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LIMIT THEOREMS AND WRAPPING TRANSFORMS
IN BI-FREE PROBABILITY THEORY

TAKAHIRO HASEBE AND HAO-WEI HUANG

We characterize idempotent distributions with respect to the bi-free multi-
plicative convolution on the bi-torus. The bi-free analogous Lévy triplet of an
infinitely divisible distribution on the bi-torus without nontrivial idempotent
factors is obtained. This triplet is unique and generates a homomorphism
from the bi-free multiplicative semigroup of infinitely divisible distributions
to the classical one. Also, the relevances of the limit theorems associated with
four convolutions, classical and bi-free additive convolutions and classical
and bi-free multiplicative convolutions, are analyzed. The analysis relies
on the convergence criteria for limit theorems and the use of push-forward
measures induced by the wrapping map from the plane to the bi-torus.

1. Introduction

The main aim of the present paper is to build the association among various limit
theorems and their convergence criteria in classical and bi-free probability theories.

Bi-free probability theory, introduced by Voiculescu in [20], is an outspread
research field of free probability theory, which grew out to intend to simultaneously
study the left and right actions of algebras over reduced free product spaces. Since its
creation, a great deal of research work has been conducted to better understand this
theory and its connections to other parts of mathematics [17; 19; 21; 22]. Aside from
the combinatorial means, the utilization of analytic functions as transformations
and the bond to classical probability theory also play crucial roles in the study and
comprehension of this theory [12; 13]. Especially, recent developments of bi-free
harmonic analysis enable one to investigate bi-free limit theorems and other related
topics from the probabilistic point of view [11].

To work in the probabilistic framework, we thereby consider the family PX of
Borel probability measures on a complete separable metric space X and endow
this family with a commutative and associative binary operation ♢. Classical and
bi-free convolutions, respectively denoted by ∗ and ⊞⊞, are two examples of such
operations performed on PR2 . In probabilistic terms, µ1 ∗ µ2 is the probability
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distribution of the sum of two independent bivariate random vectors respectively
having distributions µ1 and µ2. When restricted to compactly supported measures
in PR2 , µ1 ⊞⊞ µ2 is the distribution of the sum of two bi-free bipartite self-adjoint
pairs with distributions µ1 and µ2, respectively [20]. This new notion of convolution
was later extended, without any limitation, to the whole class PR2 by the continuity
theorem of transforms [11]. The product of two independent random vectors
having distributions on the bi-torus T2 gives rise to the classical multiplicative
convolution ⊛, and the bi-free analog of multiplicative convolution ⊠⊠ is defined
in a similar manner [22].

In (noncommutative) probability theory, the limit theorem and its related subject,
the notion of infinite divisibility of distributions, have attracted much attention.
By saying that a distribution in (PX ,♢) is infinitely divisible we mean that it
can be expressed as the operation ♢ of an arbitrary number of copies of identical
distributions from PX . The collection of measures having this infinitely divisible
feature forms a semigroup and will be denoted by ID(X,♢), or simply by ID(♢)

if the identification of the metric space is unnecessary. Any measure satisfying
µ=µ♢µ, known as idempotent, is an instance of infinitely divisible distributions. In
the case of X = R, these topics have been thoroughly studied in classical probability
by the efforts of de Finetti, Kolmogorov, Lévy and Khintchine (see [16]), and the
same themes in the free contexts have also been deeply explored in the literature [5].

Bi-free probability, as expected, also parallels perfectly aspects of classical
and free probability theories [3]. For example, the theory of bi-freely infinitely
divisible distributions generalizes bi-free central limit theorem as they also serve
as the limit laws for sums of bi-freely independent and identically distributed
faces. Specifically, it was shown in [11] that for some infinitesimal triangular array
{µn,k}n≥1,1≤k≤nk ⊂ PR2 and sequence {vn} ⊂ R2, the sequence

(1-1) δvn ∗ µn1 ∗ · · · ∗ µnkn

converges weakly if and only if so does the sequence

(1-2) δvn ⊞⊞ µn1 ⊞⊞ · · · ⊞⊞ µnkn .

The limiting distributions in (1-1) and (1-2) respectively belong to the semigroups
ID(∗) and ID(⊞⊞), and their classical and bi-free Lévy triplets agree. This con-
formity consequently brings out an isomorphism 3 between these two semigroups.

Same tasks are performed in the case of bi-free multiplicative convolution in
this paper. We determine ⊠⊠-idempotent elements and identify measures in PT2

bearing no nontrivial ⊠⊠-idempotent factors. Specifically, we demonstrate that
ν ∈ ID(⊠⊠) has no nontrivial ⊠⊠-idempotent factor if and only if it belongs
to P×

T2 , the subcollection of PT2 with the attributes∫
T2

s j dν(s1, s2) ̸= 0, j = 1, 2.
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Fix an infinitesimal triangular array {νnk}n≥1,1≤k≤kn ⊂ PT2 and a sequence
{ξ n} ⊂ T2. We also manifest that the weak convergence of the sequence

(1-3) δξn ⊠⊠ νn1 ⊠⊠ · · · ⊠⊠ νnkn

to some element in P×

T2 yields the same property of the sequence

(1-4) δξn ⊛ νn1 ⊛ · · ·⊛ νnkn ,

and that their limiting distributions are both infinitely divisible. This is done by
distinct types of equivalent convergence criteria offered in the present paper. As in
the case of addition, there exists a triplet concurrently serving as the classical and bi-
free multiplicative Lévy triplets of the limiting distributions in (1-3) and (1-4). The
consistency of their Lévy triplets, together with the description of ID(⊠⊠)\P×

T2 ,
consequently produces a homomorphism 0 from ID(⊠⊠) to ID(⊛).

Because of the nature of ID(⊠⊠)\P×

T2 and that the limit in (1-4) may generally
not have a unique Lévy measure, the homomorphism stated above is neither surjec-
tive nor injective. However, postulating the uniqueness of the Lévy measure, the
weak convergence of (1-4) derives that of (1-3).

In addition to the previously mentioned conjunctions, what we would like to point
out is that measures in PR2 and PT2 can be linked through the wrapping map W :

R2
→ T2, (x, y) 7→ (ei x , eiy). This wrapping map induces a map W∗ : PR2 → PT2

so that the measure νnk = W∗(µnk) = µnk W −1 enjoys the property: the weak
convergence of (1-1) or (1-2) yields the weak convergence of (1-3) and (1-4) with
ξ n = W (vn). Furthermore, the synchronous convergence allows one to construct
a homomorphism W⊞⊞ : ID(⊞⊞) → ID(⊠⊠) making the following diagram
commute:

(1-5)

ID(∗)
W∗

//

3

��

ID(⊛)

ID(⊞⊞)
W⊞⊞

// ID(⊠⊠)

0

OO

This diagram is a two-dimensional analog of [6, Theorem 1].
The rest of the paper is organized as follows. In Section 2 we provide the

necessary background in classical and noncommutative probability theories. In
Section 3 we characterize ⊠⊠-idempotent distributions. In Section 4 we make
comparisons of the convergence criteria of limit theorems, as well as those through
wrapping transforms. Section 5 is devoted to offering bi-free multiplicative Lévy
triplets of infinitely divisible distributions and investigating the relationships among
limit theorems in additive and multiplicative cases. Section 6 provides the derivation
of the diagram in (1-5).



66 TAKAHIRO HASEBE AND HAO-WEI HUANG

2. Preliminary

2A. Convergence of measures. Let BX be the collection of Borel sets on a com-
plete separable metric space (X, d). A point is selected from X and fixed, named
the origin and denoted by x0 in the following. In the present paper, we will be
mostly concerned with the abelian groups X = Rd and X = Td endowed with the
relative topology from Cd , where the origin is chosen to be the unit. They are
respectively the d-dimensional Euclidean metric space and the d-dimensional torus
(or the d-torus for short). The 1-torus is just the unit circle T on the complex plane.
A set contained in {x ∈ X : d(x, x0) ≥ r} for some r > 0 is colloquially said to be
bounded away from the origin.

Next, let us introduce several types of measures on X that will be discussed
later. The first one is the collection MX of finite positive Borel measures on X . We
shall also consider the set M

x0
X of all positive Borel measures that when confined

to any Borel set bounded away from the origin yield a finite measure. Clearly, we
have MX ⊂ M

x0
X . Another assortment concerned herein is the collection PX of

elements in MX having unit total mass.
The set Cb(X) of bounded continuous functions on X induces the weak topology

on MX . Likewise, M
x0
X is equipped with the topology generated by C x0

b (X),
bounded continuous functions having support bounded away from the origin. Con-
cretely, basic neighborhoods of a τ ∈ M

x0
X are of the form⋂

j=1,...,n

{
τ̃ ∈ M

x0
X :

∣∣∣∣∫ f j d τ̃ −

∫
f j dτ

∣∣∣∣ < ϵ

}
,

where ϵ > 0 and each f j ∈ C x0
b (X). Putting it differently, a sequence {τn} ⊂ M

x0
X

converges to some τ in M
x0
X , written as τn ⇒x0 τ , if and only if

lim
n→∞

∫
f dτn =

∫
f dτ, f ∈ C x0

b (X).

We remark that τ is not unique as it may assign arbitrary mass to the origin.
Nevertheless, any weak limit in M

x0
X that comes across in our discussions will serve

as the so-called Lévy measure, which does not charge the origin.
Portmanteau theorem and continuous mapping theorem in the framework of M

x0
X

are presented below (see [1; 14]). The push-forward measure τh−1
:BX ′ →[0, +∞]

of τ ∈ M
x0
X provoked by a measurable mapping h : (X, BX)→ (X ′, BX ′) is defined

as

(2-1) (τh−1)(B ′) = τ({x ∈ X : h(x) ∈ B ′
}), B ′

∈ BX ′ .

Proposition 2.1. The following statements (1)–(3) are equivalent for {τn} and τ

in M
x0
X :
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(1) We have τn ⇒x0 τ .

(2) For any f ∈ Cb(X) and any B ⊂ BX , which is bounded away from the origin
and satisfies τ(∂ B) = 0, we have

lim
n→∞

∫
B

f dτn =

∫
B

f dτ.

(3) For every closed set F and open set G of X that are both bounded away
from x0, we have

lim sup
n→∞

τn(F) ≤ τ(F) and lim inf
n→∞

τn(G) ≥ τ(G).

If h : (X, d) → (X ′, d′) is measurable so that h is continuous at x0, h(x0) = x′

0,
and the set of discontinuities of h has τ -measure zero, then τn ⇒x0 τ implies
τn h−1

⇒x′

0
τh−1.

Finally, let us introduce the subset M̃
x0
X consisting of measures in M

x0
X that do

not charge the origin x0. This set is metrizable and becomes a separable complete
metric space [14, Theorem 2.2]. In particular, the relative compactness of a subset Y
of M̃

x0
X is equivalent to that any sequence of Y has a subsequence convergent in M̃

x0
X .

We refer the reader to [14, Theorem 2.7] for an analog of Prokhorov’s theorem,
which characterizes the relative compactness of subsets in M̃

x0
X .

2B. Notations. Below, we collect notations that will be commonly used in the
sequel. The customary symbol arg s ∈ (−π, π] stands for the principal argument
of a point s ∈ T, while ℜs and ℑs respectively represent the real and imaginary
parts of s. Here and elsewhere, points in a multidimensional space will be written
in bold letters, for instance, s = (s1, . . . , sd) ∈ Td and p = (p1, . . . , pd) ∈ Zd with
each s j ∈ T and p j ∈ Z. For any ϵ > 0, we shall use Vϵ = {x ∈ Rd

: ∥x∥ < ϵ}

and Uϵ = {s ∈ Td
: ∥arg s∥ < ϵ} to respectively express open neighborhoods of

origins 0 ∈ Rd and 1 ∈ Td , where arg s = (arg s1, . . . , arg sd) ∈ Rd . Analogous
expressions also apply to vectors ℜs = (ℜs1, . . . ,ℜsd) and ℑs = (ℑs1, . . . ,ℑsd).
Besides, we adopt the operational conventions in multidimensional spaces in the
sequel, such as s p

= s p1
1 · · · s pd

d , st = (s1 t1, . . . , sd td), s−1
= (1/s1, . . . , 1/sd),

and ei s
= (eis1, . . . , eisd ).

The push-forward probabilities µ( j)
= µπ−1

j , j = 1, . . . , d, on the real line
induced by projections π j : Rd

→ R, x 7→ x j , are called marginals of µ ∈ PRd .
Marginals of probability measures on Td are defined and displayed in the same way.
On T2, we shall also consider the (right) coordinate-flip transform hop : T2

→ T2

defined as hop(s) = (s1, 1/s2). Denote by s⋆
= hop(s) and B⋆

= {s⋆
: s ∈ B} if

s ∈ T2 and B ⊂ T2. By the (right) coordinate-flip measure of ρ ∈ M 1
T2 , we mean

the push-forward measure ρ⋆
= ρh−1

op , alternatively defined as ρ⋆(B) = ρ(B⋆) for
B ∈ BT2 .
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2C. Free probability and bi-free probability. Aside from the classical convolution
on PR2 , we shall also consider the bi-free convolution ⊞⊞, where the bi-free φ-
transform takes the place of Fourier transform [11]: for µ1, µ2 ∈ PR2 , one has
φµ1 ⊞⊞ µ2 = φµ1 +φµ2 . All information about marginals of the bi-free convolution
is carried over to the free convolution: (µ1 ⊞⊞ µ2)

( j)
= µ

( j)
1 ⊞µ

( j)
2 for j = 1, 2.

Now, we turn to probability measures on the d-torus. The sequence

m p(ν) =

∫
Td

s p dν(s), p ∈ Zd ,

is called the d-moment sequence of ν ∈ PTd . In some circumstances, characteristic
function and ν̂( p) are the precise terminology and notation used for this sequence.
Owing to Stone–Weierstrass theorem, we have m p(ν) ≡ m p(ν

′) only when ν = ν ′.
The classical convolution ⊛ of distributions on Td is characterized by m p(ν1⊛ν2)=

m p(ν1) m p(ν2) for ν1, ν2 ∈ PTd .
The bi-free multiplicative convolution of ν1, ν2 ∈ P×

T2 is determined by its
marginals (ν1 ⊠⊠ ν2)

( j)
= ν

( j)
1 ⊠ ν

( j)
2 and the bi-free multiplicative formula

6ν1 ⊠⊠ ν2(z, w) = 6ν1(z, w) · 6ν2(z, w)

for points (z, w) ∈ C2 in a neighborhood of (0, 0) and (0, ∞). Here the free
multiplicative convolution can be rephrased by means of the free 6-transform
6ν

( j)
1 ⊠ν

( j)
2

= 6ν
( j)
1

·6ν
( j)
2

valid in a neighborhood of the origin of the complex plane.
The reader is referred to [4; 5; 12; 13; 17; 19; 21; 22] for more details along with
properties of the transforms in (bi)-free probability theory. We remark that given a
measure ν ∈ P×

T2 , the transform 6ν is the identity map if and only if ν is a product
measure, which leads to

(2-2) (ν
(1)
1 × ν

(2)
1 )⊠⊠ (ν

(1)
2 × ν

(2)
2 ) = (ν

(1)
1 ⊠ ν

(1)
2 ) × (ν

(2)
1 ⊠ ν

(2)
2 ),

whenever ν
(1)
1 ×ν

(2)
1 , ν

(1)
2 ×ν

(2)
2 ∈ P×

T2 . In fact, (2-2) holds for any ν1, ν2 ∈ PT2 by
continuity arguments together with the facts that m p,q(ν1 ⊠⊠ ν2) can be expressed
as a polynomial of mk,l(νi ) for i = 1, 2, |k| ≤ |p|, |l| ≤ |q| and that ν ∈ PT2 is a
product measure if and only if m p,q(ν) = m p(ν

(1)) mq(ν(2)) for any p, q ∈ Z.
Fix ν1, ν2 ∈PT2 , and let ν =ν1 ⊠⊠ ν2. In order to analyze ν, it will be convenient

to treat it as the distribution of a certain bipartite pair (u1u2, v1v2), where (u1, v1)

and (u2, v2) are bi-free bipartite unitary pairs in some C∗-probability space having
distributions ν1 and ν2, respectively. Below, we briefly introduce the construction
of such pairs carrying the mentioned properties. For more information, we refer
the reader to [13; 20; 22]. Associating each ν j with the Hilbert space H j = L2(ν j )

with specified unit vector ξ j , the constant function one in H j , consider the Hilbert
space free product (H, ξ) = ∗ j=1,2(H j , ξ j ). The left and right factorizations of H j

from H can be respectively done via natural isomorphisms Vj : H j ⊗H(ℓ, j) → H
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and W j : H(r, j)⊗H j → H. Then for any T ∈ B(H j ), these isomorphisms induce
the so-called left and right operators

λ j (T ) = Vj (T ⊗ IH(ℓ, j))V −1
j and ρ j (T ) = W j (IH(r, j) ⊗ T )W −1

j on H.

For any Sj , Tj ∈ B(H j ), pairs (λ1(S1), ρ1(T1)) and (λ2(S2), ρ2(T2)) are, by defini-
tion, bi-free in the C∗-probability space (B(H), ϕξ ), where ϕξ ( · ) = ⟨· ξ, ξ⟩. Partic-
ularly, the multiplication operators (Sj f )(s, t) = s f (s, t) and (Tj f )(s, t) = t f (s, t)
for f ∈ H j furnish the desired pairs (u1, v1) and (u2, v2), where u j = λ j (Sj ) and
v j = ρ j (Tj ).

Recall from [13] that one can perform the opposite bi-free multiplicative convo-
lution of ν1 and ν2:

(2-3) ν1 ⊠⊠ opν2 = (ν⋆
1 ⊠⊠ ν⋆

2)
⋆.

Then ν1 ⊠⊠ opν2 is the distribution of (u1u2, v2v1), the pair obtained by performing
the opposite multiplication on the right face (u1, v1) ·

op (u2, v2) = (u1u2, v2v1).
The coordinate-flip map hop gives rise to a homeomorphism from the semigroup
(PT2,⊠⊠) to another (PT2,⊠⊠op) satisfying

(ν1 ⊠⊠ ν2)h−1
op = (ν1 h−1

op )⊠⊠ op(ν2 h−1
op ),

which is the distribution of

hop((u1, v1)(u2, v2)) = (u1u2, v
−1
2 v−1

1 ) = hop((u1, v1)) ·
op hop((u2, v2)).

Passing to the transform

6op
ν (z, w) = 6ν⋆(z, 1/w),

the equation (2-3) is translated into 6
op
ν1⊠⊠opν2

(z, w) = 6
op
ν1 (z, w) · 6

op
ν1 (z, w).

2D. Limit theorem. Either in classical or in (bi-)free probability theory, one is
concerned with the asymptotic behavior of the sequence

(2-4) δxn♢µn1♢ · · ·♢µnkn , n = 1, 2, . . . ,

where δx is the Dirac measure concentrated at x ∈ X and {µnkn }n≥1,1≤k≤kn is an
infinitesimal triangular array in PX . The infinitesimality of {µnk}, by definition,
means that k1 < k2 < · · · and that for any ϵ > 0, we have

lim
n→∞

max
1≤k≤kn

µnk({x ∈ X : d(x, x0) ≥ ϵ}) = 0.

One phenomenon related to equation (2-4) is the concept of infinite divisibility:
µ ∈ (PX ,♢) is said to be infinitely divisible if for any n ∈ N, it coincides with the
n-fold ♢-operation µ♢n

n of some µn ∈ PX .
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Commutative and associative binary operations to be considered throughout the
paper are classical convolutions ∗ and ⊛ on PRd and PTd , respectively, and bi-free
additive and multiplicative convolutions ⊞⊞ and ⊠⊠ on PR2 and PT2 , respectively.
The following convergence criteria play an essential role in the asymptotic analysis
of limit theorems of PRd .

Condition 2.2. Let {τn} be a sequence in M 0
Rd .

(I) For j = 1, . . . , d , the sequence {σnj }n≥1 defined by

dσnj (x) =
x2

j

1 + x2
j

dτn(x)

belongs to MRd and converges weakly to some σ j ∈ MRd .

(II) For j, ℓ = 1, . . . , d, the following limit exists in R:

L jℓ = lim
n→∞

∫
R2

x j xℓ

(1 + x2
j )(1 + x2

ℓ )
dτn(x).

Condition 2.3. Let {τn} be a sequence in M 0
Rd .

(III) There is some τ ∈ M 0
Rd with τ({0}) = 0 (that is τ ∈ M̃ 0

Rd ) so that τn ⇒0 τ .

(IV) For any vector u ∈ Rd , the following limits exist in R:

lim
ϵ→0

lim sup
n→∞

∫
Vϵ

⟨u, x⟩
2 dτn(x) = Q(u) = lim

ϵ→0
lim inf
n→∞

∫
Vϵ

⟨u, x⟩
2 dτn(x).

Although we describe the conditions in a higher dimension setup, the reader can
effortlessly mimic the proof in [11] to obtain the equivalence of Conditions 2.2
and 2.3, and draw the following consequences:

(1) The function Q( · ) = ⟨A · , · ⟩ in (IV) defines a nonnegative quadratic form
on Rd , where the matrix A = (a jℓ) is given by

a jℓ = L jℓ −

∫
Rd

x j xℓ

(1 + x2
j )(1 + x2

ℓ )
dτ(x), j, ℓ = 1, . . . , d.

In particular, a j j = σ j ({0}) for j = 1, . . . , d .

(2) Measures τ and σ1, . . . , σd are uniquely determined by the relations

dσ j (x) =
x2

j

1 + x2
j

dτ(x) + Q(ej ) δ0(dx),

where {ej } is the standard basis of Rd .

(3) The function x 7→ min{1, ∥x∥
2
} is τ -integrable.
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Now, let us briefly introduce the limit theorems of (1-1) and (1-2). Throughout
our discussions in the paper,

(2-5) θ ∈ (0, 1)

is an arbitrary but fixed quantity. To meet the purpose, consider the shifted triangular
array

µ̊nk(B) = µnk(B + vnk), B ∈ BRd ,

associated with an infinitesimal triangular array {µnk}n≥1,1≤k≤kn ⊂ PRd and the
vector

(2-6) vnk =

∫
Vθ

x dµnk(x).

Due to limn→∞ maxk≤kn∥vnk∥ = 0, {µ̊nk} so obtained is also infinitesimal. In
conjunction with this centered triangular array, we focus on the positive measures

(2-7) τn =

kn∑
k=1

µ̊nk .

It turns out that the sequence in (1-1) converges weakly to a certain µ∗ ∈ PRd if
and only if τn defined in (2-7) meets Condition 2.3 (as well as Condition 2.2 since
these two conditions are equivalent) and the limit

(2-8) v = lim
n→∞

[
vn +

kn∑
k=1

(
vnk +

∫
Rd

x
1 + ∥x∥2 dµ̊nk(x)

)]
exists in Rd . Additionally, µ∗ is ∗-infinitely divisible and possesses the characteristic
function read as

(2-9) µ̂∗(u) = exp
[
i⟨u, v⟩ −

1
2⟨Au, u⟩ +

∫
Rd

(
ei⟨u,x⟩

− 1 −
i⟨u, x⟩

1 + ∥x∥2

)
dτ(x)

]
,

which is known as the Lévy–Khintchine representation. The limiting distribution is
uniquely determined by the formula (2-9) and denoted by µ

(v,A,τ )
∗ , and (v, A, τ ) is

referred to as its Lévy triplet. The set ID(∗) is completely parameterized by the
triplets (v, A, τ ), where

(2-10) v ∈ Rd , A ∈ Md(R) is positive semidefinite, and τ is a positive measure

on Rd satisfying τ({0}) = 0 and min{1, ∥x∥
2
} ∈ L1(τ ).

As a matter of fact, when d = 2, the same convergence criteria are also necessary
and sufficient to assure the weak convergence of (1-2). Paralleling to the classical
case, the limiting distribution of (1-2) is ⊞⊞-infinitely divisible and owns the bi-free
φ-transform, called bi-free Lévy–Khintchine representation, of the form
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φ(z, w) =
v1

z
+

v2

w
+

(
a11

z2 +
a12

zw
+

a22

w2

)
+

∫
R2

[
zw

(z − x1)(w − x2)
− 1 −

x1z−1
+ x2w

−1

1 + ∥x∥2

]
dτ(x).

Analogically, this limiting distribution is always expressed as µ
(v,A,τ )
⊞⊞ and said to

own the bi-free Lévy triplet (v, A, τ ). Those triplets (v, A, τ ) satisfying (2-10) also
give a complete parametrization of the set ID(⊞⊞), and therefore output a bijective
homomorphism 3 from ID(∗) onto ID(⊞⊞), sending an element µ

(v,A,τ )
∗ in the

first set to the distribution µ
(v,A,τ )
⊞⊞ in the second one. No matter in the classical

or bi-free probability, ∗- and ⊞⊞-infinitely divisible distributions both appear as
limiting distributions in the limit theorem.

Next, we turn our attention to the limit theorem on the d-torus, on which the
Borel probability measures of interest are sometimes imposed the nonvanishing
mean conditions:

(2-11)
∫

Td
s j dν(s) ̸= 0, j = 1, . . . , d.

For convenience, we adopt the symbol P×

Td to signify the collection of probability
measures carrying such features. As will be shown in Theorem 3.12, when d = 2,
these conditions (2-11) turn out to be necessary and sufficient for a ⊠⊠-infinitely
divisible distribution to contain no nontrivial ⊠⊠-idempotent factors. We would
also like to remind the reader that the symbol P×

T2 introduced here is distinct from
that in [13] as Theorem 3.10 of the present paper designates that the requirement
m1,1(ν) ̸= 0 in the limit theorem is redundant.

Given an infinitesimal triangular array {νnk}n≥1,1≤k≤kn in PTd , one works with
the rotated probability measures d ν̊nk(s) = dνnk(bnk s), where

(2-12) bnk = exp
[
i
∫

Uθ

(arg s) dνnk(s)
]
.

Once again, {ν̊nk} is infinitesimal because of limn maxk ∥arg bnk∥ = 0. Given a
sequence {ξ n} ⊂ Td , further define vectors

(2-13) γ n = ξ n exp
[
i

kn∑
k=1

(
arg bnk +

∫
T2
(ℑs) d ν̊nk(s)

)]
∈ Td .

The bi-free multiplicative limit theorem on the bi-torus has been shown in [13,
Theorem 3.4]:

Theorem 2.4. The necessary and sufficient condition for the sequence (1-3) to
converge weakly to a certain ν⊠⊠ ∈ P×

T2 is that the limit

(2-14) lim
n→∞

γ n = γ
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exists and the positive measures

(2-15) ρn =

kn∑
k=1

ν̊nk

satisfy Condition 2.5 stated below with d = 2.

Condition 2.5. Let {ρn} be a sequence in M 1
Td .

(i) For j = 1, . . . , d , the sequence {λnj }n≥1 defined by

dλnj (s) = (1 − ℜs j ) dρn(s)

belongs to MTd and converges weakly to some λ j ∈ MTd .

(ii) For 1 ≤ j, ℓ ≤ d , the following limit exists in R:

L jℓ = lim
n→∞

∫
Td
(ℑs j )(ℑsℓ) dρn(s).

The limiting distribution ν = ν⊠⊠ in Theorem 2.4 is ⊠⊠-infinitely divisible, as
expected, and uniquely determined by the formulas [13]

(2-16) 6ν( j)(ξ) = exp[u j (ξ)] and 6ν(z, w) = exp[u(z, w)].

Here the functions u j , j = 1, 2, are defined on D and given by

u j (ξ) = −i arg γ j +

∫
T2

1 + ξs j

1 − ξs j
dλ j (s),

and for (z, w) ∈ (C\D)2, the function u satisfies

(1 − z)(1 − w)

1 − zw
u(z, w) =

∫
T2

1 + zs1

1 − zs1

1 + ws2

1 − ws2
(1 − ℜs2) dλ1(s)

− i
∫

T2

1 + zs1

1 − zs1
(ℑs2) dλ1(s)

− i
∫

T2

1 + ws2

1 − ws2
(ℑs1) dλ2(s) − L12.

In turn, any measure in ID(⊠⊠)∩ P×

T2 truly arises as a weak-limit point of (1-3).

Remark 2.6. Suppose that ν ∈ ID(⊠⊠)\P×

T2 , and let m j =
∫

s j dν( j) for j = 1, 2.
Then 6ν( j)(0) = 1/m j , arg γ j = arg m j , and λ j (T

2) = − log |m j | ∈ [0, ∞). We
remind the reader that the parameter γ j in u j (ξ) and that appearing in [13] are
conjugate complex numbers. With the help of the equation

(2-17)
1 + ξs
1 − ξs

(1 − ℜs) = iℑs +
(1 − ξ)(1 − s)

1 − ξs
, (ξ, s) ∈ D × T,
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one can see that

u j (ξ) = −i arg γ j + lim
n→∞

∫
T2

1 + ξs j

1 − ξs j
(1 − ℜs j ) dρn(s)

and
u(z, w) = lim

n→∞

∫
T2

(1 − zw)(1 − s1)(1 − s2)

(1 − zs1)(1 − ws2)
dρn(s)

for some sequence {ρn} ⊂ M 1
T2 satisfying Condition 2.5.

3. ⊠⊠-Idempotent distributions

Let µ ∈ PX . A measure µ′
∈ PX is called a ♢-factor of µ if µ = µ′♢µ′′ for some

µ′′
∈ PX . Particularly, µ is said to be ♢-idempotent when µ′

=µ=µ′′. Idempotent
distributions and other related subjects in classical probability have been extensively
studied in [16]. It is to questions of these sorts in the bi-free probability theory that
the present section is devoted.

The normalized Lebesgue measure m = dθ/(2π) on T is the only ⊠-idempotent
element except for the trivial one, the Dirac measure at 1. On T2, the probability
measure

P(B) = m({s ∈ T : (s, s̄) ∈ B}), B ∈ BT2,

is ⊛-idempotent because m p,q(P) = 1 for p = q ∈ Z and zero otherwise. As a
matter of fact, this singularly continuous measure is also ⊠⊠-idempotent proved
below.

The following result is a direct consequence of Voiculescu’s two-bands moment
formula in [21, Lemma 2.1] and we provide its proof and notations for the later use.

Proposition 3.1. A ⊠⊠-idempotent distribution in PT2 is one of five types δ(1,1),
m × δ1, δ1 × m, m × m, and P. A measure in PT2 is ⊠⊠op-idempotent if and only
if it is δ(1,1), m × δ1, δ1 × m, m × m, or P⋆.

Proof. Let ν be ⊠⊠-idempotent. Since each marginal satisfies ν( j)
= ν( j) ⊠ ν( j), it

follows that ν( j) is ⊠-infinitely divisible. If ν( j) has nonzero mean, then 6ν( j)(0)=1,
yielding ν( j)

= δ1 by [4, Lemma 2.7]. Otherwise, we can infer from [4, Lemma 6.1]
that ν( j)

= m. Thus, consideration given to the case ν(1)
= m = ν(2) is sufficient

to complete the proof. To continue the proof, we realize ν = ν1 ⊠⊠ ν2 as the
distribution of (u, v) = (u1u2, v1v2), where (u j , v j ) = (λ j (Sj ), ρ j (Tj )), j = 1, 2,
are bi-free unitary faces respectively following ν j = ν in the C∗-probability space
(B(H), ϕξ ), as constructed in Section 2C.

From ϕξ (u j ) = 0 for j = 1, 2, it follows that S±1
j ξ j ∈ H̊ j = H j ⊖ Cξ j , which

supplies a simplistic representation for u pξ for any p ∈ N, namely,

(3-1) u pξ = ((S1ξ1) ⊗ (S2 ξ2))
⊗p and u−pξ = ((S−1

2 ξ2) ⊗ (S−1
1 ξ1))

⊗p
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lying in spaces (H̊1 ⊗ H̊2)
⊗p and (H̊2 ⊗ H̊1)

⊗p. Similarly, ϕξ (v1) = 0 = ϕξ (v2)

implies that

(3-2) vqξ = ((T2 ξ2) ⊗ (T1ξ1))
⊗q

∈ (H̊2 ⊗ H̊1)
⊗q , q ∈ N.

We consequently arrive at that for (p, q) ∈ (Z\{0}) × (N ∪ {0}),

m p,q(ν) = ϕξ (u pvq) = ⟨vqξ, u−pξ⟩ = δp,q [ϕξ (u1v1) ϕξ (u2v2)]
p
= δp,q m1,1(ν)2p

and that m0,q(ν) = ϕξ (v
q) = δ0,q for q ∈ N∪{0}. If m1,1(ν) = 0, then m p,q(ν) = 0

for any (p, q) ∈ Z2
\{(0, 0)}, which occurs only when ν = m × m. If m1,1(ν) ̸= 0,

then the equation m1,1(ν) = m1,1(ν)2 results in m1,1(ν) = 1, yielding ν = P as they
have a common 2-moment sequence.

The ⊠⊠op-idempotent elements can be easily ascertained by formula (2-3) and
established results. This finishes the proof. □

It is known that for any ν1, ν2 ∈ PT2 , m p,q(ν1 ⊠⊠ ν2) = m p,q(ν1) m p,q(ν2)

holds when (p, q) = (0, 1), (1, 0).

Lemma 3.2. Identities

m1,1(ν1 ⊠⊠ ν2) = m1,1(ν1) m1,1(ν2)

and
m1,−1(ν1 ⊠⊠ opν2) = m1,−1(ν1) m1,−1(ν2)

hold for any ν1, ν2 ∈ PT2 .

Proof. Following the notations in Section 2C, let α j = ⟨S−1
j ξ j , ξ j ⟩, β j = ⟨Tjξ j , ξ j ⟩,

h j = S−1
j ξ j − α jξ j , and k j = Tjξ j − β jξ j for j = 1, 2. Then

m1,1(ν j ) = ⟨Tjξ j , S−1
j ξ j ⟩ = α jβ j + ⟨k j , h j ⟩.

On the other hand, we have u−1
2 u−1

1 ξ = α1α2 ξ + α2 h1 + α1 h2 + h2 ⊗ h1 and
v1v2 ξ = β1 β2 ξ +β2 k1 +β1 k2 +k2 ⊗k1. Thus, the first desired result follows from
the representation of m1,1(ν j ) given above and the computations

m1,1(ν1 ⊠⊠ ν2) = ⟨v1v2 ξ, u−1
2 u−1

1 ξ⟩

= α1α2 β1 β2 + α2 β2⟨k1, h1⟩ +α1 β1⟨k2, h2⟩ + ⟨k1, h1⟩⟨k2, h2⟩.

Thanks to (2-3) and the first result, we obtain

m1,−1(ν1⊠⊠opν2) = m1,1(ν
⋆
1 ⊠⊠ ν⋆

2) = m1,−1(ν1) m1,−1(ν2). □

Remark 3.3. Results in Lemma 3.2 can also be easily derived by the moment-
cumulant formula and vanishing of bi-free mixed cumulants [8].
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In the sequel, except for δ(1,1), the other four ⊠⊠-idempotent distributions are
called nontrivial. The abusing notation 00

= 1 is used in the following proposition
and elsewhere.

Proposition 3.4. Let ν ∈ PT2 .

(1) ν has the ⊠⊠-factor m × δ1 if and only if ν = m × ν(2).

(2) ν has the ⊠⊠-factor δ1 × m if and only if ν = ν(1)
× m.

(3) ν has the ⊠⊠-factor m × m if and only if ν = m × m.

(4) P is a ⊠⊠-factor of ν if and only if

(3-3) m p,q(ν) = δp,q m1,1(ν)p, (p, q) ∈ Z × (N ∪ {0}),

where δp,q is the Kronecker function of p and q.

Statements (1)–(3) remain true if the convolution ⊠⊠ is replaced with ⊠⊠op. More-
over, P⋆ is a ⊠⊠op-factor of ν if and only if

(3-4) m p,q(ν) = δp,−qm1,−1(ν)p, (p, q) ∈ Z × (−N ∪ {0}).

Remark 3.5. For negative integers q , by taking complex conjugate, formula (3-3)
becomes m p,q(ν) = δp,q m−1,−1(ν)−p.

Proof. Write ν =ν1 ⊠⊠ ν2, where neither ν1 nor ν2 is δ(1,1). We shall stay employing
the notations for ν1, ν2 introduced in Section 2C to accomplish the proof.

First, let ν2 = m×δ1. In order to obtain ν = m×ν(2) as desired in (1), it amounts
to proving that m p,q(ν) = 0 for any p ∈ Z×

= Z\{0} and q ∈ Z because a probability
measure on the bi-torus is uniquely determined by its moments. To this end, we take
operator models (u1, v1) and (u2, v2) as in the proof of Proposition 3.1. A conse-
quence of [20, Lemma 5.3] is that m p,q(ν) = ϕξ ((u1u2)

p(v1v2)
q) can be expressed

as a sum of products of quantities from the set {ϕξ (u
mi
i v

ni
i ) : m1, m2, n1, n2 ∈ Z}.

Moreover, since p ̸= 0, each product in the sum contains at least one factor
ϕξ (u

m2
2 v

n2
2 ) with m2 ̸= 0, which vanishes because (u2, v2) follows m × δ1. This

verifies the “only if” part of (1). The “if” part of (1) is a direct consequence of (2-2).
Alternatively, one can obtain the result by considering the measure ν̃ =ν⊠⊠(m×δ1).
Indeed, ν̃ has the ⊠⊠-factor m×δ1, and so ν̃ = m× ν̃(2) by the result proved above.
Since ν̃(2)

= ν(2) ⊠ δ1 = ν(2), it follows that

m p,q(ν) = m p(m) mq(ν(2)) = m p(m) mq(ν̃(2)) = m p,q(ν̃)

for any p, q ∈ Z. Hence we have ν = ν̃, which proves the “if” part.
By similar reasonings, (2) holds. If m × m is a ⊠⊠-factor of ν, then so are

distributions m × δ1 and δ1 × m, from which we see that (3) holds by (1) and (2).
Finally, we suppose ν2 = P and justify (4). In view of P being ⊠⊠-idempotent,

ν1 ⊠⊠ P may take the place of ν1, and we do assume so below, without affecting the
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convolution ν = ν1 ⊠⊠ P . Since m p,q(ν1)=0=m p,q(ν2) for (p, q)= (0, 1), (1, 0),
formulas (3-1) and (3-2), together with Lemma 3.2, allow one to see that

m p,q(ν) = ⟨vqξ, u−pξ⟩ = δp,q⟨S1T1ξ1, ξ1⟩
p
⟨S2T2 ξ2, ξ2⟩

p
= δp,q m1,1(ν)p

for (p, q) ∈ Z × (N ∪ {0}). This furnishes all mixed moments (3-3) of ν.
That ν ⊠⊠ P has the ⊠⊠-factor P and the established result implies that for any

(p, q) ∈ Z × (N ∪ {0}), m p,q(ν ⊠⊠ P) = δp,q m1,1(ν ⊠⊠ P)p
= δp,q m1,1(ν)p by

Lemma 3.2. Thus m p,q(ν ⊠⊠ P) = m p,q(ν) or, equivalently, ν ⊠⊠ P = ν if (3-3)
holds, proving the converse of (4).

All assertions regarding ⊠⊠op-idempotent factors are direct consequences of
statements (1)–(4), equation (2-3), and the formula m p,q(ν⋆) = m p,−q(ν). □

Remark 3.6. From m1,1(m × m) = 0, assertion (4) of Proposition 3.4 can be
strengthened as that P is the only nontrivial ⊠⊠-idempotent factor of ν ∈ PT2 if
and only if m1,1(ν) ̸= 0 and (3-3) holds.

Remark 3.7. The notions of bi-R-diagonality and Haar bi-unitary elements were
first introduced in [18, Example 4.7] and [7, Definition 10.1.2], respectively. A Haar
bi-unitary element is a bipartite pair having distribution P⋆ [15, Definition 2.15].
The opposite multiplication plays a key role when characterizing bi-R-diagonal
pairs in terms of Haar bi-unitary elements [15, Theorem 4.4]. Moreover, measures
ν ∈ PT2 satisfying (3-4) are bi-R-diagonal because of ν = ν ⊠⊠ op P⋆ according to
Proposition 3.4 and because of [15, Theorem 4.4].

For any c ∈ D, define

dκc(s) =
1 − |c|2

|1 − c̄s|2
dm(s),

which is the probability measure on T induced by the Poisson kernel. It is the
normalized Haar measure on T in case c = 0. By taking the weak limit we define
κc = δc for c ∈ T. Alternatively, κc with c ∈ D ∪ T is the unique probability
measure on T determined by the requirement m p(κc) = cp for p ∈ N. Also, we
have m p(κc) = c̄|p| for p ∈ −N.

Observe that for any c, d ∈ D ∪ T, we have

(3-5) ν ⊠⊠ (κc × κd) = ν ⊛ (κc × κd), ν ∈ PT2 .

To see this, consider ν and κc × κd as the distributions of two bi-free commuting
unitary faces (u1, v1) and (u2, v2), respectively, in some C∗-probability space
(B(H), ϕξ ). Observe that both pairs of faces (u2, v2) and (cIB(H), d IB(H)) are
commuting, bi-free from (u1, v1), and have the same (p, q)-moments cpdq for
(p, q) ∈ (N∪{0})2. In view of the universal calculation formula for mixed moments
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[20, Lemma 5.2], we may replace (u2, v2) with (cIB(H), d IB(H)). This entails

ϕξ ((u1u2)
p(v1v2)

q) = cpdqϕξ (u
p
1 v

q
1 ),

and hence m p,q(ν ⊠⊠ (κc × κd)) = m p,q(ν ⊛ (κc × κd)) for (p, q) ∈ (N ∪ {0})2.
Similarly, one can obtain the same identity for (p, q) ∈ (N ∪ {0})× (−N ∪ {0}) by
using that (u2, v2) and (cIB(H), (1/d̄)IB(H)) have the same (p, q)-moments cpd̄ |q|.
Therefore, we justify (3-5).

A special case of (3-5) is the validity of

(κc1 × κd1)⊠⊠ (κc2 × κd2) = κc1c2 × κd1d2 = (κc1 × κd1)⊛ (κc2 × κd2)

for any c1, c2, d1, d2 ∈ D ∪ T, yielding the following results.

Proposition 3.8. The measure κc × κd is both ⊛- and ⊠⊠-infinitely divisible for
any c, d ∈ D ∪ T.

Proposition 3.9. Any ν ∈ PT2 with moments satisfying (3-3) can be expressed as
P ⊛ (κc × δ1), where c = m1,1(ν). In particular, ν is both ⊛- and ⊠⊠-infinitely
divisible.

Proof. Clearly, we have m p,q(P ⊛ (κc × δ1)) = δp,q cp for (p, q) ∈ Z × (N ∪ {0}),
and hence ν = P ⊛ (κc × δ1). The ⊛-infinitely divisibility of P and Proposition 3.8
yield that ν is ⊛-infinitely divisible. Also, the identity ν = P ⊠⊠ (κc ×δ1) obtained
by (3-5) proves the ⊠⊠-infinite divisibility of ν. □

A consequence of (3-5) and Proposition 3.9 is that the following identity holds
for every ν ∈ PT2 :

(3-6) P ⊠⊠ (κm1,1(ν) × δ1) = P ⊠⊠ ν = P ⊛ (κm1,1(ν) × δ1).

The following is a bi-free multiplicative analog of the classical multiplicative
limit theorem.

Theorem 3.10. Let {νnkn }n≥,1≤k≤kn be an infinitesimal triangular array in PT2

and {ξ n} be a sequence in T2. If the sequence in (1-3) has a weak limit ν, then ν is
⊠⊠-infinitely divisible. If m1,0(ν) ̸= 0 ̸= m0,1(ν), then m1,1(ν) ̸= 0. Moreover, if
m1,0(ν) = 0, then ν = m × ν(2) and if m0,1(ν) = 0, then ν = ν(1)

× m.

Proof. We separately consider three possible statuses (i) m1,0(ν) ̸= 0 ̸= m0,1(ν),
(ii) m1,0(ν) = 0 ̸= m0,1(ν) (the case m1,0(ν) ̸= 0 = m0,1(ν) is treated similarly
to (ii)), and (iii) m1,0(ν) = 0 = m0,1(ν).

(i) Once we can prove that m1,1(ν) ̸= 0, then the ⊠⊠-infinite divisibility of ν will
follow from [13, Theorem 4.2]. Assume to the contrary that m1,1(ν) = 0, which
together with Lemma 3.2 implies that as n → ∞,

m1,1(δξn ) m1,1(νn1) · · · m1,1(νnkn ) = m1,1(δξn ⊠⊠ νn1 ⊠⊠ · · · ⊠⊠ νnkn ) → 0.
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Then there exists a sequence {ℓn} ⊂ N so that as n → ∞, we have

m1,1(δξn ) m1,1(νn1) · · · m1,1(νnℓn ) → 0 and m1,1(νn,ℓn+1) · · · m1,1(νnkn ) → 0,

namely, one sees from Lemma 3.2 that

m1,1(δξn ⊠⊠ νn1 ⊠⊠ · · · ⊠⊠ νnℓn )→ 0 and m1,1(νn,ℓn+1 ⊠⊠ · · · ⊠⊠ νnkn )→ 0

as n → ∞. To obtain such a sequence {ℓn}, one can select, for example,

ℓn = min
{
k : |m1,1(δξn ⊠⊠ νn1 ⊠⊠ · · · ⊠⊠ νnk)|

≤ |m1,1(δξn ⊠⊠ νn1 ⊠⊠ · · · ⊠⊠ νnkn )|
1/2}.

One may assume, by passing to a subsequence if needed, that

δξn ⊠⊠ νn1 ⊠⊠ · · · ⊠⊠ νnℓn ⇒ ν ′

1 ∈ PT2, νn,ℓn+1 ⊠⊠ · · · ⊠⊠ νnkn ⇒ ν ′′

1 ∈ PT2 .

Then we have ν = ν ′

1 ⊠⊠ ν ′′

1 and m1,1(ν
′

1) = 0 = m1,1(ν
′′

1 ). Also, the formula

m1,0(ν) = m1,0(ν
′

1) m1,0(ν
′′

1 )

indicates that either |m1,0(ν
′

1)| ≥ |m1,0(ν)|1/2 or |m1,0(ν
′′

1 )| ≥ |m1,0(ν)|1/2 must
occur; assume, without loss of generality, that the first inequality is valid. Carrying
out the same arguments on ν ′

1 allows us to obtain ν ′

2, ν
′′

2 ∈PT2 fulfilling requirements
ν ′

1 =ν ′

2 ⊠⊠ ν ′′

2 , m1,1(ν
′

2)=0=m1,1(ν
′′

2 ), and |m1,0(ν
′

2)|≥ |m1,0(ν
′

1)|
1/2. Continuing

this process then results in the existence of sequences {ν ′
n}, {ν

′′
n } ⊂ PT2 for which

ν ′
n = ν ′

n+1 ⊠⊠ ν ′′

n+1, m1,1(ν
′
n) = 0 = m1,1(ν

′′
n ), and |m1,0(ν

′

n+1)| ≥ |m1,0(ν
′
n)|

1/2

hold.
One has ν = ν ′

n ⊠⊠ ν ′′′
n for some ν ′′′

n ∈ PT2 and |m1,0(ν
′
n)| ≥ |m1,0(ν)|1/2n

.
Passing to subsequences if needed again, let ν ′

n ⇒ ν1 ∈ PT2 and ν ′′′
n ⇒ ν2 ∈ PT2 ,

and so ν = ν1 ⊠⊠ ν2, m1,1(ν1)= 0, and |m1,0(ν1)|= 1. The last identity reveals that
ν1 =δα×ν

(2)
1 , α=m1,0(ν1)∈T. Also, using 0 ̸=m0,1(ν)=m0,1(ν1) m0,1(ν2) we get

m0,1(ν1) ̸= 0. However, these discussions would lead to m1,1(ν1) = αm0,1(ν1) ̸= 0,
a contradiction. Hence we must have m1,1(ν) ̸= 0, as desired.

(ii) Note that the marginal ν(2) is ⊠-infinitely divisible by [2, Theorem 2.1]. The ⊠⊠-
infinite divisibility of ν will follow immediately if one can argue that ν = m × ν(2).
The proof, presented below, is basically similar to that of (1).

First, applying the strategy employed in the first paragraph of (1) to m1,0(ν) = 0
indicates the presence of ℓn ∈ N satisfying m1,0(δξn ⊠⊠ νn1 ⊠⊠ · · · ⊠⊠ νnℓn ) → 0
and m1,0(νn,ℓn+1 ⊠⊠ · · · ⊠⊠ νnkn ) → 0 as n → ∞. Assume, dropping a subse-
quence if necessary, that

δξn ⊠⊠ νn1 ⊠⊠ · · · ⊠⊠ νnℓn ⇒ ν ′

1 ∈ PT2, νn,ℓn+1 ⊠⊠ · · · ⊠⊠ νnkn ⇒ ν ′′

1 ∈ PT2 .
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Thus we have ν = ν ′

1 ⊠⊠ ν ′′

1 and m1,0(ν
′

1) = 0 = m1,0(ν
′′

1 ). We may further assume
|m0,1(ν

′

1)| ≥ |m0,1(ν)|1/2. Mimicking the arguments in (1) constructs sequences
{ν ′

n}, {ν
′′
n } ⊂ PT2 meeting conditions ν = ν ′

n ⊠⊠ ν ′′
n , m1,0(ν

′
n) = 0 = m1,0(ν

′′
n ),

and |m0,1(ν
′
n)| ≥ |m0,1(ν)|1/2n

. Passing to subsequences if needed again, assume
that ν ′

n ⇒ ν1 ∈ PT2 and ν ′′
n ⇒ ν2 ∈ PT2 . Then we come to that ν = ν1 ⊠⊠ ν2,

m1,0(ν1) = 0 = m1,0(ν2), and ν
(2)
1 = δα for some α ∈ T. To proceed the proof,

we shall use notations introduced in Section 2C. Since v1 = α IB(H), it follows
that vqξ = αqv

q
2 ξ ∈ Cξ ⊕ H̊2 for any q ∈ Z. Thus, equation (3-1) implies that

m p,q(ν) = ⟨vqξ, u−pξ⟩ = 0 for any (p, q) ∈ N × Z, proving ν = m × ν(2).

(iii) In this case, we have ν(1)
= m = ν(2) by [2, Theorem 2.1] and [4, Lemma 6.1].

Further, one can employ the proof in (ii) to show that there are ν1, ν2 ∈ PT2 so that
ν = ν1 ⊠⊠ ν2 and m1,0(ν1) = 0 = m1,0(ν2). Then m0,1(ν1) m0,1(ν2) = m0,1(ν) = 0.
If m0,1(ν1) = 0 = m0,1(ν2), then (3-1) and (3-2) yield that m p,q(ν) = δp,q m1,1(ν)p

for (p, q) ∈ Z × (N ∪ {0}), whence ν is ⊠⊠-infinitely divisible by Proposition 3.9.
For the other case, say m0,1(ν1) ̸= 0, the established conclusion in (ii) then shows
that ν1 = m × ν

(2)
1 . In such a situation, the measure ν1, as well as ν, has the

⊠⊠-factor m × δ1. Thus, Proposition 3.4 says that ν = m × m, which is clearly
⊠⊠-infinitely divisible. □

Corollary 3.11. The set ID(⊠⊠) is weakly closed.

We are now in a position to characterize distributions in ID(⊠⊠) carrying no
nontrivial ⊠⊠-idempotent factors.

Theorem 3.12. In order that a measure ν ∈ ID(⊠⊠) contains no nontrivial ⊠⊠-
idempotent factor, it is necessary and sufficient that m1,0(ν) ̸= 0 ̸= m0,1(ν), in
which case m1,1(ν) ̸= 0.

Proof. According to Proposition 3.4, only the necessity requires a proof. We merely
prove that ν has a nontrivial ⊠⊠-idempotent factor when m1,0(ν) = 0, because
the case m0,1(ν) = 0 can be handled in the same way. To do so, let m1,0(ν) = 0,
and consider two possible cases (i) m0,1(ν) = 0 and (ii) m0,1(ν) ̸= 0, which are
discussed separately below. Note that m p,0(ν) = 0 for all p ∈ N since ν(1)

= m.

Case (i): Since ν( j)
= m for j = 1, 2, one can mimic the proof of Proposition 3.1,

especially employ equations (3-1) and (3-2), to obtain m p,q(ν) = δp,q m1,1(ν)p for
(p, q) ∈ Z × (N ∪ {0}). Hence P is a ⊠⊠-factor of ν by Proposition 3.4.

Case (ii): To treat this case, let ν ′
n ∈ PT2 be an n-th ⊠⊠-convolution root of ν for

any n ∈ N, i.e., (ν ′
n)

⊠⊠n
= ν. Then we have ν = ν ′

n ⊠⊠ ν ′′
n , where ν ′′

n = (ν ′
n)

⊠⊠(n−1),
m1,0(ν

′
n) = 0 = m1,0(ν

′′
n ) and |m0,1(ν

′
n)| = |m0,1(ν)|1/n . If ν ′ and ν ′′ are any

weak limits of {ν ′
n} and {ν ′′

n }, respectively, then we further obtain ν = ν ′ ⊠⊠ ν ′′,
m1,0(ν

′) = 0 = m1,0(ν
′′), and |m0,1(ν

′)| = 1. This leads to (ν ′)(2)
= δα for some

α ∈ T, which is exactly the situation dealt in the last part of the proof (ii) of
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Theorem 3.10. Thus we conclude that ν = m × ν(2), which has the ⊠⊠-idempotent
factor m × δ1 by Proposition 3.4.

Lastly, we turn to argue that m1,1(ν) ̸= 0 if m1,0(ν) ̸= 0 ̸= m0,1(ν). Any
sequence {νn} satisfying ν = ν⊠⊠2n

n has a subsequence {νn j } converging weakly
to δξ for some ξ ∈ T2 (see (i) of Theorem 3.10). Then Lemma 3.2 implies that
|m1,1(ν)|2

−n j
= |m1,1(νn j )| → |m1,1(δξ )| = 1, leading to the desired result. □

Propositions 3.4 and 3.9, and Theorem 3.12 readily imply the following.

Corollary 3.13. Any measure ν in ID(⊠⊠)\P×

T2 is either ν(1)
× m, m × ν(2),

m × m or P ⊛ (κc × δ1), where ν(1) and ν(2) are in ID(⊠) with nonzero mean and
c ∈ (D ∪ T) \ {0}.

4. Equivalent conditions on limit theorems

This section is devoted to exploring the associations among the conditions introduced
in Section 2D and the following one.

Condition 4.1. Let {ρn} be a sequence in M 1
Td .

(iii) There exists some ρ ∈ M 1
Td with ρ({1}) = 0 (i.e., ρ ∈ M̃ 1

Td ) so that ρn ⇒1 ρ.

(iv) The following limits exist in R for any p ∈ Zd :

lim
ϵ→0

lim sup
n→∞

∫
Uϵ

⟨ p, ℑs⟩2 dρn(s) = Q( p) = lim
ϵ→0

lim inf
n→∞

∫
Uϵ

⟨ p, ℑs⟩2 dρn(s).

Condition 2.5 with d = 2 was used in [13, Theorem 3.4] to prove the limit
theorem for the bi-free multiplicative convolution, while Condition 4.1 is beneficial
for the corresponding classical limit theorem [10]. More properties regarding these
two conditions are presented below.

Proposition 4.2. Condition 2.5 is equivalent to Condition 4.1, in which

dλ j (s) = (1 − ℜs j ) dρ(s) +
Q(ej )

2
δ1(ds), j = 1, . . . , d,(4-1) ∫

Td
∥1 − ℜs∥ dρ(s) < ∞,(4-2)

and the quadratic form Q( · ) = ⟨A · , · ⟩ on Zd is determined by the positive
semidefinitive matrix A = (a jℓ) whose entries are

(4-3) a jℓ = L jℓ −

∫
Td
(ℑs j )(ℑsℓ) dρ(s) ∈ R, j, ℓ = 1, . . . , d.

Moreover, a j j = 2λ j ({1}) for j = 1, . . . , d.
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Proof. Suppose first that Condition 2.5 is satisfied. Then the relation

(1 − ℜs j ) dλℓ = (1 − ℜsℓ) dλ j , j, ℓ = 1, . . . , d,

guaranteed by item (i) of Condition 2.5 ensures that the measure

(4-4) dρ(s) =
1{sj ̸=1}(s)
1 − ℜs j

dλ j (s)

is unambiguous and does not depend on j . In addition, it satisfies requirements
ρ(Td

\Uϵ) < ∞ for any ϵ > 0 and (4-2). Hence the measure ρ that we just
constructed belongs to M 1

Td .
To see ρn ⇒1 ρ, pick a continuous function f on Td with support contained

within Td
\Uδ for some δ > 0. Then this f produces d continuous functions on Td ,

which are
f j (s) =

dist(U j , s)
dist(U1, s) + · · · + dist(Ud , s)

f (s),

where U j ={u∈Td
: |arg u j |<δ/

√
2d} and dist(U j , s)= inf{∥arg s−arg u∥:u∈U j }

for j = 1, . . . , d. Obviously, the relation f = f1 + · · · + fd holds and each
f j/(1 −ℜs j ) is continuous on Td . These observations and the weak convergence
λnj ⇒ λ j then yield that∫

Td
f (s) dρn(s) =

d∑
j=1

∫
Td

f j (s)
1 − ℜs j

dλnj (s) n→∞
−−→

d∑
j=1

∫
Td

f j (s)
1 − ℜs j

dλ j (s)

=

∫
Td

f (s) dρ(s).

Therefore, we have completed the verification of item (iii) of Condition 4.1.
We next demonstrate the validity of the following identities for 1 ≤ j, ℓ ≤ d,

(4-5) lim
ϵ→0

lim sup
n→∞

∫
Uϵ

(ℑs j )(ℑsℓ) dρn = lim
ϵ→0

lim inf
n→∞

∫
Uϵ

(ℑs j )(ℑsℓ) dρn,

which confirms that of Condition 4.1(iv). To continue, observe that the mapping
s 7→ (ℑs)2/(1 − ℜs) is continuous on T and at the origin, it takes value

(4-6) lim
arg s→0

(ℑs)2

1 − ℜs
= 2.

Then (4-2), (4-6), and the Hölder inequality imply that (ℑs j )(ℑsℓ) ∈ L1(ρ) for
j, ℓ = 1, . . . , d. In order to get results (4-3) and (4-5), we examine the following
differences which are related to them:

Dn(ϵ) =

∫
Td
(ℑs j )(ℑsℓ) dρn −

∫
Td
(ℑs j )(ℑsℓ) dρ −

∫
Uϵ

(ℑs j )(ℑsℓ) dρn,
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which further splits into the sum of

In1(ϵ) =

∫
Td\Uϵ

(ℑs j )(ℑsℓ) dρn −

∫
Td\Uϵ

(ℑs j )(ℑsℓ) dρ

and
I2(ϵ) = −

∫
Uϵ

(ℑs j )(ℑsℓ) dρ.

Apparently, we have limϵ→0 I2(ϵ) = 0 owing to (ℑs j )(ℑsℓ) ∈ L1(ρ). Next,
take an ϵ′

∈ (ϵ, 2ϵ) and an ϵ′′
∈

(
ϵ
2 , ϵ

)
with the attributes that ρ(∂Uϵ′) = 0 and

ρ(∂Uϵ′′) = 0, the presence of which are insured by the finiteness of the measure
1Td\Uϵ/2 ρ on Td . Then applying Proposition 2.1 to the established result ρn ⇒1 ρ

results in
lim

n→∞

∫
Td\Uϵ′

(ℑs j )(ℑsℓ) dρn =

∫
Td\Uϵ′

(ℑs j )(ℑsℓ) dρ.

On the other hand, working with the closed subset Fϵ = {s ∈ Td
: ϵ′′

≤ ∥arg s∥ ≤ ϵ′
}

and employing Proposition 2.1, we come to

(4-7)
(

lim sup
n→∞

∫
Fϵ

|ℑs j | |ℑsℓ| dρn

)2

≤ lim sup
n→∞

∫
Fϵ

(ℑs j )
2 dρn ·

∫
Fϵ

(ℑsℓ)
2 dρn

≤

∫
Fϵ

(ℑs j )
2 dρ ·

∫
Fϵ

(ℑsℓ)
2 dρ → 0

as ϵ →0. With the help of the facts Td
\Uϵ′′ = (Td

\Uϵ)∪(Uϵ\Uϵ′′) and Uϵ\Uϵ′′ ⊂ Fϵ ,
we are able to conclude that limϵ→0 lim supn→∞ |In1(ϵ)| = 0. Consequently, we
have shown limϵ→0 lim supn→∞ |Dn(ϵ)| = 0, which together with Condition 2.5(ii)
accounts for (4-3) and (4-5) with any indices j and ℓ.

If ϵ′ is also chosen so that λ j (∂Uϵ′) = 0, then we draw once again from (4-6)
that a j j = 2λ j ({1}) because

lim sup
n→∞

∫
Uϵ

|2(1 − ℜs j ) − (ℑs j )
2
| dρn ≤ lim sup

n→∞

∫
Uϵ′

∣∣∣∣2 −
(ℑs)2

1 − ℜs

∣∣∣∣ dλnj

=

∫
Uϵ′

∣∣∣∣2 −
(ℑs j )

2

1 − ℜs j

∣∣∣∣ dλ j ϵ→∞
−−→ .

This conclusion and (4-4) give (4-1). It is easy to see that the limits in (iv) of
Condition 4.1 are equal to ⟨Ap, p⟩ for any p ∈ Zd (in fact, for any p ∈ Rd as well)
with A = (a jℓ) and a jℓ the value of the limit given in (4-5). Also, it is clear that
the quadratic form Q extends to Rd and is positive therein. Then the positivity of
A ≥ 0 can be gained by that of Q on Rd .

Next, we elaborate that Condition 4.1 implies Condition 2.5. Define λ j ’s as
in (4-1). These measures thus obtained are all in MTd , and the arguments for this
go as follows. Select a sequence ϵm ↓ 0 as m → ∞ and ρ({∥arg s∥ = ϵm}) = 0
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for each m. Then (iv), along with Proposition 2.1, indicates that for any numbers
m < m′ both large enough, one has∫

{ϵm′<∥arg s∥<ϵm}

(ℑs j )
2 dρ(s) ≤ 1 + Q(ej ).

Thanks to monotone convergence theorem, (4-6), and the assumption ρ({1}) = 0,
one further gets that for m large enough, (1 − ℜs j )1Uϵm

∈ L1(ρ) for any j . This
proves that λ j (T

d) < ∞ and (ℑs j )
2
∈ L1(ρ) for any j .

After the previous preparations, we are in a position to justify the weak conver-
gence λnj ⇒ λ j . Given a continuous function f on Td , the difference∣∣∣∣∫

Td
f dλnj −

∫
Td

f dλ j

∣∣∣∣
is dominated by the sum of the following four terms:

Dn1(m) =

∫
Uϵm

| f (s) − f (1)| dλnj (s),

Dn2(m) = | f (1)|
∣∣λnj (Uϵm ) −

1
2 Q(ej )

∣∣,
D3(m) =

∫
Uϵm \{1}

| f | dλ j (s),

Dn4(m) =

∣∣∣∣∫
Td\Uϵm

f dλnj (s) −

∫
Td\Uϵm

f dλ j (s)
∣∣∣∣.

First, one can show that limm→∞ lim supn→∞ |Dn2(m)| = 0 by applying (4-6) and
item (iv) to

2λnj (Uϵm )−Q(ej )=

∫
Uϵm

[2(1−ℜs j )−(ℑs j )
2
] dρn(s)+

∫
Uϵm

(ℑs j )
2 dρn(s)−Q(ej ).

Similarly, one can show

lim
m→∞

lim sup
n→∞

|Dn1(m)| ≤
1
2 Q(ej ) · lim

m→∞
sup

s∈Uϵm

| f (s) − f (1)| = 0.

On the other hand, the finiteness of λ j (T
d) leads to

lim
m→∞

D3(m) ≤ ∥ f ∥∞ lim
m→∞

λ j (Uϵm \{1}) = 0.

That we have limn→∞ Dn4(m)=0 for all m evidently follows from Condition 4.1(iii)
and Proposition 2.1. Putting all these observations together illustrates λnj ⇒ λ j .

It remains to deal with (ii) of Condition 2.5, in which the integral is rewritten as∫
Uϵm

(ℑs j )(ℑsℓ) dρn +

∫
Td\Uϵm

(ℑs j )(ℑsℓ) dρn.



LIMIT THEOREMS AND WRAPPING TRANSFORMS 85

For any j, ℓ, taking the operations limm→∞ lim supn→∞ and limm→∞ lim infn→∞

of the first integral gives the same value 1
2 [Q(ej +eℓ)−Q(ej )−Q(eℓ)], while doing

the same thing to the second integral yields the value
∫

Td (ℑs j )(ℑsℓ) dρ because of
ρn ⇒1 ρ and (ℑs j )

2
+(ℑsℓ)

2
∈ L1(ρ). This finishes the proof of the proposition. □

An intuitive thought is that measures on Td obtained by rotating measures within
controllable angles maintain the same structural properties, such as Condition 4.1,
as the original ones. The statement and its rigorous proof are given below.

Proposition 4.3. Suppose that {νnk} ⊂ PTd is a triangular array for which the
measure ρn =

∑kn
k=1νnk satisfies Condition 4.1. If an array {θnk} ⊂ (−π, π]

d fulfills
the condition

(4-8) lim
n→∞

kn∑
k=1

(1 − cos θnk) = 0,

then Condition 4.1 is still applicable to measures ρ̃n( · ) =
∑kn

k=1 νnk(· eiθnk ), in
which ρ̃n ⇒1 ρ and ρn and ρ̃n define the same quadratic form in Condition 4.1(iv).

Proof. First of all, (4-8) reveals that limn maxk ∥θnk∥ = 0. We now argue that
ρ̃n ⇒1 ρ as well by using Proposition 2.1. To do so, pick a closed subset F ⊂ Td

\Ur

for some r > 0. Since ρ(F) < ∞, it follows that given any δ > 0, there exists a
closed set F ′

⊂ Td
\Ur/2 such that eiθnk F ⊂ F ′ for all sufficiently large n and for

all 1 ≤ k ≤ kn , and ρ(F ′
\F) < δ. Then

ρ̃n(F) =

∑
k

νnk(eiθnk F) ≤

∑
k

νnk(F ′) = ρn(F ′)

implies that lim supn→∞ ρ̃n(F) ≤ lim supn→∞ ρn(F ′) ≤ ρ(F ′) ≤ ρ(F) + δ. Con-
sequently, we arrive at the inequality lim supn→∞ ρ̃n(F) ≤ ρ(F). In the same vein,
one can show that lim infn→∞ ρ̃n(G) ≥ ρ(G) for any set G which is open and
bounded away from 1. Hence ρ̃n ⇒1 ρ by Proposition 2.1.

Next, we turn to demonstrate that both ρn and ρ̃n bring out the tantamount
quantities in (4-5), which asserts that the quadratic form in (iv) output by them is
unchanged on Zd . Any index n considered below is always sufficiently large. In
the case j = ℓ, we have the estimate∫

Uϵ

(ℑs j )
2 dρ̃n(s) =

kn∑
k=1

∫
eiθnk Uϵ

(ℑ(e−iθnk j s j ))
2 dνnk(s)

≤

kn∑
k=1

∫
U2ϵ

(ℑ(e−iθnk j s j ))
2 dνnk(s),

where we express θnk = (θnk1, . . . , θnkd). The inequality

(4-9) (ℑ(e−iθnk j s j ))
2
≤ (ℑs j )

2
+ 2|sin θnk j | |ℑs j | + sin2(θnk j )
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will help us to continue with the arguments. Consideration given to the first term
on the right-hand side of (4-9) gives

lim
ϵ→0

lim sup
n→∞

kn∑
k=1

∫
U2ϵ

(ℑs j )
2 dνnk(s) = a j j

by the hypothesis, while analyzing the second term results in

kn∑
k=1

|sin θnk j | ·

∫
U2ϵ

|ℑs j | dνnk(s) ≤

( kn∑
k=1

sin2 θnk j

)1/2(∫
U2ϵ

(ℑs j )
2 dρn(s)

)1/2

by the Cauchy–Schwarz inequality. The simple fact sin2 x ≤ 2(1− cos x) for x ∈ R

and the assumption (4-8) immediately yield that

lim
ϵ→0

lim sup
n→∞

kn∑
k=1

∫
U2ϵ

|sin θnk j | |ℑs j | dνnk(s) = 0

and

lim
ϵ→0

lim sup
n→∞

kn∑
k=1

∫
U2ϵ

sin2 θnk j dνnk(s) = 0.

These estimates then lead to limϵ→0 lim supn→∞

∫
Uϵ

(ℑs j )
2 dρ̃n(s) ≤ a j j . Employ-

ing the opposite inclusion Uϵ/2 ⊂ e−iθnk Uϵ and inequality

(ℑ(e−iθnk j s j ))
2
≥ (ℑs j )

2
− 2(1 − cos θnk j ) − 2|sin θnk j | |ℑs j | − sin2 θnk j

allows us to obtain limϵ→0 lim infn→∞

∫
Uϵ

(ℑs j )
2 dρn(s) ≥ a j j .

Now we deal with the situation j ̸= ℓ in (4-5). After careful consideration of all
available information, the focus is only needed on the summand

kn∑
k=1

∫
eiθnk Uϵ

(ℑs j )(ℑsℓ) dνnk(s)

and justifying that

(4-10) lim
ϵ→0

lim sup
n→∞

kn∑
k=1

∫
(eiθnk Uϵ)△Uϵ

|ℑs j | |ℑsℓ| dνnk(s) = 0,

where △ denotes the operation of symmetric difference on sets. Using the fact
(eiθnk Uϵ)△Uϵ ⊂

{
ϵ
2 ≤ ∥arg s∥ ≤ 2ϵ

}
and mimicking the proof of (4-7) allow us to

get (4-10) done. □

Recall from (2-1) that the push-forward measure τW −1
∈M 1

Td of a given τ ∈M 0
Rd

via the wrapping map W (x) = ei x from Rd to Td is defined as

(4-11) (τW −1)(B) = τ({x ∈ Rd
: ei x

∈ B}), B ∈ BTd .
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A useful and frequently used result regarding W is the change-of-variables formula
stating that a Borel function f on Td belongs to L1(τW −1) if and only if the
function x 7→ f (ei x) lies in L1(τ ), and the equation

(4-12)
∫

Td
f (s) d(τW −1)(s) =

∫
Rd

f (ei x) dτ(x)

holds in either case. In the following, we will translate conditions introduced in
Section 2D accordingly via the wrapping map W .

Proposition 4.4. Assume that {τn} and τ are in M 0
Rd satisfying Condition 2.3 (or

Condition 2.2). Then Condition 4.1, as well as Condition 2.5, applies to ρn = τnW −1

and ρ = 1Td\{1}τW −1. Moreover, τn and ρn determine the same quadratic form
on Zd , in particular, the same matrix in (IV) and (iv), respectively.

Proof. Suppose that Condition 2.3 holds for τn and τ , and let A = (a jℓ) represent
the matrix produced by these measures in (IV). According to Proposition 4.2, we
shall only elaborate that Condition 4.1 is applicable to ρn and ρ.

That ρn ⇒1 ρ is clearly valid according to the continuous mapping theorem,
Proposition 2.1. It remains to argue that in Condition 4.1(iv), ρn also outputs A.
The simple observation that ei x

∈ Uϵ if and only if x belongs to the set

(4-13) Ṽϵ =

⋃
p∈Zd

{x + 2π p : x ∈ Vϵ}

and formula (4-12) help us to establish that for j, ℓ = 1, . . . , d ,∫
Uϵ

(ℑs j )(ℑsℓ) dρn(s) =

∫
Td

1Uϵ
(s)(ℑs j )(ℑsℓ) dρn(s)

=

∫
Rd

1Uϵ
(ei x)(ℑei x j )(ℑei xℓ) dτn(x)

=

∫
Ṽϵ

sin(x j ) sin(xℓ) dτn(x).

Observe next that we have Ṽϵ\Vϵ =
⋃d

m=1 Dϵm , where Dϵm = Ṽϵ ∩ {|xm | ≥ π},
provided that ϵ < π . If we temporarily impose the requirement σm(∂Dϵm) = 0 for
some m ∈ {1, . . . , d}, then the weak convergence σnm ⇒ σm implies that

lim sup
n→∞

∫
Dϵm

|sin(x j ) sin(xℓ)| dτn = lim sup
n→∞

∫
Dϵm

|sin(x j ) sin(xℓ)| ·
1 + x2

m

x2
m

dσnm

=

∫
Dϵm

|sin(x j ) sin(xℓ)| ·
1 + x2

m

x2
m

dσm ϵ→∞
−−→ 0.
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This, along with facts x − sin x = o(|x |
2) as |x | → 0 and x2

j ∈ L1(σ j ), leads to

lim
ϵ→0

lim sup
n→∞

∫
Uϵ

(ℑs j )(ℑsℓ) dρn(s) = lim
ϵ→0

lim sup
n→∞

∫
Vϵ

sin(x j ) sin(xℓ) dτn(x)

= lim
ϵ→0

lim sup
n→∞

∫
Vϵ

x j xℓ dτn(x).

The same arguments also elaborate the identity

lim
ϵ→0

lim inf
n→∞

∫
Uϵ

(ℑs j )(ℑsℓ) dρn(s) = lim
ϵ→0

lim inf
n→∞

∫
Vϵ

x j xℓ dτn(x).

Apparently, the selection of ϵ does not vary the validity of these identities, and so
we have established that ρn generates the matrix A in (iv) as well. □

Measures in M 0
Rd can be wrapped either clockwise or counterclockwise (see

equation (4-11)) in all variables, and consequences, such as Proposition 4.4, are not
affected at all by this slight change. As a matter of fact, it is also the case when
one wraps some variables counterclockwise and others clockwise. Without loss
of generality, we shall use the simplest circumstance, the 2-dimensional opposite
wrapping map W ⋆

2 : R2
→ T2, (x1, x2) 7→ (ei x1, e−i x2), to illustrate these features.

The following result is merely an easy consequence of the continuous mapping the-
orem, the relations (τ (W ⋆

2 )−1)(B) = (τW −1
2 )(B⋆) = (τW −1

2 )⋆(B) for any B ∈ BT2 ,
and Proposition 4.4.

Proposition 4.5. If {ρn} and ρ in M 1
T2 fulfill Condition 4.1, then

(1) ρ⋆
n ⇒1 ρ⋆, and

(2) for any p = (p1, p2) ∈ Z2, denoting by p⋆
= (p1, −p2), we have

lim
ϵ→0

lim sup
n→∞

∫
Uϵ

⟨ p, ℑs⟩2 dρ⋆
n(s) = Q( p⋆) = lim

ϵ→0
lim inf
n→∞

∫
Uϵ

⟨ p, ℑs⟩2 dρ⋆
n(s).

Particularly, if {τn} and τ in M 0
R2 satisfy Condition 2.3 (or Condition 2.2), then

statements (1) and (2) above apply to ρ⋆
n = τn(W ⋆

2 )−1 and ρ⋆
= τ(W ⋆

2 )−1.

We add one remark on item (2) of the preceding proposition: if Q( p) = ⟨Ap, p⟩,
then Q( p⋆) = ⟨Aop p, p⟩, where the (i, j)-entry of Aop is (−1)i+ j Ai j .

5. Limit theorems and bi-free multiplicative Lévy triplet

5A. Bi-free multiplicative Lévy–Khintchine representation. Thanks to Proposi-
tion 4.2, one can correlate the quantity L12 and measures λ j given in the formu-
las (2-16) with the matrix A and measure ρ ∈ M 1

T2 determined by (4-1), (4-2),
and (4-3). Therefore, instead of working with the parametrization (γ , λ1, λ2, L12)
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for measures in ID(⊠⊠)∩ P×

T2 , one may take another parametrization (γ , A, ρ)

(with the same γ ) having the following properties with d = 2:

(5-1) γ ∈ Td , A is a positive semidefinite d × d symmetric matrix, and
ρ is a positive measure on Td so that ρ({1}) = 0 and ∥1 − ℜs∥ ∈ L1(ρ).

We shall refer to (γ , A, ρ) as the bi-free multiplicative Lévy triplet of the mea-
sure in ID(⊠⊠) ∩ P×

T2 having (bi-)free 6-transforms presented in (2-16), and
signify this measure by ν

(γ ,A,ρ)

⊠⊠ to comply with the correspondence. This triplet
plays the role of the classical multiplicative Lévy triplet. We will clarify this in
more details in Corollary 5.3, where limit theorems between classical and bi-free
multiplicative convolutions are examined and in Section 6, where the commutativity
of diagram (1-5) is verified.

A measure ν belongs to ID(⊠⊠op)∩P×

T2 if and only if ν⋆
∈ ID(⊠⊠)∩P×

T2 by
(2-3) and Theorem 3.12. Thus, we shall denote by ν

(γ ,A,ρ)

⊠⊠op the measure ν satisfying
ν⋆

= ν
(γ ⋆,Aop,ρ⋆)

⊠⊠ and refer to (γ , A, ρ) as its opposite bi-free multiplicative Lévy
triplet. Passing to analytic transforms, we have

6op
ν (z, w) = 6

ν
(γ ⋆,Aop,ρ⋆)

⊠⊠
(z, 1/w) for (z, w) ∈ D × (T ∪ {0})c.

In terms of notations introduced above, we reformulate the basic limit theorem
[13, Theorem 3.4] on the bi-free multiplicative convolution, including statements
for ⊠⊠op.

Theorem 5.1. Given an infinitesimal array {νnk} ⊂ P×

T2 and a sequence {ξ n} ⊂ T2,
define γ n as in (2-13). The following are equivalent.

(1) The sequence

(5-2) δξn ⊠⊠ νn1 ⊠⊠ · · · ⊠⊠ νnk

converges weakly to some ν⊠⊠ ∈ P×

T2 .

(2) The sequence

(5-3) δξn ⊠⊠ opνn1 ⊠⊠ op
· · · ⊠⊠ opνnk

converges weakly to some ν⊠⊠op ∈ P×

T2 .

(3) The measure ρn =
∑kn

k=1 ν̊nk satisfies Condition 4.1 (or Condition 2.5) with
d = 2 and limn γ n = γ exists.

If (1)–(3) hold, then ν⊠⊠ = ν
(γ ,A,ρ)

⊠⊠ and (ν⊠⊠op)⋆ = ν
(γ ⋆,Aop,ρ⋆)

⊠⊠ , where ρ and A are
as in Condition 4.1 and Proposition 4.2, respectively.

Proof. We only prove (2)⇔(3). With {bnk} defined in (2-12), the equality

exp
[
i
∫

Uθ

(arg s) dν⋆
nk(s)

]
= b⋆

nk
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shows that (ν⋆
nk)

◦(B) = ν⋆
nk(b⋆

nk B) = νnk(bnk B⋆) = ν̊nk(B⋆) = (ν̊nk)
⋆(B) for any

Borel set B on T2. Since the operations ⋆ and ◦ acting on νnk are interchangeable
in order, we adopt the notation ν̊⋆

nk instead of (ν⋆
nk)

◦
= (ν̊nk)

⋆ if no confusions arise.
Item (2) holds if and only if

δξ ⋆
n
⊠⊠ ν⋆

n1 ⊠⊠ · · · ⊠⊠ ν⋆
nk = (δξn ⊠⊠ opνn1 ⊠⊠ op

· · · ⊠⊠ opνnk)
⋆
⇒ (ν⊠⊠op)⋆

according to (2-3). This happens if and only if Condition 4.1 applies to the measure∑n
k=1ν̊

⋆
nk =

(∑n
k=1ν̊nk

)⋆ and the vector

γ ⋆
n = ξ ⋆

n exp
[
i

kn∑
k=1

(
arg b⋆

nk +

∫
T2
(ℑs) d ν̊⋆

nk(s)
)]

has a limit by Theorem 2.4. Then Proposition 4.5 proves the equivalence (2)⇔(3)
and the last assertion. □

Recall from [16] that a measure ν in ID(⊛) has no nontrivial ⊛-idempotent
factor if and only if its characteristic function takes the form

ν̂( p) = γ p exp
(
−

1
2⟨Ap, p⟩ +

∫
Td
(s p

− 1 − i⟨ p, ℑs⟩) dρ(s)
)

, p ∈ Zd

for certain triplet (γ , A, ρ) fulfilling the conditions in (5-1). We shall write ν
(γ ,A,ρ)
⊛

for this measure, and refer to ρ and (γ , A, ρ) as its multiplicative Lévy measure
and multiplicative Lévy triplet, respectively. A known phenomenon is that a ⊛-
infinitely divisible distribution on Td has unique γ and A, but may have various
Lévy measures. For example, it was pointed out in [6] that when d = 1, one has
ν

(1,0,πδi )
⊛ = ν

(1,0,πδ−i )
⊛ . The uniqueness of multiplicative Lévy measures will be more

systematically studied in [10]. This observation leads to the following definition.

Definition 5.2. Let ρ be a multiplicative Lévy measure on Td . The symbol L(ρ)

stands for the collection of those measures serving as multiplicative Lévy measures
for ν

(1,0,ρ)
⊛ .

The following corollary, derived from Theorem 2.4 and [10], supplies the link
between classical and bi-free limit theorems on the bi-torus. The attentive reader
can also notice that the hypothesis L(ρ) = {ρ} is redundant in the implication
(2) ⇒ (1).

Corollary 5.3. Let {νnk} ⊂ PT2 be infinitesimal, {ξ n} ⊂ T2, and (γ , A, ρ) be
a multiplicative Lévy triplet such that L(ρ) = {ρ}. With the notations in (2-13)
and (2-15) for d = 2, the following statements are equivalent:

(1) δξn ⊛ νn1 ⊛ · · ·⊛ νnkn ⇒ ν
(γ ,A,ρ)
⊛ .

(2) δξn ⊠⊠ νn1 ⊠⊠ · · · ⊠⊠ νnkn ⇒ ν
(γ ,A,ρ)

⊠⊠ .
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(3) limn→∞ γ n = γ , ρn ⇒1 ρ, and

lim
ϵ→0

lim sup
n→∞

∫
Uϵ

⟨ p, ℑs⟩2 dρn(s) = ⟨Ap, p⟩

= lim
ϵ→0

lim inf
n→∞

∫
Uϵ

⟨ p, ℑs⟩2 dρn(s), p ∈ Z2.

The one-dimensional multiplicative limit theorem, which was pointed out in the
remark to [23, Corollary 4.2], is a consequence of Corollary 5.3, e.g., by considering
product measures.

Corollary 5.4. Let {νnk} ⊂ PT be infinitesimal, {ξn} ⊂ T, and (γ, a, ρ) be a
multiplicative Lévy triplet such that L(ρ) = {ρ}. With the notations in (2-13)
and (2-15) for d = 1, the following statements are equivalent:

(1) δξn ⊛ νn1 ⊛ · · ·⊛ νnkn ⇒ ν
(γ,a,ρ)
⊛ .

(2) δξn ⊠ νn1 ⊠ · · ·⊠ νnkn ⇒ ν
(γ,a,ρ)

⊠ .

(3) limn→∞ γn = γ , ρn ⇒1 ρ, and

lim
ϵ→0

lim sup
n→∞

∫
Uϵ

(ℑs)2dρn(s) = a = lim
ϵ→0

lim inf
n→∞

∫
Uϵ

(ℑs)2dρn(s).

Apparently, the nonuniqueness of Lévy measures is the exclusive obstruction
for reaching the equivalence of limit theorems, thus complementing the work of
Chistyakov and Götze [9, Theorems 2.3 and 2.4].

The goal of this section is to provide an alternative description for the 6-transform
of a measure in ID(⊠⊠) ∩ P×

T2 in terms of its bi-free multiplicative Lévy triplets.
To achieve this, we need some basics. For any p ∈ N, the function

Kp(s) =
s p

− 1 − i pℑs
1 − ℜs

is continuous on T and equal to −p2 at s = 1.

Lemma 5.5. For any p ∈ N, we have ∥ℑKp∥∞ ≤ p3 and
∫ π

−π
Kp(eiθ ) dθ = −2pπ .

Proof. In the following arguments, we shall make use of the basic formula:

(5-4)
1 − cos(pθ)

1 − cos θ
= ei(1−p)θ

p−1∑
j,k=0

ei( j+k)θ .

Clearly, we have ℑK1 ≡ 0. If ∥ℑKp∥∞ ≤ p3 for some p ≥ 2, then for s ̸= 1, the
inequality |(1 − ℜs p)/(1 − ℜs)| ≤ p2 following from (5-4) implies that

|ℑKp+1(s)| =

∣∣∣∣ℑs p
− ℑKp(s) +

1 − ℜs p

1 − ℜs
· ℑs

∣∣∣∣ ≤ 1 + p3
+ p2

≤ (p + 1)3.
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By induction, this finishes the proof of the first assertion. To prove the second
assertion, it suffices to show

∫ π

−π
(1 − cos(pθ))/(1 − cos θ) dθ = 2pπ , which can

be easily obtained by using (5-4) again. □

Fix a measure ν ∈ P×

T2 ∩ ID(⊠⊠), and suppose that its (bi-)free 6-transforms
are given as in (2-16). Due to the integral representations, both u1 and u2 are
analytic in � = (C\T) ∪ {∞} and u is analytic in �2. Hence the function

Uν(z, w) =
zw

1 − zw
u(z, w)−

z
1 − z

u1(z) −
w

1 − w
u2(w)

is analytic in �2. If ν ∈ ID(⊠⊠op) ∩ P×

T2 , then we define

U op
ν (z, w) = Uν⋆(z, 1/w),

which is also an analytic function in �2.
When ν ∈ID(⊠⊠op)∩P×

T2 , one can obtain an equivalent formula for Uν in terms
of the bi-free multiplicative Lévy triplet, which we call the bi-free multiplicative
Lévy–Khintchine representation. Note that we acquire the following proof with the
help of limit theorems, in spite of the algebraic nature of the statement. Also, it is
simpler even though there exists an algebraic proof.

Theorem 5.6. Letting ν = ν
(γ ,A,ρ)

⊠⊠ , we have

(5-5) Uν(z, w) =
i z

1 − z
arg γ1 +

iw
1 − w

arg γ2 − Nν(z, w)+ Pν(z, w),

where

Nν(z, w) =
a11

2
·

z(1 + z)
(1 − z)2 +

a12 zw
(1 − z)(1 − w)

+
a22

2
·
w(1 + w)

(1 − w)2

and

Pν(z, w) = (1 − z)(1 − w)

∞∑
p=0

[∫
T2
(s p

− 1 − i⟨ p, ℑs⟩) dρ(s)
]

z p1w p2 .

Further, letting ν̃ = ν
(γ ,A,ρ)

⊠⊠op , we have U op
ν̃

(z, w) = U
ν

(γ ⋆,Aop,ρ⋆)

⊠⊠
(z, 1/w).

Proof. First of all, using Remark 2.6 and the function

f (z, w, s) =
zw(1 − s1)(1 − s2)

(1 − zs1)(1 − ws2)
−

z(1 + zs1)(1 − ℜs1)

(1 − z)(1 − zs1)
−

w(1 + ws2)(1 − ℜs2)

(1 − w)(1 − ws2)
,

one can rewrite Uν as

Uν(z, w) =
i z

1 − z
arg γ1 +

iw
1 − w

arg γ2 + lim
n→∞

∫
T2

f (z, w, s) dρn(s).
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Below, r > 0 is taken so that ρ(∂Ur ) = 0. The continuity of s 7→ f (z, w, s)
on T2 for any fixed (z, w) ∈ D2 and Proposition 2.1 imply that

lim
n→∞

∫
T2\Ur

f (z, w, s) dρn =

∫
T2\Ur

f (z, w, s) dρ.

Using dominated convergence theorem, we arrive at

lim
r→0

lim
n→∞

∫
T2\Ur

f (z, w, s) dρn =

∫
T2

f (z, w, s) dρ.

On the other hand, thanks to weak convergence λnj = (1−ℜs j )ρn ⇒λ j , j = 1, 2,
we see that for ξ ∈ D,

lim sup
n→∞

∣∣∣∣∫
Ur

1 + ξs j

1 − ξs j
(1 − ℜs j ) dρn −

a j j

2
·

1 + ξ

1 − ξ

∣∣∣∣
≤ lim sup

n→∞

(∣∣λnj (Ur ) −
1
2a j j

∣∣ ∣∣∣∣1 + ξ

1 − ξ

∣∣∣∣ + ∫
Ur

∣∣∣∣1 + ξs j

1 − ξs j
−

1 + ξ

1 − ξ

∣∣∣∣ dλnj

)
≤

2
(1 − |ξ |)2 lim sup

n→∞

(∣∣λnj (Ur ) −
1
2a j j

∣∣ +∫
Ur

|1 − s j | dλnj

)
r→∞
−−→ 0.

Similarly, one can show that

lim
r→0

lim
n→∞

∫
T2\Ur

(1 − s1)(1 − s2)

(1 − zs1)(1 − ws2)
dρn =

∫
T2

(1 − s1)(1 − s2)

(1 − zs1)(1 − ws2)
dρ

and
lim
r→0

lim sup
n→∞

∣∣∣∣∫
Ur

(1 − s1)(1 − s2)

(1 − zs1)(1 − ws2)
dρn +

a12

(1 − z)(1 − w)

∣∣∣∣ = 0.

Next, we shall make use of the equation (2-17). After some algebraic manipulations,
we come to the result

lim
n→∞

∫
T2

f (z, w, s) dρn(s) = −N (z, w)+ (1 − z)(1 − w)

∫
T2

f̃ (z, w, s) dρ(s),

where

f̃ (z, w, s)
=

1
(1 − zs1)(1 − ws2)

−
1

(1 − z)(1 − w)
−

i zℑs1

(1 − z)2(1 − w)
−

iwℑs2

(1 − z)(1 − w)2 .

Lastly, the use of the power series expansion

ξ j (1 − ξ1)
−2(1 − ξ2)

−1
=

∑
p≥0

p j ξ
p1

1 ξ
p2

2 for ξ1, ξ2 ∈ D,

allows us to get∫
T2

f̃ (z, w, s) dρ(s) =

∫
T2

∑
p≥0

(s p
− 1 − i⟨ p, ℑs⟩) z p1w p2 dρ(s).
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The operations of integration and summation performed above are interchangeable
due to Lemma 5.5. Indeed, one can utilize the uniform convergence of the summands
to obtain∫ ∑

p≥0

(s pj
j − 1 − i p jℑs j ) z p1w p2 dρ =

∑
p≥0

∫
Kpj (s) dλ j z p1w p2

=

∑
p≥0

∫
(s pj

j − 1 − i p jℑs j ) dρ z p1w p2

and similarly∫ ∑
p≥0

(s p1
1 − 1)(s p2

2 − 1) z p1w p2 dρ =

∑
p≥0

∫
(s p1

1 − 1)(s p2
2 − 1) dρ z p1w p2 .

Putting all these findings together yields the desired result.
According to the definition of ν̃, which is characterized by (ν̃)⋆ = ν

(γ ⋆,Aop,ρ⋆)

⊠⊠ ,
the last assertion follows from the definition of U op

ν . □

Performing the power series expansion to Nν(z, w) in Theorem 5.6 further yields
that

Uν(z, w)

(1 − z)(1 − w)

=

∞∑
p=0

[
i⟨ p, arg γ ⟩ −

1
2⟨Ap, p⟩ +

∫
T2
(s p

− 1 − i⟨ p, ℑs⟩) dρ(s)
]

z p1w p2,

which offers the generating series for the exponent of the characteristic function

(5-6) ν̂( p) = γ p exp
[
−

1
2⟨Ap, p⟩ +

∫
T2
(s p

− 1 − i⟨ p, ℑs⟩) dρ(s)
]
, p ∈ Z2

of a measure in ID(T2,⊛) ∩ P×

T2 (cf. Corollary 5.3.)

5B. Limit theorems via wrapping transformations. We next present the limit
theorems through the wrapping transformations.

Theorem 5.7. Let (v, A, τ ) be a triplet satisfying (2-10) with d = 2, and let
{µnk} ⊂ PR2 be an infinitesimal triangular array and {vn} a sequence of vectors
in R2. If the sequence in (1-2) converges weakly to µ

(v,A,τ )
⊞⊞ , then the sequences

in (5-2) and (5-3) generated by νnk = µnk W −1 and ξ n = eivn converge weakly
to ν

(γ ,A,ρ)

⊠⊠ and ν
(γ ,A,ρ)

⊠⊠op , respectively, where

(5-7) ρ = 1T2\{1}(τW −1)
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and

(5-8) γ = exp
[
iv + i

∫
R2

(
sin(x) −

x
1 + ∥x∥2

)
dτ(x)

]
.

Proof. Before carrying out the main proof, let us record some properties instantly
inferred from the hypotheses for the later utilization. Because the index n goes to
infinity ultimately, it is always big enough whenever mentioned in the proof.

Firstly, observe that νnk belongs to P×

T2 and the vector

(5-9) θnk =

∑
p∈Zd\{0}

∫
Vθ

x dµnk(x + 2π p)

satisfies limn→∞ maxk∥θnk∥ = 0 by the infinitesimality of {µnk}. Secondly, follow-
ing the notations in (2-6) and (4-13), an application of (4-12) gives

vnk + θnk =

∫
Rd

1{ei x :x∈Ṽθ }
(ei x) arg(ei x) dµnk(x)

=

∫
Td

1{s:∥arg s∥<θ}(s) arg(s) dνnk(s) =

∫
Uθ

arg(s) dνnk(s).

This and equation (2-12) provide us with the relations arg bnk = vnk + θnk and
d ν̊nk(s) = d(µ̊nk W −1)(eiθnk s) as for any B ∈ BT2 , we have

(µ̊nk W −1)(B) = µnk({ei x
∈ eivnk B}) = νnk(eivnk B) = ν̊nk(e−θnk B).

Except for the beforehand mentioned results, the array {θnk} in (5-9) also fulfills
the condition in (4-8), which will play a dominant role in our arguments. Its proof,
provided below, is based on the convergence τn =

∑
k µ̊nk ⇒0 τ and some estimates.

For convenience, denote θnk = (θnk1, θnk2) and vnk = (vnk1, vnk2), and consider the
positive Borel measure ϱnk( · ) =

∑
p∈Zd\{0}

µ̊nk(·+2π p)1V2θ
on the closure of V2θ .

The infinitesimality of {µ̊nk} indicates that limn→∞ max1≤k≤kn ϱnk(V2θ ) = 0 and
the assumption θ ∈ (0, 1) in (2-5) shows that

ϱnk(Vθ − vnk) ≤

∑
p∈Zd\{0}

µ̊nk(V2θ + 2π p) = µ̊nk(Ṽ2θ\V2θ ).

This, together with Cauchy–Schwarz inequality, enables us to obtain

kn∑
k=1

θ2
nk j =

kn∑
k=1

(∫
Vθ−vnk

(x j + vnk j ) dϱnk(x)

)2

≤

kn∑
k=1

ϱnk(Vθ − vnk)

∫
Vθ−vnk

(x j + vnk j )
2 dϱnk(x)

≤ θ2τn(Ṽ2θ\V2θ ) max
1≤k≤kn

ϱnk(V2θ ).
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Since Ṽ2θ\V2θ is bounded away from 1 ∈ T2, the relation τn ⇒0 τ leads us to
lim supn τn(Ṽ2θ\V2θ ) < ∞. Thus, we are able to conclude that

∑kn
k=1 θ2

nk j → 0 as
n → ∞, yielding (4-8) by the inequality 1 − cos x ≤

x2

2 on R.
After these preparations, we are ready to present the proof of the theorem. Since

(1-2) converges weakly, τn meets Condition 2.3, and thus ρn = τnW −1 satisfies
Condition 2.5 according to Proposition 4.4. Then Proposition 4.3 consequently
yields that Condition 2.5 also applies to ρ̃n =

∑kn
k=1ν̊nk .

To finish the proof, we just need to verify (2-14) due to Theorem 5.1. The
existence of the limit in (2-8) implies that the vector

En = i
[
vn +

kn∑
k=1

(vnk +

∫
sin(x) dµ̊nk)

]
also has a limit when n → ∞. Indeed, the limit −i limn→∞ En disintegrates into
the sum of that in (2-8) and

lim
n→∞

kn∑
k=1

∫
R2

(
sin(x) −

x
1 + ∥x∥2

)
dµ̊nk(x) =

∫
R2

(
sin(x) −

x
1 + ∥x∥2

)
dτ(x).

The validity of the equality displayed above is just because of that the integrand is
O(∥x∥

3) as ∥x∥ → 0 and the function min{1, ∥x∥
2
} is τ -integrable.

In order to go further, we analyze the difference(
arg bnk +

∫
T2

ℑs d ν̊nk(s)
)

−

(
vnk +

∫
R2

sin(x) dµ̊nk(x)

)
,

which, along with the help of equation
∫

sin(x) dµ̊nk =
∫
ℑ(eiθnk s) d ν̊nk , becomes

(5-10) (θnk −sin θnk)+sin(θnk)

∫
T2
(1−ℜs) d ν̊nk(s)+(1−cos θnk)

∫
T2

ℑs d ν̊nk(s).

Using the elementary inequality

(5-11) |x − sin x | ≤ 1 − cos x, |x | ≤
π

4
,

we see from the established result that
kn∑

k=1

|θnk j − sin θnk j | ≤

kn∑
k=1

(1 − cos θnk j ) → 0 as n → ∞.

For the second term in (5-10), λnj = (1 − ℜs j )ρ̃n ⇒ λ j ∈ MT2 yields that

kn∑
k=1

∣∣∣∣sin(θnk j )

∫
T2
(1 − ℜs j ) d ν̊nk(s)

∣∣∣∣ ≤

(
max

1≤k≤kn
|sin θnk j |

)
λnj (T

2) n→∞
−−→ 0.
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As for the last term, we then have

kn∑
k=1

(1 − cos θnk j )

∣∣∣∣∫
T2
(ℑs j ) d ν̊nk(s)

∣∣∣∣ ≤

kn∑
k=1

(1 − cos θnk j ) n→∞
−−→ 0.

Consequently, we have arrived at that the limit in (2-14) exists and equals the vector
in (5-8). □

The employment of the wrapping limit theorem with vn = 0 gives the following
identically distributed limit theorem, which is the bi-free version of [6, Theorem 3.9].

Corollary 5.8. Let (v, A, τ ) be a triplet satisfying (2-10) with d = 2, {µn} a
sequence in PR2 , and {kn} a strictly increasing sequence in N. If µ

⊞⊞kn
n ⇒ µ

(v,A,τ )
⊞⊞ ,

then (µnW −1)⊠⊠kn ⇒ ν
(γ ,A,ρ)

⊠⊠ and (µnW −1)⊠⊠opkn ⇒ ν
(γ ,A,ρ)

⊠⊠op , where γ and ρ are
as in Theorem 5.7.

Example 5.9. Given a 2 × 2 real matrix A = (ai j ) ≥ 0 with a11 ≥ a22 > 0,
consider planar probability measures µn =

1
4(δαn + δ−αn + δβn + δ−βn ), where

αn = (
√

2 det A, 0)/
√

na22 and βn = (
√

2a12,
√

2a22)/
√

na22. Clearly, µ̊n = µn

for all n and τn := nµn ⇒0 0 as n → ∞. Furthermore, for any θ > 0, if n is
large enough, then

∫
Vθ

x2
j dτn = a j j and

∫
Vθ

x1x2 dτn = a12. Hence the identically
distributed limit theorem introduced in Section 2D indicates that µ⊞⊞n

n converges
weakly to µ

(0,A,0)
⊞⊞ , which is known as the bi-free Gaussian distribution with bi-free

Lévy triplet (0, A, 0). For the measures

νn = µnW −1
=

1
4(δeiαn + δe−iαn + δeiβn + δe−iβn ) ∈ PT2,

a direct verification or an application of Corollary 5.8 shows that ν⊠⊠n
n ⇒ν

(1,A,0)
⊠⊠ and

ν⊠⊠opn
n ⇒ ν

(1,A,0)

⊠⊠op . Analogically, ν⊠⊠ = ν
(1,A,0)
⊠⊠ is called the bi-free multiplicative

Gaussian distribution with Lévy triplet (1, A, 0). Note that the component Pν⊠⊠ in
the representation (5-5), called the bi-free multiplicative compound Poisson part
(see Example 5.10), vanishes.

Example 5.10. Given any r > 0 and µ ∈ PR2 , let µn = (1− r/n) δ0 + r/nµ, τn =

nµn , and τ = r1R2\{0}µ. A straightforward verification reveals that Condition 2.3
applies to τn , τ , and Q ≡ 0. Hence [11, Theorem 5.6] shows that µ⊞⊞n

n converges
weakly to the so-called bi-free compound Poisson distribution µ

(v,0,τ )
⊞⊞ with rate r

and jump distribution µ, where v = r
∫

x(1 +∥x∥
2)−1dµ. Applying Corollary 5.8

shows that (
(1 − r/n) δ1 + r/n(µW −1)

)⊠⊠n
⇒ ν

(eiu,0,ρ)
⊠⊠ ,

as well as (µnW −1)⊠⊠opn
⇒ ν

(eiu,0,ρ)

⊠⊠op , where

ρ = r1T2\{1}(µW −1) and u = r
∫

sin x dµ.
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Analogous to the planar case, we refer to measures of the form ν⊠⊠ = ν
(eiu,0,rν)
⊠⊠ ,

where r > 0, ν ∈ PT2 with ν({1}) = 0, and u = r
∫
ℑsdν as the bi-free multiplicative

compound Poisson distribution with rate r and jump distribution ν. In (5-5), we
have the bi-free Gaussian component Nν⊠⊠ ≡ 0.

5C. Limit theorems for identically distributed case. The following is a special
case of the limit theorem in the context of identically distributed random vectors on
the bi-torus.

Proposition 5.11. Let ρn =knνn , where {νn}⊂P×

T2 and {kn}⊂N with k1 <k2 <. . . .
If ρn satisfies Condition 4.1 (or Condition 2.5) and the limit

v = lim
n→∞

∫
T2

ℑξ dρn(ξ)

exists, then ν
⊠⊠kn
n ⇒ ν

(eiv,A,ρ)
⊠⊠ and ν

⊠⊠opkn
n ⇒ ν

(eiv,A,ρ)

⊠⊠op , where ρ and A are as in
Condition 4.1 and Proposition 4.2, respectively.

Proof. Let h : T2
→ (−π, π]

2 be the inverse of the wrapping map W (x) = ei x

restricted to (−π, π]
2, namely, h(ξ) = arg ξ . Further let µn = νnh−1

∈ PR2 and
τ = ρh−1

∈ M 0
R2 , whose supports are all contained in [−π, π]

2. Then νn = µnW −1,
and τn = ρn h−1

⇒0 τ by the continuous mapping theorem. Also, (4-2) and (4-12)
show that min{1, ∥x∥

2
} ∈ L1(τ ). One can utilize (5-11) to justify

lim
ϵ→0

lim inf
n→∞

∫
Uϵ

(arg s j )(arg sℓ) dρn(s) = lim
ϵ→0

lim sup
n→∞

∫
Uϵ

(arg s j )(arg sℓ) dρn(s).

On the other hand, one has the equation
∫

Vϵ
x j xℓ dτn =

∫
Uϵ

(arg s j )(arg sℓ) dρn

by the change-of-variables formula (4-12), which implies that τn satisfies (IV) of
Condition 2.3. Ultimately, observe that∫

R2

x
1 + ∥x∥2 dτn(x) =

∫
T2

ℑs dρn(s) +

∫
R2

(
x

1 + ∥x∥2 − sin(x)

)
dτn(x)

has a limit when n → ∞ owing to x/(1 + ∥x∥
2) − sin(x) = O(∥x∥

3) as ∥x∥ → 0
and min{1, ∥x∥

2
} ∈ L1(τ ). Thus, µ

⊞⊞kn
n ⇒ µ

(v,A,τ )
⊞⊞ by [11, Theorem 5.6], and so

we accomplish the proof by Corollary 5.8. □

We shall also consider the rotated probabilities

d ν̃n(s) = dνn(ωn s)

associated with a sequence {νn}⊂P×

T2 , where ωn = (ωn1, ωn2)∈T2 has components

ωnj =

∫
T2

s j dνn(s)
/∣∣∣∣∫

T2
s j dνn(s)

∣∣∣∣.
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Through this sort of rotated distributions, we next present the bi-freely identically
distributed limit theorem, which is the bi-free analog of [6, Proposition 3.6].

Theorem 5.12. The following are equivalent for a sequence {νn} in P×

T2 and a
strictly increasing sequence {kn} in N.

(1) The sequence ν
⊠⊠kn
n converges weakly to some ν⊠⊠ ∈ P×

T2 .

(2) The sequence ν
⊠⊠opkn
n converges weakly to some ν⊠⊠op ∈ P×

T2 .

(3) Condition 4.1 holds for ρn = kn ν̃n and the limit γ = limn→∞(ω
kn
n1, ω

kn
n2) exists

in T2.

If (1)–(3) hold, then ν⊠⊠ = ν
(γ ,A,ρ)

⊠⊠ and (ν⊠⊠op)⋆ = ν
(γ ⋆,Aop,ρ⋆)

⊠⊠ , where ρ and A are
respectively as in Condition 4.1 and Proposition 4.2.

Proof. Only the equivalence (1)⇔ (3) needs a proof, which relies on Proposition 4.3.
First of all, the weak convergence of ν

⊠⊠kn
n to ν ∈P×

T2 yields that ν̃n ⇒δ(1,1). Indeed,
m1,0(νn)

kn = 6
ν

(1)
n

(0)−kn → 6ν(1)(0)−1
= m1,0(ν) shows that

ω
kn
n1 → m1,0(ν)/|m1,0(ν)| := ω1.

Since 6
ν̃

(1)
n

(z)kn =ω
kn
n16ν

(1)
n

(z)kn →ω16ν(1)(z)=6ν̃(1)(z) uniformly for z in a neigh-
borhood of zero as n → ∞ by [4, Proposition 2.9], it follows from [4, Lemma 2.7]
that ν̃

(1)
n ⇒ δ1. In the same vein, one can obtain ν̃

(2)
n ⇒ δ1, giving the desired weak

convergence. On other hand, the M 1
T2-weak convergence of ρn = kn ν̃n also implies

ν̃n ⇒ δ1. In other words, ν̃n is infinitesimal if assertion (1) or (3) holds.
Write ν

⊠⊠kn
n = δξn ⊠⊠ ν̃

⊠⊠kn
n and consider measures d ˚̃νn(s) = d ν̃n(b̃n s), where

ξ n = ω
kn
n and b̃n = exp[i

∫
Uθ

(arg s) d ν̃n]. Then as indicated in Theorem 5.1, asser-
tion (1) holds if and only if ρ ′

n = kn ˚̃νn satisfies Condition 2.5 and γ n = ξ n exp(i En)

has a finite limit, where En = kn[arg b̃n +
∫
(ℑs) d ˚̃νn]. The infinitesimality of ν̃n

reveals that θn = (θn1, θn2) → 0 as n → ∞, where

(5-12) θnj = arg b̃nj =

∫
Uθ

arg s j d ν̃n(s).

This simple fact will be often utilized in the following proof, and all the indices
n considered below are sufficiently large. The equivalence of Condition 2.5
and Condition 4.1 is employed below as well. With a view toward applying
Proposition 4.3 to ρn and ρ ′

n , we shall prove that limn→∞ kn∥θn∥
2
= 0.

Now, we argue that ρ ′
n( · ) = kn ˚̃νn( · ) = ρn(eiθn ·) satisfies Condition 2.5 if the

same condition applies to ρn = kn ν̃n . Let λnj = (1 − ℜs j )ρn . Using the fact

(5-13)
∫

T2
ℑs j d ν̃n(s) = 0, j = 1, 2,
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we have

knθnj =

∫
Uθ

arg s j dρn(s) −

∫
T2

ℑs j dρn(s)

=

∫
T2

arg s j − ℑs j

1 − ℜs j
dλnj (s) −

∫
T2\Uθ

arg s j dρn(s).

Then the continuity of s 7→ (arg s − ℑs)/(1 − ℜs) on T implies that

lim sup
n→∞

kn|θnj | < ∞,

and so limn→∞ kn∥θn∥
2
= 0. Thus, ρ ′

n meets Condition 2.5 by Proposition 4.3.
Conversely, suppose that ρ ′

n satisfies Condition 2.5. We first rewrite (5-12) as
arg b̃nj =

∫
b̃−1

n Uθ
(arg s j + arg b̃nj ) d ˚̃νn . On the other hand, the integral in (5-13) can

be decomposed into the sum

ℑb̃nj − (ℑb̃nj )

∫
T2
(1 − ℜs j ) d ˚̃νn(s) − (1 − ℜb̃nj )

∫
T2
(ℑs j ) d ˚̃νn(s) +

∫
T2
(ℑs j ) d ˚̃νn(s).

Since b̃nj = cos θnj + i sin θnj , some simple calculations allow us to obtain

θnj = arg b̃nj −

∫
T2
(ℑs j ) d ν̃n(s) = Bnj + Rnj ,

where
Rnj = (θnj − sin θnj ) + (1 − cos θnj )

∫
(ℑs j ) d ˚̃νn

and

Bnj = −θnj ˚̃νn(T
2
\b̃−1

n Uθ ) −

∫
T2\b̃−1

n Uθ

(arg s j ) d ˚̃νn(s)

+ sin(θnj )

∫
T2
(1 − ℜs j ) d ˚̃νn(s) +

∫
T2

arg s j − ℑs j

1 − ℜs j
d(1 − ℜs j ) ˚̃νn(s).

Note that sets T2
\b̃−1

n Uθ are uniformly bounded away from 1, whence we see
that lim supn→∞ kn|Bnj | < ∞ by the M 1

T2-convergence assumption of ρ ′
n . Then

|Rnj | ≤ |θnj |
3
+ |θnj |

2 leads to

lim sup
n→∞

kn|θnj |[1 − |θnj | − |θnj |
2
] ≤ lim sup

n→∞

kn|Bnj | < ∞.

We thus obtain lim supn kn|θnj | < ∞, and so limn kn∥θn∥
2
= 0. Consequently, ρn

satisfies Condition 2.5 by Proposition 4.3 again.
Finally, by using (5-13), one can express components of En = (En1, En2) as

Enj = knθnj + kn(ℑb̃−1
nj )

∫
T2
(ℜs j ) d ν̃n(s)

= kn(θnj − sin θnj ) + sin(θnj )

∫
T2
(1 − ℜs j ) dρn(s).
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As noted above that ρn meets Condition 2.5 if and only if so does ρ ′
n and that

limn→∞ kn|θnj |
2
= 0 in either case. Consequently, we have shown limn→∞ Enj = 0

for j = 1, 2 and arrived at γ = limn→∞ γ n if (1) or (3) holds. □

Remark 5.13. In spite of δ⊠⊠2n
−1 = δ1, 2nδ−1 fails to converge in M 1

T2 . This example
demonstrates that in Theorem 5.12, the rotated probabilities ν̃n are a necessary
medium in the convergence criteria of the bi-free multiplicative limit theorem. For
the same inference, the converse statement of Proposition 5.11 does not hold, yet it
does in the additive setting [11, Theorem 5.6].

6. Homomorphisms between infinitely divisible distributions

This section will provide explanations for the diagram (1-5). The bijection

3 : ID(∗) → ID(⊞⊞)

was already defined in [11], specifically,

3(µ(v,A,τ )
∗

) = µ
(v,A,τ )
⊞⊞ .

If ν = µ
(v,A,τ )
∗ W −1, then (2-9) and (4-12) show that

ν̂( p) = exp
[
i⟨ p, v⟩ −

1
2⟨Ap, p⟩ +

∫
Rd

(
ei⟨ p,x⟩

− 1 −
i⟨ p, x⟩

1 + ∥x∥2

)
dτ(x)

]
= γ p exp

[
−

1
2⟨Ap, p⟩ +

∫
Td
(s p

− 1 − i⟨ p, ℑs⟩) dρ(s)
]
,

where ρ and γ are respectively given in (5-7) and (5-8). Putting it differently, the
wrapping map induces a homomorphism W∗ : ID(∗) → ID(⊛) satisfying

(6-1) W∗(µ
(v,A,τ )
∗

) = ν
(γ ,A,ρ)
⊛ .

Motivated by (6-1), we analogously define W⊞⊞ : ID(⊞⊞) → ID(⊠⊠) as

W⊞⊞(ν
(v,A,τ )
⊞⊞ ) = ν

(γ ,A,ρ)

⊠⊠ ,

where γ and ρ are given as before. It was shown in Theorem 5.7 that the weak
convergence of (1-2) to some ν

(v,A,τ )
⊞⊞ implies that equation (1-3) converges weakly

to W⊞⊞(ν
(v,A,τ )
⊞⊞ ).

For the last ingredient 0 : ID(⊠⊠) → ID(⊛), recall from Proposition 3.9
that ⊠⊠-idempotent elements also belong to ID(⊛). Also, [6, Definition 3.3]
introduced a homomorphism 01 : ID(T,⊠) → ID(T,⊛) (which was denoted by
0 therein), which leads to the following definition.

Definition 6.1. Let ν ∈ ID(⊠⊠). Define 0(ν) = ν
(γ ,A,ρ)
⊛ if ν = ν

(γ ,A,ρ)

⊠⊠ . For
ν ∈ PT2\P×

T2 , define 0(ν) = ν if ν = P⊠⊠(κc × δ1), and let 0(ν) = m×01(ν
(2))

if ν = m × ν(2) and 0(ν) = 01(ν
(1)) × m if ν = ν(1)

× m.
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One can check that 0 : ID(⊠⊠) → ID(⊛) is a homomorphism and that the
diagram (1-5) commutes. The latter result comes from the definition, while the
former one requires convolution identities in Section 3. For example, if we write
µ = P⊠⊠(κc × δ1) and ν = m × ν(2) with ν(2)

∈ ID(⊠) ∩ P×

T , then we have
µ⊠⊠ ν = P ⊠⊠ (m × ν(2)) = m × m, where the last equality can be confirmed by
the use of (3-6) and computing moments. On the other hand,

0(µ)⊛0(ν) = µ⊛ (m × 01(ν
(2))) = P ⊛ (m × 01(ν

(2))) = m × m,

where the last equality is again obtained by computing moments. Consequently, we
arrive at 0(µ⊠⊠ ν) = 0(µ)⊛0(ν).

This map 0 is neither injective nor surjective as we have

ν
((1,0),0,πδ(i,0))
⊛ = ν

((1,0),0,πδ(−i,0))
⊛

and P⊛(µ×δ1) lies in ID(⊛)\0(ID(⊠⊠)) for any µ∈ID(T,⊛)\{κc : c ∈ D∪T}.
Further, 0 is not weakly continuous. More strongly, we prove the following.

Proposition 6.2. (1) The restriction of 01 to the set ID(⊠)∩ P×

T has no weakly
continuous extension to ID(⊠).

(2) The restriction of 0 to the set ID(⊠⊠) ∩ P×

T2 has no weakly continuous
extension to ID(⊠⊠).

Proof. Since 0(µ(1)
× µ(2)) = 01(µ

(1)) × 01(µ
(2)) for µ(1), µ(2)

∈ ID(⊠) ∩ P×

T ,
assertion (2) follows immediately from (1).

Suppose that 00
1 :=01|ID(⊠)∩P×

T
has a weakly continuous extension 0̃1 to ID(⊠).

Observe that κc ∈ ID(⊠)∩P×

T and 00
1(κc) = κc for any c ∈ (D∪T)\{0}. The latter

identity is shown below. From the moments m p(κc) = cp for p ∈ N, the formula

6κc(z) =
1
c

=
1

c/|c|
exp

[
(− log |c|)

∫
T×

1 + sz
1 − sz

(1 − ℜs)
dm(s)
1 − ℜs

]
yields that κc has (c/|c|, 0, ρ), where ρ(ds) = [− log |c|/(1 − ℜs)] m(ds) on T×,
as its free multiplicative Lévy triplet (also known as ⊠-characteristic triplet in [6,
p. 2437]). On the other hand, Lemma 5.5 says that the same triplet (c/|c|, 0, ρ)

also serves as the classical multiplicative Lévy triplet of κc. Thus we have shown
that 00

1(κc) = κc. That κc ⇒ m as c → 0 allows us to further obtain 0̃1(m) = m.
Next, denote by νn the probability distribution in ID(⊠) ∩ P×

T having the free
multiplicative Lévy triplet (1, 0, nδ−1), and let µn = 00

1(νn). Then (5-6) shows that
for any p ∈ Z,

µ̂n(p) = exp[n((−1)p
− 1)] =

{
1, p is even,

e−2n, p is odd,

which readily implies that µn ⇒
1
2(δ−1 + δ1). However, we will explain in the next

paragraph that νn ⇒ m, which apparently leads to a contradiction.
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To see why νn ⇒m, select a weakly convergent subsequence of {νn} (still denoted
by {νn} in the remaining arguments) and denote the weak limit by ν. Let ν ′

n be
the probability measure having the free multiplicative Lévy triplet

(
1, 0,

( n
2

)
δ−1

)
.

Passing to a further subsequence we may assume that ν ′
n weakly converge to ν ′.

Then letting n →∞ in the identity νn = ν ′
n⊠ν ′

n gives ν = ν ′⊠ν ′. On the other hand,
we see from (2-16) or from [6, Section 2.5] that 6ν′

n
(0)= en , i.e., m1(ν

′
n)= e−n

→ 0
as n → ∞ by Remark 2.6, whence m1(ν

′) = 0. By the definition of freeness, we
can further conclude that m p(ν) = 0 for all p ∈ Z\{0} or, equivalently, ν = m. □
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