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EXTREMELY CLOSED SUBGROUPS
AND A VARIANT ON GLAUBERMAN’S Z∗-THEOREM

HUNG P. TONG-VIET

Let G be a finite group and let H be a subgroup of G. We say that H is
extremely closed in G if ⟨H, H g⟩∩ NG(H) = H for all g ∈ G. We determine
the structure of finite groups with an extremely closed abelian p-subgroup for
some prime p. In particular, we show that if G contains such a subgroup H ,
then G = NG(H) O p′(G). This is a variant on the celebrated Glauberman’s
Z∗-theorem.

1. Introduction

It is an important problem in finite group theory to determine whether a finite group
is simple or not. Many nonsimplicity criteria have been obtained in the literature.
Among those is the celebrated Glauberman’s Z∗-theorem. To state this theorem,
we need some definitions. Let G be a finite group and let p be a prime. Let x ∈ G
be a p-element and let P be a Sylow p-subgroup of G containing x . We say that
x is isolated in P with respect to G if xG

∩ P = {x}, that is, x is not conjugate
in G to any element in P except for x itself. Here, xG denotes the conjugacy
class of G containing x . We say that x is isolated in G if x is isolated in some
Sylow p-subgroup of G containing it. Glauberman’s Z∗-theorem [18] states that
if x ∈ G is an isolated involution in G, then G = CG(x)O2′(G). The proof of
this theorem depends on the modular representation theory and is independent of
the classification of finite simple groups. Recall that for a prime p, Op′(G) is
the largest normal p′-subgroup of G. Extending this fundamental theorem to all
primes, Glauberman’s Z∗

p-theorem states that if x ∈ G is an isolated p-element,
then G = CG(x)Op′(G). For various proofs of this theorem, see [1; 19; 27; 40].
Note that all of these proofs depend on the classification of finite simple groups.
For many equivalent statements of this theorem, see [30]. Also, see [14] for some
variant of Glauberman’s Z∗

p-theorem.
In this paper, we introduce the so-called extremely closed subgroup and obtain

some new factorization of finite groups similar to Glauberman’s Z∗
p-theorem which

gives some nonsimplicity criteria for finite groups. Let G be a finite group and let
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H ≤ M be subgroups of G. We say that H is extremely closed in M with respect
to G if ⟨H, H g

⟩ ∩ M = H for all g ∈ G − M , and that H is extremely closed in G
if H is extremely closed in NG(H) with respect to G. Trivially, if H is a normal
or self-normalizing subgroup of G, then H is extremely closed in G.

If G is a finite group, we write Z(G) for the center of G and 8(G) for the
Frattini subgroup of G, that is, the intersection of all maximal subgroups of G.
Furthermore, if H is a subgroup of G, then ⟨H G

⟩ is the normal closure of H in G.
We next compare our definition of extremely closed subgroups with other known
embedding properties of subgroups of finite groups.

The first motivation for our definition comes from work of Flavell [10] on the
generation of finite groups with maximal subgroups of maximal subgroups. In
particular, a triple (G, M, H) with H ≤ M ≤ G is called a γ -triple if H < M < G
and ⟨H, g⟩ ∩ M = H for all g ∈ G − M . If H is maximal in M and M is maximal
in G and moreover, G cannot be generated by any two conjugates of H , then
(G, M, H) is a γ -triple. Clearly, if (G, M, H) is a γ -triple, then H is extremely
closed in M with respect to G. The converse is not true by the example below.

Example 1.1. Let G = S4 be the symmetric group of degree 4. Let H = ⟨(1, 2, 3)⟩

and M = NG(H)∼= S3. Then ⟨H G
⟩= A4 and ⟨H G

⟩∩M = H . So ⟨H, H g
⟩∩M = H

for all g ∈ G, and hence H is extremely closed in M with respect to G. However,
let g = (1, 3, 2, 4) ∈ G − M . Then ⟨H, g⟩ = G and so ⟨H, g⟩ ∩ M = M ̸= H .
Therefore (G, M, H) is not a γ -triple.

For the second motivation, following Hawkes and Humphreys [31], a subgroup M
of a finite group G is said to have property CR (character restriction) if every
irreducible complex character of M is the restriction of a character of G. In [31], the
authors studied finite solvable groups with a CR-subgroup and the general cases were
considered by Isaacs in [32]. One important property of a CR-subgroup M of a finite
group G is that if H ⊴M , then ⟨H G

⟩∩ M = H [32, Proposition 1.1]. Berkovich [3]
called a triple (G, M, H) with H ⊴M ≤ G special in G if ⟨H G

⟩∩ M = H . (Li [36]
calls H an NE-subgroup of G if (G, NG(H), H) is special in G.) Isaacs [32]
showed that if P is a Sylow p-subgroup of G, where p is a prime and assume that
NG(P) satisfies CR in G, then NG(P) has a normal complement in G. This result
was extended by Berkovich [3], where he showed that if both triples (G, NG(P), P)

and (G, NG(P), 8(P)) are special in G, then NG(P) has a normal complement
in G. This gives a character theory free proof of Isaacs’ result mentioned earlier.
Observe that if a triple (G, NG(H), H) is special in G, then H is extremely closed
in G. However, the converse is not true.

Example 1.2. Let G = P : H be a semidirect product of H and P , where H = ⟨a⟩

is a cyclic group of order 2 and P ∼= 31+2
+ is an extraspecial group of order 27 with
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exponent 3, so

P = ⟨x, y, z | z = [x, y], x3
= y3

= z3
= 1 = [x, z] = [y, z]⟩

and H acts on P via xa
= x−1, ya

= y−1 and za
= z. Then NG(H)=CG(H)= H⟨z⟩,

and ⟨H G
⟩ = G. For every g ∈ G − NG(H), we have T = ⟨H, H g

⟩ is a dihedral
group of order 6, so NT (H) = H , and hence H is extremely closed in G but
(G, NG(H), H) is not a special triple since ⟨H G

⟩ ∩ NG(H) = H⟨z⟩ ̸= H .

Finally, we mention the last inspiration for our new embedding property. Let
H ≤ M be subgroups of a finite group G. Recall that H is said to be strongly closed
in M with respect to G if, whenever ag

∈ M , where a ∈ H, g ∈ G, then ag
∈ H .

This is equivalent to saying that M ∩ H g
≤ H for all g ∈ G. Furthermore, we say

that H is strongly closed in G if H is strongly closed in NG(H) with respect to G.
Noting that in [4], H is called an H -subgroup of G if H is strongly closed in G.
If H = ⟨x⟩ is cyclic of order 2, then H is strongly closed in G if and only if x is
isolated in G. Finite groups with a strongly closed p-subgroup are determined in
[15; 16; 20]. It is easy to see that if H is extremely closed in G, then H is strongly
closed in G.

Example 1.3. Let G = U3(4). By [20], if P is a Sylow 2-subgroup of G, then
H = Z(P) = 8(P) is a strongly closed abelian 2-subgroup of G. Using GAP [17],
we can find g ∈ G of order 15 such that ⟨H, H g

⟩ ∼= A5 ∼= SU2(4), NG(H) ∼= P⟨g⟩

and ⟨H, H g
⟩ ∩ NG(H) ∼= A4 ̸= H . Thus H is not extremely closed in G.

Finally, we recall the definition of weakly closed subgroups. Let H ≤ M be
subgroups of a finite group G. We say that H is weakly closed in M with respect
to G if, whenever H g

⊆ M , where g ∈ G, then H g
= H . It is easy to see that if H is

strongly closed in M with respect to G, then H is weakly closed in M with respect
to G. Moreover, when H is cyclic of prime order, these two concepts coincide. We
know that if H ⊴ M ≤ G and ⟨H G

⟩ ∩ M = H , then H is extremely closed in M
with respect to G. In our first result, we show that in certain cases, the converse
holds.

Theorem 1.4. Let G be a finite group and let H ≤ M be subgroups of G. Suppose
that ⟨H, H g

⟩ ∩ M = H for all g ∈ G. If H is maximal in M and M is maximal
in G, then ⟨H G

⟩ ∩ M = H.

Let H ≤ M be subgroups of a finite group G. Recall that H is called a weak
second maximal subgroup of G if there exists a maximal subgroup M of G such
that H is maximal in M . Moreover, H is called a second maximal subgroup of G if
H ̸= G and it is maximal in every maximal subgroup of G containing it. Flavell [10]
shows that if G is a finite nonabelian simple group and H is a weak second maximal
subgroup of G, then G = ⟨H, g⟩ for some g ∈ G. And in [9], it is shown that
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if H is a second maximal subgroup of a finite nonabelian simple group G, then
G = ⟨H, H g

⟩ for some g ∈ G. As a corollary to Theorem 1.4, we obtain the
following generation result for finite nonabelian simple groups.

Corollary 1.5. Let G be a finite nonabelian simple group. Let M be a maximal
subgroup of G and let H be a normal subgroup of M of prime index. Then
G = ⟨H, H g

⟩ for some g ∈ G.

Note that if G = A5, M = S3 and H is a Sylow 2-subgroup of M , then M is a
maximal subgroup of G and |M : H | = 3 is a prime, but G cannot be generated
by any two conjugates of H . So we cannot drop the hypothesis that H ⊴ M in
Corollary 1.5. We should mention that Flavell [13] asks whether a finite nonabelian
simple group can be generated by two conjugates of a self-normalizing subgroup.

Let G be a finite group and let p be a prime. We now focus on extremely closed
p-subgroups. Let H be an extremely closed p-subgroup of G. We first assume
that H = ⟨x⟩ is cyclic of order p. If p = 2, then it is not hard to see that x is
isolated in G or equivalently H is strongly closed in G and so G = CG(x)O2′(G) by
Glauberman’s Z∗-theorem. In particular, G is not simple. When p is odd, we note
that there exists a simple group with a weakly closed or strongly closed subgroup of
order p, for instance, when a Sylow p-subgroup of G is cyclic. However, when H
is extremely closed in G, the subgroups generated by any two distinct conjugates
of H are Frobenius groups. By applying a result due to B. Fischer [8] concerning
Frobenius automorphisms, we can show that (G, NG(H), H) is special in G, and
then we obtain a factorization similar to that of Glauberman’s Z∗

p-theorem.

Theorem 1.6. Let G be a finite group and let p be an odd prime divisor of the order
of G. Let H be a cyclic subgroup of order p of G. If ⟨H, H g

⟩ ∩ NG(H) = H for
all g ∈ G, then ⟨H G

⟩ ∩ NG(H) = H. In particular, G = NG(H)Op′(G).

It would be nice to have a proof of Theorem 1.6 which does not rely on the
classification of finite simple groups. For an arbitrary prime p, if H is an abelian
extremely closed p-subgroup of a finite group G, we also obtain a similar factoriza-
tion G = NG(H)Op′(G) as in Theorem 1.6. For even prime, the proof depends only
on the classification of finite groups with an abelian strongly closed subgroup by
Goldschmidt [20] which is independent of the classification of finite simple groups.
For odd primes, we make use of a result due to Guest [25] on the characterization of
solvable radical of finite groups and the classification of finite groups with strongly
closed subgroups by Flores and Foote [15].

Theorem 1.7. Let G be a finite group and let p be prime. Let H be an abelian
p-subgroup of G. If ⟨H, H g

⟩∩NG(H)= H for all g ∈ G, then G = NG(H)Op′(G).



EXTREMELY CLOSED SUBGROUPS AND GLAUBERMAN’S Z∗-THEOREM 307

Remark that we cannot drop the hypothesis that H is abelian when p = 2 in
Theorem 1.7, since the simple group G = L2(17) has a self-normalizing Sylow 2-
subgroup P which is nonabelian and so P is clearly an extremely closed 2-subgroup
of G. Note that if |H | = 2, then Theorem 1.7 is just Glauberman’s Z∗- theorem.
Example 1.2 above shows that an abelian extremely closed 2-subgroup H may not
satisfy the condition ⟨H G

⟩∩ NG(H) = H . However, this holds true for odd primes.
We obtain the following as a corollary to Theorem 1.7.

Corollary 1.8. Let G be a finite group and let p be an odd prime. Let H be
an abelian p-subgroup of G. If ⟨H, H g

⟩ ∩ NG(H) = H for all g ∈ G, then
⟨H G

⟩ ∩ NG(H) = H.

Recall that for a finite group G, the solvable radical of G, denoted by R(G), is
the largest normal solvable subgroup of G. Theorem 1.7 and Corollary 1.8 now
yield the following.

Corollary 1.9. Let G be a finite group and let p be a prime. If H is an extremely
closed abelian p-subgroup of G, then H ⊆ R(G).

By an application of Burnside’s normal p-complement theorem and the solvability
of finite groups admitting a fixed point free coprime group action, if H satisfies the
hypothesis of the corollary, then ⟨H, H g

⟩ is solvable for all g ∈ G. Thus if x ∈ H ,
then ⟨x, xg

⟩ is solvable for all g ∈ G. By the main results in [21; 25], if p ≥ 5,
then x ∈ R(G) and hence H ≤ R(G). Thus the above corollary only provides new
result when p = 2 or 3.

In general, if x is a p-element and ⟨x, xg
⟩ is p-solvable for all g ∈ G, then it is

not true that x ∈ Rp(G), where Rp(G) is the p-solvable radical of G, that is, Rp(G)

is the largest normal p-solvable subgroup of G. For a counterexample, consider
G = U3(3) and x ∈ G a transvection, so x has order 3 and the conjugacy class of G
containing x has size 56, then we can check that ⟨x, xg

⟩ is isomorphic to either ⟨x⟩

or SL2(3) for every g ∈ G. Clearly ⟨x, xg
⟩ is 3-nilpotent and hence it is 3-solvable

for every g ∈ G. There is also a counterexample when p = 2 since if x ∈ G is an
involution, then ⟨x, xg

⟩ is 2-nilpotent for every g ∈ G. Recall that a finite group G
is p-nilpotent if it has a normal p-complement for some prime p. On the other
hand, it is proved in [11] that if P is a Sylow p-subgroup of a finite group G for
some prime p, then G is p-solvable if and only if ⟨P, g⟩ is p-solvable for all g ∈ G.
Generalizing this result, we can prove the following.

Theorem 1.10. Let G be a finite group and let p be a prime. Let P be a Sylow
p-subgroup of G. Then G is p-solvable if and only if ⟨P, Pg

⟩ is p-solvable for all
g ∈ G.

Our notation is standard. For finite group theory, we follow [22] and [35] and
for finite simple groups, we follow the notation in [34].
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For the organization of the paper, we collect some useful results in Section 2. We
will prove Theorems 1.4–1.7 and the corollaries in Section 3 and the last theorem
will be proved in Section 4.

2. Preliminaries

Let G be a finite group. Recall that the Fitting subgroup of G, denoted by F(G),
is the largest nilpotent normal subgroup of G. The layer of G, denoted by E(G),
is the product of all components of G, where a component of G is a subnormal
quasisimple subgroup of G. A finite group L is quasisimple if L is perfect and
L/Z(L) is a nonabelian simple group. The generalized Fitting subgroup of G,
denoted by F∗(G), is defined by F∗(G) = F(G) E(G). As usual, if H ≤ G, then
NG(H) and CG(H) denote the normalizer and centralizer of H in G, respectively.
Finally, a finite group G is almost simple with socle S if there exists a finite
nonabelian simple group S such that S ⊴G ≤ Aut(S).

Recall that a subgroup H of G is called pronormal (resp. abnormal) in G if for
any g ∈ G, H g

= H u for some u ∈ ⟨H, H g
⟩, (resp. ⟨H, H g

⟩ = ⟨H, g⟩). The first
lemma is obvious, for completeness, we will include a proof here.

Lemma 2.1. Let G be a finite group. Let H be a pronormal subgroup of G and let
N ⊴G. Then the following hold.

(i) If N ⊴G and P ∈ Sylp(N ), then P is pronormal in G.

(ii) NG(H) is abnormal in G.

(iii) If H ≤ N ⊴G, then G = NG(H)N.

(iv) If H ≤ L ≤ G, then H is pronormal in L.

(v) If H is subnormal in K , where K ≤ G, then H ⊴ K .

(vi) If L = ⟨H G
⟩, then ⟨H L

⟩ = L.

Proof. (i) Let g ∈ G. Since P ≤ N ⊴G, we have ⟨P, Pg
⟩ ≤ N . As P ∈ Sylp(N ), it

follows that P ∈ Sylp(⟨P, Pg
⟩) and hence by Sylow’s theorem, Pg

= Pu for some
u ∈ ⟨P, Pg

⟩. Thus P is pronormal in G.

(ii) Assume that H is pronormal in G. Let M = NG(H) and let g ∈ G. By
definition, H g

= H u , for some u ∈ ⟨H, H g
⟩, whence gu−1

∈ NG(H) = M . Since
u ∈ ⟨H, H g

⟩ ≤ ⟨M, Mg
⟩, we have g ∈ ⟨M, Mg

⟩ and so ⟨M, Mg
⟩ = ⟨M, g⟩. Hence

M is abnormal in G.

(iii) Let g ∈ G. We have H g
= H u , where u ∈ ⟨H, H g

⟩ ≤ N as H ≤ N ⊴G. Thus
gu−1

∈ NG(H) and so g ∈ NG(H)N .

(iv) This is obvious.
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(v) By (iv), it suffices to show that if H is subnormal and pronormal in G then
H ⊴ G. In fact, we only need to prove the following: if H ⊴ K ⊴ G and H is
pronormal in G then H ⊴G. By applying (iii), we have G = NG(H)K . However,
as H ⊴ K , K ≤ NG(H) and so G = NG(H).

(vi) Since H ≤ L = ⟨H G
⟩⊴G, G = NG(H)L by (iii) and thus

L = ⟨H G
⟩ = ⟨H NG(H)L

⟩ = ⟨H L
⟩ ≤ L .

Therefore L = ⟨H L
⟩. □

We next deduce some properties of extremely closed subgroups.

Lemma 2.2. Let G be a finite group and let H be a p-subgroup of G for some
prime p. Let N ⊴ G and assume that H is extremely closed in G. Let G = G/N.
Then the following hold.

(i) For every g ∈ G, we have N⟨H,H g⟩(H) = H and H ∈ Sylp(⟨H, H g
⟩).

(ii) H is pronormal in G.

(iii) If H ≤ L , then H is extremely closed in L.

(iv) NG(H) = NG(H).

(v) If H is abelian, then ⟨H, H g
⟩ = HOp′(⟨H, H g

⟩), for every g ∈ G.

(vi) H is extremely closed in G.

(vii) If H ≤ Q ≤ G, where Q is a p-group, then NG(Q) ≤ NG(H). In particular,
if H ≤ P ∈ Sylp(G), then P ≤ NG(H).

Proof. (i) Let g ∈ G and let T = ⟨H, H g
⟩. We have H = T ∩ NG(H) = NT (H)

and so H is a Sylow p-subgroup of T by Sylow’s theorem.

(ii) Let g ∈ G. As above, let T = ⟨H, H g
⟩. From part (i), H is a Sylow p-subgroup

of T and since |H g
| = |H | and H g

≤ T , H g is also a Sylow p-subgroup of T . By
Sylow’s theorem, H g

= H u for some u ∈ T . Thus H is pronormal in G.

(iii) Let g ∈ L . Then ⟨H, H g
⟩ ∩ NL(H) = ⟨H, H g

⟩ ∩ NG(H) ∩ L = H ∩ L = H .

(iv) It suffices to show that NG(HN ) ≤ NG(H)N . Let g ∈ NG(HN ). Then
H g

≤ HN and hence T = ⟨H, H g
⟩ ≤ HN . Since H is pronormal in G by (ii),

we have H g
= H u , for some u ∈ T ≤ HN . Thus gu−1

∈ NG(H) whence g ∈

NG(H)HN = NG(H)N .

(v) Assume that H is abelian. Let g ∈ G and let T = ⟨H, H g
⟩. By (i), H is a

self-normalizing abelian Sylow p-subgroup of T . The result now follows from
Burnside’s normal p-complement theorem ([22, Theorem 7.4.3]).

(vi) Applying (iv), we need to show that ⟨H, H g
⟩N ∩ NG(H)N = HN , for all

g ∈ G. Let T = ⟨H, H g
⟩. By Dedekind’s Modular law, we have

TN ∩ NG(H)N = N (TN ∩ NG(H)).
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Hence, it suffices to show that TN ∩ NG(H) ≤ HN . Let y = xn ∈ TN ∩ NG(H),
where y ∈ NG(H), x ∈ T and n ∈ N . We have H = H y

= H xn , it implies that
H x

= H n−1
. By (i), we have NT (H) = H , and so by (ii) and Lemma 2.1(ii), H is

abnormal in T . Thus x ∈ ⟨H, H x
⟩ = ⟨H, H n−1

⟩ ≤ HN . Therefore, y = xn ∈ HN .

(vii) Since H is pronormal and subnormal in NG(Q), by Lemma 2.1(v), H is
normal in NG(Q). The remaining claim is obvious. □

Lemma 2.3. Let G be a finite group, let N ⊴G and let H be an extremely closed p-
subgroup of G for some prime p. Let P be a Sylow p-subgroup of G containing H
and let Q = H ∩ N. Then the following hold.

(i) H is strongly closed in P with respect to G.

(ii) Q is strongly closed in P ∩ N with respect to N.

(iii) If N ≤ NG(H), then Q ⊴G.

Proof. Observe that R := P ∩ N ∈ Sylp(N ) and by Lemma 2.2(vii), P ≤ NG(H).

(i) For g ∈ G, we have H g
∩ P ≤ ⟨H, H g

⟩∩ NG(H) = H . So H is strongly closed
in P with respect to G.

(ii) For n ∈ N , we have Qn
≤ H n and R ≤ P ≤ NG(H) and so

Qn
∩ R ≤ ⟨H, H n

⟩ ∩ NG(H) = H.

Furthermore, as Q ≤ N ⊴G and R ≤ N , we have Qn
∩ R ≤ N . Hence we obtain

Qn
∩ R ≤ H ∩ N = Q.

(iii) Assume that N ≤ NG(H). For each g ∈ G, we have

Qg
= Qg

∩ N ≤ ⟨H, H g
⟩ ∩ NG(H) ∩ N = H ∩ N = Q.

Hence Q ⊴G as wanted. □

We next quote some results that we will need for the proofs of the main theorems.

Lemma 2.4. Suppose that G is a finite group with F(G) = 1. Let L be a component
of G. If x ∈ G such that x ̸∈ NG(L) and x2

̸∈ CG(L) then there exists an element
g ∈ G such that ⟨x, xg

⟩ is not solvable.

Proof. This is Lemma 1 in [25]. □

Lemma 2.5. Let G be a finite almost simple group with socle L. Suppose that
x ∈ G is an element of order p, where p is an odd prime. Then one of the following
holds:

(i) ⟨x, xg
⟩ is not solvable for some g ∈ G;

(ii) p = 3 and L is a finite simple group of Lie type defined over F3, a finite field
with 3 elements, or L ∼= Un(2), n ≥ 4. Moreover, the Lie rank of L is at least
2 unless L ∼= U3(3).
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Proof. This is Theorem A∗ in [25]. □

Recall that a triple (G, M, H) with H⊴M ≤G is called a W-triple if M∩Mg
≤ H

for all g ∈ G − M .

Lemma 2.6. Let G be a finite group and H⊴M ≤ G. Then (G, M, H) is a W-triple
if and only if

NG(D) ≤ M for all subgroups D ≤ M with D ̸≤ H .

Proof. This is Lemma 2.3 in [10]. □

Lemma 2.7 (Wielandt’s theorem). Let G be a finite group. If (G, M, H) is a
W-triple, then G contains a normal subgroup K such that G = M K and M∩K = H.
In particular, the triple (G, M, H) is special in G.

Proof. The first claim is in [42] or [38, Exercise 1, p. 347] and the second is in [3,
Lemma 9]. □

An automorphism θ of a finite group is Frobenius if each nontrivial power of θ

is fixed point free.

Lemma 2.8. Let G be a finite group and let D be a conjugacy class of G containing
elements of order > 2. Assume that G = ⟨D⟩. Then some element of D induces a
Frobenius automorphism on G ′ if and only if each pair of distinct elements in D
generates a Frobenius group.

Proof. This is [8, Satz I]. □

We also need the following results.

Lemma 2.9. Let G be a finite group.

(i) Let π be a set of odd primes and suppose that the π-group P acts as a group
of automorphisms on the solvable finite π ′-group G. Then

C[G,P](P) = ⟨C[g,P](P) : g ∈ G⟩.

(ii) Let α be a coprime automorphism of odd order of G. Then

C[G,⟨α⟩](α) = ⟨C[g,⟨α⟩](α) : g ∈ [G, ⟨α⟩]⟩.

Proof. The first claim is [12, Theorem A] and the second is [14, Theorem 2]. □

We will use the next result repeatedly.

Lemma 2.10. Let π be a nonempty set of primes. Let Q be a finite π -group which
acts fixed point freely on a finite π ′-group R, that is, CR(Q) = 1, then R is solvable.

Proof. For a proof, see Theorem 2.3 in [29]. □

We also need the following consequence of Burnside’s normal p-complement
theorem.
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Lemma 2.11. Let G be a finite group and let p be a prime. Let H be an abelian
p-subgroup of G. Assume that ⟨H G

⟩ ∩ NG(H) = H. Then G = NG(H)Op′(G)

and ⟨H G
⟩ is solvable. Moreover, NG(H) has a normal complement in G, which is

Op′(⟨H G
⟩).

Proof. Let H be an abelian p-subgroup of G. Assume that ⟨H G
⟩ ∩ NG(H) = H .

Let L = ⟨H G
⟩⊴G. Then NL(H) = L ∩ NG(H) = H , so H is a self-normalizing

abelian Sylow p-subgroup of L . In particular, H ≤ Z(NL(H)); hence by Burnside’s
normal p-complement theorem [22, Theorem 7.4.3] L = HOp′(L). By Frattini’s
argument

G = NG(H)L = NG(H)Op′(L) = NG(H)Op′(G).

The last equality holds since Op′(L) ≤ Op′(G).
Let L = ⟨H G

⟩. Then NL(H) = H , that is, H is a self-normalizing cyclic Sylow
p-subgroup of L . By Burnside’s normal p-complement theorem, L has a normal
p-complement K , and hence CK (H) = 1. By Lemma 2.10, K is solvable and thus
L = HK is solvable as well.

We now show that Op′(L) is a normal complement to NG(H) in G. To see this,
observe that L = HOp′(L) and H ∩ Op′(L) = 1. Note that Op′(L)⊴ G. Thus it
suffices to show that NG(H) ∩ Op′(L) = 1. Indeed, we have

NG(H) ∩ Op′(L) = NG(H) ∩ L ∩ Op′(L) = H ∩ Op′(L) = 1. □

Finally, we also need the following solvability result.

Lemma 2.12. Let G be a finite group and let H be an abelian p-subgroup of G
for some prime p. If H is extremely closed in G, then ⟨H, H g

⟩ is solvable for all
g ∈ G.

Proof. Let g ∈ G and let T = ⟨H, H g
⟩. By Lemma 2.2(v), we have T = HOp′(T ).

Since NT (H) = H , H acts fixed point freely and coprimely on Op′(T ), the claim
now follows from Lemma 2.10. □

3. Extremely closed abelian p-subgroups

We are now ready to prove the main theorems. We first prove Theorem 1.4.

Proof of Theorem 1.4. Assume that M is a maximal subgroup of G, H is a maximal
subgroup of M and that ⟨H, H g

⟩ ∩ M = H for all g ∈ G. We will show that
⟨H G

⟩ ∩ M = H . The hypothesis implies that H ⊴ M and |M : H | is a prime.
Clearly, if H ⊴G, then the conclusion holds. So, let M = NG(H). Suppose that

there exists a subgroup D ≤ M with D ≰ H and NG(D)≰ M . Take g ∈ NG(D)−M .
Then M = DH and Mg

= DH g. As M ̸= Mg, G = D⟨H, H g
⟩. We have

⟨H G
⟩ = ⟨H D⟨H,H g

⟩
⟩ ≤ ⟨H, H g

⟩ ≤ ⟨H G
⟩

and so ⟨H G
⟩ = ⟨H, H g

⟩. Thus ⟨H G
⟩ ∩ M = ⟨H, H g

⟩ ∩ M = H and we are done.
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So, we can assume that whenever D ≤ M with D ̸≤ H then NG(D) ≤ M . By
Lemma 2.6, (G, M, H) is a W-triple and so the result follows from Lemma 2.7. □

Proof of Corollary 1.5. Let G be a finite nonabelian simple group. Let M be a
maximal subgroup of G and let H be a normal subgroup of M such that |M : H |= p
is a prime. Suppose by contradiction that G ̸= ⟨H, H g

⟩ for all g ∈ G. Since
G is nonabelian simple, either ⟨H G

⟩ = G or H = 1. If H = 1, then M is a
self-normalizing cyclic subgroup of G of prime order p and Burnside’s normal
p-complement theorem implies that G has a normal p-complement, a contradiction.

So H ̸= 1 and ⟨H G
⟩ = G. In particular, M = NG(H) and ⟨H G

⟩∩ M = M > H .
Since H is maximal in M and M is maximal in G, Theorem 1.4 implies that there
exists g ∈ G such that ⟨H, H g

⟩ ∩ M > H . The maximality of H in M implies
that M ≤ ⟨H, H g

⟩. Hence M = ⟨H, H g
⟩ and NG(H g) = Mg

̸= M as g ̸∈ M .
Let a ∈ Mg

− M , then Ha H g
= Ma is a subgroup and H g

⟨H, Ha
⟩ = G. Now

G =⟨H G
⟩= H ⟨H,Ha

⟩
≤⟨H, Ha

⟩, contradicting our assumption. Thus G =⟨H, H g
⟩

for some g ∈ G. □

Proof of Theorem 1.6. Suppose we have proven that ⟨H G
⟩ ∩ NG(H) = H . By

Lemma 2.11, we have G = NG(H)Op′(G) and ⟨H G
⟩ is solvable.

It remains to show that if H is extremely closed in G, then ⟨H G
⟩∩ NG(H) = H .

Let G be a counterexample to the claim with minimal order. Then H is a cyclic group
of odd prime order p, ⟨H, H g

⟩∩NG(H)= H for all g ∈ G but ⟨H G
⟩∩NG(H) ̸= H .

Furthermore, since |H | = p is prime, H g
= H or ⟨H, H g

⟩ is a Frobenius group
for all g ∈ G.

(1) We first claim that ⟨H G
⟩ = G. Suppose by contradiction that L := ⟨H G

⟩ < G.
By Lemma 2.2(ii), H is pronormal in G and hence L = ⟨H L

⟩ by Lemma 2.1(vi).
By Lemma 2.2(iii), H is extremely closed in L and so by the minimality of G,
⟨H L

⟩ ∩ NL(H) = H . However, as L = ⟨H L
⟩, we have NL(H) = H , and thus

⟨H G
⟩ ∩ NG(H) = L ∩ NG(H) = NL(H) = H.

This contradiction proves the claim.

(2) Assume that NG(H) = CG(H). Write H = ⟨x⟩. Then ⟨x, xg
⟩ is a Frobenius

group for all g ∈ G. Hence x acts as a Frobenius automorphism on G ′ by Lemma 2.8
and so G ′H is a Frobenius group (as H has prime order). In particular, we have
G ′

≤ Op′(G) and G = NG(H)Op′(G) in this case. In addition, ⟨H G
⟩ = G ′H and

⟨H G
⟩ ∩ NG(H) = H , a contradiction.

(3) Assume that NG(H) > CG(H). Let M be a maximal normal subgroup of G.
Then G/M is a simple group. Since G = ⟨H G

⟩, we have H ≰ M . Assume that
M >1. Then |G/M |< |G|. Lemma 2.2(vi) implies that HM/M is extremely closed
in G/M . Hence, as G/M is simple, G = HM . Now NG(H)= NM(H)H =CG(H),
which is a contradiction. Hence M = 1 and G is a nonabelian simple group.
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(4) By Lemma 2.12, ⟨x, xg
⟩ is solvable for all g ∈ G and so by Lemma 2.5, p = 3

and G is a finite simple group of Lie type defined over F3 or G ∼= Un(2) with n ≥ 4.
Furthermore, except for U3(3), the Lie rank of G is strictly greater than 1. Now
it is easy to see that a Sylow 3-subgroup of G is nonabelian. Let P be a Sylow
3-subgroup of G containing x . Then H =⟨x⟩ is isolated in P with respect to G, that
is, H does not conjugate in G to any subgroup in P − H . By [23, Theorem 4.250],
we deduce that G ∼= U3(3). By [25, Theorem A*], x is a transvection. Now for any
conjugate xg of x different from x and x−1, we have that T := ⟨x, xg

⟩ ∼= SL2(3).
However, SL2(3) is not a Frobenius group. □

We will need the following result which is a consequence of Theorem A∗ in [25]
and Theorem 1.2 in [15].

Proposition 3.1. Let G be a finite group and let p be an odd prime. Let H be a
nontrivial abelian p-subgroup of G. Assume that G has a unique minimal normal
subgroup N which is nonabelian such that G = HN. Then H is not extremely
closed in G.

Proof. Suppose by contradiction that H is an abelian extremely closed p-subgroup
of G. By Lemma 2.12, we have ⟨H, H g

⟩ is solvable for all g ∈ G. In particular, if
x ∈ H , then ⟨x, xg

⟩ is solvable for all g ∈ G.
By the uniqueness of N , we have G = ⟨H G

⟩ = HN . We first show that G is
an almost simple group with socle S. Let W ⊴ N be a component of G. Assume
that W ̸= N . As W ⊴ N , N ≤ NG(W ) and so NG(W ) = NH (W )N . Since W < N ,
NG(W ) < G and so NH (W ) < H . Let x ∈ H − NH (W ). Then x ̸∈ NG(W ) and
x2

̸∈ CG(W ) since p is odd, whence x and W satisfy the hypothesis of Lemma 2.4
and hence ⟨x, xg

⟩ is not solvable for some g ∈ G, a contradiction. Thus W ⊴ G
and so G = HN , where N is a nonabelian simple group which is also a minimal
normal subgroup of G. Thus G is an almost simple group with socle S as wanted.

Let x ∈ H be an element of order p. Then ⟨x, xg
⟩ is solvable for all g ∈ G.

By Lemma 2.5, p = 3 and S is a finite simple group of Lie type defined over F3

or S ∼= Un(2), n ≥ 4. If |H | = 3, then ⟨H G
⟩ is solvable by Theorem 1.6 and

Lemma 2.11, which is impossible. Thus we may assume that |H | ≥ 9. Since
G = HS, we have G/S ∼= H/(H ∩ S) is a 3-group and thus if G ̸= S, then elements
in H − S induce outer automorphisms of S of 3-power order.

(i) Assume S ∼= Un(2), n ≥ 4 or G ̸= S. If S ∼= Un(2), then since n ≥ 4, we have
|Out(Un(2))| = 2(n, 3). If G ̸= S and S ̸∼= Un(2), then S ∼= D4(3) or 3D4(3) since S
has no nontrivial field automorphism so Out(S) contains diagonal automorphisms
and possibly graph automorphisms only. In all cases, the Sylow 3-subgroup of
Out(S) has order at most 3. Hence |G : S| = |H : S ∩ H | ≤ 3.

Since |H | ≥ 9, if G is not simple then A = H ∩ S > 1. By Lemma 2.3(ii), A is
strongly closed in S. If G = S = Un(2), then A = H is strongly closed in S. In
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both cases, S contains a nontrivial abelian 3-subgroup A which is strongly closed
in S. Since S is simple, S = ⟨AS

⟩. As a Sylow 3-subgroup of S is nonabelian, A
cannot be a Sylow 3-subgroup of S; however this contradicts [15, Theorem 1.2(i)].

(ii) G = S is a finite simple group of Lie type defined over F3. The possibilities
for G can be read off from [25, Table 1] and note the correction in [37, Remark 5.2].

Let P be a Sylow p-subgroup of G containing H , and let M be a maximal para-
bolic subgroup of G containing the Borel subgroup B := NG(P). Let R = Op(M).
Then M = NG(R). By induction, we have ⟨H M

⟩ ∩ NM(H) = H , and hence
⟨H M

⟩ = HU , where U = Op′(⟨H M
⟩) and CU (H) = 1. Therefore, U is a solvable

normal p′-subgroup of M since ⟨H M
⟩⊴M . As H ≤⟨H M

⟩⊴M and H is pronormal
in M , we have M = NM(H)U . However, as M is a parabolic subgroup of a finite
simple group of Lie type G, F∗(M) = Op(M) (Corollaries 3.1.4 and 3.1.5 in [24]),
so U = 1. Hence H ⊴ M and M = NG(H). Thus M contains every maximal
parabolic subgroup of G that contains the Borel subgroup B. However this happens
only when the Lie rank of G is 1. Therefore G ∼= U3(3). (We can also use
Theorem 1.2 in [15] to arrive at this conclusion.)

From the Atlas [7], we have P ∼= 31+2
+ is an extraspecial group of order 27 and

exponent 3. Thus |H | = 9. Since G has Lie rank 1, the Borel subgroup B of G is
a maximal subgroup of G. Hence B = NG(H). Let g ∈ G − B and T = ⟨H, H g

⟩.
We know that T = HO3′(T ) is solvable, so T < G and thus T lies in some maximal
subgroup of G whose order must be divisible by |H | = 9. Inspecting the list of
maximal subgroups of G in the Atlas [7], the only maximal overgroups of H and T
in G are the Borel subgroups B and its G-conjugates. Hence ⟨H, H g

⟩ ≤ B t for
some t ∈ G. Note that B = P : W , where W = ⟨y⟩ is a cyclic group of order 8.
Since B t has a normal Sylow 3-subgroup, we must have that H ≤ P t ⊴ B t and
hence H is subnormal in B t . Since H is pronormal in G and hence in B t , we have
H ⊴ B t or B t

= NG(H) = B. Therefore, ⟨H, H g
⟩ ≤ B for all g ∈ G. However,

this implies that ⟨H G
⟩ ≤ B, which is a contradiction. □

Proof of Theorem 1.7. Let G be a counterexample to Theorem 1.7 with minimal
order. Then ⟨H, H g

⟩ ∩ NG(H) = H for all g ∈ G but G ̸= NG(H)Op′(G), where
H is an abelian p-subgroup of G.

(1) ⟨H G
⟩ = G. Let L = ⟨H G

⟩. Assume L ̸= G. By Lemmas 2.2(ii) and 2.1(iii),
we have G = NG(H)L . By Lemma 2.2(iii) and the minimality of G, we have
L = NL(H)Op′(L). As L ⊴G, Op′(L) ≤ Op′(G), and hence

G = NG(H)L = NG(H)Op′(L) = NG(H)Op′(G).

This contradictions shows that L = G.

(2) Op′(G) = 1. Suppose by contradiction that N = Op′(G) ̸= 1. It follows from
Lemma 2.2(vi) that the hypothesis carries over to G =G/N , and so by the minimality
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of G, we obtain G = NG(H)Op′(G). But Op′(G) = Op′(G/Op′(G)) = 1, and
hence G = NG(H) by Lemma 2.2(iv). Therefore, G = NG(H)N = NG(H)Op′(G),
which is a contradiction. This proves the claim.

(3) Op(G) = 1. Assume Op(G) ̸= 1. Let N ≤ Op(G) be a minimal normal
subgroup of G and let U = H ∩ N . Observe first that Op(G) ≤ NG(H) since
P ≤ NG(H) for any H ≤ P ∈ Sylp(G). It follows that N ≤ NG(H). We will
show that N ≤ Z(G). Suppose first that U ̸= 1. Lemma 2.3(iii) implies that
U ⊴G. By the minimality of N , we have U = N , and so N ≤ H . As H is abelian,
H ≤ CG(N )⊴G. By (1), we have CG(N ) = G, and N ≤ Z(G). If U = H ∩ N = 1,
then as H and N are both normal in NG(H), we have [H, N ] ≤ H ∩ N = 1 and
thus H ≤ CG(N )⊴G, so N ≤ Z(G).

By Lemma 2.2(vi), the hypothesis carries over to G = G/N , and so by the
minimality of G, we obtain G = NG(H)Op′(G). Let K ≤ G be such that N ≤ K
and K/N = Op′(G/N ). Then N ⊴ K ⊴ G and |K : N | is odd. By the Schur–
Zassenhaus theorem, K = N T where T is Hall p′-subgroup of G. Moreover, since
N is central in G, T ⊴ K and hence T ⊴ G as it is characteristic in K ⊴ G. It
follows that T ≤ Op′(G) = 1 and thus G = NG(H)K = NG(H)N = NG(H). This
contradiction proves the claim.

(4) Let N be a minimal normal subgroup of G. We claim that G = HN and N
is the unique minimal normal subgroup of G. By (2) and (3), N ∼= Sk for some
finite nonabelian simple group S with p | |S| and some integer k ≥ 1. Let M = HN .
Suppose that M < G. By the minimality of G, we have M = NM(H)Op′(M).
Hence Op′(M) ≤ N , and so Op′(M) = 1. We deduce that H ⊴ M . As H is an
abelian p-group and N ∼= Sk , we have H ∩ N = 1 and hence [H, N ] ≤ H ∩ N = 1.
Thus H ≤ CG(N )⊴ G. By (1), we have CG(N ) = G, and then N ≤ Z(G). This
contradiction shows that G = HN . Since G/N ∼= H/H ∩ N is abelian, N must be
a unique minimal normal subgroup of G as wanted.

If p is odd, then Proposition 3.1 yields a contradiction. Thus for the remaining,
we assume that p = 2.

(5) We next claim that G is finite nonabelian simple group. By (4), F∗(G) = N
and H is a strongly closed abelian 2-subgroup of G. Now by [20, Theorem A],
we have F∗(G) = G and so N = G. It follows that G = S is simple. By [20,
Theorem A] again, G is isomorphic to one of the following groups:

(i) L2(2n), n ≥ 3; 2B2(22n+1), n ≥ 1; or U3(2n), n ≥ 2.

(ii) L2(q), q ≡ 3, 5 (mod 8).

(iii) 2G2(32n+1), n ≥ 1; or J1, the first Janko group.

By Glauberman’s Z∗-theorem, we may assume that |H | ≥ 4.

(6) The final contradiction. We now consider each case above separately.
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(a) Assume G is isomorphic to one of the groups in (i). Let H ≤ P ∈ Syl2(G) and
let B = PT be the Borel subgroup of G containing P . By [20, (3.2)], H = Z(P)

is a noncyclic elementary abelian 2-group, P is a T .I subgroup of G, and B is
the unique maximal subgroup of G containing P . It follows that B = NG(H).
Observe that for any 1 ̸= x ∈ H , P ≤ CG(x) ≤ B, as P is uniquely contained
in B. For g ∈ G − B, let T = ⟨H, H g

⟩. Then NT (H) = H and then by Burnside’s
normal p-complement theorem, we have T = HU , where U = O2′(T )⊴ T . As H
is noncyclic abelian, U = ⟨CU (a) : 1 ̸= a ∈ H⟩ [35, 8.3.4]. However, as CG(a) ≤ B
for all 1 ̸= a ∈ H , we have U ≤ B and so T = ⟨H, H g

⟩ ≤ B. From the hypothesis,
we must have T = T ∩ B = H , and hence H g

= H . This implies that g ∈ B,
contradicting the choice of g.

(b) Assume that G ∼= L2(5) ∼= A5. By [20, (3.4)], H ∈ Syl2(G), NG(H) ∼= A4 and
NG(H) is the unique maximal subgroup of G containing CG(a), for all 1 ̸= a ∈ H .
Take g ∈ G−NG(H), and let T =⟨H, H g

⟩. Then T = HU , where U = O2′(T ). As
H is noncyclic, U = ⟨CU (a) : 1 ̸= a ∈ H⟩ ≤ NG(H). This leads to a contradiction
as in the previous case.

(c) Assume G is isomorphic to one of the groups in (ii) with q ≥ 11. By [20, (3.4)],
we have H ∈Syl2(G) and NG(H)∼=A4. Clearly, G contains a maximal subgroup M
isomorphic to the dihedral group Dq±1 such that M does not contain H . Assume
M is generated by two involutions a, b. We can choose a, b such that b ∈ H . Now
G = ⟨M, H⟩ ≤ ⟨a, H⟩, and hence G = ⟨a, H⟩. By Sylow’s theorem, there exists
some g ∈ G such that a ∈ H g. Thus G =⟨a, H⟩≤ ⟨H g, H⟩, and then G =⟨H, H g

⟩,
which contradicts the hypothesis that ⟨H, H g

⟩ ∩ NG(H) = H .

(d) Finally, assume that G is isomorphic to one of the groups in (iii). By [20, (3.4)],
we have H ∈ Syl2(G). Now H contains an involution t such that CG(t) = ⟨t⟩× L ,
where L ∼= L2(q), q ≡ 3, 5 (mod 8) and [G : CG(t)] is odd [41]. As H ≤ CG(t)< G,
by the minimality of G, we obtain CG(t)= (CG(t)∩NG(H))O2′(CG(t)). However,
as CG(t) = ⟨t⟩× L , where L is nonabelian simple, it follows that O2′(CG(t)) = 1
whence CG(t) ≤ NG(H). Hence CG(t) = NG(H) since CG(t) is maximal in G by
[20, (3.4)]. It follows that H ⊴CG(t) and then H ∩ L ⊴ L , where H ∩ L ∈ Syl2(L),
which contradicts the simplicity of L . □

Proof of Corollary 1.8. Let G be a counterexample to the corollary with minimal
order. Then we have that H is an abelian p-subgroup for some odd prime p and
⟨H, H g

⟩ ∩ NG(H) = H for all g ∈ G but ⟨H G
⟩ ∩ NG(H) ̸= H . By Theorem 1.7,

we have G = NG(H)Op′(G). Now we have that

⟨H G
⟩ = ⟨H NG(H)Op′ (G)

⟩ = ⟨H Op′ (G)
⟩ ≤ HOp′(G).

Let L = ⟨H G
⟩. Then L = H(L ∩ Op′(G)) = HOp′(L) and so L has a normal

p-complement. Let L < G. By the minimality of G, we have ⟨H L
⟩∩ NL(H) = H .



318 HUNG P. TONG-VIET

However, L = ⟨H L
⟩ by Lemmas 2.2(ii) and 2.1(vi) and thus NL(H) = H or

equivalently ⟨H G
⟩ ∩ NG(H) = H , a contradiction. Therefore, we can assume that

G = ⟨H G
⟩ = HOp′(G).

Let U = Op′(G) and let Q = [U, H ]. By [35, 8.2.7], U = QCU (H) and
Q =[Q, H ]. Furthermore, NG(H)=CG(H)= HCU (H) and thus G = HCU (H)Q.
As G = ⟨H G

⟩ = H HCU (H)Q
≤ H Q, we obtain G = H Q whence U = Q.

Let N ≤ U be a minimal normal subgroup of G. Since HN/N is an abelian
extremely closed p-subgroup of G/N by Lemma 2.2(vi) and G/N =⟨(HN/N )G/N

⟩,
we have NG(HN )= HN and hence by Lemma 2.2 (iv), NG(H)N = HN . Moreover,
CU/N (HN/N ) = 1. It follows that U/N is solvable by Lemma 2.10.

Assume that N is abelian. Then U is solvable. Let 1 ̸=u ∈U and let T =⟨H, H u
⟩.

Then T = H [u, H ], where [u, H ] = Op′(T ) and C[u,H ](H) = 1 as H is self-
normalizing in T . By Lemma 2.9(i), C[U,H ](H) = ⟨C[u,H ](H) : u ∈ U ⟩ = 1. Thus
CU (H) = C[U,H ](H) = 1 and so NG(H) = CG(H) = HCU (H) = H . Therefore,
⟨H G

⟩ ∩ NG(H) = H , which is a contradiction.
Assume that N ∼= Sk , where S is a nonabelian simple group and k ≥ 1 is an integer.

Assume that K = HN < G. By the minimality of G, we have ⟨H K
⟩∩ NK (H) = H .

Thus ⟨H K
⟩ = H Q and CQ(H) = 1, where Q = Op′⟨H K

⟩. As Q is characteristic
in ⟨H K

⟩⊴ K , it follows that Q ⊴ K . Since |K : N | is a power of p and Q is a
p′-group, we must have Q ≤ N and hence Q ⊴ N . By [35, 1.7.5], Q is isomorphic
to a direct product of the nonabelian simple group S, so Q is not solvable or Q = 1.
If the former case holds, then since CQ(H) = 1 and Q is a p′-group, Lemma 2.10
implies that Q is solvable, which is a contradiction as it is a direct product of copies
of S. Therefore, Q = 1 and hence H ⊴K . It follows that R = H ∩ N ⊴N . However,
as N ∼= Sk and H ∩ N is a normal p-subgroup of N , we must have H ∩ N = 1.
Hence [H, N ] ≤ H ∩ N = 1 and so H ≤ CG(N )⊴G. Since G = ⟨H G

⟩, we have
CG(N ) = G or N ≤ Z(G), a contradiction. Therefore G = HN and since G/N
is solvable, N is a unique minimal normal subgroup of G. Now Proposition 3.1
yields a contradiction. □

Proof of Corollary 1.9. Let H be an extremely closed abelian p-subgroup of G for
some prime p. Assume first that p =2. By Theorem 1.7, G = NG(H)O2′(G) which
implies that HO2′(G)⊴ G and clearly HO2′(G) is solvable and thus H ⊆ R(G).
Assume now that p is odd. By Corollary 1.8, we have NG(H) ∩ ⟨H G

⟩ = H and
thus ⟨H G

⟩ is solvable by Lemma 2.11. □

4. A p-solvability criterion

Let p be a prime. A finite group G is said to be a minimal non-p-solvable group if
G is not p-solvable but every proper subgroup of G is p-solvable. A minimal simple
group is a nonabelian finite simple groups whose all proper subgroups are solvable.
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Observe that minimal non-2-solvable simple groups are exactly the minimal simple
groups and these groups are classified by Thompson in [39].

Lemma 4.1. Every minimal simple group is isomorphic to one of the following
simple groups:

(1) L2(2r ), r is a prime.

(2) L2(3r ), r is an odd prime.

(3) L2(r), r > 3 is a prime such that 5 | r2
+ 1.

(4) 2B2(2r ), r is an odd prime.

(5) L3(3).

Proof. This is [39, Corollary 1]. □

The next result classifies minimal non-3-solvable simple groups.

Lemma 4.2. Let G be a finite nonabelian simple group. Assume that every proper
subgroup of G is 3-solvable. Then G is isomorphic to a minimal simple group or to
the Suzuki group 2B2(q) with q = 22m+1, m ≥ 1.

Proof. This is Lemma 5.3 in [28]. □

Finally, we need the classification of finite non-p-solvable simple groups for any
primes p ≥ 5.

Lemma 4.3. Let G be a finite nonabelian simple group and let p ≥ 5 be a prime
dividing |G|. Assume that every proper subgroup of G is p-solvable. Then one of
the following holds.

(1) G = L2(p).

(2) G = Ap.

(3) G = L2(q) with p | q2
− 1.

(4) G = Ln(q), n ≥ 3 is odd, and p divides qn
− 1 but not

∏n−1
i=1 (q i

− 1).

(5) G = Un(q), n ≥ 3 is odd, and p divides qn
−(−1)n but not

∏n−1
i=1 (q i

−(−1)i ).

(6) G =
2B2(q) with q = 22m+1, m ≥ 1.

(7) G =
2G2(q) and p | (q2

− q + 1), where q = 32m+1, m ≥ 1.

(8) G =
2F4(q) with q = 22m+1, m ≥ 1 and p | (q4

− q2
+ 1).

(9) G =
3D4(q) and p | (q4

− q2
+ 1).

(10) G = E8(q) and p divides (q30
− 1) but not

∏
i∈{8,14,18,20,24}

(q i
− 1).

(11) (G, p) is one of the following: (M23, 23), (J1, 7 or 19), (Ly, 37 or 67), (J4, 29
or 43), (Fi′24, 29), (B, 47) or (M, 41 or 59 or 71).

Proof. This is Lemma 5.4 in [28]. □
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Let q be a prime power and let n ≥ 2 be an integer. A prime divisor p of qn
− 1

is called a primitive prime divisor or ppd of qn
− 1 if p does not divide qk

− 1 for
all integers k with 1 ≤ k < n. Zsigmondy’s theorem [43] states that such a ppd p
exists unless (n, q) = (6, 2) or n = 2 and q is a Mersenne prime. Now if n > 1
is an integer and p is a prime, then the p-part of n, denoted by n p, is the largest
power of p dividing n. We refer the reader to [5; 34] for the description of maximal
subgroups of finite simple groups of Lie type.

Proposition 4.4. Let G be a finite nonabelian simple group and p be a prime
dividing |G|. Assume that every proper subgroup of G is p-solvable. Let P be a
Sylow p-subgroup of G. Then G = ⟨P, Pg

⟩ for some g ∈ G.

Proof. Let G be a finite nonabelian simple group and let p be a prime dividing |G|.
Let P ∈ Sylp(G). Assume that every proper subgroup of G is p-solvable. Let x ∈ P
with |x | = p. Then ⟨x, xg

⟩ ≤ ⟨P, Pg
⟩ for all g ∈ G and thus ⟨x, xg

⟩ is p-solvable
for all g ∈ G.

(a) If p = 2, then every finite nonabelian simple group G can be generated by two
Sylow 2-subgroups by Theorem A in [26]. So, we may assume that p > 2.

(b) If G is a finite nonabelian simple group of Lie type in characteristic p, then G
is generated by two Sylow p-subgroups by Proposition 2.5 in [6].

(c) Assume that p = 3. By Lemma 4.2, since 3 divides |G|, G is a minimal simple
group. By part (b), we only need to consider the cases when G is isomorphic to
L2(2r ), r is a prime, or L2(r), r > 3 is a prime and 5 | r2

+ 1.
If G ∼= L2(4), then we can check by using GAP [17] that there exists g ∈ G such

that G = ⟨P, Pg
⟩. Assume next that G ∼= L2(q), q = 2r or r , where r is an odd

prime. By [25, Theorem A*], there exists an element x ∈ G of order 3 such that
⟨x, xg

⟩ is nonsolvable for some g ∈ G. Since G is minimal simple, we must have
G = ⟨x, xg

⟩ and thus G = ⟨P, Pg
⟩.

(d) Assume that p ≥ 5. By part (b), and Lemma 4.3, G is one of the groups listed
in (2)–(11) in that lemma. We now consider each case in turn.

(1) Assume G = Ap. Here |P| = p. Without loss of generality, take P = ⟨x⟩, where
x = (1, 2, . . . , p) is a p-cycle in Ap. Let y = (1, 2, p, p − 1, p − 2, . . . , 3) ∈ Ap

be another p-cycle. Then xy = (1, 3, 2) and clearly

⟨x, y⟩ = ⟨(xy)−1, x⟩ = ⟨(1, 2, 3), (1, 2, . . . , p)⟩ = Ap

(see, e.g., [33, Theorem B]). Hence G is generated by two Sylow p-subgroups.

(2) Assume G = L2(q) with p | q2
− 1. If q ≤ 11, we can check using GAP [17]

that the result holds. Assume q ≥ 13. Inspecting the argument in [25, Section 5.1.2],
if x is any element of order p, then we can find g ∈ G such that ⟨x, xg

⟩ ∼= L2(q)

and hence ⟨P, Pg
⟩ = G.
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(3) Assume G = Ln(q), n ≥ 3 is odd, and p divides qn
− 1 but not

∏n−1
i=1 (q i

− 1).
Write q = s f , where s is a prime and f ≥ 1 is an integer. In this case p is a ppd of
qn

− 1. Hence P ∈ Sylp(G) is cyclic of order (qn
− 1)p. Since n ≡ 1 mod p and

n ≥ 3 is odd, we have p ≥ 2n + 1 and p ∤ n.
Assume that t is a prime divisor of n and write n = tm for some integer m ≥ 1.

Assume that m > 1. Then G has a C3-subgroup H of type GLm(q t) (see [34,
Table 3.5A]) which is maximal and contains a Sylow p-subgroup of G. Since n ≥ 3
is odd, m, t ≥ 3 and so q t

≥ 2t
≥ 8. Therefore, H is not p-solvable.

Thus we can assume that n = t is an odd prime. If P lies in a unique maximal
subgroup H of G, then H is of type GL1(qn) by [2, Table B]. We can choose
g ∈ G − H such that Pg

̸≤ H and hence G = ⟨P, Pg
⟩. Assume that P lies in

some other maximal subgroup M of G not of type GL1(qn). As in the proof of
Case 3 of Proposition 6.2 in [2], M ∈ C5 is a subfield subgroup of type GLn(q0),
where q = qk

0 , k is an odd prime and (qn
0 − 1)p = (qn

− 1)p or M ∈ S is almost
simple with socle S ∼= L2(p) and n =

1
2(p − 1). However, in both cases, M is not

p-solvable.

(4) Assume G =Un(q), n ≥3 is odd, and p divides qn
+1 but not

∏n−1
i=1 (q i

−(−1)i ).
Write q = s f where s is a prime and f ≥ 1.

(a) Assume that n = 3. If q = 3, then p = 7. In this case, |P| = 7 and P lies
in L2(7) which is not 7-solvable. Similarly, if q = 5, then p = 7 and |P| = 7 and P
lies in A7.

First, let q be a prime. Let H be a maximal subgroup of G containing P . By the
proof of [2, Proposition 6.3], either P lies in a unique maximal subgroup of G and
we are done or P is contained in L2(7) and p = 7; however, L2(7) is not 7-solvable.

Assume q = s f with f > 1. In this case, if P is not contained in a unique
maximal subgroup, then P can be contained in a subfield subgroup of type GU3(q0)

with q = qk
0 , and k is an odd prime (see [5, Table 8.5]). However such a maximal

subgroup is not p-solvable.

(b) Assume n ≥ 5. Then p is a ppd of q2n
− 1. Hence p ≥ 2n + 1.

Assume that n = tm, where t is a prime divisor of n and m > 1. Since n ≥ 5
is odd, t, m ≥ 3. Then G has a maximal subgroup of type GUm(q t) and contains
a Sylow p-subgroup of G. Since q t

≥ 2t
≥ 8, such a maximal subgroup is not

p-solvable.
Therefore, n = t ≥5 is a prime. Argue as in case (3), if P lies in a unique maximal

subgroup of G, then the conclusion holds. As in the proof of Proposition 6.4 in [2],
P lies in a subfield subgroup H of type GUn(q0), where qk

0 = q and k ≥ 3 is a
prime, or of type On(q) or H is an almost simple group with socle L2(p) with
n =

1
2(p−1) and 7 ≤ p ≡ 3 mod 4. However, in all cases, these maximal subgroups

are not p-solvable.
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(5) G =
2B2(q) with q = 22m+1, m ≥ 1. Then |G| = q2(q −1)(q +s +1)(q −s +1),

where s =
√

2q = 2m+1. The maximal subgroups of G are listed in [5, Table 8.16].
Since p is not the characteristic of G, p > 2 and p | q − 1 or p | q ± s + 1.

Assume first that p | q − 1. Then P lies in maximal subgroups of the form
[q2

] : (q − 1) and D2(q−1). It follows that ⟨P, pg
⟩ is solvable for all g ∈ G. Let

x ∈ P with |x | = p ≥ 5. Then ⟨x, xg
⟩ is solvable for all g ∈ G. However, this is

impossible in view of Theorem A* in [25].
Assume that p | q ± s +1. In this case, P lies in a maximal subgroup of the form

(q ± s +1) : 4 or a subfield subgroup of the form 2B2(q0), where qk
0 = q, k ≥ 3 is a

prime and q0 > 2. Clearly, the subfield subgroup is not p-solvable (if it contains P).
Hence P lies in a unique maximal subgroup of G and the result follows.

(6) G =
2G2(q) with q = 32m+1, m ≥ 1 and p | q2

− q + 1. We can use the same
argument as in the previous case using [5, Table 8.43].

(7) G =
2F2(q) with q = 22m+1, m ≥ 1 and p | q4

−q2
+1. In this case, p is a ppd

of q12
− 1. Using the argument in Proposition 7.2 in [2], either P lies in a unique

maximal subgroup or it lies in a subfield subgroup 2F2(q0), which is not p-solvable.

(8) G =
3D4(q) and p | q4

− q2
+ 1. We can use the argument in Proposition 7.3

in [2] to obtain the conclusion as in the previous case.

(9) G = E8(q) and p divides (q30
− 1) but not

∏
i∈{8,14,18,20,24}

(q i
− 1). In this

case, p is a ppd of q30
− 1. From Proposition 7.10 in [2], either P lies in a unique

maximal subgroup and the result follows or P can lie in a maximal exotic local
subgroup 25+10

· L5(2) when |P| = p = 31 or P lies in an almost simple group. In
the last two possibilities, clearly, these maximal subgroups are not p-solvable.

(10) (G, p) is one of the following: (M23, 23), (J1, 7 or 19), (Ly, 37 or 67),
(J4, 29 or 43), (Fi′24, 29), (B, 47) or (M, 41 or 59 or 71).

By [2, Table D], P lies in the unique maximal subgroup of G and the result
follows except for the case (G, p)= (J1, 7). By the Atlas [7], the maximal subgroups
of J1 containing a Sylow 7-subgroup are isomorphic to either 23

: 7 : 3 or 7 : 6.
Thus ⟨x, xg

⟩ is solvable for all g ∈ J1, where x ∈ P with |x | = 7. However, this
contradicts Theorem A* in [25]. □

Remark 4.5. It is conjectured in [6] that if G is a finite nonabelian simple group
and if r and s are prime divisors of |G|, then G can be generated by a Sylow
r -subgroup and a Sylow s-subgroup. The previous proposition is just a special case
of this conjecture when r = s = p and G is a minimal non-p-solvable simple group.

Proof of Theorem 1.10. Let G be a finite group and let p be a prime. Let P be a
Sylow p-subgroup of G. If G is p-solvable, then every subgroup of G is p-solvable.
Therefore, it suffices to show that if ⟨P, Pg

⟩ is p-solvable for all g ∈ G, then G is
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p-solvable. Suppose not and let G be a counterexample with minimal order. Then
⟨P, Pg

⟩ is p-solvable for all g ∈ G but G is not solvable.
We first claim that every proper subgroup of G is p-solvable and thus G is a

minimal non-p-solvable group. Let H be a proper subgroup of G and let Q be a
Sylow p-subgroup of H . Then Q ≤ P t for some t ∈ G. Now for every h ∈ H , we
have

⟨Q, Qh
⟩ ≤ ⟨P t , (P t)h

⟩ = ⟨P, P tht−1
⟩

t .

Since ⟨P, P tht−1
⟩ is p-solvable, ⟨Q, Qh

⟩ is p-solvable. Therefore, by the minimality
of |G|, H is p-solvable.

By Proposition 4.4, we know that G is not a nonabelian simple group. Let N
be a proper nontrivial normal subgroup of G. Now P N/N is a Sylow p-subgroup
of G/N and it satisfies the hypothesis of the theorem. Since |G/N | < |G|, G/N is
p-solvable. As in the previous claim, N is also p-solvable and thus G is p-solvable
as well. This final contradiction proves the theorem. □
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