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Let G be a simple graph on n vertices. We introduce the notion of bipartite
connectivity of G, denoted by bc(G) and prove that

lim
s→∞

depth(S/I (G)(s)) ≤ bc(G),

where I (G) denotes the edge ideal of G and S = k[x1, . . . , xn] is a standard
graded polynomial ring over a field k. We further compute the depth of
symbolic powers of edge ideals of several classes of graphs, including odd
cycles and whisker graphs of complete graphs to illustrate the cases where
the above inequality becomes equality.

1. Introduction

Let I be a homogeneous ideal in a standard graded polynomial ring S =k[x1, . . . , xn]

over a field k. While the depth function of powers of I is convergent by the result
of Brodmann [1979], the depth function of symbolic powers of I is more exotic.
Nguyen and N. V. Trung [2019] proved that for every positive eventually periodic
function f : N → N there exists an ideal I such that depth S/I (s)

= f (s) for all
s ≥ 1, where I (s) denotes the s-th symbolic power of I . On the other hand, when I is
a squarefree monomial ideal, by the result of Hoa et al. [2017] and Varbaro [2011],

lim
s→∞

depth S/I (s)
= min{depth S/I (s)

| s ≥ 1} = n − ℓs(I ),

where ℓs(I ) is the symbolic analytic spread of I . Nonetheless, given a squarefree
monomial ideal I , computing the stable value of depth of symbolic powers of I is
a difficult problem even in the case of edge ideals of graphs.

Let us now recall the notion of the edge ideals of graphs. Let G be a simple graph
with the vertex set V (G) = {1, . . . , n} and edge set E(G). The edge ideal of G,
denoted by I (G), is the squarefree monomial ideal generated by xi xj where {i, j} is
an edge of G. Trung [2016] showed that lims→∞ depth S/I (G)s equals the number
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of bipartite connected components of G, and that depth S/I (G)s stabilizes when it
reaches the limit depth. By the results in [Nguyen and Vu 2019; Hà et al. 2020], we
may assume that G is a connected graph when considering the depth of (symbolic)
powers of the edge ideal of G. In this case, the result of Trung [2016] can be written
as

(1-1) lim
s→∞

depth S/I (G)s
=

{
1 if G is bipartite,
0, otherwise,

and the stabilization index of depth of powers of I (G), denoted by dstab(I (G)), is
the smallest exponent s such that depth S/I (G)s equals the limit depth of powers.
Since we expect that the depth functions of symbolic powers of edge ideals are
nonincreasing, this property should hold for symbolic powers of I (G) as well. Hien,
Lam, and Trung [2024] characterized graphs for which lims→∞ depth S/I (G)(s) =1
and proved that the stabilization index of depth of symbolic powers in this case is also
the smallest exponent s such that depth S/I (G)(s) = 1. For a general nonbipartite
graph G, we do not know the value lims→∞ depth S/I (G)(s).

In this paper, we introduce the notion of bipartite connectivity of G and show that
this is tightly connected to the stable value of depth of symbolic powers of I (G).
Let B(G) denote the set of maximal induced bipartite subgraphs H of G, i.e., for
any v ∈ V (G) \ V (H), the induced subgraph of G on V (H)∪ {v} is not bipartite.
Note that H might contain isolated vertices. Since H is maximal, it contains
at least one edge. Then we define bc(G) = min{c(H) | H ∈ B(G)} and call it
the bipartite connectivity number of G, where c(H) is the number of connected
components of H . With this notation, the result of Hien et al. [2024] can be stated as
lims→∞ depth S/I (G)(s) = 1 if and only if bc(G) = 1, i.e., there exists an induced
connected bipartite subgraph H of G such that H dominates G. In this paper, we
generalize this result and prove:

Theorem 1.1. Let G be a simple graph. Then

lim
s→∞

depth S/I (G)(s) ≤ bc(G).

In contrast to (1-1), we show that the limit depth of symbolic powers of I (G)

could be any positive number even when G is a connected graph.

Proposition 1.2. Let n ≥ 2 be a positive number and Wn = W (Kn) be the whisker
graph on the complete graph on n vertices. Then, bc(Wn) = n − 1 and

depth S/I (Wn)
(s)

=

{
n if s = 1,

n − 1 if s ≥ 2.

We also note that the inequality in Theorem 1.1 could be strict as given in the
following example.
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Example 1.3. Let W be the graph obtained by gluing two whiskers at the vertices
of a 3-cycle. Then bc(W ) = 3 while

depth S/I (W )(s) =


7 if s = 1,

4 if s = 2,

2 if s ≥ 3.

Nonetheless, if we cluster the isolated points in a maximal bipartite subgraph H
of G by the bouquets in G then we obtain a finer invariant of G that gives the stable
value of depth of symbolic powers. More precisely, assume that

H = H1 ∪ · · · ∪ Hc ∪ {p1, . . . , pt },

where Hi are connected components of H with at least one edge and p1, . . . , pt

are isolated points in H . We say that pi1, . . . , piu are clustered if there exists a
v ∈ V (G) \ V (H) such that the induced subgraph of G on {v, pi1, . . . , piu } is a
bouquet. Let bouG(H) be the smallest number b such that the set {p1, . . . , pt } can
be clustered into b bouquets in G. We call c′(H) = c + bouG(H) the number of
restricted connected components of H . We then define

bc′(G) = min{c′(H) | H ∈ B(G)},

the restricted bipartite connectivity number of G. It is easy to see that for the
graph W in Example 1.3, we have bc′(W ) = 2. We conjecture that:

Conjecture 1.4. Let G be a simple graph. Then

lim
s→∞

depth S/I (G)(s) = bc′(G).

We verify this conjecture for whisker graphs of complete graphs.

Theorem 1.5. Let a = (a1, . . . , an)∈ Nn and Wa be the graph obtained by gluing ai

leaves to the vertex i of a complete graph Kn . Assume that ai ≥1 for all i =1, . . . , n.
Then bc′(Wa) = n − 1 and

lim
s→∞

depth S/I (Wa)
(s)

= n − 1.

Finally, we compute the depth of symbolic powers of edge ideals of odd cycles
by extending our argument in [Minh et al. 2023]. This shows that the bound for the
index of depth stability of symbolic powers of I given in [Hien et al. 2024] is sharp.

Theorem 1.6. Let I (Cn) be the edge ideal of a cycle of length n = 2k +1 ≥ 5. Then

depth S/I (Cn)
(s)

=

{⌈ n−1
3

⌉
if s = 1,

max
(
1,

⌈n−s+1
3

⌉)
if s ≥ 2.

In particular, sdstab(I (Cn)) = n −2, where sdstab(I ) is the index of depth stability
of symbolic powers of I .
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We structure the paper as follows. In Section 2, we set up the notation and
provide some background. In Section 3, we prove Theorem 1.1 and compute the
depth of symbolic powers of edge ideals of whisker graphs of complete graphs. In
Section 4, we prove Theorem 1.6.

2. Preliminaries

In this section, we recall some definitions and properties concerning depth, graphs
and their edge ideals, and the symbolic powers of squarefree monomial ideals. The
interested readers are referred to [Bruns and Herzog 1993] for more details.

Throughout the paper, we denote by S = k[x1, . . . , xn] a standard graded polyno-
mial ring over a field k. Let m = (x1, . . . , xn) be the maximal homogeneous ideal
of S.

Depth. For a finitely generated graded S-module L , the depth of L is defined to be

depth(L) = min{i | H i
m(L) ̸= 0},

where H i
m(L) denotes the i-th local cohomology module of L with respect to m.

We have the following estimates on depth along short exact sequences (see [Bruns
and Herzog 1993, Proposition 1.2.9]).

Lemma 2.1. Let 0 → L → M → N → 0 be a short exact sequence of finitely
generated graded S-modules. Then:

(1) depth M ≥ min{depth L , depth N }.

(2) depth L ≥ min{depth M, depth N + 1}.

We make repeated use of the following two results in the sequence. The first one
is [Rauf 2010, Corollary 1.3]. The second one is [Caviglia et al. 2019, Theorem 4.3].

Lemma 2.2. Let I be a monomial ideal and f a monomial such that f /∈ I . Then

depth S/I ≤ depth S/(I : f ).

Lemma 2.3. Let I be a monomial ideal and f a monomial. Then

depth S/I ∈ {depth(S/I : f ), depth(S/(I, f ))}.

Finally, we also use the following simple result.

Lemma 2.4. Let S = k[x1, . . . , xn], R1 = k[x1, . . . , xa], and R2 = k[xa+1, . . . , xn]

for some natural number a such that 1 ≤ a < n. Let I and J be homogeneous ideals
of R1 and R2, respectively. Then:

(1) depth(S/(I + J )) = depth(R1/I ) + depth(R2/J ).

(2) Let P = I + (xa+1, . . . , xb). Then depth(S/P) = depth(R1/I ) + (n − b).
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Proof. (1) The proof is standard; see, e.g., [Nguyen and Vu 2019, Lemma 2.3].

(2) It follows from (1) and the fact that depth(R2/(xa+1, . . . , xb)) = (n − b). □

Depth of Stanley–Reisner rings. Let 1 be a simplicial complex on the vertex set
V (1) = [n] = {1, . . . , n}. For a face F ∈ 1, the link of F in 1 is the subsimplicial
complex of 1 defined by

lk1 F = {G ∈ 1 | F ∪ G ∈ 1, F ∩ G = ∅}.

For each subset F of [n], let xF =
∏

i∈F xi be a squarefree monomial in S. We
now recall the Stanley–Reisner correspondence.

Definition 2.5. For a squarefree monomial ideal I , the Stanley–Reisner complex
of I is defined by

1(I ) = {F ⊆ [n] | xF /∈ I }.

For a simplicial complex 1, the Stanley–Reisner ideal of 1 is defined by

I1 = (xF | F /∈ 1).

The Stanley–Reisner ring of 1 is k[1] = S/I1.

Definition 2.6. The q-th reduced homology group of 1 with coefficients over k,
denoted H̃q(1; k) is defined to be the q-th homology group of the augmented
oriented chain complex of 1 over k.

From the Hochster’s formula, we deduce that:

Lemma 2.7. Let 1 be a simplicial complex. Then

depth(k[1]) = min{|F | + i | H̃i−1(lk1 F; k) ̸= 0, F ∈ 1}.

Proof. By definition, depth(k[1]) = min{i | H i
m(k[1]) ̸= 0}. By Hochster’s formula

[Bruns and Herzog 1993, Theorem 5.3.8], the conclusion follows. □

We will also use the following nerve theorem from [Borsuk 1948]. First, we
recall the definition of the nerve complex. Assume that the set of maximal facets
of 1 is A = {A1, . . . , Ar }. The nerve complex of 1, denoted by N (1) is the
simplicial complex on the vertex set [r ] = {1, . . . , r} such that F ⊆ [r ] is a face
of N (1) if and only if ⋂

j∈F

Aj ̸= ∅.

Theorem 2.8. Let 1 be a simplicial complex. Then for all integer i , we have

H̃i (N (1); k) ∼= H̃i (1; k).
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Graphs and their edge ideals. Let G denote a finite simple graph over the vertex
set V (G) = [n] = {1, 2, . . . , n} and the edge set E(G). The edge ideal of G is
defined to be

I (G) = (xi xj | {i, j} ∈ E(G)) ⊆ S.

For simplicity, we often write i ∈ G (resp. i j ∈ G) instead of i ∈ V (G) (resp.
{i, j} ∈ E(G)). By abuse of notation, we also call xi a vertex of G and xi xj ∈ I (G)

an edge of G.
A path Pn of length n − 1 is the graph on [n] whose edges are {i, i + 1} for

i = 1, . . . , n − 1. A cycle Cn of length n ≥ 3 is the graph on [n] whose edges are
{i, i + 1} for i = 1, . . . , n − 1 and {1, n}.

A clique in G is a complete subgraph of G of size at least 2.
A graph H on [n] is called bipartite if there exists a partition [n] = X ∪ Y ,

X ∩Y =∅ such that E(H) ⊆ X ×Y . When E(H) = X ×Y , H is called a complete
bipartite graph, denoted by K X,Y . A bouquet is a complete bipartite graph with
|X | = 1.

For a vertex x ∈ V (G), let the neighborhood of x be the subset

NG(x) = {y ∈ V (G) | {x, y} ∈ E(G)}

and set NG[x] = NG(x)∪{x}. The degree of a vertex x , denoted by degG(x) is the
number of neighbors of x . A leaf is a vertex of degree 1. The unique edge attached to
a leaf is called a leaf edge. Denote dG(x) the number of nonleaf edges incident to x .

Projective dimension of edge ideals of weakly chordal graphs. A graph G is
called weakly chordal if G and its complement do not contain an induced cycle of
length at least 5. The projective dimension of edge ideals of weakly chordal graphs
can be computed via the notion of strongly disjoint families of complete bipartite
subgraphs, introduced in [Kimura 2016]. For a graph G, we consider all families of
(noninduced) subgraphs B1, . . . , Bg of G such that:

(1) Each Bi is a complete bipartite graph for 1 ≤ i ≤ g.

(2) The graphs B1, . . . , Bg have pairwise disjoint vertex sets.

(3) There exist an induced matching e1, . . . , eg of G for each ei ∈ E(Bi ) for
1 ≤ i ≤ g.

Such a family is termed a strongly disjoint family of complete bipartite subgraphs.
We define

d(G) = max
( g∑

1

|V (Bi )| − g
)

,

where the maximum is taken over all the strongly disjoint families of complete
bipartite subgraphs B1, . . . , Bg of G. We have the following result of Nguyen and
Vu [Nguyen and Vu 2016, Theorem 7.7].
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Theorem 2.9. Let G be a weakly chordal graph with at least one edge. Then

pd(S/I (G)) = d(G).

We now use it to compute the depth of the edge ideals of whisker graphs of
complete graphs.

Lemma 2.10. Let a = (a1, . . . , an)∈ Nn and Wa be the graph obtained by gluing ai

leaves to the vertex i of a complete graph Kn . Assume that

a1 ≥ . . . ≥ ak > 0 = ak+1 = · · · = an.

Then
depth(S/I (Wa)) = 1 + a2 + · · · + ak .

Proof. From the definition of Wa, it is clear that Wa is a chordal graph. For
simplicity of notation, we assume that

V (G) = {x1, . . . , xn} ∪ {yi, j | i = 1, . . . , k, j = 1, . . . , ai },

E(G) = {{xi , xj } | i ̸= j ∈ [n]} ∪ {{xi , yi, j } | i = 1, . . . , k, j = 1, . . . , ai }.

For any edges e1, e2 of Wa, we have NWa [e1] ∩ e2 ̸= ∅. Hence, the induced
matching number of Wa is 1. Now, let B be a complete bipartite subgraph of Wa
with bipartition V (B) = U1 ∪ U2. Let

X = {x1, . . . , xn} and Y = {yi, j | i = 1, . . . , k, j = 1, . . . , ai }.

If V (B)∩Y =∅ then |V (B)| ≤ n. Now, assume that yi, j ∈ U1 for some i, j . Then
xi ∈ U2 and yk,l /∈ V (B) for any k ̸= i since B is a complete bipartite graph. Hence,
|V (B)| ≤ n +ai . Therefore, for any complete bipartite subgraph B of Wa, we have

|V (B)| ≤ n + max{ai | i = 1, . . . , n} = n + a1.

Furthermore, let U1 = {x1}, U2 = {x2, . . . , xn, y1,1, . . . , y1,a1} and B = KU1,U2 then
B is a complete bipartite subgraph of Wa with |V (B)| = n + a1. By Theorem 2.9,
we deduce that

pd(S/I (Wa)) = n + a1 − 1.

The conclusion follows from the Auslander–Buchsbaum formula. □

Symbolic powers of edge ideals. Let I be a squarefree monomial ideal in S with
the irreducible decomposition

I = p1 ∩ · · · ∩ pm .

The s-th symbolic power of I is defined by

I (s)
= ps

1 ∩ · · · ∩ ps
m .

By the proof of [Kimura et al. 2018, Theorem 5.2], we have:
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Lemma 2.11. Assume that e is a leaf edge of G. Then for all s ≥ 2 we have
I (G)(s) : e = I (G)(s−1). In particular, depth S/I (G)(s) is a nonincreasing function.

We also have the following simple result that will be used later.

Lemma 2.12. Assume that n ≥ 2 be an integer. Let Kn be the complete graph on n
vertices. Then I (Kn)

(n)
: (x1 · · · xn) = I (Kn).

Proof. For each i = 1, . . . , n, let pi = (x1, . . . , xi−1, xi+1, . . . , xn). Then, we have
I (Kn) = p1 ∩ · · · ∩ pn . Since xi /∈ pi , we deduce that pn

i : (x1 · · · xn) = pi . Hence,

I (Kn)
(n)

: (x1 · · · xn) = (pn
1 ∩ · · · ∩ pn

n) : (x1 · · · xn)

= (pn
1 : (x1 · · · xn)) ∩ · · · ∩ (pn

n : (x1 · · · xn))

= p1 ∩ · · · ∩ pn = I (Kn).

The conclusion follows. □

3. Stable value of depth of symbolic powers of edge ideals

In this section, we prove that the stable value of depth of symbolic powers of
edge ideals is at most the bipartite connectivity number of G. We assume that
S = k[x1, . . . , xn] and G is a simple graph on V (G) = {1, . . . , n}. For an exponent
a = (a1, . . . , an) ∈ Nn , we set x a

= xa1
1 · · · xan

n and |a| = a1 + · · · + an .
We first introduce some notation. Let H be a connected bipartite graph with

the partition V (H) = X ∪ Y . The bipartite completion of H , denoted by H̃ is the
complete bipartite graph K X,Y . Now, assume that H = H1 ∪· · ·∪ Hc ∪{p1, . . . , pt }

where H1, . . . , Hc are connected components of H with at least one edge, and
p1, . . . , pt are isolated points of H . Then the bipartite completion of H is defined
by H̃ = H̃1 ∪ · · · ∪ H̃c ∪ {p1, . . . , pt }. We have:

Lemma 3.1. Let H be a bipartite graph. Let a = d(H)= (dH (1), . . . , dH (n))∈ Nn

and s =
|a|

2 . Then √
I (H)s+1 : x a = I (H̃),

where H̃ is the bipartite completion of H.

Proof. Since variables corresponding to isolated points do not appear in I (H), we
may assume that H does not have isolated points. Assume that H = H1 ∪ · · · ∪ Hc

where Hi are connected components of H with at least one edge. Let ai = d(Hi ).
Note that x ai is equal to the product of nonleaf edges of Hi , hence |ai | is even for
all i . Let si =

|ai |
2 . Now assume that f ∈

√
I (H)s+1 : x a with f = f1 · · · fc and

supp fi ⊆ V (Hi ). Then we have f m x a
∈ I (H)s+1 for some m > 0. Thus, we must

have f m
i x ai ∈ I (Hi )

si +1 for some i . Hence, we may assume that H is connected.
The conclusion then follows from [Trung 2016, Lemma 3.1] and [Minh et al. 2022,
Lemma 2.19]. □
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Now, assume that H is a maximal induced bipartite subgraph of G, that is, for
any v ∈ V (G) \ V (H) the induced subgraph of G on V (H) ∪ {v} is not bipartite.
In particular, H contains at least one edge. Let H = H1 ∪ · · · ∪ Hc ∪ {p1, . . . , pt }

where Hi are connected components of H with at least one edge and p1, . . . , pt are
isolated points of H . Then c(H) = c + t is the number of connected components
of H . We have

Lemma 3.2. Let H be a maximal induced bipartite subgraph of G. Then

depth(S/(I (G)(s)) ≤ c(H)

for all s ≥ |E(H)| + 1, where c(H) is the number of connected components of H.

Proof. Assume that H = H1 ∪ · · · ∪ Hc ∪ {p1, . . . , pt } where H1, . . . , Hc are
connected components of H with at least one edge and p1, . . . , pt are isolated
points of H . Let b= d(H) and x a

= x b
·
∏

(e | e is a leaf edge of H). Then x a is the
product of edges of H . Let s =

|a|

2 = |E(H)|. By [Minh et al. 2022, Corollary 2.7],
x a /∈ I (G)(s+1). We claim that

(3-1)
√

I (G)(s+1) : x a = I (H̃) + (xj | j ∈ V (G) \ V (H)).

By Lemma 3.1, it is sufficient if we prove that xj ∈

√
I (G)(s+1) : x a for all

j ∈ V (G)\V (H). Since the induced subgraph of G on { j}∪H is not bipartite, there
must exist a connected component, say H1 of H such that the induced subgraph of G
on V (H1)∪{ j} has an odd cycle. Let G1 be the induced subgraph of G on H1 ∪{ j}.
Let j, 1, . . . , 2k be an induced odd cycle in G1. Then xj x1 · · · x2k ∈ I (G1)

(k+1).
Furthermore, x1 · · · x2k =

∏k
j=1 ej is a product of k edges of H1. By the definition

of a, we have x a1 equals the products of all edges of H1. In other words, we have
x a1 = x1 · · · x2k · h with h ∈ I (H1)

|E(H1)|−k . Hence, xj x a1 ∈ I (G1)
(s1+1) where

s1 = |E(H1)|. Equation (3-1) follows.
By Lemma 2.2 and equation (3-1), we deduce that

depth S/I (G)(s+1)
≤ depth S/(I (G)(s+1)

: x a)≤ depth S/
√

I (G)(s+1) : x a = c(H).

For any t ≥ s+1, let x c
= x a

·et−s−1 where e is an arbitrary edge of H . Then we have
x c /∈ I (G)(t) and

√
I (G)(t) : x c ⊇

√
I (G)(s+1) : x a. Hence, depth S/I (G)(t) ≤ c(H)

for all t ≥ s + 1. The conclusion follows. □

Definition 3.3. Let G be a simple graph. Denote by B(G) the set of all maximal
induced bipartite subgraphs of G. The bipartite connectivity number of G is defined
by

bc(G) = min{c(H) | H ∈ B(G)}.

We are now ready for the proof of Theorem 1.1.

Proof of Theorem 1.1. The conclusion follows immediately from the definition and
Lemma 3.2. □
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We now prove Proposition 1.2 giving an example of connected graphs for which
the above inequality is equality and that the limit depth of symbolic powers of I (G)

could be any positive number.

Proof of Proposition 1.2. We may assume that

V (Wn) = {x1, . . . , xn, y1, . . . , yn} and

E(Wn) = {{xi , xj }, {xi , yi } | 1 ≤ i ̸= j ≤ n}.

Let H be a maximal bipartite subgraph of Wn . Then y1, . . . , yn ∈ H and H
contains at most two vertices in {x1, . . . , xn}. By the maximality of H , we deduce
that H must be the induced subgraph of Wn on {y1, . . . , yn} ∪ {xi , xj } for some
i ̸= j . Hence, c(H) = n − 1. Thus, bc(Wn) = n − 1.

By Lemma 2.11, depth S/I (Wn)
(s) is nonincreasing. Furthermore, we have

I (Wn)
(2)

: (x1 x2) = (x1 y1, x2 y2, x1 x2, y1 y2, x3, . . . , xn).

Hence, depth S/I (Wn)
(2)

≤ n − 1.
It remains to prove that depth S/I (Wn)

(s)
≥ n − 1 for all s ≥ 2. We prove by

induction on n and s the following statement. Let Ik = I (Kn)+ (x1 y1, . . . , xk yk)

and Sk = k[x1, . . . , xn, y1, . . . , yk]. Then depth Sk/I (s)
k ≥ k − 1 for all 2 ≤ k ≤ n

and all s ≥ 1.
Note that Ik = I (Gk) where Gk = Kn ∪{{xi , yi } | i = 1, . . . , k}. By Lemma 2.10,

depth Sk/Ik = k.
Since mk , the maximal homogeneous ideal of Sk , is not an associated prime

of Ik , depth Sk/I (s)
k ≥ 1 for all k. Thus, we may assume that s ≥ 2 and n ≥ k ≥ 3.

By Lemma 2.3,

depth Sk/I (s)
k ∈ {depth(Sk/(I (s)

k , xk yk)), depth(Sk/I (s)
k : xk yk)}.

By Lemma 2.11, I (s)
k : xk yk = I (s−1)

k . Thus, by induction, it suffices to prove that

depth Sk/(I (s)
k , xk yk) ≥ k − 1.

We have J = (I (s)
k , xk yk)= (J, xk)∩(J, yk). The conclusion follows from induction

on k and Lemma 2.1. □

The inequality in Theorem 1.1 might be strict. We will now define a finer
invariant of G which we conjecture to be equal to the stable value of depth of
symbolic powers of I (G). Let H = H1 ∪ · · · ∪ Hc ∪ {p1, . . . , pt } be a maximal
induced bipartite subgraph of G where H1, . . . , Hc are connected components of H
with at least one edge and p1, . . . , pt are isolated points. We say that {pi1, . . . , piu }

are clustered if there exists v ∈ V (G) \ V (H) such that the induced subgraph
of G on {v, pi1, . . . , piu } is a bouquet. Let bouG(H) be the smallest number b
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such that the set {p1, . . . , pt } can be clustered into b bouquets in G. We call
c′(H) = c + bouG(H) the number of restricted connected components of H .

Definition 3.4. Let G be a simple graph. The restricted bipartite connectivity
number of G is defined by

bc′(G) = min{c′(H) | H ∈ B(G)}.

We need a preparation lemma to prove Theorem 1.5.

Lemma 3.5. Let a = (a1, . . . , an) ∈ Nn be such that ai ≥ 1 for all i = 1, . . . , n. Let
Wa be a graph whose vertex set and edge set are

V (Wa) = {x1, . . . , xn, y1,1, . . . , y1,a1, . . . , yn,1, . . . , yn,an },

E(Wa) = {{xi , xj }, {xi , yi,ℓ} | for all i, j, ℓ such that 1 ≤ i ̸= j ≤ n, 1 ≤ ℓ ≤ ai }.

Then

I (Wa)
(n)

: (x1 · · · xn)

= I (Wa) + (y1,1, . . . , y1,a1)(y2,1, . . . , y2,a2) · · · (yn,1, . . . , yn,an ).

Proof. For simplicity of notation, we set

X = {x1, . . . , xn} and Y = {yi, j | i = 1, . . . , n, j = 1, . . . , ai }.

We also denote I = I (Wa) and

J = I (Wa) + (y1,1, . . . , y1,a1)(y2,1, . . . , y2,a2) · · · (yn,1, . . . , yn,an ).

For each C ⊆ V (Wa), let mC =
∏

x∈C x be a monomial in

S = k[x1, . . . , xn, y1,1, . . . , y1,a1, . . . , yn,1, . . . , yn,an ].

Since Wa is a chordal graph, by [Sullivant 2008, Theorem 3.10], we have

(3-2) I (n)
=

(
mC1 · · · mCt |C1, . . . , Ct are cliques of Wa and

t∑
i=1

(|Ci |−1)=n
)

.

The cliques C1, . . . , Ct are not necessarily distinct. In Wa, C ⊆ V (Wa) is a clique if
and only if either C ={xi , yi, j } for some i = 1, . . . , t and j = 1, . . . , ai or C ⊆ X . In
particular, (x1 · · · xn)e ∈ I (n) for all edges e of Wa and (x1 y1, j1) · · · (xn yn, jn ) ∈ I (n)

for all j1, . . . , jn such that 1 ≤ jℓ ≤ aℓ. Hence,

(3-3) J ⊆ I (Wa)
(n)

: (x1 · · · xn).

We now prove by induction on n the reverse containment

(3-4) I (Wa)
(n)

: (x1 · · · xn) ⊆ J.
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The base case n = 2 is clear. Thus, assume that n ≥ 3. Let C1, . . . , Ct be cliques
of Wa such that

∑t
i=1(|Ci | − 1) = n. Let M = mC1 · · · mCt and f = x1 · · · xn . It

suffices to prove that M/gcd(M, f ) ∈ J . Since |Ci | ≤ n for all i = 1, . . . , t , we
must have t ≥ 2. We have two cases.

Case 1. Ci ∩ Y = ∅ for all i = 1, . . . , t . In this case, we have M ∈ I (Kn)
(n). By

Lemma 2.12, we deduce that M/gcd(M, f ) ∈ I (Kn) ⊆ I (Wa).

Case 2. Ci ∩ Y ̸= ∅ for some i ∈ {1, . . . , t}. Since Y is the set of leaves, we
deduce that |Ci | = 2. For simplicity, we assume that C1 = {x1, y1,1}. If there
exists a clique Ci for some i = 2, . . . , t such that C1 ∩ Ci ̸= ∅, then we must
have x1 ∈ C1 ∩ Ci . In particular, we deduce that x1 y1,1 | M/gcd(M, f ). Hence,
M/gcd(M, f ) ∈ J . Thus, we may assume that Ci ∩ C1 = ∅ for all i = 2, . . . , t . In
other words, Ci ⊆ X ′

∪ Y ′ where

X ′
= {x2, . . . , xn} and Y ′

= {yi, j | i = 2, . . . , n, j = 1, . . . , ai }.

Furthermore, we have
∑t

i=2(|Ci | − 1) = n − 1. By equation (3-2), we deduce that
M ′

= mC2 · · · mCt ∈ I (Wa′)(n−1), where a′
= (a2, . . . , an) and Wa′ is the whisker

graph obtained by gluing ai leaves to the vertex i of the complete graph on {2, . . . , n}.
Since y1,1 does not divide f , we deduce that y1,1(M ′/gcd(M ′, f ′)) | M/gcd(M, f ),
where f ′

= x2 · · · xn . By induction on n, the conclusion follows. □

Proof of Theorem 1.5. We may assume that a1 ≥ a2 ≥ · · · ≥ an ≥ 1. We keep the
notations as in Lemma 3.5.

For ease of reading, we divide the proof into several steps.

Step 1. bc′(Wa) = n − 1. As in the proof of Proposition 1.2, we deduce that a
maximal induced bipartite subgraph H of Wa is an induced subgraph of Wa on
Y ∪ {xi , xj } for some i ̸= j . For such H , we have c(H) = |a| − (ai + aj ) + 1
but c′(H) = n − 1 as {yℓ,1, . . . , yℓ,aℓ

} can be clustered into a bouquet in G for all
ℓ = 1, . . . , n. Thus, bc(Wa) = a3 + · · · + an + 1 and bc′(Wa) = n − 1.

Step 2. depth S/I (Wa)
(s)

≥ n − 1 for all s ≥ 1 and all a such that ai ≥ 1 for
i = 1, . . . , n.

First, assume that s = 1. By Lemma 2.10, depth S/I (Wa) = a2 + · · · + an + 1.
When a1 = · · · = an = 1, the conclusion follows from Proposition 1.2. Thus, we
may assume that s ≥ 2 and a1 ≥ 2. By induction, Lemmas 2.3 and 2.11, it suffices
to prove that

depth S/(I (Wa)
(s), x1 y1,a1) ≥ n − 1.

Let J = I (Wa)
(s). Then (J, x1 y1,a1) = (J, x1)∩(J, y1,a1). Let a′

= (a2, . . . , an)

and Wa′ the whisker graph obtained by gluing ai leaves to the vertex i of the
complete graph on {2, . . . , n}. We have

(J, x1) = (I (Wa′)(s), x1) and (J, x1, y1,a1) = (I (Wa′)(s), x1, y1,a1).
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By Lemma 2.4,

depth S/(J, x1) = a1 + depth R/I (Wa′)(s),

depth S/(J, x1, y1,a1) = a1 − 1 + depth R/I (Wa′)(s),

where R = k[x2, . . . , xn, y2,1, . . . , y2,a2, . . . , yn,1, . . . , yn,an ]. By induction, both
terms are at least n − 1. Finally, we have

(J, y1,a1) = (I (Wa′′ )(s), y1,a1),

where a′′

= (a1 − 1, a2, . . . , an). Hence,

depth S/(J, y1,a1) = depth T/I (Wa′′ )(s),

where T = k[x1, . . . , xn, y1,1, . . . , y1,a1−1, . . . , yn,1, . . . , yn,an ]. Thus, the conclu-
sion of Step 2 follows from induction and Lemma 2.1.

Step 3. depth S/I (Wa)
(s)

≤ n − 1 for all s ≥ n.
By Lemmas 2.2 and 2.11, it suffices to prove that

depth S/I (Wa)
(n)

: (x1 · · · xn) ≤ n − 1.

Let J = I (Wa)
(n)

: (x1 · · · xn). By Lemma 3.5, we have that

J = I (Wa) + (y1,1, . . . , y1,a1)(y2,1, . . . , y2,a2) · · · (yn,1, . . . , yn,an ).

Therefore, the Stanley–Reisner complex 1(J ) of J has exactly n facets

Fi = {xi } ∪ {y j,ℓ | j ̸= i, ℓ = 1, . . . , aj }.

Hence, F1 ∩ · · · ∩ Fn = ∅ and for any j , we have

F1 ∩ · · · ∩ F j−1 ∩ F j+1 ∩ · · · ∩ Fn = {y j,1, . . . , y j,aj }.

Therefore, the nerve complex of 1(J ) is isomorphic to the n − 2-sphere. By
Theorem 2.8, H̃n−2(1(J ); k) ̸= 0. By Lemma 2.7, the conclusion follows. □

Remark 3.6. (1) The notion of maximal bipartite subgraphs of a graph has been
studied by many researchers as early as in [Erdős 1965; Malle 1982]. They are
interested in finding the maximum number of edges of a maximal bipartite subgraph
of G.

(2) In general, the problem of finding a maximum induced bipartite subgraph of a
graph is NP-complete [Lewis and Yannakakis 1980]. Nonetheless, we do not know
if the problem of computing the bipartite connectivity number or restricted bipartite
connectivity number is NP-complete.
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Remark 3.7. (1) The Cohen–Macaulay property, or depth of the edge ideal of a
graph might depend on the characteristic of the base field. For example, consider
the following ideal in [Villarreal 2015, Exercise 5.3.31]:

I = (x1 x3, x1 x4, x1 x7, x1 x10, x1 x11, x2 x4, x2 x5, x2 x8, x2 x10, x2 x11,

x3 x5, x3 x6, x3 x8, x3 x11, x4 x6, x4 x9, x4 x11,

x5 x7, x5 x9, x5 x11, x6 x8, x6 x9, x7 x9, x7 x10, x8 x10).

Then
depth S/I =

{
2 if char k = 2,

3, otherwise.

But depth S/I (s)
= 1 for all s ≥ 2, regardless of the characteristic of the base field k.

(2) By the result of Trung [2016], the stable value of depth of powers of edge ideals
of graphs does not depend on the characteristic of the base field k. If Conjecture 1.4
holds, the stable value of depth of symbolic powers of edge ideals also does not
depend on the characteristic of the base field k. This is in contrast to the asymptotic
behavior of the regularity of (symbolic) powers of edge ideals as [Minh and Vu
2022, Corollary 5.3] shows that the linearity constant of the regularity function of
(symbolic) powers of edge ideals of graphs might depend on the characteristic of
the base field k.

4. Depth of symbolic powers of edge ideals of cycles

In this section, we compute the depth of symbolic powers of edge ideals of cycles.
The purpose of this is twofold. First, together with Proposition 1.2, this gives the
first classes of nonbipartite graphs where one computes explicitly the depth of
symbolic powers of their edge ideals. Second, this shows that the stabilization index
of depth of symbolic powers of G is tightly connected to the stabilization index of
depth of powers of maximal induced bipartite subgraphs of G.

We fix the following notation. Let S = k[x1, . . . , xn] and Cn be a cycle of
length n. For each i = 1, . . . , n − 1, we denote ei = xi xi+1. Let

ϕ(n, t) =

⌈
n−t+1

3

⌉
.

We recall the following results (Lemmas 3.4, 3.10, 3.11, and Theorem 1.1) from
[Minh et al. 2023].

Lemma 4.1. Let H be any subgraph of Pn . Then, for any positive integer t with
t < n, we have that

depth
(
S/(I (Pn)

t
+ I (H))

)
≥ ϕ(n, t).

Lemma 4.2. Let H be a nonempty subgraph of Cn . Then for t ≥ 2, we have that

depth
(
S/(I (Cn)

t
+ I (H))

)
≥ ϕ(n, t).
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Lemma 4.3. Assume that I = I (Cn) and t ≤ n − 2. Then

depth
(
S/(I t

: (e2 · · · et))
)
≤ ϕ(n, t).

Theorem 4.4. Let I (Cn) be the edge ideal of a cycle of length n ≥ 5. Then

depth(S/I (Cn)
t) =


⌈ n−1

3

⌉
if t = 1,⌈ n−t+1

3

⌉
if 2 ≤ t <

⌈n+1
2

⌉
,

1 if n is even and t ≥
n
2 + 1,

0 if n is odd and t ≥
n+1

2 .

Now, assume that n = 2k + 1 where k ≥ 2 is a positive integer. For a positive
integer s ∈ N, we write s = a(k + 1) + b for some a, b ∈ N and 0 ≤ b ≤ k. Let
f = x1 · · · xn . By [Gu et al. 2020, Theorem 3.4], we have

(4-1) I (Cn)
(s)

=

a∑
j=0

I (Cn)
s− j (k+1) f j .

We now establish some preparation results.

Lemma 4.5. Assume that I = I (Cn), ei = xi xi+1 for all i = 1, . . . , n − 1. Then
for all s ≤ n − 2, we have

depth S/I (s)
≤ depth S/(I (s)

: e2 · · · es−1) ≤ ϕ(n, s).

Proof. Let f = x1 · · · xn . By (4-1), we have that I (s)
= I s when s ≤ k. Now, assume

that k + 1 ≤ s ≤ n − 2 = 2k − 1. By (4-1), we have that

I (s)
= I s

+ f I s−k−1.

Since f/gcd( f, e2 · · · es−1) ∈ I ⊆ I s
: (e2 · · · es−1), we deduce that

I (s)
: (e2 · · · es−1) = I s

: (e2 · · · es−1).

The conclusion follows from Lemma 4.3. □

Lemma 4.6. Let f = x1 · · · xn . Then for all integer s such that k + 1 ≤ s ≤ n − 2,

I (s)
: f = I s−k−1.

Proof. Let p1, . . . , pt be the associated primes of I . Then

I (s)
= ps

1 ∩ · · · ∩ ps
t .

Since pi is generated by k +1 variables for all i = 1, . . . , t , we have ps
i : f = ps−k−1

i .
Hence, I (s)

: f = I (s−k−1)
= I s−k−1 since s ≤ 2k − 1. □

We are now ready for the proof of Theorem 1.6.
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Proof of Theorem 1.6. By (4-1) and Theorem 4.4, it remains to consider the cases
where k + 1 ≤ s ≤ 2k − 1. Let f = x1 · · · xn . By Lemmas 2.3, 4.5, 4.6, and
Theorem 4.4, it suffices to prove that

(4-2) depth(S/(I (s)
+ f )) ≥ ϕ(n, s).

Write f = e1 f1 where f1 = x3 · · · xn . We have I (s)
+ f = (I (s), e1)∩(I (s), f1). For

each i = 1, . . . , k −1, we can write fi = e2i+1 fi+1. By repeated use of Lemma 2.1
and the fact that for any subgraph H of Cn we have

I (s)
+ I (H) + fi = (I (s)

+ I (H) + (e2i+1)) ∩ (I (s)
+ I (H) + ( fi+1)).

It suffices to prove the following two claims.

Claim 1. For any nonempty subgraph H of Cn , we have

depth S/(I (s)
+ I (H)) ≥ ϕ(n, s).

Claim 2. For any (possibly empty) subgraph H of Cn , we have

depth
(
S/(I (s)

+ I (H) + (xn−2xn−1xn))
)
≥ ϕ(n, s).

Proof of Claim 1. Since k + 1 ≤ s ≤ 2k − 1, by (4-1), we have that

I (s)
= I s

+ f I s−k−1.

For any nonempty subgraph H of Cn , we have f ∈ I (H). Therefore, we have
I (s)

+ I (H) = I s
+ I (H). The conclusion follows from Lemma 4.2.

Proof of Claim 2. Let J = I (s)
+ I (H) + (xn−2 xn−1 xn) and e = xn−2 xn−1. Note

that J + (e) can be expressed as I (s)
+ I (H1) for some subgraph H1 of Cn and

J : e = I (Pn−1)
s−1

+ I (H ′) + (xn) where H ′ is a subgraph of Pn−1. The claim
follows from Lemma 2.3, Claim 1, and Lemma 4.1. The conclusion follows. □

Remark 4.7. For cycles C2k of even length, by the result of Simis, Vasconcelos,
and Villarreal [1994], I (C2k)

(s)
= I (C2k)

s for all s ≥ 1. The depth of powers of
the edge ideal of C2k has been computed in [Minh et al. 2023, Theorem 1.1].
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