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THE LOCAL CHARACTER EXPANSION
AS BRANCHING RULES:
NILPOTENT CONES AND THE CASE OF SL(2)

MONICA NEVINS

We show there exist representations of each maximal compact subgroup K
of the p-adic group G = SL(2, F), p # 2, for each nilpotent coadjoint orbit,
such that every irreducible admissible (complex) representation of G, upon
restriction to a suitable subgroup of K, is a sum of these five representations
in the Grothendieck group. This is a representation-theoretic analogue of the
analytic local character expansion due to Harish-Chandra and Howe. More-
over, we show for general connected reductive groups that the wave front
set of many irreducible positive-depth representations of G are completely
determined by the nilpotent support of their unrefined minimal K -types.

1. Introduction

The distribution character of an admissible (complex) representation of a p-adic
group can be expressed, in a neighbourhood of the identity, as a linear combination
of Fourier transforms of the finitely many nilpotent orbital integrals in the dual of the
Lie algebra. This remarkable theorem, known as the Harish-Chandra—Howe local
character expansion, has many variations (such as expansions on neighbourhoods
of other semisimple elements, or expansions in terms of other collections of orbital
integrals [Kim and Murnaghan 2003; 2006; Spice 2018]) and many applications
(such as determining the Gelfand—Kirillov dimension of a representation, or relating
to conjectural classifications such as the orbit method, or the local Langlands
correspondence [Barbasch and Moy 1997; Ciubotaru et al. 2022a; 2022b; Jiang
et al. 2022]). Though it is primarily considered in characteristic zero, it also
holds when the characteristic is sufficiently large and a suitable substitute for the
exponential map exists [Cluckers et al. 2014].

In this paper, we interpret the local character expansion as a statement in the
Grothendieck group of representations of a maximal compact open subgroup, upon
restriction to a subgroup of suitable depth, for the case that G = SL(2, F), where F
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is a local nonarchimedean field of residual characteristic at least 3. In particular, we
construct for each nilpotent orbit O of G in the dual of its Lie algebra g* a (highly
reducible) representation 7, (O) of each maximal compact open subgroup G, with
the following property.

Theorem 1.1. Let w be an irreducible admissible representation of G = SL(2, F)
of depth r > 0, and let x be a vertex in the building of G. Then there exist integers
cx,0(m) such that in the Grothendieck group of representations we have

(1-1) Resg 7= cro(mResg’ 7.(0),

> .
where Gy ,+ is the Moy—Prasad filtration subgroup of G of depth r+, and the sum
is over all nilpotent orbits in g*.

Moreover, the coefficients corresponding to the regular nilpotent orbits in this
expansion are nonnegative integers and agree with those of the Harish-Chandra—
Howe local character expansion (subject to suitable normalizations). Note that
while inherently expressing the same local nature of representations, our statement
holds with fewer restrictions on F than does the local character expansion, because
it does not depend on the existence of a G-equivariant map, such as the exponential
or a Cayley transform, from the Lie algebra to the group.

If G is SLy(F) or an inner form of GL, (F), then Henniart and Vignéras have
proven a different local expansion in the same spirit as (1-1), one that holds for
representations over any field R of characteristic not p, in a sufficiently small
neighbourhood of 1, but which constructs the right-hand side as restrictions of
particular representations of G itself ([Henniart and Vignéras 2024, Theorem 6.18]
and [Henniart and Vignéras 2023, Theorem 1.3], respectively). When G = GL,, (F),
these representations are of the form Indg 1, for a suitable parabolic subgroup
attached to O, vastly generalizing a result of Roger Howe [1974]. When G =
SL,(F), they are representations that occur in an L-packet of size 4 (called “special
unipotent representations” in the complex case here); the distinguished role of these
representations in the complex case was observed previously in [Nevins 2011, §4].
In Section 8 we explore applications of these ideas, and answer [Henniart and
Vignéras 2023, Questions 1.1 and 1.2] for complex representations of SL(2, F).

Now suppose G is a general connected reductive group. In Section 3, we develop
some theory towards establishing the direct relationship from the local character
expansion to a decomposition like (1-1), as follows.

The set of maximal orbits appearing in the local character expansion for an
admissible representation 7 is denoted by W (;r); the closure of the union of these
orbits is the wave front set of 7. For depth-zero representations r, Barbasch and
Moy [1997] proved that W (ir) is determined by the depth-zero components of
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the restriction of 7 to various maximal compact subgroups, through the theory of
Gelfand—Graev representations.

For a positive-depth representation with minimal K-type I' (in the sense of Moy
and Prasad [1994]), we should instead infer W (;r) from the nilpotent support
Nil(I") (Definition 3.2) of I'. This definition, of independent interest, depends
strongly on the classification of nilpotent orbits using Bruhat-Tits theory [Barbasch
and Moy 1997; DeBacker 2002b]. In fact, in Proposition 3.4 we show that the
algebraic notion of nilpotent support can be characterized as the set of nonzero
nilpotent orbits appearing in the asymptotic cone on I', as defined in [Adams
and Vogan 2021]. In Theorem 3.5 (proof due to Fiona Murnaghan), we prove
that W () is the set of maximal orbits of Nil(I") whenever the I"'-asymptotic
expansion [Kim and Murnaghan 2003] reduces to a single term.

This last result is similar to recent work of Ciubotaru and Okada [2023], who show
that the depth-r components of the restriction to certain compact open subgroups
determine the wave front set of 7. The idea of the nilpotent support is also central
to that work, where they develop it using, among other things, the geometry of the
associated finite reductive group.

Now again suppose that G = SL(2, F'). Our result gives a second characterization
of WF(rmr): it can be entirely determined from the nontypical representations
occurring in the restriction of 7 to a maximal compact open subgroup, for & of
any depth. That is, the asymptotic decomposition of Resg, 7 unfolds exactly as the
representations 7, (O) for O € WF ().

For the case of a positive-depth representation 77, our main theorem is stated
in Theorem 6.4, with the explicit values of the constant coefficient given in
Proposition 6.7. To prove the theorem, we first show that the restriction of 7
to a maximal compact subgroup can be expressed entirely in terms of twists of
the pair (I, x) used in the construction of & (Theorem 6.2), using results from
[Nevins 2005; 2013]. Here, yx is a character of a torus 7 = Centg (I") that is realized
by I € g*, and the realization of the irreducible components of the restriction is
framed in terms of a generalization (Proposition 5.4) of a construction due to Shalika
in his thesis. From this characterization, and a key technical result (Lemma 5.5),
it follows that the expansion (1-1) exists and has leading terms corresponding to
the nilpotent support of I'. Since I" represents a minimal K -type of 7 in the sense
of Moy and Prasad [1994], we independently recover from Theorem 3.5 that the
maximal orbits in Nil(I") coincide with W.F ().

For representations of depth zero, the principal technical difficulties lie in match-
ing the depth-zero components with nilpotent orbits, particularly in the case of the
twelve “exceptional” representations: the reducible principal series, the principal
series composed of the trivial and the Steinberg representation, and the four special
supercuspidal representations. Once these are addressed, Theorem 7.4 follows
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by carefully extracting the necessary branching rules from [Nevins 2005; 2013].
Again, the orbits in W (;r) are obtained from both the depth-zero components (via
[Barbasch and Moy 1997]) and the asymptotic development of the branching rules.

At two crucial junctures we use information that is currently only known for G =
SL(2, F) and a handful of other small-rank groups: one is the explicit calculation
of the asymptotic cone on any semisimple element of g* (Section 4); the other is the
full knowledge of the representation theory of the maximal compact subgroups of G
(Section 5). While the former seems a tractable and interesting question in general,
the latter is quite daunting: it is not expected that we will achieve a classification of
the representations of maximal compact open subgroups of p-adic reductive groups.
Note that a full classification is not necessary to prove the theorem: what is needed
is a construction of an appropriate representation of G, attached to each nilpotent
orbit, and we explore how this might be done in Section 5B.

There are many interesting applications and open directions left to pursue. Ev-
idently the overarching goal is to establish a result like (1-1) for a large class of
groups, using the tools presented here, or those developed in [Henniart and Vignéras
2023; 2024]. To extend the work here, it may be fruitful to build representations
of the groups G o4 directly, rather than to construct representations of G o; this
has the advantage of avoiding the difficulties inherent at depth zero. It may also
allow for a more uniform treatment of all points x of the building; in this paper,
we consider only vertices, and the union of all G, .4 as x runs over vertices is not
equal to G, in general.

In another direction, the I"'-asymptotic expansions of [Kim and Murnaghan 2003;
2006] describe the character of a positive-depth representation in a larger neighbour-
hood than does the local character expansion, by incorporating a minimal K -type I".
Then Theorem 6.2 can be interpreted as analogously formulating these expansions
in terms of branching rules. It would be interesting to explore this idea further.

The paper is organized as follows. We set our notation in Section 2 and then
present some background on the local character expansion that provides the moti-
vation and context for our results. In Section 3 we consider a general connected
reductive group G. We define the nilpotent support of an element I" of g*, show it
defines the asymptotic cone of I', and relate this to the wave front set via the theory
of I"'-asymptotic expansions.

We then specialize to G = SL(2, F). In Section 4 we characterize the nilpo-
tent cones Nil(I') in many ways (Proposition 4.1) and compute them explicitly.
In Section 5 we recall the construction of certain irreducible representations of
SL(2, R) by Shalika in his 1966 thesis [Shalika 2004], and then rephrase it using
Bruhat-Tits theory and derive some consequences. This allows us to define, for
each vertex x € B(G), each nilpotent orbit O C g*, and each central character ¢ a
representation 7, (O, ¢) of Gy.
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We prove our main theorems for representations of positive depth in Section 6
and for representations of depth zero in Section 7. We conclude with two brief
applications of Theorem 1.1 in Section 8: an explicit formula for the functions 1o
in terms of the trace character of the representation t, (O) of the compact group G;
and an explicit polynomial expression for dim(sr %x2*) (in the spirit of [Henniart
and Vignéras 2023]) whose existence is predicted by the local character expansion.

2. Notation and background

Let F be a local nonarchimedean field of residual characteristic p # 2, with integer
ring R, maximal ideal P and residue field f of cardinality g. We impose additional
hypotheses on p in Section 2B, below. Fix once and for all an additive character
of F that is trivial on P and nontrivial on R. Fix a uniformizer @ and normalize the
valuation on F (and any extension thereof) by val(ew) = 1. We write val(0) := oo.

Let G denote a connected reductive algebraic group defined over F whose group
of F-rational points is denoted by G; we use g =Lie(G)(F') to denote its Lie algebra
over F. We simplify notation by referring to tori, Borel subgroups and parabolic
subgroups of G when we mean the F-points of such algebraic F-subgroups of G,
and denote them in roman font. Let G™8, respectively g'¢, denote the set of regular
semisimple elements of G, respectively g. The group G acts on g via the adjoint
action Ad and on its dual g* via the coadjoint action Ad*; we abbreviate these by
both g- X or 8X for g € G and X in g or g*. Similarly, if H is a subgroup of G we
write ¢ H for the group gHg .

An element X € g* or g is called semisimple (or almost stable) if its G-orbit
is closed. We define X € g* or g to be nilpotent if there exists an F-rational
one-parameter subgroup A € X,(G) such that lim, ,o*®X = 0. By [Adler and
DeBacker 2002, §2.5], this is equivalent to a more usual definition that the closure
of the coadjoint orbit in the rational topology contains 0. We say the one-parameter
subgroup A is adapted to X [DeBacker 2002b, Definition 4.5.6] if *@X = 12X.
We write N* for the set of nilpotent elements of g* and ¢'(0) for the (finite) set
of G-orbits in N'*.

We sometimes specify a group of matrices merely by the sets in which its entries
lie; in this case, that the resulting subgroup is the intersection of this set with G
is understood. We write [t] =min{n € Z |n >t} and |[t| = max{n € Z | n < t}.
Write Centg (S) for the centralizer in G of the element or set S. We may write [o]
for the trace character of a representation o of a finite or compact group. The
trivial representation is denoted by 1, and the characteristic function of a subset S
is denoted by 15.

2A. The Bruhat-Tits building and Moy—-Prasad filtration subgroups. Let B(G) =
B(G, F) denote the (enlarged) Bruhat-Tits building of G; then to each x € B(G)
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we associate its stabilizer G, which is a compact subgroup of G containing the
parahoric subgroup G o. These admit a Moy—Prasad filtration by normal subgroups
G, with r € R>o defined relative to the valuation on F. We briefly recap the
definition; see also [Fintzen 2021b, §2] and [Kaletha and Prasad 2023, §13].

To define G, ,, choose an apartment .A C B(G) containing x; this is the affine
space over X, (7T) ®z R for some maximal split torus T of G and we write 4 =
A(G, T). Let ® = &(G, T) denote the corresponding root system and W the set
of affine roots, viewed as functions on A. For each root o € ®, let U, denote the
corresponding root subgroup. The affine roots i with gradient « define a filtration
of Uy by compact open subgroups Uy,

Let C = Centg(T). As summarized at the start of [Kaletha and Prasad 2023,
§9.8], C = C(F) contains a parahoric subgroup Cy, and a filtration by compact
open normal subgroups C,, r > 0, that is independent of the point x € A. When C
is not tamely ramified, this filtration can be very subtle; see the extended careful
analysis in [Kaletha and Prasad 2023, §13.3, §B.10].

As summarized in [Kaletha and Prasad 2023, Proposition 13.2.5], for any r > 0
we define compact open subgroups

Gx,r = (Cr’ Ul// | 1!’ eV, W(X) > I”);

if r = 0 this is the parahoric subgroup and for r > 0 it is a Moy—Prasad filtration
subgroup of G, . It is independent of the choice of apartment containing x. The
Moy—Prasad filtration is G-equivariant; for example, ¢ G, , = G4 , for all x € B(G)
and r > 0.

Similarly, the Lie algebra g admits a filtration g, , by R-modules indexed by r € R,
as follows. Let t denote the Lie algebra of T, ¢ its centralizer in g and for each
o € P, let g, denote the corresponding root subspace. These subspaces admit
filtrations by R-submodules ¢, with r € R and gy, for ¢ € W, respectively, such that

(2'1) Gx,r =€ ) @ Go,x,r»
o

where gq x - is the union of the R-submodules gy such that ¢ € W, the gradient
of ¥ is «, and ¥ (x) > r. We write

Gx,r-i— = U Gx,s and Ox,r+ = U Ox,s-

S>r S>r

If the maximally split maximal tori of G are weakly induced, as defined in [Kaletha
and Prasad 2023, Definition B.6.2], then for all » > 0 we have the Moy—Prasad
isomorphism gy ,/gx.2r = Gy .,/ G 2 [Kaletha and Prasad 2023, Theorem 13.5.1],
which can be realized by a mock exponential map e = e, : gy 0+ = Gy .0+ as in
[Adler 1998, §1.6]. Writing (X, Y) for the natural pairing of X € g* with Y € g,
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the Moy—Prasad filtration on the dual of the Lie algebra is defined by
gy, ={Xeg"|(X,Y)ePforall Y € g. (r4}-

We again define g ,, = J,., 9}, Forany x € B(G), r > 0 and 5 € R, the
adjoint (respectively coadjoint) action of G on g induces an action of G,/G , on
Ox.5/Ox.s+r (respectively, gy (/g5 o) [Adler 1998, Proposition 1.4.3].

Finally, for any r > 0 we define G-stable subsets

G,= U Gx,r and G,y = U Gx,r-‘r-
xeB(G) xeB(G)

For any real number r we do the same to define g, and g, .

If (;r, V) is an irreducible admissible representation of G, then its depth is defined
as the least real number r > 0 such that there exists x € B(G) for which V¢x+ =£{0}.
We define the depth of a smooth irreducible representation p of G, for fixed x, in the
same way; this is equivalent to the least r > 0 for which p factors through G,/ Gy ;4.

2B. Restrictions on p. We impose the restriction that G splits over a tamely
ramified extension of F' and that p does not divide the order of the absolute Weyl
group of G. One of the main results of [Fintzen 2021c] is that this is sufficient
to ensure that all irreducible admissible representations are tame. It furthermore
ensures that all maximally split maximal tori over F are weakly induced, so that
our parahoric subgroups are defined relative to the standard filtration sketched
above [Kaletha and Prasad 2023, §B.5, Proposition B.10.5] and the Moy—Prasad
isomorphism holds. Combining [Fintzen 2021c, Lemma 2.2, Table 1] and [Adler
and Roche 2000, §1], one sees that the hypotheses of [Adler 1998, Hypothesis 2.1.1]
or [Adler and Roche 2000, Proposition 4.1] hold, so that there is a nondegenerate
G-invariant bilinear form on g under which g7 , and g, , are identified for all x
and r. For G = SL(2) and p # 2 we may take the trace form, and define for each
X € g the element X € g* by (X, -) = tr(X ).

We also impose the hypotheses of [DeBacker 2002b, §4] to obtain the classifi-
cation of nilpotent orbits; this requires the use of sl,(F) triples over the residue
field as well as some properties of a mock exponential map. By recent work of
Stewart and Thomas [2018] the former condition is satisfied for p > h, where # is
the Coxeter number of G. To satisfy all hypotheses for G = SL(2, F), it suffices to
take p # 2.

In contrast, to state the local character expansion, which relates a function on
the group to one on the Lie algebra, one needs a G-equivariant map go+ — Go+
satisfying [Debacker 2002a, Hypothesis 3.2.1]. Such a map, which we’ll simply
denote by exp, can exist in large positive characteristic (see, for example, the
discussion in [Cluckers et al. 2014, §2]); in characteristic zero, [DeBacker and
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Reeder 2009, Lemma B.0.3] gives an effective lower bound on p. For G =SL(2, F),
this entails in characteristic zero that p > e + 1, where e is the ramification index
of F over Q, for example.

2C. The local character expansion. As detailed in the expanded notes [Harish-
Chandra 1999], Harish-Chandra proved in the 1970s that the distribution character
of an irreducible admissible representation 7 of G, which is given on f € C2°(G) by

0. (f) = tr / Flo)m(g)dg,

is well defined and representable by a function, which we also denote by ®, that
is locally integrable on G and locally constant on the set G™® of regular semisimple
elements of G (see [Adler and Korman 2007, §13] and the discussion therein).

Similarly, to each coadjoint orbit O C g* we associate its orbital integral, given
on f € CX(g*) by

2-2) po(f) = /O FX) dpo(X),

where d 1o is a Radon measure [Ranga Rao 1972]. Relative to i, the fixed additive
character of F, the Fourier transform of f € C2°(g) is a function fe C>(g*). The
Fourier transform of the orbital integral uo is the distribution given on f € C2°(g)
by io(f) = ,uo(f). Then j1p is representable by a locally integrable function
on g that is locally constant on g™ [Harish-Chandra 1999, Theorem 4.4]. We set

reg . __

94 = UxeB(G) Ox.r+ NGee.
The local character expansion expresses that these finitely many functions 1o,

for O € 0(0), form a basis, in a neighbourhood of 0, for the space of locally
integrable G-invariant functions that are locally constant on g™, The nature of the
expansion was first proven for G = GL(n, F) in characteristic 0 by Howe [1974]
and then in the generality of connected reductive groups in characteristic zero by
Harish-Chandra [1999]. Cluckers, Gordon and Halupczok [Cluckers et al. 2014]
proved its validity in large positive characteristic; Adler and Korman [2007] proved
an analogous result for expansions centred at other semisimple elements.

The precise domain on which the local character expansion holds was conjectured
by Hales, Moy and Prasad [Moy and Prasad 1994] and proven in [Waldspurger 1995]
for a large class of groups and by [Debacker 2002a] in the following generality.

Theorem 2.1 (the local character expansion). If 7 is an irreducible admissible
representation of G of depth r, then there exist unique co(mw) € C such that for
all X gief, we have

(2-3) O (exp(X) = Y colm)io(X).
Oeo(0)
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We denote by W.F (;r) the set of maximal nilpotent orbits O such that co () # 0,
where the ordering is taken in the local topologys; this is the set denoted by WF™ (1)
in [Tsai 2023a]. Heifetz [1985] defined and developed the analytic notion of the
wave front set of a representation of a p-adic group, in analogy with the work of
Howe [1981] in the real case. Przebinda [1990] proved that the wave front set
coincides with the support of the right side of (2-3), which is the closure of the
union of these orbits. Recent work of Cheng-Chiang Tsai [2024; 2023a; 2023b]
has shown that the orbits of W (;r) may fail to be stably conjugate.

Finally, note that for G = GL(n, F), Howe proved that for each O € £(0), there
is a corresponding parabolic subgroup P such that in a neighbourhood O of 0 € g,

folo = Oz oexp o,

where 7 = Indg 1 [Howe 1974, Lemma 5]. In the same vein, for SL(2, F), the
functions 1o are almost equal to the characters of special unipotent representations
(see (8-1)). In recent work, Henniart and Vignéras [2023; 2024] have proven that
these in turn correspond to representation-theoretic expansions in a small enough
neighbourhood of the identity, for all inner forms of GL, (F) as well as for the
group SL,(F). We do not, however, expect such representations to exist in general
as, for example, for classical groups nonspecial orbits cannot occur in WF (;r) for
any 7 [Mceglin 1996, Theorem 1.4]), yet can occur with nonzero coefficients in a
local character expansion. The main goal in this paper is to propose an example of
a weaker form of the Howe—Henniart—Vignéras theorem, based on representations
of a maximal compact open subgroup, that one may hope can hold true in general.

3. Nilpotent orbits and nilpotent support

In this section, G is an arbitrary connected reductive group, subject to the hypothesis
on p of Section 2B. We define the (local) nilpotent support of an element of g*, and
relate this both to the asymptotic cone and to the wave front set of a representation
of positive depth.

3A. Degenerate cosets and nilpotent orbits. In [Adler and DeBacker 2002, §3],
the authors generalize ideas of Moy and Prasad to establish for connected reductive
groups that for all r € R,

0= () @, +N.
xeB(G)
where g; := U, cp(6) 95 - They further show that

N*=ﬂgf.

reR
Given x € B(G) and X € g* ~\ {0}, the depth of X at x is the unique value t = d, (X)
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such that X € g5, \ gy .- When X is not nilpotent, they prove that the depth of X,
given by
d(X) =max{d,(X) | x € B(G)} = max{r | X € g/}

is well defined and rational. For X nilpotent, we set d(X) = oco. Depth is G-
invariant.

For semisimple I" € g*, let T C Centg (") be a maximal torus with associated
absolute root system ® (G, T'). Then I is called good if for all « € (G, T), we
have Val(F (dozv(l))) e {d(I"), oo}. By [Kim and Murnaghan 2003, Theorem 2.3.1],
if " is good then the set of points x € B(G) at which d, (I') attains its maximum
value d(I") is exactly B(Centg(I")) C B(G).

For any I' € g* set d = d,(I'). The coset I + g7 ;, is called degenerate if it
contains a nilpotent element X € A*. From the relations above it follows that
this happens if and only if d < d(I"). DeBacker [2002b, §5] proved that the set
of nilpotent G-orbits meeting a degenerate coset I' + g} ;, has a unique minimal
element with respect to the (rational) closure relation on orbits, which we’ll denote by
O(T', x). This generalizes a result of Barbasch and Moy [1997, Proposition 3.1.6]
for d = 0, which was integral to their determination of the wave front set of a
depth-zero representation.

To classify nilpotent orbits in this way, DeBacker proceeds as follows. Identify g
and g*. Given a nilpotent element X € g, complete X to an sly(F) triple (X, H, Y).
Choose r € R and create the building set

B.(X,H,Y)={xe€B(G)|X €gxr, HEGr0,Y € Gx,—r}

He proves this set is a nonempty, closed, convex subset of 5(G) with the property
that for all x € B, (X, H,Y) we have O(X, x) =G - X.

Remark 3.1. For each ¢ € G, we have B, (8X,8H,8Y) = 8B,(X, H,Y), and
for fixed X the union of these need not cover B(G). Moreover, if i is a one-
parameter subgroup adapted to this triple, then by [DeBacker 2002b, Remark 5.1.5],
B.(X,H,Y) = By(X, H,Y) + Sru, where this sum is taken in any apartment
in B(Cg(w)). It follows that (if the rank of G is greater than 1) there exist orbits O
(such as ones for which B, (X, H, Y) is a point) for which there exist y € B(G)
such that O # O(X, y) for any X € O. For example, in Sp(4, F), the principal
nilpotent orbits are only obtained along certain lines emanating from vertices.

3B. Nilpotent support and nilpotent cones. We now explore different ways to
understand the asymptotic nilpotent support of a general element I' € g* and show
their equivalence.

Definition 3.2. Let " € g*. If x € B(G), then the local nilpotent support at x of T" is
Nil (I') ={O¢TI',x) | g € G, d(g - T) <d()},
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which is the set of nilpotent orbits defined by degenerate cosets at x of elements
of the G-orbit of I". On the other hand, the nilpotent support of I is

Nil(T") = {O(T', x) | x € B(G), dx(I') <d(I")},
the set of nilpotent orbits corresponding to any (nontrivial) degenerate coset of I".

Note that if I" is nilpotent, then Nil(I") > G - I". More generally, for any g € G,
dy(I') =dg,(®T) and 8(I' + g5 4,) =*T —I—g;x’“. Thus O(T", x) = O(8T, gx), and

Nil(I") = U Nil, (),

xeB(G)

that is, the nilpotent support is the union of the local nilpotent supports, and Nil(I")
is an invariant of the G-orbit of I'. One may alternately restrict this union to one
over the points in a fundamental domain for the action of G on B(G).

By Remark 3.1, when the rank of G is greater than 1, not all nilpotent orbits
will occur as some O(I, x) for a given point x € B(G), so Nil,(I") # Nil(I") in
general. Even when these sets are equal, as for SL(2, F) (see Proposition 4.1), they
are interesting subsets of the nilpotent cone (see Lemma 4.2).

On the other hand, the asymptotic cone on an element I' is defined in [Adams
and Vogan 2021, Definition 3.9] analytically as follows.

Definition 3.3. Let I' € g*. The asymptotic cone on T' is the set
Cone(I') ={X e g*|3e; > 0, € F*, 3g; € G, lim &7 Ad*(g))T = X}.
1—> 00

This is a closed, nonempty union of nilpotent orbits of G on g*.

Proposition 3.4. Let " € g*. Then the nonzero G-orbits occurring in the asymptotic
cone of T are those in its nilpotent support, that is,

Cone(M) = [ J ou{o).
OeNil(I')

Proof. We identify g with g* and prove this result for I € g, where we may apply
the theory of sl (F') triples.

Let I' € g have depth r < oo and let O € Nil(I'). Then there exists x € B(G) and
d < r such that d,(I') =d and O = O(T", x). Choose a representative

X e O(F’ X) N (F + gx,zl+)-

Choose an sl (F) triple (X, H, Y) and the corresponding one-parameter subgroup (4
adapted to X. By [DeBacker 2002b, Lemma 5.2.1], we have

X+ g .a+ = Ad(Gy04) (X + Cy, ,, (V).
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Therefore there exist g € G 04 and C € Cy, ., (Y) for which
I'=Ad(g )X +0).

Note that Cy4(Y) is spanned by the lowest weight vectors of ad(H), so we may
decompose C as C = Zigo C;, where Ad(u(1))C; =t'C; for all t € F*. Similarly,
for all € F* we have Ad(u(t))X = t>X. Therefore

lin(l)tz Ad(u(tHe)M = liII(l)l‘2 Ad(u(tH) X +0) =X,
11— t—

so X € Cone(I"). Since Cone(I') is G-invariant, we deduce © C Cone(I").
Conversely, let X € Cone(I") be nonzero, so that there exists a sequence of
elements ¢; € F*, with &; — 0, and a sequence of elements g; € G, such that

lim & Ad(g,)T = X.
1—> 00

Complete X to an sl (F) triple (X, H, Y) and choose a point x € By(X, H, Y).
Since the given sequence converges to X, it enters the neighbourhood X + g, o+ so
we may choose i € N such that

&7 Ad(g)T € X + g0+

SoAd(g)I'ee;” X+ Ox.—2val(s; )+ @ nontrivial degenerate coset of depth —2 val(e;).
Because (8;2X, H, sl.zY) is again an sl (F') triple and B—zvaua,-)(S,-_ZX, H, sl.ZY) =
Bo(X, H,Y), we can infer that the minimal nilpotent orbit meeting this coset is
Ad(G)(sl._ZX) = Ad(G)X. Thus Ad(G)X = O, x) € Nil,(I") C Nil(T"), as
required. O

3C. Connection with the wave front set of a positive-depth representation. Sup-
pose now that 7 is an irreducible admissible representation of G of depth r with
good minimal K-type I' of depth —r (in the sense of [Kim and Murnaghan 2003,
Definitions 2.4.3 and 2.4.6]). Then, under suitable hypotheses (that are satisfied
if F has characteristic zero and the exponential map converges on go), Kim
and Murnaghan prove a version of the local character expansion that is valid on
the strictly larger neighbourhood g,¢. The I'-asymptotic expansion [Kim and
Murnaghan 2003, Theorem 5.3] asserts that there exist complex coefficients cey (1)
such that for any X € g,°¢ we have

(3-D O (exp(X)) = Z co (Mo (X),
O'eo)

where &(I") denotes the set of G-orbits in g* with I" in their closure, and for O’ €
O0(I'), e denotes the Fourier transform of the corresponding orbital integral (2-2).

This yields a special case of interest: that of the expansion (3-1) having a single
nonzero term cor () tey corresponding to O’ = G - I'. We claim this happens, for
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example, when G” = Centg (I") is compact-mod-centre, such as when I is a regular
semisimple element. Namely, let g’ denote the Lie algebra of G’. Then the set &'(T")
indexing the sum in (3-1) is in bijective correspondence with the set of nilpotent
G’-orbits in (g')*, which is the singleton {G - I'} under this hypothesis.

Theorem 3.5. Let w be an irreducible admissible representation of G of depth
r > 0, and let T € g* be a good minimal K -type of w such that m admits a
["-asymptotic expansion. Suppose further that this expansion has a unique nonzero
term, corresponding to the Fourier transform of the orbital integral corresponding
to T itself. Then WF (1) coincides with the maximal elements of Nil(I'); that is,
the asymptotic cone on I is the wave front set of .

The following proof was communicated to me by Fiona Murnaghan.

Proof. Combining the I'-asymptotic and local character expansions yields that
for some scalar 1 we have the equality LG.T = Y e g co () lo of functions
on g€ N g,+, which can be viewed equivalently as an equality of distributions
upon restriction to the set C2°(g,4). Since f € CX°(g,+) implies fe D_, =
Do 5G) Ce(8*/95 ), taking the inverse Fourier transform yields the equality of
distributions

(3-2) thor= ) co(mpuo
0e0(0)

on D_,. (See [Kim and Murnaghan 2003, Proof of Theorem 5.3.1] or [Debacker
2002a, Proof of Theorem 3.5.2]; note that our r is p in the former and p(7) in the
latter.)

So let x € B(G) and let d be such that g7 ;. D gy _,. Given a nonzero coset
§ €95 4/9; 4 let 1¢ denote the characteristic function of this subset of g*; then
1 € D_,. Note that if X € £ N O for some (not necessarily nilpotent) G-orbit O,
then this intersection contains the open set G o+ - X as well. Thus we have

(3-3) /L@(lg):() — £NO0O=0.

Now suppose that O € ¢(0), and choose x € B(G) and £ = X + g;d+ with
0% 44 O 0y, with the property that O = O(X, x). The minimality of O(X, x)
proven by DeBacker implies that any nilpotent orbit O" meeting & (or equivalently,
by (3-3), satisfying e (1g) # 0) must contain O in its closure.

Suppose first that O is not in the wave front set (¢, Fr) O’ of . Let O’ 0(0)
be such that cor () # 0; then O’ is in the wave front set, so O ¢ O'. This implies
by the preceding paragraph that we (1) = 0. As this holds for all such O’, we
conclude from (3-2) that ug.r(1¢) =0, whence by (3-3) wehave ENG - T' =&,
and thus O ¢ Nil(I'). Therefore every O € Nil(I") lies in the wave front set of 7.
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Now suppose O € WF(ir); that is, it is maximal among nilpotent orbits with
nonzero coefficient in (3-2). Thus the preceding argument implies o (1¢) = 0 for
all O’ # O in the wave front set. So (3-2) yields tug.r(1s) = co(m)pnole) #0,
and therefore, by (3-3), £ must meet G -I" and thus O € Nil(I"). Hence, the maximal
elements of Nil(I") coincide with WF (7). O

In fact, the key to the proof is that the maximal nilpotent orbits occurring in the
Shalika germ expansion of pg.r are the maximal orbits of Nil(I").

Ciubotaru and Okada [2023] obtained a similar result directly, by analysing the
asymptotic nilpotent cone of the characters of G, /G, ,+ appearing in 7 %x+,

Remark 3.6. One might ask if Theorem 3.5 could be extended to show that
WZF(rr) is the union of the nilpotent supports of the maximal orbits occurring
in the I'-asymptotic expansion (3-1). The answer is expected to be negative. In the
supercuspidal case, the key result is [Spice 2022, Corollary 10.2.3(1)], which implies
that this latter set of orbits (in ¢'(I")) corresponds exactly to W.F (% (in 0(0)
for G® = Centg (I")), where 7° is the associated depth-zero supercuspidal repre-
sentation of G°. Tsai [2023b] has constructed explicit examples of supercuspidal
representations where the wave front set does not follow such a pleasant inductive
structure. In effect, one expects that when substituting Shalika germ expansions
into the ["-asymptotic expansion, cancellations among coefficients may occur.

While the proof of Theorem 3.5 entails some additional hypotheses on F, a con-
sequence of the main theorem of Section 6 is that, for G = SL(2, F'), the conclusion
of the theorem holds whenever the characteristic and residual characteristic of F
are not 2.

4. Nilpotent orbits and nilpotent cones of G = SL(2, F)

For the rest of this paper we suppose that G = SL(2) and g = sl(2, F). In this
section, we derive some additional properties of the nilpotent support of an element
" € g*. We identify g and g* with the trace form.

There are five nilpotent orbits: the zero orbit, and four two-dimensional principal
(or regular) orbits that are in bijection with the rational square classes F* /(F*)2.
Representatives of these five orbits in g are

. 0O u
4-1) Xy = [0 0} ,

where u runs over the set {0, 1, ¢, &, e} modulo (F*)? and ¢ € R* is a fixed
nonsquare. For each u, write O, for the orbit in g* corresponding to X,. The
following proposition relaxes the conditions for identifying the orbits in the nilpotent
support of an element I'.

Proposition 4.1. Let g =5L(F) and " € g* ~ {0}. Set r =d(I") € RU{o0}. Then
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(a) every O € Nil(I") meets T + g;’rfor some x € B(G) such that d,(I") < r;

(b) for each x € B(G) such thatd,(I') <r,if I + g;, meets a nilpotent orbit O,
then O € Nil(I');

(¢c) for each x € B(G), Nil(I') = {O(©T',x) | g € G} = Nil,(I"), that is, every
nonzero nilpotent orbit in Cone(I") appears in the local nilpotent support at
every Xx.

Proof. The first two statements use that there are no closure relations between the
principal orbits of sl,(F), and so the uniqueness of the minimal nilpotent orbit
meeting any degenerate coset implies that any nontrivial degenerate coset meets
only one nilpotent orbit.

For (a), suppose O € Nil(I'); then O = O(T’, x) for some x € B(G), implying
that d,(I") < r. Since I" € gf C g}, +N*, the set I" + g} . contains a (nonzero)
nilpotent element Y. Since Y is an element of I' + g5 , C T+ g7 ; (), it lies in O,
so O meets the smaller coset, as required.

For (b), note that if d,(I') <r then0 ¢ ' +g;, C I+ g;,d(l“)-i—; any nilpotent
orbit meeting the smaller set meets the larger one, and thus by uniqueness this orbit
is O(T', x) e Nil(I").

To prove (c), let x € B(G) and let Nil, (I") be the local nilpotent support of I"
at x; we have already noted that Nil, (I") C Nil(I'). The reverse inclusion follows
from the one-dimensionality of B(G). Let O € Nil(I'); then O = O(T", y) for
some y € B(G). Let S be a split torus with associated root system (G, §) = {£a}
such that y € A(G, §).

Setd =d,(I") and let Ie g correspond to I via the trace form. Choose Xeo
such that I' € X + gy.d+- Conjugating both I" and X by G, as necessary we
may assume X € g,. Relative to the pinning of a fixed base point, we have the
decomposition of R-modules

9y,d = 9—a,d+a(y) Dsq D Oo,d—a(y)-

Let oY denote the positive coroot, and choose g € G so that gx € A(G, S) and
gx =y — La” for some ¢ > 0. Therefore if d' = d — 2¢ then g, 4 C ggx.a'-
Because X € Gord—a(y) ™ Bor.(d—a(y)+ and d’ — a(gx) = d — a(y), we conclude
that dgx(F) = gx(X) =d and"— X € ggx,d'+- By uniqueness, we infer that
O=0T,gx)=0@¢" F x) € Nil,(I), yielding the result. O

We next determine Nil(I') explicitly, for any I' € g = sl,(F) (identified with
its dual via the trace form). There is nothing to do if I' is nilpotent. If I" £ 0 is
semisimple, then it is G-conjugate to a matrix of the form

(4-2) X(u, v) = [g g}
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for some u, v € F*. Its centralizer is a maximal torus. There is one G-conjugacy
class of split torus, represented by any diagonal element, and two classes of
unramified anisotropic tori, represented by X(1,¢) € g and X(zw ', ew) € g,
respectively. The classes of ramified tori are represented by X(1,¢) € g with
t e{w, ew, 2w, 83w}, noting that if —¢ € (F*)? then there are only two classes.

We can now describe the nilpotent support of each such element, using the
parametrization given in (4-1).

Lemma 4.2. Let G =SL(2, F) and T" € g\ {0} semisimple. If T splits over F,
Nll(r) = {Ol, O, O, Oaw}-

Otherwise, T is conjugate to X (u, v) for some u, v € F* and splits over E = F[/uv].
Let NormE/F(EX)/(FX)2 be represented by {1, y}. Then u and v are uniquely
defined mod Normg,r (E™) and

Nil(I") = {Oy, Ouy }.

Proof. By Proposition 4.1, we may fix the choice x = xo € B(G) to be the vertex
such that g, , is the set of traceless 2 x 2 matrices with entries in Pl and replace I
by any G-conjugate.

Fll‘St suppose I' = diag(a, —a) with val(a) =r. Let u € F* and note that if g, =
[(1) . | ”/2] € G then 8T = [g ] Therefore, for any u such that val(u) =d < r,
we have T € X u+ Ox, d+- Thus Nil(I") contains every nonzero nilpotent orbit.

Now suppose I' = X (u, v) for some u, v € F* such that uv ¢ (F*)? and
set E = F[4/uv]. We calculate directly that the upper triangular entry of any

G-conjugate of I' takes the form
W =a*u—bv=u@ —bvu"eu Normg,r(E™)

for some a, b € F, not both zero, from which it follows that Nil(F) C {Ou, Ouy ).
For the reverse inclusion, first note X (u v) is G-conjugate to X (uw =", v ?")

for all n € Z and for n sufficiently large X (uzo =", var?") — X,y € gx.r- Thus
O, € Nil(I').
Now note that when E is ramified, we may take y = —uv so Oy, = O_;

since X(u, v) is G-conjugate to X(—v, —u) we are done by the preceding. If E is
unramified, we have instead y = uv, whence O, = O0,. As —1 is a norm, we may
choose «, B € F such that —1 = 8> — a>uv~!; then g = [ﬂauﬁ | € G satisfies

¢X (u, v) = X (v, u), and again by the preceding we may conclude O, € Nil(I"). U

5. Representations of G, associated to nilpotent orbits

5A. Shalika’s representations of SL(2, R). In his thesis, Shalika constructed all
irreducible smooth representations of K = SL(2, R). In this section we recap his
explicit construction for the so-called ramified case, which attaches an irreducible
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representation of K to certain K -orbits in g*; we’ll then provide a coordinate-free
generalization more suited to our needs in the next section.

Let S be the diagonal split torus, B the upper triangular Borel subgroup and U
its unipotent radical. We use a subscript O to indicate their intersections with K:
So=SNK, By=BNK and Uy=UNK. Let xg € A(G, S) be such that K = G,
and z the barycentre of the positive alcove adjacent to xq (relative to B).

Let d be a positive integer. Choose u € P~¢ ~ P~4*! and v € P~4*! and
consider the antidiagonal matrix X:=X (4, V) € gxy,—a Of (4-2). Identify this with
the element X € 9;0,—d by the rule X (Z) = tr(XZ) forall Z e g. If v =0then X
is nilpotent and its centralizer Cg (X) in K coincides with ZUy, where Z = {£1}.
Otherwise, X is semisimple and Cg (X) is a torus. Note that every X € gjov_ 4 that
represents a degenerate coset is K -conjugate to one of this form.

Define an open subgroup of K by

14+ pld/21 pld/2]
(5-1) Jd:|:,P[(d+l)/2] 1 4 pld/21 nK.

It is straightforward to verify that X gives a well-defined character ny of Jy, trivial
on Gy, 4+, by the rule

(5-2) nx(g) = ¥ (r(X (g — I))).

This character depends only on the classes u 4+ P(=4+1D/21 and v 4 PI=4/21, For
any choice of character 6 of Ck (X) agreeing with nx(g) on Cg(X) N Jy, write
n(X, 0) for the resulting extension to a character of Cg (X)J,.

Shalika [2004, Theorems 4.2.1 and 4.2.5, §4.3] proves the following result with
an intricate elementary argument. To briefly translate from the notation of that
work: K, denotes SL(R/P") = G,/ Gy,.» and its primitive representations inflate
to the representations of Gy, of depth d = n — 1. Shalika’s group T% , inflates
to Cx (X)Gy,,» in our notation and our Jy is the inflation of Shalika’s Ny when n
is even and B, when n is odd. Though Shalika’s X has depth 0, his additive
characters 7, & are normalized such that the characters denoted by ny and n X
match K-equivariantly with our ny, for those “ramified” orbits of [Shalika 2004,
Lemma 4.2.2(ii)] considered here. Nilpotent X fall under this ramified case, by
choosing v > n in [Shalika 2004, §4.3].

Proposition 5.1 (Shalika). Set K = G, and K, = Gy, forn > 0. Forany d > 0,
let X = X (u, v) as above, corresponding to X € g; ;. Then for any character 0
of its centralizer Cx (X) agreeing with nx on Cg(X) N Jy, the representation

Sy (X, 0) =Ind§, (x),, 1(X,6)

is irreducible, of degree %qd_l(q2 — 1) and of depth d, meaning it is nontrivial
on K4 but trivial on Kg4. Its equivalence class is independent of the choice of
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representative of the K -orbit ofX(u +PLE+D/2] 4 pld+D/21y gpd if Sy (X,0)=
Sy, (X', 0') then there is some g € K such that X' =8X and 0" = 0.

5B. Irreducible representations of G, parametrized by degenerate cosets at x.
Our goal in this section is to give a coordinate-free interpretation of Shalika’s
construction that allows us to unambiguously attach representations of G, to any
degenerate coset of negative depth.

Note that GL(2, F') acts on B(G), and all vertices are conjugate under this action.
This conjugacy does not in general preserve the SL(2, F)-orbit of I" or X.

Example. Let xg, zo be as in Section 5A and x; the other vertex of the chamber
containing zo in its closure. The element w = [Sf (1)] used in [Nevins 2005] is an
affine reflection such that w - xo = x;, and wf((u, V) = X(wilv, wu). Therefore,
in particular, in the case of nilpotent orbits, where X 0, 1) ~ X (—1, 0), we have
“01 = O_4. On the other hand, the element = [(1) g] used in [Nevins 2013] is
a translation such that n - xo = x{, but now ”X(u, v) = X(w_lu, wv) and thus
"O; = O, instead.

We begin by showing that any degenerate coset determines a chamber of B(G)
adjacent to x.

Lemma 5.2. Let G =SL(2, F). Let x € B(G) be any vertex and let I" € 9;7[1 ~
Oy._qy Trepresent a degenerate coset for some d € Z~. Then there exists a unique
chamber C = Cr of B(G) adjacent to x, independent of the choice of representative
of I'+9; 4., such that for any z € C we have I' € g7 _ ;N g} ;.. Moreover, we
have Centg (I') = Centg_(I).

Proof. Uniqueness is immediate: given z" in any other chamber adjacent to x, the
geodesic from z to 7’ contains x; hence g} _,, N 9y gy 1s a subset of gy _,, and
therefore does not contain I'. Identify I" with an element I" € g, _, via the trace
form. Choose a nilpotent element Xel+ 9x.—d+- By [DeBacker 2002b, §5], we
may complete X to an sl,(F)-triple {X, H € 9x.0 Y e 9x.4) and find a split torus §
and corresponding apartment A(G, S) containing x, such that if (G, §) = {*«},
then X € ge and Ye g—q. Let C be the positive alcove adjacent to x in this apartment.

Note that Centg(f/ ) = g—q. From [DeBacker 2002b, Lemma 5.2.1] we know that

X + g —ar = 90 (X +Centy, _,, (Y));

thus there exists g € G o+ such that I e g(f( + g—o N gx.—g+)- Since Gy o+
fixes C and the coset I" + 0x.—d+, we may without loss of generality replace the
Lie triple and torus of the preceding paragraph with their g-conjugate, so that we
have I' € X + g_q N gy —qg+. For any z € C we have 0 < a(z — x) < 1; thus since
«o(x), d € Z we may conclude

0o NPx,—d =00 NGz,—a+ and g N@x g+ =0-a NPz —d+-
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Since I lies in the sum of these two spaces we have I" € 9:.—d+, Whence I' €
9 —a N0 _at ) ..

Finally, note that Centg (X) =U, and U, NG, =U,NG,. Since I' € X +g, _4+,
we have Centg, (I") C Centg, (X)Gy 0+ = Centg.(X)Gy 0+ C G.. O

Definition 5.3. Let d = —d,(I') > O be such that I' + g7 _,, is a degenerate coset.
Let z be the barycentre of the associated alcove Cr. Define the subgroup J, r by

{Gx,d/Z if d =—d,(I') is odd,
Jx,l" =

(5-3) e
Gap2 ifdiseven.

Note that when x = x¢ and z = zg this group coincides with J; in (5-1).
Since Gy ,+ € G, € G, , for any positive integer n, it follows directly that

Grapy S Jxr € Gyrap.

Since I' € g;_ 40N g;"_ 44 1t defines a character nr of J, r that is trivial on Gy 4+
via the corresponding Moy—Prasad isomorphism. The character depends only on
the coset I" + g;_ ) if d is odd and on I" + g;"_ 42+ otherwise. Moreover, since
Centg, (I') = Centg, (I') we deduce directly that J, r is normalized by C,(I") :=
Centg, (I).

Thus, for any character 8 of C,(I") coinciding with nr on the intersection of
their domains there is a unique extension n(I", 8) of nr to C,(I')J; r. Define

Se(T,0) =Tnd ) n(T, 6).

Proposition 5.4. Suppose I represents a degenerate coset at a vertex x € B(G)
and —d = d(I") < 0. Suppose 0 is a character of the centralizer C+(I') of I in G
defining a character n(I, 0) of C(I')Jx r as above. Then

(a) Sx(I', 0) is an irreducible representation of G, of depth d and of degree
1 _d—1.,2 -1:
39° (g7 —1);
(b) Sy(I', 0) = 8, (I'", 0') if and only if there exists g € G such that n(T', 0) =
En(I, 6"); and
(c) forany v € GL(2, F) we have
(5_4) USX(F’ 0) = SV~X (vF, Ue)

Proof. When x = x¢ and I" € g* corresponds to some X (U, V) € Gxg,—d ™ Bxg.—d+>
then this construction coincides with Shalika’s. If g € G, then $C,(I") = C,(8T")
and 8J, r = Jy ¢, so we obtain the invariance of S, (I', ) under G,-conjugacy
and the choice of representative of the appropriate coset of I'. More generally, for
any v € GL(2, F) such that v - xo = x, we have ”(gﬁo’d) =0 Cx(I)=Cc("T)
and " Jy, r = Jyr. Thus

'Sy (T, 0) =S ('T, 70),
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where we have identified a v-conjugate of a representation of G,, with a repre-
sentation of G, under the group isomorphism "G, = G,. Since GL(2, F) acts
transitively on the set of vertices of B(SL(2, F')), the rest of the statements follow
from Proposition 5.1. ([

The simple nature of the representations S, (I", 0) is revealed as follows.

Lemma S5.5. Suppose x is a vertex of B(G) and I'1, I'> € g} _; represent nonzero
but degenerate cosets of gy _;/8y _q, for some d € Z~. Suppose s € R~ satisfies
['y € Ty + g5 ;- Then for any choice of characters 6; of Cx(I';) such that the
characters n(L';, 0;) agree for i € {1, 2} upon restriction to Cx(I'1)Jy 1, NGy s+ =
C(I'2)Jy 1, NGy 54, we have

(5-5) Resg, ., Sx(I'1, 01) =Resg, . Sx(I'2, 02).
In particular, if s > %d then (5-5) holds independent of 6;.

Proof. For any I';, the two representations have the same degree %qd_l (g>—1) and
the same depth d. If s > d then both sides are 1-isotypic of the same degree hence
equivalent.

Suppose s < d. Then G, /G 4—s acts on g;_d/gj’_s. The stabilizer of I'; in G,
stabilizes its coset in g;‘;’_ 4/ 95 _; the full stabilizer of the coset is Cx(I'}) Gy 4.
Since I'y € I'; + g5 _,, we thus have C,(I')) C Cy(I'2)Gy.a—s. Because I'y €
I+ g;_dJr, Lemma 5.2 yields Jy r, = Jx.r,; let us denote this group by J. Thus
nr, fori € {1, 2} are characters of J that agree on J NG ;. We consider two cases.

Ifs > %d then G, s+ C J, and so Resg, ;. nc,x)s 1(T'i, 6;) = nr, is independent
of 6;. Mackey theory thus yields the decomposition

ST = @B Tinle,.,
y€Gy/Cx(T'i)J

(5-6) Resg

Each y € Cy(I'))Gy,q—s/Cx(I';)J fixes the character nr,|g, .. The elements
Y € Gx/Ci(T1)Gy4—s = G/ Cy(I'2)Gy 4—5 parametrize the orbit of the coset
['1+gy s =T2+g; . Thus (5-6) gives the same sum of characters for i € {1, 2}.

If instead s < %d, then Gy 4—y € J so C,(I'1)J = Cx(I'2)J. Since J C Gy 54,
the double coset space G s+ \Gx/Cx(I';)J is now equal to G, /C,(I';)G 4, and
is independent of i. So again by Mackey theory we have

GX.S
Resg, ,, Su(T, 6;) = @ Inde,;r’V(CX(F,v)J) Y(n(Ti, 6;))
VEGX/C,\'(FI')G.\',H»

Gx,s
= @ y(Indcx;mcx(r[y(ﬂ(ri, 6,)))-
yEGx/Cx(Fi)Gx.H»

When the restriction of n(I';, 6;) to G, s+ NC(I'1)J = Gy s+ N Cx(I'2)J is inde-
pendent of i, we infer (5-5). U
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5C. Representations attached to nilpotent orbits. Let X € N'* ~ {0} and let A be a
corresponding adapted one-parameter subgroup. Its centralizer in G is a maximal
split torus S. In fact, S is generated by Sy and A(z0), and Centg (X) = ZU, where Z
is the centre of G and B = SU is a Borel subgroup. For any vertex x € B(G),
applying the Iwasawa decomposition yields G = G, S Cents (X). Consequently,

(5-7) 0=G-X=||G. - @) - X)=| |G, @™X)

neZ neZ
is the decomposition of the G-orbit of X into disjoint G -orbits. It follows that
the parity of d,(Y), for any Y € O, is an invariant of the G-orbit, and we call this
the parity depth of O at x, denoted by pd, (O). Furthermore, for each d € 7. of
this parity there exists exactly one G -orbit in O \ g} , whose elements have depth
equal to —d.

Let Y be a representative of such a G, orbit. We claim that any choice of central
character ¢ of Z defines a character (also denoted by ¢) of C, (Y) coinciding with ny
on the intersection of their domains. Namely, the chamber Cy associated to (Y, x) by
Lemma 5.2 defines a Borel subgroup with unipotent radical U. Setting U, = G, NU
we have C,(Y) = ZU,. Since ny is trivial on ZU, N J, y, the character ¢ of ZU,
defined by ¢(zu) = ¢(z) for all z € Z and u € U, extends ny. We abbreviatedly
denote this representation by S, (Y, ¢).

Then, applying Proposition 5.4, we may conclude the following.

Proposition 5.6. Let x be a vertex in B(G), O a nonzero nilpotent G-orbit in g*
and ¢ a character of Z. For each d € Z~ of parity pd, (O), fix a representative X _4
of the corresponding G y-orbit in O X\ g, o. Then the representation of G attached
to O with central character ¢, given by

(5-8) (0, ) = b Se(X—a, ),

deZ-, d=pd, (O) mod 2
is independent of choices up to G -equivalence.

The depths d of the components of 7, (O, ¢) all have parity equal to the parity
depth of O at x. Furthermore, for any X € O such that d,(X) € {0, —1}, one set of
representatives for the G ,-orbits in O \ 9;,0 is{w 22X |te Z>0}.

Since the restriction of 7, (O, ¢) to any subgroup of G, o+ is independent of the
choice of ¢, we may (and do) drop ¢ from the notation in such cases. As needed,
we associate to the zero nilpotent orbit the trivial representation of G, and denote

by it 7, ({0)).
6. The case of positive-depth representations of SL(2, F)

The irreducible admissible representations of SL(2, F) come in exactly two flavours:
the irreducible subquotients of the principal series; and the irreducible supercuspidal
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representations. A classification of the former is nicely developed in [Tadi¢ 1994,
§7]; the original classification of the latter is in the 1966 thesis of Shalika [2004].

In this section, we focus on those representations of positive depth. We begin by
phrasing the classification of positive-depth irreducible admissible representations 7
of SL(2, F) in a way that emphasizes their construction from characters of tori. We
then establish that their explicit branching to a maximal compact open subgroup G,
can be described as twists of the datum (x, I") defining . This allows us to state
and prove our main theorem in this case, and to explicitly compute the constant
terms that arise.

6A. Representations of SL(2, F) of positive depth. All principal series of positive
depth are irreducible. We classify the positive-depth supercuspidal representations
using the parametrization of Adler and Yu [Adler 1998; Yu 2001; Fintzen 2021a],
which applies since p > 2; this was done explicitly in [Nevins 2013]. Because the
tori in SL(2, F) are one-dimensional, the correcting twist to this construction given
by Fintzen, Kaletha and Spice in [Fintzen et al. 2023, Definition 3.1] is trivial.

Proposition 6.1. Up to isomorphism, the irreducible admissible representations
of SL(2, F) of positive depth r are parametrized by the G-conjugacy classes of
pairs (T, x), where T is a maximal torus of G and x is a character of T of depth r.

To construct the representations explicitly, we first recall some facts about the
maximal tori and their characters. Let T be a maximal torus of G and let x be a
character of T of depth r > 0. The building B(T) of T embeds into B(G) as the
apartment A(G, T) if T is split and as a single point {x7} otherwise. This point x7
is a vertex if T is unramified and the midpoint of a chamber if T is ramified. It
follows that the depth r > 0, which is in particular a value for which 7, # 7,4, is
an integer if T is split or unramified and is an element of % + Z otherwise.

To each pair (7, x) we associate an element ' = I';; as follows. If t denotes the
Lie algebra of T, then via the Moy—Prasad isomorphism e : t, 24 /t, — T2/ Tr+
there exists a nonzero element I' € t* , uniquely defined modulo t*, /25 such that

—F

x@) =y (e (1)).

We identify I with an element of g* that is zero on the T -invariant complement of ¢
ing. ThenI" € g;’;’_r for any x € B(T') and we recover T as Centg(I"). Moreover,
I" thus defines a character of G /Gy 4+ = 8x.r/9x.r+» and following the work of
Moy and Prasad, the pair (G ,, I') is called an unrefined minimal K -type.

Proof of Proposition 6.1. The construction of the representations w = (T, x) varies.
If T is a split torus, then choose a Borel subgroup B =T U of G containing T
and extend y trivially across U to a character of B. Set

Ind?U(X) ={f:G—=>C| f(tug) = x@®)v(t)f(g) forall t e T,u € U, g € G},



THE LOCAL CHARACTER EXPANSION AS BRANCHING RULES 281

where v is the square root of the modular character and is given on 7 = F* by the p-
adic norm. Then (T, x) = Indg (x) is an irreducible principal series representation.

If T is anisotropic, with associated point y = x7 € B(G), then we first extend x
to a character of TG, , /24, by setting

x'(tg) = x(O¥ (T (e (),

where e : gy /24 /8y.r+ = Gy rj2+/Gy,r+ is the Moy—Prasad isomorphism. When
Gyrp=Gy, e, Wesetk = x’. When Gy ;2 # Gy 24 (Which will happen only
if T is unramified and r € 27), we take a certain Weil-Heisenberg lift of x'|,, to
form a g-dimensional representation w of T X G, /2, and set k (1g) = X(t)a)(i, g).
Then 7 (T, x) = c—Ind?Gw2 Kk is an irreducible supercuspidal representation. [

Given m =n (T, x), we let I' = I';; denote a choice of minimal K -type realizing
the character yx, as preceded the proof. Because 7' = Centg (I") we may also say
that (x, I') is the datum defining 7.

6B. Branching rules obtained as twists of the inducing datum. We begin by
proving that the branching rules obtained in [Nevins 2005, Theorem 7.4; 2013,
Theorem 6.2] are in fact constructible from twists of the datum (x, I').

Theorem 6.2. Let 71 = (T, x) be an irreducible admissible representation of G
of depthr > 0. Let I' =T, € g* realize x as above, so that T = Centg(I"). Then
for any vertex x € B(G) we have

(6-1) Resg, 1 = 7%+ @ @ Se(®T, %),
g€lG:\G/T1%

where |G, \G/ T1% denotes a parameter set for the Gy-orbits in G - T that do not
meet gy _,, that is, such that the coset 8T + g} ; ., is degenerate.

Proof. Let us first show that the proof may be reduced to the special case that x = xj.
Suppose that x € B(G) is an arbitrary vertex. Then there exists k € GL(2, F') such
that kx = xo, yielding *G, = G,,. If T is anisotropic, choose & € SL(2, F) such
that hxy € k~1C, the closure of the fundamental alcove. If T is split, choose h
instead so that ?T = S where xo € A(G, S). Then we have

Reszokhrr = Reszhn = Resg, 7,

where the first two representations are isomorphic under the identification of the
groups G,, and G, via conjugation by k, and the second two are isomorphic as
representations of G since hq = 7. Even when kh ¢ SL(2, F), the datum defining
the representation khz s simply (khT, khx, kh khxr), where the term khxy is
only for the supercuspidal case.

Suppose that we have proven the decomposition (6-1) of ResGXOkhn. Via the
identification G, ,, = Gy,.r+> We have (*h)Gror+ = (hyr)Grrt . Moreover, for
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each g € [G,,\G/ Centg (*"1)192, which is an element of G such that the G x,-orbit
of #*"T" does not meet Oy,.—r» We have

-1 -1 ~ ’ ’
Sy (BT, 8K ) = K(S,, (K 8Php (Tebhyyy = 5 (8T, 8 x),

where we set g’ = k~!gkh. Then g’ € G is such that the G-orbit of ¢ T does not
meet gy _,. It follows that the map g — k='gkh takes [G,,\G/ Centg(*'T)]de
bijectively onto [G,\G/T1%, as required.

We now prove the theorem in the special case that x = xp, which was considered
in [Nevins 2005; 2013].

Suppose first that 7 = Centg (I') is anisotropic. Set y = x7, which we assume lies
in C, and let (T, x) = c—Ind?GM2 k be the corresponding supercuspidal represen-
tation. By [Nevins 2013, Proposition 4.4], the double coset space G,\G/T G, ;>
that arises in the Mackey decomposition

— Gy 8
Resg, m = @ IndGms’(TGy,,/z) K
gEGx\G/TG)',r/Z

is independent of r and is given by G,\G/T. Since T = Centg(I"), this latter
space parametrizes the G,-orbits in the G-orbit of I" in g*. By [Nevins 2013,
Theorem 6.1], each of these Mackey components is irreducible.

The element I" has depth —r and depth is G-invariant. Thus éT" meets gy _,
if and only if d,(¥T") = d,-1,(I') = —r, which by [Kim and Murnaghan 2003,
Theorem 2.3.1] happens if and only if g~!x = x7 = y. If this is the case, then T
is an unramified torus attached to a vertex in the G-orbit of x; the corresponding
Mackey component has depth r and so lies in 7 ©~~+. In all other cases 7 %++ = {0}.

Thus the elements g € [G,\G/T]% parametrize all Mackey components except
m%xr+ (if it is nonzero). Furthermore, by [Nevins 2013, Theorem 6.2],! they satisfy

Gy ~
Ind¢ e (76, , ) Sl =S (BT, 4 X0,

as required, yielding (6-1) for the supercuspidal representations.

Now suppose that 7 = S is the split torus, and that 7 =7 (T, x) = Indg x for
some Borel subgroup B = TU containing T having U as its unipotent radical.
Since G = G, B, there is a unique (highly reducible) Mackey component in this
case. Instead, the decomposition of Resg,_  into irreducible subrepresentations is
found in [Nevins 2005] (in the case that x € {xg, x1}) by explicitly decomposing the
G (-subrepresentations 7 %= as n — co. We need to show that this decomposition
is in fact of the form (6-1).

First note that as 7 has depth r at x, the subrepresentation 7 %++ is nonzero, and
in fact is irreducible as a representation of G, by [Nevins 2005, Proposition 4.4]

L Correction to [Nevins 2013, Theorem 6.2]: the decomposition in the case y = 1 is missing the
term corresponding to the double coset representative el.
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(where this space is denoted by V&=, for m =r + 1 the conductor of x). Again by
[Kim and Murnaghan 2003, Theorem 2.3.1] we know that éT" € g} _, if and only if
8T C Gy, so the Gy-orbit in G - ' meeting gy _, corresponds to the trivial double
coset of G,\G/T.

The irreducible representations of G, of depth greater than r appearing in Resg, 7
are classified in [Nevins 2005, Theorem 7.4]. The notation in that paper relates to
ours as follows. Identify g and g* via the trace form. Foranyd € Z.g, u e R*, ve P,
let X = w_dX(u, v) € gx.—q; then for any character 8 of C,(X) agreeing with nx
on C(X) N Jy x, we had set

(6-2) Dy_1(0, w?X) = 8:(X, ),

which is of depth d. Thus [Nevins 2005, Theorem 7.4] asserts that for each integer
d > r, Resg, m has two irreducible components of depth d, denoted by Wj_l.

Explicitly, if [isa diagonal matrix diag(a, —a) € gx,—» \ gx,—r+, then for each
fixed d > r define yp = aw? e P, yy =as ' e P!, Yo = X(1, y}) and
Y= X (e, 8)/12). Then w ~4Y; € gx,—q and the theorem asserts there are characters p;
of C,(Y;) such that

Wi oW, | =S(@ Yy, po) ® S (@Y1, pr).

We claim this is the desired expression. Namely, if we choose, for i € {0, 1},

1.1
gi,d=|:1 Tl ]
Vi 3

then @ —4Y; = 84T". Moreover, the characters p; were defined in [Nevins 2005,
Definition 7.3] on

as x (b + cy;); we can compute directly that therefore p; = 84 x.

It remains to show {g; 4 |7 € {0, 1}, d > r} is a set of double coset representatives
for (Gx\G/T) ~ GxT. Because G = G,UT, these double cosets are represented
by T-conjugacy classes of unipotent upper triangular matrices of strictly negative
depth. Noting the factorization

1 —ly_l 1 0|1 —ly_l 1 —ly_l
— 2 — 2 G 2 T
8 |:y 1 y iflo 1 €% o 1 [T
! runs over the distinct square classes in P"~¢ . P’ ~4+! for

all d > r, we obtain representatives of the distinct nontrivial cosets of G,\G/T,
which is the index set [G,\G/ 719, as required. O

we see that as —%y‘
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6C. Main theorem for representations of positive depth. Before stating the next
theorem, we require a short lemma about filtrations of tori.

Lemma 6.3. Let T = Centg ('), where I is a semisimple element of depth —r.
Suppose that at x € B(G) we have d,(I') = —d < —r. Then TNG, = ZT,_,, so
that T NGy o = Ty_py¢ for any £ > 0.

Proof. Let t be the Lie algebra of T. The hypotheses imply that d,(w*T") =
d(@*T) — (d —r) for any k € Z. Thus, since t is one-dimensional, for any element
X et~ tyy we have d, (X) ={—(d—r), yielding tNg, ¢ =t;_,¢. Passage to the
group yields the desired result, where at depth zero, we observe that Z C TN G,
for all x. ([

Theorem 6.4. Let 1 = (T, x) be an irreducible admissible representation of
G =SL(2, F) ofdepthr > 0andlet ' =T € g* be an associated K -type. Then
for each maximal compact subgroup G, there is an integer n, (1) such that

(6-3) Resg,, ™ Zn (m)l+ Y Resg,,, 1:(0)
OeNil(T)
in the Grothendieck group of representations. In particular, up to some copies of the

trivial representation, 1 is locally completely determined by the nilpotent support
of T.

Proof. The restriction to G .4+ will be trivial on any irreducible G-representations
of depth less than or equal to r, so our first step is to match components of depth
d > rin Resg, 7w and in Y ) Tx(O). Note that the restriction to Gy, is
independent of the choice of central character ¢ so it is omitted from the notation.

Theorem 6.2 gives the decomposition (6-1) of the left side: the irreducible
components of depth greater than r are parametrized by the degenerate G -orbits
of I' at x. From (5-8) we infer the decomposition of the right side: the components
are parametrized by nilpotent G ,-orbits in O \ g , for each O € Nil(T").

By Proposition 4.1, each degenerate coset § =81" + g;_dJr, where d = —d, (8T1"),
is represented by a nilpotent element X € O(*T", x) such that also *T" — X € g7 _,.
The G,-orbit of £ determines the G,-orbit of X and by definition G - X € Nil(T").
Thus for each d > r there is a one-to-one correspondence between the G ,-orbits
in G -I" whose depth at x is —d and the G ,-orbits in Nil(I") whose depth at x is —d.

To complete the proof we need to show the corresponding representations are
isomorphic upon restriction to G ,+.

Let ¢ = x|z be the central character of w. If r <d < 2|r] + 1, then applying
Lemma 5.5 to the pair I'y =8T" and ', = X, with s =r, gives Resg, .. S, (8T, 8 ) =
Resg,,, Sx(X, ¢), as required.

If d > 2r (which includes all d > 2|r |+ 1), we have a stronger result. Lemma 6.3
implies that Centg, (8") = Z 8T;_, € Z 8T, and therefore € x is given on this

X, r+
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subgroup by the central character ¢. Since the chambers attached to 8I" and to X by
Lemma 5.2 coincide, we have J := Jy «r = Jy x. Since ' =X € g5 _, C 9;,—d/2+’
we have nsr = nx as characters of J. Moreover, since $I" € X + gjﬁ_,, we have
C:(®T") € Cx(X)Gy g—r € Cx(X)J. Therefore Cy(X)Jy x = Cx(8T)Jy¢r and

N, 8x) = n(X, ¢) as characters of this common group. Thus S,(¢T", &x) =
Sy (X, ¢) as representations of G. O

In the course of the proof we established that the components of depth d > 2r
occurring in Resg_ m coincide as representations of G, (not just as representations
of G, r4+), with the components of depth d > 2r in ZOGNH(F) 7,.(0, ), where ¢ is
the central character of &. This was proven case by case in [Nevins 2005, Remark
7.5; 2013, Proposition 7.6].

For convenience, we recap these sets Nil(I") in Table 1.

Remark 6.5. By Theorem 3.5, we know that Nil(I';;) = WF(r). Moreover,
with the standard normalization chosen in [Mceglin and Waldspurger 1987, 1.8],
the coefficients of the leading terms of the local character expansion agree with
those of (6-3); namely co(r) = 1 for all O € WF (). Thus Theorem 6.4 is a
representation-theoretic analogue of the analytic local character expansion.

On the other hand, the constant term n, () of the decomposition (6-3) does
not (and could not) agree with the constant term co(;r) of the local character
expansion. For one, n, () € Z, whereas co(7r) may be half-integral; see Table 6.
For another, n, (r) depends on the dimension of 77 ®xr+, which may vary based on
the G-conjugacy class of the vertex x € B(G).

Let us compute the constant terms 7, (;r) explicitly. We begin with a lemma.
Lemma 6.6. Let £ > 0. Then we have

. G %CI(CIQWZJ —1) if pd,(O) is even,
dim(z, (O)7*) = L ' .
5(q —1)  if pd, (O) is odd.
In particular, dim(t,(0) ® 7, (0") %+ = 3 (g + 1)(g'*) — 1) when the G-orbits
in O and O' have opposite parity depths at x.

Proof. The space of G, ¢4 -fixed vectors of 7, (O) is exactly the sum of its irreducible
components of depth d < £. By Proposition 5.4(a), each of these has dimension
%qd_l (g% — 1) and correspond to the G -orbits of © whose depths —d at x satisfy
——¢ < —d < —1. Thus if the parity depth of O at x is even then with d = 2e we have

Le/2]
dim(r,(0) %) = Y~ 167 (¢’ = 1) = J9(@** — 1),
e=1
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representation (T, x) of positive depth Nil(T'y) = WF(m)

principal series, T split {O1, Og, Op, Ocrr }

{O1, O:} ifdyy(T'y) is even
{On, Osw}if dy, (I'y) is even
supercuspidal, T splits over F[ /@] {O., O_yp} for some u € {1, €}
supercuspidal, T splits over F[\/ew] {0, O_yewr ) for some u € {1, ¢}

supercuspidal, T splits over F[+/€)

Table 1. The forms of the sets Nil(I",) = W.F (;r) for each type
of positive-depth representation; the precise sets are determined
from I';; in Lemma 4.2.

whereas if it is odd then with d = 2e¢ — 1 we have

[e/2]
dim(7, (0)Cxt+) = Z Lg% 22— 1) =L ).
e=1

If £ = 2k the sum of these is %(q + 1)(¢g* — 1) and if £ = 2k + 1 then the sum
is %q(qZk -+ %(qz(kH) —1) = %(q + 1)(q€ — 1). The result follows since
Gy o+ = Gy, |¢)+ for each vertex x. U

Proposition 6.7. Let m = (T, x) be an irreducible representation of depth r > 0
as in Theorem 6.2. Then, for each vertex x € B(G), the dimension of the subspace
of Gy »4-fixed vectors and the value of the coefficient n, () appearing in (6-3) are
as given in Table 2.

Proof. Let m = x (T, x) have depth r > 0, with associated minimal K-type I' =T";.
From Theorem 6.2 we have the equality

(6-4) ne(r) =dim(r ) — Y dim(r ().
OeNil(T)

If 7 is a principal series representation and B is a Borel subgroup containing 7,
then wCxr+ = Ind(GmeGX)G”Jr x, whence dim(w % +) = |G, /(BN G)Gyri| =
(g + 1)g". Moreover, in this case [';; is split and all principal nilpotent orbits occur
in Nil(I") (Table 1). Thus using (6-4) and Lemma 6.6, we compute

ne(m) =(qg+1q" —2(3@@+ D¢ —D)=g+1.

If 7 is a supercuspidal representation corresponding to a ramified torus, then its
depth is half-integral, whence for a vertex x we have G, , = G, 4+, and thus by
definition of depth 7Gx+ ={0}. On the other hand, by Table 1, Nil(I") consists of
two nonzero orbits which will be of opposite parity depth at any vertex x. Since
lr]=r— %, Lemma 6.6 yields n,(r) =0 — %(q +1)(g" 2 =1).
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type of torus T unramified
split X7 ~X Xr *x ramified
depth r reZ. reZ. reZ. re3+2Zs
dim(z (T, )9+) | (g+Dg"  (g—1q" 0 0
qg—q" (reven) 1—gq" (reven) —12
x 1 s(1—q" 1
() 9+ 1—q"(rodd) ¢—gq" (r odd) 2(1=g )q+1)

Table 2. The values of n,(7) appearing in (6-3) for each irre-
ducible admissible representation of SL(2, F) of depth r > 0.

Finally, suppose that 7 is a supercuspidal representation corresponding to an
unramified torus. Then Nil(I") consists of two nonzero orbits of the same parity
depth, and by Lemma 4.2, at any vertex x, the parity of the depths of elements of
these orbits is that of d, (I"). There are thus two cases.

If some G-conjugate of T is contained in G,, then (replacing 7" and 7 by this
conjugate) we have x7 = x and 7@+ = Ind?éx o K It follows from a calculation
in [Nevins 2013, Proposition 4.8] that independently of the parity of r € Z we have
dim(r ¢~r+) = (¢ — 1)q". Since the orbits that occur in Nil(I") have the same parity
as —r =d,, (I'), we have by (6-4) and Lemma 6.6 that

n,(r) = (g—Dq" - 2(%51(6]r - 1)) =q—q" ifriseven,
' (g—Dq" — 2(%(61r+1 — 1)) =1—g¢q" ifrisodd.

On the other hand, if T is not conjugate to a torus contained in G, then dy(I")
and —r = d,, (I') have opposite parity, and Resg_ 7 (T, x) has no components of
depth 7. Thus dim(7 “~+) = 0 and we compute instead that

n ) = 0-2(3(¢"—D)=1-¢q" if r is even,
! 0-2(1q(@ "' =1D)=q—¢" ifrisodd. O

7. The case of depth-zero representations of SL(2, F)

To establish the theorem for a depth-zero representation  of SL(2, F'), we apply a
result by Barbasch and Moy [1997] relating the wave front set of 7 to that of 77 ©x0+
viewed as a representation of SL(2, f) = G, 0/ Gy,0+ (Proposition 7.2). We begin
by recalling the representation theory of SL(2, f) and then the classification of
depth-zero representations of SL(2, F).

7A. Representations of SL(2, f). This theory is well known and is beautifully
recapped in [Digne and Michel 1991, §15]. Let G = SL(2, f), T a maximal torus
of G and ¥ a character of T (which is assumed to be nontrivial if T is anisotropic).
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The irreducible representations of G, when p # 2, are parametrized by these pairs
(T, x) as follows.

If T is split and ¥2 # 1 then o (T, ¥) is an irreducible principal series represen-
tation; if T is anisotropic and x> # 1 then o (T, ¥) is a (Deligne—Lusztig) cuspidal
representation. If T is split and ¥ = 1 then o (T, x) = 1 & St, where St denotes the
Steinberg representation of G.

For either T, when ¥ is a strictly quadratic character, we obtain two irreducible
representations o (T, ) for u € {1, ¢} (as the components of the restriction o (T, ¥)
to SL(2, f) of a corresponding (irreducible) representation of GL(2, f)). They are
distinguished by the theory of Gelfand—Graev representations, as follows.

Let X € g(f)* . {0} be nilpotent, and 1dent1fy X with a nllpotent element X € a().
Complete this to an sl(2, f) triple {Y H, X } and let u(f) = fY Then X defines
a character of U = exp(u(f)) by ¥x (exp(W)) = (X (W)) for all W € u(f). The
(highly reducible) representation of SL(2, f) given by

(7-1) Yo = Ind§ ¥x

depends (up to equivalence) only on the nonzero orbit O = G- X, and is called the
Gelfand—Graev representation of G associated to O.

Contrary to convention, we parametrize our nonzero nilpotent orbits by upper
triangular matrices X, € g(f) as in (4-1), where u € */ (’fx)2 ~ {1, e}. We compute
the character [yp,] directly, noting that [y, ]1(g) = O if g is not conjugate to an
element of u(f), and that for any s # 0,

o (o 1]) v

This yields

q*>—1 ifg=1,
[r0,0(@) = 125 cgep ¥ (—ust) if g ~[o3],
0 otherwise.

By [Digne and Michel 1991, Theorem 14.30], the decomposition into irreducible
subrepresentations of Yo, is multiplicity-free. Using character tables it is straight-
forward to compute that y», contains all irreducible principal series representations,
all Deligne—Lusztig cuspidal representations, the Steinberg representation, and
exactly one from each pair of representations arising from quadratic characters.
Our parametrization is therefore as follows: for u € §*/(§*)?, and a quadratic
character x of T, let c“(T, x) denote the component of o (T, ) occurring in yp, .
In the notation of [Digne and Michel 1991, §15], where o, := Zze(fX)Z Y (ta), the
quadratic character of the split torus is denoted by ., and that of the anisotropic
torus is denoted by x.,. For p € {Xay. Xw,}- the characters of these components are
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correspondingly labelled p*, where [0 ~!(T, p)] = pT and [0 (T, p)]=p . In
the sequel, we sometimes denote the quadratic character of the split torus T by sgn.

7B. Depth-zero representations of SL(2, F). Now let G = SL(2, F) and let x
be a depth-zero character of a maximal split or unramified torus. Assume y is
nontrivial if the torus is nonsplit. There are two nonconjugate choices for an
unramified anisotropic torus. If xo and x| are the vertices of the standard alcove, as
before, then we can choose representatives T* of the conjugacy classes of maximal
tori such that 7' C G, fori € {0, 1}. Then T; = TOi / TOi 18 a maximal anisotropic
torus of Gy, 0/ Gy, .0+ =: G = SL(2, f). Let T denote the split torus corresponding
to the standard apartment and set T = 7/ Ty, which is a maximal split torus of both
Go and G;. In each case, the character x factors to a character x of the quotient.

When T is anisotropic, for each i € {0, 1} inflate the representation o (T;, )
of G; to a representation of G, and, if Xz =# 1, define a(TH, x) = c-InngAa(Ti, X).
When y2=1but x #1, set 7(T*, x) = c—Indg\__a”(T,», x) for u € {1, &}, using the
notation of Section 7A. These representations'lare supercuspidal and irreducible
[Moy and Prasad 1996, Proposition 6.6]; the latter four were called the special
representations. Note that they are related via n = [(l)g] € GL(2, F) as follows:
we have "7*(T?, x) = n*(T!, "x), where % indicates that this applies both to the
special and nonspecial representations. It follows from [Nevins 2013, Theorem 5.3]
that the depth-zero component 7*(T", )()Gxt"’+ is the inflation to Gy, of o*(T;, ).
but 7*(T?, x)=0+ = {0} if x € {x0, x1} ~ {x;}.

If T is split, contained in a Borel subgroup B, then = (T, x) = Indg X 1is again
in the principal series. It is immediate to see that for any vertex x, (T, x)Cx0+ =
o (T, x) under the isomorphism Gy 0/Gx o0+ = SL(2, f); note that this will be
reducible whenever ¥ is a quadratic character.

We summarize the results of the preceding two paragraphs in Table 3, and
then address the remaining depth-zero irreducible representations, which are the
reducible principal series [Tadi¢ 1994, §7], below.

When x € {v, v™!'}, where v is the square root of the modular character, the
Jordan—Holder factors of (7T, x) are the trivial representation and the Steinberg
representation St, and we have St®++ = St and 1¢x0+ = 1.

In the remaining cases, x is quadratic. There are three such, corresponding to the
distinct quadratic extensions E = F[/] of F. We write x = sgn, for the quadratic
character whose kernel is the image of the corresponding norm map. As described
in [Nevins 2005, §8], there is for each such x a realization of 7w (7, x) on the space
L?(F*) such that its irreducible summands are HY, where H consists of the func-
tions supported N = ker(sgn,) and H” those supported on its complement. Note
that @ € ker(sgn_,, ), for example; thus if we parametrize the quadratic extensions
by t € {e, —w, —ew}, then we obtain the more pleasing uniform description below.
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T type 7 7 Ox0+
T split principal series (T, x) o (T, x) (possibly reducible)
Steinberg St St
trivial 1 1
T! unramified ) < o(Ti,x) ifx~ux
dal T, .
P e(0.1) supercuspida (T, x) (0) iFx 2
special supercuspidal . o"(T;, x if x ~ x;
p percusp 2T,y | O T x)
uef{l,e} {0} if x 2 x;

Table 3. The depth-zero representations of G, occurring in the
restriction to G of the irreducible principal series, Steinberg, trivial
and supercuspidal representations, for any vertex x € B(G).

Proposition 7.1. Foreacht € {e, —w, —ew} andi € {0, 1}, the G;-representations
(HjE)G"ivOJr are irreducible and their isomorphism classes are given in Table 4.

Proof. Without loss of generality we may assume 7 is such that xg, x; € A(G, T).
Note that if the extension F[,/7] is unramified then sgn,; = 1 but in the remain-
ing cases sgn; = sgn, the quadratic character of the split torus T in G. Since
(T, )¢+ = o (T, ¥), which is reducible in all of these cases, we infer

7 (T, sgn) O = (H)O0+ @ (HI)Oor

16 St ift =g,
o (T, sgn) ®o®(T,sgn) otherwise.

~

The character of (Hjt)GXO»O+ was computed in [Nevins 2005, Theorem 9.1]. In the
unramified case, this gives (H _‘i)G"O’O+ =Stand (H¢)%wo+ =1. For the ramified case,
first note that in the notation of that paper, of [Digne and Michel 1991, §15], and ours,
respectively, we have Ef, = x,, = [0 7°(T, sgn)] and B, = x50 = [0~ (T, sgn)].
The theorem states, for the ramified case, that the character of (H}r)GXOvOJr is Ejgn
when —1 ¢ (F *)2 and E;gn otherwise. In our notation this is exactly the character
of o!(T, sgn). This completes the first row of Table 4.

For the character of (HjE)G"l 0+ the proof of [Nevins 2005, Corollary 9.3] showed
that twisting 7w (7, sgn,) by o = [Zg (1)] € GL(2, F), which interchanges these
vertices, preserves H] when sgn,(—w) = 1 and interchanges them otherwise
(including in the unramified case). Applying this twist to 7 %00+ yields 7 @10+
The entries for (H. fE)G»*‘N” follow.

For the ramified case, note that twisting by w takes O, to O_,, and so it maps

the Gelfand-Graev representation yo, of Gy, to the representation yo_, of Gy, .2

2This calculation was neglected in the proof of [Nevins 2005, Corollary 9.3], yielding an incorrect
statement for the depth-zero components.
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n H{ H° H{? H™? H 7 HZ®”

0.0+ St 1 ol(T,sgn) o°(T,sgn) | o' (T,sgn) o&°(T,sgn)
G0+ 1 St o!(T,sgn) o®(T,sgn) | o°(T,sgn) o' (T,sgn)

Table 4. The isomorphism classes of the depth-zero representations
of G,, occurring in the restriction to G,, of the decomposable
principal series.

Therefore, twisting by w sends the inflation of the representation o (T, sgn) of Gy,
to the inflation of the representation o ~#(T, sgn) of G,

Thus for example, if —1 € (F*)?, then “H;” = H_® and o~ (T, sgn) =
o (T, sgn), whereas if —1 is not a square, then “’H;w =H~® and o !(T, sgn) =
o®(T, sgn). A careful accounting of signs completes the second row of the table. [J

7C. Wave front sets. The wave front set is determined with the following result,
which is based on [Barbasch and Moy 1997, Theorem 4.5].

Proposition 7.2. Let w be an irreducible admissible nontrivial representation of
depth zero of SL(2, F). Suppose char(F) = 0 and p > 3e + 1, where e is the
absolute ramification index of F over Q. Then we have

there exists x, a vertex of B(G), such that pd (O) is
even, and there exists o, an irreducible constituent }

WF(m) = {(’) € 0(0)
of w9 such that & occurs in 70}

where ygz is the Gelfand—Graev representation (7-1) attached to the nonzero nilpo-
tent orbit in gy 0/ 9x.0+ under Gy = SL(2, §) whose inflation to g, o meets O.

Proof. The hypotheses imply that exp converges on go+ and that the local character
expansion holds. Barbasch and Moy [1997] used (generalized) Gelfand—Graev
characters as test functions to determine the wave front set of 7. For each nilpotent
orbit O that is represented by a depth-zero coset at the vertex x (meaning, its
parity depth at x is even), let [yx] denote the lift to G, ¢ of the character of the
corresponding Gelfand—Graev representation of G, = G, 0/ Gy 0+, viewed as a
function on G. It is supported on the subset Go+ N Gy o of topologically unipotent
elements. Let f, o be the function on g, with support in go+ N gy 0, that is given
by fx,0 =[yz] o exp. They then show that o (fr.0) = 0if O is not contained in
the closure of O’ and is nonzero if O = O'. Thus O, ([y5]) = 0 for all O that do
not meet the wave front set of w and O ([y5]) # 0 when O € WF ().

For any irreducible representation o of Gy, let m (o, ) denote the multiplicity of
its inflation o in 7w 9x0+ and m(&, yz) the multiplicity of & in yg. Then [Barbasch
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and Moy 1997, Theorem 4.5(4)] becomes
Ox(lyph) =Y _m(o. m1)m @, vp).

whence our result for the case of SL(2, F). O

Corollary 7.3. Under the hypothesis of Proposition 7.2, the wave front sets corre-
sponding to the depth-zero representations of SL(2, F) are as given in Table 5.

Proof. Foru € {1, ¢} and i, j € {0, 1}, the nilpotent orbit O, , is represented by
a depth-zero coset at x; if and only if i = j, and in this case it corresponds to the
nilpotent orbit in the quotient gy, 0/0gx,.0+ = s(2, f) under G; = SL(2, f) that we
denoted by simply O, . Therefore the Gelfand—Graev representations yg referred to
in Proposition 7.2 are yp, and yp_for x = xo, and y5 and yp,  for x =x;. By
conjugacy, these two vertices suffice. The decomposition of 77 x0+ for x € {x¢, x1}
was given in Tables 3 and 4 for all irreducible depth-zero representations , and
matching these with the decomposition of the Gelfand—Graev representations of
the corresponding groups G; as in Section 7A yields Table 5. U

This table is consistent with the computation of the coefficients of the local
character expansion for SL(2, F) using the existence of Whittaker models in [Assem
1994, §3].

Claim. For each depth-zero irreducible representation w of SL(2, F) there exists
an element I" € g;‘;o,for some x € B(G), such that WF (i) = Nil(I").

Proof of claim. Existence follows immediately from Table 5 and Lemma 4.2, though
the elements I" for which W_F(sr) = Nil(I") do not correspond to minimal K -types
for m (as these latter are not realized by elements on the Lie algebra). However, on
an ad hoc basis, we can make this association of 7 with I' more explicit, as follows.

For T unramified or split, and x € B(T) C B(G), we can in the same spirit attach
to any regular (T, x) (in the sense of Kaletha [2019, Proposition 3.4.27] in the
first case and [Tadi¢ 1994, §7] in the second) any regular depth-zero element of t*,
that is, an element I" € 9;0 ~ 9;,0 + Whose centralizer in G is T. The same holds
for m = St, whereas we associate ' =0 to 1.

When 7%(T"?, x) is a special representation (for some u € {1, ¢} and i € {0, 1}
and x quadratic) then it is a supercuspidal unipotent representation and I" is chosen
to be a nilpotent element in the lift to g} , of the nilpotent orbit corresponding
to o (T;, X).

When 7 € {H] |t € {¢, —ww, —ew}}, I is a choice of element of an anisotropic
torus T that splits over F[+/T]. However, while the orbit of I satisfies Nil(I") =
WZF (), when —1 € (F*)? and T € {w, e}, the centralizer may be one of two
possible tori T = Centg (I") up to conjugacy, and neither one is expressly associated
to 7. [l
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representation 7 WF(m)
(T, ) irreducible principal series | {1, ¢, @, e}
(T?, x) irreducible supercuspidal {1, &}
7 (T!, x) irreducible supercuspidal | {w, e}
b1 WF(m) g WF(rr)
1 {0} St {l,e, w,ew}
HY {1, e} H?® {w, e}
H” {1, @} HZ” {e, e}
H® (1, ew} H~? (e, @)
(T {1} (T, x) {e}
(T ) Aw) | (T 0 {ew)

Table 5. For each irreducible depth-zero representation of
SL(2, F), we list under the heading W.F () the set of elements
uef{0,1,e, w, ew} such that O, € WF ().

Note we may define WF (;r) by Table 5, even over fields where Proposition 7.2
does not apply. Our main result, below, expresses that, just as in the positive-depth
case, this is consistent (for all fields with residual characteristic different from 2).

Theorem 7.4. Let  be an irreducible admissible representation of G of depth zero
with central character ¢. For any vertex x € B(G), we have

(7-2) Resg, m = 700+ @ @ (0, {),

OEeWF(r)
where WF (1) is as in Table 5. It follows that Resg, ,,  takes the form of (6-3)
with constant coefficient n, () = dim(;r ©x0+).

Proof. The decomposition will follow from the main results of [Nevins 2005; 2013],
applied to x € {xg, x1}, as in the proof of Theorem 6.2. Let = be a depth-zero
representation of G with central character ¢.

For irreducible depth-zero principal series, one has 3y = y; = 0 in [Nevins 2005,
Theorem 7.4]. Matching notation as in (6-2), we conclude that S, (@ —dX,,0)
occursin Resg, 7, foru € {1, €}, for each d > 0, and that these exhaust the irreducible
summands. Therefore the summands can be regrouped as the sum of 7, (O, ¢), as
defined in (5-8), over all regular nilpotent orbits, as required. As the positive-depth
summands of Resg_ m are identical for all depth-zero irreducible principal series,
the case of = = St follows since Resg, 1 has no positive-depth components.

For the remaining reducible principal series, we use [Nevins 2005, Theorem 9.2],
together with Proposition 7.1. Noting that sgn__, () =1 and sgn_,,, (w) = —1,
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the theorem states

Resg, H
St® By o(Swo (@ 21X1, 0) & Sy (@ X, 1)) ifr=é,
=10 (T, 58 &Py Sxy (@ X1, ¢) ift=—-w,

o '(T, sgn) & Dy o(Swe (@ 29X1, 1) ® Sy 211X,, 7)) if1=—¢w.

Regrouping the positive-depth summands yields the decomposition

St® 74, (01, §) ® 74, (O, ) if T =e¢,
(7-3)  Resg, Hi = o l(T, sgn) ® 14, (01, 8) B 14y (O, ) if T = —1,
o' (T, 5gn) ® 74, (O1, §) ® 10y (Osr, £)  if T = —e1,

which is consistent with the wave front set computed in Table 5. As noted above,
the positive-depth summands of H{ & H® form Do 40y o) Txo (Os ¢), and the
wave front sets of these representations are complementary, so this yields the result
for Resg, HT as well.

To determine Res¢, 7 we proceed as in the proof of Proposition 7.1. Conjugation
by w interchanges the components of the principal series if and only if sgn, (o) =—1,
and “1,,(O,, ¢) = 74, (O—_yw, ¢). Thus when sgn, (w) = —1 (the first three lines
below) we obtain the decomposition of H* as the w-conjugate of (7-3); when
sgn, (w) = 1 (the last two lines), then H* = “H" so we first take the complement
of (7-3). (The depth-zero components are taken from Proposition 7.1.) This yields

Resg, H:

St® 1y, (O, §) B Tx, (O, §) ifr=e,

o (T, sgn) @1y, (O, )BT (O_p2,¢)  if T=—o and —1 ¢ (F*),
=130 1(T,sgn) @1y, (O, ) DTy, (O_y 2, §)  if T=—¢w and —1 € (F*)?,

o5 (T,sgn) Ty, (O—err, ) BT, (O_p 2, ¢)  if T=—w and —1 € (F*)?,

o 8 (T,sgn) B 1y (O—sr, )BT (O_y2,¢) ifT=—cwand —1¢ (F*)2.
Therefore, in any case, the nilpotent orbits arising in ResG)rl H? are {Oy, O };
those arising in Resg,, H~% are {Og, Oy }; and those arising in Resg,, H™*” are

{Ox, O.}, which again is consistent with Table 5, as required.

Now suppose that 7; = c—Inng.a is a nonspecial supercuspidal representation.
Translating the notation of [Nevfns 2013, Proposition 5.2], we have th @) =
Sy(@™4X_1,0) and 7, (0) := Sy, (@ "¢ X_, 6). Theorem 5.3 of [Nevins 2013]
yields

0 DD, o(Sxy (@ HX_1, D) B S (¥ X, ) ifi=0,
B, o(S @ X, ) @S (@ HTX_,, 1) ifi=1,

_{G@fxo(01,§)®rxo((’)g,g) ifi=0,
" N0, O) B 10y (e, ) ifi=1.

Resg, 7 = {
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Here, we have used that in [Nevins 2013, Theorem 5.3], n = [(1) g] and thus
"0y = Oy

Finally, for the special supercuspidal representations, corresponding to a quadratic
character x, note from [Nevins 2013, Proof of Proposition 5.2] that a(;r corresponds
to the character Xjfo of [Digne and Michel 1991, §15] (see Section 7A) so in our
notation here, ‘70+ =0 1(T°, x) and oy =0"5(T", x). Since "O, = O, , twisting
by 1 sends the inflation of the representation o (T, x) of G, to the inflation of the
representation o (T, ) of G,,. We thus infer, for u € {1, ¢}, the decompositions

. S. (— _ZIX, , ifi = O,
Rescmn“(T‘,x)={“@@’>° o X
®t>08X0(_w X—mf) ifi =1,
_ {o@rxowu,:) if i =0,

TXQ(Ouwyg‘) 1fl= 1,

where again ¢ is the corresponding central character. Comparing with Table 5, we
conclude that (7-2) holds for Resz0 7"(T*, ) in each case. The result for x; is
obtained by conjugating by 7.

Finally, the value of n, () = dim(w Gro+) can be deduced from Tables 3 and 4:
it is ¢ + 1 for irreducible principal series, ¢ — 1 for Deligne-Lusztig cuspidal
representations, ¢ for St, (¢ — 1)/2 for the special unipotent representations and
(g + 1)/2 for the components of the reducible principal series. (]

8. Applications

8A. The Fourier transform of a nilpotent orbital integral. As a first application,
we derive a formula for the Fourier transform of a nilpotent orbital integral in any
open set of the form g, o+ in terms of the trace characters of the representations

(0, ).

Proposition 8.1. Let x € B(G) be a vertex. Let [t,(O)] denote the restriction
to G;e’% + Of the trace character of the representation t,(O, ¢), for either choice
of central character . Assume exp converges on gy o+. Then for each nonzero
nilpotent orbit O and X € g;e% 4 we have

%q + [t (O)](exp X) if O has even parity depth at x,

7o(X) = 1| , ,
5+ [ (O)](exp X) if O has odd parity depth at x.

As x ranges over the vertices of B(G), these expressions determine the function j1o
reg

on g,

Proof. Let w be a nontrivial irreducible admissible representation of depth r > 0,
and let ®, denote its character. We assume the functions ftp are normalized
as in [Mceglin and Waldspurger 1987], so that the coefficients c» corresponding
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type representation of SL(2, F) ' coefficient ¢y of ,u{o}'
of depthr >0 in local character expansion
irreducible 0
. . irreducible summand 0
principal series
St -1
1 1
ramified case —q" 2 (g+1)/2
supercuspidal unramified, nonspecial —q"
special unipotent - %

Table 6. Values of the constant term in the local character expan-
sion of irreducible admissible representations of SL(2, F').

to O € WF (i) in the local character expansion of ®, oexp are all equal to 1. Thus
on gf’f + we have
O oexp = co(w) + Z no.
OeWF(r)

These constant terms in the case of SL(2, F) are well known and are summarized
in Table 6. For example, for principal series, see [Assem 1994, Propositions 2.1
and 3.3.6], and for supercuspidal representations, see [DeBacker and Sally 2000,
Tables 1-4].

Theorem 7.4, on the other hand, gives a formula for the character of any
irreducible depth-zero representation on Gy o+. Matching these for the special
unipotent representations 7 = 7% (T", x) (where i € {0, 1} and u € {1, &}) yields
the given formula. It is moreover direct to verify the consistency of this expression
across the local character expansions of all irreducible representations, including
those of positive depth (on Gy ;4 as in Theorem 6.4). The result therefore holds
on gio4+ = G- (gxo,O-‘r U gxl,()-‘r)- O

Note that g1/24+ C go+. One anticipates that Proposition 8.1 holds on all of go,
and that the restriction on the G-domain is an artefact of having considered only
vertices in the present work.

Remark 8.2. Far more explicit formulae for the functions 1o have been computed
for the group SL(2, F) in [Assem 1994; DeBacker and Sally 2000] among others.
They have also noted that, under the exponential map, the characters of the five
representations {1, (T, x) |ue{l,e},i €{0, 1}} (where x denotes a quadratic
character) form another basis for the span of the functions to on ggef. It is these
representations (and their generalizations for representations over arbitrary fields
of characteristic different from p) that arise in the local representation-theoretic

expansion of SL,(F) given in [Henniart and Vignéras 2024, §6].
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In fact the special unipotent representations have local character expansions of
the form

(8-1) O (exp(X)) = fio(X) — 3.
for the single corresponding orbit O, and this holds on the strictly larger set ggef.

An advantage to Proposition 8.1 is the simplicity and explicitness of the con-
struction, which uses no more than a vertex and a representative of the orbit as
input. In this, it recalls some of the original formulae for these Fourier transforms
of nilpotent orbital integrals in [Harish-Chandra 1999].

8B. Computing the polynomial dim(x ©~2*). This arose from a question posed
to me by Marie-France Vignéras in 2022 and gives a (not surprisingly) negative
answer to [Henniart and Vignéras 2023, Question 1.1]: Is there a polynomial with
integer coefficients such that dim (7 ¢++/) = P(p/) for large enough j?

If 7 is an irreducible admissible representation of G, the local character expansion
implies that dim(;r %), for m even, is expressible as a polynomial in g, as described
in [Barbasch and Moy 1997, §5.1]; see also [Henniart and Vignéras 2023, Remark
11.8]. Here we can obtain this polynomial as a corollary of Theorems 6.4 and 7.4,
using the explicit values computed in Proposition 6.7.

Corollary 8.3. Let w be an irreducible representation of G = SL(2, F) of depth r.
Then for each even integer m > r, we have

dim (@)

g"4qgm! if 7 is an irreducible principal series,

qg" ' —q" if m is supercuspidal nonspecial, from a vertex ~ x,
B q"—q" if 7 is supercuspidal nonspecial, from a vertex % x,

%(q +1)(g" = qr_%) if m is supercuspidal, from a nonvertex.

On the other hand, if my = H; then dim(mG "y = g™~ when the parity depth at x
of the orbits in WF () is even, and equals q™ otherwise; and if m = St, then
dim(wCxm) = g™ 4+ g™~ — 1. In all other cases, dim(w =) is exactly half of
that of a corresponding (irreducible principal series or nonspecial supercuspidal)
representation.

Proof. Let  be of depth r. By Theorem 6.4 (and Remark 6.5) in positive depth
and Theorem 7.4 in depth zero, we have for m > r that
dim@Eem) =n+ Y dim(r,(0)%m),
OeWF(m)

where n = n, () if r > 0 (Proposition 6.7) and n = dim(;r 9=0+) if » = 0 (Tables 3
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and 4). We obtain dim(z, (©)%+m) from Lemma 6.6 by setting £ = m — 1, and refer
to Tables 1 and 5 for the sets WF ().

If 7 is an irreducible principal series, then WWF (;r) consists of all nilpotent orbits
and n = (g +1) forall r, yielding a total (g +1)+(g+ D (" ' —=1)=¢g""(g+1).
For the reducible principal series, we have dim(St) = ¢ and dim(1) =1, so

q+q@" -1 =q¢""" ifx~xo,

d. HE G)mn —
) {1+<qm—1>=q'" i~

with dim((H?)%m) = (g"~! 4+ ¢™) — dim((H£)% ). On the other hand, for
7 € {—w, —ew} the decomposition is symmetric and therefore dim((Hi)Gm) =
3" +4" ).

If 7 is a ramified supercuspidal representation, then r is a positive half-integer,
and WF (ir) consists of two orbits of opposite parity depth. We compute

dim(zr o) =1(1-¢" g+ D+ 3@+ D(@" " =) =L@+ D" —¢" ).

Suppose 7 is an unramified supercuspidal representation of depth r > 0. Note that
—r =d(I") has the same parity as d, (I') (which coincides with pd, (O) for each
O € WF(m)) if and only if x ~ x7. Rephrasing the conditions in Table 2 yields
that if d,(I") is even then n, () = g — g for all x, whereas if d, (I") is odd then
ny(wr)=1—¢q". Lemma 6.6 now gives

(G—q)+q@@" =1 =q" ' —¢q" ifd. () is even,

dim(yrG**'"):{ ) M - ! !
I-g")+(@"-1)=q" —q if d,(T) is odd.

The same holds for nonspecial supercuspidal representations of depth » = 0, since
there n = g — 1 if x ~ x7 and n = 0 otherwise. Finally, for each of the special
representations, the dimension will be half the corresponding value for an unramified
supercuspidal from the same vertex, by symmetry. ([

Acknowledgements

This work was instigated by a question posed to the author by David Vogan and has
benefitted enormously from many conversations with him in the online research
community Representation Theory and Noncommutative Geometry sponsored by
the American Institute of Mathematics. The approach to Nil(I") given here was
significantly refined through conversations with Fiona Murnaghan and Loren Spice.
This work progressed over a period of visits to many colleagues, and benefitted from
their comments and interest: Vincent Sécherre, Laboratoire de Mathématiques de
Versailles, Université Paris-Saclay; Anne-Marie Aubert, Institut de Mathématiques
de Jussieu-Paris Rive Gauche, Université de Paris/Sorbonne Université and Jessica
Fintzen, Universitit Bonn. It is a true pleasure to thank all of these generous people.



THE LOCAL CHARACTER EXPANSION AS BRANCHING RULES 299

References

[Adams and Vogan 2021] J. Adams and D. A. Vogan, Jr., “Associated varieties for real reductive
groups”, Pure Appl. Math. Q. 17:4 (2021), 1191-1267. MR Zbl

[Adler 1998] J. D. Adler, “Refined anisotropic K -types and supercuspidal representations”, Pacific J.
Math. 185:1 (1998), 1-32. MR Zbl

[Adler and DeBacker 2002] J. D. Adler and S. DeBacker, “Some applications of Bruhat-Tits theory
to harmonic analysis on the Lie algebra of a reductive p-adic group”, Michigan Math. J. 50:2 (2002),
263-286. MR Zbl

[Adler and Korman 2007] J. D. Adler and J. Korman, “The local character expansion near a tame,
semisimple element”, Amer. J. Math. 129:2 (2007), 381-403. MR Zbl

[Adler and Roche 2000] J. D. Adler and A. Roche, “An intertwining result for p-adic groups”, Canad.
J. Math. 52:3 (2000), 449-467. MR Zbl

[Assem 1994] M. Assem, “The Fourier transform and some character formulae for p-adic SL;, [ a
prime”, Amer. J. Math. 116:6 (1994), 1433-1467. MR Zbl

[Barbasch and Moy 1997] D. Barbasch and A. Moy, “Local character expansions”, Ann. Sci. Ecole
Norm. Sup. (4) 30:5 (1997), 553-567. MR Zbl

[Ciubotaru and Okada 2023] D. Ciubotaru and E. Okada, “Local character expansions via positive
depth Barbasch—-Moy theory”, 2023. arXiv 2307.06780

[Ciubotaru et al. 2022a] D. Ciubotaru, L. Mason-Brown, and E. Okada, “The wavefront sets of
Iwahori-spherical representations of reductive p-adic groups”, 2022. arXiv 2112.14354v4

[Ciubotaru et al. 2022b] D. Ciubotaru, L. Mason-Brown, and E. Okada, “The wavefront sets of
unipotent supercuspidal representations”, 2022. arXiv 2206.08628v2

[Cluckers et al. 2014] R. Cluckers, J. Gordon, and I. Halupczok, “Local integrability results in
harmonic analysis on reductive groups in large positive characteristic”, Ann. Sci. Ec. Norm. Supér.
(4) 47:6 (2014), 1163-1195. MR Zbl

[Debacker 2002a] S. Debacker, “Homogeneity results for invariant distributions of a reductive p-adic
group”, Ann. Sci. Ecole Norm. Sup. (4) 35:3 (2002), 391-422. MR Zbl

[DeBacker 2002b] S. DeBacker, “Parametrizing nilpotent orbits via Bruhat-Tits theory”, Ann. of
Math. (2) 156:1 (2002), 295-332. MR Zbl

[DeBacker and Reeder 2009] S. DeBacker and M. Reeder, “Depth-zero supercuspidal L-packets and
their stability”, Ann. of Math. (2) 169:3 (2009), 795-901. MR Zbl

[DeBacker and Sally 2000] S. DeBacker and P. J. Sally, Jr., “Germs, characters, and the Fourier
transforms of nilpotent orbits”, pp. 191-221 in The mathematical legacy of Harish-Chandra, edited
by R. S. Doran and V. S. Varadarajan, Proc. Sympos. Pure Math. 68, Amer. Math. Soc., Providence,
RI, 2000. MR Zbl

[Digne and Michel 1991] F. Digne and J. Michel, Representations of finite groups of Lie type, London
Mathematical Society Student Texts 21, Cambridge Univ. Press, 1991. MR Zbl

[Fintzen 2021a] J. Fintzen, “On the construction of tame supercuspidal representations”, Compos.
Math. 157:12 (2021), 2733-2746. MR Zbl

[Fintzen 2021b] J. Fintzen, “On the Moy—Prasad filtration”, J. Eur. Math. Soc. 23:12 (2021), 4009—
4063. MR Zbl

[Fintzen 2021c] J. Fintzen, “Types for tame p-adic groups”, Ann. of Math. (2) 193:1 (2021), 303-346.
MR Zbl


https://doi.org/10.4310/PAMQ.2021.v17.n4.a2
https://doi.org/10.4310/PAMQ.2021.v17.n4.a2
http://msp.org/idx/mr/4359259
http://msp.org/idx/zbl/1504.22012
https://doi.org/10.2140/pjm.1998.185.1
http://msp.org/idx/mr/1653184
http://msp.org/idx/zbl/0924.22015
https://doi.org/10.1307/mmj/1028575734
https://doi.org/10.1307/mmj/1028575734
http://msp.org/idx/mr/1914065
http://msp.org/idx/zbl/1018.22013
https://doi.org/10.1353/ajm.2007.0005
https://doi.org/10.1353/ajm.2007.0005
http://msp.org/idx/mr/2306039
http://msp.org/idx/zbl/1128.22008
https://doi.org/10.4153/CJM-2000-021-8
http://msp.org/idx/mr/1758228
http://msp.org/idx/zbl/1160.22304
https://doi.org/10.2307/2375053
https://doi.org/10.2307/2375053
http://msp.org/idx/mr/1305872
http://msp.org/idx/zbl/0837.20051
https://doi.org/10.1016/S0012-9593(97)89931-4
http://msp.org/idx/mr/1474804
http://msp.org/idx/zbl/0885.22021
http://msp.org/idx/arx/2307.06780
http://msp.org/idx/arx/2112.14354v4
http://msp.org/idx/arx/2206.08628v2
https://doi.org/10.24033/asens.2236
https://doi.org/10.24033/asens.2236
http://msp.org/idx/mr/3297157
http://msp.org/idx/zbl/1315.22010
https://doi.org/10.1016/S0012-9593(02)01094-7
https://doi.org/10.1016/S0012-9593(02)01094-7
http://msp.org/idx/mr/1914003
http://msp.org/idx/zbl/0999.22013
https://doi.org/10.2307/3597191
http://msp.org/idx/mr/1935848
http://msp.org/idx/zbl/1015.20033
https://doi.org/10.4007/annals.2009.169.795
https://doi.org/10.4007/annals.2009.169.795
http://msp.org/idx/mr/2480618
http://msp.org/idx/zbl/1193.11111
https://doi.org/10.1090/pspum/068/1767897
https://doi.org/10.1090/pspum/068/1767897
http://msp.org/idx/mr/1767897
http://msp.org/idx/zbl/0960.22017
https://doi.org/10.1017/CBO9781139172417
http://msp.org/idx/mr/1118841
http://msp.org/idx/zbl/0815.20014
https://doi.org/10.1112/S0010437X21007636
http://msp.org/idx/mr/4357723
http://msp.org/idx/zbl/1495.22009
https://doi.org/10.4171/jems/1098
http://msp.org/idx/mr/4321207
http://msp.org/idx/zbl/1492.22014
https://doi.org/10.4007/annals.2021.193.1.4
http://msp.org/idx/mr/4199732
http://msp.org/idx/zbl/1492.22013

300 MONICA NEVINS

[Fintzen et al. 2023] J. Fintzen, T. Kaletha, and L. Spice, “A twisted Yu construction, Harish-Chandra
characters, and endoscopy”, Duke Math. J. 172:12 (2023), 2241-2301. MR Zbl

[Harish-Chandra 1999] Harish-Chandra, Admissible invariant distributions on reductive p-adic
groups, University Lecture Series 16, Amer. Math. Soc., Providence, RI, 1999. With a preface and
notes by Stephen DeBacker and Paul J. Sally, Jr. MR Zbl

[Heifetz 1985] D. B. Heifetz, “p-adic oscillatory integrals and wave front sets”, Pacific J. Math. 116:2
(1985), 285-305. MR Zbl

[Henniart and Vignéras 2023] G. Henniart and M.-F. Vignéras, “Representations of GL,, (D) near the
identity”, 2023. arXiv 2305.06581

[Henniart and Vignéras 2024] G. Henniart and M.-F. Vignéras, “Representations of SL, (F)”, 2024.
arXiv 2404.11188

[Howe 1974] R. Howe, “The Fourier transform and germs of characters (case of Gl,, over a p-adic
field)”, Math. Ann. 208 (1974), 305-322. MR Zbl

[Howe 1981] R. Howe, “Wave front sets of representations of Lie groups”, pp. 117-140 in Automor-
phic forms, representation theory and arithmetic (Bombay, 1979), Tata Inst. Fundam. Res. Stud.
Math. 10, Springer, 1981. MR Zbl

[Jiang et al. 2022] D. Jiang, D. Liu, and L. Zhang, “Arithmetic wavefront sets and generic L-packets”,
2022. arXiv 2207.04700v2

[Kaletha 2019] T. Kaletha, “Regular supercuspidal representations”, J. Amer. Math. Soc. 32:4 (2019),
1071-1170. MR Zbl

[Kaletha and Prasad 2023] T. Kaletha and G. Prasad, Bruhat-Tits theory—a new approach, New
Mathematical Monographs 44, Cambridge Univ. Press, 2023. MR Zbl

[Kim and Murnaghan 2003] J.-L. Kim and F. Murnaghan, “Character expansions and unrefined
minimal K-types”, Amer. J. Math. 125:6 (2003), 1199-1234. MR Zbl

[Kim and Murnaghan 2006] J.-L. Kim and F. Murnaghan, “K-types and I"-asymptotic expansions”, J.
Reine Angew. Math. 592 (2006), 189-236. MR Zbl

[Meeglin 1996] C. Mceglin, “Front d’onde des représentations des groupes classiques p-adiques”,
Amer. J. Math. 118:6 (1996), 1313-1346. MR Zbl

[Mceglin and Waldspurger 1987] C. Mceglin and J.-L. Waldspurger, “Modeles de Whittaker dégénérés
pour des groupes p-adiques”, Math. Z. 196:3 (1987), 427-452. MR Zbl

[Moy and Prasad 1994] A. Moy and G. Prasad, “Unrefined minimal K -types for p-adic groups”,
Invent. Math. 116:1-3 (1994), 393-408. MR Zbl

[Moy and Prasad 1996] A. Moy and G. Prasad, “Jacquet functors and unrefined minimal K-types”,
Comment. Math. Helv. 71:1 (1996), 98-121. MR Zbl

[Nevins 2005] M. Nevins, “Branching rules for principal series representations of SL(2) over a p-adic
field”, Canad. J. Math. 57:3 (2005), 648-672. MR Zbl

[Nevins 2011] M. Nevins, “Patterns in branching rules for irreducible representations of SL; (k), for
k a p-adic field”, pp. 185-199 in Harmonic analysis on reductive, p-adic groups, edited by R. S.
Doran et al., Contemp. Math. 543, Amer. Math. Soc., Providence, RI, 2011. MR Zbl

[Nevins 2013] M. Nevins, “Branching rules for supercuspidal representations of SL (k), for k a
p-adic field”, J. Algebra 377 (2013), 204-231. MR Zbl

[Przebinda 1990] T. Przebinda, “The wave front set and the asymptotic support for p-adic groups”,
Pacific J. Math. 141:2 (1990), 383-389. MR Zbl

[Ranga Rao 1972] R. Ranga Rao, “Orbital integrals in reductive groups”, Ann. of Math. (2) 96 (1972),
505-510. MR Zbl


https://doi.org/10.1215/00127094-2022-0080
https://doi.org/10.1215/00127094-2022-0080
http://msp.org/idx/mr/4654051
http://msp.org/idx/zbl/07783717
https://doi.org/10.1090/ulect/016
https://doi.org/10.1090/ulect/016
http://msp.org/idx/mr/1702257
http://msp.org/idx/zbl/0928.22017
https://doi.org/10.2140/pjm.1985.116.285
http://msp.org/idx/mr/771637
http://msp.org/idx/zbl/0528.22008
http://msp.org/idx/arx/2305.06581
http://msp.org/idx/arx/2404.11188
https://doi.org/10.1007/BF01432155
https://doi.org/10.1007/BF01432155
http://msp.org/idx/mr/342645
http://msp.org/idx/zbl/0266.43007
http://msp.org/idx/mr/633659
http://msp.org/idx/zbl/0494.22010
http://msp.org/idx/arx/2207.04700v2
https://doi.org/10.1090/jams/925
http://msp.org/idx/mr/4013740
http://msp.org/idx/zbl/1473.22012
http://msp.org/idx/mr/4520154
http://msp.org/idx/zbl/1516.20003
https://doi.org/10.1353/ajm.2003.0043
https://doi.org/10.1353/ajm.2003.0043
http://msp.org/idx/mr/2018660
http://msp.org/idx/zbl/1037.22035
https://doi.org/10.1515/CRELLE.2006.027
http://msp.org/idx/mr/2222734
http://msp.org/idx/zbl/1089.22011
https://doi.org/10.1353/ajm.1996.0051
http://msp.org/idx/mr/1420926
http://msp.org/idx/zbl/0864.22007
https://doi.org/10.1007/BF01200363
https://doi.org/10.1007/BF01200363
http://msp.org/idx/mr/913667
http://msp.org/idx/zbl/0612.22008
https://doi.org/10.1007/BF01231566
http://msp.org/idx/mr/1253198
http://msp.org/idx/zbl/0804.22008
https://doi.org/10.1007/BF02566411
http://msp.org/idx/mr/1371680
http://msp.org/idx/zbl/0860.22006
https://doi.org/10.4153/CJM-2005-026-1
https://doi.org/10.4153/CJM-2005-026-1
http://msp.org/idx/mr/2134405
http://msp.org/idx/zbl/1071.22008
https://doi.org/10.1090/conm/543/10735
https://doi.org/10.1090/conm/543/10735
http://msp.org/idx/mr/2798428
http://msp.org/idx/zbl/1222.22015
https://doi.org/10.1016/j.jalgebra.2012.12.003
https://doi.org/10.1016/j.jalgebra.2012.12.003
http://msp.org/idx/mr/3008903
http://msp.org/idx/zbl/1282.22011
https://doi.org/10.2140/pjm.1990.141.383
http://msp.org/idx/mr/1035450
http://msp.org/idx/zbl/0736.22011
https://doi.org/10.2307/1970822
http://msp.org/idx/mr/320232
http://msp.org/idx/zbl/0302.43002

THE LOCAL CHARACTER EXPANSION AS BRANCHING RULES 301

[Shalika 2004] J. A. Shalika, “Representation of the two by two unimodular group over local fields”,
pp. 1-38 in Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ.
Press, Baltimore, MD, 2004. Zbl

[Spice 2018] L. Spice, “Explicit asymptotic expansions for tame supercuspidal characters”, Compos.
Math. 154:11 (2018), 2305-2378. MR Zbl

[Spice 2022] L. Spice, “Explicit asymptotic expansions in p-adic harmonic analysis, 1", 2022.
arXiv 2108.12935v2
[Stewart and Thomas 2018] D. I. Stewart and A. R. Thomas, “The Jacobson—Morozov theorem and

complete reducibility of Lie subalgebras”, Proc. Lond. Math. Soc. (3) 116:1 (2018), 68-100. MR
Zbl

[Tadi¢ 1994] M. Tadié, “Representations of classical p-adic groups”, pp. 129-204 in Representations
of Lie groups and quantum groups (Trento, 1993), edited by V. Baldoni and M. A. Picardello, Pitman
Res. Notes Math. Ser. 311, Longman Sci. Tech., Harlow, 1994. MR Zbl

[Tsai 2023a] C.-C. Tsai, “On two definitions of wave-front sets for p-adic groups”, 2023. arXiv
2306.09536

[Tsai 2023b] C.-C. Tsai, “Wave-front sets for p-adic Lie algebras”, 2023. arXiv 2311.08078

[Tsai 2024] C.-C. Tsai, “Geometric wave-front set may not be a singleton”, J. Amer. Math. Soc. 37:1
(2024), 281-304. MR Zbl

[Waldspurger 1995] J.-L. Waldspurger, “Homogénéité de certaines distributions sur les groupes
p-adiques”, Inst. Hautes Etudes Sci. Publ. Math. 81 (1995), 25-72. MR Zbl

[Yu 2001] J.-K. Yu, “Construction of tame supercuspidal representations”, J. Amer. Math. Soc. 14:3
(2001), 579-622. MR Zbl

Received November 10, 2023. Revised May 20, 2024.

MONICA NEVINS

DEPARTMENT OF MATHEMATICS AND STATISTICS
UNIVERSITY OF OTTAWA

OTTAWA, ON

CANADA

mnevins @uottawa.ca


http://msp.org/idx/zbl/1076.11032
https://doi.org/10.1112/s0010437x18007364
http://msp.org/idx/mr/3867302
http://msp.org/idx/zbl/1409.22015
http://msp.org/idx/arx/2108.12935v2
https://doi.org/10.1112/plms.12067
https://doi.org/10.1112/plms.12067
http://msp.org/idx/mr/3747044
http://msp.org/idx/zbl/1430.17056
http://msp.org/idx/mr/1431307
http://msp.org/idx/zbl/0859.22011
http://msp.org/idx/arx/2306.09536
http://msp.org/idx/arx/2306.09536
http://msp.org/idx/arx/2311.08078
https://doi.org/10.1090/jams/1031
http://msp.org/idx/mr/4654614
http://msp.org/idx/zbl/07752246
http://www.numdam.org/item?id=PMIHES_1995__81__25_0
http://www.numdam.org/item?id=PMIHES_1995__81__25_0
http://msp.org/idx/mr/1361755
http://msp.org/idx/zbl/0841.22009
https://doi.org/10.1090/S0894-0347-01-00363-0
http://msp.org/idx/mr/1824988
http://msp.org/idx/zbl/0971.22012
mailto:mnevins@uottawa.ca




PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
blasius@math.ucla.edu

Matthias Aschenbrenner Vyjayanthi Chari Atsushi Ichino
Fakultit fiir Mathematik Department of Mathematics Department of Mathematics
Universitit Wien University of California Kyoto University
Vienna, Austria Riverside, CA 92521-0135 Kyoto 606-8502, Japan
matthias.aschenbrenner @univie.ac.at chari @math.ucr.edu atsushi.ichino@gmail.com
Robert Lipshitz Kefeng Liu Dimitri Shlyakhtenko
Department of Mathematics Department of Mathematics Department of Mathematics
University of Oregon University of California University of California
Eugene, OR 97403 Los Angeles, CA 90095-1555 Los Angeles, CA 90095-1555
lipshitz@uoregon.edu liu@math.ucla.edu shlyakht@ipam.ucla.edu
Paul Yang Ruixiang Zhang
Department of Mathematics Department of Mathematics
Princeton University University of California
Princeton NJ 08544-1000 Berkeley, CA 94720-3840
yang @math.princeton.edu ruixiang @berkeley.edu
PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2024 is US $645/year for the electronic version, and $875/year for print and electronic.

Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 1945-5844 electronic, 0030-8730 printed) at the University of California, c/o Department
of Mathematics, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at
Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O.
Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLoW® from Mathematical Sciences Publishers.
PUBLISHED BY
:l mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2024 Mathematical Sciences Publishers


http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:matthias.aschenbrenner@univie.ac.at
mailto:chari@math.ucr.edu
mailto:atsushi.ichino@gmail.com
mailto:lipshitz@uoregon.edu
mailto:liu@math.ucla.edu
mailto:shlyakht@ipam.ucla.edu
mailto:yang@math.princeton.edu
mailto:ruixiang@berkeley.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/

Z*-theorem
HUNG P. TONG-VIET

Vishik equivalence and similarity of quasilinear p-forms and totally 327
singular quadratic forms
KRISTYNA ZEMKOVA

R L L-realization of two-parameter quantum affine algebra in type D,(,D 357
RUSHU ZHUANG, NAIHONG HU and X1A0 XU



	1. Introduction
	2. Notation and background
	2A. The Bruhat–Tits building and Moy–Prasad filtration subgroups
	2B. Restrictions on p
	2C. The local character expansion

	3. Nilpotent orbits and nilpotent support
	3A. Degenerate cosets and nilpotent orbits
	3B. Nilpotent support and nilpotent cones
	3C. Connection with the wave front set of a positive-depth representation

	4. Nilpotent orbits and nilpotent cones of SL(2,F)
	5. Representations of Gx associated to nilpotent orbits
	5A. Shalika's representations of SL(2,R)
	5B. Irreducible representations of Gx parametrized by degenerate cosets at x
	5C. Representations attached to nilpotent orbits

	6. The case of positive-depth representations of SL2F
	6A. Representations of SL(2,F) of positive depth
	6B. Branching rules obtained as twists of the inducing datum
	6C. Main theorem for representations of positive depth

	7. The case of depth-zero representations of SL2F
	7A. Representations of SL(2,k)
	7B. Depth-zero representations of SL(2,F)
	7C. Wave front sets

	8. Applications
	8A. The Fourier transform of a nilpotent orbital integral
	8B. Computing the polynomial dim(pi2n)

	Acknowledgements
	References
	
	

