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REDUCTION TYPES OF CM CURVES

MENTZELOS MELISTAS

We study the reduction properties of low genus curves whose Jacobian has
complex multiplication. In the elliptic curve case, we classify the possible
Kodaira types of reduction that can occur. Moreover, we investigate the
possible Namikawa–Ueno types that can occur for genus 2 curves whose
Jacobian has complex multiplication which is defined over the base field.
We also produce bounds on the torsion subgroup of abelian varieties with
complex multiplication defined over local fields.

1. Introduction

Let g ≥ 1 be an integer, let K be a CM field, i.e., K is a totally imaginary quadratic
extension of a totally real number field, and assume that K has degree 2g over Q. Let
R be a complete discrete valuation ring with fraction field L of characteristic 0 and
finite residue field. If A/L is an abelian variety, then we will denote by EndL(A) the
ring of endomorphisms of A/L which are defined over L . An abelian variety A/L
with complex multiplication by K over the field L is an abelian variety A/L of
dimension g together with an embedding ι : K ↪→ End0

L(A) := Q ⊗ EndL(A). Our
definition implies that A/L is isotypic (see [2, Theorem 1.3.1.1]). We also require
that K injects into End0

L(A) and not just in End0(A) := Q⊗EndQ(A). If K injects
into End0(A), then we will say that A/L has potential complex multiplication by
the field K . If C/L is a curve, then we will say that C/L has complex multipli-
cation over L (or is a CM curve over L) if the Jacobian Jac(C)/L has complex
multiplication over the field L .

The study of the reduction properties of abelian varieties with complex multipli-
cation is a classical topic with a rich history. Serre and Tate in [33] proved, as a
consequence of the Néron–Ogg–Shafarevich criterion, that every abelian variety
with complex multiplication defined over a complete discrete valuation ring with
finite residue field has potentially good reduction. More generally, Oort in [27],
proved the same result under the weaker assumption that the residue field is perfect.
Lorenzini in [19], among other results, proved, in the case where the residue field
is algebraically closed, that if C/L is a curve with potentially good reduction with
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simple Jacobian Jac(C)/L that has complex multiplication over L , then the degree
of the minimal extension over which Jac(C)/L acquires good reduction has at most
three prime divisors. In this paper, we study the possible configurations of the
special fiber of the minimal proper regular model of elliptic curves with complex
multiplication and of genus 2 curves with complex multiplication.

Our first result is the following.

Theorem 1.1. Let R be a complete discrete valuation ring with valuation v, fraction
field L of characteristic 0, and algebraically closed residue field kL of characteristic
p > 0. Let E/L be an elliptic curve with j-invariant jE that has complex multipli-
cation by an imaginary quadratic field K and let OK be the ring of integers of K. If
K = Q(i) or Q(

√
−3), then assume that EndL(E) ∼= OK . Then, depending on p,

v(p), jE , and K , the possible reduction types of E/L are as follows.

p v(p) jE possible reduction types

̸= 2 any ̸= 0, 1728 I0 or I∗0
2 1 ̸= 0, 1728 I0, I∗4, I∗8, II, or II∗

̸= 2 any 1728 I0, III, III∗, or I∗0
̸= 3 any 0 I0, II, II∗, IV, IV∗ or I∗0

Keeping the same notation as above, if we do not assume that the complex
multiplication is defined over L , then, as Theorem 1.2 below shows, in addition to
the Kodaira types of Theorem 1.1, a few more Kodaira types can also occur.

Theorem 1.2. Let R be a complete discrete valuation ring with fraction field L of
characteristic 0 and algebraically closed residue field kL of characteristic p > 0.
Let E/L be an elliptic curve with potential complex multiplication by an imaginary
quadratic field K and denote by jE the j-invariant of E/L. If K =Q(i) or Q(

√
−3),

then assume that EndL K (E) ∼= OK . Then, depending on p, v(p), jE , and K , the
possible reduction types of E/L are as follows.

p v(p) jE possible reduction types

̸= 2 any ̸= 0, 1728 I0, III, III∗, or I∗0.
̸= 2 any 1728 I0, III, III∗, or I∗0

2 1 1728 I0, II, III, III∗, I∗2 or I∗3
̸= 3 any 0 I0, II, II∗, IV, IV∗ or I∗0

In Section 2 below, we present examples showing that all the reduction types of
Theorem 1.1 and of Theorem 1.2 do indeed occur.

Curves of genus 2 with complex multiplication have received a lot of interest
lately, especially due to their cryptographic applications. If an elliptic curve has
complex multiplication, then it has potentially good reduction. However, it is not
true that every curve of genus 2 whose Jacobian has complex multiplication has
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potentially good reduction. For a primitive CM field, Goren and Lauter in [12]
proved a bound on the primes of geometric bad reduction for curves of genus 2
whose Jacobian has complex multiplication.

Let R be a complete discrete valuation ring with fraction field L of characteristic 0
and algebraically closed residue field of characteristic p >0. Let C/L be a projective,
smooth, and geometrically connected curve of genus 2 and let Cmin/R be its minimal
proper regular model. There exists a complete classification of the possibilities for
the special fiber of Cmin/R (see [26]). In this classification, there are more than 120
possibilities, referred to as reduction types. Moreover, Liu in [16] has produced
an algorithm that computes the special fiber of Cmin/R under the assumption that
the extension of minimal degree over which C/L acquires stable reduction is tame,
i.e., the degree of this extension is not divisible by p. We note that this tameness
assumption is automatically satisfied if p > 5.

Throughout this article, if A/L is any variety over a field L and M/L is a field
extension, then we will denote by AM/M the base change of A/L to M . Among
other results in Section 4, we prove the following theorem (for the reduction types
we follow Liu’s notation in [16]).

Theorem 1.3. Let R be a complete discrete valuation ring with fraction field L
of characteristic 0 and finite residue field kL of characteristic p > 5. Let C/L be
a projective, smooth, and geometrically connected curve of genus 2 with simple
Jacobian Jac(C)/L that has complex multiplication by a quartic CM field K over
the field L. Let µ′

= |µ(K )|, where µ(K ) is the group of roots of unity in K , and
let Lunr be the maximal unramified extension of L.

(i) Assume that C/L has potentially good reduction. Then the possible special fibers
of the minimal proper regular model of CLunr/Lunr are as follows.

µ′ possible reduction types of CLunr/Lunr

2 [I0−0−0], [I∗0−0−0]

4 [I0−0−0], [I∗0−0−0], [VI]
6 [I0−0−0], [I∗0−0−0], [III], [IV]

8 [I0−0−0], [I∗0−0−0], [VI], [VII], [VII∗]
10 [I0−0−0], [I∗0−0−0], [IX − 1], [IX − 2], [IX − 3],

[IX − 4], [VIII − 1], [VIII − 2], [VIII − 3], [VIII − 4]

12 [I0−0−0], [I∗0−0−0], [III], [IV], [VI]

(ii) Assume that C/L does not have potentially good reduction. Then the possible
special fibers of the minimal proper regular model of CLunr/Lunr are given below,
where d and r are defined as in [16, Section 4.3].
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µ′ possible reduction types of CLunr/Lunr

2 or 10 [I∗0 − I∗0 − (d − 2)/2]

4 [I∗0 − I∗0 − (d − 2)/2], [III − III − (d − 2)/4], [III − III∗ − (d − 4)/4],
[III∗ − III∗ − (d − 6)/4], [2I∗0 − (r − 1)/2]

6 [I∗0 − I∗0 − (d − 2)/2], [IV − IV − (d − 2)/3], [IV − IV∗
− (d − 3)/3],

[IV∗
− IV∗

− (d − 4)/3], [II − II − (d − 2)/6], [II − II∗ − (d − 6)/6],
[II∗ − II∗ − (d − 10)/6], [I∗0 − II − (d − 4)/6], [I∗0 − II∗ − (d − 8)/6],
[2IV − (r − 1)/3], [2IV∗

− (r − 2)/3]

8 [I∗0 − I∗0 − (d − 2)/2], [III − III − (d − 2)/4], [III − III∗ − (d − 4)/4],
[III∗ − III∗ − (d − 6)/4], [2I∗0 − (r − 1)/2], [2III − (r − 1)/4],
[2III∗ − (r − 3)/4]

12 [I∗0 − I∗0 − (d − 2)/2], [III − III − (d − 2)/4], [III − III∗ − (d − 4)/4],
[III∗ − III∗ − (d − 6)/4], [2I∗0 − (r − 1)/2], [IV − IV − (d − 2)/3],
[IV − IV∗

− (d − 3)/3], [IV∗
− IV∗

− (d − 4)/3], [II − II − (d − 2)/6],
[II − II∗ − (d − 6)/6], [II∗ − II∗ − (d − 10)/6], [I∗0 − II − (d − 4)/6],
[I∗0 − II∗ − (d − 8)/6], [2IV − (r − 1)/3], [2IV∗

− (r − 2)/3],
[2II − (r − 1)/6], [2II∗ − (r − 5)/6]

When µ′
= 8 or 10, assuming that C/L has potentially good reduction and the

special fiber of the stable model is not isomorphic to either the curve C0 or the
curve C1 of Remark 4.3, we obtain, in Section 4, a more precise list of possible
reduction types (see Theorem 4.4 below).

In Section 5, we focus on component groups and torsion points of CM abelian
varieties. Using ideas of Clark and Xarles from [3] we prove the next proposition.

Proposition 1.4. Let R be a complete discrete valuation ring with fraction field L
of characteristic 0 and finite residue field kL which has characteristic p and cardi-
nality q. Denote by e the absolute ramification index of L. Let A/L be an abelian
variety with complex multiplication by a CM field K over L. Then

|A(L)tors| ≤ max
{
|µ(K )| · p2gγp(e|µ(K )|), ⌊(1 +

√
q)2

⌋
g
· p2gγp(e)

}
,

where γp(m) =
⌊
logp

( pm
p−1

)⌋
.

This article is organized as follows. In Section 2 we consider the elliptic curve
case and prove Theorems 1.1 and 1.2. Section 3 mostly contains background
material on reduction of abelian varieties used in the last two sections. After
briefly recalling some basic background on reduction of genus 2 curves, we prove
Theorem 1.3 in Section 4. Finally, in Section 5 we study the possible geometric
component groups of abelian varieties and prove Proposition 1.4.
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2. Kodaira types of CM elliptic curves

In this section we prove Theorems 1.1 and 1.2, and present a few examples. We
first prove Theorem 1.1 as it will be needed in the proof of Theorem 1.2.

Our starting point for our proofs is Lemma 2.1 below, whose proof can be found
in [7, Lemma 2.4]. We note that when E/L is an elliptic curve defined over a
number field, then Lemma 2.1 was originally due to Serre and Tate [33, page 507]
(see also [30, Corollary 5.22]).

Lemma 2.1. Let R be a complete discrete valuation ring with fraction field L of
characteristic 0 and algebraically closed residue field kL . Let E/L be an elliptic
curve with complex multiplication by an imaginary quadratic field K ⊂ L. If
K = Q(i) or Q(

√
−3), then assume that EndL(E) ∼= OK , where OK is the ring

of integers of K. Then there exists an elliptic curve E ′/L such that E ′/L has good
reduction and the curves E/L and E ′/L become isomorphic over an algebraic
closure of L.

We also record here the following useful lemma, which gives the reduction type
of a quadratic twist of an elliptic curve with good reduction.

Lemma 2.2. Let R be a complete discrete valuation ring with valuation v, fraction
field L of characteristic 0, and algebraically closed residue field kL of characteristic
p > 0. Let E/L be an elliptic curve good reduction and let E ′/L be a quadratic
twist of E/L.

(i) If p > 2, then E ′/L has either good reduction or reduction of type I∗0.

(ii) If p = 2 and v(2) = 1, then E ′/L has either good reduction, or reduction of
type I∗8, I∗4, II, or II∗.

Proof. Part (i) is well known (see, e.g., [4, Proposition 1]). Part (ii) follows
by combining explicit formulas for quadratic twists of elliptic curves (see [5,
Proposition 5.7.1]) along with [28, Tableau IV]. Alternatively, one can use [21,
Theorem 4.2] together with [41]. □

Proof of Theorem 1.1. Assume that p ̸= 2 and that jE ̸= 0, 1728. Lemma 2.1
tells us that there exists an elliptic curve E ′/L with good reduction which becomes
isomorphic to E/L over an algebraic closure of L . Since jE ̸= 0, 1728, we see that
E ′/L is a quadratic twist of E/L (see [38, Section X.5]). Therefore, since p ̸= 2,
using (i) of Lemma 2.2, we find that E/L has good reduction or reduction of type I∗0.

Assume that p = 2, v(2) = 1, and that jE ̸= 0, 1728. Proceeding in the same
way as in the previous paragraph we see that there exists a quadratic twist E ′/L
of E/L which has good reduction. Since v(2) = 1, by (ii) of Lemma 2.2 we obtain
that E/L has good reduction or reduction of type I∗8, I∗4, II, or II∗.
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Assume that p ̸= 2 and that jE = 1728. Using [38, Proposition III.1.4] and
[38, Proposition X.5.4] we find that the elliptic curve E/L has a short Weierstrass
equation of the form

y2
= x3

+ Ax

for some A ∈ L∗. The discriminant of this Weierstrass equation is 1 = −64A3.
Since p ̸= 2 by assumption, we have that v(1) = 3v(A), and hence 3 divides v(1).
Let 1min be the discriminant of a minimal Weierstrass equation for E/L . Since
when a change of Weierstrass equation is performed the valuation of the discriminant
changes by a multiple of 12, we find that v(1)−v(1min) is a multiple of 12. Since
3 divides v(1), we obtain that 3 divides v(1min).

Case 1. p ≥ 5. Using Tate’s algorithm [39] (see also [37, page 365]) and using the
fact that E/L has potentially good reduction, we find that E/L can only have good
reduction or reduction of type I∗0, III, or III∗.

Case 2. p = 3. Choose a minimal Weierstrass equation for E/L and let c4, c6,
and 1min be the c4-invariant, the c6-invariant, and the discriminant of this equation,
respectively. Since jE = 1728, jE = c3

4/1min, and 17281min = c3
4 − c2

6 (see [38,
page 42]), we find that c6 = 0. Therefore, using [28, Tableau III] we find that E/L
can only have good reduction or reduction of type I∗0, III, or III∗.

Assume that jE = 0. Using [38, Proposition III.1.4] and [38, Proposition X.5.4]
we find that the curve E/L has a short Weierstrass equation of the form

y2
= x3

+ B

for some B ∈ L∗. The discriminant of this Weierstrass equation is 1 = −432B2.
Since p ̸= 3 by assumption, we have that v(1) = 4v(2) + 2v(B), and hence
2 divides v(1). Let 1min be the discriminant of a minimal Weierstrass equation
for E/L . Since when a change of Weierstrass equation is performed the valuation
of the discriminant changes by a multiple of 12, we find that v(1) − v(1min) is a
multiple of 12. Since 2 divides v(1), we obtain that 2 divides v(1min).

Case 3. p ≥ 5. Using Tate’s algorithm [39], we obtain that E/L cannot have
reduction type III or III∗. Therefore, it can only have good reduction or reduction
of type II, II∗, IV, IV∗, or I∗0.

Case 4. p = 2. Choose a minimal Weierstrass equation for E/L and let c4 and 1min

be the c4-invariant and the discriminant of this equation, respectively. Since jE = 0
and jE = c3

4/1min, we find that c4 = 0. Therefore, using [28, Tableau V] we find
that E/L can only have good reduction or reduction of type II, II∗, IV, IV∗, or I∗0.
This completes the proof of Theorem 1.1. □

We now present examples showing that all the possible reduction types of
Theorem 1.1 do indeed occur.
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Example 2.3. Consider the elliptic curve E/Q(
√

−11) given by the Weierstrass
equation

y2
+ y = x3

+ ax + (a − 3) x − 2,

where a =
1
2(1 +

√
−11). This is the curve with LMFDB [18] label 2.0.11.1-

9.1-CMa1, which has complex multiplication over Q(
√

−11), j-invariant equal
to −32768, and only one prime of additive reduction with Kodaira type I∗0.

Example 2.4. Consider the curve E1/Q(
√

−7) given by the Weierstrass equation

y2
+ axy = x3

+ (−a − 1) x + 1,

where a =
1
2(1 +

√
−7). Note that the prime (a) of Q(

√
−7) lies above (2). The

curve E1/Q(
√

−7) has LMFDB [18] label 2.0.7.1-16.1-CMa1, j-invariant equal
to −3375, and additive reduction of Kodaira type I∗4 at (a).

Consider the curve E2/Q(
√

−7) given by the Weierstrass equation

y2
+ axy + ay = x3

+ (−a − 1) x2
+ (2a + 2) x − 2a + 3.

The curve E2/Q(
√

−7) has LMFDB [18] label 2.0.7.1-64.1-CMa1, j-invariant
equal to −3375, and additive reduction of Kodaira type I∗8 at (a).

Example 2.5. Consider the curve E1/Q(
√

−11) given by the Weierstrass equation

y2
= x3

+ (a + 1) x2
+ (a + 2) x + 1,

where a =
1
2(1+

√
−11). The curve E1/Q(

√
−11) has LMFDB [18] label 2.0.11.1-

4096.1-CMb1, j-invariant equal to −32768, and additive reduction of Kodaira
type II at (2).

Consider the curve E2/Q(
√

−11) given by the Weierstrass equation

y2
= x3

+ (a + 1) x2
+ (a + 10) x + 12a − 1.

The curve E2/Q(
√

−11) has LMFDB [18] label 2.0.11.1-256.1-CMb1, j -invariant
equal to −32768, and additive reduction of Kodaira type II∗ at (2).

Example 2.6. Consider the elliptic curves E1/Q(i), E2/Q(i), E3/Q(i) given
by LMFDB [18] labels 2.0.4.1-2025.1-CMa1, 2.0.4.1-2025.1-CMb1, and 2.0.4.1-
2025.1-CMc1, respectively. All these elliptic curves have complex multiplication
by Q(i) (and j -invariant equal to 1728). Moreover, they have bad reduction at 3 of
Kodaira type III, I∗0, and III∗, respectively.

Example 2.7. Consider the elliptic curves E1/Q(
√

–3), E2/Q(
√

–3), E3/Q(
√

–3),
E4/Q(

√
–3) given by LMFDB [18] labels 2.0.3.1-256.1-CMa1, 2.0.3.1-784.1-

CMa1, 2.0.3.1-784.3-CMb1, and 2.0.3.1-4096.1-CMb1, respectively. All these
elliptic curves have complex multiplication by Q(

√
−3) (and j-invariant equal

to 0). Moreover, they have bad reduction at 2 of Kodaira type II, IV, IV∗, and I∗0.

https://www.lmfdb.org/EllipticCurve/2.0.11.1/9.1/CMa/1
https://www.lmfdb.org/EllipticCurve/2.0.11.1/9.1/CMa/1
https://www.lmfdb.org/EllipticCurve/2.0.7.1/16.1/CMa/1
https://www.lmfdb.org/EllipticCurve/2.0.7.1/64.1/CMa/1
https://www.lmfdb.org/EllipticCurve/2.0.11.1/4096.1/CMb/1
https://www.lmfdb.org/EllipticCurve/2.0.11.1/4096.1/CMb/1
https://www.lmfdb.org/EllipticCurve/2.0.11.1/256.1/CMb/1
https://www.lmfdb.org/EllipticCurve/2.0.4.1/2025.1/CMa/1
https://www.lmfdb.org/EllipticCurve/2.0.4.1/2025.1/CMb/1
https://www.lmfdb.org/EllipticCurve/2.0.4.1/2025.1/CMc/1
https://www.lmfdb.org/EllipticCurve/2.0.4.1/2025.1/CMc/1
https://www.lmfdb.org/EllipticCurve/2.0.3.1/256.1/CMa/1
https://www.lmfdb.org/EllipticCurve/2.0.3.1/784.1/CMa/1
https://www.lmfdb.org/EllipticCurve/2.0.3.1/784.1/CMa/1
https://www.lmfdb.org/EllipticCurve/2.0.3.1/784.3/CMb/1
https://www.lmfdb.org/EllipticCurve/2.0.3.1/4096.1/CMb/1
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We can also find an elliptic curve E5/Q(
√

−3) complex multiplication by
Q(

√
−3) having bad reduction at 2 of Kodaira type II∗ as follows. Start with an

elliptic curve E/Q that has potential complex multiplication by Q(
√

−3) and bad
reduction at 2 of Kodaira type II∗ (e.g., the curve with LMFDB label 1728.m1). Then
consider the base change of E/Q to Q(

√
−3) which has complex multiplication by

Q(
√

−3). Since 2 is unramified in Q(
√

−3), the base change will still have bad
reduction at 2 of Kodaira type II∗.

Example 2.8. Consider the elliptic curve E/Q(
√

−3) given by the Weierstrass
equation

y2
+ y = x3

− 30x + 63.

This is the curve with LMFDB [18] label 2.0.3.1-81.1-CMa2 and we have that
EndL(E)∼=Z

[ 1
2(1+

√
−27)

]
. Moreover, E/Q(

√
−3) has only one prime of additive

reduction with Kodaira type IV∗ and j -invariant equal to −12288000. We note that
in this example L = K = Q(

√
−3).

We now proceed to the proof of Theorem 1.2.

Proof of Theorem 1.2. Assume that p ̸= 2 and that jE ̸= 0, 1728. Let OK be the
ring of integers of K , let F be the compositum L K , and let EF/F be the base
change of E/L to F . Since K ⊂ F , the curve EF/F has complex multiplication,
and hence it follows from Theorem 1.1 that EF/F has good reduction or reduction
of type I∗0. Since the ramification index e(F/L) is either 1 or 2, the extension F/L
is tame because we assume that p ̸= 2. Therefore, since EF/F has either good
reduction or reduction of type I∗0, using [9, Theorem 3], we find that E/L can only
have good reduction or reduction of type III, III∗, or I∗0.

Assume now that jE = 1728 and that v(2) = 1. Proceeding in the same way as
in the proof of Theorem 1.1 we see that E/L has a short Weierstrass equation of
the form

y2
= x3

+ Ax

for some A ∈ L∗. The discriminant and c6 invariant of this Weierstrass equation
are 1 = −64A3 and 0. Since v(2) = 1 by assumption, we have v(1) = 6 + 3v(A),
and hence 3 divides v(1). Let 1min be the discriminant of a minimal Weierstrass
equation for E/L . Since when a change of Weierstrass equation is performed the val-
uation of the discriminant changes by a multiple of 12, we find that v(1)−v(1min) is
a multiple of 12. Since 3 divides v(1), we obtain that 3 divides v(1min). Therefore,
since v(2)= 1, using [28, Tableau V] we find that E/L can only have good reduction
or reduction of type I0, II, III, III∗, I∗2 or I∗3. Finally, the proof of other two cases is
exactly the same as in Theorem 1.1. □

Example 2.9. Consider the elliptic curve E1/Q given by the Weierstrass equation

y2
+ xy = x3

− x2
− 2x − 1.

https://www.lmfdb.org/EllipticCurve/Q/1728/m/1
https://www.lmfdb.org/EllipticCurve/2.0.3.1/81.1/CMa/2
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This is the curve with LMFDB [18] label 49.a4 and j-invariant equal to −3375.
The curve E1/Q has potential complex multiplication by K = Q(

√
−7) and it has

bad reduction modulo 7 of Kodaira type III.
Consider now the elliptic curve E2/Q given by the Weierstrass equation

y2
+ xy = x3

− x2
− 1822x + 30393.

This is the curve with LMFDB [18] label 49.a1 and j-invariant equal to 16581375.
The curve E2/Q has potential complex multiplication by K = Q(

√
−7) and it has

bad reduction modulo 7 of Kodaira type III∗.
Thus, both the additional reduction types of Theorem 1.2 do occur. We note that

our examples are isogenous, so both reduction types can also occur in the same
isogeny class.

Example 2.10. Consider the elliptic curves E1/Q, E2/Q, E3/Q, E4/Q, and E5/Q

given by LMFDB [18] labels 32.a3, 32.a4, 64.a3, 64a4, 256.b2, respectively. All
these elliptic curves have potential complex multiplication by Q(i) (and j -invariant
equal to 1728). Moreover, they have reduction at 2 of type III, I∗3, I∗2, II, and III∗,
respectively.

Proposition 2.11. Let R be a complete discrete valuation ring with valuation v,
fraction field L of characteristic 0, and algebraically closed residue field kL of
characteristic p. Let E/L be an elliptic curve with j-invariant jE .

(i) If p = 2 and jE = 1728, then E/L cannot have reduction of type IV or IV∗.

(ii) If p = 3, jE = 0, and v(3) is even, then E/L cannot have reduction of type III
or III∗.

Proof. Assume that p = 2 and that jE = 1728. Proceeding in the same way as in the
proof of Theorem 1.1 we see that E/L has a short Weierstrass equation of the form

y2
= x3

+ Ax

for some A ∈ L∗. The discriminant of this Weierstrass equation is 1 = −64A3.
We have that v(1) = 6v(2) + 3v(A), and hence 3 divides v(1). Let 1min be the
discriminant of a minimal Weierstrass equation for E/L . Since when a change
of Weierstrass equation is performed the valuation of the discriminant changes
by a multiple of 12, we find that v(1) − v(1min) is a multiple of 12. Since 3
divides v(1), we obtain that 3 divides v(1min). Therefore, using [28, Tableau V]
we find that E/L cannot have reduction of type IV or IV∗.

Assume that p =3, jE =0, and v(3) is even. Proceeding in the same way as in the
proof of Theorem 1.1 we see that E/L has a short Weierstrass equation of the form

y2
= x3

+ B

https://www.lmfdb.org/EllipticCurve/Q/49/a/4
https://www.lmfdb.org/EllipticCurve/Q/49/a/1
https://www.lmfdb.org/EllipticCurve/Q/32/a/3
https://www.lmfdb.org/EllipticCurve/Q/32/a/4
https://www.lmfdb.org/EllipticCurve/Q/64/a/3
https://www.lmfdb.org/EllipticCurve/Q/64/a/4
https://www.lmfdb.org/EllipticCurve/Q/256/b/2
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for some B ∈ L∗. The discriminant of this Weierstrass equation is 1 = −432B2.
Since p = 3 is even by assumption, we have that v(1) = 3v(3)+2v(B), and hence
2 divides v(1) because v(3) is even. Let 1min be the discriminant of a minimal
Weierstrass equation for E/L . Since when a change of Weierstrass equation is
performed the valuation of the discriminant changes by a multiple of 12, we find
that v(1) − v(1min) is a multiple of 12. Since 2 divides v(1), we obtain that 2
divides v(1min). Therefore, using [28, Tableau III] we find that E/L cannot have
reduction of type III or III∗. □

3. Abelian varieties with complex multiplication

In this section we first prove a general lemma which is a consequence of the Néron–
Ogg–Shafarevich criterion and is essentially due to Serre and Tate [33]. Then we
recall a few basic facts concerning reduction of abelian varieties and reduction of
genus 2 curves.

Lemma 3.1. Let R be a complete discrete valuation ring with fraction field L of
characteristic 0 and finite residue field kL of characteristic p > 0. Let A/L be
an abelian variety with complex multiplication by K over L and let µ′

= |µ(K )|,
where µ(K ) are the roots of unity contained in K. Then there exists a finite
extension M/Lunr, where Lunr is the maximal unramified extension of L , which has
degree dividing µ′ and such that the base change AM/M has good reduction.

Proof. This is a consequence of results of Serre and Tate in [33]. We include some
of the details for completeness. Fix a separable closure L of L . Let ℓ ̸= p be a
prime and let ρℓ : Gal(L/L) → Aut(Tℓ(A)) be the ℓ-adic Galois representation of
A/L . Let v be the valuation of L , let v̄ be the extension of v to L , and let I (v̄) be
the inertia group of v̄. Note that the extension of v to L is unique because R is
complete. Since A/L has complex multiplication by K over L , the image ρℓ(I (v̄))

is contained in µ(K ) (see [33, Theorem 6]). Let now M/Lunr be the minimal Galois
extension over which ALunr/Lunr acquires good reduction. Such an extension exists
by [33, Theorem 6 and Corollary 3]. Then, we have that ker(ρℓ|I (v̄)) = Gal(L/M)

(by [33, Corollary 3]) and that |Gal(M/Lunr)| = |ρℓ(I (v̄))| which divides µ′. □

Example 3.2 (see also [25, Example 3.1]). Let p be an odd prime and s be an integer
with 1 ≤ s ≤ p − 2. Consider the smooth projective curve C p,s/Q birational to

y p
= x s(1 − x).

The curve C p,s/Q has genus 1
2(p−1). The Jacobian Jp,s/Q of C p,s/Q has complex

multiplication by K = Q(ζp) defined over Q(ζp) (see [14, page 202]). It turns
out that Jp,s/Q has good reduction away from p and potentially good reduction
modulo p. When C p,s/Q is tame (see [20, Example 5.1] for the definition) Jp,s/Q
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has purely additive reduction modulo p and achieves good reduction after a totally
ramified extension of degree 2(p − 1) (see [23, page 339] for the last statement).

Let R be a complete discrete valuation ring with fraction field L of characteristic 0
and perfect residue field kL . Let A/L be an abelian variety of dimension g. We
denote by A/R the Néron model of A/L (see [1] for the definition as well as the
basic properties of Néron models). The special fiber AkL /kL of A/R is a smooth
commutative group scheme. We denote by A0

kL
/kL the connected component of

the identity of AkL /kL . Since kL is perfect, by a theorem of Chevalley (see [6,
Theorem 1.1]) we have a short exact sequence

0 → T × U → A0
kL

→ B → 0,

where T/kL is a torus, U/kL is a unipotent group, and B/kL is an abelian variety.
The number dim(U ) (resp. dim(T ), dim(B)) is called the unipotent (resp. toric,
abelian) rank of A/L . By construction, g = dim(U ) + dim(T ) + dim(B). We
say that A/L has purely additive reduction if g = dim(U ), or equivalently, if
dim(T ) = dim(B) = 0.

The following two theorems will be very useful in the next section.

Theorem 3.3 (see [27, Lemma 2.4]). Let R be a complete discrete valuation ring
with fraction field L and perfect residue field. Let A/L be a simple abelian variety
with complex multiplication by K over the field L. Then A/L has either purely
additive or good reduction.

Theorem 3.4 (see [19, Proposition 2.7]). Let R be a complete discrete valuation
ring with fraction field L and algebraically closed residue field of characteristic
p > 5. Let C/L be a projective, smooth, and geometrically connected curve of
genus 2 with Jacobian Jac(C)/L. Assume that the Jacobian Jac(C)/L has purely
additive and potentially good reduction. Then [M : L] ≤ 10.

We now recall some background material on reduction of algebraic curves.
The reader is referred to [17, Chapter 10] for more information on this topic. A
projective, connected, and reduced curve C/k̄ over an algebraically closed field k̄ is
called stable if it has arithmetic genus greater or equal to 2, its singular points are
ordinary double points, and all of its irreducible components that are isomorphic
to P1

k̄
meet the other components in at least 3 points. Let R be a complete discrete

valuation ring with fraction field L and algebraically closed residue field, and let
C/L be a smooth, projective, and geometrically connected curve of genus g ≥ 2.
Recall that a stable model of C/L is a proper and flat scheme C/R whose generic
fiber is isomorphic to the curve C/L and whose special fiber is a stable curve. We
will say that C/L has stable reduction if it has a model whose special fiber is a
stable curve over the residue field.
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Theorem 3.5 (see [17, Theorem 10.4.44]). Let R be a complete discrete valuation
ring with fraction field L and algebraically closed residue field. Let C/L be a smooth,
projective, and geometrically connected curve of genus g ≥ 2. Then there exists a
(unique) finite extension M/L such that the curve CM/M has stable reduction that
has the following minimality property; for every other finite extension N/L the base
change CN/N has stable reduction if and only if M ⊆ N.

Using the same assumptions as in the preceding theorem, we denote the stable
model of CM/M by Cst which is unique by [17, Theorem 10.3.34]. Below we will
refer to Cst as the stable model, but the reader should keep in mind that Cst is the
stable model of CM/M . If C/L has potentially good reduction, then Cst is smooth.
On the other hand, if C/L does not have potentially good reduction but the Jacobian
Jac(C)/L of C/L has potentially good reduction, then the special fiber of Cst is a
union of two elliptic curves meeting at a single point (see the paragraph before [15,
Proposition 2]).

The following lemma will be very useful in the proofs of the next section because
it will help us exclude certain reduction types of the special fiber of the minimal
proper regular model of our curve.

Lemma 3.6. Let R be a discrete valuation ring with fraction field L and alge-
braically closed residue field k. Let C/L be a projective, smooth, and geometrically
connected curve of genus 2. Assume that the Jacobian Jac(C)/L has purely additive
reduction. Then the special fiber of the minimal proper regular model of C/L
contains only rational curves.

Proof. This is well known to the experts. Nevertheless, we provide some details of
the proof. Let Cmin/R be the minimal proper regular model of C/L . By performing
a sequence of blowups of closed points of Cmin/R we can find a new regular model
that has the properties (1) and (2) of [22, Section 6]. Moreover, the condition
r = 1 of [22, Theorem 6.1] is automatically satisfied because g = 2 (see [29,
Proposition 9.5.1]). Since blowing up at a closed point does not introduce curves of
genus bigger than 0 and Jac(C)/L has purely additive reduction by assumption, it
follows from [22, Theorem 6.1, part (a)] that the special fiber of the minimal proper
regular model of C/L can only contain rational curves. □

4. Genus 2 CM curves

In this section we prove Theorem 1.3. For the convenience of the reader, we have
repeated the statements to be proved and we have split the proof of the theorem
into parts.

Note. Recall that a quartic CM field K is a totally imaginary quadratic extension of
a totally real quadratic number field. Since the degree of the cyclotomic field Q(ζm)
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over Q is φ(m), we find that if K is a quartic CM field which contains a primitive
root of unity of order m, then m =2, 3, 4, 5, 6, 8, 10 or 12. Note that Q(ζ5)∼=Q(ζ10),
Q(ζ8), and Q(ζ12) are all quartic CM fields and that Q(ζ8), Q(ζ10), and Q(ζ12) are
the only quartic CM fields that have 8, 10, and 12 roots of unity, respectively. From
the above discussion, it follows that the number of roots of unity for a quartic CM
field is 2, 4, 6, 8, 10, or 12.

Lemma 4.1. Let R be a complete discrete valuation ring with fraction field L of
characteristic 0 and algebraically closed residue field kL of characteristic p > 5.
Let C/L be a projective, smooth, and geometrically connected curve of genus 2 with
Jacobian Jac(C)/L that has complex multiplication over the field L. Assume that
C/L has potentially good reduction. Then C/L cannot have reduction type [II], [V ],
or [V ∗

].

Proof. If C/L has reduction type [II], then we see from [26, page 155] that the
special fiber of the minimal regular model of C/L contains a curve of genus 1.
Therefore, Lemma 3.6 implies that the Jacobian Jac(C)/L cannot have purely
additive reduction. However, this contradicts Theorem 3.3.

Assume now that C/L has reduction type [V ] or [V ∗
]. We will find a contradiction.

The idea is that after a cubic base extension, C/L will acquire reduction of type [II],
so we get a contradiction by the previous paragraph. If C/L has reduction of [V ]

or [V ∗
], then, since p > 5, from [16, Table 1] we find that C/L acquires good

reduction after a cyclic extension M/L of degree 6. Let now N/L be the cubic
field subextension of M/L . The base change CN/N acquires good reduction after
an extension of degree 2. Therefore, using [16, Table 1], we find that CN/N
has either reduction of type [II] or [I∗0−0−0]. Let r be the r-invariant defined by
[16, Théorème 1] corresponding to C/L and let r ′ be the r-invariant defined by
[16, Théorème 1] corresponding to CN/N . We will not introduce Liu’s notation
because we will only use it very briefly here, but the interested reader is referred
to [16] or [31, Section 5.1] for more information. It follows from [16, Table 1]
that r ≡ 1 or 5 (mod 6), because n = 6 for C/L . Let vL and vN be the associated
(normalized) valuations for L and N respectively. By looking at the expression for r ′

and keeping in mind that vN |L = 3vL , we find that r ′
≡ 1 (mod 2). Therefore, using

[16, Table 1], we find that CN/N has reduction type [II], which is a contradiction. □

We now prove part (i) of Theorem 1.3.

Theorem 4.2. Let R be a complete discrete valuation ring with fraction field L of
characteristic 0 and finite residue field kL of characteristic p > 5. Let C/L be a
projective, smooth, and geometrically connected curve of genus 2 with Jacobian
Jac(C)/L that has complex multiplication by a quartic CM field K over the field L.
Let µ′

=|µ(K )|, where µ(K ) are the roots of unity in K , and let Lunr be the maximal
unramified extension of L. Assume that C/L has potentially good reduction. Then:
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(i) If µ′
= 2, then CLunr/Lunr can only have reduction of type [I∗0−0−0] or good

reduction [I0−0−0].

(ii) If µ′
= 4, then CLunr/Lunr can only have reduction of type [I∗0−0−0], [VI], or

good reduction [I0−0−0].

(iii) If µ′
= 6, then CLunr/Lunr can only have reduction of type [I∗0−0−0], [III], [IV],

or good reduction [I0−0−0].

(iv) If µ′
= 8, then CLunr/Lunr can only have reduction of type [I∗0−0−0], [VI], [VII],

[VII∗], or good reduction [I0−0−0].

(v) If µ′
= 10, then CLunr/Lunr can only have reduction of type [I∗0−0−0], [IX − 1],

[IX−2], [IX−3], [IX−4], [VIII−1], [VIII−2], [VIII−3], [VIII−4], or
good reduction [I0−0−0].

(vi) If µ′
= 12, then CLunr/Lunr can only have reduction of type [I∗0−0−0], [III], [IV],

[VI], or good reduction [I0−0−0].

Proof. Let M/Lunr be the extension of minimal degree over which CLunr/Lunr

acquires stable reduction, which is provided by Theorem 3.5. By [8, Theorem 2.4]
and Lemma 3.1 we find that [M : Lunr

] divides µ′
= |µ(K )|. The idea of the proof

is to use this divisibility combined with Liu’s algorithm [16] and Lemma 4.1 to
compute the possible reduction types of CLunr/Lunr.

Since we assume that C/L has potentially good reduction, it follows from [15,
Proposition 3] that the stable model Cst has good reduction. Moreover, since p > 5,
the extension M/Lunr is tame (see [16, Proposition 4.1.2]). Therefore, by [16,
Table 1] we find that the possible reduction types of CLunr/Lunr are as follows.

degree of M/Lunr possible reduction types of CLunr/Lunr

1 [I0−0−0]

2 [I∗0−0−0], [II]
3 [III]
4 [VI]
5 [IX − 1], [IX − 2], [IX − 3], [IX − 4]

6 [IV], [V ], [V ∗
]

8 [VII], [VII∗]
10 [VIII − 1], [VIII − 2], [VIII − 3], [VIII − 4]

(i) If µ′
= 2, then we see that [M : Lunr

] is either 1 or 2. So, the curve CLunr/Lunr has
either reduction of type [I0−0−0], [I∗0−0−0], or [II]. However, Lemma 4.1 excludes
the case of type [II].

(ii) If µ′
= 4, then we see that [M : Lunr

] divides 4. If [M : Lunr
] ≤ 2, then we find

that the reduction types of CLunr/Lunr are the types that appear in (i). On the other
hand, if [M : Lunr

] = 4, then CLunr/Lunr has reduction of type [VI].
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(iii) If µ′
= 6, then we see that [M : Lunr

] divides 6. Therefore, [M : Lunr
] = 1, 2, 3,

or 6. Using the table above we find that CLunr/Lunr has reduction of type [I∗0−0−0],
[II], [III], [IV], [V ], or [V ∗

]. However, using Lemma 4.1, we find that the types
[II], [V ], and [V ∗

] cannot occur.

(iv) If µ′
= 8, then we see that [M : Lunr

] divides 8. If [M : Lunr
] divides 4, then

we find that the reduction types of CLunr/Lunr are the types that appear in (ii). On
the other hand, if [M : Lunr

] = 8, then we find that CLunr/Lunr has reduction of type
[VII] or [VII∗].

(v) If µ′
= 10, then we see that [M : Lunr

] divides 10. If [M : Lunr
] = 1 or 2,

then CLunr/Lunr has reduction of type [I∗0−0−0] or [I0−0−0]. On the other hand, if
[M : Lunr

] = 5 or 10, then we find that CLunr/Lunr has reduction of type [IX − 1],
[IX − 2], [IX − 3], [IX − 4], [VIII − 1], [VIII − 2], [VIII − 3], [VIII − 4].

(vi) If µ′
= 12, the we see that [M : Lunr

] divides 12. Since [M : Lunr
] ≤ 10 by

Theorem 3.4, we find that [M : Lunr
] = 1, 2, 3, 4, or 6. If [M : Lunr

] divides 6,
then we find that the reduction types of CLunr/Lunr are the types that appear in (iii).
On the other hand, if [M : Lunr

] = 4, then CLunr/Lunr can only have reduction of
type [VI]. □

Remark 4.3. The following two curves, C0/k and C1/k, will play a special role in
Theorem 4.4 below. Let k be an algebraically closed field of characteristic p > 5.
Let C0/k be the smooth projective geometrically connected curve given by the
following affine equation

C0 : y2
= x5

− 1.

Moreover, let C1/k be the smooth projective geometrically connected curve given
by the affine equation

C1 : y2
= x5

− x .

We now show that under some extra assumptions on the special fiber of the stable
model of C/L , we can achieve more precise results.

Theorem 4.4. Keep the same assumptions and notation as in Theorem 4.2 and
assume in addition that the special fiber Cs of Cst is not isomorphic to either the
curve C0/k or the curve C1/k of Remark 4.3. Then:

(i) If µ′
= 8, then CLunr/Lunr can only have reduction of type [I∗0−0−0], [VI], or

good reduction [I0−0−0].

(ii) If µ′
= 10, then CLunr/Lunr can only have reduction of type [I∗0−0−0] or good

reduction [I0−0−0].

Proof. Let M/Lunr be the extension of minimal degree over which CLunr/Lunr

acquires stable reduction, which is provided by Theorem 3.5. Since C/L has
potentially good reduction, it follows from [15, Corollaire 4.1] that [M : Lunr

]

divides 4 or 6, except if Cs ∼= C0, C1, where Cs is the stable reduction of C/L .
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(i) Assume that µ′
= 8. Lemma 3.1 implies that [M : Lunr

] divides 8. Since
[M : Lunr

] also divides 4 or 6, we find that [M : Lunr
] = 1, 2, or 4. Therefore, pro-

ceeding in a similar way as in the proof of (ii) of Theorem 4.2, we find that CLunr/Lunr

can only have reduction of type [I∗0−0−0], [VI], or good reduction [I0−0−0].

(ii) Assume that µ′
= 10. Lemma 3.1 implies that [M : Lunr

] divides 10. Since
[M : Lunr

] also divides 4 or 6, we find that [M : Lunr
]= 1 or 2. Therefore, proceeding

in a similar way as in the proof of (i) of Theorem 4.2, we find that CLunr/Lunr can
only have reduction of type [I∗0−0−0] or good reduction [I0−0−0]. □

We now consider the possible types that can occur when C/L does not have
potentially good reduction.

Remark 4.5. Let R be a complete discrete valuation ring with valuation vL , fraction
field L of characteristic 0, and algebraically closed residue field kL of characteristic
p > 5. Let C/L be a projective, smooth, and geometrically connected curve of
genus 2 with simple Jacobian Jac(C)/L that has complex multiplication by a quartic
CM field K over the field L . Assume also that C/L does not have potentially good
reduction. Let M/L be the extension of minimal degree over which C/L acquires
stable reduction, which exists by Theorem 3.5. Recall that we denote by Cst the
stable model of CM/M . It follows that the special fiber of the stable model Cst is a
union of two elliptic curves E1 and E2 intersecting at a point, see the paragraph
before [15, Proposition 2] and note that the Jacobian of C/L has potentially good
reduction. Let

dL := vL
1
12(J10 J−5

2 ),

where J10 and J2 are the (Igusa) J10- and J2-invariants associated to C/L , see [16,
Section 2.2] for the relevant definitions. The number d := [M : L] dL is called the
degree of singularity of the point of intersection E1 ∩ E2 in Cst. We note that this d
is the same d that appears in the reduction type of the second part of Theorem 1.3
(as well as in its restatement below).

Before we proceed to the proof of the second part of Theorem 1.3, we need
to prove a lemma that will significantly simplify our proof. In the lemma and
in the theorem below the number r corresponds to the r-invariant defined in [16,
Théorème 3].

Lemma 4.6. Let R be a complete discrete valuation ring with (normalized) valua-
tion vL , with fraction field L of characteristic 0, and algebraically closed residue
field kL of characteristic p > 5. Let C/L be a projective, smooth, and geometrically
connected curve of genus 2 with Jacobian Jac(C)/L that has complex multiplication
over the field L.

(i) The curve C/L cannot have any of the following reduction types:
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[I0 − I0 − d], [I0 − I∗0 − (d − 1)/2], [2I0 − r ],
[I0 − IV − (d − 1)/3], [I0 − IV∗

− (d − 2)/3], [I0 − III − (d − 1)/4],
[I0 − III∗ − (d − 3)/4], [I∗0 − III∗ − (d − 5)/4], [I∗0 − III − (d − 3)/4],
[2IV − (r − 1)/3], [2IV∗

− (r − 2)/3], [I0 − II − (d − 1)/6],
[I0 − II∗ − (d − 5)/6], [I∗0 − IV∗

− (d − 7)/6], [I∗0 − IV − (d − 5)/6],
[II∗ − IV − (d − 7)/6], [II − IV − (d − 3)/6], [II − IV∗

− (d − 5)/6],
[II∗ − IV∗

− (d − 9)/6],

(ii) If C/L acquires semistable reduction after an extension of degree 6 or 12, then
2 ∤ vL(J2) except if C/L has reduction type [II−II−(d−2)/6], [II−II∗−(d−6)/6],
[II∗ − II∗ − (d − 10)/6], [I∗0 − II − (d − 4)/6], or [I∗0 − II∗ − (d − 8)/6].

Proof. (i) If C/L has reduction of type [I0 − I0 −d], [I0 − I∗0 −(d −1)/2], [2I0 −r ],
[I0 − IV − (d − 1)/3], or [I0 − IV∗

− (d − 2)/3], then we see from [26] that the
special fiber of the minimal regular model of C/L contains a smooth curve of
genus 1. Therefore, Lemma 3.6 implies that the Jacobian Jac(C)/L cannot have
purely additive reduction. However, this contradicts Theorem 3.3.

Assume that C/L has reduction of type [I0−III−(d−1)/4], [I0−III∗−(d−3)/4],
[I∗0 − III∗ − (d − 5)/4], or [I∗0 − III − (d − 3)/4], and we will find a contradiction.
We know from [16, Table 3.1] that C/L acquires stable reduction after a cyclic
extension M/L of degree 4. Let now N/L be a quadratic field extension contained
in M/L . The base change CN/N acquires stable reduction after an extension of
degree 2. Let d be the integer defined in Remark 4.5 computed with respect to the
field L . Looking at [16, Table 3.1], we find that d ≡ 1 or 3 (mod 4). Let vL and vN

are the corresponding valuations for L and N respectively. Since vN |L = 2vL

and [M : N ] =
1
2 [M : N ], we see that the value of d remains the same when

computed over N . Therefore, using [16, Table 3.1], we see that CN/N has reduction
[I0−I∗0−(d−1)/2], because d ≡ 1 (mod 2). This contradicts the previous paragraph
because Jac(CN )/N has complex multiplication over N .

Assume that C/L has reduction of type [2IV − (r − 1)/3] or [2IV∗
− (r − 2)/3],

and we will find a contradiction. Let vL be the (normalized) valuation of L and
let J2 be the J2-invariant associated to C/L (see [16, Section 2.2]). Since C/L has
reduction of type [2IV − (r − 1)/3] or [2IV∗

− (r − 2)/3], we know that 2 ∤ vL(J2)

by [16, Table 3.2]. Moreover, from [16, Table 3.1] we find that C/L acquires
good reduction after a cyclic extension M/L of degree 6. Let now N/L be a cubic
extension contained in M/L and denote by vN the corresponding valuation. Since
vN |L = 3vL , we see that 2 ∤ vN (J2). Therefore, CN/N must have reduction of
type [2I0 − r ] by [16, Table 3.2]. This is a contradiction by Lemma 4.6, because
Jac(CN )/N has complex multiplication over N .

Assume that C/L has reduction of type [I0−II−(d−1)/6], [I0−II∗−(d−5)/6],
[I∗0−IV∗

−(d−7)/6], [I∗0−IV−(d−5)/6], [II∗−IV−(d−7)/6], [II−IV−(d−3)/6],
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[II − IV∗
− (d − 5)/6], or [II∗ − IV∗

− (d − 9)/6], and we will find a contradiction.
We know from [16, Table 3.1] that C/L acquires good reduction after a cyclic
extension M/L of degree 6. Let d be the integer defined in Remark 4.5 with respect
to L . Looking at [16, Table 3.1], we find that d ≡ 1, 3, or 5 (mod 6). Let now
N/L be a cubic extension contained in M/L and denote by vN the corresponding
valuation. Since vN |L = 3vL and [M : N ] =

1
3 [M : N ], we see that the value of d

remains the same when computed over N . Therefore, using [16, Table 3.1], we see
that CN/N has reduction [I0−I∗0 −(d −1)/2], because d ≡ 1 (mod 2). Finally, using
Lemma 4.6 we find a contradiction because Jac(CN )/N has complex multiplication
over N .

(ii) We now assume that 2 | vL(J2) and that C/L does not have reduction type
[II−II−(d−2)/6], [II−II∗−(d−6)/6], [II∗−II∗−(d−10)/6], [I∗0−II−(d−4)/6],
or [I∗0 − II∗ −(d −8)/6]. We proceed by contradiction. Let M/L be the extension of
minimal degree over which C/L acquires stable reduction. Note that the special fiber
of the stable model of CM/M is a union of two elliptic curves meeting at one point
(see the paragraph right before [15, Proposition 2]). By assumption [M : L] = 6
or 12. Let now N/L be the extension of degree 3 contained in M/L and denote by vN

the corresponding valuation. Then CN/N acquires good reduction after an extension
of degree 1

3 [M : L] and 2 | vN (J2). Let d be the integer defined in Remark 4.5 with
respect to L . It follows from [16, Table 3.1] that either d ≡ 1, 3, or 5 (mod 6) or
d ≡ 1, 3, or 5 (mod 6). The curve CN/N has stable reduction after an extension of
degree 2 or 4 while d is odd. Let vN be the valuation of N . As vN |L =

( 1
3 [M : L]

)
vL

and [M : N ] = 3, we see that the value of d remains the same when computed
over N . Therefore, using [16, Table 3.1], we see that CN/N has reduction type
[I0−I∗0−(d−1)/2], [I0−III−(d−1)/4], [I0−III∗−(d−3)/4], [I∗0−III−(d−3)/4],
or [I∗0 − III∗ − (d − 5)/4]. This is a contradiction by Lemma 4.6 because Jac(CN )

has complex multiplication over the field N . □

We now prove the second part of Theorem 1.3. For the convenience of the reader
we have repeated the statement to be proved.

Theorem 4.7. Let R be a complete discrete valuation ring with fraction field L of
characteristic 0 and finite residue field kL of characteristic p > 5. Let C/L be a
projective, smooth, and geometrically connected curve of genus 2 with Jacobian
Jac(C)/L that has complex multiplication by a quartic CM field K over the field L.
Let µ′

= |µ(K )|, where µ(K ) is the group of roots of unity in K. Assume that C/L
does not have potentially good reduction. Then:

(i) If µ′
=2 or 10, then CLunr/Lunr can only have reduction of type [I∗0 –I∗0 –(d –2)/2].

(ii) If µ′
= 4, then CLunr/Lunr can only have reduction of type [I∗0 − I∗0 − (d − 2)/2],

[III − III − (d − 2)/4], [III − III∗ − (d − 4)/4], [III∗ − III∗ − (d − 6)/4], or
[2I∗0 − (r − 1)/2].
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(iii) If µ′
= 6, then CLunr/Lunr can only have reduction of type [I∗0 − I∗0 − (d −2)/2],

[IV–IV–(d –2)/3], [IV–IV∗ –(d –3)/3], [IV∗ –IV∗ –(d –4)/3], [II–II–(d –2)/6],
[II−II∗−(d−6)/6], [II∗−II∗−(d−10)/6], [I∗0−II−(d−4)/6], [I∗0−II∗−(d−8)/6],
[2IV − (r − 1)/3], or [2IV∗

− (r − 2)/3].

(iv) If µ′
= 8, then CLunr/Lunr can only have reduction of type [I∗0 − I∗0 − (d −2)/2],

[III−III−(d−2)/4], [III−III∗−(d−4)/4], [III∗−III∗−(d−6)/4], [2I∗0−(r−1)/2],
[2III − (r − 1)/4], [2III∗ − (r − 3)/4].

(v) If µ′
= 12, then the possible reduction types of CLunr/Lunr are as follows:

[I∗0 − I∗0 − (d − 2)/2], [III − III − (d − 2)/4], [III − III∗ − (d − 4)/4],
[III∗ − III∗ − (d − 6)/4], [2I∗0 − (r − 1)/2], [IV − IV − (d − 2)/3],
[IV − IV∗

− (d − 3)/3], [IV∗
− IV∗

− (d − 4)/3], [II − II − (d − 2)/6],
[II − II∗ − (d − 6)/6], [II∗ − II∗ − (d − 10)/6], [I∗0 − II − (d − 4)/6],
[I∗0 − II∗ − (d − 8)/6], [2IV − (r − 1)/3], [2IV∗

− (r − 2)/3],
[2II − (r − 1)/6], [2II∗ − (r − 5)/6].

Proof. Let M/Lunr be the extension of minimal degree over which CLunr/Lunr

acquires stable reduction, which is provided by Theorem 3.5. By [8, Theorem (2.4)]
and Lemma 3.1 we find that [M : Lunr

] divides µ′
= |µ(K )|. Moreover, since p > 5,

the extension M/Lunr is tame (see [16, Proposition 4.1.2]). It follows from [15,
Proposition 3] that CM/M has stable reduction. Moreover, since the stable model of
CM/M is assumed to be singular, [M : Lunr

] divides 8 or 12 by [15, Corollaire 4.1]
and the special fiber of the stable model of CM/M is a union of two elliptic curves
meeting at one point (see the paragraph right before [15, Proposition 2]). We will
combine the above observations with Liu’s algorithm [16] along with Lemma 4.6
to compute the special fiber of the minimal proper regular model.

(i) If µ′
= 2 or 10, then we see that [M : Lunr

] divides 2 or 10. Since [M : Lunr
]

also divides 8 or 12, we find that [M : Lunr
] = 1 or 2. Therefore, we find, using [16,

Tables 3.1 and 3.2], that CLunr/Lunr has either reduction of type [I∗0 −I∗0 −(d −2)/2],
[I0 − I0 − d], [I0 − I∗0 − (d − 1)/2], or [2I0 − r ]. However, the last three types are
excluded by (i) of Lemma 4.6.

(ii) If µ′
=4, then we see that [M : Lunr

] divides 4. If [M : Lunr
]=1 or 2, then we find

that the reduction types of CLunr/Lunr are the types that appear in (i). Therefore, we
assume from now on that [M : Lunr

]= 4. Using [16, Tables 3.1 and 3.2], we find that
CLunr/Lunr can only have reduction of type [I∗0−I∗0−(d−2)/2], [III−III−(d−2)/4],
[III−III∗−(d−4)/4], [III∗−III∗−(d−6)/4], [2I∗0−(r−1)/2], [I0−III−(d−1)/4],
[I0 − III∗ − (d −3)/4], [I∗0 − III∗ − (d −5)/4], [I∗0 − III− (d −3)/4]. However, the
last four types are excluded by (i) of Lemma 4.6.

(iii) If µ′
= 6, then we see that [M : Lunr

] divides 6. If [M : Lunr
] = 1 or 2, then

we find that the reduction types of CLunr/Lunr are the types that appear in (i). If
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[M : Lunr
] = 3, then, using [16, Table 3.1], we find that CLunr/Lunr can only have

reduction of type [IV−IV−(d−2)/3], [IV−IV∗
−(d−3)/3], [IV∗

−IV∗
−(d−4)/3],

[I0 − IV − (d − 1)/3], or [I0 − IV∗
− (d − 2)/3]. However, the last two types

are excluded by Lemma 4.6. On the other hand, if [M : Lunr
] = 6, then (ii) of

Lemma 4.6 below shows that either CLunr/Lunr has reduction type [II−II−(d−2)/6],
[II−II∗−(d−6)/6], [II∗−II∗−(d−10)/6], [I∗0−II−(d−4)/6], [I∗0−II∗−(d−8)/6],
or we have that 2 ∤ vL(J2). Assume from now on that 2 ∤ vL(J2). Using [16,
Table 3.2], we find that CLunr/Lunr can only have reduction of type [2IV−(r −1)/3]

or [2IV∗
− (r − 2)/3].

(iv) If µ′
= 8, then we see that [M : Lunr

] divides 8. If [M : Lunr
] divides 4, then

we find that the reduction types of CLunr/Lunr are the types that appear in (ii). On
the other hand, if [M : Lunr

] = 8, then, using [16, Tables 3.1 and 3.2], we find that
CLunr/Lunr can only have reduction of type [2III − (r − 1)/4] or [2III∗ − (r − 3)/4].

(v) If µ′
= 12, then we see that [M : Lunr

] divides 12. If [M : Lunr
] divides 4 or 6,

then we find that the reduction types of CLunr/Lunr are the types that appear in (ii)
or in (iii). Assume now that [M : Lunr

] = 12. Part (ii) of Lemma 4.6 shows that
2 ∤ vL(J2). Therefore, using [16, Table 3.2], we find that CLunr/Lunr can only have
reduction of type [2II − (r − 1)/6] or [2II∗ − (r − 5)/6]. □

Note. In Theorem 1.3, if a reduction type appears in the tables, then the reduction
types corresponding to quadratic twists of the original curve also appear in the tables,
as we explain here. Keep the same assumptions and notation as in Theorem 1.3.
Let Ld = L(

√
d) be a quadratic extension of L and let χ : Gal(L/L) → {±1}

with χ(σ) = (
√

d)σ/
√

d be the associated quadratic character. Denote by j the
hyperelliptic involution of C/L . Consider the cocycle ξ ∈ H1(Gal(L/L), AutL(C))

given by ξ(σ ) = [ j] if χ(σ) = −1, and ξ(σ ) = [id] otherwise. Let Cξ/L be
the twist of C/L corresponding to the cocycle ξ . We claim that Jac(Cξ )/L also
has complex multiplication by K over the field L . To justify this, note that the
embedding ι : K ↪→ End0

L(Jac(C)) induces an embedding ιξ : K ↪→ End0
L(Jac(Cξ ))

(the proof of [34, Lemma 2.2] carries over in our case). Sadek in [31] has computed
the reduction type of Cξ/L based on the reduction type of C/L .

We do not know whether all the types allowed by Theorem 1.3 actually occur.
We present some examples of reduction types of CM curves below.

Example 4.8 (see [13, Example 3.6.2] and [40, Table 1]). Consider the hyperelliptic
curve C/Q given by

y2
= −8x6

− 64x5
+ 1120x4

+ 4760x3
− 48400x2

+ 22627x − 91839.

The Jacobian of this curve does not have complex multiplication over Q but it
acquires complex multiplication after a finite extension of Q.
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Using SAGE [32] we see that the curve C/Q has bad reduction modulo 2, 5, 11,
and 13, it has reduction type [I∗0 − I∗0 −0] modulo 11, and it has reduction type [VI]
modulo 13. Therefore, C/Q has potentially good reduction modulo 13, and the
potential stable reduction of C/Q modulo 11 is the union of two elliptic curves
intersecting transversely at a point. Let N > 1 be a positive integer not divisible by
2, 5, 11, or 13, and let L = Q(Jac(C))[N ]). Then Jac(C)L/L has good reduction,
by [33, Corollary 3], and it has all of its endomorphisms defined over L , by [36,
Theorem 2.4]. Therefore, CL/L has good reduction modulo primes of L above 13
and it has reduction of type [I0 − I0 − 2] modulo primes of L above 11.

Example 4.9 (see [13, Example 3.2] and [40, Table 1]). Consider the hyperelliptic
curve C/Q given by

y2
= x5

+ 1.

The curve C/Q has good reduction outside of 2, 5 and it has reduction type [VII]
modulo 5. Moreover, the base extension Jac(C)Q(ζ5)/Q(ζ5) of the Jacobian of C/Q

to Q(ζ5) has complex multiplication by Q(ζ5).

5. Geometric component groups and torsion of CM abelian varieties

In this section, we focus on component groups and torsion points of CM abelian
varieties. We first prove Proposition 5.1 below which provides a bound for the
component group of CM abelian varieties and a list of the possible component
groups of elliptic curves with complex multiplication. We then prove Proposition 1.4
using Proposition 5.1.

Let R be a complete discrete valuation ring with fraction field L of characteristic 0
and perfect residue field kL of characteristic p > 0, and let A/K be an abelian
variety. We denote by A/R the Néron model of A/K (see [1] for the definition as
well as the basic properties of Néron models). The special fiber AkL /kL of A/R
is a smooth commutative group scheme. We denote by A0

kL
/kL the connected

component of the identity of AkL /kL . The finite étale group scheme defined by
8 := AkL /A0

kL
is called the component group of A/R.

Proposition 5.1. Let R be a complete discrete valuation ring with fraction field L
of characteristic 0 and finite residue field kL of characteristic p. Let Lunr be the
maximal unramified extension of L and denote the residue field of Lunr by kL .

(i) Assume that p ̸= 2 and that K ̸= Q(i), Q(
√

−3). Let E/L be an elliptic curve
with complex multiplication by K over L such that jE ̸= 0, 1728. Then E/L
has geometric component group 8(kL) isomorphic (as an abelian group) to (0)

or Z/2Z × Z/2Z.
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(ii) Let A/L be an abelian variety with complex multiplication by a CM field K
over L. Then the geometric component group 8(kL) of ALunr/Lunr is killed by
|µ(K )|, where µ(K ) is the group of roots of unity in K.

Proof. (i) Theorem 1.1 implies that E/L can only have good reduction or reduction
of Kodaira type I∗0. Therefore, part (i) follows from a simple application of Tate’s
algorithm (see [37, page 365]).

(ii) Let M/Lunr be the extension of minimal degree over which ALunr/Lunr acquires
semistable reduction. It follows from Lemma 3.1 that the degree [M : Lunr

] di-
vides |µ(K )|. On the other hand, work of McCallum [24] and Edixhoven, Liu,
and Lorenzini [10, Theorem 1] tells us that [M : Lunr

] kills 8(kL). Therefore, since
[M : Lunr

] divides |µ(K )|, we find that 8(kL) is killed by |µ(K )|. □

Note. Let R be a complete discrete valuation ring with fraction field L of char-
acteristic 0 and finite residue field kL of characteristic p > 0. Lorenzini in [20,
Corollary 3.25] has provided a list of the possible prime-to-p parts of the geometric
component group of abelian varieties defined over L that have purely additive and
potentially good reduction. When p > 5 using Theorem 1.3, together with [16,
Section 8], we find that the cases where the group is Z/4Z or Z/2Z × Z/4Z cannot
occur among Jacobian surfaces with complex multiplication defined over the base
field. By Theorem 3.3 Jacobian surfaces with complex multiplication have either
purely additive or good reduction.

We now proceed to the proof of Proposition 1.4. For every positive integer m
we let γp(m) =

⌊
logp

( pm
p−1

)⌋
.

Proposition 5.2. Let R be a complete discrete valuation ring with fraction field L
of characteristic 0 and finite residue field kL of characteristic p > 0. Denote by e
the absolute ramification index of L. Let A/L be an abelian variety with complex
multiplication by a CM field K over L and assume that A/L does not have good
reduction. Then

|A(L)tors| ≤ |µ(K )| · p2gγp(e|µ(K )|).

Proof. By Theorem 3.3 we find that A/K has purely additive reduction. Then
the proof of [3, part (iii) of Main Theorem] carries over verbatim in our case.
The only extra input is that instead of using [3, Corollary 3.8] in the proof of [3,
part (iii) of Main Theorem] is that we can use the more precise bound provided by
Proposition 5.1. □

Combining the previous proposition with [3, Main Theorem] below we prove
Proposition 1.4, which improves slightly [3, Main Theorem] in the case where the
abelian variety has complex multiplication.
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Proof of Proposition 1.4. If A/L does not have good reduction, then we have by
Proposition 5.2,

|A(L)tors| ≤ |µ(K )| · p2gγp(e|µ(K )|).

On the other hand, if A/K has good reduction then, since the toric and unipotent
ranks are zero, i.e., µ = α = 0 in their notation, while the abelian rank is g, i.e.,
β = g in their notation, [3, part (ii) of Main Theorem] implies that

|A(L)tors| ≤ ⌊(1 +
√

q)2
⌋

g
· p2gγp(e). □

Note. In the literature there exist global bounds on the torsion of CM abelian
varieties over number fields (see [11] and [35]), which rely on the main theorem
of complex multiplication and class field theory. On the other hand, our result is
local, i.e., it only depends on local invariants, it is much more elementary, and it is
of most interest when A/L has bad reduction while |µ(K )| and e are small.
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