbert spaces — even
projectively.

Nonetheless, the components H(ρ) may also be regarded as G-equivariant holo-
morphic bundles over CP1. We then obtain G-representations not as spaces of flat
sections as customary, but as the cohomology of H(ρ) as a super vector space. The
following then descends from Theorem 1.1.

Theorem 1.2 (see Section 2F). In the setting of Theorem 1.1, define

(2) H (ρ)
:= H∗(CP1,H(ρ))

as a super vector space. Then H (ρ) comes with a Hermitian structure and compati-
ble G-action. With d as in Theorem 1.1, it is a direct sum of |d+1|m(ρ) copies of Vρ ,
all in even (resp. odd) degree if d ≥ 0 (resp. d < 0). In particular, the completed
orthogonal sum

(3) H :=

⊕
ρ

H (ρ),

with ρ ranging over all the isomorphism classes of irreducible G-representations,
defines a Hilbert space G-representation, and (3) is the isotypical decomposition.

This viewpoint also lends itself to an approach in terms of rank-generating series
and localisation formulæ, something which we address in Section 2H.

Again, the space H of (3) may informally be thought of as the cohomology of
the sum of all the H(ρ)’s, regarded now as a holomorphic vector bundle over CP1.
It is interesting to note how this is reminiscent of the description of M in terms of
its twistor space, a holomorphic fibration Z → CP1 (plus additional holomorphic
data). It would be an interesting problem to investigate whether our setup can be
obtained in terms of twistor data by purely holomorphic constructions, something
which we would like to address in a separate work.

The most crucial assumptions in our construction, besides the surjectivity of
G → SO(3), is the finite-dimensionality of the isotypical components in Hq . For
that reason, we also investigate sufficient conditions to ensure it. They can be
summarised as follows.

Theorem 1.3 (see Theorems 2.14 and 2.17). Suppose one of the Kähler forms ωq

on M is fixed, S ⊆ StabG(ωq) is a connected Lie subgroup, and ρ is an isomorphism
class of S-representations. Then each of the following is a sufficient condition for
the corresponding S-isotypical component in Hq to have finite dimension.

• The Kostant moment map for S is proper on Mq , and its action extends holo-
morphically to the complexification of S.
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• S is a torus, Mq has the structure of an affine scheme or Stein space, and the
Kostant moment map for S is proper.

• S is a torus, Mq has the structure of an affine scheme or Stein space, and
M//w S, w the weight of ρ, admits a compactification with rational singulari-
ties and boundary of codimension greater than or equal to 2.

A further way to ensure finite dimensionality can be found in the discussion of
meromorphic torus actions in [90].

1B. Applications and further directions. In Section 3 we showcase applications
of the main construction. The first one is a hyperkähler vector space V of real
dimension 4n, with n ∈ Z≥1. In this case

Hk(V )≃ Sp(n) · Sp(1),

identifying V ≃ Hn (see Remark 3.2). Indeed, under this isomorphism, Sp(1) acts
on V via right multiplication of unit-norm imaginary quaternions, and commutes
with the natural Sp(n)-action. Furthermore the norm associated to the hyperkähler
metric provides a hyperkähler potential and we can apply the abstract construction
(see Theorems 3.5 and 3.6).

Importantly, there are many more examples of (nonflat) Sp(1)-symmetric hyper-
kähler manifolds. These include moduli spaces of magnetic monopoles on R3 by
the work of Atiyah and Hitchin [14] or equivalently, by the work of Donaldson [34],
the moduli spaces of based rational maps from CP1 to itself; moduli spaces of
framed SU(r)-instantons on R4, by the work of Maciocia [62]; the hyperkähler
structure on nilpotent orbits, by the work of Kronheimer [57], and more generally
the hyperkähler Swann bundle over any quaternionic Kähler manifold [82]. In four
dimensions a complete classification of Sp(1)-symmetric hyperkähler manifolds is
given (up to finite covers) by the work of Gibbons and Pope [40] and by Atiyah
and Hitchin [14]. The three examples are the flat metric on H, the Taub–NUT
metric, and the hyperkähler metric on the moduli space of charge-2 monopoles, i.e.,
the Atiyah–Hitchin manifold.

We establish in Sections 3B and 3C that the Theorems 1.1, 1.2 and 2.17 (or slight
modifications thereof) apply to some of these examples, producing a quantisation
and corresponding irreducible unitary (super)representations of distinguished groups
of hyperkähler isometries.

2. Abstract Sp(1)-symmetric hyperkähler quantisation

2A. Hyperkähler manifolds and their symmetry groups. Let n be a positive integer
and M a smooth manifold of dimension 4n.
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Definition 2.1. A hyperkähler structure on M consists of a Riemannian metric g
and an ordered triple (I, J, K ) of covariant constant orthogonal automorphism of
TM satisfying the quaternionic identities I 2

= J 2
= K 2

= IJK = − IdTM .

It follows that I, J, K are g-skew-symmetric global sections of End(T M)→ M ,
and we denote by su(2)M the three-dimensional real Lie algebra they span.

The hyperkähler 2-sphere of complex structures of (M, g, I, J, K ) is

(4) SIJK := {Iq = aI +bJ +cK | q = (a, b, c)∈ R3, a2
+b2

+c2
= 1} ⊆ su(2)M .

As customary, the structure on M identifies (4) with the 2-sphere of unit-norm
imaginary quaternions, i.e., with CP1 as a Kähler manifold. In particular for
q ∈ CP1 there is a (real) symplectic form on M defined by

ωq(v,w) := g(Iqv,w) for v,w ∈ TM.

The triple Mq := (M, Iq , ωq) is a Kähler manifold, and for further use we denote
by µq = d vol ∈�top(M) the Liouville volume form — independent of q ∈ CP1 as
it agrees with the Riemannian volume form of (M, g).

Remark 2.2. The above data can be encoded in a fibration πCP1 : Z → CP1 of
Kähler manifolds over the Riemann sphere, the twistor space of (M, g, I, J, K ).
Clearly this family comes with a natural global trivialisation Z ≃ M × CP1 as a
smooth fibre bundle, but not as fibre bundle with symplectic or complex fibres.
Nonetheless the natural complex structure on Z makes Z →CP1 into a holomorphic
fibre bundle [46, pp. 141-142].

Now consider the group Sp(M)= Sp(M, g, I, J, K )⊆ Iso(M, g) of Riemannian
isometries of (M, g) preserving the Kähler forms ωq (or equivalently the complex
structures Iq ) simultaneously for all q ∈ CP1. This group is sometimes referred to
as the hyperunitary group. Denoting Aut0(Z) the group of holomorphic automor-
phisms of Z → CP1 over the identity, there is a natural group homomorphism

(5) Sp(M)→ Aut0(Z),

given by the fibrewise action of Sp(M).
We shall consider a group of isometries that preserve the hyperkähler structure

in a looser sense, relaxing the condition that differentials should commute with
I , J , and K individually.

Definition 2.3. Let Hk(M)⊆ Iso(M, g) be the subgroup stabilising the Lie algebra
su(2)M:

Hk(M)= Hk(M, g, I, J, K ) := {ϕ ∈ Iso(M, g) | Addϕ(su(2)M)= su(2)M}.
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Hence Hk(M) acts on su(2)M, and Sp(M)⊆ Hk(M) is the kernel of this action.
Moreover the adjoint action Ad on su(2)M ≃ R3 is by positive isometries for the
standard Euclidean structure, resulting in a group morphism

Ad : Hk(M)→ SO(3), Ad : ϕ 7→ Addϕ,

and an action on the hyperkähler 2-sphere (4) — simply denoted by q 7→ ϕ.q . The
combination of the actions of Hk(M) on CP1 and M itself naturally extends (5) to
a map

(6) Hk(M)→ Aut(Z),

where Aut(Z) denotes the full group of biholomorphisms of Z compatible with the
fibration map and covering arbitrary Kähler automorphisms of CP1.

Suppose now given a connected compact Lie group G, and a G-action

ρ : G → Hk(M)

on M by transformations in Hk(M). We will sometimes denote by

ρZ
: G → Aut(Z)

the composition of ρ with (6); where unambiguous, we will often denote the G-
action simply by (ρ(g))(p)= gp, and similarly for ρZ . As in the introduction, we
require that the induced G-action on CP1 be transitive, or equivalently that the
corresponding map G → SO(3) be surjective. The kernel G0 of this action is then
also a compact Lie group, and by construction it acts on M by transformations
in Sp(M).

Lemma 2.4. The induced G-action on CP1 factors through a morphism

(7) σ : Sp(1)→ G

from the universal cover Sp(1) of SO(3). This, moreover, arises from a covering
map G0 × Sp(1)→ G.

Proof. By compactness, the Lie algebra g := Lie(G) admits a nondegenerate
invariant pairing. Once such a pairing is fixed, the orthogonal complement of
g0 := Lie(G0) is a Lie subalgebra which maps isomorphically to so(3) ≃ su(2).
This induces a section su(2)→g which integrates to the desired map σ . In fact, since
g0 and g⊥

0 commute with each other, the splitting g≃ g0 ⊕g⊥

0 is an isomorphism of
Lie algebras. In particular, every element of G0 commutes with σ(Sp(1)), resulting
in a map G0 × Sp(1)→ G. □

In other words, for G as above, a G-action by transitive hyperkähler rotations
always comes from an Sp(1)-action, and up to covers it splits as the product with
an action by Sp(M). Henceforth we shall fix a group homomorphism σ as in (7).
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2B. Prequantum data. As already noted, a notion of prequantum line bundle
on M is ill-posed, since a hyperkähler manifold comes with a continuous family of
incompatible prequantum conditions. Instead, we will assume given a Hermitian line
bundle (L , h) on M together with a smooth family of compatible connections ∇q ,
q ∈ CP1, each with curvature Fq = −iωq . The smoothness in q may be expressed
by the condition that, if a section ψ of π∗

M L → Z is smooth, then so is the family
∇qψ |q , as a section of π∗

M(L ⊗ T ∗M). Equivalently, for every local trivialisation
of L , the induced connection potentials should depend smoothly on q ∈ CP1.
Together with the trivial derivative along the directions of CP1 in Z ≃ M × CP1,
these ∇q’s assemble to form a connection on π∗L → Z . Additionally, we will
require that L be equipped with a Hermitian G-action

ρL
: G → Aut(L , h),

which lifts the one on M and permutes the connections equivariantly.
In practice, the G-action may not come with preferred prequantum data as above.

Now we investigate criteria to determine whether such data exist for a given action.
A necessary condition for the existence of a prequantum line bundle on a symplec-

tic manifold is that the symplectic form represent an integral class in cohomology.
Conversely, in that case a prequantum line bundle can be constructed by a diagram
chasing procedure on the Čech–de Rham complex [89].

In our situation, we will require that

[ωq ] ∈ H 2(M,Z) for all q ∈ CP1.

In fact, if the condition holds for at least one q , then by the Sp(1)-action it does for
all q , and it then follows by continuity that [ωq ] is independent of q . The diagram
chasing procedure mentioned above may then be carried out with differential forms
on M depending smoothly on q . Hence a family of prequantum line bundles exists
if and only if [ωq ] is integral for some q .

Suppose such a family is fixed, with underlying Hermitian line bundle (L , h),
and let Lq := (L , h,∇q) for each q . For every g ∈ G, the structure of g∗Lg.q ⊗ L−1

q
defines a family of flat Hermitian connections. Since such objects are classified up
to isomorphism by 0 := H 1

(
M,U(1)

)
, this defines a map

(8) u : G → C∞(CP1, 0), u : g 7→ (q 7→ [g∗Lg.q ⊗ L−1
q ]).

Viewing the abelian group 0′
:= C∞(CP1, 0) as a G-module under the pull-back

action, u defines a cocycle in C1(G, 0′).

Lemma 2.5. Suppose (L , h) is a Hermitian line bundle over M with a family of
prequantum connections ∇q smoothly parametrised by CP1. The cohomology class
of the coycle u from (8) vanishes in H 1(G, 0′) if and only if there exist:
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• a Hermitian line bundle B and

• a family of Hermitian flat connections ∇
B
q smoothly parametrised by CP1

such that, for all q ∈ CP1 and g ∈ G, we have

(9) g∗(Lg.q ⊗ B−1
g.q)≃ Lq ⊗ B−1

q

as Hermitian line bundles with connection, where Bq := (B,∇B
q ).

Proof. Suppose such a family exists. Then (9) is equivalent to

g∗Lg.q ⊗ L−1
q ≃ g∗Bg.q ⊗ B−1

q ,

i.e., u = δ3 for 3(q) := [Bq ] ∈ 0, and therefore [u] = 0.
Conversely, suppose that u = δ3 for some 3 ∈ 0′. It follows from the exact

sequence
H 1(M,R)→ H 1(M,U(1))→ H 2(M,Z)→ H 2(M,R)

that the components of 0 = H 1(M,U(1)) are labelled by the torsion of H 2(M,Z),
while the identity component is covered by H 1(M,R). Since 3 : CP1

→ 0

is a continuous map, we may fix some 30 ∈ 0 so that 3 − 30 takes values
in the identity component. Since CP1 is simply connected, this lifts to a map
3̃ : CP1

→ H 1(M,R). Choose a collection of 1-forms α1, . . . , αn on M whose
de Rham cohomology classes form a basis of H 1(M,R). Expressing 3̃ as

3̃(q)=

n∑
i=1

ci (q)[αi ],

we see that each ci is a smooth function of q and therefore α=
∑n

i=1 ci αi is a smooth
family of 1-forms on M parametrised by CP1. Choosing a representative (B,∇B

0 )

of 30 ∈ H 1(M,U(1)) and setting ∇
B
q := ∇

B
0 +α(q), it follows by construction that

3(q)= [(B,∇B
q )].

Expanding and manipulating the condition u = δ3 leads to (9). □

Lemma 2.5 shows that, if [u] = 0, then L may be replaced by a new family
of prequantum line bundles on which the action of every element of G admits an
equivariant lift. In that case, the action of the group

G ′
:= {ϕ ∈ Aut(L , h) | ϕ covers some g ∈ G}

covers that of G on M surjectively while permuting the connections equivariantly.
Notice moreover that G ′ is also compact and connected, being a central extension of
the image of G in Hk(M), so the discussion from the previous section also applies
to it. In particular, by Lemma 2.4, there exists a map σ L

: Sp(1)→ G ′ lifting the
Sp(1)-action on M . Even though there may not be a lifted G-action on L , we obtain
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one by replacing the group with G ′, which does not essentially change the action
on M .

The simplest vanishing [u] = 0 is obtained if 0 is trivial (which we will see in
some examples) or by the existence of a hyperkähler potential (which we discuss
in Section 2I).

Up to the necessary replacements, in what follows we thus assume to have fixed
a family of prequantum connections with an equivariant action ρL

: G → L .

2C. Geometric quantisation. Following the prescription of geometric quantisation,
for q ∈ CP1 consider the separable Hilbert space

(10) Hq :=

{
ψ ∈ H 0(Mq , Lq)

∣∣∣∫
M

h(ψ,ψ) d vol<∞

}
⊆ L2(M, L),

using the holomorphic structure ∂q = ∇
0,1
q and the standard L2 Hermitian product:

(11) ⟨ψ | ψ ′
⟩ :=

∫
M

h(ψ,ψ ′) d vol, ψ,ψ ′
∈ Hq .

Let us denote by H the family of Hilbert spaces thus defined over CP1.
By construction there are unitary isomorphisms

ρHg : Hq → Hg.q , q ∈ CP1, g ∈ G,

explicitly given by

(12) (ρHg ψ)(m) := ρL
g (ψ(ρ

Z
g−1m)), m ∈ M.

2D. Decomposition of Hq . We will now consider the decompositions of the
spaces (10) induced by viewing them as representations under the action (12).
For a given q ∈ CP1, restricting ρH to

Gq := StabG(q),

defines a group action on Hq by unitary operators, i.e., a Hilbert space representation.
By the Peter–Weyl theorem [54, Theorem 1.12], Hq decomposes a completed
orthogonal sum of irreducible components. Similarly, denoting by

Tq := StabSp(1)(q)

the maximal torus in Sp(1) fixing q , its action on Hq gives a decomposition

Hq =

⊕
d∈Z

H(d)
q ,

where H(d)
q ⊆ Hq is the isotypical component corresponding to the character

Tq ≃ U(1)→ C×, z 7→ zd ,
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under the natural identification with the standard torus U(1) ⊆ C×. Since Tq

commutes with G0 ⊆ Gq , each component H(d)
q is a representation of G0. Therefore,

we obtain a refinement of the decomposition above as

(13) H(d)
q =

⊕
λ∈3

H(d)
q,λ,

where 3 denotes the set of (analytically) integral weights of G0 and H(d)
q,λ is the

isotypical component in H(d)
q of maximal weight λ. In what follows we shall often

denote by 3(d) ⊆3 the subset of “active” representations.1

Remark 2.6. It is not difficult to see, given that Gq is covered by Tq × G0, that
every irreducible representation of Gq has a single weight for Tq and is also
irreducible for G0. Therefore, every irreducible Gq-representation induces a pair
(d, λ) of weights for Tq and G0, by which the representation itself is unambiguously
determined. In particular, the decomposition (13) is equivalent to the one into
isotypical components under Gq .

In a similar way we may also consider a maximal torus T ⊆ G0 and find

H(d)
q =

⊕
a∈T ∨

H(d)
a,q ,

where H(d)
a,q ⊆H(d)

q is the isotypical component of the character a : T → C×. Again,
the decomposition above is equivalent to the one we would obtain by considering
the action of the maximal torus T ′

q := Tq · T ⊆ Gq on Hq .
We denote H(d), H(d)

a and H(d)
λ the families of Hilbert spaces thus defined over

CP1, so that we have L2-completed orthogonal direct sums

H =

⊕
d∈Z

H(d),
⊕
λ∈3

H(d)
λ = H(d)

=

⊕
a∈T ∨

H(d)
a .

2E. Structure of H(d)
λ . Our main assumption, unless otherwise stated, is as follows:

The spaces H(d)
q,λ are finite-dimensional.

The goal of this section is to make each family H(d)
λ , under the finite-dimension-

ality condition above, into a vector bundle, and equip it with a connection. The
simplest way to define a smooth structure on H(d)

λ is to assume it is a Banach
sumbanifold of the product CP1

× L2(M, L), with G acting smoothly on it. We
shall now investigate the structure induced by this assumption, and later show that
the same data can be obtained canonically from the group structure.

1The subset 3(d) is independent of q ∈ CP1 since the Sp0’(M)-modules H(d)q are isomorphic
under the Sp(1)-action.
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Now let (temporarily, see Remark 2.12 below) the family of Hilbert spaces H(d)
λ

forms a smooth Banach submanifold of the trivial Hilbert bundle L2(M, L)→ CP1.
We can then differentiate smooth local sections ψ of H(d)

λ → CP1, viewed as maps
CP1

→ L2(M, L), along tangent vectors on CP1. Then, since H(d)
q,λ ⊆ L2(M, L)

is a closed subspace, there are orthogonal projections

π
(d)
q,λ : L2(M, L)→ H(d)

q,λ.

Definition 2.7. For any tangent vector X ∈ TqCP1 set

∇
H(d)
λ

X ψ := π
(d)
q,λ(X [ψ]) ∈ H(d)

q,λ.

Remark 2.8. The same definition (of the standard L2-connection) can be given
verbatim in the case where the families H(d)

a ⊆ H(d) also constitute smooth sub-
manifolds.

Remark 2.9. This covariant derivative is characterised by the property that

⟨∇
Hd
λ

X ψ |ψ ′
⟩ = ⟨X [ψ]|ψ ′

⟩

for all X, ψ,ψ ′ as appropriate.

Proposition 2.10. The covariant-derivative operators of Definition 2.7 are compat-
ible with the action ρH of (12) and with the Hermitian structure of H(d)

λ → CP1.

Proof. The operators ∇
H(d)
λ

X satisfy Leibniz and preserve the Hermitian pairing
by construction. We need only show that they are ρH-equivariant. Given g ∈ G,
q ∈ CP1, a section ψ of H(d)

λ → CP1, and a tangent vector X ∈ Tq CP1, we have

X [ρgψ] = ρg((g−1
∗

X)[ψ]),

where the superscripts in the actions were removed for convenience. Combining
the above with a change of variables in (11), one sees that

⟨X [ρgψ]|ψ ′
⟩ = ⟨(g−1

∗
X)[ψ]|ρg−1ψ ′

⟩

for all ψ ′
∈ H(d)

g.q,λ. By Remark 2.9, this shows that ∇X (ρgψ)= ρg(∇g−1
∗ X [ψ]). □

Recall now that for every integer d there exists an Sp(1)-equivariant Hermitian
line bundle of degree d with compatible connection over CP1, unique up to iso-
morphism. This can be characterised as the holomorphic line bundle O(d)→ CP1

together with the standard Hermitian metric and its corresponding Chern connection.
Alternatively, it can also be described as the quotient of an appropriate line bundle
over Sp(1) under the identification CP1

≃ Sp(1)/U(1). More precisely, consider
the d-th character χ (d) :u(1)→ R and its unique AdU(1)-invariant extension to sp(1).



14 J. E. ANDERSEN, A. MALUSÀ AND G. REMBADO

Denoting by α(d) the corresponding left-invariant 1-form on Sp(1), the connection
d + 2π iα(d) on Sp(1)× C is then invariant under the actions

A · (x, z) := (Ax, z) and (x, z) · h := (xh, h−d z)

for A ∈ Sp(1) and h ∈ U(1). Furthermore, the right U(1)-action is by construction
horizontal for this connection. Therefore, the latter descends to a metric and
Sp(1)-equivariant connection on (Sp(1)× C)/U(1)→ Sp(1)/U(1)≃ CP1.

Uniqueness can be established by noticing that the difference of two such line
bundles comes with a connection whose curvature is Sp(1)-invariant and vanishes
in cohomology, and is therefore zero. The space of flat sections is then a 1-
dimensional Sp(1)-representation, so that choosing one unit element in this space
gives an isomorphism of the line bundles intertwining the Hermitian structures and
connections.

We will refer to this object as Ld .
For each d ∈ Z and λ ∈ 3(d), denote by m(d)

λ the multiplicity of Vλ in H(d)
q .2

Finally, call Vλ → CP1 the trivial Hermitian bundle with fibre Vλ with ∇
Tr the

trivial connection and Sp(1) acting on it trivially on the fibres.

Theorem 2.11. Fix an integer d and a dominant weight λ of G0. Suppose, for some
q ∈ CP1, that the multiplicity m(d)

λ of the corresponding isotypical component in the
Hilbert space Hq is finite. Consider the collection H(d)

λ of corresponding isotypical
components, and suppose it forms a Banach submanifold of CP1

×L2(M, L) acted
on smoothly by G. Then H(d)

λ is a Hermitian vector bundle over CP1 and there
exists a G-invariant isomorphism

H(d)
λ ≃ (Ld

⊗ Vλ)⊕m(d)
λ

of Hermitian vector bundles which intertwines the covariant derivative operators
∇

H(d)
λ of Definition 2.7 with the natural connection on the right-hand side.

Proof. Introducing for simplicity the notation m :=m(d)
λ , fix q ∈CP1, and identify Tq

with U(1) by the orientation defined by q. Consider on Sp(1) the trivial vector
bundle Sp(1)× V ⊕m

λ with the left and right actions

(A, g) · (x, v) := (Ax, gv) and (x, v) · h = (xh, h−dv)

of Sp(1)× G0 and U(1), respectively. Choose an isomorphism ϕ : V (⊕m)
λ → H(d)

q,λ
as G0-modules and define

8 : Sp(1)× V ⊕m
λ → H(d)

λ , 8 : (x, v) 7→ ρH(x)(ϕ(v)).

By construction, 8 is invariant under the right U(1)-action and intertwines the
Sp(1)× G0-actions. It is also a surjective smooth map covering the projection

2The integer m(d) is independent of q ∈ CP1 (see the previous footnote).
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π : Sp(1)→ CP1, π(x) := xq and restricts fibrewise to unitary isomorphisms. It
follows that 8 is a submersion, and therefore the induced bijection

(14) (Sp(1)× V ⊕m
λ )/U(1)→ H(d)

λ

is a diffeomorphism, thus showing that H(d)
λ is a vector bundle as claimed. It then

follows from Proposition 2.10 that ∇
H(d)
λ is a Hermitian G-invariant connection.

The map 8 may also be regarded as a unitary isomorphism

(15) Sp(1)× V ⊕m
λ ≃ π∗H(d)

λ .

Both sides come with Sp(1)× G0- and U(1)-invariant Hermitian connections, both
making the right U(1)-action horizontal. Such a connection, however, is uniquely
characterised by these properties. Indeed, left Sp(1)-invariance implies that such
a connection is determined by the potential over any element of Sp(1). On the
other hand, combining the left and right U(1)-invariance shows that the operation
of lifting elements of TId Sp(1) ≃ sp(1) horizontally is AdU(1)-equivariant. The
condition that the right U(1)-action be horizontal, moreover, determines the lifts of
vectors in u(1), and therefore of those in sp(1) by AdU (1)-invariance. We conclude
that the isomorphism (15) also identifies the connections on the two bundles, which
is to say that the isomorphism (14) is also horizontal. The left-hand side of (14),
however, is clearly isomorphic to Ld

⊗ Vλ⊕m . Finally, since the kernel of the
covering map Sp(1)× G0 → G acts trivially on the right-hand side, it follows that
the group action on the left-hand side descends to G. □

Remark 2.12. Theorem 2.11 yields an alternative definition of the bundles of
isotypical components, without smoothness assumptions. Indeed, a map 8 con-
structed as above uniquely defines a smooth structure on H(d)

λ making it a vector
bundle which comes with an isomorphism with Ld

⊗ Vλm , and therefore inducing
also a connection with the desired properties. Given that the only ambiguity in
the construction of 8 lies in the choice of ϕ, any two such maps are related by
precomposition with a G0-invariant automorphism of V ⊕m

λ . Since this operation
preserves the structure on Sp(1)× V ⊕m

λ , the two choices induce the same data
on H(d)

λ .
This yields finite-rank smooth G-equivariant Hermitian vector bundles over the

Riemann sphere, equipped with Hermitian connections, defined from the combi-
natorial data of the multiplicities of Hq as a representation, as long as the main
assumption that the H(d)

q,λ’s be finite-dimensional is verified.

Together with Remark 2.6, the content of this section proves Theorem 1.1.

2F. Quantum super Hilbert spaces and unitary representations. We now denote
by H (d)

λ the super vector space obtained by taking the holomorphic cohomology of
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the bundles of isotypical components:

H (d)
λ := H∗(CP1,Hd

λ).

By Remark 2.6, the above is equivalent to the space H (ρ) of (2). Since H(d)
λ is

Hermitian and CP1 is Kähler, the L2-pairing on harmonic representatives gives
each of the above a natural Hermitian structure.

If W (d)
= W (d)

+ ⊕ W (d)
− is the unitary super Sp(1)-representation defined by

W (d)
+ := H 0(CP1,Ld), W (d)

− := H 1(CP1,Ld),

then H (d)
λ ≃ W (d)

⊗ V ⊕m(d)
λ

λ as super G-representations, where Vλ is endowed with
the trivial Z2-grading. Moreover, dim W (d)

+ is equal to d+1 if d ≥ 0 and 0 otherwise,
while similarly dim W (d)

− vanishes for d ≥ 0 and is equal to −d − 1 otherwise.
Finally consider the nested L2-completed orthogonal direct sums

H :=

⊕
d∈Z

H (d), H (d)
:=

⊕
λ∈3(d)

H (d)
λ .

This provides a G-representation quantising the G-action on (M, g, I, J, K ),
thus proving Theorem 1.2 from the introduction.

2G. Finite-rank conditions. We shall now consider conditions which entail finite-
dimensionality for the isotypical components of Section 2D.

In general, if K is a compact Lie group with Lie algebra k = Lie(K ), acting on
a Kähler manifold X with a lifted K-action on a prequantum line bundle (L ,∇),
there is a natural moment map µ : X → k∨ defined by Kostant’s formula

(16) 2π i⟨µ, ξ⟩ ∂
∂θ

= ξ H
X − ξL

for every ξ ∈ k, where ξL is the vector field corresponding to ξ on L , ξ H
X the

one on X lifted horizontally, and ∂/∂θ is the fibrewise “angular” vector field. In
this setup, we will make use of the following version of the general principle that
“quantisation commutes with reduction”.

Theorem 2.13 [43; 81]. In the setup above, if the K-action extends holomorphically
to the complexified group K C, and if the moment map (16) is proper, then for every
dominant weight γ of K there is an identification

HomK (Vγ , H 0(X, L))≃ H 0(Xγ , Lγ ),

where Vγ denotes a simple K-module of highest weight γ , Xγ = X//γ K is the
symplectic reduction of X at level γ , and Lγ is the induced (V -)bundle on Xγ .

This result was first established by Guillemin and Sternberg [43] in the case X is
compact, with additional regularity conditions, and then extended by Sjamaar [81].
The statement has been subsequently generalised in various works including those
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of Meinrenken [67; 68], Meinrenken and Sjamaar [69], Vergne [84; 85], Ma [60],
Ma and Zhang [61], and Hochs and Song [48].

We emphasise that this formulation of “quantisation commutes with reduction”
requires no assumptions on γ being a regular value or the K-action being free on
µ−1(γ ). In the statement of Theorem 2.13, Xγ and Lγ are regarded as a complex
analytic space and a coherent sheaf, respectively. See [81] for further detail.

Returning to our setting, for any fixed q and Lie subgroup S ⊂ Gq we have a
moment map

µS : M → Lie(S)∨,

given by Kostant’s formula. Then Theorem 2.13 yields the following.

Theorem 2.14. Fix q ∈ CP1 and a (connected) Lie subgroup S ⊆ Gq , and denote
by µS the Kostant moment map of the S-action on Mq . Assume that µS is proper,
and suppose that the S-action has a holomorphic extension to the complexified
group SC on Mq . Then every S-isotypical component in Hq has finite multiplicity.

Proof. Properness of the moment map implies that, for any dominant weight γ of S,
the symplectic reduction M//γ S is a compact complex analytic space. On the other
hand, Lγ is a coherent sheaf on it by [81, Section 2.2], and by compactness the
space of sections is finite-dimensional [28].

It follows from Theorem 2.13 that the irreducible representation of S of highest
weight γ has finite multiplicity inside H 0(Mq , Lq), so a fortiori inside Hq . □

Remark 2.15. Another way to ensure finite-dimensionality is to assume there
are compactifications of the symplectic reductions, with rational singularities and
boundary of (complex) codimension at least two; then Hartogs’s theorem applies
on the reduction (see, e.g., [83] for such generalisations, and see Theorem 2.17).

As briefly noted in the introduction, another approach to controlling the dimension
of the isotypical components is offered by the results of [90]. Indeed, the cited
work introduces a notion of meromorphicity for certain group actions which, under
appropriate conditions (see Assumption 2.14 of the same work), ensures finite-
dimensionality.

2H. Rank-generating series and localisation formulæ. If either H(d), H(d)
a or H(d)

λ

have finite rank, we consider the (formal) generating series:

(17) H(t)=

∑
d

rk(H(d)) · td ,

and

(18) H ′(t, t̃ )=

∑
d,a

rk(H(d)
a ) · td t̃a,
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as well as

(19) G(t, t̃ )=

∑
d∈Z

∑
λ∈3(d)

m(d)
λ · td t̃λ.

Note that if H(d)
a and H(d)

λ are both finite-rank then (18) can be obtained from (19)
via the substitution t̃λ 7→ χλ(t̃ ), where

χλ(t̃ )=

∑
a∈Eλ

n(λ)a · t̃a,

and where Eλ is the set of weights of Vλ with multiplicities n(λ)a ∈ Z≥0.
If in particular G0 is semisimple then the Weyl character formula yields

χλ(t̃ )=

∑
w∈W ϵ(w) t̃w(λ+ρ)∑
w∈W ϵ(w) t̃w(ρ)

,

where W = N (T )/T is the Weyl group and ρ ∈ t∨ the half-sum of positive roots.
Conversely (19) can be recovered from (18) (when both are defined) as follows.

Fix d ∈ Z and let Hd(t̃ ) be the coefficient of td in (18). Let λ be maximal among
the weights such that t̃λ appears in Hd(t̃ ). In particular, the weight λ(0)d can only
appear in an irreducible component of H(d)

q (as a G0-module) if it is the highest.
Therefore, the coefficient of t̃λ in Hd(t̃ ) is equal to m(d)

λ . One may now consider
Hd(t̃ )− m(d)

λ χλ(t̃ ) and repeat the procedure inductively. Since each step strictly
decreases one of the maximal weights the process terminates — exactly when the
polynomial vanishes. This results in a decomposition

Hd(t̃ )=

∑
λ∈3(d)

m(d)
λ χλ(t̃ ),

recovering all multiplicities and ultimately (19).
Furthermore the generating series (17), (18), and (19) can sometimes be computed

by localisation formulæ. We refer to [49] for general results, and we review here
the simpler versions used in what follows.

Suppose the action of Tq on Mq has a finite number of fixed points |Mq | ⊆ Mq ,
and let R(Tq) be the formal completion of the character ring R(Tq) of Tq .

Since the fixed points p ∈ |Mq | are isolated we see that 3−1(Tp Mq) ∈ R(Tq) is
invertible. Suppose now we have a decomposition

H i (Mq , Lq)=

⊕
d∈Z

H i (Mq , Lq)(d),

such that Tq acts on H i (Mq , Lq)
(d) via the d-th power of the standard representation,

and such that the spaces H i (Mq , Lq)
(d) are finite-dimensional.
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Proposition 2.16 [25; 49]. The following formula holds:

2n∑
i=0

(−1)i dim H i (Mq , Lq)
(d)td

=

∑
p∈|Mq |

Lq,p

3−1(Tp Mq)
.

Hence if H i (Mq , Lq)= (0) for i > 0 then simply

(20) H(t)=

∑
p∈|Mq |

Lq,p

3−1(Tp Mq)
.

Considering the action of T ′
q = Tq ·T on Mq we get an analogous result, provided

T ′
q has finitely many fixed points and all spaces H i (Mq ,Lq)

(d)
a,q are finite-dimensional,

and interpreting the right-hand side as an element of R(T ) ≃ Z[[t±1, t̃±1
i ]]. In

particular,

(21) H ′(t, t̃ )=

∑
p∈|Mq |

Lq,p

3−1(Tp Mq)
.

Now recall that if Mq is a Stein space, or has the structure of an affine scheme,
then Cartan’s theorem yields the vanishing of higher cohomology groups [27]. Thus
putting together the previous results we have established the following.

Theorem 2.17. Suppose there exists q ∈ CP1 such that Mq is a Stein space, or
has the structure of an affine scheme, and that the Tq-action (resp. T ′

q-action) has
finitely many fixed points. Assume further that one of the following holds:

• There is a proper moment map for the Tq -action (resp. T ′
q -action).

• There exists a compactification of the symplectic reductions with rational
singularities, with boundary of codimension at least two (see Remark 2.15).

Then the family H(d) (resp. H(d)
a ) has finite rank, and the associated localisation

formula (20) (resp. (21)) holds for the rank-generating series (17) (resp. (18)).

Remark 2.18. If the higher cohomology groups do not vanish one could replace (10)
by the super space

H̃q = H even(Mq , L)⊕ H odd(Mq , L),

in which case formulæ (20) and (21) hold for the super representations H̃q of Tq

and T ′
q . (In this setup one need not assume that Mq be a Stein space or an affine

scheme.)

Remark 2.19. Alternatively, in the setting of [90], Wu’s localisation results (Theo-
rem 3.14 of the same work) yield the generating series (17) and (18) by an index
computation of the fixed-point locus for the Tq - and T ′

q -action, respectively.
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2I. Sp(1)-symmetric hyperkähler potentials.

Definition 2.20. A hyperkähler potential on the hyperkähler manifold (M,g, I, J,K )
is a smooth map µ : M → R such that ωq = i∂q∂qµ for every q ∈ CP1.

One can also use such potentials to obtain equivariant prequantum data, as
discussed below. Assume further that µ is Sp(1)-invariant and that it generates the
Tq -actions, i.e., iµ : Mq → iR ≃ t∨q is a moment map.

In this case we consider the trivial Hermitian line bundle, and lift the G-action
by the identity on each fibre. Natural symplectic potentials are given by

θq =
1
2(∂qµ− ∂qµ) ∈�1(M),

hence ∇q = d+(θq/ℏ) is a prequantum connection for all q ∈ CP1, and the resulting
prequantum data are G-equivariant since µ is Sp(1)-invariant.

Now if grad(µ) is complete then each Tq -action extends holomorphically to C×,
and if in addition µ is proper then the subspaces H(d)

q are finite-dimensional by
Theorem 2.14.

Proposition 2.21. Suppose that M admits a G-invariant hyperkähler potential µ
which, for every q ∈ CP1, is also an ωq-moment map for the Tq-action. Assume
moreover that µ is bounded below and that it has finitely many critical values.
Then for every q ∈ CP1 the function ψ0 := e−µ/2ℏ is square-integrable, and it is a
holomorphic frame for the prequantum line bundle constructed above.

Proof. Nonvanishing and holomorphicity are a straightforward consequence of the
definition.

On the other hand, the L2-square-norm of ψ0 can be expressed as

(22) ∥ψ0∥
2
L2 =

∫
M

e−µ/ℏ d vol =

∫
∞

B
e−ξ/ℏµ∗(d vol),

where B ∈ R is a lower bound for µ and µ∗(d vol) the push-forward of the Liouville
measure. By the Duistermaat–Heckman theorem [36] the push-forward admits
a density which restricts to a polynomial on every interval I ⊂ R not containing
critical values for µ. Since there are finitely many such values, (22) splits as a finite
sum of converging integrals. □

By construction, the compact torus Tq ≃ U(1) acts on the complex vector space
of holomorphic functions on Mq — by (inverse) pullback. By definition, such a
function is d-homogeneous if it transforms (under the Tq -action) in the irreducible
representation corresponding to the character z 7→ zd

∈ U(1), where d ∈ Z. Under
the assumptions of Proposition 2.21 we thus get an isomorphism

9 : L2 H 0(Mq ,O, e−µ/ℏ d vol)(d) → H(d)
q ,
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given by9( f )= fψ0, where the left-hand side denotes the space of d-homogeneous
holomorphic functions with finite L2-norm with respect to e−µ/ℏ d vol.

3. Examples of applications

3A. Hyperkähler vector spaces. Let n > 0 be integer and V a real vector space of
dimension 4n.

Definition 3.1. A linear hyperkähler structure on V is a scalar product g and an or-
dered triple (I, J, K ) of orthogonal automorphisms of V satisfying the quaternionic
identities I 2

= J 2
= K 2

= IJK = − IdV .

Equivalently, a linear hyperkähler structure on V may be regarded as a Hermitian
representation of the quaternion algebra

H = {q = d + ai + bj + ck | a, b, c, d ∈ R},

on V , where the quaternionic Hermitian form is

h := g − iωI − jωJ − kωK , with ω•(v,w) := g(• v,w) for • ∈ {I, J, K }.

It follows that I, J, K are g-skew-symmetric, and hence they span a real Lie
subalgebra su(2)V ⊆ o(V, g).

Attached to the hyperkähler vector space is the group Sp(V, h) ⊆ O(V, g)
of R-linear endomorphisms of V preserving h — and hence g and each of the
forms ωI , ωJ , ωK . As above we are interested in transformations that preserve the
hyperkähler structure in a looser sense, but here we restrict to linear ones:

Hk(V )= Hk(V, g, I, J, K ) := {A ∈ O(V, g) | AdA(su(2)V)= su(2)V}.

As a subgroup of O(V, g), the above is compact.

Remark 3.2. We are thus slightly abusing the notation from Section 2. Indeed if V
is regarded as a smooth hyperkähler manifold then the group of all transformations
preserving g and su(2)V also contains the translations, and it is in fact generated
by these two kinds of transformations. We shall still denote this subgroup Hk(V )
in the linear case to simplify the notation.

Remark 3.3. In this case the twistor space is a rank-2n holomorphic vector bundle
πCP1 : Z → CP1 isomorphic to C2n

⊗ O(1) (in the straightforward generalisation
of the case n = 1 from [46, Example 2.4, p. 143]).

Lemma 3.4. There is an exact sequence of Lie groups:

1 → Sp(V, h)→ Hk(V ) Ad
−→ SO(3)→ 1,

and an embedding σ : Sp(1) → Hk(V ) such that Ad ◦ σ : Sp(1) → SO(3) is the
natural surjection.
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Proof. The natural Sp(1)-action on H by multiplication on the right induces the
standard Sp(1)-action on the unit sphere of complex structures SIJK . The conclusion
follows from a choice of identification V ≃ H ⊗R Rn as H-module. □

Hence a choice of orthonormal basis for (V, h) (as a left H-module) yields an
identification

Hk(V )= Sp(n) · Sp(1)≃ (Sp(n)× Sp(1))/Z2.

Choosing G = Hk(V ), we see that in the notation of the introduction we have

G0 = Sp(V, h)⊆ Hk(V ).

Geometric quantisation. Geometric quantisation on a Kähler vector space is straight-
forward and essentially unique up to the choice of a symplectic potential, which
corresponds to a gauge choice on the prequantum line bundle. For ℏ ∈ R>0

one considers the triple (L , h,∇q), consisting of the trivial complex line bundle
L := V × C → V with the tautological Hermitian metric h, and the connection
∇q := d −

i
ℏθq defined by the invariant symplectic potential

θq(v)(X)=
1
2ωq(v, X),

for v ∈ V a point and X a tangent vector there. The above yields prequantum data
for (V, ωq) at level ℏ−1. We may denote Lq → V the line bundle to emphasise the
structure we are prequantising on V .

The bundle Lq comes endowed with a natural holomorphic frame

ψ0(q, v) := exp
(

−
1

4ℏ
g(v, v)

)
,

which is manifestly independent of q ∈ CP1. For each q, the resulting quantum
Hilbert space consists of sections ψ = fψ0, with f : V → C an Iq-holomorphic
function with finite L2-norm with respect to the Gaussian measure. This space is
well known to be densely generated by the polynomial functions, which induces a
grading on each Hq — the Fock grading.

This setting is a particular case of the one discussed in Section 2I. Indeed, on a
Kähler vector space, the functionµ(v)= 1

2∥v∥2 is a moment map for the U(1)-action
by scalar multiplication and a Kähler potential, and moreover

−
i
2
(∂ − ∂)µ= θ

is the invariant symplectic potential. Additionally, for each q ∈ CP1 the action
of Tq is the standard one.

Furthermore d-homogeneous holomorphic functions on a complex vector space
are d-homogeneous polynomials, whence the decomposition of Hq into isotypical
components as a Tq-module reduces to the well-known Fock grading. By the
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identification of the space of such homogeneous polynomials with Symd V ∨
q , the

finite-dimensional spaces H(d)
q assemble into finite-rank Hermitian subbundles

H(d)
→ CP1 of the trivial L2(V, L)-bundle, with a natural isomorphism

Symd Z∨
→ H(d)

of vector bundles over the Riemann sphere.

Group action on quantum spaces. The action ρZ
: Hk(V )→ Aut(Z) has a natural

lift to L = Z × C as ρZ
× Id. Since A∗θq = θA.q for A ∈ Hk(V ) and q ∈ CP1, it

follows that this action preserves the structure of L as a family of prequantum line
bundles. This defines an action ρH on sections of H(d) by pull-back, as in (12), and
it is easy to check this is a graded fibrewise unitary Hk(V )-action — covering that
on the hyperkähler 2-sphere.

Theorem 3.5. For q ∈ CP1 there is a canonical isomorphism H(d)
q ≃ Symd(V ) of

simple Sp(V, h)-modules, and the bundle with connection (H(d),∇H(d)
) is Hk(V )-

equivariantly isomorphic to Ld
⊗ Symd(V )→ CP1.

Proof. This follows directly from the above discussion and from Theorem 2.11:
The metric g, and hence the section ψ0, are fixed by Sp(V, h). It is known the
natural action on Symd V ∨

q is irreducible [76]. □

Altogether the statements of this section establish the assumptions needed to
apply Theorem 1.2, which in this particular case yields the following.

Theorem 3.6 (see Theorem 1.2). The Sp(1)-symmetric geometric quantisation of
the hyperkähler vector space V yields the super Hilbert space

H =

⊕
d∈Z≥0

H (d),

in analogy with Section 2F. This carries a unitary Hk(V )-representation preserving
the splitting, and there is an isomorphism H (d)

≃ W (d)
⊗ Symd(V ) of simple

Hk(V )-modules.

For every d ≥ 0 we thus have

dim(W (d)
+ )= (d + 1), dim(W (d)

− )= 0, dim(H (d))= (d + 1)
(2n+d

d

)
.

The generating series (17) and (18) are obtained explicitly from the above:

H(t)=
1

(1 − t)2n , H ′(t, t̃ )=
1∏n

i=1(1 − t t̃i )(1 − t t̃−1
i )

.

On the other hand, since Vq ≃ C2n is a Stein space, and since the actions of Tq

and T ′
q only fix the origin, Theorem 2.17 also applies, and the result from (20)
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and (21) yields the same formulæ. Now by Theorem 3.6 we see that m(d)
Symd (V )

= 1
for d ∈ Z≥0, whence

G(t, t̃ )=

∞∑
d=0

td t̃λSymd (V ) .

3B. Four-dimensional examples. As mentioned in the introduction, in dimension 4
there is a complete classification of Sp(1)-symmetric hyperkähler manifolds up
to finite quotients. Besides H with its flat metric there are the Taub–NUT metrics
on R4, and the hyperkähler metric on the moduli space of charge-2 monopoles, i.e.,
the Atiyah–Hitchin manifold MAH.

Taub–NUT metrics. Consider the case of M = R4 with the Taub–NUT metric ga

corresponding to a positive real parameter a — the case a = 0 corresponds to the
standard flat metric on H, which we already discussed. We will denote ωa

q the
corresponding symplectic structures. It is well known (e.g., [39, Remark 1]) that

Hk(M)≃ (Sp(1)× U(1))/Z2 ≃ U(2).

In particular there is a faithful Sp(1)-action rotating the sphere of hyperkähler
structures, while Sp(M)= U(1) is compact and commutes with Sp(1). Furthermore
there exists, unique up to isomorphism, a family of prequantum line bundles for M ,
since H 2(M,Z)= 0 = H 1(M,U(1)).

The action of T ′
q = (U(1)× U(1))/Z2 ⊆ Hk(M) is studied explicitly by Gaudu-

chon in [39, Section 3.2] for the complex structure J+ corresponding to q = i .
The subgroup is identified in that context with U(1)× U(1) via the isomorphism
(t, s) 7→ (ts, ts−1). From equations (3.10) and (3.19) of the same work one con-
cludes that the action of Tq = U(1)× {1} on Mq is Hamiltonian with moment
map µq = µ+

1 +µ+

2 (borrowing Gauduchon’s notation), which is easily seen to be
proper from the definitions. Finally [39, Proposition 1] provides a biholomorphism
8a

+
=8 : (M, J+)→ C2, and by a straightforward check this map intertwines the

Tq-action on Mq with the standard U(1)-action on C2. In particular the Tq-action
extends holomorphically to C∗, and the hypotheses of Theorem 2.14 are verified.

Thus decomposing Hq with respect to the Tq -action yields

Hq =

⊕
d∈Z≥0

H(d)
q ,

where the subspaces H(d)
q ⊆Hq are finite-dimensional. Then we consider the action

of the commuting compact group Sp0(M)= {1} × U(1) on H(d)
q to refine:

H(d)
q =

⊕
d ′∈3(d)

H(d)
d ′,q ,

where 3(d) ⊆ Z≥0 is finite. In addition, we also have the following statement.
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Proposition 3.7. For q = i , the prequantum line bundle Lq admits a Tq-invariant
holomorphic frame ψq such that 8∗( f ) ·ψq is L2 for every polynomial function f
on C2.

Proof. Recall that, again in the notations of [39], x1, x2, and x3 are three real-
valued functions on M whose span is preserved by Sp(1), which acts on them by
rotations in the standard way. Furthermore, all three functions are fixed by the
action of U(1)= Sp(M). Writing r =

√

x2
1 + x2

2 + x2
3 , it follows from (3.19), (2.11),

and (2.12) of [39] that the aforementioned moment map µ can be expressed as

µ= r + a2(x2
2 + x2

3).

Since µi := µ is a moment map for Ti with respect to ωa
i , it follows that for

every g ∈ Sp(1) the function (g−1)∗µ generates the Tg.i -action with respect to ωa
g.i .

In particular, if g.i = j , then the flow associated to

µj := (g−1)∗µ= r + a2(x2
1 + x2

3)

with respect to ωa
j rotates the circle spanned by ωa

3 and ωa
1 . It is therefore a

Kähler potential for ωa
i [47], and repeating the argument when g.i = k so is

µk := r + a2(x2
1 + x2

2). Therefore the Ti -invariant function

ϕ = ϕi :=
µj +µk

2
= r +

a2

2
(r2

+ x2
1)

is also a Kähler potential. It follows that for every g ∈ Sp(1) the function (g−1)∗ϕi

is completely determined by q = g.i , so that

ϕq := (g−1)∗ϕi

is well defined, and a potential for ωa
q . From this we obtain an explicit realisation

of the family of prequantum line bundles, for which the functions ψ0,q = e−
1

2ℏϕq

define holomorphic frames.
Now note the function µ is bounded below, and its only critical point is the ori-

gin — the only fixed point of the induced action. We may then apply the Duistermaat–
Heckman theorem [36] as in Proposition 2.21 to conclude that e−αµ is integrable
with respect to the Taub–NUT volume d vola for every parameter α ∈ R>0. The
same clearly applies to µj and µk , and from this it is easily deduced that

e−αϕq ∈ L2(M, d vola)

for every q ∈ CP1 and α > 0. In particular, the holomorphic frames constructed
above are L2.

To conclude we recall that the two components of 8 are defined as

w1 = ea2x1 z1, w2 = e−a2x2 z2,
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where z1 and z2 are the standard i-holomorphic coordinates on M = H with respect
to the usual flat metric (see [39, (3.4)]). We need to show that, for every n,m ∈ Z,
the function wn

1 w
m
2 ψ0 is also L2. Expanding the definition of ϕ yields

1
ℏ
ϕ− 2a2(n − m) x1 =

r
ℏ

+
a2

2ℏ
(r2

+ x2
1)− 2a2(n − m) x1

≥
r

2ℏ
+

a2

4ℏ
(r2

+ x2
1)− C =

1
2ℏ
ϕ− C ≥

1
4ℏ
µj − C,

provided C ∈ R>0 is large enough. Furthermore, it is a simple consequence of the
definitions in [39] that |z1|

2
+ |z2|

2
= 2r , whence

|zn
1 zm

2 |
2
≤ (2r)2(n+m)

≤ µ
2(n+m)
j .

Collecting the estimates and using again the Duistermaat–Heckman theorem we
conclude ∫

M
|wn

1 w
m
2 |

2 ψ2
0 d vola ≤ eC

∫
M
µ

2(m+n)
j e−

1
4ℏµj d vola <∞. □

As a consequence of this result we have dimH(d)
d ′ = 1 for all d ∈ Z≥0 and

d ′
= d − 2 j with j ∈ {0, . . . , d}, and we conclude that H(d)

d ′ ≃ Ld for such values
of d and d ′.

Theorem 3.8. The generating series (18) is the same as for the flat metric, namely

H ′(t, t̃ )=
1

(1 − t t̃ )(1 − t t̃−1)
.

We thus have

H =

⊕
d∈Z≥0

H (d), H (d)
=

⊕
d ′∈3(d)

H (d)
d ′ = H 0(CP1,Ld)⊕(d+1).

The Atiyah–Hitchin manifold. Let us consider the Atiyah–Hitchin manifold MAH,
the last four-dimensional case. We shall discuss the extent to which our methods
apply here.

The Atiyah–Hitchin manifold can be realised as the moduli space of charge-2
centred magnetic monopoles in R3, and it comes with a natural Riemannian metric
preserved by the SO(3)-action induced by rotating monopoles. The quaternionic
nature of the Bogomolny equation, of which the monopoles represented by MAH

are a particular class of solutions, induces a family of almost complex structures,
which can be better understood via Donaldson’s description in terms of rational
maps [34]. More precisely, the choice of an oriented line through the origin in R3

induces an identification

M̃AH =

{
S(z)=

uz + v

z2 −w
∈ C(z)

∣∣∣ v2
−wu2

= 1
}

=: R0
2,
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where the left-hand side denotes the (two-fold) universal cover of MAH. The
Atiyah–Hitchin manifold is recovered from the monodromy action, generated by
(u, v, w) 7→ (−u,−v,w). The resulting map is a biholomorphism with respect to
one of the aforementioned almost complex structures, establishing that the latter is
integrable and the former is Kähler. Rotations around the preferred direction induce
a U(1)-action of R0

2 by

(23) t.(u, v, w)= (tu, v, t−2w).

As the preferred direction changes across all possible choices, this results in a
family of Kähler structures parametrised by CP1, which is clearly rotated by the
SO(3)-action (see [15, Chapter 2]).

The above identification is not isometric with respect to the Riemannian embed-
ding R0

2 ⊆ C3; nonetheless, the Riemannian structure on MAH can be described by
studying the SO(3)-orbits [15, Chapters 8–11]. The generic stabiliser of a monopole
is the Klein four-group K4, while orbits are parametrised by k = sin(α) for an angle
α ∈

[
0, π2

]
, resulting in a description of an open dense of MAH as the product

(0, 1)× SO(3)/K4; furthermore, as k → 0 the orbit degenerates to a diffeomorphic
copy of RP2, onto which MAH deformation-retracts.

According to Swann’s work [82, Section 6, Four-manifolds], MAH does not
admit a hyperkähler potential. Furthermore, one sees from (23) that the stabiliser
of each Kähler structure has exactly one fixed point, and since the manifold has
the homotopy type of RP2 there can be no proper moment map. Nonetheless the
above homotopy equivalence yields

H 1(MAH,U(1))≃ H 2(MAH,Z)≃ Z2.

Hence by Section 2B there are exactly two inequivalent SO(3)-equivariant families
of prequantum line bundles. They differ by a twist by a family of flat connections
on the nontrivial complex line bundle on MAH.

The family supported on the trivial bundle can be constructed by means of
the Kähler potentials of Olivier [72]. Namely the metric on the Atiyah–Hitchin
manifold is the completion of

(24) ds2
=

β2γ 2δ2

(4k2(1 − k2)K 2)2
dm2

+β2σ 2
x + γ 2σ 2

y + δ2σ 2
z ,

defined on
(
0, π2

)
×SO(3)/K4. We follow the conventions of [72]. Namely, m = k2

is used as a coordinate in place of k, while (σx , σy, σz) is an orthonormal frame of
T∗SO(3)→ SO(3) and the coefficients β, γ, δ are functions of k determined by

βγ = −EK , γ δ = −EK + K 2, βδ = −EK + (1 − k2)K 2,
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where

K := K (k)=

∫ π/2

0

dφ√
1 − k2 sin2 φ

, E := E(k)=

∫ π/2

0

√
1 − k2 sin2 φ dφ

are the complete elliptic integrals of the first and second kind, respectively.
Oliver [72] then uses the Euler angles (ϕ, θ, ψ) as coordinates on SO(3) to give

an explicit Kähler potential� for one of the complex structures, say I3, preserved by
rotations in the angle ϕ. This is given in of [72, (55)] and can be written explicitly
using equations (6), (24), (25) and (36) therein, getting the formula

�=
βγ + γ δ+ δβ

8
+

1
8(γ δ sin2 θ cos2 ψ + δβ sin2 θ sin2 ψ + γβ cos2 θ).

Note for k ∈ (0, 1) this function extends continuously to the whole of SO(3), and
the trigonometric functions of (θ, ψ) descend to the projective space at k = 0;
hence the potential extends to the completion MAH. Finally, we emphasise that this
potential is independent of the variable ϕ, which is to say that it is invariant under
the action of the I3-stabiliser. It follows that � defines an equivariant family of
potentials under the SO(3)-action, whence an equivariant family of prequantum line
bundles by the usual construction, together with a holomorphic frame ψ0 = e−

1
2ℏ�

for I3.

Proposition 3.9. The function e−α� is integrable on MAH for α ∈ R>0.

Proof. From (24) we obtain the following expression for the volume form on (the
complement of a negligible set in) MAH:

d vol =
β2γ 2δ2

4k2(1 − k2)K 2 dmσx σy σz.

We need to show that∫
(0,1)×SO(3)

e−α� β2γ 2δ2

4k2(1 − k2)K 2 dmσx σy σz <∞.

Note that βγ ≤ 0, γ δ ≥ 0, and βδ ≤ 0 yield

�≥
γ δ

8
.

We may then use these bounds and the Fubini–Tonelli theorem to reduce the
statement to ∫ 1

0
e−

α
8 γ δ

β2γ 2δ2

k2(1 − k2)K 2 dm <∞.

We will proceed by studying the asymptotic behaviour of the integrand in the
limit k → 1; the integral is necessarily regular for k → 0. It is well known that

K ∼
1
2 log(1 − k2),
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and since E(1)= 1 we find that

βγ ∼ −
1
2 log(1 − k2), γ δ ∼

1
4 log2(1 − k2), βδ ∼ −

1
2 log(1 − k2),

and hence the integral converges by comparison with∫ 1

0
exp

(
−
α

32
log2(1 − k2)

)
log2(1 − k2)

(1 − k2)
dm =

∫
∞

0
e−

α
32 x2

x2 dx <∞,

which concludes the proof. □

For α = 1/ℏ this implies the holomorphic frame ψ0 is L2, and hence an element
of H(0)

I3
; in principle more L2 holomorphic sections may be found considering

functions of the holomorphic coordinates (u, v, w) on R2
0 . If all the monomials that

descend to MAH are L2, then one concludes that H(d)
q has infinite rank for every

integer d , since uavbwc is (a −2c)-homogeneous and well defined on MAH if a +b
is even. We obtain a partial result in this direction, showing that all powers of w
are L2.

The problem of describing u, v, and w in terms of the setup above is addressed in
[15, Chapter 6-7], by making use of the twistor description and spectral curves [50].
Introducing parameters

k1 =

√
k
√

1 − k2K
2

, k2 =
1 − 2k2

3k
√

1 − k2
,

consider the elliptic curve

y2
= 4k2

1(x
3
− 3k2x2

− x)

and let ℘, ζ be its corresponding Weierstrass functions, η the real period of ζ . Sup-
pose that a, b ∈C are the entries of a matrix in SU(2), thought of as a parametrisation
of SO(3)/K4, and let ξ ∈ C be such that

(25) ℘(ξ)=
b
a

− k2.

Then the corresponding point in MAH has holomorphic coordinates

u =
sinh

(
2k1ζ(ξ)−

ηξ

2 + k1ab℘ ′(ξ)
)

k1a2℘ ′(ξ)
,

v = cosh
(

2k1ζ(ξ)−
ηξ

2
+ k1ab℘ ′(ξ)

)
,

w = k2
1a4℘ ′(ξ)2,

up to the sign ambiguity resulting from the monodromy. Substituting (25) in the
differential equation for ℘, and using g2 and g3 as given in [50], we obtain

w = k2
1a(−12ab2k2 + 4b3

− 4a2b).
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Now since |a|
2
+ |b|

2
= 1 a straightforward check shows that

|w|
2
≤ 16k4

1(9k2
2 + 2)∼ 4K 2

∼ log2(1 − k2)

for k → 1. Adapting the proof of Proposition 3.9 and using (23) we obtain:

Proposition 3.10. For every integer n ≥ 0 the holomorphic section wnψ0 is L2 and
therefore an element of H(−2n)

I3
.

The analysis is more delicate for the functions u and v. Using (25) one can
express ab in terms of ξ and write the argument of the hyperbolic functions as

8(ξ)= 2k1ζ(ξ)−
ηξ

2
+ k1℘

′(ξ)
k2 +℘(ξ)

1 + |k2 +℘(ξ)|2
.

It follows from the definitions and the Legendre relation that this function is periodic
for the real period of ℘ and quasiperiodic for the imaginary period, with step π i ,
whence the sign ambiguity of u and v. Moreover one can show the poles of the
summands cancel out, leaving a nonholomorphic analytic function — hallmark of
the fact that the SO(3)-action does not preserve the complex structure. In particular
its real part is bounded for fixed “k”.

3C. Moduli spaces of framed SU(r)-instantons. Let r ≥ 2 and k ≥ 0 be integers,
and consider the moduli space Mk,r of charge-k framed SU(r)-instantons on R4,
which is a hyperkähler manifold [13; 33]. Each of its complex structures can be de-
scribed in terms of the ADHM construction as follows, after fixing an identification
R4

≃ C2. Consider the product

M := End(Ck)2 × Hom(Ck,Cr )× Hom(Cr ,Ck),

with GL(Ck)-action given by

g.(α0, α1, a, b)= (gα0 g−1, gα1g−1, ga, bg−1).

Remark 3.11. M is a space of representations of a quiver on two nodes and that
the action naturally extends to GL(Ck)× GL(Cr ) (which controls isomorphisms of
representations).

Let M0 denote the set of elements of M satisfying the additional conditions:

(i) [α0, α1] + ab = 0.

(ii) For all λ,µ ∈ C, we have α0 + λ

α1 +µ

a


injective and

(
λ−α0 α1 −µ b

)
surjective.
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Then the restricted U(r)-action is Hamiltonian with moment map

µ(α0, α1, a, b) := [α1, α
∗

1 ] + [α2, α
∗

2 ] + bb∗
− a∗a,

and there is an identification

(26) Mk,r ≃ M0//µ U(k).

The rotation group SO(4) acts on Mk,r , and in particular the subgroup Sp(1), in
the identification R4

≃H, transitively permutes the complex structures. Furthermore,
Maciocia [62] shows that for each q ∈ CP1 the Tq -action has moment map

m2(A)=
1

16π2

∫
R4

∥x∥
2 tr F2

A.

This function is clearly Sp(1)-invariant, and therefore a hyperkähler potential, so
one can construct an Sp(1)-invariant family of prequantum line bundles endowed
with holomorphic frames as in Section 2I.

The function m2 is not, however, a proper map. By [62], under the identifi-
cation (26) it corresponds to the norm-squared function f : M0 → R, which is
U(k)-invariant but not proper, on account of the open condition (ii). However,
Donaldson [33] identifies the symplectic reduction (26) with the GIT quotient
of M0 by GL(k,C), whereupon (ii) translates into a stability condition. One may
then include the semistable points to obtain a partial compactification

Mk,r := M//GIT GL(k,C),

which is smooth by the work of Nakajima and Yoshioka [71, Corollary 2.2]. The
map f descends then to a proper one on Mk,r ; it is also clear that its gradient
is complete on the quotient, showing that geometric quantisation on this space
yields finite-rank isotypical components by Theorem 2.14. On the other hand,
the codimension of the boundary Mk,r \ Mk,r is greater than 2, so that Hartogs’s
theorem allows for the extension of holomorphic functions on Mk,r , which yields
the finite-dimensionality of the isotypic components over this latter space.

4. Outlook and further perspectives

There are more spaces that fit some of the requirements for our quantisation scheme.
By the work of Kronheimer [57] the nilpotent (co)adjoint orbits of complex

semisimple (1-connected) Lie groups are hyperkähler manifolds with transitively
permuting SO(3)-actions, and by Swann’s work [82] they admit hyperkähler poten-
tials. Indeed, Proposition 5.5 of the same work states that such a potential exists on
a hyperkähler manifold if it admits an Sp(1)-action permuting the complex structure
and such that, denoting by Xq the vector field generating the Tq-action for each
q ∈ CP1, the vector field Iq Xq is independent of q. After [82, Proposition 6.5],
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Swann goes on to check that this condition is verified for Kronheimer’s space, thus
establishing the existence of a hyperkähler potential. This is a particular instance
of hyperkähler moduli spaces of solutions of Nahm’s equations, specifically on
a half-line with nilpotent boundary conditions.3 Since Nahm’s equations come
naturally with a quaternionic structure and Sp(1)-action, the resulting manifolds
have symmetries of the kind considered in this paper, and different choices of
domain and boundary conditions give rise to different hyperkähler structures. For
instance, semisimple boundary conditions on a half-line result in orbits of semisim-
ple elements [56], while the study of Nahm’s equations on a compact interval leads
to the cotangent bundle T∗G [32; 58]. By the works of Mayrand [64; 65; 66],
the latter comes with natural Sp(1)-equivariant families of Kähler potentials and
moment maps for the stabilizers Tq , rather than a hyperkähler one, and they enjoy
interesting properties that might lead to a variation of our main construction.

Also, as mentioned in the introduction, many new interesting hyperkähler metrics
can be defined on moduli spaces of irregular singular connections/Higgs bundles
over (wild generalisations of) Riemann surfaces [18; 77; 88], with simple examples
reviewed in [23]: the “multiplicative” versions of the Eguchi–Hanson space and
Calabi’s examples (whose standard “additive” versions are quiver varieties on
two nodes). This fits into a more general (new) multiplicative theory of quiver
varieties [22], involving a “fission” operation generalising the construction of moduli
spaces of flat connections à la TFT [19; 21]; note that conjecturally this produces a
lot more new hyperkähler manifolds [20], beyond (wild) nonabelian Hodge spaces.
See [26; 37; 74; 75] about quantum moduli spaces of meromorphic connections.

Finally the example of Section 3C, i.e., the moduli spaces of framed SU(r)-
instantons, opens the way for further discussion on the relation between the generat-
ing series produced by this new quantisation scheme and the well-known Nekrasov
partition functions.

Appendix: Comparison with the standard approach

In this section we shall correct the family of quantum Hilbert spaces Hq to obtain
finite-rank flat vector bundles of isotypical components (under the main assumption),
as well as unitary equivalences between the quantisation of M with respect to the
given Kähler polarisations.

Based on Theorem 2.11, we do this by a correcting twist of the finite-rank bundles
H(d)
λ → CP1; namely consider the tensor product

H̃(d)
λ := H(d)

λ ⊗L−d , d ∈ Z, λ ∈3(d).

3The hyperkähler metric on general orbits was constructed in [17; 55].
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This new vector bundle comes with a Hk0’(M)-action, and we denote ∇
H̃(d)
λ the

resulting Hk0’(M)-invariant flat connection.
Since CP1 is simply connected the parallel transport defines canonical unitary

isomorphisms

(27) H̃(d)
q,λ → H̃(d)

q ′,λ, q, q ′
∈ CP1,

satisfying 1-cocycle identities. In analogy with the above we then define⊕
λ∈3(d)

H̃(d)
q,λ =: H̃(d)

q ⊆ H̃q :=

⊕
d∈Z

H̃(d)
q ,

and these families of Hilbert spaces carry a 1-cocycle of unitary isomorphisms
induced from (27): This is the usual geometric quantisation construction.

Now we can introduce super Hilbert spaces H̃ (d)
λ, j in analogy with Section 2F,

taking the holomorphic cohomology of the twisted vector bundles H̃(d)
λ → CP1.

Theorem A.1 (see Theorem 1.2). There is a unitary action Hk0’(M) → U(H̃)
preserving the nested splittings

H̃ :=

⊕
d∈Z

H̃ (d), H̃ (d)
:=

⊕
λ∈3(d)

H̃ (d)
λ , H̃ (d)

λ :=

m(d)
λ⊕

j=1

H̃ (d)
λ, j .

Finally we can compare this representation with the one constructed in Section 2F,
finding that twisting trivializes part of the action. Namely, the present super Hilbert
space H̃ (d)

λ, j ≃ Vλ ⊗ W (0) replaces the original H (d)
λ, j ≃ Vλ ⊗ W (d) as a Hk0’(M)-

module, recalling that W (0) is the trivial one-dimensional Sp(1)-module. This
should be compared with the (more) interesting irreducible representations of
Hk0’(M) obtained from Theorem 1.2.
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