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COLLAPSED LIMITS OF
COMPACT HEISENBERG MANIFOLDS

WITH SUB-RIEMANNIAN METRICS

KENSHIRO TASHIRO

We show that every collapsed Gromov–Hausdorff limit of compact Heisenberg
manifolds endowed with left-invariant Riemannian/sub-Riemannian metrics is
isometric to a flat torus. We say that a sequence of sub-Riemannian manifolds
collapses if their total measure with respect to Popp’s volume converges to zero.

1. Introduction

A sub-Riemannian manifold is a triple (M,D, g), where M is a smooth manifold,
D is a subbundle of the tangent bundle, and g is a metric on D. In the same way to
Riemannian manifolds, we can put a length structure and the associated distance
function on bracket generating sub-Riemannian manifolds (see Definition 2.2).
Sub-Riemannian manifolds appear as Gromov–Hausdorff limits of sequences of
Riemannian manifolds. In general their sectional, Ricci and scalar curvature diverge
as they converge to (non-Riemannian) sub-Riemannian manifolds. However some
sub-Riemannian manifolds have the measure contraction property which reflects
the Ricci curvature lower bound in a sense [Juillet 2009; Rifford 2013; Rizzi 2016;
Barilari and Rizzi 2018]. These results lead us to study sub-Riemannian manifolds
as examples of the singular Gromov–Hausdorff limit spaces.

In [Tashiro 2020], the author began to study the topological type of the Gromov–
Hausdorff limit space of a sequence of (sub-)Riemannian manifolds. Here we use the
notation (sub-)Riemannian metrics to cover both Riemannian and (non-Riemannian)
sub-Riemannian metrics. Let Hn be the n-Heisenberg Lie group, hn the associated
Lie algebra, and 0 a lattice in Hn . A quotient space 0\Hn is called a compact
Heisenberg manifold. Let v be a subspace in hn and ⟨ ·, · ⟩ a scalar product on v.
It induces the left-invariant sub-Riemannian structure on Hn . Since the induced
geodesic distance on Hn has the isometric action 0 from the left, we obtain a quotient
distance on 0\Hn . We also call such a quotient distance on 0\Hn left-invariant.
The author studied noncollapsed limits of compact Heisenberg manifolds with left-
invariant (sub-)Riemannian metrics. Here we say that a sequence is noncollapsed if
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the total measure with respect to Popp’s volume have a strictly positive lower bound.
Popp’s volume is a generalization of a canonical volume form of a Riemannian
manifold (see Section 2C). We showed that the noncollapsed limit of a sequence of
compact Heisenberg manifolds with left-invariant (sub-)Riemannian metrics are
again diffeomorphic to a compact Heisenberg manifold of the same dimension.

In this paper, we study collapsed Gromov–Hausdorff limits of compact Heisenberg
manifolds with left-invariant (sub-)Riemannian metrics. We say that a sequence of
(sub-)Riemannian manifolds collapses if the total measure with respect to Popp’s
volume converges to zero. It complements our previous result [Tashiro 2020].

Theorem 1.1 (Main result). Let {(0k\Hn, distk)}k∈N be a sequence of compact
Heisenberg manifolds endowed with left-invariant (sub-)Riemannian metrics. As-
sume that this sequence converges in the Gromov–Hausdorff topology with a di-
ameter upper bound D > 0 and the total measure with respect to Popp’s measure
converges to zero. Then the limit space is isometric to a flat torus of lower dimension.

The idea of the proof is the following. It is well known that a compact Heisenberg
manifold has a circle bundle structure S1

→ 0\Hn → T2n . We show that if a
sequence collapses, then the circle fiber also collapses to a point. Once we show
that the fibers collapse, then the Gromov–Hausdorff limit is isometric to the limit
of the base tori with the quotient distances. It is also known that a Gromov–
Hausdorff limit of tori with flat metrics is isometric to a flat torus [Bettiol et al.
2018, Proposition 3.1]. This concludes the theorem.

2. Preliminaries from sub-Riemannian Lie group

In this section we prepare notation on sub-Riemannian metrics on Lie groups.

2A. Sub-Riemannian structure. Let G be a connected Lie group, g the associated
Lie algebra, v ⊂ g a subspace and ⟨ ·, · ⟩ a scalar product on v. For x ∈ G, denote
by L x : G → G the left translation by x . Define a sub-Riemannian metric on G by

Dx = L x∗v, gx(u, v) = ⟨L−1
x∗

u, L−1
x∗

v⟩.

Such a sub-Riemannian metric (D, g) is called left-invariant. We sometimes write
a left-invariant sub-Riemannian metric by (v, ⟨ ·, · ⟩). Moreover, if dim(g/v) = k,
we say that a sub-Riemannian metric (v, ⟨ ·, · ⟩) is corank k. Notice that if v = g,
i.e., corank 0, then (g, ⟨ ·, · ⟩) is a Riemannian metric.

Remark 2.1. From now on we shall declare the corank of sub-Riemannian metrics.
If we do not declare the corank, then the word “sub-Riemannian metric” cover
sub-Riemannian metrics of all corank.
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For simplicity, we shall consider a Lie group with a left-invariant sub-Riemannian
metric (G, v, ⟨ ·, · ⟩). The associated distance function is given as follows. We say
that an absolutely continuous path c : [0, 1] → G is admissible if ċ(t) ∈ Lc(t)∗v a.e.
t ∈ [0, 1]. We define the length of an admissible path by

length(c) =

∫ 1

0

√
⟨ċ(t), ċ(t)⟩ dt.

For x, y ∈ G, define the distance function by

dist(x, y) = inf{length(c) | c(0) = x, c(1) = y, c is admissible}.

In general not every pair of points in G is joined by an admissible path. This
implies that the value of the function dist may be the infinity. The following bracket
generating condition ensures that any two points are joined by an admissible path.

Definition 2.2 (bracket generating distribution). For a sub-Riemannian Lie group
(G, v, ⟨ ·, · ⟩) and an integer i ∈ N, let vi be the subspace in g inductively defined by

v1
= v, vi+1

= v+ [v, vi
].

We say that a subspace v is bracket generating if there is r ∈ N such that vr
= g.

We say (G, v, ⟨ ·, · ⟩) is r -step if vr−1 ⊊ vr
= g.

Theorem 2.3 (See, e.g., Theorem 3.31 in [Agrachev et al. 2020]). Let (G, v, ⟨ ·, · ⟩)

be a sub-Riemannian Lie group with a bracket generating distribution. Then the
following two assertions hold:

(1) (G, dist) is a metric space.

(2) The topology induced by dist is equivalent to the manifold topology.

In particular, dist : G × G → R is continuous.

Remark 2.4. Since the sub-Riemannian structure is left-invariant, the distance
function is also left-invariant, that is, dist(hx, hy) = dist(x, y) for all h, x, y ∈ G.

2B. Length minimizer. In sub-Riemannian geometry, there are two types of length
minimizers; normal geodesics and abnormal geodesics. Normal geodesics are
characterized as solutions to a specific differential equation, called the Hamiltonian
equation. On the other hand, abnormal geodesics are not solutions to that equation.
It sometimes appear in sub-Riemannian geometry, however, it is known that there
is no nontrivial (i.e., nonconstant) abnormal geodesic if v is fat (see [Montgomery
2002]). Here we say that a bracket generating subspace v ⊂ hn is fat if for all
U ∈ v \ {0}, we have v+[U, v] = g. In the next section, we shall check that if G is
the Heisenberg group, then every bracket generating subspace is fat. Therefore we
omit the explanation of abnormal geodesics.
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We say that a basis {U1, . . . , Un} of g is adapted if {U1, . . . , Um} is an orthonor-
mal basis of a sub-Riemannian metric (v, ⟨ ·, · ⟩). Let H : T ∗G → R be the function
defined by

H(λ) =
1
2

m∑
i=1

p(L x∗Ui )
2 (λ = (x, p) ∈ T ∗G).

This function is called the sub-Riemannian Hamiltonian.
We say that a Lipschitz curve λ = (x, p) : [0, T ] → T ∗G is a solution to the

Hamiltonian equation if it satisfies

(1) ẋ(t) =
∂ H
∂p

, ṗ(t) = −
∂ H
∂x

.

Such a curve λ(t) is called a normal extremal, and its projection x(t) is called a
normal geodesic. It is known that every minimizer in sub-Riemannian manifold is
either normal or abnormal geodesic. In particular, if a subspace v is fat, then any
length minimizer is a normal geodesic.

2C. Popp’s volume. On a Riemannian Lie group (G, g), one has a canonical
volume form defined by

dvolR = ν1 ∧ · · · ∧ νn,

where {ν1, · · · νn} is a dual coframe of an orthonormal basis. The induced measure
m(�) :=

∣∣∫
�

dvolR
∣∣ (� ⊂ G) is called the volume measure.

In sub-Riemannian geometry, we also have a canonical volume form, called
Popp’s volume introduced in [Montgomery 2002]. For simplicity, we only consider
the 2-step case.

We do not introduce the original definition of Popp’s volume, however, we define
it with local coordinates given in [Barilari and Rizzi 2013]. Let U1, . . . , Un be an
adapted frame. Define the constant cl

i j by

[Ui , U j ] =

n∑
l=1

cl
i jUl .

We call them the structure constants. We define the (n − m) square matrix B by

Bhl =

m∑
i, j=1

ch
i j c

l
i j .

Theorem 2.5 [Barilari and Rizzi 2013, Theorem 1]. Let U1, . . . , Un be a local
adapted frame, and ν1, . . . , νn the dual coframe. Then Popp’s volume dvols R is
locally written by

dvols R = (det B)−
1
2 ν1

∧ · · · ∧ νn.

The induced measure m(�) :=
∣∣∫

�
dvols R

∣∣ (� ⊂ G) is called Popp’s measure.
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Remark 2.6. If a sub-Riemannian metric is corank 0, i.e., 1-step, then Popp’s
volume coincides with the canonical volume form. Indeed, an adapted frame of
corank 0 sub-Riemannian metric is an orthonormal basis.

3. Compact Heisenberg manifolds

In this section, we recall fundamental properties on compact Heisenberg manifolds.

3A. Heisenberg groups. For n ∈ N, the n-Heisenberg group Hn is the (2n+1)-
dimensional Lie group diffeomorphic to Cn

× R with the group product law

(w, z)(w′, z′) =
(
w + w′, z + z′

+
1
2Im(w · w′)

)
,

where w · w′ is the Hermitian product on Cn and Im denotes the imaginary part.
We shall denote the associated Lie algebra by hn .

We fix the coordinates of Hn ≃ Cn
× R by

(w, z) = (x1, . . . , xn, y1, . . . , yn, z),

where w = x⃗ + y⃗
√

−1. We also fix the basis {X1, . . . , Xn, Y1, . . . , Yn, Z} of the
Lie algebra hn by

X i = ∂xi −
1
2 yi∂z, Yi = ∂yi +

1
2 xi∂z, Z = ∂z.

A straightforward computation shows that [X i , Yi ] = Z for all i = 1, . . . , n and the
other brackets are zero.

For U ∈ hn , let φt
U : Hn → Hn be the flow of the vector field U at time t . The

exponential map exp : hn → Hn is defined by exp(U ) := φ1
U (e), where e is the

identity element. It is well defined since a left-invariant vector field is complete. It is
well known that the exponential map on the Heisenberg group is a diffeomorphism.
This fact allows us to identify the Heisenberg group Hn to its Lie algebra hn by

exp : hn ∋

n∑
i=1

(xi X i + yi Yi ) + zZ ∼
7−→ (x1, . . . , xn, y1, . . . , yn, z) ∈ Hn.

Let (v, ⟨ ·, · ⟩) be a left-invariant sub-Riemannian metric on Hn . A subspace v is
bracket generating if and only if

(2) v+ Span(Z) = hn.

In particular, the corank of a bracket generating subspace is 0 or 1. From now on
we always assume the bracket generating condition (2). Moreover, by (2), we can
easily check that if a subspace v ⊂ hn satisfies bracket generating condition, then it
is fat. Therefore the sub-Riemannian Heisenberg group does not have nontrivial
abnormal minimizers.
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Let 0 < Hn be a lattice in Hn , that is, a discrete cocompact subgroup. Since a sub-
Riemannian metric (v, ⟨ ·, · ⟩) is left-invariant, the left multiplication by 0 induces
an isometric action on Hn . Therefore we can define the sub-Riemannian metric
on 0\Hn via the quotient map. We shall denote such a quotient sub-Riemannian
metric on 0\Hn by dist.

3B. Isometry classes of compact Heisenberg manifolds. In this section, we con-
sider isometry classes of left-invariant sub-Riemannian metrics on a compact
Heisenberg manifold 0\Hn . The detail is in [Tashiro 2020].

First of all, we recall the isomorphism classes of compact Heisenberg manifolds.
Let Dn be the set of n-tuples of integers r = (r1, . . . , rn) such that ri divides ri+1

for all i = 1, . . . , n. For r ∈ Dn , let 0r < Hn be the discrete subgroup defined by

0r = ⟨r1 X1, . . . , rn Xn, Y1, . . . , Yn, Z⟩.

This gives a classification of lattices in the Heisenberg Lie group.

Theorem 3.1 [Gordon and Wilson 1986, Theorem 2.4]. For any uniform lattice
0 < Hn , there is an automorphism of Hn which sends 0 onto 0r for some r ∈ Dn .
Moreover, 0r is isomorphic to 0s if and only if r = s.

Next we consider isometry classes of 0r\Hn for a fixed lattice 0r . Fix a scalar
product ⟨ ·, · ⟩0 on hn such that its orthonormal basis is {X1, . . . , Yn, Z}. Let A be a
matrix of the form

A =

(
Ã 0
0 ρA

)
,

where Ã ∈GL2n(R) and ρA ∈ R. Moreover let Jn ∈Skew2n(R) be a skew-symmetric
matrix given by

Jn =

(
O In

−In O

)
,

where In is the identity matrix of size n. We say that a matrix A is of canonical
form if

t Ã Jn Ã =

(
O diag(d1(A), . . . , dn(A))

− diag(d1(A), . . . , dn(A)) O

)
,

where d1(A), . . . , dn(A) are nondecreasing positive numbers such that the imaginary
numbers ±

√
−1d1, . . . , ±

√
−1dn are the eigenvalues of tÃ Jn Ã.

For a matrix A of canonical form, define the scalar product ⟨ ·, · ⟩A on Im(A) by
the norm

∥u∥A := min{∥w∥0 | u = Aw}.
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It is equivalent to the following definition: ⟨ ·, · ⟩A is the scalar product which has
an orthonormal basis { ÃX1, . . . , ÃYn, ρA Z}. A pair (Im(A), ⟨ ·, · ⟩A) gives a sub-
Riemannian metric on Hn of corank 0 (resp. corank 1) if ρA ̸= 0 (resp. ρA = 0). If
ρA = 0, then the subspace Im(A) is v0, where

v0 := Span{X1, . . . , Xn, Y1, . . . , Yn}.

These types of metrics cover all isometry classes of left invariant (sub-)Riemannian
metrics on compact Heisenberg manifolds.

Theorem 3.2 [Tashiro 2020, Theorem 3.4]. For any compact Heisenberg manifold
with a bracket generating left-invariant sub-Riemannian metric (0\Hn, v, ⟨ ·, · ⟩),
there exists an n-tuple r ∈ Dn and a matrix A of canonical form such that
(0r\Hn, Im(A), ⟨ ·, · ⟩A) is isometric to (0\Hn, v, ⟨ ·, · ⟩).

We shall denote the induced left-invariant distance function on Hn by distA and
a quotient distance on 0\Hn by distA.

3C. j -operator. We recall the j-operator which plays an important role in the
study of nilpotent Lie groups. Let Z∗

∈ h∗
n be the dual covector of the vector

Z ∈ [hn, hn] ⊂ hn . For a matrix A of canonical form, define a skew symmetric
operator j (A) : v0 → v0 by

⟨ j (A)(X), Y ⟩A = Z∗([X, Y ]).

Lemma 3.3 [Tashiro 2020, Lemma 4.1]. The operator j (A) : v0 → v0 has a matrix
representation tÃ Jn Ã in the basis {AX1, . . . , AXn, AY1, . . . , AYn}.

The positive number dn can be regarded as the ℓ∞-norm of the matrix tÃ Jn Ã
as an element in the Euclidean space R4n2

. We also mention its ℓ2-norm, the
Hilbert–Schmidt norm of matrices.

Definition 3.4. For a matrix A of canonical form, we define δ(A) = ∥
tÃ Jn Ã∥H S .

The following lemma is useful for later calculations.

Lemma 3.5 [Tashiro 2020, Lemma 5.1]. For a matrix A of canonical form, we have

(1) δ(A) =

√
2

∑n
i=1 di (A)2,

(2) |det( Ã)| =
∏n

i=1 di (A).

3D. Geodesics on Heisenberg groups. Let A be a matrix of canonical form. For
i = 1, . . . , n, define the functions hxi , h yi , hz : T ∗Hn → R by

hxi (λ) = p(Lg∗ AX i ), h yi (λ) = p(Lg∗ AYi ), hz(p) = p(Lg∗Z)
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for λ = (g, p) ∈ T ∗Hn . Suppose that an admissible path

γ (t) =

n∑
i=1

xi (t)AX i + yi (t)AYi + z(t)Z

is length minimizing. By the Hamiltonian equation (1) with a linear modification,
there is a lift λ(t) of γ (t) such that

ḣxi = di (A)hzh yi (i = 1, . . . , n),

ḣ yi = −di (A)hzhxi (i = 1, . . . , n),

ḣz = 0,

ẋi = hxi (i = 1, . . . , n),

ẏi = h yi (i = 1, . . . , n),

ż =
1
2

∑n
i=1 di (A)(xi h yi − yi hxi ) + ρ2

A pz,

where we write

hxi (t) = hxi ◦ λ(t), h yi (t) = h yi ◦ λ(t), hz(t) = hz ◦ λ(t).

By proving this equation, we obtain the following parametrization of length mini-
mizers.

Lemma 3.6 ([Eberlein 1994, Proposition 3.5] for corank 0 and [Rizzi 2016,
Lemma 14] for corank 1 cases). Let A be a matrix of canonical form and λ : [0, T ]→

T ∗Hn be the normal extremal with the initial data

(hx1(0), . . . , h yn (0), hz(0)) = (px1, . . . , pyn , pz) ∈ T ∗

e Hn = h∗

n.

Then the associated normal geodesic γ is given as follows.
If pz ̸= 0, then(

xi (t)
yi (t)

)
=

1
pzdi (A)

(
sin(pzdi (A)t) cos(pzdi (A)t) − 1

− cos(pzdi (A)t) + 1 sin(pzdi (A)t)

) (
pxi

pyi

)
,

z(t) = ρ2
A pzt +

1
2pz

n∑
i=1

(
t −

1
pzdi (A)

sin(pzdi (A)t)
)

(p2
xi

+ p2
yi
).

Moreover, the normal geodesic fails to be length minimizing over the time

T =
2π

|pz|dim (A)
,

where im ∈ {1, . . . , n} is the minimum integer such that (pxi , pyi ) ̸= (0, 0).
If pz = 0, then (

xi (t)
yi (t)

)
=

(
pxi

pyi

)
t, z(t) ≡ 0.
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Remark 3.7. The initial data (px1, . . . , pyn ) is identified with the projection of
initial vector into v0 ⊂ hn = TeHn via the identification

R2n
∋ (px1, . . . , pyn ) ≃

n∑
i=1

(pxi AX i + pyi AYi ) ∈ v0.

For later arguments, we give an explicit distance from the identity to points in
the horizontal direction and the vertical direction.

Lemma 3.8 ([Eberlein 1994, Proposition 3.11] for corank 0 and [Tashiro 2020,
Lemma 5.2] for corank 1 cases). For U ∈ v0 and V ∈ [hn, hn], we have

distA(e, U + V ) ≥ ∥U∥A.

Moreover, the equality holds if and only if V = 0.

Lemma 3.9. For z0 ∈ R, the distance from e to z0 Z = (0, . . . , 0, z0)∈ Hn is given by

distA(e, z0 Z) = min
{∣∣∣∣ z

ρA

∣∣∣∣ , 2
dn(A)

√
|z0|πdn(A) − π2ρ2

A

}
,

with the convention
∣∣∣ z0

ρA

∣∣∣ = +∞ if ρA = 0,

2
dn(A)

√
|z0|πdn(A) − π2ρ2

A = +∞ if |z0|πdn(A) − π2ρ2
A < 0.

Proof. For the simplicity we assume z0 > 0. First let us consider a unit speed
geodesic of the initial data (0, . . . , 0, pz). Then a unit speed normal geodesic
γ : [0, T ] → Hn with γ (T ) = z0 Z needs to satisfy{

z(T ) = ρ2
A pzT = z0,

|pzρA| = 1

Then the length is equal to the time T = |z0/ρA| with the convention |z0/ρA| = +∞

if ρA = 0, i.e., sub-Riemannian metric of corank 1.
Next we consider geodesics of the initial data (px1, . . . , pyn ) ̸= 0. Since the

endpoint z0 Z is in the center [hn, hn], the initial data (px1, . . . , pyn ) ∈ R2q
≃ v0

need to be inside the eigenspace of ±
√

di (A) of jA (with the multiplicity), where
we use the identification

R2n
∋ (px1, . . . , pyn ) ≃

n∑
i=1

(pxi AX i + pyi AYi ) ∈ v0.

Indeed, by the parametrization of xi (t), yi (t) in Lemma 3.6, the geodesic ends at
[hn, hn] only if the frequency of the trigonometric function is the same. Moreover,
its length T = 2π/(|pz|di (A)) is independent of the choice of the initial data
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(px1, . . . , pyn ) as long as it belongs to the same eigenspace. Therefore we can
assume that the initial covector is (0, . . . , 0, pyi , 0, . . . , 0, pz). If such a normal
geodesic is unit speed and its endpoint is z0 Z , then it needs to satisfyz(T ) =

2πρ2
A

di (A)
+

π

p2
z di (A)

p2
yi

= z0,

p2
yi

+ (ρA pz)
2
= 1.

This equation has a solution only if z0 ≥ 2πρ2
A/di (A) with

pyi =

√
z0di (A) − 2πρ2

A

z0di (A) − πρ2
A

, pz =

√
π

z0di (A) − πρ2
A
.

Its length is
2π

pzdi (A)
=

2
√

π

di (A)

√
z0di (A) − πρ2

A.

Therefore the distance from e to z0 Z = (0, . . . , 0, z0) is the minimum of two values

min
{∣∣∣∣ z0

ρA

∣∣∣∣ , 2
√

π

d1(A)

√
z0d1(A) − πρ2

A, . . . ,
2
√

π

dn(A)

√
z0dn(A) − πρ2

A

}
= min

{∣∣∣∣ z0

ρA

∣∣∣∣ , 2
√

π

dn(A)

√
z0dn(A) − πρ2

A

}
,

where we use d1(A) ≤ · · · ≤ dn(A). □

3E. Popp’s volume form on Heisenberg group. In this section, we discuss Popp’s
volume form on the Heisenberg Lie group.

For a matrix A of canonical form with ρA ̸= 0, denote by dvolR(A) the canon-
ical Riemannian volume form. Since it is the wedge of the dual coframe of an
orthonormal frame, we have

dvolR(A) = ρ−1
A (det Ã)−1 X∗

1 ∧ · · · ∧ Y ∗

n ∧ Z∗.

In particular, the total measure of a Riemannian compact Heisenberg manifold
(0r\Hn, ⟨ ·, · ⟩A) is

(3) meas(0r\Hn, ⟨ ·, · ⟩A) :=

∣∣∣∣∫
0r\Hn

dvolR(A)

∣∣∣∣ =

n∏
i=1

ri |ρ
−1
A (det Ã)−1

|.

Next let A be a matrix of canonical form with ρA = 0. Denote by dvols R(A) Popp’s
volume associated to the sub-Riemannian metric (v0, ⟨ ·, · ⟩A).
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By the definition, the (i, j)-th entry of the matrix t Ã Jn Ã is the structure con-
stant ci j of the basis {AX1, . . . , AYn}, that is(

Z∗([AX i , AX j ]) Z∗([AX i , AY j−n])

Z∗([AYi−n, AX j ]) Z∗([AYi−n, AY j−n])

)
= (ci j ) =

t Ã Jn Ã =

(
O diag(d1(A), . . . , dn(A))

− diag(d1(A), . . . , dn(A)) O

)
.

By Theorem 2.5, Popp’s volume dvols R(A) is written by

dvols R(A) = δ(A)−1(det Ã)−1 X∗

1 ∧ · · · ∧ Y ∗

n ∧ Z∗.

In particular, the total measure of a sub-Riemannian compact Heisenberg
manifold (0r\Hn, v0, ⟨ ·, · ⟩A) is

(4) meas(0r\Hn, v0, ⟨ ·, · ⟩A) :=

∣∣∣∣∫
0r\Hn

dvols R(A)

∣∣∣∣ =

n∏
i=1

ri |δ(A)−1(det Ã)−1
|.

3F. The circle bundle structure. Fix a n-tuple of numbers r ∈ Dn . We recall a circle
bundle structure of a compact Heisenberg manifold 0r\Hn . Let P : Hn → hn → v0

be the composition of the logarithm map and the projection. Denote the image
of the lattice 0r by zr , which is again a lattice in v0 isomorphic to Z2n . Then one
obtains a surjective map P : 0r\Hn → zr\v0 such that the following diagram is
commutative:

Hn
P //

P0r

��

v0

Pzr

��

0r\Hn
P // zr\v0

Here the vertical arrows are the quotient map. The compact Heisenberg manifold
0r\Hn has a circle bundle structure by this map P . For each b ∈ zr\v0, we denote
by Fb the fiber over b.

Remark 3.10. Since a sub-Riemannian metric ⟨ ·, · ⟩A is left-invariant, the diameter
of a fiber is independent of the choice of a base point b. We shall denote the
diameter of a fiber by diam(FA).

The quotient metric on v0 has an orthonormal basis { ÃX1, . . . , ÃX2n}. Therefore
we shall denote the induced distance on v0 by dist Ã, and the quotient distance
on zr\v0 by dist Ã. In the next section, we use the circle bundle structure to show
that the Gromov–Hausdorff limit of compact Heisenberg manifolds is isometric to
that of the base flat tori.
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4. Gromov–Hausdorff limits of compact Heisenberg manifolds

4A. Collapse of the circle fiber. We say that a sequence of compact metric spaces
{Mk} converges to a compact metric space N if the Gromov–Hausdorff distance
dG H (Mk, N ) converges to 0. We do not use the original definition of dG H since it
is complicated. Instead of the original definition, we use the ϵ-approximation map
which is easier to compute.

Definition 4.1 [Fukaya 1990, Definition 1.1]. Let (M, dM), (N , dN ) be a compact
path metric spaces. For ϵ > 0, we say a map φ : M → N is an ϵ-Hausdorff
approximation if it satisfies the following:

(i) The ϵ neighborhood of φ(M) in N is N .

(ii) For u, v ∈ M . we have

|dM(u, v)− dN (φ(u), φ(v))| < ϵ.

It is known that if there is ϵ-Hausdorff approximation map between M, N , then
dG H (M, N ) < 2ϵ. Therefore if a metric space Mk has an ϵk-approximation to N
such that ϵk → 0, then the sequence {Mk} converges to N in the Gromov–Hausdorff
topology.

We can check that the quotient map P is an ϵ-approximation with ϵ equal to the
diameter of the fiber.

Lemma 4.2. The quotient map P : (0r\Hn, distA)→ zr\(v0, dist Ã) is a 2 diam(FA)-
approximation map.

Proof. Since the map P is surjective, we only need to check the almost isometric
embeddability (Definition 4.1(ii)).

Let u1, u2 ∈ 0r\Hn be points in the compact Heisenberg manifold. By definition
of the distance on the quotient space, there are v1, v2 ∈ 0r\Hn such that

distA(v1, v2) = dist Ã(P(u1), P(u2)).

By the triangle inequality, we have

|distA(u1, u2) − dist Ã(P(u1), P(u2))| ≤ distA(u1, v1) + distA(u2, v2)

≤ 2 diam(F).

This proves almost isometric embeddability. □

Proposition 4.3. Let (0r(k)\Hn, distAk ) be a sequence of compact Heisenberg mani-
folds which has a uniform upper bound of the diameter. Assume that the diameter of
the fibers diam(FAk ) converges to 0. Then its Gromov–Hausdorff limit is isometric
to that of base flat tori (zr\v0, dist Ãk

).
In particular, the limit is isometric to a flat torus of lower dimension.
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Proof. Since the diameter of the base flat tori is also uniformly bounded, we
can assume that the sequence of base flat tori subconverges to a flat torus (N , d)

(possibly a point). It is a consequence of [Bettiol et al. 2018, Proposition 3.1]. Then
there are ϵk-approximation map ϕk : (zr\v0, dist Ãk

) → (N , d). By Lemma 4.2, the
composition ϕk ◦ P is (2 diam(FAk )+ ϵk)-approximation. By the assumption, the
Gromov–Hausdorff limit of (0r(k)\Hn, distAk ) is isometric to (N , d). □

4B. Collapse of the fiber. Let {(0r(k)\Hn, distAk )} be a sequence of compact sub-
Riemannian Heisenberg manifolds with the diameter upper bound by D > 0. In
this section, we show that if the sequence collapses, then the diameter of the circle
fibers converge to zero.

The fiber over b ∈ zr\v0 is written by Fb = {0r(k)z0 Z · hb | z0 ∈ R}, where we
fix hb ∈ P−1

0r(k)
(P−1(b)) ⊂ Hn . In particular, the subset {z0 Z · hb | z0 ∈ [0, 1)} ⊂ Hn

is a representative of Fb. By the left-invariance of the restricted distance on Fb, its
diameter is the distance from hb to 1

2 Z · hb and is independent of the choice of hb.
The above argument shows the following lemma.

Lemma 4.4. The diameter of the fibers diam(FAk ) is given by

diam(FAk ) = distAk

(
e, 1

2 Z
)
.

Let us pass to the estimate of the diameter. First we consider a sequence
{0r(k)}k∈N such that r(k1) ̸= r(k2) for any k1 ̸= k2. This implies that the sequence
of numbers {rn(k)} diverges.

Proposition 4.5. Assume that diam(0r(k)\Hn, ⟨ ·, · ⟩Ak ) ≤ D and rn(k) diverge to
the infinity. Then the diameter of the fibers diam(FAk ) converge to zero.

Proof. Let γn,k =
1
2rn(k)Xn ∈ Hn . Since γn,k is on the plane v0, by Lemma 3.8,

a length minimizer from e to γn,k in Hn is the straight segment ℓ(t) := t Xn ,
t ∈

[
0, 1

2rn(k)
]
. Moreover its projection by P0r(k)

is a length minimizer from
0r(k)e to 0r(k)γn,k . Indeed, any element in 0r(k)γn,k is written by

rn(k)
(
m +

1
2

)
Xn + E,

where m ∈ Z and E is an element in hn ≃ Hn transverse to Xn . Clearly a length
minimizer from 0r(k)e to 0r(k)γn,k is realized when

m = 0, −1 and E = 0.

This shows that the projection of the straight segment ℓ(t) is length minimizing
in 0r\Hn .

Since the length of the straight segment ℓ(t) is
∥∥1

2rn(k)Xn
∥∥

Ak
, we obtain

(5)
∥∥ 1

2rn(k)Xn
∥∥

Ak
= distAk (e, γn,k) = distAk (0r(k)e, 0r(k)γn,k)

≤ diam(0r(k)\Hn, distAk ) ≤ D.
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By the same argument we also show that

(6)
∥∥1

2 Yn
∥∥

Ak
≤ D.

On the other hand, let c : [0, 4] → Hn be a path inductively defined by

c(t) =



−t
√

rn(k)

2
Xn for t ∈ [0, 1],

c(1) ·

(
−(t − 1)

1
√

2rn(k)
Yn

)
for t ∈ [1, 2],

c(2) ·

(
(t − 2)

√
rn(k)

2
Xn

)
for t ∈ [2, 3],

c(3) ·

(
(t − 3)

1
√

2rn(k)
Yn

)
for t ∈ [3, 4].

The endpoint of c is c(4) =
1
2 Z , and the length is

length(c) = ∥

√
2rn(k)Xn∥Ak +

∥∥∥∥√
2

rn(k)
Yn

∥∥∥∥
Ak

=

√
2rn(k)∥Xn∥Ak +

√
2

rn(k)
∥Yn∥Ak

≤

√
2rn(k)

2D
rn(k)

+

√
2

rn(k)
2D

=
4
√

2D
√

rn(k)
.

Here the third inequality follows from (5) and (6). Hence we obtain

diam(FAk ) = distAk

(
e, 1

2 Z
)
≤ length(c) ≤

4
√

2D
√

rn(k)
.

Since rn(k) diverges to the infinity, the diameters of the fibers converge to zero. □

Next we consider a sequence consisting of a fixed isomorphism type 0r\Hn . We
start from Riemannian case.

Proposition 4.6. Let {0r\Hn, distAk } be a sequence of compact Heisenberg man-
ifolds with left-invariant Riemannian metrics with the diameter upper bound. If
the total measure in the canonical Riemannian volume converges to zero, then the
diameter of the fibers diam(FAk ) converges to zero.

Proof. By (3), if the total measure converges to zero, then either/both of the
following two cases holds:

(a) |ρAk |
−1

→ 0, or

(b) |det( Ãk)|
−1

→ 0.
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In the case (a), by using Lemmas 3.9 and 4.4, we have

diam(FAk ) = distAk

(
e, 1

2 Z
)
= min

{∣∣∣∣ 1
2ρAk

∣∣∣∣ , 2
dn(Ak)

√
πdn(Ak)

2
− π2ρ2

Ak

}
≤

∣∣∣∣ 1
2ρAk

∣∣∣∣ → 0 (k → ∞).

In the case (b), by using Lemmas 3.5, 3.9 and 4.4, we have

diam(FAk ) = min
{∣∣∣∣ 1

2ρAk

∣∣∣∣ , 2
dn(Ak)

√
πdn(Ak)

2
− π2ρ2

Ak

}
≤

√
2π

dn(Ak)

≤

√
2π

n
√

|det( Ãk)|
→ 0 (k → ∞).

In both cases, the diameter of the fiber diam(FAk ) converges to zero. This
concludes the proposition. □

A similar argument follows also for sub-Riemannian metrics of corank 1.

Proposition 4.7. Let {0r\Hn, distAk } be a sequence of compact Heisenberg mani-
folds with left-invariant sub-Riemannian metrics of corank 1. If the total measure in
Popp’s volume converges to zero, then the diameter of the fibers converges to zero.

Proof. By (4), if the total measure converges to zero, then either/both of the
following two cases holds:

(a) δ(Ak)
−1

→ 0, or

(b) |det( Ãk)|
−1

→ 0.

In the case (a), by using Lemmas 3.5, 3.9 and 4.4, we have

diam(FAk ) = distAk

(
e, 1

2 Z
)
= min

{
+∞,

2
dn(Ak)

√
πdn(Ak)

2

}

=

√
2π

dn(Ak)
≤

2
√

nπ

δ(Ak)
→ 0 (k → ∞).

In the case (b), again by using Lemmas 3.5, 3.9 and 4.4, we have

diam(FAk ) =

√
2π

dn(Ak)
≤

√
2π

n
√

|det( Ãk)|
→ 0 (k → ∞).

In both cases, the diameter of the fiber diam(FAk ) converges to zero. This
concludes the proposition. □

Now we are prepared to prove the main theorem.
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Proof of Theorem 1.1. Suppose that there are infinitely many isomorphic classes
of lattices 0rk in the sequence. Then by Proposition 4.5, the diameter of the fibers
converges to 0, and by Proposition 4.3, the Gromov–Hausdorff limit is isometric to
a flat torus of lower dimension.

Assume there are finitely many isomorphic classes of lattices in the sequence.
By taking a subsequence, we can assume that the lattices are isomorphism to 0r
for a fixed r in Dn . By Propositions 4.6 and 4.7, if the total measure converges
to 0, then the diameter of the fiber converges to 0. Again by Proposition 4.3, the
Gromov–Hausdorff limit is isometric to a flat torus of lower dimension. □
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