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VISHIK EQUIVALENCE AND SIMILARITY OF QUASILINEAR
p-FORMS AND TOTALLY SINGULAR QUADRATIC FORMS

KRISTÝNA ZEMKOVÁ

For quadratic forms over fields of characteristic different from two, there
is a so-called Vishik criterion, giving a purely algebraic characterization of
when two quadratic forms are motivically equivalent. In analogy to that, we
define Vishik equivalence on quasilinear p-forms. We study the question
whether Vishik equivalent p-forms must be similar. We prove that this is not
true for quasilinear p-forms in general, but we find some families of totally
singular quadratic forms (i.e., of quasilinear 2-forms) for which the question
has a positive answer.

1. Introduction

Vishik [1997] defined an equivalence relation on quadratic forms over fields of
characteristic other than 2 (see also [Karpenko 2000; Vishik 2004]): ϕ and ψ are
equivalent if and only if

(1-1) dimϕ = dimψ and iW(ϕE)= iW(ψE) for any field extension E/F.

Vishik proved that this equivalence coincides with motivic equivalence. Hence,
equation (1-1) is nowadays known as Vishik’s criterion for motivic equivalence.
Then the question was raised whether the equivalence defined by Vishik also
coincides with similarity; in other words, the following question was asked:

Question A. Are quadratic forms satisfying Vishik’s criterion (1-1) necessarily
similar?

Izhboldin [1998; 2000] proved that the answer to Question A is positive for odd-
dimensional quadratic forms, but negative for even-dimensional forms of dimension
greater or equal to 8 (except possibly for the dimension 12). Hoffmann [2015]
proves that, under some conditions on the base field, Question A has positive answer
for even-dimensional quadratic forms as well.
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In the case of fields of characteristic 2, we have to distinguish between differ-
ent types of quadratic forms — nonsingular and totally singular (the two extreme
cases) and singular (the mixed type). Totally singular quadratic forms over fields
of characteristic 2 have been generalized to quasilinear p-forms over fields of
characteristic p in [Hoffmann 2004].

Let F be a field of characteristic p, and let ϕ and ψ be quasilinear p-forms
over F . Inspired by Vishik’s criterion, we define Vishik equivalence of ϕ and ψ as

dimϕ = dimψ and id(ϕE)= id(ψE) for any field extension E/F,

where id(τ ) is the defect (sometimes also called the quasilinear index) of the
quasilinear p-form τ . In analogy to Question A, we ask:

Question Q. Are Vishik equivalent quasilinear p-forms necessarily similar?

We show in Examples 3.14 and 3.15 that Question Q has a negative answer
for p-forms if p > 3. Therefore, in Section 4, we will focus on totally singular
quadratic forms, i.e., on the case when p = 2. In this case, we can give a positive
answer to Question Q at least for some families of forms. For example, we prove:

Theorem 1.1 (see Theorem 4.6). Let ϕ,ψ be totally singular quadratic forms
over F such that ϕan is minimal over F. If ϕ and ψ are Vishik equivalent, then they
are similar.

See Theorem 4.17 and Corollary 4.18 for more families for which the answer to
Question Q is positive. We would also like to point out Theorem 3.7 which shows
that Vishik equivalence preserves similarity factors, even in the case of quasilinear
p-forms.

This paper is based on the second and third chapters of the author’s PhD thesis
[Zemková 2022].

2. Preliminaries

All fields in this article are of characteristic p > 0. Whenever we talk about (totally
singular) quadratic forms, we assume p = 2.

Quasilinear p-forms. Most of the necessary background on quasilinear p-forms
can be found in [Hoffmann 2004]; we include it here for the readers’ convenience.

Definition 2.1. Let F be a field and V a finite-dimensional F-vector space. A
quasilinear p-form (or simply a p-form) over F is a map ϕ : V → F with the
following properties:

(1) ϕ(av)= a pϕ(v) for any a ∈ F and v ∈ V , and

(2) ϕ(v+w)= ϕ(v)+ϕ(w) for any v,w ∈ V .

The dimension of ϕ is defined as dimϕ = dim V .
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Any p-form ϕ on an F-vector space V can be associated with the polynomial∑n
i=1 ai X p

i ∈ F[X1, . . . , Xn], where ai = ϕ(vi ) with {v1, . . . , vn} a basis of V . In
such case, we write ϕ as ⟨a1, . . . , an⟩.

We have c⟨a1, . . . , an⟩ = ⟨ca1, . . . , can⟩ for any c ∈ F∗. If ⟨a1, . . . , an⟩ and
⟨b1 . . . , bm⟩ are two p-forms over F , then we define

⟨a1, . . . , an⟩ ⊥ ⟨b1 . . . , bm⟩ = ⟨a1, . . . , an, b1 . . . , bm⟩,

⟨a1, . . . , an⟩ ⊗ ⟨b1 . . . , bm⟩ = a1⟨b1 . . . , bm⟩ ⊥ . . . ⊥ an⟨b1 . . . , bm⟩.

Moreover, for a positive integer k, we write k × ϕ for the p-form ϕ⊥ . . . ⊥ϕ

consisting of k copies of ϕ.
Two p-forms ϕ : V → F and ψ : W → F are called isometric (denoted ϕ ≃ ψ)

if there exists a bijective homomorphism f : V → W of vector spaces such that
ϕ(v)= ψ( f (v)) for any v ∈ V . If f is not bijective but injective, then ϕ is called
a subform of ψ (denoted ϕ ⊆ ψ); then there exists a p-form σ over F such that
ψ ≃ ϕ⊥ σ . If ϕ ≃ cψ for some c ∈ F∗, then ϕ and ψ are called similar (denoted
ϕ

sim
∼ ψ).
A p-form ϕ : V → F is called isotropic if ϕ(v) = 0 for some v ∈ V \ {0};

otherwise, ϕ is called anisotropic. The p-form ϕ can be written as ϕ ≃ σ ⊥ k × ⟨0⟩

with σ an anisotropic p-form over F and k a nonnegative integer. Then σ is unique
up to isometry, and it is called the anisotropic part of ϕ (denoted ϕan). The integer k
is called the defect of ϕ (denoted id(ϕ)).

Let ϕ be a p-form on an F-vector space V ; we set

DF (ϕ)= {ϕ(v) | v ∈ V } and D∗

F (ϕ)= DF (ϕ) \ {0},

G∗

F (ϕ)= {x ∈ F∗
| xϕ ≃ ϕ} and G F (ϕ)= G∗

F (ϕ)∪ {0}.

Note that DF (ϕ) is an F p-vector space; in particular, if ϕ ≃ ⟨a1, . . . , an⟩, then
DF (ϕ)= spanF p{a1, . . . , an}.

Lemma 2.2 [Hoffmann 2004, Proposition 2.6]. Let ϕ be a p-form over F.

(i) Let {c1, . . . , ck} be any F p-basis of the vector space DF (ϕ). Then we have
ϕan ≃ ⟨c1, . . . , ck⟩.

(ii) If a1, . . . , am ∈ DF (ϕ), then ⟨a1, . . . , am⟩an ⊆ ϕ.

It follows that, for any a, b ∈ F and x ∈ F∗, we have

⟨a, b⟩ ≃ ⟨a + b, b⟩ and ⟨a⟩ ≃ ⟨ax p
⟩.

For a p-form ϕ on an F-vector space V and a field extension E/F , we denote
by ϕE the p-form on the E-vector space VE = E ⊗V defined by ϕE(e⊗v)= epϕ(v)

for any e ∈ E and v ∈ V . It was proved in [Hoffmann 2004, Lemma 5.1] that if
ϕ ≃ ⟨a1, . . . , an⟩, then (ϕE)an ≃ ⟨ai1, . . . , aik ⟩ for some {i1, . . . , ik} ⊆ {1, . . . , n}.
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Quasi-Pfister forms and quasi-Pfister neighbors. For n> 0, an n-fold quasi-Pfister
form is a p-form ⟨⟨a1, . . . , an⟩⟩= ⟨⟨a1⟩⟩⊗· · ·⊗⟨⟨an⟩⟩, where ⟨⟨a⟩⟩= ⟨1, a, . . . , a p−1

⟩.
Moreover, ⟨1⟩ is called the 0-fold quasi-Pfister form.

A p-form ϕ over F is called a quasi-Pfister neighbor if cϕ ⊆ π for some
c ∈ F∗ and a quasi-Pfister form π over F such that dimϕ > 1

p dimπ . The value
dimπ − dimϕ is called the codimension of ϕ.

In the following lemma, we summarize some of the most important properties
of quasi-Pfister forms and quasi-Pfister neighbors.

Lemma 2.3 [Hoffmann 2004, Propositions 4.6 and 4.14; Scully 2013, Lemma 2.6].
Let π ≃ ⟨⟨a1, . . . , an⟩⟩ be a quasi-Pfister form over F , ϕ a quasi-Pfister neighbor
of π , and E/F a field extension. Then:

(i) G E(π)= DE(π).

(ii) There either exist k > 0 and a subset {i1, . . . , ik} ⊆ {1, . . . , n} such that
(πE)an ≃ ⟨⟨ai1, . . . , aik ⟩⟩E , or (πE)an ≃ ⟨1⟩E .

(iii) ϕE is isotropic if and only if πE is isotropic.

p-bases, norm fields and norm forms. Let a1, . . . , an ∈ F . We call the set
{a1, . . . , an} p-independent over F if [F p(a1, . . . , an) : F p

]= pn , and p-dependent
over F otherwise. The set {a1, . . . , an} is p-independent over F if and only if
the quasi-Pfister form ⟨⟨a1, . . . , an⟩⟩ is anisotropic over F [Zemková 2024, Corol-
lary 2.8]. A (possibly infinite) set S ⊆ F is called p-independent over F if any
finite subset of S is p-independent over F .

Let E be a field such that F p
⊆ E ⊆ F ; a set B ⊆ E is called a p-basis of E

over F if B is p-independent over F and E = F p(B). Such a p-basis always exists,
and any subset of E that is p-independent over F can be extended into a p-basis
of E over F [Gille and Szamuely 2006, Corollary A.8.9]. A set B = {bi | i ∈ I } is
a p-basis of E over F if and only if

B̂ =

{∏
i∈I

bλ(i)i

∣∣∣ λ : I → {0, . . . , p − 1}, λ(i)= 0 for almost all i ∈ I
}

is an F p-linear basis of E [Pickert 1949, page 27]; in such case, any a ∈ E can be
expressed uniquely as

a =

∑
λ

x p
λ

∏
i∈I

bλ(i)i

for some xλ ∈ F , almost all of them zero. By abuse of language, we say that a can
be expressed uniquely with respect to B.

Let ϕ be a p-form over F . We define the norm field of ϕ over F as the field

NF (ϕ)= F p
(

a
b

∣∣ a, b ∈ D∗

F (ϕ)
)
.
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By the definition, we have NF (ϕ) = NF (ϕan) and also that NF (ϕ) = NF (cϕ) for
any c ∈ F∗. Furthermore, if ψ is another p-form over F satisfying ψ ≃ ϕ, then
NF (ψ)= NF (ϕ). Finally, if τan ⊆ cϕan for some p-form τ over F and c ∈ F∗, then
NF (τ )⊆ NF (ϕ).

Lemma 2.4 [Hoffmann 2004, Lemma 4.2 and Corollary 4.3]. Let ϕ be a p-form
over F.

(i) If ϕ ≃ ⟨a0, . . . , an⟩ for some n ≥ 1 and ai ∈ F , 0 ≤ i ≤ n, with a0 ̸= 0, then
NF (ϕ)= F p

(a1
a0
, . . . , an

a0

)
.

(ii) Suppose NF (ϕ)= F p(b1, . . . , bm) for some bi ∈ F∗, 1 ≤ i ≤ m, and let E/F
be a field extension. Then NE(ϕ)= E p(b1, . . . , bm).

The following proposition provides an alternative possibility for a determination
of the norm field.

Proposition 2.5. Let ϕ=⟨1, a1, . . . , an⟩ be a p-form over F , and let b1, . . . , bm ∈ F.
Then

(ϕF( p√b1,...,
p√bm)

)an ≃ ⟨1⟩ ⇐⇒ NF (ϕ)⊆ F p(b1, . . . , bm).

If , moreover, {b1, . . . , bm} ⊆ {a1, . . . , an}, then

(ϕF( p√b1,...,
p√bm)

)an ≃ ⟨1⟩ ⇐⇒ NF (ϕ)= F p(b1, . . . , bm).

In particular, if m is minimal with this property, then ndegF ϕ = pm .

Proof. We set E = F( p
√

b1, . . . ,
p
√

bm).
First, (ϕE)an ≃ ⟨1⟩ is equivalent to spanE p{1} = spanE p{1, a1, . . . , an}, which

holds if and only if ai ∈ E p for all 1 ≤ i ≤ n. As E p
= F p(b1, . . . , bm), the latter

condition is equivalent to F p(a1, . . . , an) ⊆ F p(b1, . . . , bm). But by Lemma 2.4
F p(a1, . . . , an)= NF (ϕ), so we are done.

If {b1, . . . , bm} ⊆ {a1, . . . , an}, then F p(b1, . . . , bm) ⊆ NF (ϕ), and the claim
follows by the previous case. □

Note that NF (ϕ) is a finite field extension of F p, and hence there always exists
a finite p-basis {b1, . . . , bn} of NF (ϕ) over F , i.e., NF (ϕ)= F p(b1, . . . , bn) with
[F p(b1, . . . , bn) : F p

] = pn . Then pn is called the norm degree of ϕ over F and
denoted by ndegF ϕ. There is a relation between the norm degree and the dimension
of a p-form.

Lemma 2.6 [Hoffmann 2004, Proposition 4.8]. Let ϕ be a nonzero p-form with
ndegF ϕ = pn . Then n + 1 ≤ dimϕan ≤ pn .

By [Gille and Szamuely 2006, Corollary A.8.9], any p-generating set contains a
p-basis. Therefore, part (i) of Lemma 2.4 implies that:
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Lemma 2.7. Assume that ϕ ≃ ⟨a0, . . . , an⟩ for some n ≥ 1 and a0, . . . , an ∈ F
with a0 ̸= 0. Moreover, suppose that ndegF ϕ = pk . Then there exists a subset
{i1, . . . , ik} ⊆ {1, . . . , n} such that

{ai1
a0
, . . . ,

aik
a0

}
is a p-basis of NF (ϕ) over F.

In particular, if 1 ∈ D∗

F (ϕ), then there exist b1, . . . , bn ∈ F such that ϕ ≃

⟨1, b1, . . . , bn⟩ and NF (ϕ)= F p(b1, . . . , bk).

Let ϕ be a p-form over F with ndegF ϕ = pn and NF (ϕ)= F p(a1, . . . , an) (so,
in particular, {a1, . . . , an} is p-independent over F). Then we define the norm form
of ϕ over F , denoted by ν̂F (ϕ), as the (necessarily anisotropic) quasi-Pfister form
⟨⟨a1, . . . , an⟩⟩. It follows that ν̂F (ϕ) is the smallest quasi-Pfister form that contains
a scalar multiple of ϕan as its subform. In particular, if ϕan is a quasi-Pfister form
itself, then we have ν̂F (ϕ)≃ ϕan.

Isotropy. Let ϕ be an anisotropic p-form over F , and let E/F be a field extension. If
E/F is purely transcendental or separable, then ϕE remains anisotropic [Hoffmann
2004, Proposition 5.3].

Lemma 2.8 [Scully 2016, Lemma 2.27]. Let ϕ be a p-form over F and let a ∈ F\F p.
Then:

(i) DF( p√a)(ϕ)= DF (⟨⟨a⟩⟩ ⊗ϕ)=
∑p−1

i=0 ai DF (ϕ).

(ii) id(ϕF( p√a))=
1
p id(⟨⟨a⟩⟩ ⊗ϕ).

(iii) If ϕ is anisotropic and ϕF( p√a) is isotropic, then a ∈ NF (ϕ).

(iv) dim(ϕF( p√a))an ≥
1
p dimϕan.

(v) Equality holds in (iv) if and only if there exists a p-form γ over F such that
ϕan ≃ ⟨⟨a⟩⟩ ⊗ γ .

We want to point out that NF (ϕ) is the smallest field extension of F p with
property (iii) of Lemma 2.8. More precisely, we have:

Proposition 2.9. Let ϕ be an anisotropic p-form over F and E/F p be a field
extension such that the following holds for any a ∈ F∗:

(✵) id(ϕF( p√a)) > 0 ⇒ a ∈ E .

Then NF (ϕ)⊆ E.

Proof. Let ndegF ϕ = pk . Since neither the isotropy nor the norm field depends on
the choice of the representative of the similarity class, we can assume 1 ∈ D∗

F (ϕ).
Invoking Lemma 2.7, we find b1, . . . , bn ∈ F with n ≥k such that ϕ≃⟨1, b1, . . . , bn⟩

and {b1, . . . , bk} is a p-basis of NF (ϕ) over F . Since ϕF( p√bi )
is obviously isotropic

for each 1 ≤ i ≤ k, we get by the assumption (✵) that b1, . . . , bk ∈ E . Since E is a
field containing F p, it follows that NF (ϕ)= F p(b1, . . . , bk)⊆ E . □
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Lemma 2.10. Let ϕ be an anisotropic quasi-Pfister form or an anisotropic quasi-
Pfister neighbor over F , and let x ∈ F∗. Then ϕ⊗ ⟨⟨x⟩⟩ is isotropic if and only if
x ∈ NF (ϕ).

Proof. First, we prove the lemma in the case when ϕ ≃ π is a quasi-Pfister form.
Assume that π ≃ ⟨⟨a1, . . . , an⟩⟩, i.e., NF (π) = F p(a1, . . . , an). Note that π is
anisotropic. Then the form π ⊗ ⟨⟨x⟩⟩ is isotropic if and only if (π ⊗ ⟨⟨x⟩⟩)an ≃ π if
and only if F p(a1, . . . , an)= F p(a1, . . . , an, x) if and only if x ∈ NF (π).

Now suppose that ϕ is a quasi-Pfister neighbor. Then cϕ ⊆ π for π ≃ ν̂F (ϕ)

and some c ∈ F∗. It follows that cϕ⊗ ⟨⟨x⟩⟩ is a quasi-Pfister neighbor of π ⊗ ⟨⟨x⟩⟩,
and hence cϕ⊗ ⟨⟨x⟩⟩ is isotropic if and only if π ⊗ ⟨⟨x⟩⟩ is isotropic (Lemma 2.3).
By the first part of the proof, the latter is equivalent to x ∈ NF (π). Since we have
NF (π)= NF (cϕ)= NF (ϕ), the claim follows. □

Minimal forms. In this paper, we will work with minimal forms; they are, in a
way, a counterpart to quasi-Pfister forms.

Definition 2.11. Let ϕ be an anisotropic p-form over F . We call ϕ minimal over F
if ndegF ϕ = pdimϕ−1.

Note that any one-dimensional anisotropic p-form is minimal. Minimal p-forms
of dimension at least two are described by the following lemma:

Lemma 2.12 [Zemková 2024, Lemma 2.16]. Let ϕ,ψ be p-forms over F of dimen-
sion at least two.

(i) The p-form ⟨1, a1, . . . , an⟩ is minimal over F if and only if the set {a1, . . . , an}

is p-independent over F.

(ii) Minimality is not invariant under field extensions.

(iii) If ϕ is minimal over F and ψ
sim
∼ ϕ, then ψ is minimal over F.

(iv) If ϕ is minimal over F and ψ ⊆ cϕ for some c ∈ F∗, then ψ is minimal over F.

(v) If ndegF ϕ = pk with k ≥ 1, then ϕ contains a minimal subform of dimension
k + 1.

We can characterize elements represented by a given minimal p-form.

Lemma 2.13. Let ϕ be a minimal p-form over F with 1 ∈ DF (ϕ). Let n ≥ 2 and
{b1, . . . , bn} ⊆ DF (ϕ) be p-independent over F. Denote

S =
{
λ : {1, . . . , n} → {0, . . . , p − 1}

}
,

and consider
β =

∑
λ∈S

x p
λ

n∏
i=1

bλ(i)i

with xλ ∈ F for all λ ∈ S. Then the following are equivalent:
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(i) β ∈ DF (ϕ).

(ii) xλ = 0 for all λ ∈ S such that
∑n

i=1 λ(i) ≥ 2, i.e., β = y p
0 +

∑n
i=1 bi y p

i for
some yi ∈ F , 0 ≤ i ≤ n.

Proof. Write τ ≃ ⟨1, b1, . . . , bn⟩. Then (ii) holds if and only if β ∈ DF (τ ). Since
τ ⊆ ϕ by the assumptions, the implication (ii) ⇒ (i) is obvious.

To prove (i) ⇒ (ii), suppose that (ii) does not hold (e.g., β = b1b2). Then we can
see that β /∈ DF (τ ). Hence, the p-form τ ⊥ ⟨β⟩ is anisotropic. On the other hand,
β ∈ F p(b1, . . . , bn), so τ ⊥ ⟨β⟩ is not minimal over F by part (i) of Lemma 2.12.
If β ∈ DF (ϕ), then τ ⊥ ⟨β⟩ ⊆ ϕ, in which case ϕ could not be minimal over F by
part (iv) of the same lemma, which is a contradiction; therefore, β /∈ DF (ϕ). □

Vishik equivalence. We introduce Vishik equivalence of p-forms. The name origi-
nates from Vishik criterion that, in characteristic different from 2, gives an algebraic
characterization of the motivic equivalence (see [Hoffmann 2015]).

Definition 2.14. Let ϕ,ψ be p-forms over F . We say that they are Vishik equivalent
and write ϕ

v
∼ ψ if dimϕ = dimψ and the following holds:

(v) id(ϕE)= id(ψE) for all E/F.

Remark 2.15. For quadratic forms ϕ and ψ over F (not necessarily totally singular)
such that dimϕ = dimψ , we define Vishik equivalence as (see [Zemková 2022,
Definition 1.57])

ϕ
v
∼ ψ

def
⇐⇒ iW(ϕE)= iW(ψE) and id(ϕE)= id(ψE) for all E/F.

Note that this definition agree with Definition 2.14 in the special case of totally
singular quadratic forms.

Lemma 2.16. Let ϕ, ψ be p-forms over F such that ϕ
v
∼ ψ , and let E/F be a field

extension. Then (ϕE)an
v
∼ (ψE)an. In particular, ϕan

v
∼ ψan.

Proof. Denote ϕ′
= (ϕE)an and ψ ′

= (ψE)an. Let K/E be another field extension.
It holds that id(ϕK )= id(ψK ) and id(ϕE)= id(ψE). Thus,

id(ϕ
′

K )= id(ϕK )− id(ϕE)= id(ψK )− id(ψE)= id(ψ
′

K ).

Therefore, ϕ′
v
∼ ψ ′. □

Since similar p-forms must be of the same dimension and have the same defects
over any field, we get:

Lemma 2.17. If ϕ
sim
∼ ψ , then ϕ

v
∼ ψ .

Among others, Vishik equivalence implies that a p-form is isotropic over the
function field of any Vishik equivalent p-form.
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Lemma 2.18. Let ϕ, ψ be p-forms over F of dimension at least two. If ϕ
v
∼ψ , then

ϕF(ψ) and ψF(ϕ) are isotropic.

Proof. Since ϕF(ϕ) is isotropic and we know that id(ψF(ϕ))= id(ϕF(ϕ)), we get that
ψF(ϕ) is isotropic. Symmetrically, ϕF(ψ) is isotropic. □

Lemma 2.19. Let ϕ, ψ be anisotropic p-forms over F such that ϕ
v
∼ ψ . Then

ν̂F (ϕ)≃ ν̂F (ψ), NF (ϕ)= NF (ψ) and ndegF (ϕ)= ndegF (ψ).

Proof. The claim is trivial if dimϕ = dimψ = 1. Assume that the dimension is at
least two. By Lemma 2.18, we know that ϕF(ψ) and ψF(ϕ) are isotropic. Thus, this
is a consequence of [Hoffmann 2004, Lemma 7.12]. □

3. Vishik equivalence on p-forms

As an easy consequence of some know results, we get that Question Q has a positive
answer for quasi-Pfister forms and quasi-Pfister neighbors of codimension one.

Proposition 3.1. Let ϕ, ψ be anisotropic p-forms such that ϕ
v
∼ ψ . If ϕ is a

quasi-Pfister form or a quasi-Pfister neighbor of codimension one, then ϕ
sim
∼ ψ .

Proof. By Lemma 2.19, there exists a quasi-Pfister form π over F such that
π ≃ ν̂F (ϕ)≃ ν̂F (ψ).

If ϕ is a quasi-Pfister form, then we can find c, d ∈ F∗ such that cϕ ≃ π ⊇ dψ ;
thus, ϕ

sim
∼ ψ for dimension reasons.

Now assume that ϕ is a quasi-Pfister neighbor of π of codimension 1. Then
dimψ = dimϕ = dimπ − 1. Moreover, cψ ⊆ ν̂F (ψ) ≃ π for some c ∈ F∗. So,
ψ is a quasi-Pfister neighbor of π of codimension 1. Using [Hoffmann 2004,
Proposition 4.15], any two such p-forms are similar, i.e., ϕ

sim
∼ ψ as claimed. □

Weak Vishik equivalence. Proving that two p-forms are Vishik equivalent might
be difficult. Moreover, we do not always need the full strength of the Vishik
equivalence; therefore, we define a weaker version.

Definition 3.2. Let ϕ, ψ be p-forms over F . We say that they are weakly Vishik
equivalent and write ϕ

v0
∼ ψ if dimϕ = dimψ and the following holds:

(v0) id(ϕF( p√a))= id(ψF( p√a)) for all a ∈ F.

The weak Vishik equivalence has three (rather obvious) properties.

Lemma 3.3. Let ϕ, ψ be p-forms over F. Then:

(i) If ϕ
v0
∼ ψ , then id(ϕ)= id(ψ).

(ii) ϕ
v0
∼ ψ if and only if ϕan

v0
∼ ψan.

(iii) If ϕ
v
∼ ψ , then ϕ

v0
∼ ψ .
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Proof. Part (i) follows directly from the definition, because we include the equality
of the defects over the field F( p

√
1)≃ F . Part (ii) is then an easy consequence of

part (i). Finally, part (iii) is trivial. □

To prove that Vishik equivalent forms have the same norm field, we used the
isotropy over the function fields of each other (see Lemma 2.19). Another possibility
to determine the norm field is to use Proposition 2.5, which only needs one particular
purely inseparable field extension of exponent one. But for weakly Vishik equivalent
forms, neither of these is at our disposal; nevertheless, thanks to Proposition 2.9,
we are still able to prove that they have the same norm field.

Proposition 3.4. Let ϕ,ψ be p-forms over F such that ϕ
v0
∼ψ . Then ν̂F (ϕ)≃ ν̂F (ψ),

NF (ϕ)= NF (ψ) and ndegF (ϕ)= ndegF (ψ).

Proof. We prove only NF (ϕ)= NF (ψ), then the rest follows. Invoking Lemma 3.3
and recalling that the norm field takes into account only the anisotropic part of a
p-form, we can assume that ϕ and ψ are anisotropic. By the definition of the weak
Vishik equivalence and by part (iii) of Lemma 2.8, we have for any a ∈ F :

id(ϕF( p√a)) > 0 ⇒ id(ψF( p√a)) > 0 ⇒ a ∈ NF (ψ).

We can apply Proposition 2.9 on the p-form ϕ and the field E = NF (ψ); we obtain
NF (ϕ)⊆ NF (ψ). By the symmetry of the argument, we get NF (ϕ)= NF (ψ). □

Since (weakly) Vishik equivalent forms are always of the same dimension, we
immediately get:

Corollary 3.5. Let ϕ, ψ be p-forms over F such that ϕ
v0
∼ ψ .

(i) If ϕ is minimal over F , then ψ is also minimal over F.

(ii) If ϕ is a quasi-Pfister form or a quasi-Pfister neighbor of codimension one
over F , then ϕ

sim
∼ ψ .

Proof. By Proposition 3.4, we have ndegF ϕ = ndegF ψ ; since dimϕ = dimψ ,
part (i) follows immediately. To prove part (ii), note that ν̂F (ϕ)≃ ν̂F (ψ), and so
we can proceed as in the proof of Proposition 3.1. □

Similarity factors. In this subsection, we will show that weak Vishik equivalence
(and hence Vishik equivalence as well) preserves divisibility by quasi-Pfister forms.
In particular, we will prove that if ϕ

v0
∼ ψ for some p-forms ϕ, ψ with ϕ divisible

by a quasi-Pfister form π , then ψ is divisible by π , too.
Let ϕ be a p-form defined over F . Recall that we write

G F (ϕ)= {x ∈ F∗
| xϕ ≃ ϕ} ∪ {0},

we call the nonzero elements of this set the similarity factors of ϕ. As observed in
[Hoffmann 2004, Proposition 6.4], the set G F (ϕ) together with the usual operations
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is a finite field extension of F p inside NF (ϕ); in particular, there exists a p-
independent set {a1, . . . , am} ⊆ F∗ such that G F (ϕ)= F p(a1, . . . , am). We denote
σ̂F (ϕ)≃ ⟨⟨a1, . . . , am⟩⟩ and call it the similarity form of ϕ over F . Moreover, again
by [Hoffmann 2004, Proposition 6.4], there exists a p-form γ over F such that
ϕan ≃ σ̂F (ϕ)⊗ γ . It holds that DF (σ̂F (ϕ))= G F (ϕ).

We will show that weak Vishik equivalent p-forms have the same similarity
factors. But first, we need a simple lemma.

Lemma 3.6. Let π1, π2 be anisotropic quasi-Pfister forms. Then π1 ⊆ π2 if and
only if π2 ≃ π1 ⊗ γ for some p-form γ over F. In that case, γ can be chosen to be
a quasi-Pfister form.

Proof. Write π1 ≃ ⟨⟨a1, . . . , ar ⟩⟩ and π2 ≃ ⟨⟨b1, . . . , bs⟩⟩, which means that we
have NF (π1) = F p(a1, . . . , ar ) and NF (π2) = F p(b1, . . . , bs). By [Hoffmann
2004, Proposition 4.6], there is a bijection between finite field extensions of F p

inside F and Pfister p-forms over F , which implies that π1 ⊆ π2 if and only if
NF (π1)⊆ NF (π2).

If this holds, then we can extend {a1, . . . , ar } to a p-basis of F p(b1, . . . , bs);
thus, F p(b1, . . . , bs)= F p(a1, . . . , ar , ar+1, . . . , as) for some ar+1, . . . , as ∈ F∗,
and so ⟨⟨b1, . . . , bs⟩⟩ ≃ ⟨⟨a1, . . . , ar ⟩⟩ ⊗ ⟨⟨ar+1, . . . , as⟩⟩.

On the other hand, assume π2 ≃ π1 ⊗ γ for a p-form γ . If 1 ∈ D∗

F (γ ), then we
can write γ ≃ ⟨1⟩ ⊥ γ ′ for a suitable p-form γ ′; in that case, π2 ≃ π1 ⊥π1 ⊗ γ ′

and we are done. More generally, if c ∈ D∗

F (γ ), then c ∈ D∗

F (π2)= G∗

F (π2). Now
π2 ≃ cπ2 ≃ π1 ⊗ cγ with 1 ∈ D∗

F (cγ ), so we are done by the previous case. □

Theorem 3.7. Let ϕ, ψ be anisotropic p-forms over F such that ϕ
v0
∼ ψ . Then

G F (ϕ)= G F (ψ).

Proof. The inclusion F p
⊆ G F (ψ) is obvious. Hence, pick a ∈ G F (ϕ) \ F p.

Since G F (ϕ) = DF (σ̂F (ϕ)) is a field, we get that a2, . . . , a p−1
∈ DF (σ̂F (ϕ))

and 1 ∈ DF (σ̂F (ϕ)). As the p-form ⟨1, a, . . . , a p−1
⟩ ≃ ⟨⟨a⟩⟩ is anisotropic, we

get ⟨⟨a⟩⟩ ⊆ σ̂F (ϕ) by Lemma 2.2; therefore, ⟨⟨a⟩⟩ divides σ̂F (ϕ) by Lemma 3.6.
Since further σ̂F (ϕ) divides ϕ, we can find a p-form ϕ′ defined over F such that
ϕ ≃ ⟨⟨a⟩⟩ ⊗ϕ′.

Set E = F( p
√

a); it holds that (ϕE)an ≃ (ϕ′

E)an. So, we have dim(ϕ′

E)an ≤
1
p dimϕ.

But the reverse inequality is true by Lemma 2.8; hence, ϕ′

E is anisotropic and
dim(ϕE)an =

1
p dimϕ.

Since ϕ
v0
∼ ψ , we have dim(ψE)an =

1
p dimψ . Let ψ ′ be a p-form over F such

that ψ ′

E ≃ (ψE)an. As it holds that

DF (ψ)⊆ DE(ψ)= DE(ψ
′)= DF (⟨⟨a⟩⟩ ⊗ψ ′),
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we get ψ ⊆ ⟨⟨a⟩⟩ ⊗ ψ ′ by Lemma 2.2. Comparing the dimensions implies that
ψ ≃ ⟨⟨a⟩⟩ ⊗ψ ′, and hence a ∈ G F (ψ).

All in all, we have proved G F (ϕ)⊆ G F (ψ). The other inclusion follows by the
symmetry of the argument. □

Lemma 3.8. Let τ be a p-form defined over F and K/F be a field extension such
that K p

⊆ G F (τ ). Let ϕ, ψ be p-forms defined over F , anisotropic over K and
such that ϕK ≃ ψK . Then ϕ⊗ τ ≃ ψ ⊗ τ over F.

Proof. Let ϕ≃ ⟨b1, . . . , bm⟩ and ψ ≃ ⟨c1, . . . , cm⟩. It follows from the assumptions
that {b1, . . . , bm} and {c1, . . . , cm} are two bases of the same K p-vector space.
Recall that we can get one basis from the other by a finite series of operations of
the following type: an exchange of two basis elements, scalar multiplication of one
basis element, and adding one basis element to another basis element. Thus, it is
sufficient to show that the following hold for any 0 ≤ i, j ≤ m, i ̸= j , and a ∈ K p:

(i) ⟨b0, . . . , bi , . . . , b j , . . . , bm⟩ ⊗ τ ≃ ⟨b0, . . . , b j , . . . , bi , . . . , bm⟩ ⊗ τ .

(ii) ⟨b0, . . . , bi , . . . , bm⟩ ⊗ τ ≃ ⟨b0, . . . , abi , . . . , bm⟩ ⊗ τ .

(iii) ⟨b0, . . . , bi , . . . , b j , . . . , bm⟩ ⊗ τ ≃ ⟨b0, . . . , bi + b j , . . . , b j , . . . , bm⟩ ⊗ τ .

Part (i) is obvious. Part (ii) follows from the fact that biτ ≃ abiτ since a ∈ G F (τ ).
To prove part (iii), note that biτ ⊥ b jτ ≃ (bi + b j ) τ ⊥ b jτ . □

Proposition 3.9. Let π ≃ ⟨⟨a1, . . . , an⟩⟩ be an anisotropic quasi-Pfister form over F
and K = F( p

√
a1, . . . , p

√
an). Assume that ϕ≃π⊗ϕ′ andψ≃π⊗ψ ′ are anisotropic

p-forms over F such that ϕ′

K
sim
∼ ψ ′

K . Then ϕ
sim
∼ ψ .

Proof. Without loss of generality, assume that 1 ∈ DF (ϕ
′) ∩ DF (ψ

′). Write
ϕ′

≃ ⟨1, b1, . . . , bm⟩, and let c ∈ K ∗ be such that cψ ′

K ≃ ϕ′

K . Then

c ∈ DK (ϕ
′)= spanK p{1, b1, . . . , bm} ⊆ F,

thus, cψ ′ is defined over F . By [Zemková 2024, Theorem 3.3], we have that
pnid(ϕ

′

K )= id(ϕ)= 0, and hence ϕ′

K is anisotropic; analogously, we get that cψ ′

K is
anisotropic. Now Lemma 3.8 implies that π⊗ϕ′

≃π⊗cψ ′. As π⊗cψ ′
≃ c(π⊗ψ ′),

the claim follows. □

Remark 3.10. Theorem 3.7 and Proposition 3.9 can be used for a simplification
of the problem, whether Vishik equivalence implies the similarity. Namely, we
can restrict ourselves to the case of forms with the similarity factors F p: Let ϕ, ψ
be two anisotropic p-forms over F such that ϕ

v
∼ ψ . Since G F (ϕ)= G F (ψ) by

Theorem 3.7, we can write ϕ ≃ π ⊗ϕ′ and ψ ≃ π ⊗ψ ′ with the quasi-Pfister form
π ≃ σ̂F (ϕ) ≃ σ̂F (ψ) and some anisotropic p-forms ϕ′, ψ ′ defined over F . Let
π ≃ ⟨⟨a1, . . . , an⟩⟩, and put K = F( p

√
a1, . . . , p

√
an). Then ϕ′

K , ψ ′

K are anisotropic
by [Hoffmann 2004, Proposition 5.7]. Hence (ϕK )an ≃ ϕ′

K and (ψK )an ≃ ψ ′

K ,
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and we get ϕ′

K
v
∼ ψ ′

K by Lemma 2.16 (note that to apply this lemma, we need the
full strength of the Vishik equivalence, the weak Vishik equivalence does not have
to be sufficient here). If we knew that ϕ′

K
sim
∼ ψ ′

K , it would follow by Proposition 3.9
that ϕ

sim
∼ ψ .

Counterexamples. Recall that by Proposition 3.1, Question Q has a positive answer
for quasi-Pfister forms and quasi-Pfister neighbors of codimension one (i.e., Vishik
equivalence is sufficient for the p-forms to be similar). It would be nice if Question Q
had a positive answer for all p-forms. Unfortunately, this is not true in general — as
we will see, it is not even true for all quasi-Pfister neighbors. We will provide two
examples of pairs of p-forms that are Vishik equivalent but not similar. However,
both of the counterexamples have two things in common: First, the considered
p-forms are subforms of ⟨⟨a⟩⟩, and so they have norm degree one. Second, they
do not work for p = 2 and p = 3. We will focus on the characteristic two case
in Section 4, but the case p = 3 remains open as well as p-forms of higher norm
degrees.

Before we can get to the counterexamples, we need some lemmas.

Lemma 3.11. Let 1 ≤ k, l ≤ p − 1, a ∈ F \ F p, and let E/F be a field extension.
Then the following are equivalent:

(i) ⟨1, ak
⟩ is isotropic over E.

(ii) ⟨1, al
⟩ is isotropic over E.

(iii) ak
∈ E p.

(iv) al
∈ E p.

Proof. Assume that ⟨1, ak
⟩ is isotropic over E . This is equivalent to the existence of

x, y ∈ E , at least one (and hence both) of them nonzero, such that x p
+ ak y p

= 0,
which is equivalent to ak

=
(−x)p

y p ∈ E p. This proves both (i) ⇔ (iii) and (ii) ⇔ (iv).
Now let 1 ≤ t ≤ p − 1 be such that kt ≡ l (mod p). If ak

∈ E p, then akt
∈ E p,

and hence also al
∈ E p. This proves (iii) ⇒ (iv) and, by the symmetry of the

argument, also (iv) ⇒ (iii). □

Lemma 3.12. Let a ∈ F \ F p and k, l ∈ Z with k, l ̸≡ 0 (mod p). Then we have
⟨1, ak

⟩
sim
∼ ⟨1, al

⟩ if and only if k ≡ ±l (mod p).

Proof. If k ≡ l (mod p), then k = pm + l for some m ∈ Z, and so we have
⟨1, ak

⟩ ≃ ⟨1, a pm+l
⟩ ≃ ⟨1, al

⟩. If k ≡ −l (mod p), then we can write k = pn − l
for some n ∈ Z, and then we have

⟨1, ak
⟩ = ⟨1, a pn−l

⟩ ≃ ⟨1, a−l
⟩

sim
∼ al

⟨1, a−l
⟩ ≃ ⟨al, 1⟩ ≃ ⟨1, al

⟩.
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To prove the opposite direction, assume that ⟨1, ak
⟩

sim
∼ ⟨1, al

⟩, i.e., there exists
c ∈ F∗ such that c⟨1, ak

⟩ ≃ ⟨1, al
⟩. Then necessarily c ∈ DF (⟨1, al

⟩), so we can
find x, y ∈ F such that c = x p

+ al y p. On the other hand, 1 ∈ DF (c⟨1, ak
⟩), and

thus 1 = cu p
+ cakv p for some u, v ∈ F . Putting these together, we have

1 = (x p
+al y p) u p

+(x p
+al y p) aku p

= (xu)p
+al(yu)p

+ak(xv)p
+ak+l(yv)p.

Suppose k ̸≡ ±l (mod p). Then τ = ⟨1, ak, al, ak+l
⟩ is a subform of ⟨⟨a⟩⟩, and

hence anisotropic. Thus, τ represents every element of DF (τ ) uniquely, so we
get xu ̸= 0 and yu = xv = yv = 0. This implies x, u ̸= 0 and y = v = 0; hence,
c = x p and ⟨1, ak

⟩ ≃ ⟨1, al
⟩. Thus, al

∈ DF (⟨1, ak
⟩), which is impossible for

l ̸≡ 0, k (mod p). □

Lemma 3.13. Let a ∈ F \ F p and ϕ, ψ be quasi-Pfister neighbors of ⟨⟨a⟩⟩ of the
same dimension. Then we have ϕ

v
∼ ψ .

Proof. Obviously, both ϕ and ψ are anisotropic. Let E/F be any field extension; it
holds (ϕE)an, (ψE)an ⊆ (⟨⟨a⟩⟩E)an. Then either ⟨⟨a⟩⟩E is anisotropic, and hence both
ϕE and ψE are anisotropic, or we have (⟨⟨a⟩⟩E)an ≃ ⟨1⟩E by Lemma 2.3, in which
case (ϕE)an ≃ ⟨1⟩E ≃ (ψE)an. Consequently, ϕ

v
∼ ψ . □

Example 3.14. Let p > 3, and let ϕ ≃ ⟨1, a⟩, ψ ≃ ⟨1, a2
⟩ be p-forms with

a ∈ F \ F p. Note that ϕ and ψ are quasi-Pfister neighbors of ⟨⟨a⟩⟩; therefore, ϕ
v
∼ψ

by Lemma 3.13. On the other hand, Lemma 3.12 ensures that ϕ and ψ are not
similar for any p > 3.

Note that the problems with characteristics two and three are different. If p = 2,
then ϕ is anisotropic while ψ is isotropic. If p = 3, it holds that a2ϕ ≃ ψ .

Example 3.15. Let p = 5 and a ∈ F \ F5. Set π ≃ ⟨1, a, a2, a3, a4
⟩ ≃ ⟨⟨a⟩⟩,

ϕ ≃ ⟨1, a, a2
⟩ and ψ ≃ ⟨1, a, a3

⟩. It follows by Lemma 3.13 that ϕ
v
∼ ψ .

Assume that c ∈ F is such that cψ ≃ ϕ. Note that

DF (ϕ)= {x5
0 + ax5

1 + a2x5
2 | xi ∈ F, 0 ≤ i ≤ 2},

DF (π)= {x5
0 + ax5

1 + a2x5
2 + a3x5

3 + a4x5
4 | xi ∈ F, 0 ≤ i ≤ 4},

and the expression of any element of DF (ϕ) (resp. DF (π)) is unique thanks to the
anisotropy of ϕ (resp. π ). In particular, ϕ does not represent any term of the form
a3x5 or a4x5 with x ∈ F∗.

As c ∈ DF (ϕ), we can write c = x5
+ ay5

+ a2z5 for some x, y, z ∈ F . Since
ca = ax5

+ a2 y5
+ a3z5

∈ DF (ϕ), it follows that z = 0. Furthermore, we have that
ca3

= a3x5
+a4 y5

+ (az)5 ∈ DF (ϕ) implies that x = y = 0. But then c = 0, which
is absurd. Therefore, ϕ and ψ are not similar.



VISHIK EQUIVALENCE AND SIMILARITY OF QUASILINEAR p-FORMS 341

4. Vishik equivalence on totally singular quadratic forms

In this section, we will answer Question Q for some families of totally singular
quadratic forms. Note that totally singular quadratic forms are the special case of
p-forms with p = 2, so we will use some results from the previous section. In
particular, by Proposition 3.1, we already know that Question Q has a positive answer
in case of quasi-Pfister forms and quasi-Pfister neighbors of codimension one.

There is one tool which is not available for p> 2 (at least not this strong version
of it, see the note behind Question 4.7 in [Scully 2013]) that we will use repeatedly:

Proposition 4.1 [Laghribi 2006, Proposition 2.11]. Let a ∈ F \ F2 and let ϕ be an
anisotropic totally singular quadratic form over F with dimϕ ≥ 2. If ϕ becomes
isotropic over E = F(

√
a), then there exists a totally singular quadratic form τ

over F such that dim τ = id(ϕE) and τ ⊗ ⟨1, a⟩ ⊆ ϕ.

Minimal quadratic forms. Recall that a minimal quadratic form is an anisotropic
totally singular quadratic form ϕ over F such that ndegF ϕ = 2dimϕ−1.

We start with some preparatory lemmas on forms of dimensions two and three.
Note that all anisotropic totally singular quadratic forms of dimensions two and
three are minimal by Lemma 2.6.

Lemma 4.2. Let b, c ∈ F \ F2. Then c ∈ DF (⟨1, b⟩) if and only if b ∈ DF (⟨1, c⟩)
if and only if ⟨1, b⟩ ≃ ⟨1, c⟩.

Proof. c ∈ DF (⟨1, b⟩) holds if we can find x, y ∈ F such that x2
+ by2

= c; as
c /∈ F2, we have y ̸= 0. It follows ⟨1, b⟩ ≃ ⟨1, by2

⟩ ≃ ⟨1, x2
+ by2

⟩ ≃ ⟨1, c⟩, and
thus also b ∈ DF (⟨1, c⟩). □

Lemma 4.3. Let a, b, x, y ∈ F and y ̸= 0. Then

⟨1, a, bx2
+ aby2

⟩ ≃

(
a +

(
x
y

)2 )
⟨1, a, b⟩.

Proof. We have

⟨1, a, bx2
+ aby2

⟩ ≃

〈
1, a +

(
x
y

)2
, b

(
a +

(
x
y

)2 )〉
≃

(
a +

(
x
y

)2 )〈
a +

(
x
y

)2
, 1, b

〉
≃

(
a +

(
x
y

)2 )
⟨1, a, b⟩. □

Lemma 4.4. Let a, b, c ∈ F \ F2, and suppose that a ∈ DF (⟨1, c, bc⟩). Then there
exists s ∈ F such that ⟨1, c, bc⟩ ≃ (a + s2)⟨1, a, b⟩.

Proof. Let x, y, z ∈ F be such that

(4-1) a = x2
+ cy2

+ bcz2.
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Suppose first that z = 0; then a ∈ DF (⟨1, c⟩), and we have ⟨1, c⟩ ≃ ⟨1, a⟩ by
Lemma 4.2. Moreover, since a /∈ F2, it must be y ̸= 0, and (4-1) can be rewritten
as c =

( x
y

)2
+ a

( 1
y

)2. Putting these together, we obtain

⟨1, c, bc⟩ ≃

〈
1, a, b

((
x
y

)2
+ a

(
1
y

)2 )〉
≃ ⟨1, a, b(x2

+ a)⟩,

hence, ⟨1, c, bc⟩ ≃ (a + x2)⟨1, a, b⟩ by Lemma 4.3.
Now let z ̸= 0; then

⟨1, c, bc⟩ ≃ ⟨1, c, x2
+ cy2

+ bcz2
⟩ ≃ ⟨1, a, c⟩.

Note that z ̸= 0 and b /∈ F2 imply y2
+ bz2

̸= 0; hence, we can rewrite (4-1) as

c(y2
+ bz2)2 = (a + x2)(y2

+ bz2)= (xy)2 + ay2
+ b(xz)2 + abz2.

Thus, we have

⟨1, a, c⟩ ≃ ⟨1, a, b(xz)2 + abz2
⟩ ≃ (a + x2)⟨1, a, b⟩,

where the latter isometry follows from Lemma 4.3. Therefore, in this case we get
⟨1, c, bc⟩ ≃ (a + x2)⟨1, a, b⟩, too. □

The following lemma mimics the situation we end up with after applying
Proposition 4.1.

Lemma 4.5. Letψ be a totally singular quadratic form over F such that 1∈ DF (ψ).
Let a, c ∈ F∗ be such that c⟨1, a⟩ is anisotropic over F , and suppose c⟨1, a⟩ ⊆ ψ .
Then

(i) either ⟨1, c, ac⟩ ⊆ ψ (this occurs if and only if 1 /∈ DF (c⟨1, a⟩)),

(ii) or ⟨1, a⟩ ⊆ ψ and c ∈ DF (⟨1, a⟩).

Proof. If 1 /∈ DF (c⟨1, a⟩), then ⟨1, a, ca⟩ is anisotropic, and so ⟨1, c, ca⟩ ⊆ ψ

according to Lemma 2.2. On the other hand, if 1 ∈ DF (c⟨1, a⟩), then it follows that
c ∈ DF (⟨1, a⟩)= G F (⟨1, a⟩); thus, ⟨1, a⟩ ≃ c⟨1, a⟩ ⊆ ψ . □

Now we prove that (weakly) Vishik equivalent minimal quadratic forms are
always similar. The proof is based mainly on the 2-independence of the coefficients
as explored in Lemma 2.13.

Theorem 4.6. Let ϕ,ψ be totally singular quadratic forms over F such that ϕan is
minimal over F. If ϕ

v0
∼ ψ , then ϕ

sim
∼ ψ .

Proof. Invoking Lemma 3.3 (and as obviously ϕ
sim
∼ ψ if and only if ϕan

sim
∼ ψan),

we can assume that the forms ϕ and ψ are anisotropic. By Lemma 2.12, we can
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suppose that ϕ ≃ ⟨1, a1, . . . , an⟩ for some {a1, . . . , an} ⊆ F that is 2-independent
over F ; it follows that NF (ϕ)= F2(a1, . . . , an), and

B(0) = {a1, . . . , an}

is a 2-basis of NF (ϕ) over F . Moreover, NF (ϕ) = NF (ψ) by Proposition 3.4,
and ψ is minimal over F by Corollary 3.5.

We start with an observation:

(✧) For any a ∈ DF (ϕ) \ F2, the form ϕF(
√

a) is isotropic. As ϕ
v0
∼ ψ , ψ must be

isotropic over F(
√

a) as well. By Proposition 4.1, we can find c ∈ F∗ such
that c⟨1, a⟩ ⊆ ψ .

The main idea is to look at such ca for some a ∈ DF (ϕ), and express it with
respect to an appropriate 2-basis of NF (ψ) over F . Applying Lemma 2.13, we get
that almost all coefficients must be zero. Via a combination of different values of a,
we usually end up with the conclusion that c must be a square, which means that
a ∈ DF (ψ). In particular, we will prove that there is a scalar multiple of ψ which
represents all the values 1, a1, . . . , an .

We divide the proof into several steps and cases. To simplify the notation
and omit multiple indices, we use the same letters repeatedly — the meaning of
si , ui , xi , yi , zi changes in each subcase (although they are usually used in similar
situations). On the other hand, the meaning of ai , ci , di , ei is “global”, i.e., does not
change during the proof. Moreover, we consider only 2-independence and 2-bases
over F , and so we omit to repeat “over F” each time. We also would like to recall
the notation (see page 330): By a “unique expression with respect to a 2-basis” we
actually mean the unique expression with respect to the corresponding F2-linear
basis.

(1) First of all, note that (✧) proves the claim completely if dimψ = 2. Therefore,
suppose dimψ ≥ 3.

As the first step, we will prove that ψ contains a subform similar to ⟨1, a1, a2⟩:
By (✧), we find c1 ∈ F∗ such that c1⟨1, a1⟩ ⊆ ψ . Since we are interested in ψ
only up to similarity, we can assume without loss of generality that c1 = 1. Now,
c2⟨1, a2⟩ ⊆ ψ for some c2 ∈ F∗. By Lemma 4.5, there are two possibilities: Either
⟨1, a2⟩ ⊆ ψ or ⟨1, c2, c2 a2⟩ ⊆ ψ .

(1A) If ⟨1, a2⟩ ⊆ ψ , we get ⟨1, a1, a2⟩ ⊆ ψ immediately (by Lemma 2.2).

(1B) Suppose that ⟨1, c2, c2 a2⟩ ⊆ ψ holds. We have to further distinguish two
cases, depending on whether a1 is represented by the form ⟨1, c2, c2 a2⟩ or not.

(1Bi) Assume that a1 ∈ DF (⟨1, c2, c2 a2⟩). Then ⟨1, c2, c2 a2⟩
sim
∼ ⟨1, a1, a2⟩ by

Lemma 4.4.
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(1Bii) Let a1 /∈ DF (⟨1, c2, c2 a2⟩); then ⟨1, a1, c2, c2 a2⟩ is an anisotropic subform
of ψ , and hence ψ ≃ ⟨1, a1, c2, c2 a2, s4, . . . , sn⟩ for some suitable s4, . . . , sn ∈ F∗.
Since ψ is minimal, the set

B(1Bii) = {a1, c2, c2 a2, s4, . . . , sn}

is 2-independent, and hence it is a 2-basis of NF (ψ). Since a2 ∈ NF (ψ), the element
a2 has a unique expression with respect to B(1Bii):

(4-2) a2 = c2 · c2 a2 ·

(
1
c2

)2
.

It follows by Lemma 2.13 that a2 /∈ DF (ψ).
Furthermore, as a1 + a2 ∈ DF (ϕ) \ F2, we use (✧) to find d2 ∈ F∗ such that

d2⟨1, a1 + a2⟩ ⊆ ψ . In particular, d2 ∈ DF (ψ); hence,

d2 = x2
0 + a1 · x2

1 + c2 · x2
2 + c2 a2 · x2

3 +

n∑
i=4

si · x2
i

for some suitable x0, . . . , xn ∈ F . Multiplying d2 by (a1 + a2) and using (4-2) (i.e.,
expressing d2(a1 + a2) with respect to the basis B(1Bii)), we get

d2(a1 + a2)= (a1 x1)
2
+ a1 · x2

0 + c2 · (a2 x3)
2
+ c2 a2 · x2

2

+ a1 · c2 · x2
2 + a1 · c2 a2 · x2

3 +

n∑
i=4

a1 · si · x2
i + c2 · c2 a2 ·

( x0

c2

)2

+ a1 · c2 · c2 a2 ·

( x1

c2

)2
+

n∑
i=4

c2 · c2 a2 · si ·

( xi

c2

)2
.

We know that d2(a1+a2) is represented by ψ ; but that is impossible by Lemma 2.13
unless all the terms composed from at least two elements of B(1Bii) (i.e., all but
the first four) are zero. It follows xi = 0 for all 0 ≤ i ≤ n; hence, d2 = 0 which is
absurd. Therefore, this case cannot happen at all.

We can conclude step (1): We have proved that ψ has a subform similar to
⟨1, a1, a2⟩. If dimψ = 3, then there is nothing more to prove. From now on, we
will assume that dimψ ≥ 4 and ⟨1, a1, a2⟩ ⊆ ψ .

(2) Now let k ∈ {3, . . . , n}. By (✧), we find ck, dk, ek ∈ F∗ such that ck⟨1, ak⟩,
dk⟨1, a1 +ak⟩ and ek⟨1, a2 +ak⟩ are subforms of ψ . The case distinction is slightly
different than in (1); here it depends on whether ck is represented by DF (⟨1, a1, a2⟩)

or not.

(2A) Assume ck ∈ DF (⟨1, a1, a2⟩). Then

(4-3) ck = u2
0 + a1 · u2

1 + a2 · u2
2
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for some u0, u1, u2 ∈ F (here we slightly abuse the notation; technically, u0, u1, u2

depend on k), and so

ck ak = ak · u2
0 + a1 · ak · u2

1 + a2 · ak · u2
2.

By the uniqueness of the expression of ck ak with respect to B(0), it follows by
Lemma 2.13 that ck ak /∈ DF (⟨1, a1, a2⟩). On the other hand, we know that
ck ak ∈ DF (ψ); therefore, ψ ≃⟨1, a1, a2, ck ak, s4, . . . , sn⟩ for some s4, . . . , sn ∈ F∗

(possibly different from the si ’s in case (1Bii) above), and

B(2A) = {a1, a2, ck ak, s4, . . . , sn}

is a 2-basis of NF (ψ) by the minimality of ψ . Obviously, ak = ck · ck ak · c−2
k ;

rewriting ck via (4-3), we get the unique expression of ak with respect to B(2A):

(4-4) ak = ck ak ·

(
u0

ck

)2

+ a1 · ck ak ·

(
u1

ck

)2

+ a2 · ck ak ·

(
u2

ck

)2

.

Furthermore, we have dk ∈ DF (ψ), and hence

dk = x2
0 + a1 · x2

1 + a2 · x2
2 + ck ak · x2

3 +

n∑
i=4

si · x2
i

for suitable x0, . . . , xn ∈ F (again, we omit to express the dependence on k).
Multiplying dk by (a1 + ak) and using (4-4), we can express dk(a1 + ak) with
respect to B(2A) as

dk(a1 + ak)= (a1 x1 + ak u0x3)
2
+ a1 · (x0 + ak u1 x3)

2
+ a2 · (ak u2 x3)

2

+ ck ak ·

(
u0

ck
x0 +

a1u1

ck
x1 +

a2 u2

ck
x2

)2

+ a1 · a2 · x2
2

+ a1 · ck ak ·

(
u1

ck
x0 +

u0

ck
x1 + x3

)2

+

n∑
i=4

a1 · si · x2
i

+ a2 · ck ak ·

(
u2

ck
x0 +

u0

ck
x2

)2

+

n∑
i=4

ck ak · si ·

(
u0

ck
xi

)2

+ a1 · a2 · ck ak ·

(
u2

ck
x1 +

u1

ck
x2

)2

+

n∑
i=4

a1 · ck ak · si ·

(
u1

ck
xi

)2

+

n∑
i=4

a2 · ck ak · si ·

(
u2

ck
xi

)2

.

Similarly as before, since dk(a1 + ak) ∈ DF (ψ) and ψ is minimal, it follows from
Lemma 2.13 that all the “composed” terms, i.e., all the terms except for the first
four, must be zero. In particular:
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• The coefficients by ck ak · si and a1 · ck ak · si and a2 · ck ak · si are zero for each
4 ≤ i ≤ n; since at least one of u0, u1 and u2 is nonzero, we get that xi = 0 for
each 4 ≤ i ≤ n.

• The coefficient by a1 · a2· equals zero; thus, x2 = 0.

• The coefficient by a2 · ck ak must be zero, i.e., u2
ck

x0 +
u0
ck

x2 = 0. As x2 = 0, we
get u2 x0 = 0.

• The coefficient by a1 · a2 · ck ak is zero, so u2
ck

x1 +
u1
ck

x2 = 0. Again, as x2 = 0,
it must hold u2 x1 = 0.

• The coefficient by a1 · ck ak must be zero, thus x3 +
u1
ck

x0 +
u0
ck

x1 = 0.

If u2 ̸= 0, then x0 = x1 = 0, and in that case also x3 = 0 (by the last bullet point);
but then dk = 0, which is absurd. Therefore, u2 = 0.

We proceed analogously for ek and ek(a2+ak), only now we know u2 = 0, which
means that

ck = u2
0 + a1 · u2

1 and ak = ck ak ·

(
u0

ck

)2

+ a1 · ck ak ·

(
u1

ck

)2

.

Since ek ∈ DF (ψ), we have

ek = y2
0 + a1 · y2

1 + a2 · y2
2 + ck ak · y2

3 +

n∑
i=4

si · y2
i

for some yo, . . . , yn ∈ F , and

ek(a2 + ak)=

(
a2 y2 + ck ak

u0

ck
y3

)2

+ a1 ·

(
ck ak

u1

ck
y3

)2

+ a2 · y2
0

+ ck ak ·

(
u0

ck
y0 + a1

u1

ck
y1

)2

+ a1 · a2 · y2
1

+ a1 · ck ak ·

(
u1

ck
y0 +

u0

ck
y1

)2

+ a2 · ck ak ·

(
y3 +

u0

ck
y2

)2

+

n∑
i=4

a2 · si · y2
i +

n∑
i=4

ck ak · si ·

(
u0

ck
yi

)2

+ a1 · a2 · ck ak ·

(
u1

ck
y2

)2

+

n∑
i=4

a1 · ck ak · si ·

(
u1

ck
yi

)2

.

Again, all the coefficients by the composed terms must be zero, so in particular:

• yi = 0 for all 4 ≤ i ≤ n because of the coefficients by a2 · si .

• y1 = 0 because of the coefficient by a1 · a2.

• u1 y0 = 0 because of the coefficient by a1 · ck ak .
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• u1 y2 = 0 because of the coefficient by a1 · a2 · ck ak .

• y3 +
u0
ck

y2 = 0 because of the coefficient by a2 · ck ak .

If u1 ̸= 0, then necessarily y0 = 0 and y2 = 0, which implies y3 = 0; it would follow
ek = 0, which is absurd. Thus, we have u1 = 0. Therefore, ck = u2

0, and we have
⟨1, ak⟩ ⊆ ψ ; in particular, ak ∈ DF (ψ).

(2B) Suppose ck /∈ DF (⟨1, a1, a2⟩); then ⟨1, a1, a2, ck⟩ ⊆ ψ . Here we distinguish
two subcases:

(2Bi) Let ck ak ∈ DF (⟨1, a1, a2, ck⟩); then

ck ak = u2
0 + a1 · u2

1 + a2 · u2
2 + ck · u2

3

for some u0, . . . , u3 ∈ F , and hence

ak = u2
3 + ck ·

(
u0

ck

)2

+ a1 · ck ·

(
u1

ck

)2

+ a2 · ck ·

(
u2

ck

)2

.

We have
ψ ≃ ⟨1, a1, a2, ck, s4, . . . , sn⟩

for some s4, . . . , sn ∈ F ; then

B(2Bi) = {a1, a2, ck, s4, . . . , sn}

is a 2-basis of NF (ψ). As before, we consider the unique representations of dk and
ek by ψ , and express dk(a1 + ak) and ek(a2 + ak) with respect to B(2Bi). We obtain
that u1 = u2 = 0; therefore, ak = u2

3 + ck
( u0

ck

)2, so in particular ak ∈ DF (ψ).

(2Bii) If ck ak /∈ DF (⟨1, a1, a2, ck⟩), then we have dimψ ≥ 5 and

ψ ≃ ⟨1, a1, a2, ck, ck ak, s5, . . . , sn⟩

for some s5, . . . , sn ∈ F , and the corresponding 2-basis of NF (ψ) is

B(2Bii) = {a1, a2, ck, ck ak, s5, . . . , sn}.

Again, we consider the unique representation of dk by ψ . In this case, we express ak

with respect to B(2Bii) as

ak = ck · ck ak ·

(
1
ck

)2

.

This time, the consideration of the element dk(a1+ak) with respect to B(2Bii) already
implies dk = 0; that is absurd, and hence this case cannot happen.

(3) We have proved that, up to multiplying ψ by a constant from F∗, we have
⟨1, a1, a2⟩ ⊆ ψ (step (1)), and ak ∈ DF (ψ) for all 3 ≤ k ≤ n (step (2)). Invoking
Lemma 2.2, we get ϕ

sim
∼ ψ . □



348 KRISTÝNA ZEMKOVÁ

Special quasi-Pfister neighbors. The definition of a special quasi-Pfister neighbor
is motivated by its counterpart in characteristic different from 2, which appeared in
[Ahmad and Ohm 1995].

Definition 4.7. We call a totally singular quadratic form ϕ over F a special quasi-
Pfister neighbor if ϕ

sim
∼ π ⊥ bσ with π a quasi-Pfister form over F , b ∈ F∗ and

σ ⊆ π . In such situation, we also say that ϕ is given by the triple (π, b, σ ).

For a totally singular quadratic form ϕ over F , we define its full splitting pattern as

fSP(ϕ)= {dim(ϕE)an | E/F a field extension}.

We will describe all special quasi-Pfister neighbors of dimension up to eleven and
their full splitting pattern. In particular, we will see that all quasi-Pfister neighbors
up to dimension eight are special. First, we recall a proposition from [Hoffmann
and Laghribi 2004].

Lemma 4.8 [Hoffmann and Laghribi 2004, Proposition 8.12]. Let ϕ be an aniso-
tropic totally singular quadratic form over F with dimϕ ≤ 8. Then ϕ is a quasi-
Pfister neighbor if and only if

(i) dimϕ ≤ 3, or

(ii) dimϕ = 2n for some n ≥ 1 and ϕ is similar to an n-fold quasi-Pfister form, or

(iii) there exist x, y, z ∈ F∗ such that

(a) ϕ
sim
∼ ⟨1, x, y, xy, z⟩ in the case of dimϕ = 5,

(b) ϕ
sim
∼ ⟨1, x, y, xy, z, xz⟩ in the case of dimϕ = 6,

(c) ϕ
sim
∼ ⟨x, y, z, xy, xz, yz, xyz⟩ in the case of dimϕ = 7.

With the previous lemma, it is easy to classify all special quasi-Pfister neighbors
of dimensions up to 8: Any quasi-Pfister neighbor of dimension 2n for some n ≥ 0
is similar to an n-fold quasi-Pfister form, and hence special. For the other small
dimensions, we have

• ⟨1, x, y⟩ ≃ ⟨⟨x⟩⟩ ⊥ y⟨1⟩,

• ⟨1, x, y, xy, z⟩ ≃ ⟨⟨x, y⟩⟩ ⊥ z⟨1⟩,

• ⟨1, x, y, xy, z, xz⟩ ≃ ⟨⟨x, y⟩⟩ ⊥ z⟨1, x⟩,

• ⟨x, y, z, xy, xz, yz, xyz⟩ ≃ xyz(⟨⟨x, y⟩⟩ ⊥ z⟨1, x, y⟩);

therefore, we get the following corollary.

Corollary 4.9. All anisotropic quasi-Pfister neighbors of dimensions up to 8 are
special.

Proposition 4.10. Let ϕ be an anisotropic special quasi-Pfister neighbor.
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(i) If dimϕ = 3, then ϕ
sim
∼ ⟨⟨a⟩⟩ ⊥ d⟨1⟩ for some a, d ∈ F∗ and fSP(ϕ)= {1, 2, 3}.

(ii) If dimϕ = 5, then we have ϕ
sim
∼ ⟨⟨a, b⟩⟩ ⊥ d⟨1⟩ for some a, b, d ∈ F∗ and

fSP(ϕ)= {1, 2, 3, 4, 5}.

(iii) If dimϕ = 6, then we have ϕ
sim
∼ ⟨⟨a, b⟩⟩ ⊥ d⟨1, a⟩ for some a, b, d ∈ F∗ and

fSP(ϕ)= {1, 2, 3, 4, 6}.

(iv) If dimϕ = 7, then we have ϕ
sim
∼ ⟨⟨a, b⟩⟩ ⊥ d⟨1, a, b⟩ for some a, b, d ∈ F∗ and

fSP(ϕ)= {1, 2, 4, 7}.

(v) If dimϕ = 9, then we have ϕ
sim
∼ ⟨⟨a, b, c⟩⟩ ⊥ d⟨1⟩ for some a, b, c, d ∈ F∗ and

fSP(ϕ)= {1, 2, 3, 4, 5, 8, 9}.

(vi) If dimϕ = 10, then ϕ
sim
∼ ⟨⟨a, b, c⟩⟩ ⊥ d⟨1, a⟩ for some a, b, c, d ∈ F∗ and

fSP(ϕ)= {1, 2, 3, 4, 5, 6, 8, 10}.

(vii) If dimϕ = 11, then ϕ
sim
∼ ⟨⟨a, b, c⟩⟩ ⊥ d⟨1, a, b⟩ for some a, b, c, d ∈ F∗ and

fSP(ϕ)= {1, 2, 3, 4, 6, 7, 8, 11}.

Proof. All special quasi-Pfister neighbors up to dimension 8 have been described by
Lemma 4.8 and Corollary 4.9. If ϕ

sim
∼ π ⊥ dσ is a special quasi-Pfister neighbor

and 9 ≤ dimϕ ≤ 11, then necessarily dimπ = 23 and 1 ≤ dim σ ≤ 3. Recall that
all totally singular quadratic forms of dimensions two or three are minimal; thus,
without loss of generality, ⟨1⟩⊆σ ⊆⟨1, a, b⟩ for some 2-independent set {a, b}⊆ F .
Then we can find c ∈ F∗ such that {a, b, c} is a 2-basis of NF (π) over F , and it
follows that π ≃ ⟨⟨a, b, c⟩⟩.

The full splitting pattern of ϕ follows directly from [Zemková 2024, Theo-
rem 4.11]. □

In the following example, we show that not all quasi-Pfister neighbors are special.

Example 4.11. Let ϕ≃⟨1, a, b, c, d, ab, ac, ad, bc⟩ be a totally singular quadratic
form such that {a, b, c, d} ⊆ F is 2-independent over F . Then ϕ is a quasi-Pfister
neighbor of ⟨⟨a, b, c, d⟩⟩.

On the other hand, we have

ϕF(
√

b) ≃ ⟨1, a, 1, c, d, a, ac, ad, c⟩F(
√

b) ≃ ⟨1, a, c, d, ac, ad, 0, 0, 0⟩F(
√

b),

since ⟨1, a, c, d, ac, ad⟩ ⊆ ⟨⟨a, c, d⟩⟩ and (⟨⟨a, c, d⟩⟩)F(
√

b) ≃ (⟨⟨a, b, c, d⟩⟩F(
√

b))an

is anisotropic, we get

(ϕF(
√

b))an ≃ ⟨1, a, c, d, ac, ad⟩F(
√

b),

so we have in particular 6∈ fSP(ϕ). As the full splitting pattern of any 9-dimensional
special quasi-Pfister neighbor equals to {1, 2, 3, 4, 5, 8, 9} by Proposition 4.10, it
follows that ϕ cannot be any special quasi-Pfister neighbor.
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Ideally, we would like to prove that if two totally singular forms are Vishik
equivalent and at least one of them is a special quasi-Pfister neighbor, then they are
similar. Unfortunately, we will need some additional assumptions. We start with a
few lemmas.

Lemma 4.12 [Zemková 2024, Lemma 4.8]. Let π be a quasi-Pfister form over F ,
σ ⊆ π and d ∈ F∗ be such that the totally singular quadratic form ϕ ≃ π ⊥ dσ is
anisotropic. Let E/F be a field extension.

(i) If d ∈ DE(π), then (ϕE)an ≃ (πE)an; in particular, id(ϕE)= id(πE)+ dim σ .

(ii) If d /∈ DE(π), then (ϕE)an ≃ (πE)an ⊥ d(σE)an; in particular, id(ϕE) =

id(πE)+ id(σE).

We prove that if a quasi-Pfister neighbor of norm degree 2n contains a quasi-
Pfister form of dimension 2n−1, then it must be a special quasi-Pfister neighbor.

Lemma 4.13. Let π be an anisotropic quasi-Pfister form over F. Moreover, let
ψ be an anisotropic totally singular quadratic form over F such that π ⊆ ψ and
ν̂F (ψ)≃ π ⊗⟨⟨b⟩⟩ for some b ∈ F∗. Then there exists a totally singular form ρ ⊆ π

such that ψ ≃ π ⊥ bρ.

Proof. First, recall that a norm form is always anisotropic; hence, π ⊗ ⟨⟨b⟩⟩ is
anisotropic, and we get by Lemma 2.10 that b /∈ NF (π)= DF (π).

Let ρ ′ be a totally singular quadratic form over F such that ψ ≃π ⊥ bρ ′. Denote
s = dim ρ ′ and ρ ′

= ⟨d ′

1, . . . , d ′
s⟩. For each k ∈ {1, . . . , s}, we proceed as follows:

Since bDF (ρ
′)⊆ DF (ψ)⊆ DF (π ⊗ ⟨⟨b⟩⟩), we can write

bd ′

k = π(ξ k)+ bπ(ζ k)

for some appropriate vectors ξ k, ζ k . If ζ k = 0, then bd ′

k = π(ξ k) ∈ DF (π), which
contradicts the anisotropy of ψ ; thus, the vector ζ k must be nonzero. It follows that
π(ζ k) ̸= 0, and so we set dk = π(ζ k); then

π ⊥ b⟨d ′

k⟩ ≃ π ⊥ ⟨π(ξ k)+ bdk⟩ ≃ π ⊥ b⟨dk⟩.

It follows that

π ⊥ b⟨d ′

1, . . . , d ′

k⟩ ⊥ b⟨dk+1, . . . , ds⟩ ≃ π ⊥ b⟨d ′

1, . . . , d ′

k−1⟩ ⊥ b⟨dk, . . . , ds⟩

for any 1 ≤ k ≤ s. Therefore,

π ⊥ b⟨d ′

1, . . . , d ′

s⟩ ≃ π ⊥ b⟨d1, . . . , ds⟩,

where ρ ≃ ⟨d1, . . . , ds⟩ is a subform of π , because dk ∈ DF (π) for each k. □

Proposition 4.14. Let ϕ,ψ be anisotropic totally singular quadratic forms over F
such that ϕ

v0
∼ψ . Assume that ϕ is a special quasi-Pfister neighbor given by a triple

(π, b, σ ). Moreover, suppose that cπ ⊆ ψ for some c ∈ F∗. Then ψ is a special
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quasi-Pfister neighbor given by a triple (π, b, ρ) for some form ρ over F such that
ρ
v0
∼ σ .

Proof. Let d ∈ DF (σ ). Then d ∈ DF (π) = G F (π); hence, dϕ ≃ π ⊥ b(dσ) and
1∈ DF (dσ). Therefore, we can assume that 1∈ DF (σ ). Then, since ϕ is anisotropic,
we must have b /∈ DF (π). It follows that ν̂F (ϕ)≃ π ⊗⟨⟨b⟩⟩. Since ν̂F (ψ)≃ ν̂F (ϕ)

by Proposition 3.4, we also have ν̂F (ψ)≃ π ⊗ ⟨⟨b⟩⟩. Finally, we can suppose that
π ⊆ ψ . Therefore, we can apply Lemma 4.13 to find a totally singular quadratic
form ρ ⊆ π such that ψ ≃ π ⊥ bρ.

It remains to show that σ
v0
∼ ρ: The equality dim σ = dim ρ follows directly

from dimϕ = dimψ . So, consider the field E = F(
√

a) for some a ∈ F∗. If
a /∈ NF (π), then πE is anisotropic by Lemma 2.8, and so are its subforms σE

and ρE ; in particular, id(σE) = id(ρE). On the other hand, if a ∈ NF (π), then
(π ⊗ ⟨⟨a⟩⟩)an ≃ π by Lemma 2.10; together with Lemma 2.8, we obtain

DE(πE)= DF (π ⊗ ⟨⟨a⟩⟩)= DF (π).

It follows that b /∈ DE(πE), and so we get by Lemma 4.12 that

id(ϕE)= id(πE)+ id(σE) and id(ψE)= id(πE)+ id(ρE).

Since id(ϕE)= id(ψE) by the assumption, we get id(σE)= id(ρE). □

Remark 4.15. With the same notation as in Proposition 4.14, we can consider a
stronger assumption ϕ

v
∼ ψ and ask whether it implies σ

v
∼ ρ.

First, note that any field E with b ∈ DE(π) is problematic: In this case, we have

bϕE ≃ bπE ⊥ σE ≃ (π ⊥ σ)E .

Hence, (ϕE)an ≃ (πE)an, so we do not get any information about id(σE).
We can still give a more specific characterization of the problematic fields: As

in the proof of Proposition 4.14, we can assume that 1 ∈ DF (σ ). First, let T and S
be fields such that F ⊆ T ⊆ S ⊆ E , where T/F is purely transcendental, S/T is
separable and E/S is purely inseparable.

If b ∈ DS(π), then (π ⊥ ⟨b⟩)S is isotropic, and hence π ⊥ ⟨b⟩ must be isotropic
over F . But that is impossible because π ⊥ ⟨b⟩⊆π ⊥ bσ and π ⊥ bσ is anisotropic.
Thus, b /∈ DS(π).

Furthermore, isotropy is a finite problem; thus, we can construct a field L with
S ⊆ L ⊆ E such that L/S is finite, and id(σL)= id(σE) and id(ρL)= id(ρE). Then
L = S

(2n1√
s1, . . . ,

2nk√
sk

)
for some k ≥0, si ∈ S and ni ≥1. Set K = S(

√
s1, . . . ,

√
sk);

then id(σK )= id(σL) and id(ρK )= id(ρL) by [Zemková 2024, Theorem 3.3].
If b /∈ DK (π), then we can apply Lemma 4.12 to get id(σK ) = id(ρK ); then

id(σE) = id(ρE) by the construction of K , and we are done. Therefore, assume
b ∈ DK (π).
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Now we can construct a field M such that S ⊆ M ⊆ K , it holds that b /∈ DM(π),
and for each ε ∈ K \ M , we have b ∈ DM(ε)(π). Then (ϕM)an ≃ (πM)an ⊥ b(σM)an

and (ψM)an ≃ (πM)an ⊥ b(ρM)an and id(σM)= id(ρM) by Lemma 4.12. Thus, let
ϕ′, ψ ′, π ′, σ ′, ρ ′ be forms over F such that ϕ′

M ≃ (ϕM)an, ψ ′

M ≃ (ψM)an, etc. In
particular, π ′

M is a quasi-Pfister form by Lemma 2.3.
Let ε ∈ K \ M , and e ∈ S be such that ε2

= e. Then we know

b ∈ DM(
√

e)(π
′) \ DM(π

′)= DM(π
′
⊗ ⟨⟨e⟩⟩) \ DM(π

′),

in particular, DM(π
′)⊊ DM(π

′
⊗ ⟨⟨e⟩⟩), which is only possible if (π ′

⊗ ⟨⟨e⟩⟩)M is
anisotropic. It follows by Lemma 2.8 that π ′

M(
√

e) is anisotropic. In that case, its
subforms σ ′

M(
√

e), ρ
′

M(
√

e) must be anisotropic, too. It follows that

id(σM(
√

e))= id(σM)= id(ρM)= id(ρM(
√

e)).

However, the field extension K/M does not have to be simple, as we show in
the following example: Let π ′

M ≃ ⟨⟨a1, . . . , an⟩⟩M for some a1, . . . , an ∈ F∗, and
assume that n ≥ 2. Set K = M(

√
b,

√
a1 + a2 b). It is easy to see that {b, a1 +a2 b}

is 2-independent over M , and hence [K : M] = 4. Since K does not contain any
element of degree four over M , it follows that K/M is not simple. Now consider
ε ∈ K \ M ; then

ε = w+ x
√

b + y
√

b
√

a1 + a2 b + z
√

a1 + a2 b,

with w, x, y, z ∈ M , at least one of x, y, z nonzero. Then

DM(ε)(π
′)= DM(π

′
⊗ ⟨⟨ε2

⟩⟩)= M2(a1, . . . , an, ε
2).

Considering ε2 as an element of K 2/M2(a1, . . . , an), we get

ε2
= w2

+ bx2
+ a1by2

+ a2(by)2 + a1z2
+ a2 bz2

≡ bx2
+ a1by2

+ a2 bz2
= b(x2

+ a1 y2
+ a2z2)≡ b mod M2(a1, . . . , an),

where we used that x2
+a1 y2

+a2z2
̸=0 (this holds because {a1, a2} is 2-independent

over M and at least one of x, y, z is nonzero by the assumption). Therefore, we have
DM(ε)(π

′) = M2(a1, . . . , an, b). In particular, b ∈ DM(ε)(π
′) for any ε ∈ K \ M ,

and so we cannot find any field M ′ with M ⊊ M ′
⊆ K such that b /∈ DM ′(π ′).

With the notation and assumptions of Proposition 4.14, we know that σ
v0
∼ ρ,

and hence NF (σ )≃ NF (ρ) by Proposition 3.4. To conclude this section, we prove
NF (σ )≃ NF (ρ) by a different approach.

Lemma 4.16. Let ϕ = π ⊥ bσ , ψ = π ⊥ bρ be anisotropic totally singular qua-
dratic forms over F with π a quasi-Pfister form, b ∈ F∗ and σ, ρ ⊆ π . Moreover,
suppose that 1 ∈ DF (σ )∩ DF (ρ). If ϕ

v
∼ ψ , then NF (σ )= NF (ρ).
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Proof. First, note that the anisotropy of ϕ together with the assumption 1 ∈ DF (σ )

implies that b /∈ DF (π).
By Lemma 2.7, we find c1, . . . , cs ∈ F∗ and 0≤k ≤ s such that σ =⟨1, c1, . . . , cs⟩

and {c1, . . . , ck} is a 2-basis of NF (σ ) over F . Set K = F(
√

c1, . . . ,
√

ck). Then
(σK )an ≃ ⟨1⟩ by Proposition 2.5. Write π ≃ ⟨⟨a1, . . . , an⟩⟩ and π ′

≃ (πK )an. Then

DK (π
′)= K 2(a1, . . . , an)

= F2(c1, . . . , ck, a1, . . . , an)
NF (σ )⊆NF (π)

= F2(a1, . . . , an)= DF (π);

hence, b /∈ DK (π
′), and so (ϕK )an ≃ π ′

⊥ b⟨1⟩. We will show that this is isometric
to (ψK )an: Obviously, π ′

⊆ (ψK )an. From the Vishik equivalence of ϕ and ψ we
know dim(ψK )an = dimπ ′

+ 1. Set ρ ′
≃ (ρK )an. Since b /∈ DK (π

′), we get by
Lemma 4.12 that π ′

⊥ bρ ′ is anisotropic. It means that π ′
⊥ bρ ′

≃ (ψK )an, and
hence dim ρ ′

= 1. As 1 ∈ DF (ρ)⊆ DK (ρ
′), it follows that ρ ′

≃ ⟨1⟩. Consequently,
again by Proposition 2.5, we get NF (ρ) ⊆ F2(c1, . . . , ck) = NF (σ ). The other
inclusion can be proved analogously. Therefore, NF (σ )= NF (ρ). □

Conclusion. In this final part, we put together all our results on the Vishik equiva-
lence of totally singular quadratic forms.

Before stating the main theorem, note that any anisotropic totally singular qua-
dratic form of dimension less or equal to four is either minimal or it is similar to a
quasi-Pfister form.

Theorem 4.17. Let ϕ, ψ be totally singular quadratic forms over F such that ϕ
v0
∼ψ .

Assume that ϕ is a special quasi-Pfister neighbor given by the triple (π, b, σ ), and
cπ ⊆ ψ for some c ∈ F∗. Moreover, suppose that σ is either a quasi-Pfister form,
a quasi-Pfister neighbor of codimension one, or a minimal form. Then ϕ

sim
∼ ψ .

Proof. By Proposition 4.14, there exists a totally singular quadratic form ρ ⊆ π

and c′
∈ F∗ such that c′ψ ≃ π ⊥ bρ and σ

v0
∼ ρ. Then, by Corollary 3.5, resp. by

Theorem 4.6, we have σ
sim
∼ ρ.

Let d ∈ F∗ be such that ρ ≃ dσ , and let a ∈ D∗

F (σ ). Then

da ∈ D∗

F (dσ)= D∗

F (ρ)⊆ D∗

F (π)= G∗

F (π).

As a ∈ G∗

F (π) and G∗

F (π) is a group, it follows that d ∈ G∗

F (π). Hence,

dϕ ≃ dπ ⊥ b(dσ)≃ π ⊥ bρ ≃ c′ψ,

i.e., ϕ
sim
∼ ψ . □

Corollary 4.18. Let ϕ, ψ be totally singular quadratic forms over F such that
ϕ

v
∼ ψ . Let K/F be a field extension such that K 2

≃ G F (ϕ). Assume that (ϕK )an is
a special quasi-Pfister neighbor given by the triple (π, b, σ ), and that cπ ⊆ ψK for
some c ∈ K ∗. Moreover, suppose that σ is either a quasi-Pfister form, a quasi-Pfister
neighbor of codimension one, or a minimal form (over K ). Then ϕ

sim
∼ ψ .
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Proof. Without loss of generality, assume that ϕ and ψ are anisotropic. Denote
τ ≃ σ̂F (ϕ), and let a1, . . . , an ∈ F∗ be such that τ ≃ ⟨⟨a1, . . . , an⟩⟩. Then there
exists a totally singular quadratic form ϕ′ over F such that ϕ ≃ τ ⊗ϕ′. Furthermore,
as G F (ϕ)= G F (τ )= DF (τ )= F2(a1, . . . , an), we have K = F(

√
a1, . . . ,

√
an).

By [Zemková 2024, Theorem 3.3], id(ϕ′

K ) = id(τ ⊗ ϕ′) = 0. Therefore, ϕ′

K is
anisotropic, and we have (ϕK )an ≃ ϕ′

K . Since G F (ϕ) ≃ G F (ψ) by Theorem 3.7,
we can use analogous arguments to find a form ψ ′ over F such that ψ ≃ τ ⊗ψ ′

and ψ ′

K ≃ (ψK )an.
Since ϕ

v
∼ ψ , we get by Lemma 2.16 that ϕ′

K
v
∼ ψ ′

K . Since cπ ⊆ ψK and π is
anisotropic over K , it follows that cπ ⊆ ψ ′

K . Note that ϕ′

K ≃ (ϕK )an is a special
quasi-Pfister neighbor given by the triple (π, b, σ ). Hence, by Theorem 4.17, we
have ϕ′

K
sim
∼ ψ ′

K . Finally, Proposition 3.9 implies that ϕ
sim
∼ ψ . □

Remark 4.19. We need in the proof of Corollary 4.18 that ϕ′

K
v0
∼ ψ ′

K . To be able
to conclude that, we need the full strength of ϕ

v
∼ ψ , it would not be sufficient to

assume ϕ
v0
∼ ψ .

We would like to conclude the article with a determination of the smallest
dimension in which the answer to Question Q is not fully known. To do that, we
first need to characterize totally singular quadratic forms of low dimension.

Proposition 4.20. Let ϕ be a totally singular quadratic form over F. In each of the
following cases, there exists a 2-independent set {a, b, c, d, e} over F such that:

(i) Let dimϕ = 1 and ndegF ϕ = 1, then ϕ
sim
∼ ⟨1⟩.

(ii) Let dimϕ = 2 and ndegF ϕ = 2, then ϕ
sim
∼ ⟨1, a⟩.

(iii) Let dimϕ = 3 and ndegF ϕ = 4, then ϕ
sim
∼ ⟨1, a, b⟩.

(iv) Let dimϕ = 4;

• if ndegF ϕ = 4, then ϕ
sim
∼ ⟨⟨a, b⟩⟩,

• if ndegF ϕ = 8, then ϕ
sim
∼ ⟨1, a, b, c⟩.

(v) Let dimϕ = 5;

• if ndegF ϕ = 8, then ϕ
sim
∼ ⟨⟨a, b⟩⟩ ⊥ c⟨1⟩,

• if ndegF ϕ = 16, then ϕ
sim
∼ ⟨1, a, b, c, d⟩.

(vi) Let dimϕ = 6;

• if ndegF ϕ = 8, then ϕ
sim
∼ ⟨⟨a, b⟩⟩ ⊥ c⟨1, a⟩,

• if ndegF ϕ=16, then there are two possibilities: either ϕ
sim
∼ ⟨⟨a, b⟩⟩⊥⟨c, d⟩,

or ϕ
sim
∼ ⟨1, a, b, c, d, t + ad⟩ for some t ∈ F2(a, b, c),

• if ndegF ϕ = 32, then ϕ
sim
∼ ⟨1, a, b, c, d, e⟩.
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Proof. Cases (i)–(iv) are obvious.

(v) Let dimϕ = 5. If ndegF ϕ = 8, then ϕ is a quasi-Pfister neighbor, which
is special by Corollary 4.9; the claim then follows from Proposition 4.10. If
ndegF ϕ=16=2dimϕ−1, then ϕ is minimal, and the claim follows from Lemma 2.12.

(vi) Assume that dimϕ = 6. If ndegF ϕ = 8, then ϕ is a quasi-Pfister neighbor,
special by Corollary 4.9, and we obtain the required form from Proposition 4.10.

If dimϕ= 6 and ndegF ϕ= 16, then consider τ ⊆ϕ with dim τ = 5, and let x ∈ F
be such that ϕ ≃ τ ⊥ ⟨x⟩. By (v), we can assume that either τ ≃ ⟨⟨a, b⟩⟩ ⊥ ⟨c⟩, or
τ ≃⟨1, a, b, c, d⟩. In the former case, we must have x ∈ F2(a, b, c, d)\ F2(a, b, c),
as otherwise ndegF ϕ = 8. Therefore, NF (ϕ)= F2(a, b, c, d)= F2(a, b, c, x), so
we can exchange the d in the 2-basis of NF (ϕ) for x . Up to renaming, we get that
ϕ ≃ ⟨⟨a, b⟩⟩ ⊥ ⟨c, d⟩.

Now, let τ ≃ ⟨1, a, b, c, d⟩, i.e., ϕ≃ ⟨1, a, b, c, d, x⟩ for some x ∈ F2(a, b, c, d).
Write x = y + dz with y, z ∈ F2(a, b, c). If z ∈ F2, then ϕ ≃ ⟨1, a, b, c, d, y⟩.
Denote σ ≃ ⟨1, a, b, c, y⟩; then dim σ = 5 and ndegF σ = 8, so (up to renaming)
σ ≃ ⟨⟨a, b⟩⟩ ⊥ ⟨c⟩ by (v), and hence ϕ ≃ ⟨⟨a, b⟩⟩ ⊥ ⟨c, d⟩. Now, assume that z /∈ F2.
Then we can write z = z1 + az2 with z1, z2 ∈ F2(b, c); we can assume that z2 ̸= 0
(otherwise exchange a with b or c). Hence, F2(a, b, c) = F2(z, b, c); without
loss of generality, we can assume a = z. We get ϕ ≃ ⟨1, a, b, c, d, y + ad⟩ with
y ∈ F2(a, b, c) as claimed.

In the remaining case, dimϕ= 6 and ndegF ϕ= 32, we have ndegF ϕ= 2dimϕ−1.
Hence, ϕ is minimal, and we conclude by applying Lemma 2.12. □

Corollary 4.21. The answer to Question Q is positive for all totally singular
quadratic forms of dimension ≤ 5.

Proof. Let ϕ be a totally singular form of dimension ≤ 5. By Proposition 4.20,
ϕ is minimal, or a quasi-Pfister form, or a special quasi-Pfister neighbor given
by a triple (π, b, σ ) with σ minimal. Hence, the claim follows by Theorem 4.6
(minimal forms), Proposition 3.1 (quasi-Pfister forms), and Theorem 4.17 (special
quasi-Pfister neighbors). □

Remark 4.22. In dimension six, the only case that remains open is if the norm
degree of the form is 16. This case will be covered in a forthcoming article.
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