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CONCENTRATION INEQUALITIES
FOR PALEY–WIENER SPACES

SYED HUSAIN AND FRIEDRICH LITTMANN

We consider how much of the mass of an element in a Paley–Wiener space
can be concentrated on a given set. We seek bounds in terms of relative
densities of the given set. We extend a result of Donoho and Logan from
1992 in one dimension and consider similar results in higher dimensions.

1. Introduction

Let M be a convex body in Rd , and let Bp(M), 1 ≤ p ≤ ∞, be the Paley–Wiener
space of elements from L p(Rd) with distributional Fourier transform supported
in M . The Fourier transform F f is given by

F f (ϕ) =

∫
R

ϕ̂(t) f (t) dt

for a Schwartz function ϕ. (We use ϕ̂(t) =
∫

ϕ(x)e−2π i xt dx .) We write Bp(τ )

if M is the ball with center at the origin and radius τ .
Let N and Wδ ⊆ Rd be measurable and set Wδ(x)= x +Wδ . (In this article, Wδ is

either a ball or a cube.) We consider the problem of finding a constant C(M, δ) > 0
such that

(1) ∥GχN ∥1 ≤ C(M, δ) sup
x∈Rd

|N ∩ Wδ(x)|∥G∥1 for all G ∈ B1(M).

Here | . | denotes Lebesgue measure and χN is the characteristic function of N .
We emphasize that the constant is not allowed to depend on N .

This question was studied by Donoho and Logan [1992] in dimension d = 1 in
connection with recovery of a bandlimited signal that is corrupted by noise. In their
setting, an unknown noise n ∈ L1(R) is added to a known signal F ∈ B1([−τ, τ ]),
and they investigate sufficient conditions under which the best approximation
F̃ ∈ B1([−τ, τ ]) to F + n satisfies F̃ = F , i.e., when F can be perfectly recovered
from knowledge of F + n through best L1-approximation.
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Denoting now by N the support of n, it is a useful fact that the concentration
condition

(2)
∥GχN ∥1

∥G∥1
<

1
2

for all G ∈ B1(M)

is sufficient to conclude that F = F̃ . The argument can be found in several
places, e.g., Donoho and Stark [1989, Section 6.2], who refer to it as Logan’s
phenomenon. (Logan’s thesis [1965] appears to contain the earliest record of this
argument.) It was shown in [Donoho and Logan 1992, Theorem 7] that (1) holds
for Wδ(x) =

[
x −

δ
2 , x +

δ
2

]
with

(3) C([−τ, τ ], δ) =
πτ

sin(πτδ)
,

where τδ < 1, and combining this with (2), it is evident that this gives F = F̃
provided the relative density (or Nyquist density) of the support of the noise satisfies

δ−1 sup
x∈R

|N ∩ [x, x + δ]| <
sin(πτδ)

2πτδ
.

A preprint of Baranov, Jaming, Kellay, and Speckbacher [Baranov et al. 2023]
extends these results to the setting of model spaces (of which the Paley–Wiener
spaces are essentially special cases). We describe their results in more detail in the
next section.

We mention that conditions to recover an element of a closed subspace of an
L1-space that has been corrupted by a sparse L1-noise have been investigated in
many different settings, and concentration inequalities lead frequently to sufficient
conditions. (This relies on the fact that if a set N satisfies an analogue of (2) for
all G in a given closed subspace of an L1-space, then the zero function is the closest
element from the subspace to every L1 function with support contained in N .)
We highlight a few of these results here. Abreu and Speckbacher [2021] obtained
estimates about the concentration on a given subset of R2 for the L p-norm for
functions in modulation and polyanalytic Fock space using convex optimization
methods. In [Abreu and Speckbacher 2022], they formulated the large sieve principle
for the continuous wavelet transform on the Hardy space, adapting the concept
of maximum Nyquist density to the hyperbolic geometry of the underlying space.
Jaming and Speckbacher [2021] found concentration estimates for finite expansions
of spherical harmonics on two-point homogeneous spaces via the large sieve prin-
ciple. Speckbacher and Hrycak [2020] used estimates of the spherical harmonics
coefficients of certain zonal filters to derive upper bounds for concentration in terms
of the maximum Nyquist density on the unit sphere S2 for band-limited spherical
harmonics expansions. Herrmann and Hennenfent [2008] developed a curvelet-
based recovery, which recovered seismic wavefields from seismic data volumes
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with large percentages of traces missing. Candès, Romberg, and Tao [Candès et al.
2006] did reconstruction using the discrete Fourier transform of finite discrete-time
signals belonging to space C N . Benyamini, Kroó, and Pinkus [Benyamini et al.
2012] studied the phenomenon that the zero function is the best L1-approximant to
functions with small support.

2. Results

There are two questions that this article seeks to address. Our first result deals with
reconstruction in higher dimensions. We investigate the case when M is a cube
and Wδ(0) is a ball with center at the origin. We denote by Jν the Bessel function
of the first kind and by jν(k) its k-th positive zero.

Theorem 1. Let λ, α > 0, d ∈ N and let N ⊆ Rd be the support of n ∈ L1(Rd). If

αλ <
jd/2(1) d−

1
2

2π
,

then for all G ∈ B1([−λ, λ]
d)

(4) ∥GχN ∥1 ≤
(
√

dλ)d/2

αd/2 Jd/2(2π
√

dαλ)
sup
x∈Rd

|N ∩ B(x, α)|∥G∥1.

We discuss conditions when this constant is best possible at the end of Section 3.
Second, it is clear that the shape of the bound in (3) requires δτ < 1. In contrast,

it was shown for p = 2 in [Donoho and Logan 1992, Theorem 4] that for any
positive τ and δ

∥GχN ∥
2
2 ≤ (τ + δ−1) sup

x∈R

|N ∩ [x, x + δ]|∥G∥
2
2

for all G ∈ B2(τ ) (with constants adjusted due to the different normalization of
the Fourier transform) which suggests that an inequality with constant c(τ + δ−1)

should also be true for p = 1. The preprint [Baranov et al. 2023] mentioned in the
introduction gives two approaches to establishing such an inequality for 1 ≤ p < ∞,
one approach is through oversampling, and another relying on a Bernstein type
inequality in model spaces. Our next theorem shows that such a result for p = 1
can also be obtained with the strategy of Donoho and Logan. The constants in the
following theorem are worse than the constants obtainable through the Bernstein
type inequality in [Baranov et al. 2023] and better than the constants obtainable
through oversampling.

Theorem 2. Let τ, δ > 0 and let N be the support of n ∈ L1(R). Then for all
G ∈ B1(τ )

∥GχN ∥1 ≤ Cτ,δ sup
x∈R

|N ∩ [x, x + δ]|∥G∥1.

where Cτ,δ ≤
80
13(τ + δ−1) for all positive τ and δ. The bound may be improved to

Cτ,δ ≤
5
2(τ + δ−1) for τδ ≥ 2.
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As is usual with this method, the bounds only become effective when the density
is a fraction of the reciprocal of the type τ . If one is interested in bounds for
∥GχN ∥1/∥G∥1 at larger densities, a version of the Logvinenko–Sereda theorem
from O. Kovrijkine [2001] gives nontrivial bounds whenever the density is smaller
than 1.1 (The constants in [Kovrijkine 2001] are not effective and don’t yield
concrete bounds to decide when the quotient is < 1

2 . )

3. Proof of Theorem 1

We briefly review a general approach to prove inequalities of the above form
introduced by Donoho and Logan [1992]. Construct a kernel K (x, y) so that
f 7→ T f given by

T f (y) =

∫
K (x, y) f (x) dx

defines a bounded invertible transformation when restricted to B1(τ ). Then a change
of integration order gives∫

N
|G(x)| dx ≤

∫
N

∫
|K (x, y)|T −1G(x)| dx dy

≤

(
sup

x

∫
N

K (x, y) dy
)

∥T −1
∥∥G∥1.

If K (x, y)= g(x−y) for some g ∈ L∞ with supp(g)⊆ Wδ(0), then the supremum
may be further estimated by ∥g∥∞ supx |N ∩ Wδ(x)|, where T = Tg is now the
convolution operator Tg f = f ∗ g restricted to B1(τ ). For given g the size of the
constant depends then only on ∥g∥∞∥T −1

g ∥, and (2) shows that we need

sup
x

|N ∩ Wδ(x)| <
1

2∥g∥∞∥T −1
g ∥

.

Thus, it is the task to construct g as above where ∥g∥∞∥T −1
g ∥ is as small as

possible. To create an auxiliary function g with computable product ∥g∥∞∥T −1
g ∥,

Logan and Donoho observed that if 1/ĝ is positive and concave on an interval
I = [−a, a] with center at the origin, then the periodic extension of 1/ĝ restricted
to I is the Fourier transform of a measure ν that acts as the inverse operator of
convolution with g on B1(a) and has total variation |ν| = 1/ĝ(a). (In fact, ν is the
minimal extrapolation of 1/ĝ restricted to I in the sense of Beurling.)

For x ∈ Rd we consider

(5) gα(x) = χB(0,α)(x)

1The authors are grateful to Walton Green for drawing their attention to [Kovrijkine 2001].
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whose Fourier transform for t ∈ Rd is

ĝα(t) =
αd/2 Jd/2(2πα|t |)

|t |d/2 .

To construct a minimal extrapolation of 1/ĝα restricted to [−τ, τ ]
d , we need

a representation of the reciprocal of ĝα as a Laplace transform of totally positive
function. The theory was originally developed by Schoenberg [1951]; our notation
follows the book of Hirschman and Widder [1955]. An entire function E belongs
to the Laguerre–Pólya class E if and only if it has the form

E(s) = ecs2
+bs

∞∏
k=1

(
1 −

s
ak

)
e

s
ak ,

where c ≥ 0, b, ak (k = 1, 2, . . . ) are real, and
∞∑

k=1

1
a2

k
< ∞.

Lemma 3. There exists an integrable function G ≥0 such that for x∈(− jp(1), jp(1))

(6)
x p

Jp(x)
=

∫
∞

0
ex2t G(t) dt.

Proof. The Bessel function Jp(x) has an infinite product representation [Olver and
Maximon 2022, Section 10.21(iii)]. Dividing each side by x p gives us

Jp(x)

x p =
1

2p0(p + 1)

∞∏
k=1

(
1 −

x2

j2
p(k)

)

=
1

2p0(p + 1)

∞∏
k=1

(
1 −

x
jp(k)

)
ex/jp(k)

∞∏
k=1

(
1 +

x
jp(k)

)
e−x/jp(k)

Substituting x =
√

y in the infinite product representation of Jp(x)/x p gives us

Jp(
√

y)

y p/2 =
1

2p0(p + 1)

∞∏
k=1

(
1 −

y
jp(k)2

)
which is an entire function and belongs to class E . Let E(x) = Jp(x)/x p. Then by
[Hirschman and Widder 1955, Theorem 6.1] the function 1/E(

√
y) has a Laplace

transform representation given by

1
E(

√
y)

=

∫
R

e−yt G(t) dt,

where G(t) ∈ C∞ is a nonnegative, integrable function and the integral converges
in the largest vertical strip which contains the origin and is free of zeroes of E(

√
y),
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which is −∞ < y < j2
p(1). Next, we want to determine the values of t for which

G(t) > 0. Note that E(
√

y) may be expressed as

E(
√

y) =
1

2p0(p + 1)

∞∏
k=1

(
1 −

y
j2
p(k)

)

=
1

2p0(p + 1)
exp

(
−

∞∑
k=1

y
jp(k)

) ∞∏
k=1

(
1 −

y
j2
p(k)

)
ey/jp(k)

The function E(
√

y) has no negative zeroes. We apply [Hirschman and Widder
1955, Chapter 5, Corollary 3.1] with α1 = −∞ and

b = −

∞∑
k=1

1
jp(k)

to obtain that G(t) > 0 if t ∈ (−∞, 0) and G(t) = 0 otherwise, giving us for
y ∈ (0, j2

p(1)),

1
E(

√
y)

=

∫ 0

−∞

e−yt G(t) dt.

Substituting y = x2 and t 7→ −t gives the claim. □

Let λ > 0 and α > 0 with 2π
√

dαλ < jd/2(1). We construct a (signed) measure ν

that is an inverse transform on B1([−λ, λ]
d) of convolution with gα satisfying

∥ f ∗ ν∥1 ≤
(
√

dλ)d/2

αd/2 Jd/2(2π
√

dλα)
∥ f ∥1,

and we show that the constant is best possible among all inverse transformations of
convolution with gα on B1([−λ, λ]

d). We expand 1/ĝα restricted to [−λ, λ]
d into

its Fourier series
1

ĝα(t)
=

∑
n∈Zd

Hα(n)e2π int ,

where

Hα(n) =

(
1

2λ

)d ∫
[−λ,λ]d

|x |
d/2

αd/2 Jd/2(2πα|x |)
e−i π

λ
nx dx .

Lemma 4. The coefficients satisfy

H(n1, . . . , nd) = (−1)n1+···+nd |H(n1, . . . , nd)|
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Proof. The restrictions on αλ imply that the following integrals converge absolutely.
Inserting the Schoenberg representation (6) gives with n = (n1, . . . , nd)

Hα(n) =

(
1

2
√

2παλ

)d∫ 0

−∞

G(t)
( d∏

j=1

∫
[−λ,λ]

e−x2
j t e−i π

λ
n j x j dx j

)
dt.

Since t < 0, the function x j 7→ e−t x2
j is positive, symmetric, and concave.

Hence e−i π
λ

n j x j may be replaced by cos
(

π
λ

n j x j
)
. A short argument involving two

integration by parts may be used to show that

(−1)n j

∫
[−λ,λ]

e−x2
j t cos

(
π
λ

n j x j
)

dx j ≥ 0,

which implies the claim of the lemma. □

We define a measure να on Rd by

να =

∑
n∈Zd

Hα(n)δ n
2λ

,

where δx is the point measure at x with δx(R
d) = 1.

Lemma 5. Let λ and α be positive with 2π
√

dλα < jd/2(1). Convolution with να

is the inverse operator of convolution with gα on B1([−λ, λ]
d) with

∥ f ∗ να∥1 ≤
(
√

dλ)d/2

αd/2 Jd/2(2π
√

dαλ)
∥ f ∥1

for all f ∈ B1([−λ, λ]
d).

Proof. By construction of να we have

ĝα(t)ν̂α(t) = 1

for all t ∈ [−λ, λ]
d , and we observe that the total variation measure |να| satisfies

|να|(Rd) =

∑
n∈Zd

|Hα(n)| =

∑
n∈Zd

Hα(n)(−1)n1+···+nd =
1

ĝα(λ, . . . , λ)
,

and Minkowski’s inequality ∥ f ∗ να∥1 ≤ |να|∥ f ∥1 shows that convolution with να

defines a bounded operator on B1([−λ, λ]
d) that inverts convolution with gα. □

Lemma 5 gives a bound for the operator norm of the inverse of convolution
with gα, and the calculation at the beginning of the proof of Theorem 1 may be
used to complete the proof of (4).
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Optimality. Let νg be a measure with ν̂g = 1/ĝ on [−λ, λ]
d . Among auxiliary

functions g that satisfy

(7) |ĝ(λ, . . . , λ)| = |ĝ(−λ, . . . ,−λ)|

the choice gα is optimal in the range αλ < (2π)−1 jd/2(1)d−
1
2 . To show this, we

follow the strategy of [Donoho and Logan 1992, Lemma 11]. We define

I∞ = sup{|ĝ(λ, . . . , λ)| : supp(g) ⊆ B(0, α), ∥g∥∞ = 1}

and observe that ∥νg∥ ≥ 1/I∞. If g satisfies (7) then we may assume that the
function g optimizing I∞ is even. It follows that

ĝ(λ, . . . , λ) =

∫
B(0,α)

g(y1, . . . , yd) cos(λy1) · · · cos(λyd) d(y1, . . . , yd).

The cosine terms are nonnegative in the stated range, hence the value of the
transform is maximized under the constraint |g| ≤ 1 by taking g to be equal to 1.
The constant in Theorem 1 is obtained by choosing this g in (5), hence the constant
is optimal in this case.

As a final remark, if we construct νg through a periodic extension of 1/ĝ (as in the
previous section), then the condition that ν has finite total variation implies that ν̂g is
continuous. Since a periodic extension must satisfy ν̂(λ, . . . , λ) = ν̂(−λ, . . . ,−λ),
the condition (7) is then necessary in order for νg of finite total variation to exist.

4. Window comparisons

Analogously to dimension one, for a convex body K we define the maximum
Nyquist density of N (relatively to K ) by

ρ(N , K ) =
1

|K |
sup
u∈Rd

|N ∩ (u + K )|.

We compare the result of Theorem 1 to the case where the window K is a
hypercube of side length δ, which is an extension of the L1 reconstruction result by
[Donoho and Logan 1992]. The zero jp(1) has an asymptotic expansion given in
[Olver and Maximon 2022] by

jp(1) ≃

(
p
2

+
1
4

)
π.

Denote the ball of radius r centered at origin by B(0, r), and the volume of a ball
with radius α in d-dimensions by Vd(α). It is given by

Vd(α) =
πd/2

0(d/2 + 1)
αd .
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When the window is a ball of radius α, perfect reconstruction is possible if the
maximum Nyquist density satisfies

ρ(N , B(0, α)) <
0(d/2 + 1)Jd/2(2π

√
dαλ)

2(πα
√

dλ)d/2
,

where

α <
jd/2(1)

2π
√

dλ
.

For λδ < 2π , the corresponding density bound is

ρ(N , [−δ/2, δ/2]
d) <

1
2

(
sin(λδ/2)

λδ/2

)d

.

The support of the Fourier transform for both the problems is same, that is,
[−λ, λ]

d . In order to be closely compare the two windows, we consider the follow-
ing three cases. First, consider the ball of radius α = δ/2, centered at the origin,
such that the ball is inside the cube. In this case, for dimension d > 119, the Nyquist
density threshold for the ball window is bigger than that of cube window.

In the second case, we consider the ball with radius α = δ
√

d/2, so that the cube
is inside the ball. Let δ = 1/(2π2). For large d, the Nyquist density threshold
asymptotically satisfies

ρ(T, B(0, α), F) <
0(d/2 + 1)Jd/2(d/2)

2(d/4)d/2

∼

√
πd

( d
2e

)d/2

2
( d

4

)d/2

0(1/3)

21/3 · 31/6 · π.d1/3

∼ d1/6
(

2
e

)d/2

The Nyquist density for the cube window satisfies

ρ(T, [−δ/2, δ/2]
d , F) < 1

2(4π2 sin(1/4π2))d .

The bound for the Nyquist density of the cube window remains larger than the
bound for the Nyquist density of ball window for any d in this case.

Third, we set the volume of the cube is equal to the volume of the ball. Then the
radius α of the ball satisfies

α = δ d

√
0(d/2 + 1)

πd/2 .
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Using Stirling’s approximation, we get

α ≃ δ d

√(
d

2πe

)d/2
(πd)1/2.

Let δ =
√

2πe/(4π2). For large d, the Bessel function in the Nyquist density of
the ball window satisfies

Jd/2(2π2√α) = Jd/2(d · π1/2d
· d1/2d/2) → Jd/2(d/2),

since π1/2d
· d1/2d

→ 1 for large d. The bound for the Nyquist density of the ball
window is then

ρ(T, B(0, α), F) <
0(d/2 + 1)Jd/2(d/2)

2
(
π2

√
d

√
2πe

4π2√π
d
√

0(d/2 + 1)
)

∼
0(1/3)

24/3 · 31/6 · π3/4 d1/12

(
4
2e

)d/2

For the cube window, the sufficient bound for reconstruction is

ρ(T, [−δ/2, δ/2]
d , F) <

1
2

(
sin(

√
2πe/8π)

√
2πe/8π

)d

.

In this case also, the Nyquist density for the cube window remains larger than the
Nyquist density of ball window for any dimension d. In conclusion, the bigger
the Nyquist density threshold, the better, since it allows the signal to incorporate
more noise but still be recovered. Only for the case when the ball is just inside the
cube, the Nyquist density threshold for the ball window is larger than that of cube
window for d > 119. For all other cases, the Nyquist density threshold for the cube
window stays larger.

5. Proof of Theorem 2

Returning to the strategy described in Theorem 1, the choice in [Donoho and Logan
1992] was g = χ

[−
δ
2 , δ

2 ]
, which is optimal for δτ ≤

1
2 , gives a nonoptimal bound for

1
2 < δτ < 1, and fails to give a bound for δτ ≥ 1. This can be traced back to the
fact that ĝ(δ) = 0.

We define for τ > 0 and real x a function gτ , supported on [−1, 1], by

gτ (x) = −2(1 − |x |)
cos 2π(τ + 1)x − cos 2πτ x

4π2x2 χ[−1,1](x).

The Fourier transform of gτ has the useful property that the sum of its partials
with respect to t and τ has a simple integral representation.
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Proposition 6. For any t and τ

∂

∂t
(ĝτ (t)) +

∂

∂τ
(ĝτ (t)) =

∫ 2π(t+τ+1)

2π(t+τ)

sin2 u
u2 du.

Proof. For ease of notation we set G(t, τ ) = ĝτ (t), and we denote first partials
by G t and Gτ . Writing

gτ (x) = 2(1 − |x |)
cos 2π(τ + 1)x − cos 2πτ x

(−2π i x)2 χ[−1,1](x)

and using that gτ (x) is even, we have

G t(t, τ ) =

∫ 1

−1
(−2π i x)gτ (x)e−2π i xt dx

=

∫ 1

−1
(−2π i x)gτ (x)(−i sin(2πxt)) dx

=

∫ 1

−1
2(1 − |x |)

cos(2π(τ + 1)x) − cos(2πτ x)

2πx
sin(2πxt) dx

= 4
∫ 1

0
(1 − x)

cos(2π(τ + 1)x) − cos(2πτ x)

2πx
sin(2πxt) dx .

Similarly,

Gτ (t, τ ) =

∫ 1

−1

∂

∂τ
(gτ (x))e−2π i xt dx

= 4
∫ 1

0
(1 − x)

sin(2π(τ + 1)x) − sin(2πτ x)

2πx
cos(2πxt) dx .

The integrals have representations in terms of the sine-integral

Si(u) =

∫ u

0

sin(w)

w
dw.

A direct calculation gives

2
∫ 1

0
cos(2πax)

sin(2πbx)

x
dx = Si(2π(a + b)) − Si(2π(a − b))

2
∫ 1

0
cos(2πax) sin(2πbx) dx = −

b
π(a − b)(a + b)

+
cos(2π(a − b))

2π(a − b)

−
cos(2π(a + b))

2π(a + b)
.
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We obtain

G t(t, τ )+ Gτ (t, τ )

=
2
π2

(
sin2(π(t + τ))

(t + τ)(t + τ + 1)
+ π Si(2π(t + τ + 1)) − π Si(2π(t + τ))

)
=

2
π

∫ π(t+τ+1)

π(t+τ)

(
−

∂

∂u
sin2 u

u

)
du +

2
π

∫ 2π(t+τ+1)

2π(t+τ)

sin w

w
dw

=
2
π

∫ π(t+τ+1)

π(t+τ)

sin2 u
u2 du

after substituting w = 2u and combining the integrands. □

Corollary 7. (i) The function τ 7→ ĝτ (0) is positive, monotonically increasing,
and has limit 1 as τ → ∞. Moreover,

ĝ0(0) > 0.65, ĝ1(1) > 0.8.

(ii) t 7→ (ĝτ (t))−1 is positive and concave on [−τ, τ ].

(iii) ∥gτ∥∞ = gτ (0) = 2τ + 1.

-1.0 -0.5 0.5 1.0

2

4

6

-6 -4 -2 2 4 6

0.2

0.4

0.6

0.8

1.0

Figure 1. The transform pair g4(x) and ĝ4(t).
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Proof. For the proof of (i) it follows from symmetry of t 7→ ĝτ (t) that ĝ′
τ (0) = 0,

and hence Proposition 6 gives ∂/∂τ ĝτ (0) > 0. Direct calculations give the claimed
bounds.

Regarding (ii), we require an explicit representation of ĝ′′
τ (t). It follows from

gτ (x) = 2(1 − |x |)
cos 2π(τ + 1)x − cos 2πτ x

(−2π i x)2 χ[−1,1](x)

that

(8) ĝ′′

τ (t) =

∫ 1

−1
(−2π i x)2gτ (x)e−2π i xt dx

= −

(
sin π(t − τ)

π(t − τ)

)2

−

(
sin π(t + τ)

π(t + τ)

)2

+

(
sin π(t − τ − 1)

π(t − τ − 1)

)2

+

(
sin π(t + τ + 1)

π(t + τ + 1)

)2

=
sin2(π(t − τ))(2(t − τ) − 1)

(t − τ)2(t − τ − 1)2 −
sin2(π(t + τ))(2(t + τ) + 1)

(t + τ)2(t + τ + 1)2 .

Since the first term is negative for t − τ < 1
2 and the second term is positive for

t + τ > −
1
2 , it follows that

ĝ′′

τ (t) < 0 for − τ −
1
2 < t < τ +

1
2 .

Multivariable chain rule and Proposition 6 show that

∂

∂τ
(ĝτ (τ )) > 0,

and since ĝ0(0) > 0, it follows that ĝτ (τ ) > 0 for all τ . Since ĝτ is concave down
on [−τ, τ ], it follows that ĝτ (t) > 0 for t ∈ [−τ, τ ]. It follows that the second
derivative of t 7→ (ĝτ (t))−1 is positive for |t | ≤ τ .

To prove (iii) we show ĝτ > 0 on R. Identity (8) implies that ĝ′′
τ (t) = O(|t |−2).

Since ĝ′
τ (0) = 0, the integral of ĝ′′

τ on (0, t) equals ĝ′
τ (t).

A (lengthy) calculation along the lines of the proof of Proposition 6 shows
from (8) that ĝ′

τ < 0 on (0, ∞). Since ĝτ (t) → 0 as t → ∞ (by the Riemann–
Lebesgue lemma) it follows that ĝτ is positive on (0, ∞) and by symmetry on R.
Hence |gτ (x)| ≤ gτ (0) for all x . The second identity in (iii) is a direct evaluation. □

Proof of Theorem 2. Setting gτ,δ(x)= gτδ/2(2x/δ), we observe that gτ,δ is supported
on [−δ/2, δ/2], and

ĝτ,δ(t) =
δ

2
ĝτδ/2(δt/2).
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It follows that t 7→ (ĝτ,δ(t))−1 is positive and concave for |t |≤τ . Let an =an(τ, δ)

be the Fourier coefficients satisfying

1
ĝτ,δ(t)

=

∑
n∈Z

aneπ i t
τ

n

for |t | ≤ τ . Positivity and convexity imply that |an| = (−1)nan . Define a measure
ν = ντ,δ on R for any Borel set A by

ν(A) =

∑
n∈Z

anδn/(2τ)(A),

where δb is the Dirac measure at b ∈ R. We observe that ν̂(t) = 1/ĝτ,δ(t) for |t | ≤ τ ,
and the total variation satisfies

|ν|(R) =

∑
n∈Z

|an| =

∑
n∈Z

an(−1)n
=

1
ĝτδ/2(τδ/2)

.

It follows that convolution with ν is the inverse operator of convolution with gτ,δ

when restricted to PW 1
τ . Moreover, for gτ,δ the choice of ν is optimal, since the

value of the Fourier transform of ν is always a lower bound for the total variation.
It follows that

∥T −1
gτ,δ

∥ =
1

ĝτδ/2(τδ/2)
.

We observe the identities

∥gτ,δ∥∞

ĝτ,δ(τ )
=

2
δ

∥gτδ/2∥∞

ĝτδ/2(τδ/2)
=

2τ + 2δ−1

ĝτδ/2(τδ/2)
.

For τ > 0 and δ > 0 we use the inequality ĝτδ/2(τδ/2) ≥ ĝ0(0) > 0.65. For
τδ ≥ 2, we may use the lower bound ĝ1(1) > 0.8 instead. □
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