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TAME QUASICONFORMAL MOTIONS AND MONODROMY

YUNPING JIANG, SUDEB MITRA AND ZHE WANG

The concept of tame quasiconformal motions was first introduced by Jiang
et al. (2018). The concept of monodromy of holomorphic motions was first
introduced by Beck et al. (2012). In this paper, we will show that the concept
of monodromy of tame quasiconformal motions can be defined, whereas it
cannot be defined for quasiconformal motions, in the sense of Sullivan and
Thurston (1986). We also study some other properties of tame quasiconfor-
mal motions.

1. Introduction

The concept of quasiconformal motions was first introduced by Sullivan and
Thurston [12]. Theorem 3 of [12] claimed that every quasiconformal motion of any
set over an interval can be extended to the Riemann sphere. Jiang et al. [7] presented
a counterexample to Theorem 3 of [12]. They [7] introduced a new concept, called
tame quasiconformal motions, and showed that Theorem 3 of [12] holds for tame
quasiconformal motions over any simply connected Hausdorff space. They also
showed that this extension can be done in a conformally natural way, for tame
quasiconformal motions. The crucial idea was to show that tame quasiconformal
motions have a certain “universal property” that quasiconformal motions (in the
sense of Sullivan and Thurston) do not have.

Beck et al. [2] introduced the concept of monodromy associated with a holomor-
phic motion of a closed subset of the Riemann sphere over a hyperbolic Riemann
surface. Jiang and Mitra [6] proved that the triviality of the monodromy for this
holomorphic motion is a necessary and sufficient condition for the given holomor-
phic motion to be extended to the whole Riemann sphere over the same hyperbolic
Riemann surface. However, the concept of monodromy cannot be defined for a
quasiconformal motion of a closed subset of the Riemann sphere over a hyperbolic
Riemann surface, due to the counterexample in [7]. In the present paper, we show
that the concept of monodromy can be defined for a tame quasiconformal motion
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of a closed subset of the Riemann sphere over any connected Hausdorff space. We
prove that the triviality of the monodromy for a tame quasiconformal motion of
a closed subset of the Riemann sphere over a path-connected Hausdorff space is
a necessary and sufficient condition for this tame quasiconformal motion to be
extended to a quasiconformal motion of the whole Riemann sphere over the same
path-connected Hausdorff space. We also study some other properties of tame
quasiconformal motions.

This paper is organized as follows. In Section 2, we give all basic definitions
and note the various facts that are needed in this paper, and then state the two main
theorems. In Section 3 we present three lemmas and in Sections 4 and 5, we prove
the two main theorems.

2. Basic definitions and statements of the main theorems

Throughout this paper, C denotes the complex plane, Ĉ := C ∪ {∞} denotes the
Riemann sphere and E ⊂ Ĉ is a closed subset such that 0, 1,∞ ∈ E .

When we write Ṽ or W̃ or X̃ is “simply connected”, we mean that it is a
path-connected topological space and that its fundamental group is trivial.

We begin with some definitions.

Definition 1. Let E ⊂ Ĉ and let X be a connected Hausdorff space with basepoint x0.
A motion of E over X is a map φ : X × E → Ĉ satisfying

(i) φ(x0, z)= z for all z ∈ E , and

(ii) for all x ∈ X , the map φ(x, · ) : E → Ĉ is injective.

We say that X is the parameter space of the motion φ. We will assume that 0, 1,
and ∞ belong to E and that the motion φ is normalized, i.e., 0, 1, and ∞ are fixed
points of the map φ(x, · ) for every x in X .

Let E ⊂ Ê , φ : X × E → Ĉ and φ̂ : X × Ê → Ĉ be two motions. We say that φ̂
extends φ if φ̂(x, z)= φ(x, z) for all (x, z) ∈ X × E .

For any motion φ : X × E → Ĉ, x in X , and any quadruplet of distinct points
a, b, c, d of points in E , let φx(a, b, c, d) denote the cross-ratio of the values
φ(x, a), φ(x, b), φ(x, c) and φ(x, d). We will often write φ(x, z) as φx(z) for x
in X and z in E . So we have

φx(a, b, c, d)=
(φx(a)−φx(c))(φx(b)−φx(d))
(φx(a)−φx(d))(φx(b)−φx(c))

for each x in X .

It is obvious that condition (ii) in Definition 1 holds if and only if φx(a, b, c, d)
is a well-defined point in the thrice-punctured sphere Ĉ \ {0, 1,∞} for all x in X
and all quadruplets a, b, c, d of distinct points in E .

Let ρ be the Poincaré distance on Ĉ \ {0, 1,∞}. Sullivan and Thurston [12]
introduced the following definition.
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Definition 2. A quasiconformal motion is a motion φ : X × E → Ĉ of E over X
with the following additional property:

(iii) Given any x in X and any ϵ > 0, there exists a neighborhood Ux of x such
that for any quadruplet of distinct points a, b, c, d in E , we have

ρ
(
φy(a, b, c, d), φy′(a, b, c, d)

)
< ϵ for all y and y′ in Ux .

Definition 3. A continuous motion of Ĉ over X is a motion φ : X × Ĉ → Ĉ such
that the map φ is continuous.

Remark. If φ is a continuous motion of Ĉ, then each φx , x in X , is a map from Ĉ

to itself that fixes 0, 1, and ∞. Since φx is injective and continuous, it is a
homeomorphism of Ĉ onto itself, by invariance of domain.

Recall that a homeomorphism of Ĉ is called normalized if it fixes the points
0, 1, and ∞. We use M(C) to denote the open unit ball of the complex Banach
space L∞(C). Each µ in M(C) is the Beltrami coefficient of a unique normalized
quasiconformal homeomorphism wµ of Ĉ onto itself. The basepoint of M(C) is
the zero function.

We will need the following properties that were proved in [11].

Proposition 4. A motion φ : X × Ĉ → Ĉ is quasiconformal if and only if it satisfies:

(i) The map φx : Ĉ → Ĉ is quasiconformal for each x in X.

(ii) The map from X to M(C) that sends x to the Beltrami coefficient of φx for each
x in X is continuous.

Part (ii) means that the map x 7→ µx = (φx)z̄/(φx)z , x ∈ X , is continuous.

Proposition 5. Every quasiconformal motion of Ĉ is a continuous motion.

Definition 6. Assume that W is a connected complex manifold with basepoint x0.
A holomorphic motion of E over W is a motion φ : W × E → Ĉ of E over W such
that the map φ( · , z) : W → Ĉ is holomorphic for each z in E .

Definition 7. Let X be a connected Hausdorff space with a basepoint x0, and E be
a set in Ĉ (containing the points 0, 1, and ∞). A tame quasiconformal motion is a
motion φ : X × E → Ĉ of E over X with the following additional property:

(iii) Given any x in X , there exists a quasiconformal map w : Ĉ → Ĉ, a neighbor-
hood N (x), with basepoint x , and a quasiconformal motion ψ : N (x)×Ĉ → Ĉ

over N (x) such that φ(y, z)= ψ(y, w(z)) for all (y, z) ∈ N (x)× E .

The lemma below was proved in [7].

Lemma 8. A motion φ : X × E → Ĉ is a tame quasiconformal motion if and
only if given any x ∈ X , there exists a neighborhood N (x), and a continuous map
gx : N (x)→ M(C) such that φ(y, z)= wgx (y)(z) for all (y, z) ∈ N (x)× E.
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Definition 9. Let X and Y be connected Hausdorff spaces with basepoint, and f be
a continuous basepoint preserving map of X into Y . If φ is a motion of E over Y
its pullback by f is the motion

f ∗(φ)(x, z)= φ( f (x), z) for all (x, z) ∈ X × E

of E over X .

Remark. If the motion φ is continuous, or tame quasiconformal, f ∗(φ) has the
same property. If X and Y are complex manifolds, f holomorphic and φ is a
holomorphic motion, then so is f ∗(φ).

Proposition 10. If φ : X × E → Ĉ is a holomorphic motion where X is a connected
complex Banach manifold with a basepoint x0. Then φ is a tame quasiconformal
motion.

See Proposition 6 in [7].

Remark. In [7] it was shown that holomorphic motions ⇒ tame quasiconformal
motions ⇒ quasiconformal motions ⇒ continuous motions.

Definition 11. Let φ : X × E → Ĉ be a tame quasiconformal motion. Let G be a
group of Möbius transformations, and suppose that E is invariant under G (which
means, g(E)= E for all g in G). We say that φ is G-equivariant if and only if for
each g in G, and x in X , there is a Möbius transformation θx(g) such that

(2-1) φ(x, g(z))= (θx(g))(φ(x, z)) for all z ∈ E .

Definition 12. Let G be a subgroup of PSL(2,C), and suppose that E is invariant
under G. An isomorphism η : G → PSL(2,C) is said to be induced by an injection
f : E → Ĉ if f (g(z))= η(g)( f (z)) for all g ∈ G and for z ∈ E . An isomorphism
induced by a quasiconformal self-map of Ĉ is called a quasiconformal deformation
of G.

Definition 13. Let X be a connected Hausdorff space and let G be a subgroup of
PSL(2,C). A continuous family {θx} of isomorphisms of G is such that:

(i) For each x ∈ X , θx : G → PSL(2,C) is an isomorphism.

(ii) The map x 7→ θx(g) is continuous for each g ∈ G, and for each x ∈ X .

We will need the following result; see Corollaries 1 and 2 of [7].

Theorem 14. Let Ṽ be a simply connected Hausdorff space with a basepoint, and
let φ : Ṽ × E → Ĉ be a G-equivariant tame quasiconformal motion. Then, there
exists a G-equivariant quasiconformal motion φ̃ : Ṽ × Ĉ → Ĉ such that φ̃ extends φ.

This means the following:

(i) For each x in Ṽ , the map φ̃x : Ĉ → Ĉ is a quasiconformal map; let its Beltrami
coefficient be µx .
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(ii) The map x 7→ µx is continuous for x in Ṽ .

(iii) φ̃(x, z)= φ(x, z) for all (x, z) ∈ Ṽ × E .

(iv) φ̃x ◦ g ◦ φ̃−1
x = θx(g) for each g in G.

We also need the following result; see Remark 4 in [7].

Lemma 15. Assume that φ : X × E → Ĉ is a tame quasiconformal motion where
X is a connected Hausdorff space with a basepoint x0. For each z in E , the map
φ( · , z) : X → Ĉ is continuous.

2A. Teichmüller space of a closed set E. Two normalized quasiconformal self-
mappings f and g of Ĉ are said to be E-equivalent if and only if f −1

◦g is isotopic
to the identity rel E . The Teichmüller space T (E) is the set of all E-equivalence
classes of normalized quasiconformal self-mappings of Ĉ. The basepoint of T (E)
is the E-equivalence class of the identity map.

Recall that M(C) denotes the open unit ball of the complex Banach space L∞(C).
Each µ in M(C) is the Beltrami coefficient of a unique normalized quasiconformal
homeomorphism wµ of Ĉ onto itself. The basepoint of M(C) is the zero function.

We can define the quotient map PE : M(C)→ T (E) by setting PE(µ) equal to
the E-equivalence class of wµ, written as [wµ]E . Clearly, PE maps the basepoint
of M(C) to the basepoint of T (E).

G. Lieb [8] proved that T (E) is a complex Banach manifold such that the
projection map PE from M(C) to T (E) is a holomorphic split submersion. (The
result was also proved in [3].)

2B. Changing the basepoint. Let w be a normalized quasiconformal self-mapping
of Ĉ, and let Ê = w(E). By definition, the allowable map g from T (Ê) to T (E)
maps the Ê-equivalence class of f (written as [ f ]Ê ) to the E-equivalence class of
f ◦w (written as [ f ◦w]E ) for every normalized quasiconformal self-mapping f
of Ĉ.

Proposition 16. The allowable map g : T (Ê)→ T (E) is biholomorphic. If µ is
the Beltrami coefficient of w, then g maps the basepoint of T (Ê) to the point PE(µ)

in T (E).

See Proposition 7.20 in [3] or Proposition 6.7 in [9].

2C. Universal holomorphic motion of E. The universal holomorphic motion 9E

of E over T (E) is defined as

9E(PE(µ), z)= wµ(z) for µ ∈ M(C) and z ∈ E .

The definition of PE in Section 2A guarantees that 9E is well defined. It is a
holomorphic motion since PE is a holomorphic split submersion and µ 7→wµ(z) is
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a holomorphic map from M(C) to Ĉ for every fixed z in Ĉ (by Theorem 11 in [1]).
This holomorphic section is “universal” in the following sense.

Theorem 17. Let φ : W̃ × E → Ĉ be a holomorphic motion where W̃ is a simply
connected complex Banach manifold with a basepoint x0, there exists a unique
basepoint preserving holomorphic map f : W̃ → T (E) such that f ∗(9E)= φ.

For a proof, see Section 14 in [9].
By Proposition 10, every holomorphic motion is also a tame quasiconformal

motion. Hence, 9E : T (E)× E → Ĉ is also a tame quasiconformal motion. In [7],
it was proved that this is the universal tame quasiconformal motion of the closed
set E over a simply connected Hausdorff space. Here is the precise statement:

Theorem 18. Let φ : X̃ × E → Ĉ be a tame quasiconformal motion where X̃ is
a simply connected Hausdorff space with a basepoint x0. There exists a unique
basepoint preserving continuous map f : X̃ → T (E) such that f ∗(9E)= φ.

See Theorem II in [7].

2D. Douady–Earle section. Below we present some important facts.

Proposition 19. There is a continuous basepoint preserving map s from T (E)
to M(C) such that PE ◦ s is the identity map on T (E).

See [3] or [5] for a proof. It immediately implies that:

Corollary 20. The Teichmüller space T (E) is contractible.

Definition 21. The map s from T (E) to M(C) is called the Douady–Earle section
of PE for the Teichmüller space T (E).

2E. Monodromy associated with a tame quasiconformal motion. We now discuss
the concept of monodromy of a tame quasiconformal motion. Let φ : X × E → Ĉ

be a tame quasiconformal motion, where X is a connected Hausdorff space with
a basepoint x0. Let π : X̃ → X be a universal covering, with the group of deck
transformations 0. We choose a point x̃0 in X̃ such that π(x̃0)= x0. Let π1(X, x0)

denote the fundamental group of X with basepoint x0.
Let 8 = π∗(φ). Then, 8 : X̃ × E → Ĉ is a tame quasiconformal motion

of E over X̃ with x̃0 as the basepoint. By Theorem 18, there exists a unique
basepoint preserving continuous map f : X̃ → T (E) such that f ∗(9E)= φ. Then
by Proposition 19, there is a continuous basepoint preserving map f̃ = s ◦ f from
X̃ → M(C) such that

8(x, z)= w f̃ (x)(z) for each x ∈ X̃ and each z ∈ E .

For each z ∈ E and each γ ∈ 0, we have

w f̃ ◦γ (x̃0)(z)=8(γ (x̃0), z)= φ(π ◦ γ (x̃0), z)= φ(x0, z)= z.
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Therefore, w f̃ ◦γ (x̃0) keeps every point of E fixed. Since s may not be unique, f̃ is
not necessarily unique. So we need the next lemma.

Lemma 22. The homotopy class of w f̃ ◦γ (x̃0) relative to E does not depend on the
choice of the continuous map f̃ .

Proof. Let f̃1, f̃2 : X̃ → M(C) be basepoint preserving continuous maps which are
obtained from the given tame quasiconformal motion φ : X × E → Ĉ. For each
γ ∈ 0, take a path cγ : [0, 1] → X̃ which connects x̃0 and γ (x̃0) and write

H(z, t) := w f̃1◦γ (x̃0) ◦ {w f̃1◦cγ (t)}−1
◦w f̃2◦cγ (t)(z)

for (z, t) ∈ Ĉ ×[0, 1]. Then, we see that H( · , · ) gives a homotopy from w f̃1◦γ (x̃0)

to w f̃2◦γ (x̃0) relative to E . Hence, we conclude that w f̃1◦γ (x̃0) and w f̃2◦γ (x̃0) belong
to the same homotopy class relative to E , as claimed. □

We now assume that E ′ is a finite set containing n points where n ≥ 4; as usual,
0, 1, and ∞ are in E ′. Let φ : X × E ′

→ Ĉ be a tame quasiconformal motion.
The map w f̃ ◦γ (x̃0) is quasiconformal self-map of the hyperbolic Riemann surface
X ′

E := Ĉ \ E ′. Therefore, it represents a mapping class of X ′

E , and by Lemma 22,
we have a homomorphism ρφ : π1(X, x0)→ Mod(0, n) given by

ρφ(c)= [w f̃ ◦γ (x̃0)],

where Mod(0, n) is the mapping class group of the n-times punctured sphere, γ ∈0

is the element corresponding to c ∈ π1(X, x0), and [w] denotes the mapping class
group of X ′

E for w.

Definition 23. Suppose φ : X × E → Ĉ is a tame quasiconformal motion where X
is a connected Hausdorff space. We say φ has trivial monodromy if for every finite
subset {0, 1,∞} ⊂ E ′

⊆ E , the homomorphism ρφ for the tame quasiconformal
motion φ : X × E ′

→ Ĉ is trivial, that is, it maps every element of π1(X, x0) to the
identity of Mod(0, n).

We now state the two main theorems of this paper.

Theorem A. Let φ : V × E → Ĉ be a tame quasiconformal motion where V is a
path-connected Hausdorff space. Then the following are equivalent.

(i) There exists a continuous motion φ̃ : V × Ĉ → Ĉ such that φ̃ extends φ.

(ii) There exists a quasiconformal motion φ̂ : V × Ĉ → Ĉ such that φ̂ extends φ.

(iii) There exists a unique basepoint preserving continuous map F : V → T (E)
such that F∗(9E)= φ.

(iv) The monodromy of φ is trivial.

Remark. For (ii) ⇔ (iii), X does not have to be path-connected; a connected
Hausdorff space with basepoint is sufficient.



112 YUNPING JIANG, SUDEB MITRA AND ZHE WANG

Theorem B. Let G be a subgroup of PSL(2,C), and suppose E is a closed set
in Ĉ which is invariant under G. Let φ : X × E → Ĉ be a G-equivariant tame
quasiconformal motion where X is a connected Hausdorff space. Then

(i) {θx} is a continuous family of isomorphisms of G, and

(ii) θx is a quasiconformal deformation of G for every x in X.

3. Three lemmas

In what follows, V is a path-connected Hausdorff space with a basepoint x0. Let
H(Ĉ) be the group of homeomorphisms of Ĉ onto itself, with the topology of
uniform convergence in the spherical metric.

Lemma 24. Let h : V → H(Ĉ) be a continuous map such that h(x)(z)= z for all
x in V and for all z in E. If h(x0) is isotopic to the identity rel E for some fixed x0

in V , then h(x) is isotopic to the identity rel E for all x in V .

See Lemma 12.1 in [9].

Lemma 25. Let s : T (E)→ M(C) be the Douady–Earle section, and let ψ : Ĉ → Ĉ

be any homeomorphism. There is at most one point t in T (E) such that ψ is isotopic
to ws(t) rel E.

Proof. If ws(t) and ws(t ′) are both isotopic to ψ rel E , then they are E-equivalent,
and hence t = PE(s(t))= PE(s(t ′))= t ′. □

Lemma 26. If the continuous maps f and g from V into T (E) satisfy

(1) 9E( f (x), z)=9E(g(x), z) for all x in V , and for all z in E , and

(2) f (p)= g(p) for some p in V ,

then f (x)= g(x) for all x in V .

See Lemma 12.2 in [9].

4. Proof of Theorem A

We first prove the following theorem. The proof is similar to that given in [10]
(which was for holomorphic motions). We include the details for the reader’s
convenience, and also to make our paper self-contained.

Theorem 27. Let V be a path-connected Hausdorff space with a basepoint x0, and
let φ : V × E → Ĉ be a tame quasiconformal motion. If there exists a continuous
motion φ̃ : V × Ĉ → Ĉ such that φ̃ extends φ, then there exists a unique basepoint
preserving continuous map F : V → T (E) such that F∗(9E)= φ.
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Proof. Let S be the set of points x in V with the following property: there exists a
neighborhood N of x and a continuous map h : N → T (E) such that ws(h(x ′)) is
isotopic to φ̃x ′ rel E for all x ′ in N . We claim that S = V .

It is clear that S is an open set. We first show that S is nonempty; in fact, x0 ∈ S.
Choose a simply connected neighborhood N of x0 in V , and give N the basepoint x0.
By Theorem 18, there exists a basepoint preserving continuous map h : N → T (E)
such that h∗(9E)= φ on N × E . Define

H(x)= (ws(h(x)))−1
◦ φ̃x for each x in N .

Clearly, H(x0) is the identity. Also, for all x in N , and for all z in E , we have

φ̃x(z)= φ̃(x, z)= φ(x, z)=9E(h(x), z)= ws(h(x))(z).

Hence, for all z in E , H(x)(z) = z. Since H(x) is continuous in x , it follows
from Lemma 24 that H(x) is isotopic to the identity rel E . Hence, for each x in N ,
ws(h(x)) is isotopic to φ̃x rel E . This shows that x0 belongs to S.

Now we shall prove that S is closed. Let y be a limit point of S; choose a simply
connected neighborhood B of y. Since y is a limit point of S, B contains a point p
in S. Choose p to be the basepoint of B. Let

Ê = φp(E)= {φ(p, z) : z ∈ E}

and define φ̂ : B × Ê → Ĉ as

φ̂(x, φp(z))= φ(x, z), (x, z) ∈ B × E .

It is easy to see that φ̂ : B × Ê → Ĉ is a tame quasiconformal motion of Ê over B
with basepoint p. By Theorem 18, there exists a basepoint preserving continuous
map f : B → T (Ê) such that f ∗(9Ê)= φ̂ on B × Ê (where 9Ê : T (Ê)× Ê → Ĉ

is the universal tame quasiconformal motion of Ê).
This means

(4-1) 9Ê( f (x), φp(z))= φ̂(x, φp(z))

for all x in B and for all z in E .
Since p ∈ S, there is a point t in T (E) such that φ̃p is isotopic to ws(t) rel E .

Thus, ws(t) maps E onto Ê ; so it induces a biholomorphic map g : T (Ê)→ T (E)
as in Section 2B. Define ĥ : B → T (E) by ĥ = g ◦ f . We will show that ws(ĥ(x)) is
isotopic to φ̃x rel E for all x in B.

Note that f maps p to the basepoint of T (Ê) and by Proposition 16, g maps f (p)
to the point PE(s(t)) in T (E). So, ĥ(p)= PE(s(t)) and since ĥ(p)= PE

(
s(ĥ(p))

)
,

we have PE(s(t)) = PE
(
s(ĥ(p))

)
. That means, ws(t) is isotopic to ws(ĥ(p)) rel E ;
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so φ̃p is isotopic to ws(ĥ(p)) rel E . Let

(4-2) Ĥ(x)= (ws(ĥ(x)))−1
◦ φ̃x for all x in B.

By the above discussion, Ĥ(p) is isotopic to the identity rel E .
We have the standard projection map

PÊ : M(C)→ T (Ê),

and ŝ : T (Ê)→ M(C) is a continuous basepoint preserving map such that PÊ ◦ ŝ is
the identity map on T (Ê). Since φ̃p is isotopic to ws(t) rel E , and φ̃p(z)= φp(z)
for all z in E , it follows that

(4-3) φp(z)= ws(t)(z)

for all z in E . Furthermore, for all x ∈ B, and z ∈ E , we have

φ̃x(z)= φx(z)= φ̂x(φp(z))=9Ê( f (x), φp(z))
by (4-1). Also,

9Ê( f (x), φp(z))= wŝ( f (x))(φp(z))= wŝ( f (x))(ws(t)(z))

by (4-3). We conclude that

(4-4) φ̃x(z)= wŝ( f (x))(ws(t)(z))

for all x in B, and for all z in E .
For all x in B, we have ĥ(x)=g( f (x)). Also, f (x)= PÊ

(
ŝ( f (x))

)
=[wŝ( f (x))

]Ê
and by Section 2B, we have

g : [wŝ( f (x))
]Ê 7→ [wŝ( f (x))

◦ws(t)
]E .

Therefore,
ĥ(x)= [wŝ( f (x))

◦ws(t)
]E .

We also have ĥ(x) = PE
(
s(ĥ(x))

)
= [ws(ĥ(x))

]E for all x in B. Hence, for all x
in B, and for all z in E , we have

(4-5) wŝ( f (x))(ws(t)(z))= ws(ĥ(x))(z).

Therefore, by (4-4) and (4-5), we get φ̃x(z)=ws(ĥ(x))(z) for all x in B and for all z
in E . Hence, by (4-2), Ĥ(x)(z)= z for all x in B, and for all z in E . Since Ĥ is
continuous in x , it follows from Lemma 24 that Ĥ(x) is isotopic to the identity
rel E for all x in B. Therefore, ws(ĥ(x)) is isotopic to φ̃x rel E for all x in B. Hence
B is contained in S. In particular, y ∈ S, so S is closed. As S is also open and
nonempty, S = V .

We now define a continuous map F : V → T (E) as follows: Given any x in V ,
choose a neighborhood N of x and a continuous map h : N → T (E) such that
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ws(h(x ′)) is isotopic to φ̃x ′ rel E for all x ′ in N . Set F = h in N . By Lemma 25,
F is well defined on all of V . It is obviously continuous, and ws(F(x)) is isotopic to
φ̂x rel E for all x in V .

Finally, for all x in V , and for all z in E , we have

F∗(9E)(x, z)=9E(F(x), z)=9E
(
PE

(
s(F(x))

)
, z

)
= ws(F(x))(z)

and φ(x, z)= φ̃(x, z)= φ̃x(z)= ws(F(x))(z) (since ws(F(x)) is isotopic to φ̃x rel E
for all x in V ). Therefore, F∗(9E)(x, z)= φ(x, z) for all x in V and for all z in E .

The uniqueness of F follows from Lemma 26. This completes the proof. □

Proof of Theorem A. Theorem 27 proved the direction (i)⇒ (iii).
For (iii)⇒ (ii), define F̃ : V → M(C) by F̃ = s ◦ F . Then, F̃ : V → M(C) is a

basepoint preserving continuous map. Define φ̃ : V × Ĉ → Ĉ by

φ̃(x, z)= w F̃(x)(z) for all x in V and for all z in Ĉ.

By Proposition 4, φ̃ : V × Ĉ → Ĉ is a quasiconformal motion, and for all z in E ,

φ(x, z)= F∗(9E)(x, z)=9E(F(x), z)=9E
(
PE

(
s(F(x))

)
, z

)
= ws(F(x))(z)= w F̃(x)(z)= φ̃(x, z).

Hence φ̃ extends φ.
The direction (ii)⇒ (i) is obvious by Proposition 5.
Finally, we prove (i)⇔ (iv).
Let π : Ṽ → V be a universal covering with the group 0 of deck transformations,

so that V = Ṽ/0 and π(x̃0)= x0.
Suppose φ can be extended to a continuous motion φ̃ of Ĉ over V . Then, by

Theorem 27, there exists a continuous map f : V → M(C) such that

φ̃(x, z)= w f (x)(z) for all (x, z) ∈ V × Ĉ.

Let f̃ = f ◦π . Then, for any c ∈ π1(X, x0) with corresponding γ ∈ 0, we have

ρφ(c)= [w f̃ ◦γ (x̃0)] = [w f ◦π◦γ (x̃0)] = [w f (x0)] = [I d].

This shows that the monodromy ρφ is trivial.
Let φ : V × E → Ĉ be a tame quasiconformal motion with trivial monodromy.

Let 8= π∗(φ) be the tame quasiconformal motion of E over Ṽ . By Theorem 18,
there exists a unique basepoint preserving continuous map f̃ : Ṽ → T (E) such that
f̃ ∗(9E)=8. For any element γ ∈ 0, we also have f̃ ◦ γ : Ṽ → T (E). Note that

9E( f̃ ◦ γ (x), z)= ( f̃ ◦ γ )∗(9E)(x, z)

=8(γ (x), z)

= φ(π ◦ γ (x), z)

= φ(π(x), z)=8(x, z)= ( f̃ )∗(9E)(x, z)=9E( f̃ (x), z).
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By the triviality of the monodromy, we have f̃ ◦γ (x0)= f̃ (x0)= [I d] for all γ ∈0.
Lemma 26 implies that f̃ ◦γ = f̃ for all γ ∈0. Thus, f̃ defines a unique basepoint
preserving continuous map f : V → T (E) such that φ= f ∗(9E). Thus there exists
a continuous motion of Ĉ over V that extends φ. □

5. Proof of Theorem B

Part (i). The proof is similar to the one given in [4]. We include the arguments
for reader’s convenience. Since E has at least three points, for each x in X and g
in G, the Möbius transformation θx(g) is completely determined by (2-1). It easily
follows that θx is a homomorphism for each x in X . Also, for x in X , θx is injective.
For θx(g1)= θx(g2), we have φx(g1(z))= φx(g2(z)) which implies g1(z)= g2(z)
for all z in E (by injectivity). We conclude that g1 = g2. Hence, for each x in X ,
the map θx is an isomorphism.

Choose three distinct points z1, z2, z3 in E . For x in X , let hx be the unique
Möbius transformation such that

hx(zi )= φx(zi ) for all i = 1, 2, 3,

θx(g)(hx(zi ))= φx(g(zi )) for all i = 1, 2, 3.

By Lemma 15, for each i , the right-hand sides of the above equations depend
continuously on x . Therefore, x 7→ hx and x 7→ θx(g) ◦ hx are continuous maps.
Hence so is x 7→ θx(g) for each g in G.

Part (ii). Let � be the set of all x in X with the following property: for each x in �,
there exists a neighborhood N (x) such that θt is a quasiconformal deformation
of G for every t in N (x).

Clearly, � is open. Also, � is nonempty, for the basepoint x0 is in �. To see
this, choose a simply connected neighborhood V of x0 and use Theorem 14.

We will show that � is closed. Let k be a limit point of �. Choose a simply
connected neighborhood B of k. Then, B contains a point p in �. So, θp is
a quasiconformal deformation of G. Choose p to be the basepoint of B. Let
θp(G)= Ĝ and φp(E)= Ê .

Define φ̂ : B × Ê → Ĉ as

φ̂x(φp(z))= φx(z) for x ∈ B and z ∈ E .

Since φ : X × E → Ĉ is a tame quasiconformal motion, for p in B, there
exists a neighborhood N (p) and a continuous map f p : N (p)→ M(C) such that
φx(z)=w f p(x)(z) for x in N (p) and z in E (see Lemma 8). Set w=w f p(p). Then,
w : Ĉ → Ĉ is a quasiconformal map and φp(z)= w(z) for all z in E .

Now, assume t ∈ B. There exists a neighborhood N (t) and a continuous map
ft : N (t)→ M(C) such that φx(z)=w ft (x)(z) for x in N (t) and z in E . This means
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there exists a quasiconformal motion w ft : N (x)× Ĉ → Ĉ over N (x) such that

φ̂x(φp(z))= φx(z)= w ft (x)(z)

for all x in N (t) and z in E .
Let φp(z)= ẑ ∈ Ê . Then, we have

φ̂x(ẑ)= w ft (x)(w−1(ẑ)) for all x ∈ N (t).

It follows that φ̂ : B × Ê → Ĉ is a tame quasiconformal motion with basepoint p.
Next, note that Ê is Ĝ-invariant. In fact, for ĝ in Ĝ, we have

ĝ(Ê)= θp(g)(φp(E))= φp(g(E))= φp(E)= Ê .

Recall that φp(z)= ẑ and θp(g)= ĝ. By (2-1), we have

φ̂x
(
θp(g)(φp(z))

)
= φ̂x

(
φp(g(z))

)
= φx(g(z))= θx(g)(φx(z))

=
(
θx(θ

−1
p (ĝ))

)
(φx(z))

=
(
θx(θ

−1
p (ĝ))

)(
φ̂x(φp(z))

)
=

(
θx(θ

−1
p (ĝ))

)
(φ̂x(ẑ)).

It follows that φ̂ : B × Ê → Ĉ is a tame quasiconformal motion with the property

φ̂x(ĝ(ẑ))=
(
θx(θ

−1
p (ĝ))

)
(φ̂(x, ẑ)) for all x in B and ẑ in Ê .

Therefore, by Theorem 14, there exists a quasiconformal motion ˜̂φ : B × Ĉ → Ĉ

such that ˜̂φ extends φ̂, and for each x in B, ˜̂φx : Ĉ → Ĉ is a quasiconformal map.
We also have

˜̂φ(ĝ(z))=
(
θx(θ

−1
p (ĝ))

)
( ˜̂φ(z)) for all x in B and for all z in Ĉ.

This implies that
˜̂φ ◦ ĝ ◦ ˜̂φ

−1
= θx ◦ θ−1

p (ĝ).

Using θp(g)= ĝ, it follows that

˜̂φ ◦ θp(g) ◦ ˜̂φ
−1

= θx(g).

Recall that θp is a quasiconformal deformation of G. Hence, there exists a
quasiconformal map w : Ĉ → Ĉ such that w ◦ g ◦ w−1

= θp(g). By the above
equation, we get

˜̂φ ◦w ◦ g ◦w−1
◦ ˜̂φ

−1
= θx(g) for x ∈ B.

Let f̃x = ˜̂φ ◦w; so, for each x in B, f̃x : Ĉ → Ĉ is a quasiconformal map and

f̃x ◦ g ◦ f̃ −1
x = θx(g) for each x ∈ B.
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Hence, k is in �, and therefore, � is closed. Since X is connected, it follows that
�= X . □

Below is a direct and short proof of part (ii) of Theorem B. We thank one of the
referees for bringing this to our attention.

An alternative proof of Theorem B(ii). Let φ̃ : X̃×E → Ĉ be the lift of φ : X×E → Ĉ

to the universal covering X̃ of X . Namely, φ̃ is defined as

φ̃(x̃, z)= φ(π(x̃), z) (x̃, z) ∈ X̃ × E,

where π : X̃ → X is the canonical projection. It is a tame quasiconformal motion
of E over X̃ because tame quasiconformal motion is a local property. Moreover,
we have

φ̃(x̃, g(z))=φ(π(x̃), g(z))=θπ(x̃)(g)(φ(π(x̃), z))=θπ(x̃)(g)(φ̃(x̃, z)) for g ∈G.

Hence, it is G-equivariant with isomorphisms θπ(x̃) : G → PSL(2,C) where
x̃ ∈ X̃ . Since X̃ is simply connected, it follows from Theorem 14 that θπ(x̃)(G) is a
quasiconformal deformation of G and so is θx(G). □
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