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Let (V, 0) be an isolated hypersurface singularity defined by the holomorphic
function f : (Cn+1, 0) → (C, 0). A local k-th (0 ≤ k ≤ n + 1) Hessian algebra
Hk(V ) of isolated hypersurface singularity (V, 0) is a finite-dimensional
C-algebra and it depends only on the isomorphism class of the germ (V, 0).
It is a natural question to ask for a necessary and sufficient condition for a
complex analytic isolated hypersurface singularity to be quasihomogeneous
in terms of its local k-th Hessian algebra Hk( f ). Xu and Yau proved that
(V, 0) admits a quasihomogeneous structure if and only if H0( f ) is isomor-
phic to a finite-dimensional nonnegatively graded algebra in the early 1980s.
In this paper, on the one hand, we generalize Xu and Yau’s result to Hn+1( f ).
On the other hand, a new series of finite-dimensional Lie algebras Lk(V )

(resp. Lk(V )) was defined to be the Lie algebra of derivations of the k-th
(0 ≤ k ≤ n+1) Hessian algebra Hk(V ) (resp. Ak(V ) :=On+1/( f, mk J f )) and
is finite-dimensional. We prove that (V, 0) is quasihomogeneous singularity if
Ln+1(V ) (resp. Lk(V ) := Der(Ak(V ))) satisfies certain conditions. Moreover,
we investigate whether the Lie algebras Lk(V ) (resp. Lk(V )) are solvable.

1. Introduction

A polynomial f (z0, . . . , zn) is weighted homogeneous of type (q0, . . . , qn; d),
where q0, . . . , qn and d are fixed positive integers, if it can be expressed as a linear
combination of monomials zi0

0 zi1
1 · · · zin

n for which q0i0 + q1i1 + · · · + qnin = d. In
this case, we say that zi has weight qi and f has weight d . Recall that an isolated
hypersurface singularity (V, 0) = {(z0, . . . , zn) : f (z0, . . . , zn) = 0 ⊂ Cn+1

} is
quasihomogeneous if f is in the Jacobian ideal J f , i.e., f ∈ J f =

(
∂ f
∂z0

, . . . ,
∂ f
∂zn

)
.

By a theorem of Saito [1971], if f is quasihomogeneous with isolated singularity
at 0, then after a biholomorphic change of coordinates, f becomes a weighted
homogeneous polynomial.
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Let (V, 0) be an isolated hypersurface singularity defined by the holomorphic
function f : (Cn+1, 0) → (C, 0). Let On+1 denote the C-algebra of germs of
analytic functions defined at the origin of Cn+1. Recall that the moduli algebra is
A(V ) :=On+1/

(
f, ∂ f

∂z0
, . . . ,

∂ f
∂zn

)
. Mather and Yau [1982] proved that two germs of

complex analytic hypersurfaces of the same dimension with isolated singularities
are contact equivalent if and only if their moduli algebras are isomorphic. Therefore
the moduli algebra A(V ) is important in the study of the complex structures of
(V, 0). In 1983,Yau introduced the Yau algebra L(V ) which was defined as the Lie
algebra of derivations of the moduli algebra A(V ), i.e., L(V ) = Der(A(V ), A(V ))

[Seeley and Yau 1990]. It plays an important role in singularity theory [Chen 1995].
In a beautiful paper, Elashvili and Khimshiashvili [2006] first used it to characterize
ADE singularities. It is known that L(V ) is a finite-dimensional Lie algebra and
its dimension λ(V ) is called Yau number [Khimshiashvili 2006; Yu 1996]. Yau,
Zuo and their collaborators have been systematically studying various Lie algebras
of isolated singularities [Benson and Yau 1990; Chen et al. 1995; 2019; 2020a;
2020b; Hussain et al. 2018; 2020; 2021b; Yau and Zuo 2016a; 2016b]. In this
article, we study two kinds of new derivation Lie algebra arising from the isolated
hypersurface singularity (V, 0) as follows.

Hussain, Yau and Zuo [Hussain et al. 2020; 2021b], introduced the new series of
k-th Yau algebras Lk(V ) which was defined to be the Lie algebra of derivations of
the moduli algebra Ak(V ) =On+1/( f, mk J f ), k ≥ 0, where m is the maximal ideal
of On , i.e., Lk(V ) := Der(Ak(V ), Ak(V )). Its dimension was denoted as λk(V ).
This series of integers λk(V ) are new numerical analytic invariants of singularities.
It is natural to call it the k-th Yau number. In particular, when k =0, these are exactly
the previous Yau algebra and Yau number, i.e., L(V ) = L0(V ), λ0(V ) = λ(V ).

Let Hess( f ) be the Hessian matrix ( fi j ) of the second order partial derivatives
of f , and h( f ) (the Hessian of f ) be the determinant of Hess( f ). More generally,
for each k satisfying 0 ≤ k ≤ n +1 we denote by hk( f ) the ideal in On+1 generated
by all k×k-minors in the matrix Hess( f ). In particular, the ideal hn+1( f ) = (h( f ))

is a principal ideal. For each k as above, consider the graded k-th Hessian algebra
of the polynomial f defined by

Hk( f ) = On+1/(( f ) + J f + hk( f )).

In particular, H0( f ) is exactly the well-known moduli algebra A(V ). It is easy
to check that the isomorphism class of the local k-th Hessian algebra Hk( f ) is a
contact invariant of f , i.e., Hk( f ) depends only on the isomorphism class of the
germ (V, 0) [Dimca and Sticlaru 2015].

Hussain, Yau and Zuo [Hussain et al. 2021a] defined a series of new derivation
Lie algebras

Lk(V ) := Der(Hk( f ), Hk( f )), 0 ≤ k ≤ n + 1.
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Since H0( f ) = A(V ), so Lk(V ) is also a generalization of Yau algebra L(V )

and L0(V ) = L(V ). Lk(V ) is a finite-dimensional Lie algebra and the dimension
of Lk(V ) is denoted by λk(V ) which is new numerical analytic invariant of isolated
hypersurface singularities. It is natural to ask how to use Hk( f ) (resp. Ln+1(V ))
to characterize the quasihomogeneity of an isolated hypersurface singularity. In
this paper, we shall answer this question partially and prove that (V, 0) admits a
quasihomogeneous structure if and only if Hn+1( f ) (resp. Ln+1(V )) is isomorphic
to a finite-dimensional nonnegatively graded algebra (resp. nonnegatively graded
Lie algebra). We propose the following two conjectures.

Conjecture 1.1. Let (V, 0) = {(z0, . . . , zn) ∈ Cn+1
: f (z0, . . . , zn) = 0} be an

isolated hypersurface singularity. Then the following are equivalent:

(1) (V, 0) is quasihomogeneous.

(2) There exists a k, 0 ≤ k ≤ n + 1, such that the k-th Hessian algebra Hk( f ) is
isomorphic to a finite-dimensional graded commutative local algebra

⊕
i≥0 Ai

with A0 = C.

(3) For all k, 0 ≤ k ≤ n + 1, the k-th Hessian algebra Hk( f ) is isomorphic to a
finite-dimensional graded commutative local algebra

⊕
i≥0 Ai with A0 = C.

Conjecture 1.2. Let (V, 0) = {(z0, . . . , zn) ∈ Cn+1
: f (z0, . . . , zn) = 0} be an

isolated hypersurface singularity with n ≥ 1. Then (V, 0) is a quasihomogeneous
singularity if there exists k, 0 ≤ k ≤ n + 1, such that the following conditions
are satisfied:

(1) Lk(V ) (resp. Lk(V )) is isomorphic to a nonnegatively graded Lie algebra⊕ℓ
i=0(Lk(V ))i without center.

(2) There exists E ∈ (Lk(V ))0 (resp. (Lk(V ))0) such that [E, Di ] = i(Di ) for any
Di ∈ (Lk(V ))i .

(3) For any element α ∈ m − m2, where m is the maximal ideal of Hk(V ) (resp.
Ak(V )), αE is not in (Lk(V ))0 (resp. (Lk(V ))0).

Remark 1.1. For Conjecture 1.1, the implication (3) ⇒ (2) is obvious. Meanwhile,
(1) ⇒ (2) and (1) ⇒ (3) are immediate corollaries of the well-known theorem of
Saito [1971]. Thus the key point to prove Conjecture 1.1 is the implication (2) ⇒ (1)
(see Theorem A). Conjectures 1.1 and 1.2 are verified in [Xu and Yau 1996] when
k = 0. One of our main goals in this paper is to verify these two conjectures for the
case of k = n + 1. We obtain the following two main results.

Theorem A. Let (V, 0) = {(z0, . . . , zn) ∈ Cn+1
: f (z0, . . . , zn) = 0} be an iso-

lated hypersurface singularity. Then (V, 0) is quasihomogeneous if and only if its
(n + 1)-th Hessian algebra Hn+1( f ) is isomorphic to a finite-dimensional graded
commutative local algebra

⊕
i≥0 Ai with A0 = C.
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Theorem B. Let (V, 0) = {(z0, . . . , zn) ∈ Cn+1
: f (z0, . . . , zn) = 0} be an isolated

hypersurface singularity with n ≥ 1. Then (V, 0) is a quasihomogeneous singularity
if the following conditions are satisfied:

(1) Ln+1(V ) is isomorphic to a nonnegatively graded Lie algebra
⊕k

i=0 L i without
center.

(2) There exists E ∈ L0 such that [E, Di ] = i Di for any Di ∈ L i .

(3) For any element α ∈ m − m2 where m is the maximal ideal of Hn+1( f ), αE is
not in L0 (For brevity, we use L i to denote (Ln+1(V ))i ).

Remark 1.2. We can only prove Conjectures 1.1 and 1.2 for k = n +1. The reason
is that the proof of Theorem B depends on Theorem A. In our proof of Theorem A,
we use a beautiful result of Saito [1974, Corollary 3.8], which cannot be generalized
to general k. As for Lk(V ), we can only verify the conjectures when k is sufficiently
large (see Theorem C), k = 1 is still a open problem.

Theorem C. Let (V, 0) be an isolated hypersurface singularity defined by f with
multiplicity of at least three. Then (V, 0) is quasihomogeneous if there exists k0 ∈ N

such that for all k ≥ k0:

(1) Lk(V ) ∼=
⊕ j

i=0 L i which is nonnegatively graded and without center.

(2) There exists E ∈ L0 such that [E, Di ] = i Di for all Di ∈ L i .

(3) For any element α ∈ m − m2 where m is the maximal ideal of A(V ), αE is
not in L0.

In [Yau 1991], the Lie algebra L0(V ) = L0(V ) was shown to be solvable. Thus a
necessary condition for a commutative local Artinian algebra to be a moduli algebra
is that its algebra of derivations is a solvable Lie algebra. Naturally one expects
that Lk(V ) and Lk(V ) are also solvable. We prove that Lk(V ) (k ≥ 2) is indeed
solvable for any dimension n, and k = 1 is solvable for some special cases. For
the sake of convenience to the readers, we abuse the notations of x and z. The
subscript of x we shall use in the following theorem begins with 1 instead of 0
which is slightly different with the above two main theorems. We do this in order
to be consistent with the symbols in [Yau 1983; 1986; 1991], so that the reader can
easily refer to them.

Theorem D. Let f be a homogeneous isolated singularity in n variables x1, . . . , xn

of degree d ≥ 4. Then Lk(V ) is solvable for k ≥ 2 or k = 1, n = 4.

Remark 1.3. In Theorem D, the condition d ≥ 4 cannot be omitted. In fact, there
is a counterexample when d = 3.

Let f = x2 y + xy2, then the A1(V ) is O2 module the following relations:

x2 y + xy2
= 0, 2x2 y + xy2

= 0, 2xy2
+ y3

= 0,

2xy2
+ x2 y = 0, 2x2 y + x3

= 0.
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The monomial basis for A1(V ) is

1, x, y, x2, xy, y2.

It is easy to check that x ∂
∂y , y ∂

∂x , x ∂
∂x − y ∂

∂y ∈ L1(V ), Hence L1(V ) is not solvable.

2. The derivation Lie algebra of a graded commutative Artinian algebra

We first state some elementary properties of the derivation Lie algebra of a graded
commutative Artinian local algebra.

Lemma 2.1. Let A =
⊕t

i=0 Ai be a graded commutative Artinian local algebra.
Then the derivation algebra of A denoted by L(A) is a graded Artinian Lie algebra.
(Here Artinian Lie algebra means L(A) is finite dimension as C-vector space.)

Proof. See Lemma 2.1 in [Xu and Yau 1996]. □

Definition 2.1. The socle of a local Artinian algebra A with maximal ideal m is
the complex vector subspace Soc A = {a ∈ A : a · m = 0} in A. The type of A is
the complex dimension of Soc A as a vector space. The algebra A is Gorenstein
when its type is one.

Lemma 2.2. Let A be a commutative Artinian local algebra. Let D ∈ L(A) be
any derivation of A. Then D preserves the m-adic filtration of A, i.e., D(m) ⊂ m,
where m is the maximal ideal of A.

Proof. See Lemma 2.5 in [Xu and Yau 1996]. □

Proposition 2.1. Let A =
⊕k

i=0 Ai be a graded commutative Artinian local algebra
with A0 = C. Suppose the maximal ideal of A is generated by A j for some j > 0.
Then L(A) is a graded Lie algebra without negative weight.

Proof. See Proposition 2.6 in [Xu and Yau 1996]. □

Lemma 2.3. Let f be a weighted homogeneous polynomial with isolated singularity
in z0, . . . , zn variables of type (α0, . . . , αn; d). Assume wt(z0) = α0 ≥ wt(z1) =

α1 ≥ · · · ≥ wt(zn) = αn . Then f must be of either the form

f = zm
0 + a1(z1, . . . , zn)zm−1

0 + · · · + am−1(z1, . . . , zn)z0 + am(z1, . . . , zn),

or

f = zm
0 zi + a(z1, . . . , zn)zm−1

0 + · · · + am−1(z1, . . . , zn)z0 + am(z1, . . . , zn).

Proof. See Lemma 2.1 in [Chen et al. 1995]. □
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3. Proof of Theorems A and B

We first recall the following useful lemma.

Lemma 3.1 (Rossi). Let (V, 0) = {(z0, . . . , zn) : f (z0, . . . , zn) = 0} ⊂ Cn+1 be an
isolated hypersurface singularity. Let θ =

∑n
i=0 ai (z) ∂

∂zi
be a holomorphic vector

field of (V, 0). Then ai (0) = 0 for 0 ≤ i ≤ n.

Proof. See [Rossi 1963]. □

Proof of Theorem A. If (V, 0) is a quasihomogeneous singularity, then by the
theorem of Saito, we can assume that f is a weight homogeneous polynomial after
a biholomorphic change if necessary. So the moduli ideal ( f ) + J f + hn+1( f ) =

J f +h( f ) is a graded ideal and Hn+1( f )=On+1/(( f )+ J f +hn+1( f ))=
⊕

i≥0 Ai

with A0 = C.
On the other side, we assume that Hn+1( f ) =

⊕
i≥0 Ai with A0 = C. Let

m =
⊕

i≥1 Ai be the maximal ideal of Hn+1( f ). It is not difficult to find a C-basis
of m/m2, denoted by {x0, . . . , xn}, with xi ∈ Aqi for 0 ≤ i ≤ n. Let E : Hn+1( f ) →

Hn+1( f ) be the linear map such that the restriction of E on Ai is just multiplication
by i . Then it is easy to see E satisfies Leibniz rule on Hn+1( f ), i.e., E is a
derivation of Hn+1( f ). E can be viewed as a derivation of C[x0, . . . , xn] which
leaves the moduli ideal ( f ) + J f + hn+1( f ) in On+1 invariant. E is of the form∑n

i=0 qi xi
∂

∂xi
. If we let the degree of xi be qi for 0 ≤ i ≤ n, then C[x0, . . . , xn] is

graded and the natural map C[x0, . . . , xn] → Hn+1( f ) is a graded homomorphism
of degree 0. Let

⊕
r>0 Jr be the grading of the moduli ideal ( f )+ J f + h( f ). As

E is a graded derivation of degree 0, E leaves Jr invariant for all r > 0. Since
ker(E |Jr ) = 0 and dimC Jr < ∞, we obtain that E |Jr is surjective for all r > 0.
Hence E : ( f )+ J f + hn+1( f ) → ( f )+ J f + hn+1( f ) is bijective. Let bi , ri and
ai0, ai1, . . . , ain be such that

E
(

∂ f
∂xi

)
= bi f +

n∑
j=0

ai j
∂ f
∂x j

+ ri h( f )

for all 0 ≤ i ≤ n. Let e, h and p j be such that

E(h( f )) = e f +

n∑
j=0

p j
∂ f
∂x j

+ h · h( f ).

By the surjectivity of E : ( f )+ J f +hn+1( f ) → ( f )+ J f +hn+1( f ), there exist
ci , si and di0, di1, . . . , din such that

∂ f
∂xi

= E
(

ci f +

n∑
j=0

di j
∂ f
∂x j

+si h( f )

)
(1)
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= E(ci ) f +ci

n∑
j=0

q j x j
∂ f
∂x j

+

n∑
j=0

E(di j )
∂ f
∂x j

+

n∑
j=0

di j

(
b j f +

n∑
l=0

a jl
∂ f
∂xl

+r j h( f )

)

+E(si )h( f )+si

(
e f +

n∑
j=0

p j
∂ f
∂x j

+h ·h( f )

)

=

(
E(ci )+

n∑
j=0

di j b j +si e
)

f +ci

n∑
j=0

q j x j
∂ f
∂x j

+

n∑
j=0

E(di j )
∂ f
∂x j

+

n∑
j=0

E(di j )
∂ f
∂x j

+

n∑
j=0

di j

n∑
l=0

a jl
∂ f
∂xl

+si

n∑
j=0

p j
∂ f
∂x j

+(E(si )+si h)h( f )

=

(
E(ci )+

n∑
j=0

di j b j +si e
)

f(2)

+

n∑
j=0

[
ci q j x j +E(di j )+

n∑
l=0

dilal j +si p j

]
∂ f
∂x j

+(E(si )+si h)h( f ).

Now we assume that f is not quasihomogeneous. Recall the beautiful result of
Saito [1974, Corollary 3.8]: Let f ∈ On+1 be a germ of a holomorphic func-
tion which defines a hypersurface with an isolated singularity at 0, then f is not
quasihomogeneous, precisely when

h( f ) = det
(

∂2 f
∂xi∂x j

)
0≤i, j≤n

∈ ( f ) + J f .

Without loss of generality, we assume that ri = 0, si = 0 for 0 ≤ i ≤ n and h = 0.
Thus

(3)
∂ f
∂xi

= E
(

ci f +

n∑
j=0

di j
∂ f
∂x j

)

=

(
E(ci ) +

n∑
j=0

di j b j

)
f +

n∑
j=0

[
ci q j x j + E(di j ) +

n∑
l=0

dilal j

]
∂ f
∂x j

.

Let

θi =

n∑
j=0

[
ci q j x j + E(di j ) +

n∑
l=0

dilal j − δi j

]
∂

∂x j
.
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Then θi ( f ) =
(
E(ci ) +

∑n
j=0 di j b j

)
f . So θi is a holomorphic vector field of

{ f (x0, . . . , xn) = 0}. By Lemma 3.1, θi j (0) = 0 for all 0 ≤ j ≤ n, where we write
θi =

∑n
j=0 θi j

∂
∂x j

. Observe that for any g ∈ C[x0, . . . , xn], E(g) vanishes at 0.
Therefore we conclude that ( n∑

l=0

dilal j − δi j

)
(0) = 0

for all 0 ≤ i ≤ n. This means that
d00(0) d01(0) . . . d0n(0)

d10(0) d11(0) . . . d1n(0)

. . . . . . . . . . . .

dn0(0) dn1(0) . . . dnn(0)

 ·


a00(0) a01(0) . . . a0n(0)

a10(0) a11(0) . . . a1n(0)

. . . . . . . . . . . .

an0(0) an1(0) . . . ann(0)

 = I,

where I is the identity matrix. On the other hand, by the surjectivity of

E : ( f ) + J f + h( f ) → ( f ) + J f + h( f ),

there exist c and d0, . . . , dn such that

(4) f = E
(

c f +

n∑
i=0

di
∂ f
∂xi

)

= E(c) f + c
n∑

j=0

q j x j
∂ f
∂x j

+

n∑
i=0

E(di )
∂ f
∂xi

+

n∑
i=0

di

(
bi f +

n∑
j=0

ai j
∂ f
∂x j

)

=

(
E(c) +

n∑
i=0

bi di

)
f +

n∑
j=0

(
cq j x j + E(d j ) +

n∑
i=0

di ai j

)
∂ f
∂x j

.

Let

H =

n∑
j=0

(
cq j x j + E(d j ) +

n∑
i=0

di ai j

)
∂

∂x j
.

Then H( f ) = [1 − E(c) − b0d0 − b1d1 − · · · − bndn] f . So H is a vector field
of { f (x0, . . . , xn) = 0}. By Lemma 3.1, Hi (0) = 0 for 0 ≤ i ≤ n, where H =∑n

i=0 Hi
∂

∂xi
. Since E(di ) vanishes at the origin for i = 0, 1, . . . , n, we conclude that

( n∑
i=0

di ai j

)
(0) = 0
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for all 0 ≤ j ≤ n, i.e.,

[
d0(0) d1(0) · · · dn(0)

]
·


a00(0) a01(0) · · · a0n(0)

a10(0) a11(0) · · · a1n(0)
...

...
. . .

...

an0(0) an1(0) · · · ann(0)

 =
[
0 0 · · · 0

]
.

Since the matrix 
a00(0) a01(0) . . . a0n(0)

a10(0) a11(0) . . . a1n(0)

. . . . . . . . . . . .

an0(0) an1(0) . . . ann(0)


is nonsingular, we deduce that

[
d0(0) d1(0) · · · dn(0)

]
=

[
0 0 · · · 0

]
. It follows

that 1−E(c)−b0d0−b1d1−· · ·−bndn is a unit in On+1 = C{x0, . . . , xn} since E(c)
vanishes at the origin. Because (1 − E(c) − b0d0 − b1d1 − · · · − bndn) f = H( f ),
we conclude that f ∈

(
∂ f
∂x0

, . . . ,
∂ f
∂xn

)
On+1. By definition of quasihomogeneity,

(V, 0) is quasihomogeneous which is contradict to our assumption. Hence f is
quasihomogeneous, i.e., (V, 0) is quasihomogeneous. □

Theorem 3.1. Let (V, 0) be a hypersurface singularity defined by a weighted
homogeneous polynomial f (z0, . . . , zn) which has an isolated singularity at the
origin with multiplicity at least three. Suppose that n ≥ 1. When the multiplicity is
equal to three, we also need to suppose that n > 1. Then the Lie algebra Ln+1(V )

is graded and without center.

Proof. Since f is a weighted homogeneous polynomial, the moduli ideal

( f ) + J f + hn+1( f ) = J f + hn+1( f )

is graded and hence

Hn+1( f ) := C[z0, . . . , zn]/(( f ) + J f + hn+1( f ))

is graded. By Lemma 2.1, Ln+1(V ) is graded. Let D be an element in the center
of Ln+1(V ). Write D =

∑
i Di where Di is a derivation with weight i . Let

E =

n∑
i=0

qi zi
∂

∂zi

be the Euler derivation where qi = wt (zi ). Then

0 = [E, D] =

[
E,

∑
i

Di

]
=

∑
i

i Di

which implies Di = 0 for i ̸= 0. Hence D is a homogeneous element of weight 0.
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If we write
D( fi ) =

∑
c j f j + c · h( f ),

then by comparing weight of both sides, we get c = 0. This shows D( fi )∈ J f . From
now on we consider D as a derivation on On+1/J f . Let D =

∑n
i=0 bi

∂
∂zi

. Then

0 = [zi E, D] = zi [E, D] + [zi , D]E = −bi E .

This implies that bi ∈ Socle of On+1/J f for all 0 ≤ i ≤ n, i.e., z j · bi ∈ J f for any
0 ≤ j ≤ n. By local duality, we know that the socle of On+1/J f is the highest
degree nonzero subspace of On+1/J f . We shall assume without loss of generality
that d ≥ 2q0 ≥ 2q1 ≥ · · · ≥ 2qn . By Lemma 2.1 in [Chen et al. 1995], we obtain
that f must satisfy one of the following two cases:

f =

{
zm

0 + a1(z1, . . . , zn)zm−1
0 + · · · + am(z1, . . . , zn), Case (1),

zm−1
0 zi + a1(z1, . . . , zn)zm−2

0 + · · · + am(z1, . . . , zn). Case (2).

Hence

wt h( f ) = (d − 2q0) + (d − 2q1) + · · · + (d − 2qn)

=

{
m(n + 1)q0 − 2

∑n
j=0 q j , Case (1),

(m − 1)(n + 1)q0 + (n + 1)qi − 2
∑n

j=0 q j , Case (2).

If the multiplicity of f is at least four, we have wt h( f ) > 2q0 and wt
(

∂ f
∂zn

)
≥ · · · ≥

wt
(

∂ f
∂z0

)
> 2q0. The fact that D is a homogeneous element of weight 0 implies that

wt (bi ) = wt (zi ) = qi for all 0 ≤ i ≤ n. Hence wt (z j · bi ) ≤ 2q0. This would lead
to a contradiction unless bi = 0 for all 0 ≤ i ≤ n. Hence D = 0.

Now we consider the case of mult( f ) = 3.

Case (1) f = z3
0 + a1(z1, . . . , zn)z2

0 + a2(z1, . . . , zn)z0 + a3(z1, . . . , zn).

In this case wt h( f ) = 3(n + 1)q0 − 2
∑n

i=0 qi which implies that

wt h( f ) > 3q0 − qn = wt
(

∂ f
∂zn

)
≥ · · · ≥ wt

(
∂ f
∂z0

)
for all n. Since D is a homogeneous element of weight 0, we obtain that D

(
∂ f
∂z j

)
∈ J f

for all 0 ≤ j ≤ n, i.e., D is a derivation of the algebra C[z0, . . . , zn]/(( f ) + J f ).
By Proposition 3.1 in [Xu and Yau 1996], we obtain that D = 0.

Case (2) f = z2
0zi + a1(z1, . . . , zn)z0 + a2(z1, . . . , zn).

In this case wt h( f ) = 2(n + 1)q0 + nqi − 2
∑n

j=0 q j , which implies that

wt h( f ) > 2q0 − qn = wt
(

∂ f
∂zn

)
≥ · · · ≥ wt

(
∂ f
∂z0

)
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when n ≥2. Since D is a homogeneous element of weight 0, we obtain that D
(

∂ f
∂z j

)
∈

J f for all 0 ≤ j ≤ n, i.e., D is a derivation of the algebra C[z0, . . . , zn]/( f ) + J f .
By Proposition 3.1 in [Xu and Yau 1996] we obtain that D = 0. □

Notice that L0 has no center for mult( f ) ≥ 3 and n ≥ 1 [Xu and Yau 1996].
However, for Ln+1, some interesting new phenomena have been discovered, e.g.,
the following remark.

Remark 3.2. A counterexample when mult( f ) = 3 and n = 1 is as follows:

f = z2
0z1 + a1(z1)z0 + a2(z1).

Let q0 = sq1, then a1(z1) = azs+1
1 , a2(z1) = bz2s+1

1 .
If b = 0 and s = 1, then f = z2

0z1 + az0z2
1. Hence ∂ f

∂z0
= 2z0z1 + az2

1,
∂ f
∂z1

= z2
0 + 2az0z1 and h( f ) = −4(z2

0 + az0z1 + a2z2
1). It is obvious that D is

a linear combination of z0
∂

∂z0
, z0

∂
∂z1

, z1
∂

∂z0
and z1

∂
∂z1

.

It is easy to verify that
(

∂ f
∂z0

,
∂ f
∂z1

, h( f )
)
= (z2

0, z2
1, z0z1). Hence for any derivation

D′
= (a0z0 + a1z1)

∂
∂z0

+ (b0z0 + b1z1)
∂

∂z1
, we obtain that[

z0
∂

∂z0
, D′

]
= b0z0

∂

∂z1
− a1z1

∂

∂z0
;[

z1
∂

∂z0
, D′

]
= a0z1

∂

∂z0
+ b0z1

∂

∂z1
− b0z0

∂

∂z0
− b1z1

∂

∂z0
;[

z0
∂

∂z1
, D′

]
= a1z0

∂

∂z0
+ b1z0

∂

∂z1
− a0z0

∂

∂z1
− a1z1

∂

∂z1
;[

z1
∂

∂z1
, D′

]
= a1z1

∂

∂z0
− b0z0

∂

∂z1
.

(5)

Let D = z0
∂

∂z0
+z1

∂
∂z1

, then [D, D′
]= 0 for all derivations D′, i.e., D is in the center.

Proof of Theorem B. By conditions (1) and (2), the adjoint representation of Ln+1(V )

is faithful and ad E is semisimple. Take the Jordan decomposition of E = S + N ,
where S is semisimple and N is nilpotent. In view of the theorem on page 99
of [Humphreys 1975], we know that N = 0. Therefore, there exists a coordinate
x0, . . . , xn such that

E = α0x0
∂

∂x0
+ α1x1

∂

∂x1
+ · · · +αnxn

∂

∂xn
.

Observe that

(6) [E, xi E] = −xi [E, E] + [E, xi ]E = αi xi E .
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Write xi E = D0 + D1 + · · · + Dk where Di ∈ L i for all 0 ≤ i ≤ k. Then

(7) [E, xi E] =

k∑
j=0

[E, D j ] =

k∑
j=0

j D j .

On the other hand, equation (6) says that

(8) [E, xi E] = αi

k∑
j=0

D j .

If αi = 0, equations (7) and (8) imply D j = 0 for all 1 ≤ j ≤ k, i.e., xi E ∈ L0.
This contradicts hypothesis (3) of the Theorem A. Therefore, αi = j for some
positive integer j between 1 and k in the view of equations (7) and (8). Since E
acts on Hn+1( f ), Hn+1( f ) is graded according to the eigenspace of E . Hn+1( f )

is nonnegatively graded because all the αi ’s are positive integers. Notice that the
kernel of E on Hn+1( f ) is precisely C. Hence we can apply Theorem A to conclude
that (V, 0) is a quasihomogeneous singularity. □

For the proof of Theorem C, it is much simpler:

Proof of Theorem C. By the proof of Theorem B, we know there is an Euler
derivation in Lk(V ), written as E =

∑
i αi xi

∂
∂xi

. Notice that

E( f ) =

∑
i

αi xi
∂ f
∂xi

∈ ( f, mk J f ).

Take k0 ∈ N such that mult( f ) − 1 + k0 > deg( f ). For k ≥ k0,

deg(E( f )) = deg
(∑

i

αi xi
∂ f
∂xi

)
< mult(mk J f ).

(Here, mult(mk J f ) := min{mult(g) | g ∈ (mk J f ) and g ̸= 0}, deg( f ) means the
degree of the highest degree monomial in f .) This means E( f ) can only be some
multiple of f :

E( f ) =

∑
i

αi xi
∂ f
∂xi

= a f.

Comparing degrees of both sides shows that a is a nonzero constant. This tells us
that f ∈ (J f ), thus f is quasihomogeneous. □

The following theorem tells us that the condition “without center” is necessary:

Theorem 3.3. Let f be weight homogeneous of multiplicity at least three, with
weights given in Theorem C, then Lk(V ) is without center.
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Proof. Let D be in the center of Lk(V ) written as D =
∑

i Di , where Di is a
derivation of weight i . Let

E =

∑
αi xi

∂

∂xi

be the Euler derivation. Then

0 = [E, D] =

[
E,

∑
i

Di

]
=

∑
i

i Di

which implies only D0 ̸= 0. Hence, D is homogeneous of weight 0. If we write

D =

∑
ai

∂

∂xi
.

Then

0 = [xi E, D] = xi [E, D] + [xi , D]E = −ai E .

This means if we regard ai E as a derivation of C{x0, . . . , xn}, then for all g ∈

C{x0, . . . , xn},

ai E(g) ∈ (mk J f , f ).

Since (ml J f , f )⊃(mk J f , f ) for all l ≤k, we know ai E maps any g ∈C{x0, . . . , xn}

into (ml J f , f ). Let l = 0, therefore ai E can be regarded as a zero derivation of
A0(V ). This leads to ai is in the socle of A0(V ). By Lemma 2.3, we obtain that

d ≥ wt (xn) + 2wt (x0) = αn + 2α0.

Since the socle of A0(V ) is generated by Hess( f ), we have

wt (ai ) = (d − 2α0) + · · · + (d − 2αn) > α0.

However, D with weight 0 means wt (ai ) = wt (xi ) ≤ α0, which is a contradiction.
Hence, D must be zero as a derivation of A0(V ), which implies that ai ∈ J f .
Again, since f is of multiplicity at least three, ai ∈ J f implies that wt (ai ) ≥

wt ( f )−wt (x0) ≥ α0 +αn > wt (xi ). This is a contradiction. Therefore, ai = 0. □

4. Solvability of Lk(V )

Firstly, we recall two classical results given in [Yau 1986; 1991].

Theorem 4.1 [Yau 1991]. Let sl(2, C) act on the formal power series ring
C[[x1, . . . , xn]], preserving the m-adic filtration where m is the maximal ideal
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in C[[x1, . . . , xn]]. Then there exists a coordinate system

x1, x2, . . . , xl1;

xl1+1, xl1+2, . . . , xl1+l2;

...

xl1+l2+···+lr−1+1, . . . , xl1+l2+···+lr ;

xl1+l2+···+lr +1, . . . , xn

(9)

via

H = H1 + · · · + Hr ,

X = X1 + · · · + Xr ,

Y = Y1 + · · · + Yr ,

(10)

where

H j = (l j − 1)xl1+···+l j−1+1
∂

∂xl1+···+l j−1+1
(11)

+ (l j − 3)xl1+···+l j−1+2
∂

∂xl1+···+l j−1+2
+ · · ·

+ (−(l j − 3))xl1+···+l j −1
∂

∂xl1+···+l j −1

+ (−(l j − 1))xl1+···+l j

∂

∂xl1+···+l j

,

X j = (l j − 1)xl1+···+l j−1+1
∂

∂xl1+···+l j−1+2
+ · · ·(12)

+ i(l j − i)xl1+···+l j−1+i
∂

∂xl1+···+l j−1+i+1
+ · · ·

+ (l j − 1)xl1+···+l j −1
∂

∂xl1+···+l j

,

Y j = xl1+···+l j−1+2
∂

∂xl1+···+l j−1+1
+ · · ·(13)

+ xl1+···+l j−1+i
∂

∂xl1+···+l j−1+i−1
+ · · ·

+ xl1+···+l j

∂

∂xl1+···+l j −1
.

with [X j , Y j ] = H j , [H j , X j ] = 2X j , [H j , Y j ] = −2Y j .
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Here we call r the irreducible representation number. A polynomial g is called
of weight j if H(g) = jg for some j ∈ Z. Note that li ≥ 2 for all i = 1, . . . , r .

Theorem 4.2 [Yau 1991]. Let sl(2, C) act on Md
n , the space of homogeneous

polynomial of degree d ≥ 2 as in Theorem 4.1 with l1 ≥ l2 ≥ · · ·≥ lr ≥ 2. Let I be the
complex vector subspace spanned by ∂ f

∂x1
, ∂ f

∂x2
, . . . , ∂ f

∂xn
where f is a homogeneous

polynomial of degree k + 1. If I is a sl(2, C)-submodule, then the singular set of f
contains the x1-axis and the xl1-axis.

The solvability of L0(V ) has been proved in [Yau 1991]. The solvability of Lk(V )

for k ≥2 is proved below while k =1 is much harder. We can only prove A1(V ) does
not admit some special sl(2, C)-action. (This is equivalent that ( f, m J f ) = (m J f )

does not admit certain special sl(2, C)-action, because a derivation D in L1(V ) has
the property D(m J f ) ⊂ (m J f ).)

The key point of the proof for k ≥ 2 is to show f is sl(2, C)-invariant, then
Theorem 4.2 leads to contradiction.

Case 1: k ≥ 2.

Proposition 4.1. Let f be a homogeneous isolated singularity in n variables
x1, . . . , xn of degree d ≥ 4. Then Lk(V ) is solvable for k ≥ 2.

Proof. Let D ∈ Lk(V ) be a derivation, then D( f, mk J f ) ⊂ ( f, mk J f ). By Leibniz
rule, we obtain that D(mk J f )= D(mk)J f +mk D(J f ). Moreover D(mk)J f ⊂mk J f ,
hence D(I ) ⊂ I is equivalent to mk D(J f ) ⊂ ( f, mk J f ) and D( f ) ⊂ ( f, mk J f ).
(Here I = ( f, mk J f ).)

We obtain

(14) D( f ) = aD
· f +

∑
i

bD
i ·

∂ f
∂xi

,

where aD
∈On and bD

i ∈mk . Whenever D = H , X or Y , it preserves the degree of f ,
hence the left-hand side of equation (14) is of degree d . However, deg

(
bD

i ·
∂ f
∂xi

)
>

deg( f ) when k ≥ 2, thus the term
(∑

i bD
i ·

∂ f
∂xi

)
is zero. Equation (14) becomes

D( f ) = aD
· f

for D = H, X or Y . This means that f is sl(2, C)-invariant. Therefore J f is sl(2, C)-
invariant. By Theorem 4.2, f is singular on x1-axis, which is a contradiction. □

Case 2: k = 1.

Now we consider the case of k = 1. The key point is as follows: If L1(V ) is not
solvable, then ( f, m J f ) = (m J f ) admits an action as in Theorem 4.1. Selecting
a generator g ∈ (m J f ), we know that H(g), X (g), Y (g) ∈ (m J f ). Repeating this
procedure, we can find that the number of generators is greater than n2, which leads
to a contradiction.
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Case 2.1: k = 1, n = 2.

Proposition 4.2. Let f be a homogeneous isolated singularity in 2 variables x1, x2

of degree d ≥ 4. Then L1(V ) is solvable.

Proof. In the case n = 2, the action of sl(2, C) is given by

X = x1
∂

∂x2
, Y = x2

∂

∂x1
.

By Lemma 2.3, f is of one of the following two forms:

Form (1): f = xd
1 + a1xd−1

1 x2 + · · · + ad xd
2 .

Form (2): f = xd−1
1 x2 + a2xd−2

1 x2
2 + · · · + ad xd

2 .

If f is of Form (1), then

x1
∂ f
∂x1

= dxd
1 + a1(d − 1)xd−1

1 x2 + · · · + ad−1x1xd−1
2 ∈ (m J f ).

Hence,

XdY d
(

x1
∂ f
∂x1

)
= c · xd

1 ∈ (m J f )

where c is a constant. This implies that

xd
1 , Y (xd

1 ) = xd−1
1 x2, . . . , Y d(xd

1 ) = xd
2

are all in (m J f ). These are d + 1 > 4 monomials. However dimC(m J f ∩ Md
2 ) = 4,

which is a contradiction. (The basis of m J f ∩ Md
2 are xi

∂ f
∂x j

with i, j ∈ {1, 2}.)
If f is of Form (2), then

x1
∂ f
∂x2

= dxd
1 + 2a2(d − 1)xd−1

1 x2 + · · · + dad x1xd−1
2 ∈ (m J f ).

By similar reasoning, we get a contradiction. □

Remark 4.3. The proof for n =2 can be generalized to more variables. However, we
must require the sl(2, C)-action to be irreducible. For general action it is still open.

Recall in Theorem 4.1, for H = H1+· · ·+Hr , we call r the irreducible component
number.

Definition 4.1. The sl(2, C)-action is called irreducible if the irreducible component
number r = 1 and l1 = n.

Case 2.2: k = 1, n ≥ 2, r = 1 and l1 = n.

Theorem 4.4 (weak Theorem D). Let f be a homogeneous isolated singularity
in n variables x1, . . . , xn of degree d ≥ 4. Then (m J f ) does not admit irreducible
sl(2, C)-action.
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Proof. By Theorem 4.1, we obtain that

H = (n − 1)x1
∂

∂x1
+ (n − 3)x2

∂

∂x2

+ · · · + (−(n − 3))xn−1
∂

∂xn−1
+ (−(n − 1))xn

∂

∂xn

X = (n − 1)x1
∂

∂x2
+ 2(n − 2)x2

∂

∂x3
+ · · · + i(n − i)xi

∂

∂xi+1

+ · · · + (n − 1)xn−1
∂

∂xn

Y = x2
∂

∂x1
+ x3

∂

∂x2
+ · · · + xi

∂

∂xi−1
+ · · · + xn

∂

∂xn−1
.

By Lemma 2.3, we obtain f = xd
1 + a1(x2, . . . , xn)xd−1

1 + · · · + ad(x2, . . . , xn)

(Form (1)) or f = xd−1
1 xs + a2(x2, . . . , xn)xd−2

1 +· · ·+ ad(x2, . . . , xn) (Form (2)),
where ai (x2, . . . , xn) is a polynomial of degree i in variable x2, . . . , xn . (We omit
the constant coefficient in later discussion for simplicity.)

If f is of Form (1), then

xi
∂ f
∂x1

= xi xd−1
1 + lower weight terms.

If f is of Form (2), then

xi
∂ f
∂xs

= xi xd−1
1 + lower weight terms.

The following lemma shows that xi xd−1
1 ∈ (m J f ) whenever f is of Form (1) or (2).

Lemma 4.1. Let g =
∑

g j be a homogeneous polynomial in (m J f ), where g j is
weight j component of g, then g j

∈ (m J f ).

By Lemma 4.1, we obtain that these polynomials are in m J f :

xd
1 ;

xd−1
1 x2;

xd−1
1 x3, Y (xd−1

1 x2);

xd−1
1 x4, Y (xd−1

1 x3), . . . , Y 2(xd−1
1 x2);

...

xd−1
1 xn, Y (xd−1

1 xn−1), . . . , Y n−2(xd−1
1 x2);

Y 2(xd−1
1 xn−1), . . . , Y n−1(xd−1

1 x2).
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Here on each row the polynomials are of same weight. We call these polynomials
“Block 1”.

All these polynomials are linear independent. Their weights are greater than or
equal to wt (xd−1

1 xn) − 2 = (d − 2)(n − 1) − 2. A similar discussion shows that

xd
n ;

xd−1
n xn−1;

xd−1
n xn−2, X (xd−1

n xn−1);

xd−1
n xn−3, X (xd−1

n xn−2), . . . , X2(xd−1
n xn−1);

...

xd−1
n x1, X (xd−1

n x2), . . . , Xn−2(xd−1
1 xn−1);

X2(xd−1
n x2), . . . , Xn−1(xd−1

1 xn−1);

are in m J f , with weight less than or equal to −(d − 2)(n − 1)+ 2. We call these
polynomials “Block 2”.

Since d ≥ 4 and n > 2, −(d − 2)(n − 1) + 2 < (d − 2)(n − 1) − 2. Thus
polynomials in Block 1 are of weights greater than those in Block 2, which implies
the polynomials in Block 1 and Block 2 are linearly independent.

In Block 1 and Block 2, there are 2(1+1+2+· · ·+n−1+n−2) = n(n+1)−2
linear independent polynomials of degree d , while dimC(m J f ∩ Md

n ) = n2, which
is a contradiction. □

Observation: In the proof of r = 1, we construct two “blocks”. The first one
starts from xd−1

1 xi , which is constructed by acting with Y . The second one starts
from xd−1

n xi and is constructed by acting with X .
Now for r ̸= 1, firstly we assume l1 + · · · + lr = n. We hope to construct blocks

as above, then comparing the number of generators will lead to contradiction.

Case 3: r > 1, l1 + · · · + lr = n.

We construct the following blocks (here 1 ≤ i, j ≤ r.):

Block 1.1

∂ f
∂x1

x1;

∂ f
∂x1

x2;

∂ f
∂x1

x3, Y
(

∂ f
∂x1

x2

)
;
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∂ f
∂x1

x4, Y
(

∂ f
∂x1

x3

)
, Y 2

(
∂ f
∂x1

x2

)
;

...

∂ f
∂x1

xl1 , Y
(

∂ f
∂x1

xl1−1

)
, . . . , Y l1−2

(
∂ f
∂x1

x2

)
;

Y 2
(

∂ f
∂x1

xl1−1

)
, . . . , Y l1−1

(
∂ f
∂x1

x2

)
.

Block 1.2

∂ f
∂x1

xl1+1;

∂ f
∂x1

xl1+2;

∂ f
∂x1

xl1+3, Y
(

∂ f
∂x1

xl1+2

)
;

...

∂ f
∂x1

xl1+l2 , Y
(

∂ f
∂x1

xl1+l2−1

)
, . . . , Y l2−2

(
∂ f
∂x1

xl1+2

)
;

Y 2
(

∂ f
∂x1

xl1+l2−1

)
, . . . , Y l2−1

(
∂ f
∂x1

xl1+2

)
.

Block 1. r

∂ f
∂x1

xl1+···+lr−1+1;

∂ f
∂x1

xl1+···+lr−1+2;

∂ f
∂x1

xl1+···+lr−1+3, Y
(

∂ f
∂x1

xl1+···+lr−1+2

)
;

...

∂ f
∂x1

xl1+···+lr , Y
(

∂ f
∂x1

xl1+···+lr −1

)
, . . . , Y lr −2

(
∂ f
∂x1

xl1+···+lr−1+2

)
;

Y 2
(

∂ f
∂x1

xl1+···+lr −1

)
, . . . , Y lr −1

(
∂ f
∂x1

xl1+···+lr−1+2

)
.

...
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Block i. j

∂ f
∂xl1+···+li

xl1+···+l j−1+1;

∂ f
∂xl1+···+li

xl1+···+l j−1+2;

∂ f
∂xl1+···+li

xl1+···+l j−1+3, Y
(

∂ f
∂xl1+···+li

xl1+···+l j−1+2

)
;

...

∂ f
∂xl1+···+li

xl1+···+l j , Y
(

∂ f
∂xl1+···+li

xl1+···+l j −1

)
,

... . . . , Y l j −2
(

∂ f
∂xl1+···+li

xl1+···+l j−1+2

)
;

Y 2
(

∂ f
∂xl1+···+li

xl1+···+l j −1

)
, . . . , Y l j −1

(
∂ f

∂xl1+···+li
xl1+···+l j−1+2

)
.

...

The number of linear independent polynomials in Block i. j is

2(1 + 1 + 2 + · · · + l j − 1 + l j − 2) = 2(l j + 1)l j − 2.

Similar to the construction of Block 1 and Block 2, we can construct another Block
“dual” to Block i. j with 2(l j + 1)l j − 2 polynomials. If all above polynomials
are linear independent, the whole number of linear independent polynomials is
4r(l1(l1 + 1) + · · · + lr (lr + 1) − 2r). However

4r(l1(l1 + 1) + · · · + lr (lr + 1) − 2r) > (l1 + · · · + lr )2
= n2.

This is a contradiction.
The problem arises on the linear independence of different blocks. To be more

precise, there may exist variables in other blocks with same weight, so we cannot
get linear independence by comparing weight. We use an example to explain this
phenomenon.

Example 4.5. In the case n = 4 and l1 = l2 = 2,

H = H1 + H2, X = X1 + X2, Y = Y1 + Y2.

x1 and x3 are of same weight. Let f = (x1 + x3)
4
+ x4

2 + x4
4 + x3

1 x2 + x3
1 x4 which

defines an isolated singularity. The operation of taking highest weight is restricting
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polynomial to x2 = x4 = 0. For example,

∂ f
∂x1

= 4(x1 + x3)
3
+ 3x2

1(x2 + x4).

The highest weight part of ∂ f
∂x1

is 4(x1 + x3)
3. However

∂ f
∂x1

∣∣∣∣
x2=x4=0

=
∂ f
∂x3

.

Thus ∂ f
∂x1

∣∣
x2=x4=0,

∂ f
∂x3

are linear dependent.
In this example, we only need to exchange ∂ f

∂x3
to ∂ f

∂x2

∣∣
x2=x4=0. Then ∂ f

∂x1

∣∣
x2=x4=0,

∂ f
∂x2

∣∣
x2=x4=0 are linear independent. It reminds us that there exists a suitable way to

select linear independent polynomials. This is illustrated in the following lemma:

Lemma 4.2. If r = 2 and l1 = l2, then there exists g1, g2 of weight (d − 1)(l1 − 1)

in (m J f ), such that the following four polynomials are linear independent:

g1x1, g1xl1+1, g2x1, g2xl1+1.

Proof. We first show how to construct g1, g2 from the derivatives of f . Then we
prove the linear independence of above four polynomials. Let us consider the
following polynomials:

∂ f
∂x1

∣∣∣∣
x2=···=xl1=xl1+2=···=xn=0

,
∂ f
∂x2

∣∣∣∣
x2=···=xl1=xl1+2=···=xn=0

,

. . . ,
∂ f
∂xn

∣∣∣∣
x2=···=xl1=xl1+2=···=xn=0

.

These are polynomials in x1, xl1+1 of degree d − 1, for simplicity we write them as

h1, . . . , hn.

Let the common factor of h1, . . . , hn be h. Define

Y := {h = 0} ∩ {x2 = · · · = xl1 = xl1+2 = · · · = xn = 0}.

Here h, x2, . . . , xl1, xl1+2, . . . , xn are n−1 functions, and thus dim Y ≥ 1. However,
by the definition of Y , f |Y = hi |Y = 0 for all i = 1, . . . , n. This contradicts that f
defines an isolated singularity. Thus the common factor of h1, . . . , hn is 1.

We claim there exists a1, . . . , an ∈ C and j ∈ {1, . . . , n}, such that a1h1 + · · ·+

anhn and h j do not have common factor. If the claim holds, then we denote
h j = g1,

∑n
i=1 ai hi = g2.
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Now we prove the linear independence of g1x1, g1xl1+1, g2x1, g2xl1+1. Assume
the contrary. Then there exists b1, b2, b3, b4 which are not all zero such that

g1(b1x1 + b3xl1+1) = g2(b2x1 + b4xl1+1).

Without loss of generality, we assume that b1, b4 ̸= 0. b1x1 + b3xl1+1 and b2x1 +

b4xl1+1 are coprime, otherwise g1, g2 have common factor. Thus the above equality
implies

(b1x1 + b3xl1+1) | g2, (b2x1 + b4xl1+1) | g1.

Observe that g1, g2 have degree d − 1 ≥ 3 > 1 = deg(b1x1 + b3xl1+1); hence
deg(g2/(b1x1 +b3xl1+1)) ≥ 2. This means g2/(b1x1 +b3xl1+1) is a nontrivial poly-
nomial, and is a factor of g1, which contradicts that g1, g2 have no common factor.

At last we prove the claim. For j such that h j ̸= 0, we express h j as product of
irreducible polynomials:

h j = sr1
1 sr2

2 · · · srl
l .

If hi0 and h j do not have common factor then we are done. So we assume each hi

and h j have a common factor for any i = 1, . . . , n. Since the common factor of
h1, . . . , hn is 1, there exists two polynomials, say h1, h2, such that they have a
different common factor with h j . Without loss of generality, we assume s1 | h1,
s2 | h2, s1 ∤ h2, s2 ∤ h1. Then s1, s2 ∤ (h1 + h2). If h1 + h2 does not have common
factor with h j , then we are done. So we assume s3 | (h1 + h2). If s3 | h1, then
s3 | (h1 + h2 − h1), which contradicts that h1, h2 have a different common factor
with h j . Thus s3 ∤ h1, h2. Then s1, s2, s3 ∤ ((h1 + h2)+ h1), by the same induction
we know s4 | (2h1+h2) or 2h1+h2 has no common factor with h j . Since rl is finite,
this implies that the induction procedure must terminate, and so finally we can find
a linear combination of h1, h2 such that it has no common factor with h j . □

Case 3.1: r = 2.

The following proposition follows from Lemma 4.2 immediately.

Proposition 4.3. Let f be homogeneous isolated singularity of degree d. Then
(m J f ) does not admit an sl(2, C)-action when r = 2, l1 + l2 = n.

Proof. We divide it into two cases:

Case 1: l1 = l2.

Choose g1, g2 as in Lemma 4.2. Then we consider the following four blocks:

Block 1.1
g1x1;

g1x2;

g1x3, Y (g1x2);
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g1x4, Y (g1x3), Y 2(g1x2);

...

g1xl1, Y (g1xl1−1), Y l1−2(g1x2);

Y 2(g1xl1−1), Y l1−1(g1x2);

Block 1.2
g2x1;

g2x2;

g2x3, Y (g2x2);

g2x4, Y (g2x3), Y 2(g2x2);

...

g2xl1, Y (g2xl1−1), Y l1−2(g2x2);

Y 2(g2xl1−1), Y l1−1(g2x2);

Block 2.1
g1xl1+1;

g1xl1+2;

g1xl1+3, Y (g1xl1+2);

g1xl1+4, Y (g1xl1+3), Y 2(g1xl1+2);

...

g1xl1+l2, Y (g1xl1+l2−1), Y l2−2(g1xl1+2);

Y 2(g1xl1+l2−1), . . . , Y l2−1(g1xl1+2);

Block 2.2
g2xl1+1;

g2xl1+2;

g2xl1+3, Y (g2xl1+2);

g2xl1+4, Y (g2xl1+3), Y 2(g2xl1+2);

...

g2xl1+l2, Y (g2xl1+l2−1), Y l2−2(g2xl1+2);

Y 2(g2xl1+l2−1), . . . , Y l2−1(g2xl1+2).
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The number of polynomials in all the blocks is 2(l1(l1 + 1) − 2 + l2(l2 + 1) − 2).
Replacing x1, xl1+1 by xl1, xn and Y by X , we can get another 2(l1(l1 + 1) +

l2(l2 + 1) − 4) polynomials. However 4(l2
1 + l2

2 + l1 + l2 − 4) > n2, which is a
contradiction.

Case 2: l1 > l2.

In this case we can use same argument as in the irreducible case that

xd−1
1 xi ∈ (m J f ) for all i.

And the block can be constructed as follows:
In Block 1.1, 2.1, we choose g1 to be xd−1

1 . In Block 1.2, 2.2, we choose g2 to
be xd−1

l1+1 + g3(x1, . . . , xl1), where g3 is a polynomial of weight (d − 1)(l2 − 1) such
that (xd−1

l1+1 + g3) ∈ J f . Then it leads to a contradiction similarly. □

Proof of Theorem D. When k ≥ 2, the theorem follows immediately from
Proposition 4.1. In the case of n = 4, k = 1, r has to be 1 or 2. If r = 2, we obtain
that l1 + l2 = 4 by Theorem 4.1. And the result follows from Proposition 4.3. If
r = 1, l1 = 4, the result follows from Theorem 4.4. We only have to consider the
cases r = 1, l1 = 2 or 3.

Case 1: r = 1, l1 = 2. The sl(2, C)-action is as follows:

H = x1
∂

∂x1
− x2

∂

∂x2
, X = x1

∂

∂x2
, Y = x2

∂

∂x1
.

By Lemma 4.1, xd−1
1 xi ∈ m J f . By the discussion in Proposition 4.2, xd−1

1 , xd−1
3 ,

xd−1
4 are in J f . Thus

xd
1 , Y (xd

1 ) = xd−1
1 x2, . . . , Y d(xd

1 ) = xd
2 ;

xd−1
1 x3, Y (xd−1

1 x3), . . . , Y d−1(xd−1
1 x3) = xd−1

2 x3;

xd−1
1 x4, Y (xd−1

1 x4), . . . , Y d−1(xd−1
1 x4) = xd−1

2 x4;

xd
3 ; xd

4 ;

xd−1
3 x1, xd−1

3 x2; xd−1
4 x1, xd−1

4 x2;

are in m J f . The number of linear independent polynomials of degree d are 3d +6 >

16, which is a contradiction.

Case 2: r =1, l1 =3. By the discussion in Theorem 4.4, we can find 3(3+1)−2=10
linear independent polynomials in x1, x2, x3. Thus we only need to find more than 6
polynomials. xd

4 , xd−1
4 x1, xd−1

4 x2, xd−1
4 x3, xd−1

1 x4, xd−1
2 x4, xd−1

3 x4 are satisfied.
□
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