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MONOTONE TWIST MAPS AND DOWKER-TYPE THEOREMS

PETER ALBERS AND SERGE TABACHNIKOV

Given a planar oval, consider the maximal area of inscribed n-gons resp. the
minimal area of circumscribed n-gons. One obtains two sequences indexed by
n, and one of Dowker’s theorems states that the first sequence is concave and
the second is convex. In total, there are four such classic results, concerning
areas resp. perimeters of inscribed resp. circumscribed polygons, due to
Dowker, Molnár, and Eggleston. We show that these four results are all
incarnations of the convexity property of Mather’s β-function (the minimal
average action function) of the respective billiard-type systems. We then
derive new geometric inequalities of similar type for various other billiard
systems. Some of these billiards have been thoroughly studied, and some are
novel. Moreover, we derive new inequalities (even for conventional billiards)
for higher rotation numbers.

1. Introduction

The classic Dowker theorem [16] concerns extremal polygons inscribed and cir-
cumscribed about an oval1. Here is its formulation.

Let γ be a smooth strictly convex closed plane curve (an oval). Denote by Pn

the maximal area of n-gons inscribed in γ and by Qn the minimal area of n-gons
circumscribed about γ . Assume that n ≥ 4. Then

(1) Pn−1 + Pn+1 ≤ 2Pn and Qn−1 + Qn+1 ≥ 2Qn,

see Figure 1. An analog of this result in the spherical geometry is due to L. Fejes
Tóth [20].

A similar result holds for perimeters. Let Rn be the maximal perimeter of the
n-gons inscribed in γ and Sn be the minimal perimeter of the n-gons circumscribed
about γ . A theorem, due to Molnár [35] and Eggleston [18], states that

(2) Rn−1 + Rn+1 ≤ 2Rn and Sn−1 + Sn+1 ≥ 2Sn.

See [19; 25; 29; 36] for surveys and ramifications of these results.

MSC2020: 37C83, 52-XX.
Keywords: monotone twist maps, Mather beta function, geometric approximation,

1Not to be confused with another classic Dowker theorem [17].
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Figure 1. Left: P3 + P5 ≤ 2P4. Right: Q3 + Q5 ≥ 2Q4.

In this article we show that these four results are particular cases of the convexity
of the minimal average action function (Mather’s β-function) of monotone twist
maps, a result from the Aubry–Mather theory. The maps in question are various
kinds of billiards: conventional billiards in γ for the perimeter of inscribed polygons,
outer billiards about γ for the area of circumscribed polygons, symplectic billiards
in γ for the area of inscribed polygons, and outer length billiards about γ for the
perimeter of circumscribed polygons.

The first two billiard systems have been thoroughly studied for a long time;
we refer to [42] and [43] for surveys. Symplectic billiards were introduced only
recently [1]. As to outer length billiards (the “fourth billiards”), to the best of our
knowledge, they were not studied before. We define them here and we plan to
provide more details in the upcoming article [3].

We also apply the convexity of the minimal average action function to other
billiard-like systems: wire billiards, wire symplectic billiards, magnetic billiards,
and outer magnetic billiards.

Wire billiards were introduced and studied in [10]; this is a dynamical system
on the set of chords of a closed curve (satisfying certain conditions) in Rn . The
resulting Dowker-type inequality concerns the maximal perimeters of inscribed
n-gons, that is, n-gons whose vertices lie on the curve.

Similarly, wire symplectic billiards is a dynamical system on the set of chords
of a closed curve (also satisfying certain conditions) in linear symplectic space R2n .
The resulting inequality concerns the maximal symplectic areas of inscribed n-gons.
Wire symplectic billiards are introduced here for the first time.

Magnetic billiards describe the motion of a charge in a magnetic field subject
to the elastic reflections off the boundary of a plane domain. We consider the
case of a weak constant magnetic field when the trajectory of a charge comprises
circular arcs of a fixed radius that is greater than the greatest radius of curvature
of the boundary of the domain, the oval γ . The resulting Dowker-style geometric
inequality combines the perimeter of a trajectory with the area bounded by it.

Outer magnetic billiards are similar to outer billiards, but instead of tangent
lines one considers tangent arcs of a sufficiently great fixed radius. The resulting
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inequality concerns the minimal areas of circumscribed curvilinear n-gons. Outer
magnetic billiards were introduced and studied in [9].

Let us emphasize that the classic Dowker-type theorems concern simple poly-
gons, whereas our inequalities include star-shaped polygons as well: the former
have rotation numbers 1/q, and the latter have the more general rotation num-
bers p/q. The corresponding inequalities are new even in the area/perimeter and
inscribed/circumscribed cases.

We hope that the topic of this article is of interest to two research communities,
the Hamiltonian dynamical and the convex geometrical ones. They use different
methods to study closely related problems, and an interaction of these two commu-
nities would be beneficial. We make some comments on applications of the theory
of interpolating Hamiltonians in convex geometry at the end of the article.

2. Monotone twist maps and minimal action

We recall basic facts about monotone twist maps; we refer to [14; 24; 27; 33; 39].
We consider a cylinder S1

× (a, b) where −∞ ≤ a < b ≤ +∞ and an area
preserving diffeomorphism f : S1

× (a, b)→ S1
× (a, b), isotopic to the identity.

Let F = (F1, F2) : R×(a, b)→ R×(a, b) be a lift to the universal cover. We denote
by (x, y) ∈ R × (a, b) the coordinates on the strip R × (a, b). In these coordinates
the area form is dy ∧ dx . The monotone twist condition is

∂F1(x, y)
∂y

> 0.

If a, resp. b, is finite, we assume that F extends to the boundary of the strip as a
rigid shift, that is F(x, a)= (x +ω−, a), resp. F(x, b)= (x +ω+, b). Otherwise,
we set ω− := −∞, resp. ω+ := +∞. We call f a monotone twist map. The interval
(ω−, ω+)⊂ R is called the twist interval of the map f . The twist condition and the
twist interval do not depend on the choice of the lift F .

In the following sections S1
× (a, b) will appear as (diffeomorphic copy of)

the phase space of various billiard systems. The foliation of the phase space
corresponding to {pt}× (a, b) will be referred to as vertical foliation. Moreover, for
now, S1

= R/Z for simplicity, but in the billiard situations S1 has varying length,
e.g., for conventional billiards the length is the perimeter of the billiard table.

Monotone twist maps can be defined via generating functions. A function

H : {(x, x ′) ∈ R × R | ω− < x ′
− x < ω+} −→ R

is a generating function for f if the following holds:

(3) F(x, y)= (x ′, y′) if and only if
∂H(x, x ′)

∂x
= −y,

∂H(x, x ′)

∂x ′
= y′.
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The variables are related via the diffeomorphism (x, y) 7→ (x, x ′)= (x, F1(x, y)).
The function H is periodic in the diagonal direction: H(x + k, x ′

+ k)= H(x, x ′)

for k ∈ Z. The twist condition becomes the inequality

(4)
∂2 H
∂x∂x ′

(x, x ′) < 0.

In the coordinates (x, x ′) condition (3) becomes

(5) F(x, x ′)= (x ′, x ′′) if and only if
∂

∂x ′

(
H(x, x ′)+ H(x ′, x ′′)

)
= 0.

As a consequence, the differential 2-form

∂2 H
∂x∂x ′

(x, x ′) dx ∧ dx ′

is invariant under the map.
In terms of the coordinates (x, x ′), a generating function H(x, x ′) is not uniquely

defined, for instance it can be changed to H(x, x ′)+ h(x ′)− h(x) by any function
h(x) such that h(x + 1)− h(x) is constant. This changes the coordinates y and
y′, but does not change the periodicity in the diagonal directions of the function
H(x, x ′), the twist condition (4), or the variational characterization (5). In terms of
(x, y)-coordinates the map F is conjugated by the area-preserving diffeomorphism
(x, y) 7→ (x, y + h′(x)). This explains for instance the different conventions for
generating functions in the literature, e.g., for conventional billiards.

Birkhoff periodic orbits for f of type (p, q) ∈ Z × Z+ are bi-infinite sequences
(xn, yn)n∈Z in R × (a, b) such that for all n ∈ Z we have

1) xn+1 > xn;

2) (xn+q , yn+q)= (xn + p, yn);

3) F(xn, yn)= (xn+1, yn+1).

The Birkhoff theorem asserts that for every rational number p
q ∈ (ω−, ω+) in lowest

terms, the map f possesses at least two Birkhoff periodic orbits of type (p, q). One
of these orbits (the “easier one”) corresponds to the minimum of the function

(6) H(x0, x1)+ H(x1, x2)+ · · · + H(xq−1, xq)

on the space of bi-infinite sequences of real numbers X = (xn)n∈Z satisfying the
monotonicity condition xn+1 ≥ xn and the periodicity condition xn+q = xn + p.
Setting yn :=

∂H
∂x ′ (xn−1, xn), it turns out that, due to the twist condition (4), the

sequence (xn, yn) actually satisfies the above conditions 1) – 3), in particular the
stronger monotonicity condition 1).
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Let us denote the minimal value of the function (6) on this space of bi-infinite
sequences by Tp,q . Then the minimal action of a (p, q)-periodic orbit is defined by

(7) β

(
p
q

)
:=

1
q

Tp,q .

This is the celebrated Mather β-function. The amazing fact is that Mather’s β-
function is well-defined, i.e., does not depend on the representation of the rational
number p

q , for example, β
( 2

6

)
=

1
6 T2,6 =

1
3 T1,3 = β

( 1
3

)
.

We note that the above mentioned change of the generating function H̃(x, x ′)=

H(x, x ′) + h(x ′) − h(x) with h(x + 1) − h(x) = c leads to the change of the
β-function:

β̃
(

p
q

)
= β

(
p
q

)
+ c p

q
.

Mather’s β-function is a strictly convex continuous function of the rotation
number: if p1/q1 ̸= p2/q2, then

(8) tβ
(

p1

q1

)
+ (1 − t)β

(
p2

q2

)
> β

(
t p1

q1
+ (1 − t) p2

q2

)
for all t ∈ (0, 1); see [31; 39]. Although the minimal average action extends as
a strictly convex function to irrational rotations numbers too, we only consider
rational ones, therefore, in what follows, t is also a rational number. The following
lemma deduces the general Dowker-style inequality from the convexity of the
minimal action.

Lemma 2.1. For all relatively prime (p, q)∈ Z×Z+ with p
q ∈ (ω−, ω+) and q ̸= 1,

we have
Tp,q−1 + Tp,q+1 > 2Tp,q .

Proof. Consider the inequality (8) with the choices

p1 = p2 = p, q1 = q − 1, q2 = q + 1, t =
q−1
2q

,

i.e.,

q−1
2q

β
(

p
q−1

)
+

(
1 −

q−1
2q

)
β
(

p
q+1

)
> β

(
q−1
2q

p
q−1

+

(
1 −

q−1
2q

)
p

q+1

)
,

and simplify to

q−1
2q

β
(

p
q−1

)
+

q+1
2q

β
(

p
q+1

)
> β

(
q−1
2q

p
q−1

+
q+1
2q

p
q+1

)
= β

(
p

2q
+

p
2q

)
= β

(
p
q

)
.
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Then (7) gives

q−1
2q

1
q−1

Tp,q−1 +
q+1
2q

1
q+1

Tp,q+1 =
q−1
2q

β
(

p
q−1

)
+

q+1
2q

β
(

p
q+1

)
> β

(
p
q

)
=

1
q

Tp,q ,

which simplifies to 1
2q Tp,q−1 +

1
2q Tp,q+1 >

1
q Tp,q , i.e.,

Tp,q−1 + Tp,q+1 > 2Tp,q ,

as claimed. □

Next we describe a small extension of the above discussion, well-known to
experts. It is sometimes convenient to consider as phase space a set of the form

{(x̄, ȳ) | x̄ ∈ R, 0 ≤ ȳ ≤ o(x̄)}

for some function o : R → (0,∞) together with an area-preserving (with respect to
d ȳ ∧ dx̄) self-map F̄ which is a monotone twist map, i.e., ∂ F̄1

∂ ȳ > 0. This set-up can
be transformed to the above standard setting. First, we observe that the map

(9)
R × [0, 1] →

{
(x̄, ȳ) | x̄ ∈ R, 0 ≤ ȳ ≤ o(x̄)

}
,

(x, y) 7→
(
O−1(x), o(O−1(x))y

)
,

is an area-preserving diffeomorphism if O(x̄) is an antiderivative of o(x̄). Since
O ′(x̄)= o(x̄) > 0, the function O is strictly monotone and thus invertible.

For simplicity, set ϕ(x) := O−1(x). Then the above maps reads

x̄ = ϕ(x),

ȳ = o(ϕ(x))y = o(x̄)y.

That is, R × {0} is mapped to itself and R × {1} to {ȳ = o(x̄)}. The map (9) is
area-preserving since dx̄ ∧ d ȳ = ϕ′(x)o(ϕ(x)) dx ∧ dy and

ϕ′(x)o(ϕ(x))=
d

dx
O(ϕ(x))= 1

since ϕ(x)= O−1(x).
We point out that the two vertical foliations (given by fixing x , resp. x̄) are

mapped to each other by the map (9). Moreover, if we have area-preserving maps
F̄ on

{
(x̄, ȳ) | x̄ ∈ R, 0 ≤ ȳ ≤ o(x̄)

}
and F on R × [0, 1] which are conjugate to

each other by (9), then one satisfies the twist condition if and only if the other does.
This uses again o(x) > 0. Finally, the twist condition and the variational description
of F̄ in terms of a generating function continues to hold.
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3. The classic Dowker-type theorems revisited

In this section we consider four billiard-like systems: two inner, two outer, two
with length, and two with area, as their generating functions. Lemma 2.1 will imply
the four Dowker-style theorems mentioned in the introduction.

3.1. Conventional billiards. Let γ : S1
→ R2 be a closed smooth strictly convex

planar curve (an oval), oriented counterclockwise and parameterized by arc length.
This is the boundary of the billiard table. We assume that it has unit length. Let x
be the respective coordinate on R, the universal cover of S1.

The phase space of the billiard ball map F is the space of oriented chords of γ ,
the vertical foliation consists of the chords with a fixed initial point. The generating
function is given by the formula2

H(x, x ′)= x ′
− x − |γ (x)γ (x ′)|,

where |γ (x)γ (x ′)| denotes the chord length, i.e., the Euclidean length of the segment
between γ (x) and γ (x ′).

One can calculate (see, e.g., [42]) that

∂|γ (x)γ (x ′)|

∂x
= −cosα,

∂|γ (x)γ (x ′)|

∂x ′
= cosα′,

∂2
|γ (x)γ (x ′)|

∂x∂x ′
=

sinα sinα′

|γ (x)γ (x ′)|
,

where α, α′
∈ (0, π) are the angles made by the chord γ (x)γ (x ′) with the curve γ .

Therefore, as coordinates we obtain

y = 1 − cosα, y′
= 1 − cosα′

∈ (0, 2),

and
∂2 H(x, x ′)

∂x∂x ′
= −

sinα sinα′

|γ (x)γ (x ′)|
< 0.

It follows that the quantity Tp,q from Section 2 is p minus the greatest perimeter of
the q-gons with the winding number p inscribed in γ . Denoting this perimeter by
Rp,q , Lemma 2.1 implies that Rp,q−1 + Rp,q+1 < 2Rp,q which, for p = 1, reduces
to the statement of the Molnár–Eggleston theorem (2).

As explained above, even for conventional billiards the inequalities Rp,q−1 +

Rp,q+1 < 2Rp,q are new for p> 1. Figure 2 illustrates the inequality R2,4 + R2,6 <

2R2,5. The extreme quadrilateral with p = 2 is the diameter of the curve, traversed
four times, i.e., R2,4 = 2R1,2, and the extreme hexagon with p = 2 is the extreme
triangle, traversed twice: R2,6 = 2R1,3. Hence the inequality can be rewritten as
R1,2 + R1,3 < R2,5, which has a different form from the Dowker-style inequalities.

2There are various conventions in the literature. Another common choice of generating function is
−|γ (x)γ (x ′)|. As explained in the previous section, adding x ′

−x does not change the twist condition,
etc.
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R2,4 + R2,6

2R2,5
≈ 99%

Figure 2. An ellipse with eccentricity of about 0.5.

3.2. Outer (area) billiards. The outer billiard map F about a smooth closed
oriented strictly convex curve γ is depicted in Figure 3: one has F(A) = A′

if the orientation of the segment AA′ coincides with the orientation of γ , and
|Aγ (x ′)| = |γ (x ′)A′

|; see [43] for a survey. In this article we sometimes call this
dynamical system outer area billiards to distinguish it from the upcoming outer
length billiard in Section 3.4.

The map F is an area preserving map of the exterior of γ with respect to the
standard area of the plane. It extends as the identity to γ . The phase space is
foliated by the positive tangent rays to γ , and F is a twist map. Let x ∈ R be the
(lifted to R) angular coordinate on γ , that is, the direction of the oriented tangent
line of γ . Moreover, if we write a point A in the exterior of γ as γ (x)+ rγ ′(x),
r > 0, then the map

{exterior of γ } ∋ A 7→ (x, r) ∈ S1
× (0,∞)

is a symplectomorphism between the standard area form and r dr ∧ dx = dy ∧ dx
with y = r2/2.

The generating function H : {(x, x ′) | 0< x ′
− x < π} → R of the map F is the

area of the (oriented) curvilinear triangle obtained by first following the segments
γ (x)A and Aγ (x ′) and then the arc γ (x ′)γ (x); see Figure 3. One has

∂H(x, x ′)

∂x
= −

r2

2
,

∂H(x, x ′)

∂x ′
=
(r ′)2

2
,

∂2 H(x, x ′)

∂x∂x ′
= −r

∂r
∂x ′

< 0.

It follows that the quantity Tp,q is the minimal area of the circumscribed q-gon with
the winding number p minus a constant (p times the area bounded by γ ). Denoting

A'
A

(x' )g
(x)g

r'
r

Figure 3. The outer billiard map.
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this circumscribed area by Q p,q , Lemma 2.1 implies that Q p,q−1+Q p,q+1> 2Q p,q

which, for p = 1, is a statement of the Dowker theorem (1).

3.3. Symplectic billiards. Symplectic billiards were introduced and studied in [1];
see also the recent papers [5; 6].

Let γ (x) be a positively oriented parameterized smooth closed strictly convex
planar curve. For a point γ (x), let γ (x∗) be the other point on γ where the tangent
line is parallel to that in γ (x). The phase space of symplectic billiard is then the set
of the oriented chords γ (x)γ (x ′) where x < x ′ < x∗ according to the orientation of
γ . That is, the phase space is the set of pairs (x, x ′) such that ω(γ ′(x), γ ′(x ′)) > 0.
Here, ω is the standard area form in the plane, the determinant made by two vectors.

The vertical foliation consists of the chords with a fixed initial point. The
symplectic billiard map F sends a chord γ (x)γ (x ′) to γ (x ′)γ (x ′′) if the tangent
line Tγ (x ′)γ is parallel to the line γ (x)γ (x ′′); see Figure 4. Unlike the conventional
billiards, this reflection law is not local. We note that if ω(γ ′(x), γ ′(x ′)) > 0, then
ω(γ ′(x ′), γ ′(x ′′)) > 0 as well (see [1]).

We extend the map F to the boundary of the phase space by continuity: F(x, x) :=
(x, x) and F(x, x∗) := (x∗, x).

The generating function H : {(x, x ′) | x < x ′ < x∗
} → R is the area bounded

by the oriented bigon formed by following first the arc γ (x)γ (x ′) and then the
segment γ (x ′)γ (x). Note the similarity of this generating function with the one of
the conventional billiard: the length is replaced by the area. One has

y = −
∂H(x, x ′)

∂x
=

1
2
ω(γ ′(x), γ (x ′)− γ (x))

and
∂2 H(x, x ′)

∂x∂x ′
= −

1
2
ω(γ ′(x), γ ′(x ′)) < 0.

Thus, this is a situation where the phase space naturally is of the form{
(x̄, ȳ) | x̄ ∈ R, 0 ≤ ȳ ≤ o(x̄)

}
,

where o(x)=
1
2ω(γ

′(x), γ (x∗)− γ (x)).

(x' )g

(x'' )g (x)g

Figure 4. The symplectic billiard map.
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Let γ (x), γ (x ′), γ (x ′′) be three consecutive vertices of an inscribed polygon of
the maximal area. Then Tγ (x ′)γ is parallel to the line γ (x)γ (x ′′), hence F(x, x ′)=

(x ′, x ′′). Then either

ω(γ ′(x), γ ′(x ′)) > 0, or ω(γ ′(x), γ ′(x ′)) < 0, or ω(γ ′(x), γ ′(x ′))= 0.

One has the same inequality for ω(γ ′(x ′), γ ′(x ′′)). If this is negative, the total
area is negative as well, and changing the orientation makes it greater. Likewise if
ω(γ ′(x), γ ′(x ′))= 0, then the area is not maximal either. Hence the maximal area
polygon corresponds to the Birkhoff minimal (p, q)-periodic orbit of the symplectic
billiard map.

It follows that, up to an additive constant (p times the area bounded by γ ), the
quantity Tp,q is minus the greatest area of the q-gon with the winding number
p, inscribed in γ . Denoting this area by Pp,q , Lemma 2.1 implies that Pp,q−1 +

Pp,q+1 < 2Pp,q which, for p = 1, is a statement of the Dowker theorem (1).

3.4. Outer length billiards. As far as we know, the outer length billiard system,
defined by extremizing the perimeter of a circumscribed polygons, has not been
described in the literature yet. We provide necessary details here, and will return to
a more detailed study of this dynamical system in [3]. See [15] for a study of the
polygons circumscribed about a convex curve and having the minimal perimeter.

The map F acts on the exterior of an arc length parameterized oval γ (x) and
is given by the following geometrical construction; see Figure 5. Let A be a
point outside of γ , and let Aγ (x ′) and Aγ (x) be the positive and negative tangent
segments to γ (the sign given by the orientation of the oval). Consider the circle
tangent to γ at the point γ (x ′), tangent to the line Aγ (x), and lying on the opposite
side of γ with respect to the line Aγ (x ′). Then A′

= F(A) is defined as the
intersection point of the line Aγ (x ′) and the other common tangent line of the circle
and γ (tangent to γ in γ (x ′′) in Figure 5).

The map F extends as identity to γ . The vertical foliation in phase space, i.e., the
exterior of γ , is the same as for the outer (area) billiard: it consists of the positive
tangent rays to γ . Similarly to outer billiards, F is a twist map. We recall from
symplectic billiards that the points γ (x) and γ (x∗) have parallel tangent lines.

(x' )g

(x'' )g

A

A'

(x)g

Figure 5. Outer length billiard.
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(x'' )g

AO v

uw

A'

(x)g

Figure 6. Construction of the extremizer.

Lemma 3.1. The generating function H : {(x, x ′) | x < x ′ < x∗
} → R of the map

F is given by the formula

H(x, x ′)= |γ (x)A| + |Aγ (x ′)| − x ′
+ x .

Proof. Fix points γ (x) and γ (x ′′) and consider

H(x, x ′)+ H(x ′, x ′′)

= |γ (x)A|+|Aγ (x ′)|+|γ (x ′)A′
|+|A′γ (x ′′)|− x ′′

+ x ′
− x ′

+ x

= |γ (x)A|+|AA′
|+|Aγ (x ′′)|− x ′′

+ x .

We claim that the specific point γ (x ′) described above (Figure 5) extremizes the
length |γ (x)A| + |AA′

| + |A′γ (x ′′)|.
To prove this claim, consider Figure 6. We use the fact that the two tangent

segments to a circle through a common point have equal lengths, e.g., |Au| = |Av|
in Figure 6.

Therefore, we can rewrite as follows

|γ (x)A|+|AA′
|+|A′γ (x ′′)|= |γ (x)v|+|γ (x ′′)w|= |γ (x)O|+|γ (x ′′)O|−2|Ov|.

The left-hand side is minimal when |Ov| is maximal, and this happens when the
circle is greatest possible, i.e., if u lies on γ , that is, u = γ (x ′) in Figure 5.

A similar argument applies if the point O is on the other side of the line AA′,
and if the tangent lines at points γ (x) and γ (x ′′) are parallel. □

The partial derivatives of the generating function are

y = −
∂H(x, x ′)

∂x
= k(x)|Aγ (x)| cot

ϕ

2
∈ (0,∞),

where k is the curvature function of γ , and ϕ is the angle between the tangent
segments Aγ (x) and Aγ (x ′), and

∂2 H(x, x ′)

∂x∂x ′
= −

k(x)k(x ′)(|Aγ (x)| + |Aγ (x ′)|)

2 sin2(ϕ/2)
.
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It follows that, up to an additive constant (p times the perimeter of γ ), the quantity
Tp,q is the minimal perimeter of the q-gons with the winding number p, cir-
cumscribed about γ . Denoting this perimeter by Sp,q , Lemma 2.1 implies that
Sp,q−1 + Sp,q+1 > 2Sp,q which, for p = 1, is a statement of the Molnár–Eggleston
theorem (2).

Remark 3.2. The area form that is invariant under this billiard map is, in terms of
the generating function,

−
∂2 H(x, x ′)

∂x∂x ′
dx ∧ dx ′.

This is a functional multiple of the standard area form ω in the exterior of the oval
and, at the point A (in Figure 5), its value is, see [3],

cot
ϕ

2

(
1

|Aγ (x)|
+

1
|Aγ (x ′)|

)
ω.

Remark 3.3. The quantity H = |γ (x)A|+ |Aγ (x ′)|− x ′
+ x is known in the study

of (the conventional) billiards as the Lazutkin parameter. Given an oval γ , consider
the locus of points A for which H has a constant value. This locus is a curve 0,
and the billiard inside 0 has the curve γ as a caustic: a billiard trajectory tangent
to γ remains tangent to it after the reflection in 0. This is known as the string
construction of a billiard curve by its caustic (see, e.g., [42]).

A similar relation exists between the level curves of the generating function of
the symplectic billiard and the invariant curves of the outer billiard. Consider the
set of chords that cut off a fixed area from an oval γ , that is, a level curve of the
generating function of the symplectic billiard in γ . The envelope of these chords is
a curve 0, and γ is an invariant curve of the outer billiard about 0. This is the area
construction of an outer billiard curve by its invariant curve.

The meaning of this relation between the level curves of a generating function
of one billiard system and invariant curves of another one is not clear to us.

4. More examples

4.1. Inner and outer billiards in S2 and H2. Inner (conventional) billiards are
defined in the same way in the spherical and hyperbolic geometries as in the
Euclidean plane: the boundary of the billiard table γ has positive geodesic curvature
and, in the case of S2, this implies that γ is contained in an open hemisphere. The
billiard ball travels along geodesics and reflects in γ subject to the law of equal
angles.

Outer billiards are defined in H 2 similarly to the Euclidean case, but the case of
S2 is somewhat different.
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Let γ be a closed smooth oriented geodesically convex spherical curve, and let
−γ be its antipodal curve. The curve γ lies in a hemisphere, and −γ lies in the
antipodal hemisphere. The spherical belt (topologically, a cylinder) bounded by γ
and −γ is the phase space of the outer billiard about γ ; it is foliated by the arc of
the positive tangent great circles to γ : these segments have the initial points on
γ , and the terminal points on −γ . This is the vertical foliation that appears in the
definition of twist maps.

Likewise, the phase space is foliated by the arc of the negative tangent great
circles to γ . This makes it possible to define the outer billiard similarly to the
planar case: given a point A, there is a unique point x ∈ γ such that the arc of the
negative tangent great circle at x contains A. The image point A′ lies on the arc
of the positive tangent great circle at x at the same spherical distance from x as
point A.

The outer billiard map about −γ is conjugated to that about γ by the antipodal
involution of the sphere.

Inner and outer billiards in S2 are conjugated by spherical duality; see Figure 7.
Spherical duality interchanges oriented great circles with their poles, and the angle
between two circles is equal to the spherical distance between their poles. The
duality extends to convex smooth curves: the poles of the 1-parameter family of
the tangent great circles of a curve γ comprise the dual curve γ ∗. Equivalently, γ ∗

is the π/2-equidistant curve of γ , that is, γ ∗ is the locus of the endpoints of the
arcs of the great circles, orthogonal to γ and having length π/2.

Let γ be a convex smooth curve and γ ∗ be its dual. Let L , A, L∗, A∗ be the
perimeters of these curves and the areas of the convex domains bounded by them.
Then L∗

= 2π − A, or equivalently A∗
= 2π − L; see [4].

These relations are easy to see if P is a spherical convex n-gon and P∗ is its
dual. Then the angles and the sides lengths of these polygons are related by

α∗

i = π − ℓi , ℓ∗i = π −αi .

The Gauss–Bonnet theorem implies

A∗
=

∑
α∗

i −π(n − 2)= 2π −

∑
ℓi = 2π − L ,

as claimed. The other equality follows by interchanging P and P∗. For details see
[23, Chapter 20], for example.

g

x

a b
g

x*** *

*

a b

Figure 7. Spherical duality conjugates inner and outer billiards.
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If γ is a closed smooth convex spherical curve and P is a circumscribed spherical
polygon, then the dual polygon P∗ is inscribed in the dual curve γ ∗. It follows that
P has the minimal area or perimeter if and only if P∗ has the maximal perimeter
or area, respectively.

See Section 2.1.3 of [1] for a discussion of symplectic billiards in the spherical
and hyperbolic geometries. The convexity of Mather’s β-function implies the
spherical version of Dowker’s inequalities due to L. Fejes Tóth [20].

4.2. Wire billiards. Wire billiards were introduced and studied in [10], see also
[12; 13; 21].

Let γ (x) be a smooth closed arc length parameterized curve in Rn (a wire). One
defines the wire billiard relation in the same way as for the conventional billiards
in the plane: chords γ (x)γ (y) and γ (y)γ (z) are in this relation if

∂

∂y
(|γ (x)γ (y)| + |γ (y)γ (z)|)= 0.

Thus, the phase space for wire billiards is given by oriented chords of γ and the
vertical foliation is given by the chords with a fixed initial point.

There is a class of curves, including small C2 perturbations of planar ovals, for
which the wire billiard relation is a map which then is an area-preserving twist map,
called the wire billiard map. This class of curves is given by the following three
conditions.

(1) Any line in Rn intersects γ in at most two points, and if it intersects at two
points, the intersections are with nonzero angles.

(2) The curvature of γ does not vanish.

(3) Let πxy be the 2-plane spanned by the tangent vector γ ′(x) and the chord
γ (y)− γ (x). Then for every x, y the planes πxy and πyx are not orthogonal.

If these conditions are satisfied, the generating function of the wire billiard map is
given by the same expression as for the conventional planar billiards, H(x, x ′)=

x ′
− x − |γ (x)γ (x ′)|, and

y = −
∂H
∂x

= 1 − cosα ∈ (0, 2),

where α is the angle between γ ′(x) and γ (x ′)− γ (x). Moreover,

∂2 H(x, x ′)

∂x∂x ′
= −

cosϕ sinα sinα′

|γ (x)γ (x ′)|
< 0,

where ϕ is the angle between the planes πxy and πyx .
Let γ ⊂ Rn be a curve satisfying the above conditions. Let Rp,q be the greatest

perimeter of a q-gon with the winding number p inscribed in γ , that is, whose
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vertices lie on γ . Then Lemma 2.1 implies that Rp,q−1 + Rp,q+1 < 2Rp,q , a
generalization of the Molnár–Eggleston theorem (2) for nonplanar curves.

4.3. Minkowski plane. The Molnár–Eggleston theorem holds in Minkowski planes
(2-dimensional Banach spaces), see Theorem 10 in [29]. It is geometrically clear
that inner and outer length billiards are still twist maps if the Euclidean metric
is replaced by a general norm. Therefore, the Molnár–Eggleston theorem for
Minkowski planes should be deducible, as in the Euclidean case, from Lemma 2.1.
We decided not to resolve the details here.

As for the outer area billiard, we recall that a point and its reflection under the
outer area billiard map lie on the same tangent line to the table and having the same
distance to the tangent point, see Figure 3 in Section 3.2. That is, the ratio of the
distances is 1. Since the ratio of two distances measured in any norm in R2 is the
same, we see that the reflection rule of outer area billiards is independent of the
choice of a norm. This is, of course, no surprise since the generating function is
the standard area and does not involve a choice of a norm.

Finally, the symplectic billiard in the plane simply does not involve a metric in
its definition or the reflection rule.

4.4. Wire symplectic billiards. Let γ (x) be a smooth parameterized closed curve
in the linear symplectic space (R2n, ω). We define the symplectic billiard relation
on the chords of γ that generalizes symplectic billiards in the plane.

Two chords γ (x)γ (x ′) and γ (x ′)γ (x ′′) of γ are said to be in symplectic billiard
relation if γ (x ′′)−γ (x)∈ T ω

x ′ γ . Here, T ω
x ′ γ := (Tx ′γ )ω is the symplectic orthogonal

complement of the tangent line Tγ (x ′)γ . Therefore, as for wire billiards, the phase
space for symplectic wire billiards is given by oriented chords of γ and the vertical
foliation is given by the chords with fixed initial point.

If x and x ′′ are fixed, then γ (x)γ (x ′) and γ (x ′)γ (x ′′) are in symplectic billiard
relation if and only if

∂[ω(γ (x), γ (x ′))+ω(γ (x ′), γ (x ′′))]

∂x ′
= ω(γ (x)− γ (x ′′), γ ′(x ′))= 0,

since γ ′(x ′)− γ (x) ∈ T ω
x ′ γ is equivalent to ω(γ (x)− γ (x ′′), γ ′(x ′))= 0.

As for wire billiards, this relation does not necessarily define a map. Furthermore,
for symplectic wire billiard there is the additional complication that, even if it defines
a map, this map need not be a twist map.

We describe a class of curves γ for which this relation is indeed an area preserving
twist map. We recall from [2] that a curve γ is called symplectically convex if
ω(γ ′(x), γ ′′(x)) > 0 for all x . Consider such a curve, and fix a value x0 of the
parameter. Then the function Fx0(x) := ω(γ ′(x0), γ (x)) has a critical point at x0.



16 PETER ALBERS AND SERGE TABACHNIKOV

Moreover, this zero critical value is a local minimum since

F ′′

x0
(x0)= ω(γ ′(x0), γ

′′(x0)) > 0.

The class of curves γ that we consider is given by the following properties:

(1) γ is symplectically convex.

(2) For every x0, the function Fx0 : S1
→ R is a perfect Morse function, that is, it

has exactly two nondegenerate critical points, a maximum and a minimum.

We call any such curve admissible. This class of curves is open in the C2-
topology, and a sufficiently small perturbation of an oval that lies in a symplectic
plane R2

⊂ R2n is an admissible curve.
For an admissible curve, we denote by x∗ the maximum point of the function Fx ,

i.e., ω(γ ′(x), γ ′(x∗))= 0. We observe that, for an admissible curve γ and a chord
γ (x)γ (x ′), there exists a unique chord γ (x ′)γ (x ′′) such that γ (x ′′)−γ (x)∈ T ω

γ (x ′)γ .
Indeed, the noncritical level sets of the function Fx ′ : S1

→ R consist of two points.
This makes it possible to extend what we said above about symplectic billiards in
the plane to this setting.

Namely, the phase space of wire symplectic billiard is the set of oriented chords
γ (x)γ (x ′) of γ satisfying x < x ′ < x∗ or, equivalently, ω(γ (x), γ (x ′)) > 0. The
vertical foliation consists of the chords with a fixed initial point. As before, we
extend the map to the boundary of the phase space by continuity as follows:

(xx) 7→ (xx), (xx∗) 7→ (x∗x).

The next lemma justifies this statement and repeats a result from [1].

Lemma 4.1. Let the wire symplectic billiard map take xx ′ to x ′x ′′. If x < x ′ < x∗,
then x ′ < x ′′ < (x ′)∗.

Proof. If x ′ is close to x , then x ′ < x ′′ < (x ′)∗. If (x ′)∗ < x ′′, then, by continuity,
we move point x ′ toward x until x ′′

= (x ′)∗. Then

(xx ′) 7→ (x ′(x ′)∗) 7→ ((x ′)∗x ′).

But the map is reversible: if (xy) 7→ (yz), then (zy) 7→ (yx). Hence x = x ′, which
is a contradiction. □

Similarly to the plane case, as the generating function we take

H(x, x ′)=

∫
C
λ,

where the integral is over the closed curve C made of the arc γ (x)γ (x ′) of γ and
the chord γ (x ′)γ (x). The curve C is oriented according to the orientation of γ
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and λ is a differential 1-form such that ω = dλ. The result does not depend on the
choice of such λ and is equal to the symplectic area of a surface filling the curve.

As before, we have

y = −
∂H(x, x ′)

∂x
=

1
2
ω(γ ′(x), γ (x ′)− γ (x))

and
∂2 H(x, x ′)

∂x∂x ′
= −ω(γ ′(x), γ ′(x ′)).

Thus, the twist condition is precisely the condition that γ is symplectically convex.
Now consider q-gons whose vertices lie on γ and that have the winding number

p. The symplectic area of a q-gon (p1, p2, . . . , pq) is

1
2

q∑
i=1

ω(pi , pi+1),

where the sum is read cyclically, i.e., pq+1 = p1. Let Pp,q be the greatest symplectic
area of such polygons. Then Lemma 2.1 implies a nonplanar generalization of the
Dowker theorem: Pp,q−1 + Pp,q+1 < 2Pp,q .

4.5. Magnetic billiards. Magnetic billiards were introduced in [38]; our main
reference is [7].

Let γ be a plane oval. We assume that the magnetic field has constant strength
and is perpendicular to the plane. Then the free path of a charge having a fixed
energy is an oriented arc of a circle of radius R (the Larmor radius). When the
charge hits the boundary γ , it undergoes the billiard reflection, so that the angle of
incidence equals the angle of reflection. Unlike the conventional billiards, magnetic
billiards is not time-reversible system. It is invariant under simultaneous time and
magnetic field reversal, however. Therefore we assume, without loss of generality,
that the charge moves in the counterclockwise direction.

Let k > 0 be the curvature function of γ , and kmin be its minimal value. The
magnetic field is called weak if 1/R< kmin. We consider only the weak field regime
here.

One uses the same coordinates as for conventional billiards: the arc length
parameter x on γ and u = 1 − cosα, where α is the angle made by γ and the
trajectory at the starting point. That is, the phase space is the space of oriented
chords of γ , the vertical foliation consists of the chords with a fixed initial point.

Let ϕ be the angle made by the arc of the trajectory connecting the points γ (x)
and γ (x ′) and the chord connecting these two points, see Figure 8. Then, according
to [7],

∂x ′

∂u
=

|γ (x)γ (x ′)| cosϕ
sinα sinα′

.
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(x' )g

aj

(x)g

Figure 8. Magnetic billiard. Here α is the (orange) angle made by
γ and the arc of the circle connecting γ (x) and γ (x ′). The (blue)
angle ϕ is the angle between the arc of the circle and the chord
connecting γ (x) and γ (x ′).

Therefore magnetic billiards satisfies the twist condition if the angle ϕ is always
acute.

If this assumption holds, then the generating function of the magnetic billiard
map is

(10) H(x, x ′)= x ′
− x −

(
ℓ+

1
R

A
)
,

where ℓ the length of the arc γ (x)γ (x ′) of radius R, and A is the area bounded by
this arc and the curve γ and lying on the right (with respect to the orientation) of this
arc (see again [7]). When there is no magnetic field, that is, when R = ∞, we obtain
the generating function of conventional billiard used above. For completeness we
also recall, from the appendix in [7], that

y = −
∂H
∂x

= 1 − cosα ∈ (0, 2),

which is the same as in the conventional billiard case.
We now show that if the magnetic field is weak then the magnetic billiard map

is indeed a twist map. The next statement is contained in [7] as Lemma D1 and the
following Corollary. We provide a slightly different proof here for convenience.

Lemma 4.2. If the magnetic field is weak, magnetic billiard map is a twist map.
More precisely, if 1/R < kmin, then ϕ < π/2.

Proof. Let ψ = π −ϕ be the complementary angle; see Figure 9. We shall prove
the equivalent statement: if ψ is acute, then there exists a point on the arc δ of the
curve γ from γ (x) to γ (x ′) where the curvature k ≤ 1/R.

We use two geometric facts. The first is a lemma due to Schur (see [26], for
instance), asserting the following. Let γ1(s) and γ2(s) be two smooth convex arc
length parameterized curves of the same length, such that k1(s) < k2(s) for all s.
Then the chord subtended by γ1 is greater than that the chord subtended by γ2 for
the same interval of the parameter.



MONOTONE TWIST MAPS AND DOWKER-TYPE THEOREMS 19

(x' )g
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j

(x)g

Figure 9. Concerning Lemma 4.2.

The second is the following lemma. If a closed convex curve γ2 lies inside (the
domain bounded by) the closed convex curve γ1, then the length of γ1 is greater than
or equal to the length of γ2. This is an easy consequence of the Crofton formula,
see, e.g., [23], Lecture 19, and it does not require the curves to be smooth, nor for
γ2 to be contained strictly inside of γ1.

Now, consider the clockwise oriented arcs of the curve γ and of the circle starting
at the point γ (x). Consider the first intersection point of these arcs. In Figure 9,
this point is γ (x ′) but, in general, it may lie closer to point γ (x) on both curves. In
order not to complicate the notation, we assume that indeed the first intersection
point is γ (x ′).

Then we have two nested convex closed curves: the first is made by the arc of
the circle and the chord γ (x ′)γ (x), and the second by the arc δ and the same chord.
By assumption the second curve lies inside the first. It follows that the arc of the
circle has length greater than or equal to that of δ.

Now we argue by contradiction and assume 1/R < k. Let z be the point on the
arc of the circle such that γ (x)z has the same length as δ. Since 1/R < k, Schur’s
Lemma implies that |γ (x)z| > |γ (x ′)γ (x)|. But the assumption that ψ < π/2
implies that the center of the circle lies on the right of the chord γ (x ′)γ (x); therefore
|γ (x ′)z|< |γ (x ′)γ (x)| (cf. Figure 9). This is a contradiction. □

Remark 4.3. The same argument proves that if 1/R < kmin, then a circle of radius
R intersects the curve γ in at most two points.

As before, we apply Lemma 2.1 to obtain the following result. Consider curvi-
linear q-gons with winding number p inscribed in the oval γ whose oriented sides
are counterclockwise arcs of radius R with 1/R < kmin. Let Mp,q be the greatest
value of

P −
1
R

A,

where P is the perimeter of the curvilinear q-gon and A in the area enclosed by the
curvilinear polygon. Then one has the Dowker-style inequality Mp,q−1 + Mp,q+1 <

2Mp,q .
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(x' )g

g

A

A'
(x)g

Figure 10. Left: outer magnetic billiard map. Right: its annulus of definition.

Note that the area term in the generating function (10) is the area between the
curve γ and the respective arc of the polygon. Since the polygon is closed the area
between the polygon and the curve and the area enclosed by the polygon differ by
the total area enclosed by γ . This does not change the inequalities.

4.6. Outer magnetic billiards. The outer magnetic billiard map is defined similarly
to the outer billiard map, see Section 3.2, but the tangent lines are replaced by the
tangent arcs of circles of a fixed (Larmor) radius, greater than the greatest radius
of curvature of the “billiard” curve γ ; see Figure 10, left. That is, we are again in
the weak magnetic field regime. We assume that γ and the circles are positively
oriented and that the orientations agree at the tangency points.

Unlike the outer billiard map, this map is only defined in an annulus whose inner
boundary is γ and the outer boundary is the envelope of the Larmor circles tangent
to γ which, by Huygens’ principle, is equidistant from γ ; see Figure 10, right.

This map is area preserving, and the value of the generating function at the point
A is the area of the curvilinear triangle bounded by the two Larmor arcs through A
and the curve γ . The vertical foliation is given by the forward Larmor half-circles
tangent to γ .

Outer magnetic billiard was introduced in [9], where it is shown that this system
is isomorphic to magnetic billiard. The correspondence between the latter and the
former is given by the map that assigns to the arcs of Larmor circles (inside the
billiard table) their centers. The resulting outer magnetic billiard curve is equidistant
to the magnetic billiard curve.

A Dowker-style geometric inequality results. Let γ be an oval, and let Np,q

denote the minimal area of a circumscribed curvilinear q-gon with winding number
p, whose sides are arcs of a fixed radius greater than the greatest curvature radius of
γ . Then Np,q−1+Np,q+1> 2Np,q . We note that, unlike for inner magnetic billiards,
in this case the geometric inequality involves areas only and not a combination of
areas and lengths.

4.7. Remarks on the theory of interpolating Hamiltonians. We conclude with
remarks and questions concerning an application of the theory of interpolating



MONOTONE TWIST MAPS AND DOWKER-TYPE THEOREMS 21

Hamiltonians [30; 34; 37] in convex geometry, namely, to approximation of smooth
convex curves by polygons.

It is proved in [30] that the maximal perimeter of the inscribed q-gons R1,q has
an asymptotic expansion as q → ∞:

R1,q ∼ Perimeter(γ )+
∞∑

k=1

ck

q2k ,

with the first nontrivial coefficient

c1 = −
1

24

(∫
γ

k2/3ds
)3

,

where k(s) is the curvature of γ and s is the arc length parameter. If we read
Dowker’s inequality as

R1,q+1 − R1,q ≤ R1,q − R1,q−1,

we see that the successive approximation by polygons always improves.
Also the limiting q → ∞ distribution of the vertices of the approximating

inscribed q-gons is uniform with respect to the density k2/3ds. Likewise for other
winding numbers.

Similarly, one has for the minimal area of the circumscribed q-gons

Q1,q ∼ Area(γ )+
∞∑

k=1

ck

q2k ,

with

c1 =
1
24

(∫
γ

k1/3ds
)3

;

see [41]. For the maximal area of the inscribed q-gons, one has

P1,q ∼ Area(γ )+
∞∑

k=1

ck

q2k ,

with

c1 = −
1

12

(∫
γ

k1/3ds
)3

;

see [1] and [32].
In the last two cases, the limiting q → ∞ distribution of the vertices of the

approximating q-gons on the curve γ is uniform with respect to the density k1/3ds,
that is, uniform with respect to the affine length parameter.

It would be interesting to find explicit expressions for the coefficients ck in these
formulas (see [28; 30] for c1 and c2). A closely related problem of describing the
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coefficients of the expansion of Mather’s β-function at zero for Birkhoff billiards is
addressed in [40] and, for ellipses, in [8], and for symplectic and outer billiards,
very recently, in [6].

There are other ways to measure the quality of approximation of a convex curve
by polygons, for example, one can use the area of the symmetric difference of an
oval and an approximating polygon, or its analog, replacing area by perimeter. A
wealth of results in this directions is available; see [11; 22; 25]. Are these results
related to the β-function and the interpolating Hamiltonians of some billiard-like
dynamical systems?
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This collaborative work was based on the proposed problem and prior work of our senior member,
Kenan İnce. After several years of work and the writing and submission of this paper, Kenan passed
away unexpectedly. They were an exceptional human, mathematician, and advocate. We dedicate this

paper to them.

The untwisting number of a knot K is the minimum number of null-homologous
twists required to convert K to the unknot. Such a twist can be viewed as
a generalization of a crossing change, since a classical crossing change can
be effected by a null-homologous twist on 2 strands. While the unknotting
number gives an upper bound on the smooth 4-genus, the untwisting number
gives an upper bound on the topological 4-genus. The surgery description
number, which allows multiple null-homologous twists in a single twisting
region to count as one operation, lies between the topological 4-genus and
the untwisting number. We show that the untwisting and surgery description
numbers are different for infinitely many knots, though we also find that the
untwisting number is at most twice the surgery description number plus 1.

1. Introduction

Given two knot diagrams D1, D2 of knots K1, K2 which differ only inside small
disks 1 ⊂ D1, 1′

⊂ D2 containing at least one crossing, a local move on K1 is
the act of replacing 1 with 1′, and hence converting D1 to D2. An unknotting
operation is a local move such that, for any diagram D of a knot K , we may
transform D into a diagram of the unknot via a finite sequence of these local
moves. A natural question in knot theory is: given an unknotting operation and
a knot K , how many such operations are needed to turn K into the unknot? The
most common such unknotting operation is a crossing change, which gives rise
to the unknotting number u(K ). While the unknotting number is quite simple to
define, its computation is frequently difficult. For example, Milnor’s conjecture
about the unknotting number of torus knots was only proven about 25 years later
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+1

= =1 full LH twist

Figure 1. A left-handed null-homologous twist on 4 strands.

by Kronheimer and Mrowka [1993; 1995]. In this paper, we study additional
unknotting operations, many of which are generalizations of the crossing change.
See Table 1 for an organized list of the related invariants.

One of the primary unknotting operations studied in this paper is a null-homolog-
ous twist. Mathieu and Domergue [1988] defined this generalization of unknot-
ting number and it was subsequently considered by Livingston [2002]. A null-
homologous twist on a knot K is the result of a ±1-surgery on a null-homologous
unknot U ⊂ S3

− K bounding a disk D such that D∩ K = 2k points for any k ∈ Z≥1.
Diagrammatically, this is the result of adding a full right- or left-handed twist in the
twisting region indicated by the unknot U, where lk(K , U ) = 0. See Figure 1 for a
diagrammatic representation. It is described in [Ince 2016] how a crossing change
may be encoded as a null-homologous twist where D ∩ K = 2. In particular, this
implies null-homologous twists are unknotting operations.

The corresponding knot invariant is the untwisting number tu(K ), which is
defined as the minimum length, taken over all diagrams of K , of a sequence of
null-homologous twists beginning at K and resulting in the unknot. This has been
the subject of much research in recent years [Baader et al. 2020; Ince 2016; 2017;
Livingston 2021; McCoy 2021a; 2021b].

There are many variations of the unknotting number and untwisting number, see
Table 1. One variant we will study, due to Nakanishi [2005] (and called the “surgical
description number” in that paper), is what we and many other authors call the
surgery description number sd(K ) of a knot. Again we consider null-homologous
twists but now allow any number of full twists to be added in the twisting region;
we may call this a null-homologous m-twist for m ∈ Z to specify the number of
twists (with sign) being effected. Then sd(K ) is the minimal number of m-twists
necessary to unknot K . (Here, the value of m may change from move to move.)

Another natural variant (due to Murakami [1990]) is the algebraic unknotting
number ua(K ), the minimum number of crossing changes necessary to turn a given
knot into an Alexander polynomial-one knot. Freedman [1982] showed that knots
with Alexander polynomial equal to one are topologically slice (in other words,
with topological 4-genus gtop

4 = 0); topologically slice knots are indistinguishable
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invariant definition

u(K ) unknotting number of K , i.e., minimal number of crossing
changes to unknot

ua(K ) alg. unknotting number, minimal number of crossing
changes to Alexander polynomial-one knot

tua(K ) alg. untwisting number, minimal number of null-homologous
twists to Alexander polynomial-one knot

tu(K ) untwisting number, i.e., the minimal number of null-homologous
twists to unknot

sd(K ) surgery description number, i.e., the minimal number
of null-homologous multitwists (on the same region of K ) to unknot

sda(K ) algebraic surgery description number, i.e., the minimal number
of null-homologous multitwists (on the same region of K )
to Alexander polynomial-one knot

galg(K ) algebraic genus, i.e., minimal difference in genus between
a Seifert surface F for K and a subsurface whose boundary is an
Alexander polynomial-one knot

Table 1. Overview of knot invariants appearing in this paper.

from the unknot by classical invariants, or knot invariants derived from the Seifert
matrix. We consider the similarly defined algebraic untwisting number tua(K )

and algebraic surgery description number sda(K ), measuring the number of null-
homologous twists or m-twists, respectively, needed to obtain a knot with Alexander
polynomial-one, as well.

A tight classical upper bound on the topological 4-genus gtop
4 of a knot is the

algebraic genus galg defined in [Feller and Lewark 2018]. Distinguishing the
algebraic genus from other upper bounds on gtop

4 , such as the algebraic unknotting
number, is often achieved by using the bound galg ≤ g3, where g3(K ) is the 3-genus
of K . In Section 3, we provide the first (to our knowledge) known infinite family
of knots Ln for which galg(Ln) < ua(Ln) for all n ∈ N, and since the 3-genus of
our examples is large, we do so without using g3.

The untwisting number connects to recent work of Manolescu and Piccirillo
[2023] on candidates for exotic definite 4-manifolds, which uses the concept of
strong H-sliceness in definite connected sums of ±CP2. (See Section 3 for a
related definition.) It follows from Proposition 4.1 of [Ince 2017] that, if K can
be unknotted using n positive (respectively, negative) nullhomologous twists, then
K is strongly topologically H -slice in X := B4#n

∓ CP2 ∼= #n
∓ CP2. We use this

fact to obstruct knots from having sda = 1 in Section 3.
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Results. Our main results involve various relationships between the untwisting
number and the surgery description number. To start, we give the first known
examples (to the authors’ knowledge) such that sd ̸= tu. See Section 4 for a
description of these knots.

Theorem 1.1. There are infinitely many knots {Kn} with sd(Kn)=1 and tu(Kn)=2.

This, of course, leads to questions about how far apart the surgery description
number and the untwisting number can be.

Question 1.2. Can tu and sd be arbitrarily far apart?

Answering such a question is made more difficult by the close relationships
between tu and sd both in definition and in values, demonstrated by the two results:

Theorem 1.3. Let K ⊂ S3 be a knot. Then sda(K ) ≤ tua(K ) ≤ 2 sda(K ).

Theorem 1.4. Let K ⊂ S3 be a knot. Then sd(K ) ≤ tu(K ) ≤ 2 sd(K ) + 1.

The proof of Theorem 1.3 relies on the work of Duncan McCoy [2021b] relating
the untwisting number to the algebraic genus. The proof of Theorem 1.4 is con-
structive (involving surgery diagrams and Kirby calculus) and allows one to reduce
multiple twists in a single region to at most 3 twists in separate regions.

Organization. In Section 2, we give formal definitions of all relevant invariants, as
well as some useful prior results. We also prove Theorem 1.3 as a consequence of
[McCoy 2021b]. We prove Theorem 1.1 in Section 4 by providing an infinite family
of examples where the invariants disagree. Theorem 1.4 is proved in Section 5.

2. Algebraic untwisting invariants

One way to study an unknotting operation is to analyze its impact on the Alexander
polynomial of a knot. The effect of an operation on the Alexander polynomial gives
rise to algebraic unknotting operations:

Definition 2.1. Given an unknotting operation U and a knot K , the algebraic U-
number Ua(K ) is the minimal number of U-operations that must be performed in
order to convert K into a knot with Alexander polynomial-one.

We certainly have that Ua(K ) ≤ U(K ) for any unknotting operation U and
knot K . A lower bound on the algebraic unknotting and untwisting numbers is the
topological 4-genus. Another (typically tighter) upper bound on the topological
4-genus is the algebraic genus, defined by Feller and Lewark [2018].

Definition 2.2. The algebraic genus galg(K ) of a knot K is the minimum difference
in genus g(F)− g(F ′) between a Seifert surface F for K and a subsurface F ′

⊂ F
with the property that ∂ F ′

= K ′ is a knot with 1K ′(t) = 1.
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We note that Definition 2.2 implies that a knot K has galg(K ) = 0 if and only if
1K (t) = 1. McCoy proves the following useful characterization of the sensitivity
of the algebraic genus to null-homologous twisting.

Theorem 2.3 [McCoy 2021b, Theorem 1.1]. If K and K ′ are knots and m, n ∈ Z

are such that a null-homologous m-twist followed by a null-homologous n-twist
on K results in K ′ and −mn is a square, then

|galg(K ) − galg(K ′)| ≤ 1.

Proposition 2.4 [McCoy 2021b, Proposition 3.1]. Given a knot K with galg(K )> 0,
there exists a knot K ′ with galg(K ′) = galg(K ) − 1 such that K can be obtained
from K ′ by one right-handed and one left-handed null-homologous twist.

Feller and Lewark [2018] show that for a knot K the algebraic genus and the
algebraic unknotting number are related by galg(K ) ≤ ua(K ) ≤ 2galg(K ). We will
show that in fact

(2.5) galg(K ) ≤ sda(K ) ≤ ua(K ) ≤ 2galg(K ) ≤ 2 sda(K )

and that sda(K ) can provide a better lower bound for ua(K ) than galg(K ). We
begin by showing that the algebraic genus is in fact a lower bound on the algebraic
surgery description number.

Proposition 2.6. Let K ⊂ S3 be a knot. Then galg(K ) ≤ sda(K ).

Proof. Suppose that K is a knot with sda(K ) = k. Then there exists a sequence of k
null-homologous mi -twists (for 1 ≤ i ≤ k) converting K to a knot with Alexander
polynomial-one (which by definition has algebraic genus 0). By Theorem 2.3 (with
n = 0), each of these mi -twists decreases the algebraic genus by at most 1, whence
galg(K ) ≤ k. □

Note that in conjunction with the fact that gtop
4 ≤ galg we have that sda and sd are

upper bounds on the topological 4-genus. Before proving Theorem 1.3, we need to
note the following result of İnce.

Theorem 2.7 [Ince 2016, Theorem 1.1]. Let K ⊂ S3 be a knot. Then we have
ua(K ) = tua(K ).

We are now ready to prove Theorem 1.3: that, sda(K ) ≤ tua(K ) ≤ 2 sda(K ) for
any knot K .

Proof of Theorem 1.3 and inequality (2.5). Since any single null-homologous twist
is an m-twist with m = ±1, we have sda(K ) ≤ tua(K ) for any knot K . Combining
Proposition 2.6 with Feller and Lewark’s [2018] result that ua(K ) ≤ 2galg(K ), we
have that ua(K ) ≤ 2 sda(K ). Theorem 1.3 and inequality (2.5) now follow from
Theorem 2.7. □
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Note. Borodzik [2019] showed that the minimal number of null-homologous twists
on two strands needed to convert a knot K into a knot with Alexander polynomial-
one is always less than three times the algebraic surgery description number. In
fact, our Theorem 1.3, together with the fact that a crossing change is a special case
of a null-homologous two-strand twist and the fact that ua = tua , refines this upper
bound to twice the algebraic surgery description number.

Even though the algebraic unknotting ua(K ) and untwisting numbers tua(K )

coincide, the algebraic surgery description number sda(K ) can be strictly less than
ua(K ) = tua(K ); this is the content of Corollary 4.4.

To conclude that the algebraic surgery description number sda(K ) can be a
better lower bound on the algebraic unknotting number ua(K ) than the algebraic
genus galg(K ), we should show that there is a knot for which galg(K ) ̸= sda(K ).
We provide infinitely many examples with this property in the next section.

3. Infinite families of knots with galg < sda

A knot K ⊂ S3 is called topologically H-slice in a closed, smooth 4-manifold M
if K ⊂ ∂(M \ B4) bounds a locally flat, properly embedded, null-homologous
topological disk in M \ B4. In the context of this paper, if a knot K can be converted
to a knot which is topologically slice in B4 via only left-handed or, respectively,
only right-handed nullhomologous m-twists, then K is topologically H -slice in
#n ±CP2 for some n. The following proposition is well known and follows from, for
instance, [Conway and Nagel 2020, Theorem 3.8]. To interpret their theorem in our
setting, consider a knot K (trivially a colored link) which bounds a null-homologous
disk D in #mCP2. Here D can be thought of as an annular cobordism from K to
the unknot with no double-points.

Proposition 3.1. If a knot K is topologically H-slice in #mCP2, then for any ω ∈ S1

with 1K (ω) ̸= 0,
−2m ≤ σK (ω) ≤ 0,

where σK (ω) is the Levine–Tristram signature function of K.

In particular, the proposition above implies that if the signature function of a
knot takes on both positive and negative values, then sda ̸= 1.

Theorem 3.2. If K and K ′ are knots such that

• ua(K ) = ua(K ′) = 1,

• the signature function of K takes a positive value at a nonroot of 1K (t), and

• the signature function of K ′ takes a negative value at a nonroot of 1K ′(t),

then galg(K #K ′) = 1. If , in addition, the signature function of K #K ′ takes both pos-
itive and negative values at a nonroot of 1K #K ′(t), then galg(K #K ′) < sda(K #K ′).
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Proof. Suppose K and K ′ are knots which satisfy the assumptions of Theorem 3.2.
Now consider the knot J = K #K ′. Note that because K and K ′ have nontrivial
signature functions, neither K nor K ′ has Alexander polynomial-one. So 1J (t) ̸= 1
and galg(J ) ̸=0. Because ua(K )=ua(K ′)=1, the knots K and K ′ can be converted
into knots with Alexander polynomial-one via a single crossing change. Recall
that a crossing change can change the Levine–Tristram signature function by at
most ±2, where the sign depends on the sign of the crossing change (see, for
example, [Conway 2021, Proposition 3(1)]). This implies that the crossing changes
converting K and K ′ to knots with trivial Alexander polynomial can be taken to be
of opposite signs. So the knot J can be converted into a knot J ′ with 1J ′(t) = 1
via a sequence of two crossing changes, one positive and one negative. Since a
crossing change can be realized by single null-homologous twist, by Theorem 2.3
we have that

|galg(J ) − galg(J ′)| ≤ 1.

Because 1J ′(t) = 1, we have that galg(J ′) = 0. So galg(J ) = 1 as desired.
Now, suppose that K and K ′ also satisfy that σJ (ω)=σK (ω)+σK ′(ω) takes both

positive and negative values. By Proposition 3.1, J = K #K ′ is not topologically
H -slice in #m ± CP2 for any m ∈ N. In particular, J cannot be converted to a
topologically slice knot using a single null-homologous m-twist. Thus we have
sda(J ) > 1. □

Theorem 3.3. There exists an infinite family {Kn}
∞

n=2 of prime knots such that
galg(Kn) < sda(Kn) for all n ≥ 2.

Note. In fact, since the Levine–Tristram signature and algebraic unknotting number
of a knot K are invariants of the S-equivalence class of its Seifert matrix, for
any Seifert matrices V, V ′ satisfying the conditions of Theorem 3.2, there exist
infinitely many knots K , K ′ with Seifert matrices in the S-equivalence classes
of V, V ′, respectively, satisfying the conclusions of the theorem. In particular,
our Kn can be chosen to have any adjective (e.g., hyperbolic, quasipositive, . . . )
for which there are infinitely many representative knots with that property in each
S-equivalence class, since our proof relies only on the S-equivalence class of Kn .

In the proof below, we exhibit a concrete family of prime knots via cabling
because cabling seems to be of independent interest.

Proof. Suppose that K and K ′ are knots which satisfy all the assumptions of
Theorem 3.2. For example, we can take K = 1032 and K ′

= −1082 (see Figure 2).
For n ≥ 2, let Kn := (K #K ′)n,1, the (n, 1)-cable of K #K ′. Note that the (n, 1)-
cable of any knot (where n ≥ 2) is prime by [Cromwell 2004, Theorem 4.4.1].
Then we have that galg(Kn) ̸= 0 because 1Kn (t) = 1T (n,1)(t) · 1K1#K2(t

n) ̸= 1
(by [Lickorish 1997, Theorem 6.15] since galg(K1#K2) ̸= 0). On the other hand,
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Figure 2. Top: the knots 1032 (left) and 1082 (right) with red unknots
indicating an unknotting crossing change for each. Bottom: the Levine–
Tristram signature functions for 1032 and −1082 (reparametrized so
that ω = e2π i t ).

Feller et al. [2022] tells us how galg acts under satellite operations. In particular,
galg(Kn)≤ galg(T (n, 1))+galg(K1#K2)= 1, where T (n, 1) denotes the (n, 1)-torus
knot. So we have that galg(Kn) = 1.

Also, by [Litherland 1979, Theorem 2], σKn (ω)=σT (n,1)(ω)+σK1#K2(ω
n). Since

σK1#K2(ω) takes both positive and negative values, so does σKn (ω) = σK1#K2(ω
n).

Proposition 3.1 then implies that sda(Kn) > 1. □

We remark that, for any knot K with galg(K )= 1 and sda(K )≥ 2, inequality (2.5)
implies that sda(K ) = ua(K ) = 2. In particular, the knots Kn from Theorem 3.3
satisfy galg(Kn) = 1 < 2 = sda(Kn) = ua(Kn) for all n ≥ 2. A literature search
suggests that {Kn} is the first known infinite family of knots for which galg < ua .
Note that, in [Feller and Lewark 2018], the 3-genus is used to distinguish between
galg and ua for various knots since galg(K )≤ g3(K ) while ua ≤ 2g3(K ). In our case,
the 3-genus of the Kn grows large, and we use a different strategy for distinguishing
between galg and ua .

4. Relationships between the surgery description and untwisting numbers

In the last section, we found an infinite family of knots for which ua = tua = sda = 2.
Other examples can be found where ua = tua = sda are abundant. We now endeavor
to find examples where the two quantities (and other similar quantities) disagree.
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In particular, in this section, we examine the square of inequalities below, and show
that each inequality can be strict for infinitely many knots:

(4.1)

sda ≤ tua

≤ ≤

sd ≤ tu

It is easy to find infinitely many knots such that the vertical inequalities in (4.1)
are strict; for example, any nontrivial knots with Alexander polynomial-one satisfy
sda < sd and tua < tu. Finding such examples for the horizontal inequalities in (4.1)
is more challenging.

It is known that u(K ) and tu(K ) can be arbitrarily different [Ince 2016]. In
contrast, we can find no examples of knots in the literature with sd(K ) ̸= tu(K ).
We provide the first known examples below; in fact, we find an infinite family {Kn}

of knots satisfying the stronger inequality sd(Kn) < tua(Kn) for all n ≥ 2. This is
the content of Theorem 1.1. The same family provides infinitely many examples
where sda < tua = ua .

For the proof of Theorem 1.1, we employ an obstruction to a knot having
algebraic unknotting number 1 due to Borodzik and Friedl [2015], which in turn
generalizes an unknotting number 1 obstruction due to Lickorish [1985]. The
obstruction involves the linking pairing on the first homology of the double-branched
cover 6(K ); see, e.g., [Gordon 1978] for a discussion of the linking pairing.

Theorem 4.2 [Borodzik and Friedl 2015, Theorems 4.5 and 4.6]. If a knot K can be
algebraically unknotted by a single crossing change, then there exists a generator h
of H1(6(K ); Z) such that its linking pairing satisfies

l(h, h) =
±2

det(K )
∈ Q/Z.

The proof of Theorem 1.1 follows Lickorish’s proof that the knot P(3, 1, 3) does
not have unknotting number 1 (the main theorem of Lickorish [1985]).

Theorem 1.1. There are infinitely many knots {Kn} with sd(Kn) = 1 and tu(Kn) =

tua(Kn) = 2.

Proof. Suppose the family Kn is the set of pretzel knots of the form P(10n+3, 1, 3);
see Figure 3 for two isotopic diagrams and note that the boxed numbers represent
half-twists. We first note that sd(Kn) = 1 by performing the +1/2-surgery (or
equivalently a −2-twist) on the curve C indicated in the figure. After the surgery,
we obtain the pretzel knots P(10n + 3, 1, −1), all of which are isotopic to the
unknot.
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10n + 3

10n + 3

C

Figure 3. Diagrams of the Pretzel knots Kn = P(10n + 3, 1, 3);
the boxed numbers represent half-twists. Left: a standard diagram
for 3-strand pretzel knots, together with an unknotted curve C
where a +1/2 Dehn surgery can be applied to convert Kn to the
unknot. Right: a diagram for the same knot in which it is more
clear that the knots are two-bridge. In fact, they have Conway
notation C(10n + 3, 1, 3).

To conclude that tu(Kn) = 2, it is enough to show that tu(Kn) ̸= 1; tu(Kn) ≤ 2
since the surgery description move can be effected by two (single) null-homologous
twists.

To show that tu(Kn) ̸=1, first recall that tua(K )≤ tu(K ) and that tua(K )=ua(K )

for any knot K . Note that 1Kn (t) ̸= 1 for each n ≥ 2 (see, e.g., [Lickorish 1997,
Example 6.9]), so that tua(Kn) ̸= 0. We then assume that tua(Kn) = 1 for contra-
diction, and prove that the linking pairing on H1(6(Kn); Z) does not satisfy the
condition in Theorem 4.2 for any n ≥ 1.

First, note that the knots Kn are 2-bridge; see Figure 3. Each two-bridge knot
has a (nonunique) associated fraction p/q with the property that 62(K ) ∼= L(p, q);
see, e.g., [Kawauchi 1996, Chapter 2] for a discussion of two-bridge knots. In fact,
{Kn} are precisely those 2-bridge knots with continued fraction of the form

[10n + 3, 1, 3] = 10n + 3 +
1

1+
1
3

=
40n+15

4
.

Hence the double-branched covers of these knots 6(Kn) ∼= L(40n + 15, 4) are
lens spaces. So in particular, 6(Kn) can be obtained as surgery on a knot J (in fact
the unknot) via 40n+15

4 -surgery. This implies that H1(6(Kn); Z) is cyclic of order
40n + 15 generated by µ the image of a meridian of J after surgery, and moreover
that l(µ, µ) =

4
40n+15 [Lickorish 1985].

Any generator h of H1(6(Kn)) is of the form h = tµ for some integer t . Let h
be the generator which must exist according to Theorem 4.2 so that

(4.3) ±2
40n+15

= l(h, h) = l(tµ, tµ) = t2
· l(µ, µ) =

4t2

40n+15
∈ Q/Z.
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Figure 4. The knots 1068 (left) and 11a103 (right) can be converted
to the unknot by inserting two left (resp. right)-handed twists in
the regions indicated by the red unknots.

For the two fractions on the far left and far right of (4.3) to be equivalent in Q/Z,
we must have ±2 ≡ 4t2 (mod 40n+15) so that ±2 must be a square (mod 40n+15).
We will show that this is not true.

If ±2 is a square (mod 40n + 15) then it also must be a square (mod a) where a
is any factor of 40n + 15. In particular, ±2 must be a square (mod 5). But neither
−2 ≡ 3 nor 2 are squares (mod 5). This is a contradiction, and hence tua(Kn) ̸= 1
for each n, which forces tu(Kn) ̸= 1. □

Since sda(K ) ≤ sd(K ) for all knots K , the next corollary immediately follows.

Corollary 4.4. There are infinitely many knots {Kn} for which sda(Kn) = 1 while
tua(Kn) = ua(Kn) = 2.

Note that Corollary 4.4 is the biggest gap we could hope for in the sense that
sda(K ) ≤ tua(K ) = ua(K ) ≤ 2 sda(K ).

While Theorem 1.1 provides infinitely many examples where sd < tua , one
might ask if sd ≤ tua in general. The following theorem provides an answer to this
question in the negative.

Theorem 4.5. The (p, 1)-cable of the untwisted Whitehead double of any nontrivial
knot, which we denote Dp, has tua(Dp) = ua(Dp) = 0 < 1 = sd(Dp) for all p ∈ N.

Proof. First, note that the Alexander polynomial of Dp, for any p, is equal to 1 (see
the cabling relation in [Lickorish 1997]). Thus tua(Dp) = 0. On the other hand,
since Dp is not unknotted, we must have that sd(Dp) ≥ 1. In fact, one can see
that sd(Dp) = 1 by performing a single null-homologous twist about the clasping
region in the untwisted Whitehead double. □

Note. To distinguish between sd and tu, obstructions from Heegaard–Floer homol-
ogy can be used, though this seems feasible only to show that sd = 1 < 2 = tu
for individual knots. In particular, the sd-moves in Figure 4 show that the knots
1068 and 11a103 have sd(K ) = 1, though the facts that tu(1068), tu(11a103) = 2 are
results of [Ince 2017, Theorems 1.3, 1.4].
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For all examples we produce with sd ̸= tu the two invariants in fact only differ
by 1. In Section 5 below, we will prove Theorem 1.4 which states that the ratio
of tu to sd is at most 3. This leaves open the following question.

Question 4.6. Does there exist a knot K with sd(K ) = 1 but tu(K ) = 3, or in
general so that tu(K ) = 2 sd(K ) + 1?

Note that the techniques used in the proof of Theorem 1.1 cannot be used to
obstruct a knot K with sd(K ) = 1 from having tu(K ) ≤ 2 since the algebraic
invariants can differ at most by a factor of 2 by Theorem 1.3. It also seems unlikely
that the Floer theoretic techniques of Ince [2017] would alone be enough to answer
Question 4.6 given the difficulty in obstructing knots from being H -slice in indefinite
4-manifolds [Kjuchukova et al. 2021]. Thus, new techniques are likely needed to
answer the question above.

5. An inequality relating surgery description number and untwisting number

In the previous section we asked whether a knot K with sd(K ) = 1 and tu(K ) = 3
can exist, or more generally, if a knot with 2 sd(K ) + 1 = tu(K ) exists. In this
section, we show that the untwisting number is at most twice the surgery description
number plus 1.

The following theorem was inspired by the work of Borodzik [2019] on algebraic
k-simple knots. In addition, Duncan McCoy suggested the last portion of the proof
of Theorem 1.4, improving the upper bound from an earlier version of the paper.

Theorem 1.4. For any knot K , we have that sd(K ) ≤ tu(K ) ≤ 2 sd(K ) + 1.

Note that while the following proof involves a series of Kirby calculus moves, the
moves used are slam dunk moves (away from the knot), and handle slides involving
only the added components (never the original knot); thus none of the moves alter
the isotopy class of the knot. The result is diagrammatic. For a reference on Kirby
calculus, see [Gompf and Stipsicz 1999].

Proof. The first inequality is clear from the definitions. To show the second
inequality, we will first show that an unknot of framing ±1/(2k + 1) which is null-
homologous in the complement of K can be replaced (via careful Kirby calculus)
with two unlinked, null-homologous unknots, one with framing +1 and one with
framing −1. Thus 2k + 1 full twists in a single twisting region can be realized by a
sequence of two full twists (of opposite signs) in some diagram of K . This process
(Procedure 1) is described below; an example in the case of five left-handed twists
is shown in Figure 5. Throughout, we abuse notation and keep names of unknots
unchanged after they have undergone a handle slide.
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Figure 5. A sequence of Kirby moves which shows that apply-
ing 5 parallel null-homologous twists can be obtained by two null-
homologous twists. Top row: effecting null-homologous twist(s) (left)
and a slam dunk move (right). From second row: handle addition (left)
and isotopy (right).

Procedure 1. (1) Use a reverse slam dunk move to view the ±1/(2k + 1)-framed
unknot as a 0-framed unknot U1 geometrically linked once with a ∓(2k +1)-framed
unknot U2 as in Figure 5 (top row).

(2) By repeatedly sliding U2 over U1, one can change the framing on U2 to ∓1. See
Figure 5 (second and third row). Note that, in each handle slide, only the portion
of U2 near U1 is affected. While this changes how K and U2 are geometrically
linked, the unknots U1 and U2 remain linked once.
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(3) Finally, slide U1 over U2. This has the effect of changing the framing of U1

by ∓1. See Figure 5 (third row, right and bottom row, left). After an isotopy
(Figure 5, bottom row, right), it is not hard to see that the resulting U1 and U2 are
unlinked.

We now show that unknots with framings ±1 and ±1/(2k) which are null-
homologous in the complement of K can be replaced (again, via Kirby calculus)
with three unlinked, null-homologous unknots, two with framings ±1 and one with
framing ∓1. The process is described below; an example is shown in Figure 6.

Procedure 2. (1) Use a reverse slam dunk move to view the ±1/(2k)-framed
unknot as a 0-framed unknot U1 geometrically linked once with a ∓(2k)-framed
unknot U2 as in Figure 6 (top row).

(2) At the beginning of the procedure we assumed we had unknots with framings
±1 and ±1/(2k). Call the unknot with ±1 framing U3. Slide U2 over U3 with
framing ±1 to change the framing on U2 by 1. See 6 (middle row, left). At this
stage, U2 is linked with both U1 and U3.

(3) Slide U3 over U1 in order to unlink U3 from U2. The result is that, after an
isotopy, U3 is completely unlinked from U1 and U2. In addition, U1 and U2 are
in position to perform the procedure from the previous paragraph. See Figure 6
(middle row, right and bottom row).

(4) Apply steps (2) and (3) of Procedure 1.

1/4

+1

0+1 − 4

0

+1

− 3
0

+1− 3

0

+1

− 3

Figure 6. A sequence of Kirby moves to replace +1- and +1/4-framed
null-homologous unknots in the knot complement with an unlinked +1-
framed component and two components linked once, one with framing 0.
Top row: null-homologous unknots in knot complement (left) and a
slam dunk move (right). Middle row: handle addition. Bottom: isotopy.
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Thus, to see the upper bound, consider the following cases.

• First, if the surgery description number can be realized using only ±(2k + 1)-
moves (odd numbers of full twists in each twisting region), then we apply Proce-
dure 1 to reduce each (2k + 1)-move to a +1- and −1-move. Thus, in this case,
tu(K ) ≤ 2 sd(K ).
• Second, if at least one ±(2k)-move (even number of full twists in a single twisting
region) is required to realize the surgery description number, then replace one of the
±(2k)-moves with parallel ±1- and ±(2k −1)-framed unknots. Call the ±1-framed
unknot U3 and now use Procedure 2 with U3 to reduce each remaining ±(2k)-moves
to a +1- and −1-move. Thus, tu(K ) ≤ 2 sd(K ) + 1. □

Note. In the proof of Theorem 1.4, the upper bound of 2 sd(K ) + 1 can only be
sharp when every minimal sd-sequence for K involves only even numbers of full
twists. In all other cases, consider a minimal sd-sequence which involves at least
one null-homologous (2k + 1)-twist for some k ∈ Z. We may use Procedure 1 on
all ±1/(2k + 1)-framed unknots to convert each into two ±1-framed unknots, then
use Procedure 2 on all ±1/(2k)-framed unknots (if one exists) using one of the
±1-framed unknots obtained via Procedure 1 to build an untwisting sequence of
length 2 sd(K ).
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R-MOTIVIC v1-PERIODIC HOMOTOPY

EVA BELMONT, DANIEL C. ISAKSEN AND HANA JIA KONG

We compute the v1-periodic R-motivic stable homotopy groups. The main
tool is the effective slice spectral sequence. Along the way, we also analyze
C-motivic and η-periodic v1-periodic homotopy from the same perspective.

1. Introduction

The computation of the stable homotopy groups of spheres is a difficult but central
problem of stable homotopy theory. There is much that we do not know about
stable homotopy. However, the v1-periodic stable homotopy groups (also known as
the homotopy groups of the spectrum J ) are completely understood, and they have
interesting number-theoretic properties.

The goal of this article is to explore v1-periodic stable homotopy in the R-motivic
context. This choice of ground field represents a middle ground between the well-
understood C-motivic situation and the much more difficult situation of an arbitrary
field, in which arithmetic necessarily enters into the picture.

From our perspective, the field R introduces just one piece of arithmetic: the
failure of −1 to have a square root. This leads to complications in R-motivic
homotopical computations, but they can be managed with care and attention to
detail.

Classically, v1-periodic homotopy is detected by the connective spectrum j top,
which is defined to be the fiber of a map

kotop
−−−→
ψ3
−1

64ksptop,

where kotop is the connective real K -theory spectrum, ksptop is the connective
symplectic K -theory spectrum, and ψ3 is an Adams operation. (A superscript top

indicates that we are discussing the classical context here, not the motivic context.)
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In fact, kotop itself is the more natural target for the map ψ3
− 1. However, the

fiber of kotop
−−−→
ψ3
−1 kotop has a minor defect. It has some additional homotopy classes

in stems −1, 0, and 1 that do not correspond to homotopy classes for the sphere
spectrum. In other words, the map from S0 to this fiber is not surjective in homotopy.
If we change the target of ψ3

− 1 from kotop to its 3-connective cover 64ksptop,
this problem disappears, and the map from S0 to the fiber is onto in homotopy.

It is possible to mimic these constructions in motivic stable homotopy theory [5].
At the prime 2, one can define the motivic connective spectrum j to be the fiber
of a map ko−−−→ψ3

−1
64,2ksp, where ko is the very effective connective Hermitian

K -theory spectrum, ksp is defined in terms of very effective covers of ko, and ψ3

is a motivic lift of an Adams operation.
However, from a computational perspective, this definition of j introduces

apparently unnecessary complications. It is possible to compute the homotopy
of R-motivic j using the techniques that appear later in this article. However,
the computation is slightly messy, involving some exceptional differentials and
exceptional hidden extensions in low dimensions. In any case, the homotopy of
the R-motivic sphere does not surject onto the homotopy of R-motivic j . In other
words, the main rationale for using ksp in the first place does not apply in the
motivic situation.

On the other hand, the computation of the homotopy of the R-motivic fiber of
ko−−−→ψ3

−1 ko is much cleaner. Moreover, it tells us just as much about v1-periodic
R-motivic homotopy as j . In other words, it has all of the computational advantages
of j , while avoiding some unfortunate complications.

Consequently, here we will be solely concerned with the fiber of ko−−−→ψ3
−1 ko.

We use the notation L for this fiber in order to avoid confusion with the traditional
meaning of j . The symbol L is meant to draw a connection to the classical K (1)-
local sphere L K (1)S0, which is the fiber of KOtop

−−−→
ψ3
−1 KOtop. Our main result is a

computation of the homotopy of L .

Theorem 1.1. The homotopy of the R-motivic spectrum L is depicted in Figures
13–19 via the E∞-page of the effective spectral sequence, including all hidden
extensions by ρ, h, and η.

The proof of Theorem 1.1 appears in Section 5. See especially Theorem 5.12
and Proposition 5.13.

Beware that the homotopy of the R-motivic spheres does not surject onto the
homotopy of R-motivic L . It is possible that we may have not yet constructed the
“correct” motivic version of the classical connective spectrum j top. These consider-
ations raise questions about vector bundles and the motivic Adams conjecture. We
make no attempt to study these more geometric issues.1

1After the first version of this article was released, some of these issues have been addressed in [2].
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We claim to compute the v1-periodic R-motivic stable homotopy groups, but
this claim deserves some clarification. We do not use an intrinsic definition of
v1-periodic R-motivic homotopy, although such a definition could probably be
formulated in terms of the motivic K (1)-local sphere. See [7] for some progress on
motivic K (1)-localization.

Rather, we merely compute the homotopy of L , and we observe that it detects
large-scale structure in the stable homotopy of the R-motivic sphere, which was
described in a range in [9]. In other words, we have a practical description of
R-motivic v1-periodic homotopy, not a theoretical one.

The careful reader may object that our approach with effective spectral sequences
is long-winded and unnecessarily complicated. In fact, the homotopy of L could be
determined by direct analysis of the long exact sequence associated to the defining
fiber sequence for L . However, there is a disadvantage in this direct approach. We
find that the effective filtration is useful additional information about the homotopy
of L that helps us understand the computation. The effective filtration is part of the
“higher structure” of the homotopy of L . For example, some subtle phenomena, such
as hidden multiplicative extensions, can only shift into higher effective filtration,
so detailed knowledge of effective filtrations of homotopy classes can rule out
possibilities that may otherwise be difficult to analyze. Another example occurs
with Toda brackets, which may be computable using effective differentials. While
we have no immediate uses for this higher structure, we know from experience that
it inevitably becomes important in deeper homotopical analyses.

1A. Charts. We provide on pages 73–82 charts that display the effective spectral
sequences for ko and L , as well as their C-motivic counterparts. We consider these
charts to be the central achievement of this article. We encourage the reader to rely
heavily on them. In a sense, they provide an illustrated guide to our computations.

Caution must be exercised in the comparison to [9] since the Adams filtrations
and effective filtrations are different. As in [9], our charts consider each coweight
separately; we have found that this is a practical way of studying R-motivic ho-
motopy groups. Periodicity by τ 4 (which is not a permanent cycle, but should be
thought of as a periodicity operator in coweight 4) allows us to give a fairly compact
depiction of the homotopy of L in coweights congruent to 0, 1, and 2 modulo 4;
see Figures 13, 14, and 15.

The homotopy of L in coweights congruent to 3 modulo 4 is much more inter-
esting but harder to describe. See Figures 17 and 18.

1B. Completions. We are computing exclusively in the 2-complete context. This
simplifies all questions surrounding convergence of spectral sequences. Also, the
final computational 2-complete answers are easier to state than their 2-localized or
integral counterparts.
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We generally omit completions from our notation for brevity. For example, we
write Z for the 2-adic integers, and we write KO for the 2-completed R-motivic
Hermitian K -theory spectrum.

Section 2C discusses these topics in slightly more detail.

1C. Regarding the element 2. When passing from the effective E∞-page to stable
homotopy groups, one must choose homotopy elements that are represented by
each element of the E∞-page. For the element 2 in the E∞-page, there is more than
one choice in π0,0 because of the presence of elements in the E∞-page in higher
effective filtration.

From the perspective of abelian groups, the element 2 = 1+ 1 is the obvious
choice of homotopy element. However, there is another element h, also detected by
2 in the effective spectral sequence, that turns out to be a much more convenient
choice. The difference between h and 2 in homotopy is detected by the element ρh1

in higher filtration (to be discussed later). Experience has shown that the motivic
stable homotopy groups are easier to describe in terms of h than in terms of 2. For
example, we have the relations hρ = 0 and hη = 0, where ρ and η are homotopy
elements detected by ρ and h1 respectively. However, neither 2ρ nor 2η are zero.
Because of the presence of elements in higher filtration, the homotopy elements ρ
and η are not uniquely defined by the effective E∞-page elements that detect them.
However, the mentioned relations hold for all choices. In this discussion, the exact
definitions of ρ and η are less important than the observation that they satisfy nicer
relations with respect to h than with respect to 2.

There are two additional reasons why the element h plays a central role. First, it
corresponds to the hyperbolic plane under the isomorphism between motivic π0,0

and the Grothendieck–Witt group of symmetric bilinear forms [25]. Second, it
plays the role of the zeroth Hopf map, in the sense that the Steenrod operations on
its cofiber are simpler than the Steenrod operations for the cofiber of 2.

Consequently, instead of describing motivic stable homotopy groups as a module
over the 2-adic integers Z (i.e., in terms of the action of 2), it is easier to describe
the homotopy groups in terms of the action of h.

1D. Future directions. Our work points toward several open problems.

Problem 1.2. Compute motivic v1-periodic homotopy over an arbitrary base field.
Using [5], one can define L as the fiber of the map ψ3

−1, and it is conceivable that
one could carry out the effective spectral sequence for L in this level of generality,
similar to the kind of computations that appear in [27] and [28]. See Section 1E
for further discussion. For prime fields of characteristic not two, some explicit
computations were carried out in [22].
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Problem 1.3. Recompute the homotopy of L using the R-motivic Adams spectral
sequence. This would be a useful comparison object for further computations with
the Adams spectral sequence for the R-motivic sphere. The classical Adams spectral
sequence for j top was studied by Davis [14], but it was only recently computed
completely by Bruner and Rognes [12]. We are proposing a motivic analogue of
their results.

Problem 1.4. Carry out the effective spectral sequence for the R-motivic sphere
in a range. These computations would serve as a useful companion to R-motivic
Adams spectral sequence computations [9]. The idea is to build on the techniques
that are developed here.

Problem 1.5. Compute the v1-periodic C2-equivariant stable homotopy groups.
More precisely, carry out the C2-effective spectral sequence for a C2-equivariant
version of L . The details will be similar to but more complicated than the com-
putations in this article. See [21] for the effective approach to the C2-equivariant
version of ko. Alternatively, one might compute the v1-periodic C2-equivariant
stable homotopy groups by periodicizing the v1-periodic R-motivic groups with
respect to τ , as considered by Behrens and Shah [8].

Recall that the R-motivic and C2-equivariant stable homotopy groups are isomor-
phic in a range [10]. Consequently, we anticipate that some version of the structure
described here appears in the C2-equivariant context as well.

In the equivariant context, we mention Balderrama’s [6] computation of the
homotopy groups of the Borel C2-equivariant K (1)-local sphere, using techniques
that are entirely different from ours. Roughly speaking, Balderrama computes
the τ 4v4

1-periodicization of our result. The effective E∞ charts in Figures 13–19
possess an obvious regularity every 8 stems, and Balderrama’s computation sees
that regular pattern.

Problem 1.6.2 Study K (1)-localization in the motivic context, which ought to be
something like localization with respect to KGL/2. Compute K (1)-local motivic
homotopy. This would provide an intrinsic definition of v1-periodic homotopy that
would improve upon the practical computational perspective of this article.

A guide to the motivic situation could lie in the work of Balderrama [6] and
Carrick [13] on equivariant localizations.

1E. Towards v1-periodic homotopy over general base fields. Our explicit compu-
tations point the way towards a complete computation of the v1-periodic motivic
stable homotopy groups over arbitrary fields. The situation here is analogous to the
η-periodic R-motivic computations of [16], which foreshadowed the more general
η-periodic computations of [32], [26], and [5].

2After the first version of this article was released, some progress has occurred in [7].
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Problem 1.7. Let k be an arbitrary field of characteristic different from 2. Let
GW (k) be the Grothendieck–Witt ring of symmetric bilinear forms over k. De-
scribe the 2-primary homotopy groups of the k-motivic spectrum L in terms of the
cokernels and kernels of multiplication by various powers of 2 and of h on GW (k).

Problem 1.7 is stated only in terms of 2-primary computations because that
is the most interesting part. We expect that the generalization to odd primes is
straightforward.

The exact powers of 2 and h that are required in Problem 1.7 depend not only
on the coweight but also on the stem. Figures 17 and 18 show that 2v( j)+3 is the
relevant power of 2 in most stems in coweight 4 j − 1. Here v( j) is the 2-adic
valuation of j , i.e., largest number v such that 2v divides j . In coweight 4 j −1 and
stem 4i − 1, we see larger powers of 2, as well as powers of h.

Similar observations apply to the kernels that contribute to coweight 4i .

1F. Outline. Section 2 contains some background information that we will need
to get started on our computations. We briefly discuss convergence of the effective
spectral sequences that we will use. We recall some results of Bachmann–Hopkins
[5] about motivic Adams operations and of Ananyevskiy–Röndigs–Østvær [1] about
the slices of ko.

In Section 2, we have taken some care to eliminate details that we do not use.
In other words, Section 2 describes the minimal hypotheses necessary in order to
carry out our computations.

Section 3 considers C-motivic computations, which play two roles in our work.
First, they serve as a warmup to the more intricate R-motivic computations. Sec-
ond, the comparison between R-motivic and C-motivic homotopy is a necessary
ingredient for our computations. In this section, we describe the effective spectral
sequence for koC. This material is well-known, since it is the same (up to regrading)
as the C-motivic Adams–Novikov spectral sequence for koC, which is nearly the
same as the classical Adams–Novikov spectral sequence for kotop. We then use the
fiber sequence

LC
−→ koC

−−−→
ψ3
−1 koC

in order to determine the E1-page of the effective spectral sequence for LC.
We next completely analyze the effective spectral sequence for the η-periodic-

ization LC
[η−1
]. The η-periodic spectral sequence is significantly simpler than

the unperiodicized spectral sequence. We note the close similarity between the
homotopy of LC

[η−1
] and the computations of Andrew–Miller [3].

The η-periodic effective differentials completely determine the unperiodicized
effective differentials for LC. Finally, we determine hidden extensions in the
effective E∞-page for LC.
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Section 3 completely computes the homotopy of LC, but the effective spectral
sequence is not necessarily the simplest way of obtaining the computation. Nev-
ertheless, we have chosen this approach because of its relationship to our later
R-motivic computations.

Section 4 analyzes the effective spectral sequence for R-motivic ko, including
all differentials and hidden extensions. The E1-page is readily determined from the
work of Ananyevskiy–Röndigs–Østvær [1] on the slices of ko. We draw particular
attention to the formula

(1-1) (τh1)
2
= τ 2
· h2

1+ ρ
2
· v2

1 .

This formula has a major impact on the shape of the answers that we obtain. In
a sense, our work merely draws algebraic conclusions from (1-1) and η-periodic
information. The hidden extensions in the effective E∞-page for ko are easily
determined by comparison to the C-motivic case, using the relationship between
C-motivic and R-motivic homotopy that is described in [8, Corollary 1.9].

Our computation of the homotopy of R-motivic ko is not original. See [21] for a
C2-equivariant analogue of the effective spectral sequence for ko. The R-motivic
computation can be extracted from the C2-equivariant computation by dropping the
“negative cone” elements. Also, Hill [17] computed the Adams spectral sequence
for ko, although the R-motivic spectrum ko had not yet been constructed at the
time.

The next step, undertaken in Section 4B, is to analyze the effect of ψ3 on the
effective spectral sequence of ko. This follows from a straightforward comparison
to the classical case, together with careful bookkeeping. In turn, this leads to
a complete understanding of the effective E1-page of L , which is described in
Section 5A. Again, this is mostly a matter of careful bookkeeping.

Section 5B completely analyzes the effective spectral sequence for η-periodic
L[η−1

]. This information is essentially already well-known, either from [16] or from
Ormsby–Röndigs [26], although those references do not specifically mention L .

As in the C-motivic situation of Section 3, η-periodic information yields all that
we need to know about the unperiodic situation, including all multiplicative relations
in the effective E1-page for L (see Section 5C) and all differentials (see Sections
5D and 5E). We again emphasize the significance of (1-1) in carrying out the details.
Finally, Section 5F studies hidden extensions in the effective E∞-page for L . As for
ko, these hidden extensions follow by comparison to the C-motivic case.

1G. Notation. We use the following conventions.

• v(n) is the 2-adic valuation of n, i.e., the largest integer v such that 2v divides n.

• Except in Section 2, everything is implicitly 2-completed. For example, S is
actually the 2-complete R-motivic sphere spectrum, and Z is the 2-adic integers.



50 EVA BELMONT, DANIEL C. ISAKSEN AND HANA JIA KONG

• s∗(X) are the slices of a motivic spectrum X .

• Er (X) is the Er -page of the effective spectral sequence for a motivic spectrum
X .

• We find the effective slice filtration to be slightly inconvenient for our purposes.
We prefer to use the “Adams–Novikov filtration”, which equals twice the effective
filtration minus the stem.

• Coweight equals the stem minus the motivic weight.

• Elements in Er (X) are tri-graded. We write E s, f,w
r (X) to denote the part with

topological dimension s, Adams–Novikov filtration f , and motivic weight w.

• We use unadorned symbols for R-motivic spectra. For example, ko is the very
effective cover of the R-motivic Hermitian K -theory spectrum.

• XC is the C-motivic extension-of-scalars spectrum of an R-motivic spectrum X .

• X top is the Betti realization of an R-motivic spectrum X .

• S is the R-motivic sphere spectrum.

• KO is the R-motivic spectrum that represents Hermitian K -theory (also known
as KQ).

• ko is the very effective connective cover of KO.

• H A is the R-motivic Eilenberg–Mac Lane spectrum on the group A.

• ψ3 is an Adams operation. We use the same symbol in the R-motivic, C-motivic,
and classical situations.

• L is the fiber of ko−−−→ψ3
−1 ko.

• 6s,wX is a (bigraded) suspension of a motivic spectrum X .

• π∗,∗(X) are the bigraded stable homotopy groups of an R-motivic or C-motivic
spectrum.

• Recall that ϵ is the motivic homotopy class that is represented by the twist map
S ∧ S→ S ∧ S, where S is the motivic sphere spectrum. Let h be the element
1−ϵ, which corresponds to the hyperbolic plane under the isomorphism between
π0,0(S) and the Grothendieck-Witt ring GW (R) [25].

• The element ρ belongs to the R-motivic homology of a point. It is the class
represented by−1 in the Milnor K -theory of R. Since ρ survives all of the spectral
sequences under consideration, we use the same symbol for the corresponding
homotopy class. However, there is a choice of homotopy class represented by ρ
because of the presence of elements in higher filtration. There is an inconsistency
in the literature about this choice. Following [4], we define ρ such that ϵ=ρη−1,
or equivalently 2= ρη+ h.
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We frequently use names for indecomposables that consist of more than one
symbol. For example, Theorem 2.1 discusses the indecomposable element v2

1 of
the effective E1-page for koC. These longer names are slightly more cumbersome.
This is especially the case when we consider products. We will use expressions of
the form x · y for clarity.

On the other hand, our names are particularly convenient because they reflect the
origins of the elements in terms of the spectral sequences that we use. For example,
consider the indecomposable element 2v2

1 of the effective E∞-page for koC, as
discussed in Theorem 3.3 (see also Figure 2). This name reflects the element’s
origin in the effective E1-page. It also illuminates relations such as

2v2
1 · 2v

2
1 = 4 · v4

1

However, one must be careful about possible error terms in such formulas; see
especially (1-1).

2. Background

In this section only, we write ko for the integral version of the very effective cover
of the Hermitian K -theory spectrum, and we use the usual decorations to indicate
localizations and completions of ko. After that, ko is assumed to be 2-completed.

2A. The effective slices of ko. We recall the structure of the effective slices of ko.

Theorem 2.1 [1, Theorem 17]. The slices of ko are

s∗(ko)= HZ[h1, v
2
1]/(2h1),

where v2
1 and h1 have degrees (4, 0, 2) and (1, 1, 1) respectively.

We explain the expression in Theorem 2.1. Each monomial of degree (s, f, w)
contributes a summand of 6s,wH A in the

( s+ f
2

)
-th slice. Here H A is the motivic

Eilenberg–Mac Lane spectrum associated to A. The abelian group A is F2 when
the monomial is 2-torsion, and is Z when the monomial is torsion free. We list the
first three slices as examples:

s0(ko)= HZ{1},

s1(ko)=61,1 HF2{h1},

s2(ko)=62,2 HF2{h2
1} ∨6

4,2 HZ{v2
1}.

Beware that the multiplicative structure of s∗(ko) is not completely captured by
the notation in Theorem 2.1. The essential multiplicative relation is (1-1), which
follows immediately from the general formulas in [1].
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Remark 2.2. The calculation of the slices of the motivic sphere spectrum, due to
Röndigs, Spitzweck, and Østvær [27], is commonly expressed at the prime 2 as

s∗(S)= HZ⊗Ext∗,∗B P∗B P(B P∗, B P∗).

Analogously, Theorem 2.1 says that

s∗(ko)= HZ⊗Ext∗,∗B P∗B P(B P∗, B P∗(kotop)).

However, we do not know of a general theorem relating the slices of a motivic
spectrum with the Adams–Novikov E2-page for its topological counterpart.

2B. The Adams operation ψ3 and the spectrum L. Bachmann and Hopkins [5]
constructed a motivic analogue of the classical Adams operation ψ3. We summarize
the results that we need.

Theorem 2.3 [5]. There is a unital ring map ψ3
: ko

[ 1
3

]
→ ko

[ 1
3

]
whose Betti

realization is the classical Adams operation ψ3.

Proof. There is a unital ring map ψ3
:KO

[ 1
3

]
→KO

[ 1
3

]
[5, Theorem 3.1], which is

an E∞-map. Its Betti realization is also an E∞-map whose action on the classical
Bott element is multiplication by 81. These properties uniquely characterize the
classical Adams operation.

Now apply very effective covers, and the result about ko follows formally. □
The original result is more general in more than one sense. First, it works over

general base schemes in which 2 is invertible, while we only use the construction
over R. Second, its values are computed more precisely than just compatibility
with the classical values.

Corollary 2.4.

(1) ψ3
: π∗,∗(ko∧2 )→ π∗,∗(ko∧2 ) is a ring map.

(2) If x is in the image of the unit map π∗,∗(S∧2 )→ π∗,∗(ko∧2 ), then ψ3(x)= x.

(3) There is a commutative diagram

π∗,∗(ko∧2 )
ψ3

//

��

π∗,∗(ko∧2 )

��

π∗((kotop)∧2 )
ψ3
// π∗((kotop)∧2 ),

where the vertical maps are Betti realization homomorphisms.

Proof. These are computational consequences of Theorem 2.3. Part (1) follows from
the fact that ψ3 is a ring map. Part (2) follows from the fact that ψ3 is unital. Part
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(3) follows from the fact that the Betti realization of the motivic Adams operation
is the classical Adams operation. □

Remark 2.5. Corollary 2.4 can also be stated in a localized sense rather than
completed sense, but we will not need that.

Definition 2.6. Let L be the fiber of the map ko
[ 1

3

]
−−−→
ψ3
−1 ko

[ 1
3

]
.

Note that our definition of L is already localized; we do not consider an integral
version. Except for this section, L is assumed to be 2-completed.

The most important point for us is that there is a fiber sequence

L∧2 −→ ko∧2−−−→
ψ3
−1 ko∧2

of completed spectra since completion preserves fiber sequences.

2C. Convergence of the effective spectral sequence. The effective spectral se-
quence for a motivic spectrum X denotes the spectral sequence associated to the
effective slice filtration of X . We refer to [23; 27] for details on the construction
and properties of this spectral sequence.

The effective slice filtration [31] has truncations f q(X) and quotients (i.e., slices)
sq(X). The E1-page of the effective spectral sequence is π∗,∗(s∗(X)). In good cases,
it converges to the homotopy groups of a completion of X . We also use the very
effective slice filtration [30], but only to define ko.

The slice functors do not necessarily commute with completions, i.e., s∗(X)∧2
and s∗(X∧2 ) are not always equivalent. Consequently, we must carefully define the
spectral sequences that we use to study completed spectra. On the other hand, the
effective slices do interact nicely with localizations [29, Corollary 4.6].

Theorem 2.7. There are strongly convergent spectral sequences

E s, f,w
1 (ko)= πs,w

(
s s+ f

2
(ko)∧2

)
=⇒ πs,w(ko∧2 )

and
E s, f,w

1 (L)= πs,w
(
s s+ f

2
(L)∧2

)
=⇒ πs,w(L∧2 ),

with differentials dr : E
s, f,w
r → E s−1, f+2r+1,w

r .

We remind the reader that our grading of the effective spectral sequence is differ-
ent than the standard grading in the literature. Briefly, s represents the topological
stem, f represents the Adams–Novikov filtration (not the effective filtration), and
w represents the motivic weight. See Section 1G for more discussion.

Proof. We discuss the spectral sequence for ko in detail; most of the argument for
L is the same.
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Consider the effective slice tower

f 0(ko)← f 1(ko)← f 2(ko)← · · · .

Now take the 2-completion of this tower to obtain

f 0(ko)∧2 ← f 1(ko)∧2 ← f 2(ko)∧2 ← · · · .

The resulting layers are the same as s∗(ko)∧2 since completion respects cofiber
sequences. Beware that this is not necessarily the same as the slice tower of the
completion ko∧2 , since slices do not interact nicely with completions. The associated
spectral sequence of this tower is the one described in the statement of the theorem.

It remains to determine the target of the completed spectral sequence. The limit
of the uncompleted slice tower of ko is equivalent to its η-completion [27], [1], i.e.,

holim f n(ko)≃ ko∧η .

Completion respects limits, so the limit holim( f n(ko)∧2 ) of the completed slice
tower is equivalent to (ko∧η )

∧

2 , which is equivalent to ko∧2 by [18, Theorem 1].
Consequently, the completed effective spectral sequence of ko converges to the
homotopy of ko∧2 , as desired.

Strong convergence follows from [11, Theorem 7.1], which has a technical
hypothesis involving derived E∞-pages. For ko, this technical hypothesis follows
directly from the computations of Section 4. For L , the technical hypothesis follows
directly from the computations in Sections 5D and 5E. □

Remark 2.8. By construction, we have a fiber sequence

s∗(L)∧2 −→ s∗(ko)∧2−−−→
ψ3
−1 s∗(ko)∧2 ,

which yields a long exact sequence

· · · −→ E s, f,w
1 (L)−→ E s, f,w

1 (ko)−−−→ψ3
−1 E s, f,w

1 (ko)−→ · · · .

This long exact sequence will be our main tool for computing E1(L) in Section 5A.

3. C-motivic computations

In this section, we carry out a preliminary computation of the effective spectral
sequences for koC and LC. We also consider the η-periodic spectral sequences. We
are primarily interested in R-motivic computations, but we will need to compare
our R-motivic computations to their C-motivic counterparts.

3A. The effective spectral sequence for koC. We review the effective spectral
sequence for koC.
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coweight (s, f, w) x d1(x) ψ3(x)

0 (1, 1, 1) h1 h1

1 (0, 0,−1) τ τ

2 (4, 0, 2) v2
1 τh3

1 9v2
1

Table 1. Multiplicative generators for E1(koC).

Proposition 3.1. The effective spectral sequence for koC takes the form

E1(koC)= Z[τ, h1, v
2
1]/2h1.

Proof. This follows from Theorem 2.1 by taking stable homotopy groups. There
are no possible error terms to complicate the multiplicative structure. □

Table 1 lists the generators of E1(koC). Figure 1 depicts E1(koC) graphically.

Proposition 3.2. Table 1 gives the values of the effective d1 differential on the
multiplicative generators of E1(koC).

Proof. The C-motivic effective spectral sequence is identical to the C-motivic
Adams–Novikov spectral sequence up to reindexing. This claim does not appear
to be cleanly stated in the literature, but it is a computational consequence of the
weight 0 result of [24, Theorem 1]. Alternatively, there is only one pattern of
effective differentials that computes the motivic stable homotopy groups of koC,
which were previously described using the C-motivic Adams spectral sequence
[20]. □
Theorem 3.3. The E∞-page of the effective spectral sequence for koC takes the
form

E∞(koC)=
Z[τ, h1, 2v2

1, v
4
1]

2h1, τh3
1, (2v

2
1)

2 = 4 · v4
1

.

Proof. For degree reasons, there can be no higher differentials in the effective
spectral sequence for koC. □

Table 2 lists the multiplicative generators of E∞(koC). Figure 2 depicts E∞(koC)

in graphical form.

Remark 3.4. There are no possible hidden extensions in E∞(koC) for degree
reasons. Therefore, Theorem 3.3 describes π∗,∗(koC) as a ring.

3B. The effective E1-page for LC. Our next goal is to describe the effective E1-
page E1(LC). First we must study the values of ψ3 on koC.

Lemma 3.5. The map E∞(koC)→ E∞(koC) induced by ψ3 on effective E∞-pages
takes the values shown in Table 2.
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coweight (s, f, w) x ψ3(x)

0 (1, 1, 1) h1 h1

1 (0, 0,−1) τ τ

2 (4, 0, 2) 2v2
1 9·2v2

1
4 (8, 0, 4) v4

1 81v4
1

Table 2. Multiplicative generators for E∞(koC).

Proof. All values follow immediately by comparison along Betti realization to the
values of classical ψ3. □
Lemma 3.6. The map E1(koC)→ E1(koC) induced by ψ3 on effective E1-pages
takes the values shown in Table 1.

Proof. The values of ψ3 on E1(koC) are compatible with the values of ψ3 on
E∞(koC), as shown in Table 2 (see also Lemma 3.5). This immediately yields all
values. □

In order to describe E1(LC), we need some elementary number theory.

Definition 3.7. Let v(n) be the 2-adic valuation of n, i.e., the exponent of the
largest power of 2 that divides n.

Lemma 3.8. v(3n
− 1)=

{
1 if v(n)= 0,
2+ v(n) if v(n) > 0,

Proof. Let n = 2a
· b, where b is an odd number, so v(n)= a. Then

3n
− 1=

(
1+ 32a

+ (32a
)2+ · · ·+ (32a

)b−1)(3− 1)
a−1∏
i=0
(1+ 32i

).

The first factor is odd, so it does not contribute to the 2-adic valuation. The factor
(1+ 32i

) has valuation 1 if i > 0, and it has valuation 2 if i = 0. □
Proposition 3.9. The chart in Figure 3 depicts the effective E1-page of LC.

Proof. The long exact sequence

· · · −→ E1(LC)−→ E1(koC)−−−→
ψ3
−1 E1(koC)−→ · · ·

induces a short exact sequence

0−→6−1C −→ E1(LC)−→ K −→ 0,

where C and K are the cokernel and kernel of E1(koC)−−−→
ψ3
−1 E1(koC) respectively.

The cokernel and kernel can be computed directly from the information given in
Table 1 (see also Lemma 3.6).

The kernel is additively generated by all multiples of h1 in E1(koC), together
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coweight (s, f, w) generator

1 (0, 0,−1) τ

2k (4k+1, 1, 2k+1) h1v
2k
1

2k−1 (4k−1, 1, 2k) ιv2k
1

Table 3. Multiplicative generators for E1(LC): k ≥ 0.

with the elements τ k for k ≥ 0.
The cokernel C is nearly the same as E1(koC) itself. We must impose the relations

(32k
− 1)v2k

1 = 0 for all k > 0. Lemma 3.8 says that 32k
− 1 equals 2v(2k)+2

· u,
where u is an odd number, i.e., a unit in our 2-adic context. Therefore, the relation
(32k
− 1)v2k

1 = 0 is equivalent to the relation 2v(2k)+2v2k
1 = 0. □

Table 3 lists some elements of the effective E1-page of LC. In fact, these elements
are multiplicative generators for E1(LC). By inspection, all elements of E1(LC)

are of the form τ ahb
1x , for some x in the table.

We use the same notation for elements of E1(LC) and their images in E1(koC).
On the other hand, we define the elements ιx of E1(LC) by the property that they are
the image of x under the map ι :6−1 E1(ko)→ E1(L). For example, the element 1
of E1(ko) maps to ι.

Remark 3.10. Our choice of notation for elements of E1(LC) is helpful for the
particular analysis at hand. The generators of E1(LC) also have traditional names
from the perspective of the Adams–Novikov spectral sequence. Namely, h1v

2k
1

and ιv2k
1 correspond to α2k+1 and α2k/v(8k) respectively. However, the α-family

perspective is not so helpful for us.

3C. The effective spectral sequence of LC[η−1]. Next, we describe the effective
spectral sequence of LC

[η−1
].

In the η-periodic context, the element h1 is a unit, so its powers are inconse-
quential for computational purposes, and have been removed from all η-periodic
formulas. The appropriate powers of h1 can be easily reconstructed from the degrees
of elements (although this reconstruction is typically not necessary).

Proposition 3.11. The effective E1-page for LC
[η−1
] is given by

E1(LC
[η−1
])= F2[h±1

1 , τ, v2
1, ι]/ι

2.

Proof. The functors s∗ commute with homotopy colimits [29, Corollary 4.6].
Therefore, we can just invert h1 in E1(koC) to obtain

E1(koC
[η−1
])= F2[h±1

1 , τ, v2
1].

See Proposition 3.1 (and Figure 1) for the description of E1(koC).
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The map E1(koC
[η−1
])−−−→
ψ3
−1 E1(koC

[η−1
]) is trivial because (ψ3

−1)(v2k
1 ) is a

multiple of 2, as shown in Table 1 (see also Lemma 3.6). Therefore, the long exact
sequence

· · · −→ E1(LC
[η−1
])−→ E1(koC

[η−1
])−−−→
ψ3
−1 E1(koC

[η−1
])−→ · · ·

implies that E1(LC
[η−1
]) splits as

E1(koC
[η−1
])⊕6−1 E1(koC

[η−1
]).

This establishes the additive structure of E1(L[η−1
]), as well as most of the multi-

plicative structure.
The relation ι2= 0 is immediate because no nonzero values for ι2 are possible. □

Proposition 3.12. In the effective spectral sequence for LC
[η−1
], we have d1(v

2
1)=

τ . The effective differentials are zero on all other multiplicative generators on all
pages.

Proof. The value of d1(v
2
1) in E1(LC

[η−1
]) follows by comparison of effective

spectral sequences along the maps LC
→ LC

[η−1
] and LC

→ koC. Table 1 (see
also Proposition 3.2) gives the value of d1(v

2
1) in E1(koC). □

Remark 3.13. The effective spectral sequence for LC
[η−1
] is very close to the

effective spectral sequence for the η-periodic sphere SC
[η−1
]. The effective spectral

sequence for SC
[η−1
] is the same (up to reindexing) as the motivic Adams–Novikov

spectral sequence for SC
[η−1
]. This motivic Adams–Novikov spectral sequence

is analyzed in [3]. The element ι is not present in E1(SC
[η−1
]), but its multiples

ι(v2
1)

k are present.

3D. Effective differentials for LC.

Proposition 3.14. Table 4 gives the values of the effective d1 differentials on the
multiplicative generators of E1(LC). There are no higher differentials in the effective
spectral sequence for LC.

coweight (s, f, w) x d1(x)

1 (0, 0,−1) τ

4k (8k+1, 1, 4k+1) h1v
4k
1

4k+2 (8k+5, 1, 4k+3) h1v
4k+2
1 τh3

1 ·h1v
4k
1

4k−1 (8k−1, 1, 4k) ιv4k
1

4k+1 (8k+3, 1, 4k+2) ιv4k+2
1 τh3

1 ·ιv
4k
1

Table 4. Effective d1 differentials for LC: k ≥ 0.
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Proof. All of these differentials follow immediately from the effective d1 differentials
for LC

[η−1
], which are determined by Proposition 3.12.

For degree reasons, there are no possible higher differentials. □
Theorem 3.15. The E∞-page of the effective spectral sequence for LC is depicted
in Figure 4.

Proof. Because there are no higher effective differentials for LC, we obtain the
effective E∞-page immediately from the effective d1 differentials in Table 4 (see
also Proposition 3.14). □

3E. Hidden extensions in E∞(LC).
Proposition 3.16. In the effective spectral sequence for LC, the elements h1v

4k
1 do

not support hidden h extensions for all k ≥ 0.

Proof. The elements h1v
4k
1 detect elements in π∗,∗LC that are in the image of

the homotopy π∗,∗SC of the C-motivic sphere. In the C-motivic sphere, these
v1-periodic elements are annihilated by h. □
Remark 3.17. The proof of Proposition 3.16 appeals to knowledge of the homotopy
of the C-motivic sphere. In fact, one can avoid this by use of Toda brackets in the
homotopy of LC. Namely, in the homotopy of LC, the E∞-page element h1v

4k+4
1

detects an element in the bracket ⟨h3σ, h, α⟩, where α is detected by h1v
4k
1 and σ

is detected by ιv4
1 . By induction,

⟨h3σ, h, α⟩h= h3
· σ ⟨h, α, h⟩ = h3

· σ · τη ·α = 0.

Proposition 3.18. In the effective spectral sequence for LC, there are hidden h

extensions from ι4v4k+2
1 to τh2

1 · h1v
4k
1 for all k ≥ 0.

Proof. Recall that τη2
= ⟨h, η, h⟩ in the homotopy of the C-motivic sphere [19,

Table 7.23]. If α is a homotopy element of LC such that hα is zero, then

α · τη2
= α⟨h, η, h⟩ = ⟨α, h, η⟩h.

In particular, let α be detected by h1v
4k
1 . Note that hα = 0 by Proposition 3.16.

Then τh2
1 · h1v

4k
1 detects a homotopy element that is divisible by h, so τh2

1 · h1v
4k
1

must be the target of a hidden h extension. There is only one possible source for
this extension. □

4. The effective spectral sequence for ko

We now study the effective spectral sequence for R-motivic ko.

Proposition 4.1. The effective spectral sequence for ko takes the form

E1(ko)=
Z[ρ, τ 2, h1, τh1, v

2
1]

2ρ, 2h1, 2 · τh1, (τh1)2 = τ 2 · h2
1+ ρ

2 · v2
1
.
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coweight (s, f, w) x d1(x) ψ3(x) image in E1(ko[η−1
])

0 (−1, 1,−1) ρ ρ ρ

0 (1, 1, 1) h1 h1 1
1 (1, 1, 0) τh1 τh1 τ ·h1

2 (0, 0,−2) τ 2 ρ2
·τh1 τ 2 τ 2

+ρ2
·v2

1 ·h
−2
1

2 (4, 0, 2) v2
1 τh1 ·h2

1 9v2
1 v2

1

Table 5. Multiplicative generators for E1(ko).

Proof. The additive structure follows from Theorem 2.1 by taking stable homotopy
groups. We need that the homotopy groups of R-motivic HZ are

HZ∗,∗ = Z[τ 2, ρ]/2ρ,

and the homotopy groups of R-motivic HF2 are

(HF2)∗,∗ = F2[τ, ρ].

The multiplicative structure is mostly also immediate from Theorem 2.1. As
explained in [21], our formula for (τh1)

2 is equivalent to the formula η2
−→
δ √

α

given in [1, p. 1029]. □

Table 5 lists the generators of E1(ko). Figure 5 depicts E1(ko) graphically.

Proposition 4.2. Table 5 gives the values of the effective d1 differential on the
multiplicative generators of E1(ko).

Proof. The value of d1(τ
2) follows from [1, Theorem 20] and R-motivic Steenrod

algebra actions. Then the value of d1(v
2
1) follows from (1-1).

Alternatively, there is only one pattern of effective differentials that computes
the motivic stable homotopy groups of ko, which were previously computed with
the R-motivic Adams spectral sequence [17]. □

The entire d1 differential in the effective spectral sequence for ko can easily be
deduced from Proposition 4.2 and the Leibniz rule.

Theorem 4.3. The E∞-page of the effective spectral sequence for ko is depicted in
Figures 6, 7, and 8.

Proof. The Leibniz rule, together with the values in Table 5 (see also Proposition 4.2),
completely determines the effective d1 differential on E1(ko). The E2-page can then
be determined directly. However, the computation is not entirely straightforward.
Of particular note is the differential

d1(τ
2
· τh1 · v

2
1)= τ

4
· h4

1+ ρ
4
· v4

1,
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which yields the relation

(4-1) τ 4
· h4

1 = ρ
4
· v4

1

in E2(ko).
For degree reasons, there can be no higher differentials in the effective spectral

sequence for ko. □

For legibility, Figures 6, 7, and 8 display E∞(ko) in three different charts
separated by coweight modulo 4. There is no chart for coweights 3 mod 4 because
E∞(ko) is zero in those coweights.

Figure 9 illustrates part of the analysis of the d1 differentials and the determination
of E2(ko); it is meant to be representative, not thorough. The chart shows some
of the elements in coweights 1 and 2 mod 4, together with the d1 differentials
that relate these elements. In this chart, one can see that τ 2

· h2
1+ ρ

2
· v2

1 survives
to E2(ko). This element survives to E∞(ko). It is labeled (τh1)

2 in Figure 8, in
accordance with (1-1).

Remark 4.4. There is an alternative, slightly more structured, method for obtaining
E∞(ko). One can filter E1(ko) by powers of τh1 and obtain a spectral sequence that
converges to E2(ko). In this spectral sequence, we have the relation τ 2

·h2
1= ρ

2
·v2

1 .
There are differentials d1(τ

2) = ρ2
· τh1 and d1(v

2
1) = h2

1 · τh1. Then there is a
higher differential d3(τ

2
· v2

1)= (τh1)
3. None of this is essential to our study, but

the interested reader may wish to carry out the details.

Table 6 lists the multiplicative generators of E∞(ko). It is possible to give a
complete list of relations. However, the long list is not so helpful for understanding
the structure of E∞(ko). The charts in Figures 6, 7, and 8 are more useful for this
purpose.

coweight (s, f, w) x ψ3(x)

0 (−1, 1,−1) ρ ρ

0 (1, 1, 1) h1 h1

1 (1, 1, 0) τh1 τh1

2 (0, 0,−2) 2τ 2 2τ 2

2 (4, 0, 2) 2v2
1 9·2v2

1
4 (0, 0,−4) τ 4 τ 4

4 (4, 0, 0) 2τ 2v2
1 9·2τ 2v2

1
4 (8, 0, 4) v4

1 81v4
1

Table 6. Multiplicative generators for E∞(ko).
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coweight source type target (s, f, w)

2 2v2
1 ρ (τh1)

2h1 (3, 3, 1)
4 2τ 2v2

1 ρ τ 4
·h3

1 (3, 3,−1)
4 2τ 2v2

1 η ρ3
·v4

1 (5, 3, 1)
2 2τ 2 η ρ(τh1)

2 (1, 3,−1)
1 τh1 h ρ ·τh1 ·h1 (1, 3, 0)
2 (τh1)

2 h ρ(τh1)
2h1 (2, 4, 0)

Table 7. Hidden extensions in E∞(ko).

Proposition 4.5. Table 7 lists some hidden extensions by ρ, h, and η in the effective
spectral sequence for ko. All other hidden extensions by ρ, h, and η are v4

1-multiples
and τ 4-multiples of these.

Proof. Recall from [8, Corollary 1.9] that the homotopy of ko/ρ is isomorphic to
the homotopy of koC. Therefore, we completely understand the homotopy of ko/ρ
from Theorem 3.3 and Figure 2.

The hidden ρ extensions follow from inspection of the long exact sequence
associated to the cofiber sequence

6−1,−1ko−→ρ ko−→ ko/ρ.

The map ko→ ko/ρ takes the elements τ 4
· h3

1 and (τh1)
2h1 to zero because there

are no possible targets in the homotopy of ko/ρ. Therefore, those two elements
must receive hidden ρ extensions, and there is only one possibility in both cases.

The relation τ 4
· h4

1 = ρ
4
· v4

1 (see (4-1)) then implies that 2τ 2v2
1 also supports an

h1 extension.
The map ko/ρ→60,−1ko takes τ 3 and τ 3h1 to 2τ 2 and ρ(τh1)

2 respectively.
There is an h1 extension connecting τ 3 and τ 3h1 in ko/ρ, so there must be a hidden
η extension from 2τ 2 to ρ(τh1)

2.
The hidden h extension on τh1 follows from the analogous hidden extension in

the homotopy groups of the R-motivic sphere [15] [9], using the unit map S→ ko.
Alternatively, this hidden extension is computed in [17, Proposition 4.3] in the
context of the R-motivic Adams spectral sequence for ko.

Finally, multiply by τh1 to obtain the hidden h extension on (τh1)
2.

For degree reasons, there are no other possible hidden extensions to consider. □

Remark 4.6. We have completely analyzed the E∞-page of the effective spectral
sequence for ko, but this is not quite the same as completely describing the homotopy
of ko. In particular, one must choose an element of π∗,∗ko that is represented by
each multiplicative generator of E∞(ko) (see Table 6). In some cases, there is
more than one choice because of the presence of elements in higher filtration in
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the E∞-page. The choices of ρ, h1, τh1, and τ 4 can be made arbitrarily; the ring
structure is unaffected by these choices. The elements 2τ 2 and 2v2

1 are already
well-defined because there are no elements in higher filtration. Finally, the choices
of 2τ 2v2

1 and v4
1 can then be uniquely specified by the relations ρ · 2τ 2v2

1 = τ
4
· h3

1
and ρ4

· v4
1 = τ

4
· h4

1.

4A. η-periodic ko. Later we will need some information about the η-periodic spec-
trum ko[η−1

]. As in Section 3C, powers of h1 are inconsequential for computational
purposes in the η-periodic context. Consequently, we have removed these powers
from all η-periodic formulas.

Proposition 4.7. The effective E1-page for ko is given by

E1(ko[η−1
])= F2[h±1

1 , τ, ρ, v2
1].

Moreover, the periodicization map ko→ ko[η−1
] induces the map on effective

E1-pages whose values are given in Table 5.

The first part of Proposition 4.7 was first proved in [1, Theorem 19], although
the notation is different.

Proof. The functors s∗ commute with homotopy colimits [29, Corollary 4.6].
Therefore, we can just invert h1 in the description of E1(ko) given in Proposition 4.1
(see also Figure 5).

After inverting h1, the relation 2h1 in E1(ko) implies that 2= 0 in E1(ko[η−1
]).

This gives that

E1(ko[η−1
])=

F2[h±1
1 , ρ, τ 2, τh1, v

2
1]

τ 2 = h−2
1 (τh1)2+ h−2

1 · ρ
2 · v2

1

.

Because of the relation, the generator τ 2 is redundant.
The values of the periodicization map given in Table 5 are immediate from the

algebraic analysis of the previous paragraph. □

Remark 4.8. Table 5 gives an unexpected value for τ 2. Recall that τ 2 is inde-
composable in E1(ko), so there is no inconsistency. The unexpected value arises
from (1-1).

4B. The Adams operation ψ3 in effective spectral sequences. Our goal in this
section is to study ψ3 as a map of effective spectral sequences. This will allow us
to compute the E1-page of the effective spectral sequence for L .

Lemma 4.9. The map E∞(ko)→ E∞(ko) induced by ψ3 on effective E∞-pages
takes the values shown in Table 6.
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Proof. Corollary 2.4(2) gives the values of ψ3 on ρ, h1, and τh1.
The value of ψ3 on τ 4 is determined immediately by comparison along Betti

realization to the classical value ψ3(1)= 1. The computation is greatly simplified
by ignoring terms in higher effective filtration. Similarly, the value of ψ3 on 2τ 2 is
determined by the classical value ψ3(2)= 2.

The remaining values in Table 6 are also determined by comparison along Betti
realization to the classical values ψ3(2v2

1)= 9 · 2v2
1 and ψ3(v4

1)= 81v4
1 . □

Lemma 4.10. The map E1(ko)→ E1(ko) induced by ψ3 on effective E1-pages
takes the values shown in Table 5.

Proof. The values of ψ3 on E1(ko) are compatible with the values of ψ3 on E∞(ko),
as shown in Table 6. This immediately yields the value of ψ3 on ρ, h1, and τh1.

The value of ψ3((τ 2)2) must be (τ 2)2 by compatibility with the value of ψ3(τ 4)

in E∞(ko). Then the relation ψ3((τ 2)2)= (ψ3(τ 2))2 implies that ψ3(τ 2)= τ 2.
Similarly, the value of ψ3((v2

1)
2) must be 81(v2

1)
2 by compatibility with the

value of ψ3(v4
1) in E∞(ko). Then the relation ψ3((v2

1)
2)= (ψ3(v2

1))
2 implies that

ψ3(v2
1)= 9v2

1 . □

Remark 4.11. Since ψ3 is a ring homomorphism, all values of ψ3 on E1(ko) are
readily determined by the values on multiplicative generators given in Table 5. In
particular, for all k ≥ 0,

ψ3(v2k
1 )= 9kv2k

1 .

Remark 4.12. Table 5 implies that ψ3(v4
1)= 81v4

1 . The careful reader will notice
that this expression appears to be simpler than the analogous formula in [5, Theorem
3.1(2)]. The difference is explained by the fact that we are working only up to
higher effective filtration. In particular, our formulas do not reflect the difference
between the homotopy elements 2 and h, since their difference is detected by ρh1

in higher effective filtration. This also means that our formulas are less precise, but
that has no consequence for our computational results.

5. The effective spectral sequence for L

5A. The effective E1-page of L. In this section we compute the E1-page of the
effective spectral sequence for L .

The fiber sequence L→ ko−−−→ψ3
−1 ko induces a fiber sequence

s∗L −→ s∗ko−−−→ψ3
−1 s∗ko

on slices. Upon taking homotopy groups, we obtain a long exact sequence

· · · −→ E1(L)−→ E1(ko)−−−→ψ3
−1 E1(ko)−→ · · · .
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Table 5 (see also Lemma 4.10) gives us complete computational knowledge of the
map E1(ko)→ E1(ko). This allows us to compute E1(L).

Proposition 5.1. The chart in Figure 10 depicts the effective E1-page of L.

Proof. The long exact sequence

· · · −→ E1(L)−→ E1(ko)−−−→ψ3
−1 E1(ko)−→ · · ·

induces a short exact sequence

0−→6−1C −→ E1(L)−→ K −→ 0,

where C and K are the cokernel and kernel of E1(ko)−−−→ψ3
−1 E1(ko). The cokernel

and kernel can be computed directly from the information given in Lemma 4.10.
See also Remark 4.11.

The kernel consists of all elements in E1(ko) with the exception of the integer
multiples of τ 2 j

· v2k
1 for j ≥ 0 and k > 0.

The cokernel C is nearly the same as E1(ko) itself. We must impose the relations
(32k
− 1)v2k

1 = 0 for all k > 0. Lemma 3.8 says that 32k
− 1 equals 2v(2k)+2

· u,
where u is an odd number, i.e., a unit in our 2-adic context. Therefore, the relation
(32k
− 1)v2k

1 = 0 is equivalent to the relation 2v(2k)+2v2k
1 = 0. □

Table 8 lists some elements of the effective E1-page of L . In fact, by inspection
these elements are multiplicative generators for E1(L).

We use the same notation for elements of E1(L) and their images in E1(ko). On
the other hand, we define the element ιx of E1(L) to be the image of x under the
map ι :6−1 E1(ko)→ E1(L). For example, the element 1 of E1(ko) maps to ι in
E1(L).

5B. The effective spectral sequence for L[η−1]. In Section 5A, we determined the
effective E1-page of L . The next steps in the analysis of the effective spectral se-
quence for L are to determine the multiplicative structure of E1(L) (see Section 5C)
and to determine the effective differentials (see Sections 5D and 5E).

coweight (s, f, w) generator image in E1(L[η−1
])

2 (0, 0,−2) τ 2 τ 2
+ρ2
·v2

1
2k+1 (4k+1, 1, 2k) τh1v

2k
1 τ(v2

1)
k

2k (4k−1, 1, 2k−1) ρv2k
1 ρ(v2

1)
k

2k (4k+1, 1, 2k+1) h1v
2k
1 (v2

1)
k

2k−1 (4k−1, 1, 2k) ιv2k
1 ι(v2

1)
k

Table 8. Multiplicative generators for E1(L): k ≥ 0.
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Before doing so, we collect some information on the η-periodicization L[η−1
].

We will study L[η−1
] by comparing to the more easily understood ko[η−1

].
As in Sections 3C and 4A, powers of h1 are inconsequential for computational

purposes in the η-periodic context. Consequently, we have removed these powers
from all η-periodic formulas.

Proposition 5.2. The effective E1-page for L[η−1
] is given by

E1(L[η−1
])= F2[h±1

1 , τ, ρ, v2
1, ι]/ι

2.

the periodicization map L→ L[η−1
] induces the map E1(L)→ E1(L[η−1

]) whose
values are given in Table 8.

Proof. As in Proposition 4.7, we can just invert h1 in the additive description of
E1(L) given in Proposition 5.1.

The map E1(ko[η−1
])−−−→
ψ3
−1 E1(ko[η−1) is trivial because (ψ3

− 1)(h1)= 0, as
shown in Table 5 (see also Lemma 4.10). Therefore, the long exact sequence

· · · −→ E1(L[η−1)−→ E1(ko[η−1
])−−−→
ψ3
−1 E1(ko[η−1

])−→ · · ·

splits as
E1(L[η−1

])∼= E1(ko[η−1
])⊕6−1 E1(ko[η−1

]).

With Proposition 4.7, this establishes the additive structure of E1(L[η−1
]), as well

as most of the multiplicative structure.
The relation ι2= 0 is immediate because no nonzero values for ι2 are possible. □

Remark 5.3. As in Remark 4.8, Table 8 gives an unexpected value for τ 2, which
arises from (1-1). Also, the last column of Table 8 leaves out of h1 for readability.

Remark 5.4. Note that E1(L[η−1
]) is very close to the effective E1-page for the

η-periodic sphere S[η−1
] [27, Theorem 2.32] [26, Theorem 2.3]. The element ι is

not present in E1(S[η−1
]), but the elements ιv2k

1 are present.

Proposition 5.5. Some values of the differentials in the effective spectral sequence
of L[η−1

] are:

(1) d1(v
2
1)= τ .

(2) dn+1(v
2n

1 )= ρ
n+1
· ιv2n

1 for n ≥ 2.

The effective differentials are zero on all other multiplicative generators on all
pages.

Following our convention throughout this section, we have omitted the powers
of h1 from the formulas in Proposition 5.5.
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Proof. The d1 differential follows from [27, Lemma 4.2] or [26, Theorem 2.6].
To study the higher differentials, consider the map S[η−1

] → L[η−1
]. This map

induces an isomorphism on stable homotopy groups, except in coweight −1. This
follows from a minor adjustment to [5, Theorem 1.1]. The adjustment arises from
the fact that our L[η−1

] is the fiber of ko[η−1
]−−−→
ψ3
−1 ko[η−1

], while [5, Theorem
1.1] refers to the fiber of ko[η−1

]−−−→
ψ3
−1

68,4ko[η−1
].

The homotopy of S[η−1
] is completely computed in [16], so the homotopy of

L[η−1
] is known (except in coweight −1). There is only one pattern of differentials

that is compatible with the known values for L[η−1
]. □

Remark 5.6. In the language of [26, Section 4], Proposition 5.5 establishes the
profile of the η-periodic effective spectral sequence over R.

5C. Multiplicative relations for E1(L). In this section, we will completely de-
scribe the product structure on E1(L). We do not need all of this structure for our
later computations, but we include it for completeness.

Proposition 5.7. Table 9 lists some products in E1(L).

Proof. All of these products are detected by E1(L[η−1
]), which is described

in Proposition 5.2. We need the values of the periodicization map E1(L) →
E1(L[η−1

]) given in Table 8. □

5D. The effective d1 differential for L. Our next task is to compute the differentials
in the effective spectral sequence for L .

Proposition 5.8. Table 10 gives the values of the effective d1 differential on the
multiplicative generators of E1(L).

Proof. All of these differentials follow immediately from the effective d1 differentials
for L[η−1

], which are all determined by Proposition 5.5(1) Beware that the exact
values of the map E1(L)→ E1(L[η−1

]), as shown in Table 8, are important.
For example, consider the differential on the element τh1v

4k+2
1 . It maps to

τ(v2
1)

2k+1 in E1(L[η−1
]) (up to h1 multiples, which as usual we ignore in the

η-periodic situation). The η-periodic differential on this latter element is τ 2(v2
1)

2k .

ρv
2 j
1 h1v

2 j
1 τh1v

2 j
1 ιv

2 j
1

ρv2k
1 ρ ·ρv

2 j+2k
1

h1v
2k
1 ρ ·h1v

2 j+2k
1 h1 ·h1v

2 j+2k
1

τh1v
2k
1 ρ ·τh1v

2 j+2k
1 h1 ·τh1v

2 j+2k
1 τ 2

·h1 ·h1v
2 j+2k
1 +ρ ·ρv

2 j+2k+2
1

ιv2k
1 ρ ·ιv

2 j+2k
1 h1 ·ιv

2 j+2k
1 τh1 ·ιv

2 j+2k
1 0

Table 9. Products in E1(L): j ≥ 0 and k ≥ 0.
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coweight (s, f, w) x d1(x)

2 (0, 0,−2) τ 2 ρ2
·τh1

4k (8k−1, 1, 4k−1) ρv4k
1

4k+2 (8k+3, 1, 4k+1) ρv4k+2
1 ρh2

1 ·τh1v
4k
1

4k (8k+1, 1, 4k+1) h1v
4k
1

4k+2 (8k+5, 1, 4k+3) h1v
4k+2
1 h3

1 ·τh1v
4k
1

4k+3 (8k+5, 1, 4k+2) τh1v
4k+2
1 τ 2

·h3
1 ·h1v

4k
1 +ρ

2h1 ·h1v
4k+2
1

4k+1 (8k+1, 1, 4k) τh1v
4k
1

4k+1 (8k+3, 1, 4k+2) ιv4k+2
1 τh1 ·h2

1 ·ιv
4k
1

4k−1 (8k−1, 1, 4k) ιv4k
1

Table 10. Effective d1 differentials for L: k ≥ 0.

Finally, we need to find an element of E1(L) in the correct degree whose η-period-
icization is τ 2(v2

1)
2k , The only possibility is τ 2

· h3
1 · h1v

4k
1 + ρ

2h1 · h1v
4k+2
1 . □

Remark 5.9. All d1 differentials in E1(L) can be deduced from the information
in Table 10 and the Leibniz rule, but the computations can be complicated by the
multiplicative relations of Table 9. For example,

d1(τ
2
· τh1v

2
1)= ρ

2
· τh1 · τh1v

2
1 + τ

2(τ 2
· h4

1+ ρ
2h1 · h1v

2
1)= τ

4
· h4

1+ ρ
4
· v4

1 .

Having completely analyzed the slice d1 differentials for E1(L), it is now possible
to compute the E2-page of the slice spectral sequence for L .

Proposition 5.10. The E2-page of the effective spectral sequence for L is depicted
in Figures 11, 12, 14, and 15.

For legibility, Figures 11, 12, 14, and 15 display E2(L) in four different charts
separated by coweight modulo 4. Note that Figures 14 and 15 also serve as E∞-page
charts in coweights 1 and 2 modulo 4 because there are no higher differentials that
affect these coweights.

Proof. The Leibniz rule, together with the values in Table 10, completely deter-
mines the effective d1 differential on E1(L). The E2-page can then be determined
directly. However, as in the proof of Theorem 4.3, the computation is not entirely
straightforward.

It turns out that the d1 differential preserves the image of the map 6−1 E1(ko)→
E1(L). Moreover, it turns out that all d1 differentials with values in the image of
6−1 E1(ko)→ E1(L) also have source in this image. (This is not for formal reasons;
in fact, the higher effective differentials do not have this property.) Consequently,
the determination of the E2-page splits into two separate computations: one for the
image of 6−1 E1(ko)→ E1(L), and one for the cokernel of the same map.
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In more concrete terms, we can determine E2(L) by first considering only
elements of the form ιx , and then separately considering only elements that are not
of this form.

The d1 differential on the image of 6−1 E1(ko)→ E1(L) is identical to the
d1 differential for ko discussed in Section 4. The d1 differential on the cokernel
of 6−1 E1(ko)→ E1(L) is similar to the d1 differential on E1(ko), but slightly
different. The difference is created by the absence of the elements v2k

1 in E1(L). □

5E. Higher differentials. We now consider the higher differentials in the effective
spectral sequence for L .

By inspection of the charts for E2(L), the only possible higher differentials have
source in coweight congruent to 0 modulo 4 and value in coweight congruent to 3
modulo 4. In other words, in coweights congruent to 1 and 2 modulo 4, we have
that E2(L) equals E∞(L).

It turns out that there are many higher differentials. In fact, nearly all of the
elements in E2(L) in coweight congruent to 0 modulo 4 support differentials.
While it is possible to write down explicit formulas for all of these differentials,
the formulas would be cumbersome and not so helpful. Rather, we give a more
qualitative description of the differentials because it is more useful for computation.

Proposition 5.11. Consider the elements of E2(L) in coweights congruent to 0
modulo 4 that belong to the cokernel of the map 6−1 E2(ko)→ E2(L).

(1) The only permanent cycles are the multiples of 1, the multiples of 2τ 4k for
k ≥ 0, and ρahb

1 for all a ≥ 0 and b ≥ 0.

(2) Excluding the elements listed in (1), if an element has coweight congruent to
2r−1 modulo 2r , then it supports a dr differential.

Proposition 5.11 may seem imprecise because it does not give the values of the
differentials. However, there is only one nonzero possible value in every case, so
there is no ambiguity.

Proof. These differentials follow immediately from the η-periodic differentials of
Proposition 5.5, together with multiplicative relations in E2(L).

For example, consider the element τ 8
· ρv12

1 in coweight 20, which is congruent
to 22 modulo 23. Using Table 8, we find that this element maps to ρ9(v2

1)
10 in

E2(L[η−1
]). Here we are using that τ 2 is zero in E2(L[η−1

]) since it is hit by
an η-periodic d1 differential. Proposition 5.5 says that this element supports an
η-periodic d3 differential. It follows that τ 8

·ρv12
1 also supports a d3 differential. □

Theorem 5.12. The E∞-page of the effective spectral sequence for L is depicted in
Figures 13, 14, 15, 16, 17, 18, and 19.

Proof. The E∞-page can be deduced directly from the higher differentials described
in Proposition 5.11. □
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The E∞-page in coweights congruent to 3 modulo 4 is by far the most complicated
case. Figures 17, 18, and 19 display E∞(L) in coweights congruent to 3 modulo 8,
7 modulo 16, and 15 modulo 32 respectively.

In each case (and more generally in coweights congruent to 2n−1
− 1 modulo 2n ,

we see similar patterns with minor variations. The lower boundary of each chart
takes the same shape. The upper boundary of the τ -periodic portion of each chart
also takes the same shape. However, the filtration jump between the lower and
upper boundaries increases linearly with n.

In addition to the τ -periodic portion of each chart, there are also τ -torsion, η-
periodic regions. These consist of bands of infinite h1-towers of width n that repeat
every 2n+1 stems. The first such band starts at ιv2n−1

1 .

5F. Hidden extensions. Our last goal is to compute hidden extensions by ρ, h,
and η. See [19, Section 4.1] for a precise definition of a hidden extension. Fortu-
nately, none of the complications associated with crossing extensions occur in our
situation.

Proposition 5.13. Table 11 lists some hidden extensions by ρ, h, and η in the
effective spectral sequence for L.

Proof. The last column of Table 11 indicates the reason for each hidden extension.
Some of the hidden extensions follow from the analogous extensions for ko given
in Table 7, using the maps 6−1ko→ L and L→ ko.

coweight source type target (s, f, w) proof

0 ι·τh1 h ι·ρh1 ·τh1 (0, 2, 0) 6−1ko→ L
1 τh1 h ρh1 ·τh1 (1, 1, 0) L→ ko
1 ι(τh1)

2 h ι·ρh1(τh1)
2 (1, 3, 0) 6−1ko→ L

1 ι·2τ 2 η ι·ρ(τh1)
2 (−1, 1,−2) 6−1ko→ L

1 ι2v2
1 ρ ι·h1(τh1)

2 (3, 1, 2) 6−1ko→ L
1 ι4v2

1 h h2
1 ·τh1 (3, 1, 2) L/ρ

2 (τh1)
2 h ρh1(τh1)

2 (2, 2, 0) L→ ko
3 ι4τ 2v2

1 h (τh1)
3 (3, 1, 0) L/ρ

3 ι2τ 2v2
1 ρ ιτ 4

·h3
1 (3, 1, 0) 6−1ko→ L

3 ι2τ 2v2
1 η ρ3

·ιv4
1 (3, 1, 0) 6−1ko→ L

2 2τ 2 η ρ(τh1)
2 (0, 0,−2) L→ ko

3 (τh1)
3 h ιτ 4

·ρ2h6
1 (3, 3, 0) L/ρ

5 ιv4
1 ·8τ

2 h ρ2
·τh1v

4
1 (7, 1, 2) L/ρ

Table 11. Hidden extensions in E∞(L).
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Other extensions follow from the long exact sequence associated to the cofiber
sequence

6−1,−1L −→ρ L −→ L/ρ.

Here we need that the homotopy of L/ρ is isomorphic to the homotopy of LC, as
shown in [8, Corollary 1.9]. For example, the hidden h extensions of Proposition 3.18
give hidden h extensions in L/ρ, which then imply the hidden extension from ι4v2

1
to h2

1 · τh1. □
Remark 5.14. The hidden extensions in Table 11 are τ 4-periodic in the following
sense. If we take the source and target of each extension in E1(L) and multiply by
τ 4, then we obtain permanent cycles that are related by a hidden extension. For
example, the hidden h extension from τh1 to ρh1 · τh1 generalizes to a family of
hidden extensions from τ 4k+1h1 to ρh1 · τ

4k+1h1 for all k ≥ 0.

Remark 5.15. Similarly to the τ 4-periodicity discussed in Remark 5.14, most of
the hidden extensions in Table 11 are v4

1-periodic as well. For example, the hidden
h extension from τh1 to ρh1 ·τh1 generalizes to a family of hidden extensions from
τh1v

4k
1 to ρh1 ·τh1v

4k
1 for all k≥ 0. There are three exceptions, which appear below

the horizontal divider at the bottom of the table. These exceptions are discussed in
more detail in Remarks 5.16, 5.17, and 5.18.

Remark 5.16. The hidden η extension from 2τ 2 to ρ(τh1)
2 is τ 4-periodic as in

Remark 5.14, but it is not v4
1-periodic. The elements 2τ 2v4k

1 are not permanent
cycles for k ≥ 1.

Remark 5.17. The hidden h extension from ιv4
1 · 8τ

2 to ρ2
· τh1v

4
1 is v4

1-periodic,
but the situation is slightly more complicated than in Remark 5.15. For all k,
ρ2
· τh1v

4k
1 receives a hidden h extension from an appropriate multiple of ιv4k

1 ·2τ
2.

For example, as shown in Figure 14, there is a hidden h extension from ιv4k
1 · 16τ 2

to ρ2
· τh1v

8
1 .

Remark 5.18. The hidden h extension from (τh1)
3 to ιτ 4

·ρ2h6
1 is v4

1-periodic, but
the situation is more complicated than in Remarks 5.15 and 5.17. For all k ≥ 0, the
element (τh1)

2τh1v
4k
1 supports a hidden h extension to the element of E∞(L) of

highest filtration in the appropriate degree. For example, as shown in Figure 18,
there is a hidden h extension from (τh1)

2
· τ 5h1 to ιτ 8

· ρ3h7
1. Figures 17, 18, and

19 show several extensions of this type.

6. Charts

We explain the notation used in the charts.

• The horizontal coordinate is the stem s. The vertical coordinate is the Adams-
Novikov filtration f (see Section 1G for further discussion).
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• Black or green circles represent copies of F2, periodicized by some power of
τ . The relevant power of τ varies from chart to chart.

• Black or green unfilled boxes represent copies of Z (the 2-adic integers),
periodicized by some power of τ . The relevant power of τ varies from chart
to chart.

• Black or green boxes containing a number n represent copies of Z/2n , peri-
odicized by some power of τ . The relevant power of τ varies from chart to
chart.

• Red unfilled boxes represent copies of Z (the 2-adic integers) that are not
τ k-periodic for any k.

• Green objects represent elements in the image of the map E1(6
−1ko)→ E1(L)

(or E1(6
−1koC)→ E1(LC)). Beware that the color refers to the E1-page origin

of the element, not the properties of the homotopical element that it detects.
For example, in Figure 4, the element τh3

1 detects an element in π3,2LC that
maps to zero in π3,2koC, so it is in the image of π4,2koC. Nevertheless, the
element is colored black because it is not in the image on E1-pages.

• Black objects represent elements in the cokernel of the map E1(6
−1ko)→

E1(L) (or E1(6
−1koC)→ E1(LC)). In other words, they are detected by the

map L → ko (or LC
→ koC). As in the previous paragraph, beware of the

distinction between E1-page origins and homotopical properties.

• Lines of slope 1 represent h1-multiplications.

• Black or green arrows of slope 1 represent infinite sequences of elements that
are τ k-periodic for some k > 0 and are connected by h1-multiplications.

• Red arrows of slope 1 represent infinite sequences of elements that are con-
nected by h1-multiplications and are not τ k-periodic for any k.

• Lines of slope −1 represent ρ-multiplications.

• Dashed lines of slope −1 represent ρ-multiplications whose values are multi-
ples of τ k for some k > 0. For example, in Figure 6, we have ρ · ρ3v4

1 equals
τ 4
· h4

1.

• Black or green arrows of slope −1 represent infinite sequences of elements
that are τ k-periodic for some k > 0 and are connected by ρ-multiplications.

• Light blue lines of slope −3 represent effective d1 differentials.

• Dashed light blue lines of slope −3 represent effective d1 differentials that
hit multiples of τ k , for some k > 0. For example, the dashed line in Figure 1
indicates that d1(v

2
1) equals τh3

1.

• Dark blue lines indicate hidden extensions by h, ρ, or h1.
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• Dashed dark blue lines indicate hidden extensions whose value is a multiple
of τ k for some k > 0. For example, in Figure 4, there is a hidden h extension
from ι4v2

1 to τh3
1.
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Figure 1. The E1-page of the effective spectral sequence for koC.
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Figure 2. The E∞-page of the effective spectral sequence for koC.
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Figure 3. The E1-page of the effective spectral sequence for LC.
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Figure 4. The E∞-page of the effective spectral sequence for LC.
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Figure 11. The E2-page of the effective spectral sequence for L
in coweights 0 mod 4.

-1 0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

E2(L) in coweights 3 mod 4 � = Z2[τ
4]

�n = Z/2n[τ4]

• = F2[τ
4]

-2 0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

rS
ι

b

b

b

rS2

ι2τ2v21

rS4

ιv41

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

rS2

ι2τ2v61

rS5

ιv81

b

b

b

b

b

b

b

b

b

(τh1)
3

b

(τh1)
2τh1v

4
1

Figure 12. The E2-page of the effective spectral sequence for L
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Figure 13. The E∞-page of the effective spectral sequence for L
in coweights 0 mod 4.
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Figure 14. The E∞-page of the effective spectral sequence for L
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Figure 16. The E∞-page of the effective spectral sequence for L
in coweight −1.
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Figure 17. The E∞-page of the effective spectral sequence for L
in coweights 3 mod 8.
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Figure 18. The E∞-page of the effective spectral sequence for L
in coweights 7 mod 16.
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Figure 19. The E∞-page of the effective spectral sequence for L
in coweights 15 mod 32.
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HIGHER-GENUS QUANTUM K -THEORY

YOU-CHENG CHOU, LEO HERR AND YUAN-PIN LEE

We prove genus g invariants in quantum K-theory are determined by genus
zero invariants of a smooth stack in the spirit of K. Costello’s result in
Gromov–Witten theory.

0. Introduction

Let X be a smooth quasiprojective variety over C. Let Mg,R(X, β) be the space
of genus g, R-pointed stable maps to X with degree β. The perfect obstruction
theory on Mg,R(X, β) [Behrend and Fantechi 1997] endows the moduli stack with
a “virtual structure sheaf” Ovir

Mg,R(X,β)
[Lee 2004].

Let αi ∈ K ◦(X) and L i be the universal cotangent line bundles. When the
insertion

� :=
∑

I

aI

R∏
i=1

Lki
i ⊗ ev∗i αi

has an action by SR , the permutation-equivariant pushforward

(1)
∑

j

(−1) j H j (Mg,R(X, β),Ovir
⊗�)

is an element in the Grothendieck group of SR-representations with ⊕, i.e., virtual
representations. We can also take a subgroup of SR instead. These are by definition
the permutation-equivariant quantum K-invariants.

The main theorem of this paper is the following.

Theorem 0.1 (see Theorem 3.1). Genus g quantum K-invariants on X can be
computed from permutation-equivariant genus zero quantum K-invariants on

[Symg+1 X ] = [X g+1/Sg+1].

A similar statement holds for X a smooth DM stack with projective coarse moduli
space.
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We believe the higher-genus permutation-equivariant quantum K-theory of X can
also be computed from genus zero theory of [Symg+1 X ] by extending our methods.

When the target, X itself or [Symg+1 X ], is a Deligne–Mumford stack, the
definition of Mg,R(X, β) involves twisted/orbifold curves and twisted stable maps.
The domain curves are families of pointed nodal curves with cyclic gerbe structures
at the marked points and nodes, such that the gerbe structures at the nodes are
balanced. This means they are locally stack quotients of the node R[x, y]/(xy) by
the antidiagonal action

ζ.(x, y) := (ζ x, ζ−1 y), ζ ∈ µr .

Note that we do not require the µr -gerbe structures at the marked points to be trivial
in families as in [Costello 2006]. Twisted stable maps are representable morphisms
from twisted curves to the target with finite automorphisms. Mg,R(X, β) are the
moduli stacks of (twisted) stable maps with the discrete data g, R, β.

Hence, the marked points are no longer literal “points”, but gerbes. Due to
the nontrivial gerbes at the marked points, the evaluation maps have the natural
codomain a partially rigidified inertia stack Ī(X), instead of the inertia stack IX .
This has been done in [Chen and Ruan 2002; 2004] and [Abramovich et al. 2008]
in the context of cohomology and Chow groups.

We only need one class pulled back from Ī(−) as opposed to ordinary K-theory,
which comes from [Symk X ] for some k ≤ g+ 1 in Section 3B. We do not need the
full K-theory of Ī([Symg+1 X ]).

The appearance of permutation-equivariant K-theory is quite natural, not simply
a “technical clutch”. In cohomological Gromov–Witten theory, we often rely
on the fact that the substacks (“strata”) appearing in “common operations” (e.g.,
fixed-point loci in torus localizations or the components of inertia stacks of the
moduli) are variants of known quantities in the sense of induction. These variants
can be identified with the actual known quantities in Gromov–Witten theory by
simple modifications. For example, for the purpose of computing Gromov–Witten
invariants, we have ∫

[M/Sn]

· · · =
1
n!

∫
[M]
π∗( . . . ).

These equalities are no longer true in quantum K-theory. In fact, we have

χ([M/Sn], . . . )= χSn (M, π
∗( . . . ))Sn .

We note that K-theory on [M/Sn] can be identified with the Sn-equivariant K-
theory on M , and χSn (−)

Sn is the pushforward in the Sn-equivariant theory, i.e.,
the Sn-invariant part (−)Sn of alternating sum of sheaf cohomologies viewed as
Sn representations χSn (−). This necessitates permutation-equivariant quantum
K-theory.
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Quantum K-theory has already been defined for stacks; see, e.g., [Tonita and
Tseng 2013] and [Zhang, Section 2.4]. A comparison of the quantum K-theories
with trivial and nontrivial gerbes at marked points can be found in [Zhang, Remark
2.8]. See also [Abramovich et al. 2002, Sections 4.4, 4.5] in the cohomological
context. We allow nontrivial gerbes and recall the basic definitions in Section 1E.

Quantum K-invariants are roughly Gromov–Witten invariants computed in K-
theory instead of cohomology or Chow groups. The idea of computing genus g
Gromov–Witten invariants of any smooth projective variety X in terms of genus zero
quantum K-invariants of quotient stack [Symg+1 X ] goes back to M. Kontsevich
and was independently obtained in K. Costello’s thesis [Costello 2006]. This paper
can be considered as a K-theoretic version of this circle of ideas.

The calculation of genus zero quantum K-theoretic invariants is simpler and
self-contained, while the higher-genus invariants necessarily involve invariants of
lower genus. Genus-0 quantum K-theory is much better understood, with additional
finite difference structure in addition to the usual D-module structure.

Quantum K-theory has connections with modern enumerative geometry, inte-
grable systems, representation theory, geometric combinatorics and theoretical
physics. Its influence on theoretical physics is largely its relation to 3-dimensional
topological field theory. See the pioneering works of N. Nekrasov, H. Jockers,
P. Mayr etc. [Jockers and Mayr 2019; 2020]. For its connection to representation
theory, see [Okounkov 2017]. At the very onset of the quantum K-theory, it was
intimately connected to integrable systems. See, for example, [Givental and Lee
2003]. It has also inspired much progress in geometric combinatorics through works
like [Buch and Mihalcea 2011; Buch et al. 2013; 2020]. Most of these works are in
genus zero. We hope that our algorithm will prove useful in the further development
of higher-genus quantum K-theory.

We work exclusively with schemes, stacks, etc. locally of finite-type over the
complex numbers C. In particular, they are locally noetherian.

1. Higher-genus quantum K-invariants

Let C ′ be a general genus g smooth curve with a general divisor B of degree
d = g + 1. There is exactly one ramified cover f : C ′ → P1 of degree d with
ramification divisor B = f ∗∞ over infinity by Riemann–Roch (see [Costello 2006,
Lemma 6.0.1] and [Herr and Wise 2023, Theorem 3.12]. The following facts come
from Costello [2006].

• This entails a birational map between moduli spaces (Lemma 1.16).

• By adding stack structure ·̃ , we can make f : C̃ ′→ P̃1 a finite étale cover.
This is pulled back along a map P̃1→ BSd from a stacky genus zero curve to
the moduli space BSd of finite étale degree d covers.
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We can similarly interpolate between genus g and genus zero maps to a fixed
smooth, quasiprojective target X .

Remark 1.1. Write ⟨d⟩ = {1, 2, . . . , d} for the ordered set of d elements. An
Sd -torsor P→ X is equivalent to the data of a finite étale degree d cover

T ′ := (P ×⟨d⟩)/Sd → X.

The universal d-sheeted cover

(pt×⟨d⟩)/Sd → BSd

can be noncanonically identified with the map BSd−1→ BSd induced by any of
the d inclusions Sd−1 ⊆ Sd .

Consider a twisted, representable stable map C̃ ′→ X together with a finite étale
degree d cover C̃ ′→ C̃ of a stacky curve C̃ of genus zero. To promote C̃ ′ to a
marked curve, we need only order the fibers of the marked points of C̃ .

Our data is pulled back from the universal finite étale degree d cover mapping
to X :

C̃ ′ [(Xd
×⟨d⟩)/Sd ]

C̃ [Symd X ] = [Xd/Sd ]

⌜

and the whole diagram has finitely many automorphisms over the right arrow if and
only if the map C̃→ [Symd X ] is stable.

Definition 1.2. The stack K̃0,n([Symd X ]) parameterizes families C̃→ S of twisted
curves of genus zero with n marked points and a representable map C̃→[Symd X ]
together with an ordering of the fibers over the marked points. The marked points
of C̃ may be nontrivial gerbes over S.

The stack K̃0,n([Symd X ]) equivalently parametrizes families of ramified d-
sheeted covers C ′ → C together with maps C ′ → X that have finitely many
automorphisms. All ramification points are marked and the fibers above the marked
points of C are all the marked points of C ′. By “ordering of the fibers”, we mean
that the fibers of C ′→ C over each marked point of C must be ordered, a torsor
for a product of symmetric groups. We later consider variants where less of the
marked points of C ′→ C are ordered; see Figure 2.

Our twisted/stacky stable maps and curves are different from [Costello 2006].
For families of curves C̃→ S over a base scheme S, the i-th marked point of C̃
may be a nontrivial µri gerbe for ri ∈ Z≥1. We fix the orders ri later.

We want to apply the K-theoretic version of Costello’s pushforward formula
[Chou et al. 2023, Theorem 2.7] to a square from [Herr and Wise 2023, Section 3.2]
introduced in Section 1A:
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(2)

K̃4(Sd X) Mg,R(X)

K̃4(BSd) Mg,R

q

π ′
⌜

π

p

The stacks Mg,R(X) of stable maps and Mg,R of prestable curves are standard.
We do not fix a curve class β, so this space is a disjoint union over choices of β.

We denote K̃4(Sd X) ⊆ K̃0,n([Symd X ]) a substack with appropriate discrete
invariants fixed in Section 1B. The stack K̃4(BSd), denoted M̃0,n(BSd) in [Herr
and Wise 2023, before Lemma 3.6], is approximately the stack of prestable maps
C̃→ BSd from the genus zero twisted base curves parameterized in K̃4(Sd X).

The obstruction theory for π ′ is pulled back from π . The problem is that p is of
degree

e = k!(g!)#J (g!)k,

while the K-theoretic virtual pushforward formula so far only applies to birational
maps. We decompose p as a finite étale torsor of degree e composed with a
birational map to which the pushforward formula applies.

1A. Costello’s square (2). We describe (2). Write ⟨d⟩ = {1, 2, . . . , d}. A subset
A ⊆ ⟨ℓ⟩ will be fixed later; the symbols Mg,R(X), Mg,R refer to moduli stacks of
ordinary stable maps and prestable curves with R = ℓ− #A marked points. We
do not fix the curve class β for simplicity. We assume R ≥ 1.

The substack K̃4(Sd X) ⊆ K̃0,n([Symd X ]) parametrizes stable maps of genus
zero curves to [Symd X ], identified with triples C← C ′→ X above. The 4 refers
to fixed discrete invariants (see Section 1B): ramification profiles of C ′→ C , the
numbers n and ℓ of marked points for C and C ′, the genus of C ′, and the degree d
of C ′ → C . The number ℓ ≤ dn is the sum of the degrees of the fibers in the
ramification profiles. These invariants satisfy Riemann–Hurwitz to ensure that the
space is nonempty:

(3) 2g− 2=−2d +
∑
P∈C ′

(eP − 1).

The functor q forgets the marked points A ⊆ ⟨ℓ⟩ of C ′ and then takes the
stabilization C ′→ X of the resulting map C ′→ X .

The map π ′ forgets the stable map to X . To make the diagram commute, π ′ must
remember the stabilization C ′ of C ′ → X . Define the stack K̃4(BSd) of triples
C← C ′→ D, where C ′→ C is a ramified cover of type 4 and C ′→ D a partial
stabilization after forgetting A ⊆ ⟨ℓ⟩. The map p sends this triple to D. The
square (2) is cartesian and p is proper by Lemma 3.9 and Corollary 3.7 of [Herr
and Wise 2023], respectively.
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Remark 1.3. The degree e= k!(g!)#J (g!)k differs from both [Herr and Wise 2023,
Theorem 3.12] and [Costello 2006, Lemma 6.0.1]. Our use of nontrivial gerbes
instead of trivialized gerbes accounts for the difference from [Herr and Wise 2023].
Costello’s version is reconciled in Remark 3.15 of loc. cit. Our degree can be
computed using the proof of Theorem 3.12 of loc. cit. or by taking into account the
degrees of the universal gerbes.

The degree e is the order of a group 0 = (Sg)
J
× Sg ≀ Sk that reorders marked

points of C ′→ C discussed in Section 1D.
The stabilization C ′→ X was omitted in [Costello 2006], leading to nonproper

moduli stacks or noncommutative diagrams. This could be rectified using Costello’s
technology of weighted graphs instead of our partial stabilizations.

1B. Specifying 4. We unpack our discrete data:

4=


g(C ′)= g, g(C)= 0, d = g+ 1,

⟨ℓ⟩ → ⟨n⟩ is ⟨k⟩× ⟨d⟩
pr1
7−→ ⟨k⟩, J ×⟨d⟩

pr1
7−→ J, I 7→∞,

∀ j ∈ J, r j = 1, ∀ j ∈ ⟨k⟩, r j = 2, γ : I → Z≥1, r∞ = lcm(γ (i)),⊔
J Bµ1 = ∗→ BSd ,

⊔
i∈⟨k⟩Bµ2

φ
−→ BSd .


See Figure 1 for an example which is Figure 2 in [Herr and Wise 2023].

Ramification profiles are specified by an action of µr on an unordered set of
size d. Take a small loop around p ∈ C , and its lifts to C ′ identify which of the
d sheets come together over p. Encode this action in a map Bµr → BSd up to
isomorphism.

Remark 1.4. The category of maps BG→ BH has:

• Objects: homomorphisms f : G→ H .

• Morphisms f1 → f2: elements h ∈ H which conjugate one morphism to
another f1 = h f2h−1. They are all isomorphisms.

C ′

C

J k ∞

Figure 1. A cover in 4, g = 3, d = 4. Marked points are black if
forgotten A⊆ ⟨ℓ⟩ and white if remembered under the map to Mg,R .
The space K̃

∗

4∗(BSd) forgets the ordering on the black marked points.
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Objects of the category Hom(Bµr , BSd) can be identified with actions µr

⟳
⟨d⟩.

Isomorphisms between two such actions are relabelings of the set ⟨d⟩ of d elements.
So an isomorphism class of functors Bµr→ BSd is an action of µr on an unlabeled
set with d elements.

The action µr

⟳

⟨d⟩ contains the information of a ramification point C ′→C of a
map of curves. The stacky quotient [⟨d⟩/µr ] is the fiber of C̃ ′→ C̃ over the point
Bµr ∈C . To extract the set-theoretic fiber, we take the coarse moduli space ⟨d⟩/µr .
This gives an unlabeled set with some number of elements between 1 and d. In
families, Bµr is allowed to be a nontrivial gerbe.

A point p ∈C is simply ramified if its fiber consists of d−1 points, where exactly
two of the d sheets come together and the other points in the fiber are unramified.
This corresponds to the action µr

⟳
⟨d⟩ with one 2-cycle and the rest of the points

fixed, up to reordering ⟨d⟩.
Let k≥ 0 be an integer, g= g(C ′) be the genus of C ′, and fix the degree d= g+1.

Divide the n marked points of C into three sets:

• {∞}: write I ⊆C ′ for the fiber over this point∞∈C . This point has ramification
described by a map Bµr∞ → BSd or function γ : I → Z≥1. That is, γ (i) is the
size of the stabilizer of i in the corresponding action µr∞

⟳

⟨d⟩.

• J : these points J ⊆ C have no ramification.

• ⟨k⟩: these points have simple ramification.

This gives partitions

⟨n⟩ = J ⊔ ⟨k⟩ ⊔ {∞}, ⟨ℓ⟩ = J ×⟨g+ 1⟩ ⊔ ⟨kg⟩ ⊔ I.

The map ⟨ℓ⟩ → ⟨n⟩ on marked points is compatible with these partitions.
The j-th marked point of C is a µr j -gerbe, where r j = 1 at unramified points

j ∈ J , r j = 2 for the k simple ramification points and ∞ has r∞ = lcm(γ (i))
the least common multiple of the ramification function γ on I . These data are
subject to a constraint easier seen with trivialized gerbes: the sum BZ→ BSd of
the classifying space maps from all the composites Z→ µr → Sd be zero, lest the
space be empty. This corresponds to the presentation of π1(P

1
\ ⟨n⟩) via generators

whose product is trivial.
Let A⊆⟨ℓ⟩ consist of all of ⟨kg⟩, none of I , and a subset of J×⟨g+ 1⟩ such that

J ×⟨g+ 1⟩\ A→ J is a bijection. Note that the set ⟨ℓ⟩\ A= I ⊔ J has R elements.
Take k = #I + 3g − 1 so that all the dimensions agree [Herr and Wise 2023,

Theorem 3.12]:
dim K̃4(BSd)= dimMg,R.

We can now prove our main equality between virtual fundamental classes. We
first recall their definition in K-theory.
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1C. K-theory. Let Y be a finite-type noetherian algebraic stack. The K-theory
of Y is the K-theory of a category of lis-ét sheaves on Y , for which there are two
main options:

• K◦(Y ): coherent sheaves, otherwise known as G-theory G(Y ).

• K ◦(Y ): locally free sheaves of finite rank.

We work with Q-coefficients, tensoring these groups up to Q-vector spaces

K◦(Y )= K◦(Y )⊗Q, K ◦(Y )= K ◦(Y )⊗Q.

These groups are generated by classes [F] of coherent/locally free lis-ét sheaves F
on Y , modulo relations [F ′] + [F ′′] = [F] for each exact sequence

0→ F ′→ F→ F ′′→ 0.

See [Chou et al. 2023, Section 1] for discussion.
The groups K ◦, K◦ coincide on Y whenever every coherent sheaf F admits a

finite resolution by locally free sheaves. Under certain hypotheses on Y , this is
equivalent to Y being a quotient stack [Edidin et al. 2001, Remark 2.15].

Let f : X→Y be a map between finite-type noetherian algebraic stacks. Pullback
and pushforward of sheaves sometimes induce maps on K ◦ and K◦.

• K ◦: pullback f ∗ always exists and pushforward f∗ makes sense when X→ Y is
finite étale.
• K◦: pullback f ∗ exists when f is flat. Armed with a perfect obstruction theory,
we can also define a pullback f ! even if f is not flat.

If f is proper and of DM-type, define the pushforward f∗ on K◦-theory as the
alternating sum

(4) f∗ F :=
∑

i

(−1)i Ri f∗ F.

We must check that this sum is finite.

When the map f : X→ Y is clear from context, we write β|X = f ∗β for classes
β ∈ K ◦(Y ) or β ∈ K◦(Y ) without risk of confusion.

Lemma 1.5. Let p : X→ Y be a proper, DM-type morphism between finite-type
noetherian algebraic stacks. The pushforward

p∗ : K◦(X)→ K◦(Y ).

of (4) is well defined on K◦-theory.

Proof. We argue that the sum (4) is finite. Write X for the relative coarse moduli
space of the map p and N for a number larger than the dimensions of the fibers of
X→ Y . This is possible using quasicompactness of Y .
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We claim Ri p∗ F vanishes for i > N for any coherent sheaf F . The claim is étale
local in Y and so is the formation of the relative coarse moduli space X , so we can
assume Y is an affine scheme. The map t : X→ X is finite flat, so pushforward is
exact Rt∗ = t∗. This reduces to the representable case X→ Y . Because Y is affine,
it results from dimensional vanishing [Stacks 2005–, 0A4R]. □

Pushforward from a proper DM stack to a point is denoted χ .

Example 1.6. If the morphism p : X→ Y is not of DM-type, the pushforward need
not be well defined. Take BGm→ pt. The cohomology of BGm is freely generated
as a ring by the first Chern class of the universal line bundle and does not vanish in
any degree.

Example 1.7. Let G be a finite group. Sheaf pushforward along p : BG→ pt sends
a complex G-representation V to the invariant subspace V G . The pushforward is
then the alternating sum of group cohomology

χ(V )=
∑

(−1)i [H i (G, V )].

Because we work over C, the structure sheaf of pt is Opt = C. Likewise G-
representations V on BG = [Spec C/G] are complex representations, and the order
of the group #G is invertible in V . The group cohomology therefore vanishes:

H i (G, V )= 0, i ̸= 0.

The alternating sum is just the first term χ(V )= [V G
].

The projection formula holds in both K ◦ and K◦, where defined

(5) f∗(α⊗ f ∗β)= f∗ α⊗β.

This results from the formula on the level of sheaves [Stacks 2005–, 08EU].
The main K-theory classes we are interested in are the fundamental class
[OX ] ∈ K◦(X) and the virtual fundamental class (also known as virtual struc-
ture sheaf ) [Lee 2004, Section 2.3; Qu 2018, Definition 2.2; Chou et al. 2023,
Definition 1.2]. Consider a map f : X→M from a DM stack X to a smooth stack M
endowed with a perfect obstruction theory CX/M ⊆ E . The virtual fundamental
class [Ovir

X ] is the image of the structure sheaf of the normal cone [OCX/M ] under
the isomorphism [Chou et al. 2023, Remark 1.6]

[Ovir
X ] = σ

∗
[OCX/M ], σ ∗ : K◦(E)≃ K◦(X).

Example 1.8. Let π : Y = BG × X → X be a trivial gerbe for a finite group G.
Suppose X has a perfect obstruction theory over some M and Y is given the
induced perfect obstruction theory. Then the virtual fundamental class pulls back
π∗[Ovir

X ] = [O
vir
Y ].
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Example 1.7 describes π∗ as taking G-invariants of a representation. Then we
have π∗ π∗[OX ] = [OX ]. Using the projection formula, this implies that the virtual
fundamental class also pushes forward:

π∗[Ovir
Y ] = π∗(π

∗
[Ovir

X ]⊗ [OY ])= [Ovir
X ]⊗π∗ π

∗
[OX ] = [Ovir

X ].

Proposition 1.9. Let π : G→ X be a gerbe banded by a finite group G. The base X
is a scheme or algebraic stack which we emphasize lies over C. Then the structure
sheaf pushes forward to the structure sheaf , both as sheaves and in K-theory:

Rπ∗OG = π∗OG =OX , π∗[OG] = [OX ] ∈ K◦(X).

The same holds for virtual fundamental classes if G is given the induced perfect
obstruction theory from X :

π∗[G]vir
= [X ]vir in K◦(X).

Proof. The statement on sheaves implies that on K-theoretic classes and is local
in X . We can then assume that G is trivial, fitting in a pullback square:

G BG

X pt

⌜

Example 1.7 covers the case of BG → pt, and the general case results from
cohomology and base change applied to this square.

The statement on virtual fundamental classes results from Example 1.8. □

Remark 1.10. The proof of Proposition 1.9 does not work for schemes over Z.
The groups H i (G, V ) for i ̸= 0 are torsion, and so are the sheaves Riπ∗V for any
coherent sheaf on G. But this does not mean they vanish in K◦ ⊗Q. Tensoring
−⊗Q kills K-theoretic classes that are torsion in the group law on K-theory, not
the classes of sheaves that themselves are torsion.

The trivial gerbe [Spec Z/G]→Spec Z satisfies Example 1.7 and Proposition 1.9,
because the classes of torsion groups vanish in the K-theory of the integers. But
this statement does not localize.

We need two related theorems on the behavior of (virtual) fundamental classes
under pushforward. These extend Hironaka’s theorem and Costello’s theorem,
respectively.

Theorem 1.11 (Hironaka’s pushforward theorem [Chou et al. 2023, Proposi-
tion 2.3]). Let p : X → Y be a proper birational map of smooth DM stacks. The
pushforward of the fundamental class of X is that of Y in K-theory:

p∗[OX ] = [OY ] in K◦(Y ).
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Our Costello-type pushforward theorem was originally in the more general
context of log geometry. We remove log structures in our citation for simplicity.

Theorem 1.12 (Costello’s pushforward theorem [Chou et al. 2023, Theorem 2.7]).
Consider a pullback square of algebraic stacks

X Y

M N

p

⌜

q

with X, Y DM stacks and M, N smooth. Suppose Y→ N is equipped with a perfect
obstruction theory and X→ M is given the pullback perfect obstruction theory. If
the map q is proper birational, the pushforward of the virtual class of X is that of Y

p∗[Ovir
X ] = [O

vir
Y ] in K◦(Y ).

To use these theorems, it is important that the relevant maps are proper and
birational. Birational maps f : X→ Y of stacks must have an open dense subset of
each X and Y that are isomorphic.

Remark 1.13. For stacks, pure degree one [Herr and Wise 2023, Definition 2.3]
and birational are not the same. The map p : BZ/2⊔ BZ/2→ pt is pure degree one
but not birational. The pushforward of the fundamental class is not the fundamental
class:

p∗[OBZ/2⊔BZ/2] = 2 · [Opt] in K◦(pt).

If a morphism of schemes is of pure degree one, it is birational. More generally,
if X → Y is a morphism of stacks of pure degree one inducing a representable
morphism U → V on open dense substacks U ⊆ X, V ⊆ Y , it is birational.

1D. An intermediary stack. The moduli stack K̃4(BSd) parametrizes a triple
C ← C ′ → D of curves over any base S. We introduce a variant K̃

∗

4∗(BSd)

to describe how virtual classes push forward in Proposition 1.17.
The functor p : K̃4(BSd)→Mg,n sends such a triple to D. The map p is proper

of degree e = k!(g!)#J (g!)k [Herr and Wise 2023, Section 3]. This map forgets
everything about C ′→ C , including the ordering of the forgotten marked points
under C ′→ D.

Let A ⊆ ⟨ℓ⟩ be the points forgotten under p as in Figure 1. Let K̃
∗

4∗(BSd) be
the space similar to K̃4(BSd), but where the marked points A ⊆ ⟨ℓ⟩ are unordered.
The forgetful map K̃4(BSd)→ K̃

∗

4∗(BSd) is a torsor under

0 := (Sg)
J
× Sg ≀ Sk .
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The group Sg ≀Sk := Sk⋉(Sg)
k is the wreath product. There is a short exact sequence

1→ Sk
g→ Sg ≀ Sk→ Sk→ 1

and a section Sk 99K Sg ≀ Sk of the quotient. We may view Sg ≀ Sk as a subgroup
of Sgk by choosing an identification of ⟨gk⟩ with ⟨g⟩× ⟨k⟩.

The k copies of Sg reorder the unramified points in the fibers with simple
ramification points, while Sk reorders the fibers themselves and their images ⟨k⟩⊆C .

Example 1.14. Isomorphisms of curves in K̃
∗

4∗(BSd) need not stabilize the un-
ordered marked points. For example, P1 with three unordered points has automor-
phism group S3 by interchanging the points 0, 1,∞. The moduli space of genus
zero curves with three unordered points is then BS3.

These choices of ordering certain marked points can also be made on the moduli
of stable maps to the stack [Symd X ].

Definition 1.15. Let K̃4(Sd X) ⊆ K̃0,n([Symd X ]) be the moduli space of repre-
sentable stable maps to [Symd X ] with discrete invariants 4. This parameterizes
étale, d-sheeted covers C̃ ′→ C̃ with minimal stack structure together with stable
maps C̃ ′→ X . The curves may have nontrivial gerbes at marked points. All the
marked points of C ′ and C are ordered.

Define K∗4(S
d X) analogously to K̃

∗

4∗(BSd) by forgetting the ordering on the
marked points of C ′ corresponding to A ⊆ ⟨ℓ⟩ (see Figure 2).

K̃4(Sd X)

M̃4(Sd X) K∗4(S
d X) Mg,R(X)

K4(Sd X)

0/

/0̃

v

/Sk

ψ

(d:1)J
×/S#I

φ

Figure 2. The stacks of stable maps to a fixed target X . Mg,R(X)
is the ordinary space of stable maps to X . The rest are spaces of
stacky genus zero maps C̃→ [Symd X ]. These can be interpreted
as ramified finite covers C ′→C of nonstacky curves together with
a map C ′ → X satisfying a stability condition. The difference
between M̃4(Sd X), K̃4(Sd X), K∗4(S

d X), K4(Sd X) lies in which
points of C ′,C are ordered. The maps “/G” between them are
quotients by various groups G reordering the marked points. The
one exception is K∗4(S

d X)→ K4(Sd X), which is a quotient fol-
lowed by a d#J -sheeted cover (denoted (d : 1)J ).
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Extend (2) to the cartesian diagram

(6)

K̃4(Sd X) K∗4(S
d X) Mg,R(X)

K̃4(BSd) K̃
∗

4∗(BSd) Mg,R

q

v

π ′
⌜

w

⌜
π

ν

p

ω

Lemma 1.16. The map ω : K̃
∗

4∗(BSd)→Mg,R is proper and birational.

Proof. Fix a generic smooth D and prescribed ramification divisor B=
∑

i∈I d(i)[i]
over∞ specified by 4. The proof of [Herr and Wise 2023, Theorem 3.12] shows
that there is exactly one cover C ′→C with ramification in B and C ′→ D a partial
stabilization. The map is thus proper and of pure degree one, but this is not yet
sufficient by Remark 1.13.

We argue that ω is generically representable, hence birational. The proof of [Herr
and Wise 2023, Theorem 3.12] shows that if D ∈Mg,R(X) is general, the preimage
under ω is exactly one cover C ′→ C with C ′ = D. Consider automorphisms

C ′ C ′

C C

∼

∼

of the map C ′ → C . These form a subgroup of automorphisms of C ′ because
C ′→ C is an epimorphism. Since the map Aut(C ′→ C)→ Aut(D) is injective,
the map is generically representable and hence birational. □

Hironaka’s pushforward theorem (see Theorem 1.11) equates their fundamental
classes:

ω∗[OK̃
∗

4∗ (BSd )
] = [OMg,n ] in K◦(Mg,n).

Costello’s pushforward theorem (see Theorem 1.12) likewise equates the virtual
fundamental classes:

Proposition 1.17. The fundamental class pushes forward along the map w in (6):

ω∗[OK̃
∗

4∗ (BSd )
] = [OMg,n ] in K◦(Mg,n).

As a result, the virtual fundamental class pushes forward the same way:

w∗[Ovir
K∗4(Sd X)] = [O

vir
Mg,R(X)

] in K◦(Mg,R(X)).

The wreath product Sg ≀ Sk arises naturally as the automorphism group of the
projection ⟨g⟩× ⟨k⟩ → ⟨k⟩ of marked points of C ′→ C :
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Remark 1.18 (thanks to J. Rufus Lawrence). The iterated stack-theoretic symmetric
product [Symk

[Symg X ]] is isomorphic to the global quotient

[Symk
[Symg X ]] ≃ [X gk/(Sg ≀ Sk)].

To make sense of [Symk
−] applied to a stack S , use its functor of points

[SymkS ](T )=

{
T ′ S

T

k:1

}
,

where T ′→ T is a k-sheeted cover that is part of the moduli.
Consider the evaluation map corresponding to a point C ′→C of K∗4(S

d X) over
a base T . Upon ordering the k-marked points i of C , we get a map to [Symg X ]
corresponding to each i . Ordering the k-marked points of C entails a k-sheeted
cover of T with a map to [Symg X ]. These evaluation maps are precisely

K∗4(S
d X)→ [Symk

[Symg X ]] = [X gk/(Sg ≀ Sk)].

Two more stacks M̃4(Sd X),K4(Sd X). The stack K̃4(Sd X) is the simplest because
all the marked points of C ′ and C are ordered, but we will not actually use it for
our theorem. The variant K∗4(S

d X) above is virtually birational to Mg,R(X). We
need two more variants, completing Figure 2.

Definition 1.19. Let M̃4(Sd X) be the moduli space of representable twisted stable
maps C→ [Symd X ]. It is the same as K̃4(Sd X), except the marked points of C ′

are not ordered. The only difference from twisted stable maps C→ [Symd X ] in
the literature is the nontrivial gerbes.

The quotient maps K̃4(Sd X)→ M̃4(Sd X), K̃4(Sd X)→ K∗4(S
d X) forget dif-

ferent marked points, so there is not a map between them. Define K4(Sd X) to
forget all the marked points of both, so only the points of C that are not in ⟨k⟩ ⊆ C
are ordered.

As shown in Figure 2, there are quotient maps from K̃4(Sd X) to all the others
M̃4(Sd X), K4(Sd X), K∗4(S

d X) by various groups reordering marked points. The
map M̃4(Sd X)→ K4(Sd X) quotients by Sk , while K∗4(S

d X)→ K4(Sd X) is a
composite of many d-sheeted covers indexed by J and a quotient by S#I .

Remark 1.20. Remark that R = 1 when #I = 1 and J =∅. In that case, k = 3g.
The map K∗4(S

d X)→ K is an isomorphism precisely when one of the conditions
holds:

• R = 1.

• #I = 1 and g = 0.

See Figure 2.
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Remark 1.21. The finite étale maps

K̃4(Sd X) K∗4(S
d X)

M̃4(Sd X) K4(Sd X)

v

φ

ψ

in Figure 2 all equate virtual fundamental classes under pullback:

v∗[Ovir
K∗4(Sd X)] = [O

vir
K̃4(Sd X)], etc.

1E. Gromov–Witten invariants in the K◦-theory of stacks. Quantum K◦-theoretic
invariants have been defined variously in the literature [Tonita and Tseng 2013]
[Zhang, Section 2.4]. Our definition parallels [Abramovich et al. 2008], adding in
ψ classes. Our invariants differ by a scaling factor due to conventions over whether
gerbes at marked points are trivialized; see [Tonita and Tseng 2013; Zhang, Remark
2.8] or the original [Abramovich et al. 2002, Sections 4.4, 4.5] for comparison. We
allow nontrivial gerbes.

For any moduli space K of stable maps C→ Y from n-pointed curves, there is
an evaluation map

ev : K→ Y n.

If Y is a stack and we take representable twisted stable maps C̃ → Y in say
K = Mg,n(Y ), the “points” of C̃ are not quite points, but µr -banded gerbes. The
evaluation map doesn’t produce points of Y , but cyclic gerbes mapping representably
to Y . Cyclic gerbes representably embedded in Y form the rigidified cyclotomic
inertia stack Ī(Y ) [Abramovich et al. 2008, Section 3], so the evaluation map is

ev : K→ (Ī(Y ))n.

The stack Ī(Y ) is closely related to the inertia stack I Y . The universal gerbe
over Ī(Y ) can be identified with representable maps from the trivial gerbe

Homrep(Bµr , Y ).

Fixing an isomorphism µr ≃ Z/r over C, we get a map to the inertia stack

Homrep(Bµr , Y ) I Y

Ī(Y )

by composing BZ→ Bµr → Y . See Section 3C for a worked example.
Instead of pulling back K◦-theoretic classes from Y , we pull back from K◦(Ī(Y )).

In our case, Y = [Symd X ] and our evaluation map is

evC,∞ : K̃4(Sd X)→ Ī([Symd X ]).
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Now we add in ψ classes. Write U→Mg,n for the universal curve and L i for
the conormal bundle at the i-th marked section σi :

L i := Nσi ≃ σ
∗

i TU/Mg,n .

Use the same notation for their pullback to any moduli space with prestable curves,
for example, Kg,n(Y ),Mg,n . The classes of L i ∈ K ◦(Mg,n) and their pullbacks to
various moduli stacks are referred to as ψ classes.

Beware that maps between moduli spaces involving stabilization do not have the
same ψ classes. We compare the ψ class of a map C→ X with the stabilization C st

in Section 2.
The stack Kg,n(Y ) supports an obstruction theory relative to Mg,n that lets us

define virtual fundamental classes Ovir
Kg,n(Y ) in K◦(Kg,n(Y )). Classes

α1, . . . , αn in K◦(Ī(Y ))

and exponents e1, . . . , en give rise to a (descendent) Gromov–Witten invariant

⟨α1 Le1
1 , . . . , αn Len

n ⟩ = χ
(
Ovir

Kg,n(Y )⊗
∏

ev∗i αi ⊗ Lei
i

)
in Q.

We are equally interested in power series of these invariants.
When Y = [Symd X ], there are two twisted curves C̃ ′→ C̃ and hence two evalua-

tion maps and two sets of ψ classes. The ψ classes of C̃ ′ are the same as the marked
points of C̃ below. The main technical problem in Theorem 3.1 will be converting
between classes pulled back along the evaluation map of C̃ ′ and that of C̃ . Genuine
Gromov–Witten invariants have classes ev∗α pulled back from the evaluation map
of C̃ , not that of C̃ ′. This convention parrots [Abramovich et al. 2008].

1F. Permutation-equivariant K-theory. The K-theory of K4(Sd X) is equivalent
to permutation-equivariant K-theory of M̃4(Sd X), as in [Givental 2017]. Ordinary
quantum K-theory entails “correlators” defined as the integrals:

⟨α1 Lm1
1 , . . . , αn Lmn

n ⟩ := χ
(
Ovir

K4(Sd X)⊗
∏

ev∗i (αi )Lmi
i

)
in K◦(pt)=Q.

How can we compute Euler characteristics of K4(Sd X) by working on M̃4(Sd X)?
Take the pullback square

M̃4(Sd X) pt

K4(Sd X) BSk pt

ψ
⌜

−
Sk

Denote pushforward along K4(Sd X)→ BSk by χSk (−). This remembers the Sk-
representation on the virtual vector space χ(ψ∗(−)). To get the ordinary Euler
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characteristic χ(−) on K4(Sd X), we have to take the virtual Sk-invariants of the
virtual representation χSk (−):

χ(−)= (χSk (−))
Sk .

These should be derived invariants, but we work over Q. The higher-group coho-
mologies of Sk valued in a representation all vanish, so the distinction is moot.

The class ψ∗(−) on M̃4(Sd X) will be a Gromov–Witten invariant where the
insertions at the marked points forgotten under ψ are identical. In our case, we
only care about insertions away from those forgotten marked points. We will only
integrate classes at ordered marked points of both K4(Sd X) and M̃4(Sd X).

Even if we insert away from the permuted points A ⊆ ⟨ℓ⟩, the action of 0 still
nontrivially permutes the sections:

Example 1.22. Consider S3 acting on M0,4=P1 by permuting the last three marked
points. The generating function of the S3-invariant quantum K-invariants on M0,4

with only L1 can be calculated

χ

(
[M0,4/S3],

1
1− q1 L1

)
=

1
(1− q2

1 )(1− q3
1 )
.

Indeed, L1 = O(1), M0,4 = P1, and H≥1(M0,4, Ld
1) = 0 for all d ≥ 0. The case

d = 1 has the sections the linear functions on P1, which are never S3-invariant
(up to Möbius transformations). It is easy to see that d = 2 and d = 3 have invariant
sections. In fact, [M0,4/S3] = P(2, 3) and the formula follows [Lee and Qu 2014].

1G. Grothendieck–Riemann–Roch (GRR). This expository section explains why
Grothendieck–Riemann–Roch (GRR) does not reduce equivariant Euler character-
istics to ordinary ones on stacks, the way it would for schemes.

Using Grothendieck–Riemann–Roch for schemes, one would expect an equality

[Ovir
K̃4(Sd X)]

?
= [Ovir

K∗4(Sd X)]
⊕#0 in K◦(K∗4(S

d X))Q.

Coupled with the projection formula, this would reduce permutation equivariant
integrals to ordinary ones.

For schemes, this holds. Let π : P→ X be a G-torsor with P, X schemes for
some finite group G. GRR gives a commutative square

K◦(P) A∗(P)Q

K◦(X) A∗(X)Q.

π∗ π∗

The Todd classes cancel out since P→ X is étale and TX |P = TP , so one can take
the horizontal arrows as the Chern character isomorphisms. Since the pushforward
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in Chow groups gives π∗[P] = #G · [X ] and the horizontal isomorphisms send 1
to 1, we have

(7) π∗[OP ] = [O⊕#G
X ].

These formulas do not hold for stacks!
Take P = pt, X = BG. The analogous GRR square

(8)
K◦(pt) A∗(pt)C

K◦(BG) A∗(BG)C

still commutes [Edidin 2013, Section 5], and the Todd class terms vanish. But the
lower horizontal arrow is not multiplicative and does not send 1 to 1! One cannot
identify π∗Opt and O⊕#G

BG .

Example 1.23. Let G = Z/2 and consider the quotient map pt→ BG. The inertia
stack is

IBG = BG ⊔ pt,

so its rational Chow groups are A∗(IBG)= C⊕2. The GRR square for the quotient
π : pt→ BG is then

K◦(pt) A∗(pt)

K◦(BG) A∗(IBG)≃ C⊕2.

ch(−)

π∗ π∗

ch(−)

The Todd classes are trivial here.
The Chern character of the trivial representation OBG is (1, 1). By GRR [Edidin

2013, Theorem 5.4], the Chern character of π∗Opt is

ch(π∗Opt)= (2, 0) in A∗(IBG)≃ C⊕2.

We can see that π∗Opt ̸=O2
BG .

Remark 1.24. One can define a Borel equivariant K◦ theory for stacks in which
formula (7) holds using [Noohi 2012]. One can equip them with virtual fundamental
classes and study Borel equivariant quantum K-theory.

The problem with (8) is that pt→ BG introduces stack structure. It is repre-
sentable, but points in BG have more automorphisms than pt does. We want the
opposite of representable, that the automorphism groups of points surject. We can
prove a version of (7) in this setting [Herr and Lee].
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2. Stabilization and ψ classes

2A. Costello’s lemma for stabilizing ψ classes. We recall the following three
categories defined in [Costello 2006, Section 3]: 0u , which contains the label of
nodal curves; 0t , which contains the label of twisted nodal curves; and 0c, which
contains labels of twisted marked curves C and C′ with an étale morphism C′→ C.
They are related by the diagram

0c 0t 0u,
s,t r

where r, t stand for source and target of the étale map C′→ C and r maps C to its
coarse moduli space. These categories will depend on a semigroup A. Furthermore,
one can relate the functors between graphs into morphisms of stacks of moduli of
curves by applying the functor M.

Given η ∈ 0c consider the diagram

Mη
s
−→Ms(η)

r
−→Mr(s(η))

π
−→Mν(I ),

where I ⊊ T (s(η)) is a chosen finite subset such that after removing tails in I ,
s(η) remains stable. Let ν(I ) be obtained from r(s(η)) by removing the tails in I
and denote the resulting contraction map by π .

To compare the pullback of ψ classes via s, r and π , we define the notation
S(e, t, I ) as follows: Consider the diagram

Mγ →Mr(s(η))
π
−→Mν(I ),

where γ → r(s(η)) is a contraction of 0u . Now let t ∈ T (γ ) \ I and e ∈ E(γ ). Let

S(e, t, I ) :=
{

1 if t is in a vertex of γe contracted after forgetting the tails I ,
0, otherwise.

Here γe is obtained by contracting all edges of γ except e.
Costello described the pullback of ψ classes in Chow groups.

Lemma 2.1 [Costello 2006, Section 4.1]. For each t ∈ T (ν(I )), we have

s∗r∗π∗(ψt)= m(t)ψt −
∑

f :γ→η

S( f, t, I )[M f ],

where the sum is over f : γ → η in 0c with #E(t (γ ))= #E( f )= 1, M f ↪→Mη

is the closed substack supported on the image of f , and

S( f, t, I ) :=
∑

e∈E(s(γ ))

m(e) S(e, t, I )

is the corresponding multiplicity.

A similar result holds in K-theory:
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Lemma 2.2. For each t ∈ T (ν(I )), we have

s∗r∗π∗(L t)= L⊗m(t)
t ⊗O

(
−

∑
f :γ→η

S( f, t, I )M f

)
,

with f : γ → η and S( f, t, I ) defined in previous lemma.

We would like to write O(kM f ) in terms of a torsion sheaf.

2B. Explicit formulas for stabilizing ψ classes in K-theory. Before addressing
stable maps to a target V , we work on the moduli of curves. Let π :Mg,m+n→Mg,m .
We introduce some notations below.

Decoration. Decorations index trees of rational curves to be contracted under
forgetting points and stabilizing (see Figure 3).

For the special case m = 1, we denote a decoration of degree r as

a = (a1,1, . . . , a1,n1) . . . (ar,1, . . . , ar,nr ).

We further assume that

{a1,1, . . . , a1,n1, . . . , ar,1, . . . , ar,nr } ⊂ {2, 3, . . . , n+ 1} = [2, n+ 1]

and
ai,1 < ai,2 < · · ·< ai,ni for all i .

For the general case, a corresponding decoration is denoted by

a = (a1, a2, . . . , am),

where each ai is a decoration in the special case m = 1 and their disjoint set union
forms a subset of [m+1,m+n]. We also denote it by a if no confusion may occur.

Degeneration strata. Given m = 1 and a decoration a, we define the corresponding
degeneration strata of codimension r on Mg,1+n as

Mg,1+n ⊃ D1,a :=

( ⋂
1≤i≤r

D1a1,1...a1,n1 a2,1...ai,ni

)
,

where Dabcde... is the divisor with markings abcde . . . lying on the rational tail.
This is the closure of the locus where the curves have rational tails indexed by a.

For the general case, given a decoration a, we define the corresponding stratum

Mg,m+n ⊃ D⟨m⟩,a :=
⋂

1≤i≤m

Di,ai .
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Normal bundle. Given m = 1 and a strata D1,a as above, we have

O2
D1,a
= λ−1(⊕

r
i=1L1i )OD1,a .

Here L1i is the normal bundle of the i-th node. More precisely, it can be described as

O2
D1,a1,1 ...ai,ni

= λ−1(L̃ i )OD1,a1,1 ...ai,ni
.

Then we define
L1i := L̃ i |D1,a .

For the general case, we denote by L j i the normal bundle of the i-th node of the
tail containing the marking j for 1≤ j ≤ m.

Type. Given m = 1 and a decoration a or its corresponding strata DA1a , we define
its type to be 0 if

a1,1 < a j,k for any ( j, k) ̸= (1, 1),

we define its type to be l = (l1 . . . ls) if

a1,1 > a2,1 > · · ·> al1−1,1,

al1,1 > al1+1,1 > · · ·> al2−1,1,

...

als ,1 > als+1,1 > · · ·> ar,1

and
a1,1 > al1,1 > · · ·> als ,1.

Given a general decoration a = (a1, . . . , am), we define its type on each ai as in
the special case and also denote it by l if no confusion may occur. We also say it is
of type 0 if ai is of type 0 for all i .

Polynomial corresponding to decoration. Given m = 1 and a decoration a of
type (0), we define its corresponding polynomial with r variables to be

F1,a(x1, . . . , xr )=

(
1−

r∏
i=1

xi

)
.

For a partition a of type (l1, . . . , ls), we define its corresponding polynomial to be

F1,a(x1, . . . , xr )=

s∑
j=0

(
1−

l j+1−1∏
i=l j

xi

)
.

Here we set l0 = 1 and ls+1 = r + 1.
For the general case, given a decoration a = (a1, . . . , am), we define Fi,ai as in

the special case for all i = 1, . . . ,m.
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Figure 3. Rational tails corresponding to the decoration a = (a1, a2, a3)

of type 0, with a1= (a111)(a121)(a131, a132, a133)= (4)(8)(5, 7, 14), a2=

(a211)(a221, a222, a223)(a231) = (6)(10, 12, 13)(11), a3 = (a311) = (9).
The smallest numbered marked point on each rational tail (except 1, 2,
and 3) must be on the P1 farthest from the main component to be type 0.

Difference operator. We define the difference operator δ on a (multi)variable poly-
nomial F(x)= F(x1, . . . , xn) as

δ(F(x)) :=
F(x)−

∑
i F(x)|xi=1+ · · ·+ (−1)n F(x)|x1=···=xn=1

(1− x1) · · · (1− xn)
.

Lemma 2.3. Let π : Mg,m+n→ Mg,m . Then we have

π∗(L1)= L1+
∑

a:type 0

(−1)codim Da ODa ∈ K 0(Mg,m+n).

Proof. We decompose π as

Mg,m+n
πm+n
−−−→ Mg,m+n−1→ · · · → Mg,m+1

πm+1
−−−→ Mg,m

and compute π∗(L1)= π
∗
m+n . . . π

∗

m+1(L1) step by step.
Given a stratum D ⊂ Mg,m+n of type 0, we consider the inclusion-exclusion

formula
π∗m+nOπm+n(D) =

r∑
i=1

ODi −

∑
i< j

ODi∩D j + . . . ,

where π∗m+n(πm+n(D))=
⋃r

i=1 Di with Di irreducible strata.
Note that OD will show up in either the first or the second term of the right-hand

side depending on whether ftn+m(D) is stable or not. Since πn+m(D) is still of
type 0. The lemma follows by induction. □
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Remark 2.4. This expression is not symmetric with respect to indices m+ 1, . . . ,
m+ n since we chose a special order of pull-backs. Different choices of pull-back
order will result in different expressions. Nevertheless, any expression will give the
same element in K 0(Mg,n+m).

Lemma 2.5. Let π : Mg,1+n → Mg,1, a be a decoration, and G be any power
series. Then

Coeff(OD1,a , π
∗G(L1))= δ(G(L1− F1,a)),

where F1,a = F1,a(L11, . . . , L1,deg a) with L1 j defined above. When applying δ-
operator on the right-hand side, we view G(L1 − F1,a) as power series with
variables {L i j } and view L1 as constant.

Proof. We start with a special case m = 1 and n = 2. By previous lemma, we have

π∗L1 = L1−OD12 −OD13 −OD123 +OD(12)(3) .

Let G(x) be any power series. To compute Coeff(OD(12)(3),G(π∗L1)), we introduce
the following process:

Write x =OD12 and y =OD123 and hence OD(12)(3) = xy. Now we have

Coeff(OD(12)(3),G(π∗L1))

=
G(L1− x − y+ xy)+G(L1− y)+G(L1− x)+G(L1)

xy

∣∣∣
x=1−L11,y=1−L12

.

= δ
(
G(L1− (1− L11 L12))

)
.

Some remarks are in order:

• L11 and L12 are characterized by x2
= (1− L11) x and y2

= (1− L12) y.

• The second equality above follows from the definition of δ. Here we view
G(L1− (1− L11 L12)) as power series in L11 and L12.

• 1− L11 L12 is exactly the polynomial F1,(12)(3)(L11, L12), i.e., the polynomial
corresponding to the strata D(12)(3).

For general case, we can compute the coefficient of D1,a using the above computa-
tion process. It suffices to find the polynomial corresponding to D1,a . To find the
polynomial, we compute

−

∑
a′:type 0

D1,a′⊃D1,a

(−1)codim D1,a′OD1,a′
·OD1,a′

∣∣
D1,a
= F1,a(L11, . . . , L1 deg a)OD1,a .

A direct computation shows that it is exactly the polynomial we defined above. □
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Theorem 2.6. Let π : Mg,m+n → Mg,m and G = G(x1, . . . , xm) be any power
series of m variables. Then

π∗G(L1, . . . , Lm)

= G(L1, . . . , Lm)+
∑

a:all decorations

OD⟨m⟩,a δ(G(L1− F1,a1, . . . , Lm − Fm,am )),

where Fi,ai = Fi,ai (L i1, . . . , L i deg ai ) with L i j defined above. When applying the
δ-operator on the right-hand side, we view

G(L1− F1,a1, . . . , Lm − Fm,am )

as power series with variables {L i j } and view L i as constant.

Proof. It follows from the definition that

D⟨m⟩,a :=
⋂

1≤i≤m

Di,ai ,

and the following observation that if F(x1, . . . , xr )=
∏r

i=1 Fi (x i ), then

δ(F(x1, . . . , xr ))=

r∏
i=1

δ(Fi (x i )).

Here x i could be multiindices. □

Corollary 2.7. Let π : Mg,m+n→ Mg,m . Then we have

π∗e
∑m

i=1 ri L i = e
∑m

i=1 ri L i +

∑
a:all decorations

OD⟨m⟩,a

m∏
i=1

δ(eri (L i−Fi,ai )).

Use the same assumptions as in the previous theorem when applying δ-operator on
the right-hand side.

Proof. Take G to be e
∑m

i=1 ri L i and apply the previous theorem. Notice that if
F(x1, . . . , xr )=

∏r
i=1 Fi (x i ), then

δ(F(x1, . . . , xr ))=

r∏
i=1

δ(Fi (x i )).

Here x i could be multiindices. □

2C. Application to the map w : K∗
4(S

d X) → M g,R(X). We continue to write
R = ℓ− #A = I ⊔ J for the number of marked points of D. Consider the map
p : K̃4(BSd)→Mg,R sending a triple C← C ′→ D to D as before.

Write Mi , L ′i , and L i for the cotangent line bundles on D, C ′ and C respectively.
Let ι : ⟨R⟩ ⊆ ⟨ℓ⟩ be the inclusion of marked points such that ι(i)∈C ′ maps to i ∈ D.
Write ῑ(i) for the corresponding point of C .
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Given f : γ → η lying over D, we define F f,ῑ(i) as

F f,ῑ(i) = Fi,ai (L
m(1)
i1 , . . . , Lm(deg ai )

i deg ai
).

The power m is given by the ramification between nodes, Fi,ai is defined in the
point target case, and ai is the combinatorial type of f . The definition of type is
exactly the same as the point case.

Proposition 2.8. Let G = G(x1, . . . , xR) be any power series of R variables. Then

p∗(G(M1, . . . ,MR))

= G(Lm(t1)
ῑ(1) , . . . , Lm(tR)

ῑ(R) )+
∑

f :γ→η

OM f δ(G(L
m(tR)
ῑ(1) − F f,ῑ(1), . . . , Lm(tR)

ῑ(R) − F f,ῑ(R))),

where δ only applies on variables {L i j }.

Proof. The proof is similar to the point case. We only need to take care of the
difference coming from ramification points.

For the power on marked points, note that p∗Mi = (L ′i )
m(ti ) + torsion part

and L ′i = L ῑ(i) since C̃ ′→ C̃ is étale.
For the definition of F f,ῑ(i), if D is a divisor, note that

Om D :=O−O(−m D)=O− (O−OD)
m
= δ(Lm

e )OD,

where Le is characterized by O2
D = (1− Le)OD. This explains the power in the

definition of F f,ῑ(i). □

Remark 2.9. The cover C̃ ′→ C̃ is étale, so any marked point i ∈ C̃ ′ and its image
s ∈ C̃ will have the same ψ classes L ′i = Ls . Proposition 2.8 writes the pullback
p∗G(M1, . . . ,MR) as a power series in L ′i ; plugging in Ls for each L ′i in the fiber
of s ∈ C̃ rewrites this pullback as a power series H(L1, . . . , Ln). This power series
is invariant under Aut(C̃ ′|C̃), giving an analogous formula on K∗4(S

d X):

ω∗G(M1, . . . ,MR)= H∗(L1, . . . , Ln).

Remark 2.10. The map φ : K∗4(S
d X)→ K4(Sd X) is a finite étale map. The ψ

classes of K∗4(S
d X) are pulled back from those of K4(Sd X). If H(L⃗) is a power

series with coefficients αI ∈ K ◦(K∗4(S
d X)) in K-theory, write Hφ(L⃗) for the power

series on K4(Sd X) with coefficients the pushforwards φ∗αI of the coefficients
of H(L⃗). If β ∈ K◦(K4(Sd X)), α ∈ K ◦(K∗4(S

d X)), the projection formula equates

φ∗(φ
∗β⊗ H(L⃗)⊗α)= β⊗ Hφ(L⃗)⊗φ∗ α.

Remark 2.11. We sketch how to compute the coefficients OM f in terms of divisors
on the moduli space of curves, and then how to deal with those divisors in quantum
K-theory. This makes the power series Hφ(L⃗) computable.
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A map of covers f : γ → η induces a map f∗ :Mγ →Mη with image a closed
substack M f . The map f∗ :Mγ →M f is a combination of a finite étale torsor for
the automorphisms Aut( f |η) of the source over the target and a gerbe part for the
stacky points. By Proposition 1.9, the gerbe part does not affect the pushforward.
The pushforward is then related to the regular representation of the sheaf Aut( f |η).

After the above reductions, it remains to explain that quantum K-invariants
involving the torsion structure sheaf OS supported on boundary strata S can be
written in terms of the “usual” quantum K-invariants. In the cohomological Gromov–
Witten theory, this is achieved by the splitting axiom, as the boundary stratum consist
of the substacks indexed by the “dual graphs” exhibiting the imposed nodes of the
general curves. In quantum K-theory a parallel splitting axiom is also available,
albeit in a more sophisticated form. See [Givental 2000] and the genus reduction
and splitting axioms in [Lee 2004, Section 4.3] for details. One will then have to
push these coefficients forward as outlined in Section 3A.

3. Main theorem

Let α1, . . . , αR ∈ K ◦(X) be classes and form

α = α1 ⊠ · · ·⊠αR = α1|X R ⊗ · · ·⊗αR|X R ∈ K ◦(X R).

Let G(M⃗) a power series in the ψ classes of Mg,R(X) with coefficients arbitrary
classes in K ◦(Mg,R(X)).

Form the Gromov–Witten invariant

χ
(
Ovir

Mg,R(X)
⊗ ev∗

∏
αi G(M⃗)

)
in K◦(pt)=Q.

Write H(L⃗) for the power series in the ψ-classes L i which is equal to ω∗G(M⃗) by
Remark 2.9. Likewise write Hφ(L⃗) with the power series with coefficients given
by the pushforwards of those of H(L⃗) as in Remark 2.10.

Theorem 3.1. Gromov–Witten invariants on Mg,R(X) are equal to Sk-invariant
Euler characteristics on the space M̃4(Sd X) of stable genus zero maps to [Symd X ]:

χ(Ovir
Mg,R(X)

⊗ ev∗αG(M⃗))= χ(Ovir
K∗4(Sd X)⊗ ev∗αH(L⃗))

= χ(Ovir
K4(Sd X)⊗φ∗(ev

∗α)Hφ(L⃗))

= χSk

(
Ovir

M̃4(Sd X)⊗ψ
∗
(
φ∗(ev∗α)Hφ(L⃗)

))Sk
.

Proof. For the first equality, apply the projection formula for w : K∗4(S
d X)→

Mg,R(X) and the equality of virtual fundamental classes from Proposition 1.17.
The evaluation maps are compatible and the power series H(L⃗) is designed to be
the pullback w∗G(M⃗).
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The second equality results from the projection formula and the pullback

φ∗[Ovir
K4(Sd X)] = [O

vir
K∗4(Sd X)].

The power series Hφ(L⃗) applies φ∗ to the coefficients, so we are using the projection
formula for each monomial of H(L⃗) one at a time.

The third equality results from the Sk-quotient ψ : M̃4(Sd X)→ K4(Sd X) as in
Section 1F. The pullback

M̃4(Sd X) pt

K4(Sd X) BSk

ψ
⌜

equates the underlying vector space of χSk (V ) with the pullback χ(ψ∗V ). The
pushforward map BSk→ pt then takes the quotient (−)Sk by Sk . □

We have reduced Gromov–Witten invariants on Mg,R(X) to some equivariant
Euler characteristics on M̃4(Sd X). But are these Euler characteristics actually
Gromov–Witten invariants?

Lemma 3.2. The equivariant Euler characteristic

χ
(
Ovir

K4(Sd X)⊗φ∗

(
ev∗

∏
αi

)
Hφ(L⃗)

)
is a “Gromov–Witten invariant” in genus zero. In other words, the class φ∗ev∗

∏
αi

can be described as the pullback of a class via the evaluation map of K4(Sd X).

We spend the rest of the section proving Lemma 3.2. This lemma was essentially
left to the reader in [Costello 2006], although it is simpler in Chow groups than in
K-theory. Reducing the part Hφ(L⃗) is left to the reader, following Remark 2.11
and the process we outline for the evaluation classes.

3A. Turning equivariant Euler characteristics on M̃4(Sd X) into proper Gromov–
Witten invariants. We need to show that φ∗ev∗α is pulled back from the evaluation
map on K4(Sd X). We first show it is pulled back from a natural map

K4(Sd X)→ ([Symd X ])J
×[Sym#I X ].

In the covers C ′→ C parameterized by K4(Sd X), none of the marked points
of C ′ are ordered. Write Q j → K4(Sd X) for j ∈ J for the d-sheeted cover of
preimages of j ∈ C in C ′. Likewise, let P→ K4(Sd X) be the S#I -torsor ordering
the preimages in C ′ of∞∈ C . The product over K4(Sd X) of all these d-sheeted
covers and the S#I -torsor is K∗:

K∗4(S
d X)=

∏
K4(Sd X)

Q j ×K4(Sd X) P→ K4(Sd X).
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Considering the map Q j → X as a d-sheeted cover of K, it is parameterized by
a map to [Symd X ]:

Q j X ×[Symd−1 X ]

K4(Sd X) [Symd X ]

⌜
w j

The equivariant map P→ X I is also parameterized by a map to a symmetric product
stack, but with different total space:

P X#I

K4(Sd X) [Sym#I X ]

⌜
wI

There is then a pullback square

(9)

K∗4(S
d X)

∏
Q j ×P X J

× ([Symd−1 X ])J
× X#I X R

K4(Sd X) K4(Sd X)R ([Symd X ])J
×[Sym#I X ]

φ
⌜ ⌜

w

1

Take classes α1, · · · , αR ∈ K ◦(X). Write

α := α1 ⊠ · · ·⊠αR

for the tensor product of the pullback of these classes to X J
× ([Symd−1 X ])J

× X I .
Pullback and pushforward in K ◦ theory along cartesian squares commute (5), so
the resulting classes on K4(Sd X) are the same:

(10) φ∗(α|K∗4(Sd X))= (w∗ α)|K4(Sd X) in K ◦(K4(Sd X)).

3B. Evaluation maps. We have shown that φ∗ev∗α is pulled back from the map
K4(Sd X)→ ([Symd X ])J

×[Sym#I X ]. We need to compare this with the natural
evaluation map on K4(Sd X).

Gromov–Witten invariants are certain integrals of K theoretic classes pulled
back from the evaluation maps as defined in Section Section 1E. To make sense of
this, we need to be pedantic about the correct evaluation map for each target stack.

For spaces parameterizing multiple curves C1,C2 such as Hurwitz stacks, there
is more than one evaluation map. We default to the evaluation maps of the base
curve of the cover to be correct.

Example 3.3. The space M̃4(Sd X) parameterizes ramified covers C ′→C together
with a map C ′→ X . There are n ordered marked points of C and ℓ unordered
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points of C ′. The resulting evaluation map is

ev : M̃4(Sd X)→ Ī([Symd X ])n.

Example 3.4. The space K4(Sd X) is similar to M̃4(Sd X) but harder, because
the k gerbey points on C are not even ordered. That part of the evaluation map
lands in a symmetric stack of a symmetric stack

ev : K4(Sd X)→ Ī
(
([Symd X ])J

×[Symk
[Symd X ]]× [Symd X ]

)
.

The evaluation maps fit in a commutative square:

M̃4(Sd X) Ī
(
([Symd X ])J

× ([Symd X ])k ×[Symd X ]
)

K4(Sd X) Ī
(
([Symd X ])J

×[Symk
[Symd X ]]× [Symd X ]

)
ev

ev

We won’t need classes on the middle factor Ī([Symk
[Symd X ]]). Write ev′ for

the projection away from this factor on the evaluation map of K4(Sd X):

ev′ : K4(Sd X)→ Ī
(
([Symd X ])J

×[Symd X ]
)
.

Remark 3.5. The 2-functor Ī(−) does not distribute over products because of the
representability requirement. For example, the identity map on BZ/2× BZ/2 is
representable, but it doesn’t factor through a representable map to either factor. It
is more accurate to say the evaluation map lands in the product of Ī(−) applied to
each factor, so it is a product of the evaluation maps for each marked point.

Our ramification points are µr -banded gerbes mapping to BSd . Given a map
Bµr → BSd , we can extract the set theoretic fiber of the stacky point of C̃ ′→ C̃
by taking the set-theoretic quotient ⟨d⟩/µr of the corresponding action as in
Remark 1.4.

More generally, we have a µr -gerbe G→ T with a map G→ [Symd X ]. This
means a finite étale cover G̃→ G of degree d. The coarse moduli space of G is T ,
and that of G̃ is a finite étale cover T ′→ T . The degree k of this cover is some
number less than d. The map G̃→ X factors through T ′ because X is a scheme.
This procedure gives a map

(11) c : Ī([Symd X ])→
⊔
k≤d

[Symk X ],

sending G → [Symd X ] to T ′ → X . We describe this map in detail in the next
Section Section 3C.
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Because we fixed the discrete data 4 for K4(Sd X), we know which component
of each factor of

⊔
k≤d [Symk X ] it maps to

K4(Sd X) ([Symd X ])J
×[Sym#I X ]

Ī
(
([Symd X ])J

×[Symd X ]
) (⊔

k[Symk X ]
)J∪∞

ev′ inc

c

Let β be a class in K ◦
(
([Symd X ])J

× [Sym#I X ]
)
. Because the map inc is an

inclusion of components, we have

inc∗ inc∗ β = β.

Then the pullback β|K4(Sd X) is the same as the class

ev′∗c∗ inc∗ β in K ◦(K4(Sd X)).

Proof of Lemma 3.2. Take β = w∗ α above. Then

φ∗(α|K∗4(Sd X))= (w∗ α)|K4(Sd X) = ev′∗c∗ inc∗w∗ α,

using equation (10) and the discussion immediately above. This expresses the
factor φ∗(α|K∗4(Sd X)) in the Gromov–Witten invariant as a class pulled back via the
evaluation map on K4(Sd X). □

3C. Describing the map c. We describe the map c in detail using the inertia stack
I([Symd X ]). This section is purely expository, and an example is given at the end.

The inertia stack of a quotient stack [Y/G] is the disjoint union of the quotients

I ([Y/G])=
⊔

g∈G conj classes

[Y g/Cg]

of the fixed locus Y g by the centralizer Cg ⊆ G.
For [Symd X ], we have Y = Xd and G= Sd . Conjugacy classes of Sd are indexed

by cycle types, the multiset of lengths of cycles. For example,

g1 := (12)(34)(5)∈ S5 7→ {2, 2, 1}, g2 := (234)(761)(5)(89)∈ S9 7→ {3, 3, 1, 2}.

Let Ns be the number of cycles of length s, N :=
∑

Ns the total number of
cycles, and t the cardinality of the set of distinct lengths in the cycle type. We
include all cycles of length one N1, so

∑
i Ni = d . For g1, g2 above,

g1 7→ N1 = 1, N2 = 2, t = 2, g2 7→ N1 = 1, N2 = 1, N3 = 2, t = 3.

The centralizer of a cycle type g is

Cg = SN1 × SN2 ⋊ (Z/2)
N2 × SN3 ⋊ (Z/3)

N3 · · · × SNt ⋊ (Z/t)Nt .
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The fixed locus (Xd)g ⊆ Xd is the multidiagonal

(Xd)g = {(x1, · · · , xd) | xi = x j if i, j in the same cycle},

so (Xd)g ∼= X N . For g1, g2, we have

(Xd)g1 = {(x, x, y, y, z)} ∈ X5, (Xd)g2 = {(x, x, x, y, y, y, z, w,w)} ⊆ X9.

Write Hi = SNi ⋊ (Z/ i)Ni = Z/ i ≀ SNi . There is an exact sequence

0→ (Z/ i)Ni → Hi → SNi → 1

and a splitting SNi ⊆ Hi . The subgroups Z/ i act trivially on the diagonal fixed
locus X ⊆ X Ni , so the stack quotient is a trivial gerbe

[X/(Z/ i)] = X × BZ/ i.

The quotient X N/
∏

Hi is the product of symmetric products

X N/
∏

Hi =
∏

i

[SymNi [X/(Z/ i)]] =
∏

i

[SymNi (X × BZ/ i)].

On each component, there is a map to a single symmetric product∏
[SymNi (X × BZ/ i)] →

∏
[SymNi X ] c′

−→ [SymN X ].

The second map c′ takes t covers T ′i → T of degrees Ni and assembles them into
one cover T ′ =

⊔
T ′i → T of degree N . This gives a map

(12) c̄ : I ([Symd X ])→
⊔
N≤d

[SymN X ].

The reader can check this coincides with the map c defined in (11).

Lemma 3.6. There is a commutative diagram

I ([Symd X ])

Ī([Symd X ]),
⊔

k≤d [Symk X ]

c̄

c

where c is the map (11) and c̄ is (12).

We explain the above from the point of view of covers. A T -point of I ([Symd X ])
is a map T×Bµr→[Symd X ], which is a d-sheeted cover P→ T×Bµr . Write P0
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for the pullback d-sheeted cover of T :

P0 P

T T × Bµr

⌜

so P = [P0/µr ].
Fix a generator Z/r ≃ µr . If T is a geometric point, P0 ≃ ⟨d⟩ and µr

⟳

P0 is
an element σ ∈ Sd . Its order is the lcm of the cycle lengths, which divides r ; r is
equal to the lcm when the map T × Bµr → [Symd X ] is representable. Reordering
P0 ≃ ⟨d⟩ conjugates σ , so σ is well defined as a conjugacy class.

Even if T is not a geometric point, this defines a locally constant function

T 7→ Sd/ad Sd , t 7→ [σ ]

from T to the conjugacy classes of Sd . This decomposes I ([Symd X ]) into compo-
nents corresponding to cycle type, or partitions of d.

Given a partition d =
∑

i Ni corresponding to the cycle type of σ ∈ Sd , a point
T → I ([Symd X ]) factors through the corresponding component if its fibers at
geometric points are isomorphic to ⟨d⟩/σ . The Ni different orbits of i points may
be interchanged in families over T , and each such orbit may vary in a BZ/ i family.
The collection of orbits of i points is parameterized by the stack

[SymNi (BZ/ i)].

We have
∏
[SymNi (X × BZ/ i)] instead because we also need a map to X .

The case d = 5. If d = 5, the seven cycle types/partitions are

5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1.

The corresponding components of I ([Sym5 X ]) are

X × BZ/5, X2
× BZ/4, X2

× BZ/3× BZ/2, X/(Z/3)× X2/S2,

X × X2/(S2 ⋊ (Z/2)2), X/Z/2× X3/S3, X5/S5.

Project away from the cyclic gerbes BZ/ i :

X, X2, X2, X ×[Sym2 X ], [Sym2 X ]× X, X ×[Sym3 X ], [Sym5 X ].

For example, consider a trivial gerbe b : Bµ4 → [Sym5 X ] mapping to the
symmetric product. This corresponds to a 5-sheeted cover P → Bµ4, counting
stacky multiplicity.

The composite pt→ Bµ4→ [Sym5 X ] → BS5 parameterizes a 5-sheeted cover
of the point, which we trivialize and view as ⟨5⟩. The action of µ4 on ⟨5⟩ can be
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viewed as a map µ4→ S5. Choose a generator to identify µ4 ≃ Z/4 and let σ ∈ S5

be the image of the generator.
The element σ has order dividing 4. Take, for example,

σ = g1 = (12)(34)(5).

Its order 2 is not 4, so the classifying map b is not representable.
The stack quotient of ⟨5⟩ by Z/4 · σ is a disjoint union

Bµ2 ⊔ Bµ2 ⊔ Bµ4.

This is the 5-sheeted cover P→ Bµ4. The corresponding point pt→ I ([Sym5 X ])
factors through the component of the partition 2+2+1, i.e., X× X2/(S2⋊ (Z/2)2)
above.

The cover comes with a map P→ X . The map c̄ takes coarse moduli spaces of
P→ Bµ4, obtaining ⟨3⟩ → pt. The map P→ X factors through ⟨3⟩ because X is
a scheme with no stack structure. This sends the component X × X2/(S2 ⋊ (Z/2)2)
to [Sym3 X ].

4. Elliptic curves example

We apply our theorem in the case of elliptic curves, with g = R = 1, d = 2,
and X = pt. The symmetric product is the classifying stack [Symd X ] = BSd . The
results are reassuring but not surprising. See Figure 4.

We know the map w is proper and birational. For elliptic curves, more is true.

Lemma 4.1. The map w : K̃∗4∗(BSd)→ M1,1 is an isomorphism.

Proof. The map on coarse moduli spaces is an isomorphism P1
= P1. It remains to

show the stack structure is the same; i.e., the automorphism groups of the admissible
covers C ′→C are the same as that of the stabilization D=C ′st. We already checked
this for a generic elliptic curve in the proof of Lemma 1.16.

C ′

C · · ·

· · ·

· · ·

k ∞

Figure 4. An elliptic curve C ′ and its double cover of C = P1

simply ramified at four points: 4 with g= 1, d= 2, k= 0. Marked
points are white if remembered and black if forgotten under the
map p : K̃4(BSd)→M1,1.
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C ′1 C ′0 D

Figure 5. The admissible cover C ′→ C which stabilizes to the
nodal cubic C ′st

= D. The components of C ′ are labeled C ′0,C ′1
and they each doubly cover a component of C . The pair of nodes P
is the intersection C ′0 ∩C ′1 of the components.

We want to show Aut(C ′→C)=Aut(D). Again, it helps that automorphisms of
the covering map are a subgroup of automorphisms of the source Aut(C ′→ C)⊆
Aut(C ′). These automorphisms must send ramification points to ramification points,
and it will be clear that they also send the preimage I ∈ C ′ of infinity to itself.

For all the smooth elliptic curves D, the source is already stable C ′= D and
the unique map C ′ → C = P1 is the quotient by the elliptic involution. This
identifies Aut(C ′→C)≃Aut(D) for all smooth elliptic curves with automorphism
group Z/2. The smooth curves j = 0, 1728 remain, as does the singular cubic.

The curve j = 1728 has the equation

y2
= x3
− x .

The automorphism group Z/4 is generated by (x, y) 7→ (−x, iy). This commutes
with the automorphism x 7→ −x of P1. Likewise j = 0 has the equation

y2
= x3
− 1.

Letting ζ be a sixth root of unity, the automorphism group is generated by the map
(x, y) 7→ (ζ 2x, ζ 3 y). This also commutes with an automorphism of P1.

For the singular elliptic curve D, the preimage is an admissible cover C ′→C with
both source and target reducible. See Figure 5. Each consists of two components,
labeled C ′i ,Ci for i = 0, 1. Assume that the point in I ⊆ C ′ lies on C ′0.

The map restricts to two double covers C ′i → Ci of P1’s. The preimage P ⊆ C ′

of the singular point of C is a pair of nodes joining C ′0,C ′1.
Any automorphism of C ′ must restrict to an automorphism of each component

because of the marked point. Any automorphism ϕ of C ′ restricts to an automor-
phism of the pair of nodes P which determines ϕ. This is because ϕ must preserve
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at least three points on each component, the nodes and the ramification points. All
such automorphisms lie over C , so Aut(C ′→C)=Aut(P)=Z/2. This is the same
automorphism group of the singular stabilization D = C ′st, the nodal cubic. □

The map φ : K∗4(BSd)→ K4(BSd) is also an isomorphism by Remark 1.20,
so Theorem 3.1 merely says that quantum K invariants on M1,1 = P(4, 6) are
equivariant Euler characteristics on its natural S3-cover by M̃4(BSd).

This cover is pulled back from the quotient P1
→P(2, 3) by S3 acting on λ∈P1.

This map classically parameterizes the Legendre form

y2
= x(x − 1)(x − λ)

of an elliptic curve. The map M̃4(BSd)→K4(BSd)= M1,1 then fits in a pullback
square

M̃4(BSd) M1,1

P1 P(2, 3)

⌜

/S3

with vertical arrows µ2-gerbes.
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UNKNOTTED CURVES ON GENUS-ONE SEIFERT SURFACES
OF WHITEHEAD DOUBLES
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BÜLENT TOSUN AND BRUCE TRACE

We consider homologically essential simple closed curves on Seifert surfaces
of genus-one knots in S3, and in particular those that are unknotted or slice
in S3. We completely characterize all such curves for most twist knots: they
are either positive or negative braid closures; moreover, we determine exactly
which of those are unknotted. A surprising consequence of our work is that
the figure-eight knot admits infinitely many unknotted essential curves up to
isotopy on its genus-one Seifert surface, and those curves are enumerated
by Fibonacci numbers. On the other hand, we prove that many twist knots
admit homologically essential curves that cannot be positive or negative braid
closures. Indeed, among those curves, we exhibit an example of a slice but
not unknotted homologically essential simple closed curve. We continue our
investigation of unknotted essential curves for arbitrary Whitehead doubles
of nontrivial knots, and obtain that there is precisely one unknotted essential
simple closed curve in the interior of a double’s standard genus-one Seifert
surface. As a consequence we obtain many new examples of 3-manifolds that
bound contractible 4-manifolds.

1. Introduction

Suppose K ⊆ S3 is a genus g knot with Seifert surface 6K . Let b be a curve in 6K

which is homologically essential — that is, it is not separating 6K — and a simple
closed curve — that is, it has one component and does not intersect itself. Further-
more, we will focus on those that are unknotted or slice in S3 — that is, each bounds
a disk in S3 or B4. In this paper we seek to make progress on the following problem:

Problem. Characterize and, if possible, list all such curves b for the pair (K , 6K ),
where K is a genus-one knot and 6K its Seifert surface.

Our original motivation for studying this problem comes from the intimate
connection between unknotted or slice homologically essential curves on a Seifert
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t

t

Figure 1. On the left is the twist knot Kt , where the box contains t
full right-handed twists if t ∈ Z>0, and |t | full left-handed twists
if t ∈ Z<0. On the right is the standard Seifert surface for Kt .

surface of a genus-one knot and 3-manifolds that bound contractible 4-manifolds.
We defer the detailed discussion of this connection to Section 1B, where we also
provide some historical perspective. For now, however, we will focus on getting a
hold on the stated problem above for a class of genus-one knots, and as we will
make clear in the next few results, this problem is already remarkably interesting
and fertile on its own.

1A. Main results. A well-studied class of genus-one knots is that of the so-called
twist knot K = Kt , which is described by the diagram on the left of Figure 1 (cf.
[Casson and Gordon 1978, page 182]). We note that with this convention K−1 is
the right-handed trefoil T2,3 and K1 is the figure-eight knot 41. We will consider
the genus-one Seifert surface 6K for K = Kt , as depicted on the right of Figure 1.

Theorem 1.1. Let t ≤ 2. Then the genus-one Seifert surface 6K of K = Kt admits
infinitely many homologically essential, unknotted curves if and only if t = 1, that
is, if and only if K is the figure-eight knot 41.

Indeed, we can be more precise and characterize all homologically essential,
simple closed curves on 6K , from which Theorem 1.1 follows easily. To state this we
recall an essential simple closed curve c on 6K can be represented (almost uniquely)
by a pair of nonnegative integers (m, n), where m is the number of times c = (m, n)

runs around the left band and n is the number of times it runs around the right band
in 6K . Moreover, since c is connected, we can assume gcd(m, n) = 1. Finally, to
uniquely describe c, we call c an ∞ curve if its orientation switches from one band
to the other or a loop curve if it has the same orientation on both bands (see Figure 9).

Theorem 1.2. Let K = Kt be a twist knot and 6K its Seifert surface, as in Figure 1.
Then:

(1) For K = Kt with t ≤−1, we can characterize all homologically essential simple
closed curves on 6K as the closures of negative braids in Figure 10. In the case
of the right-handed trefoil K−1 = T2,3, exactly 6 of these (see Figure 2) are un-
knotted in S3. For t < −1, exactly 5 of these (see Figure 4) are unknotted in S3.

(2) For K = K1 = 41, we can characterize all homologically essential simple
closed curves on 6K as the closures of braids in Figure 15. A curve on this
surface is unknotted in S3 if and only if it is
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(a) a trivial curve (1, 0) or (0, 1),
(b) an ∞ curve in the form of (Fi+1, Fi ), or
(c) a loop curve in the form of (Fi , Fi+1), where Fi represents the i-th Fi-

bonacci number (see Figure 3).

For twist knots K = Kt with t > 1 the situation is more complicated. Under
further hypothesis on the parameters m, n we can obtain results similar to those
in Theorem 1.2, and these will be enough to extend the theorem entirely to the
case of K = K2, so-called Stevedore’s knot 61 (here we use the KnotInfo data-
base [Livingston and Moore 2024] for identifying small knots and their various
properties). More precisely we have:

Theorem 1.3. Let K = Kt be a twist knot and 6K its Seifert surface, as in Figure 1.
Then:

(1) When t > 1 and m < n, we can characterize all homologically essential simple
closed curves on 6K as the closures of positive braids in Figure 24(a),(b).
Exactly 5 of these (see Figure 4) are unknotted in S3.

(2) When t > 1 and m > n:

(a) If m − tn > 0, then we can characterize all homologically essential simple
closed curves on 6K as the closures of negative braids in Figures 28 and 31.
Exactly 5 of these (see Figure 4) are unknotted in S3.

(b) If m − n < n and the curve is an ∞ curve, then we can characterize all
homologically essential simple closed curves on 6K as the closures of
positive braids in Figure 29. Exactly 5 of these (see Figure 4) are unknotted
in S3.

(3) For K = K2 = 61, we can characterize all homologically essential simple
closed curves on 6K as the closures of positive or negative braids. Exactly 5
of these (see Figure 4) are unknotted in S3.

What Theorem 1.3 cannot cover is the case t > 2, m > n and m − tn < 0 or
when m − n < n and the curve is a loop curve. Indeed in this range not every
homologically essential curve is a positive or negative braid closure. For example,
when (m, n)= (5, 2) and t = 3 one obtains that the corresponding essential ∞ curve,
as a smooth knot in S3, is the knot m(52) (see Figure 34 in Section 5 for a verification
of this), and for (m, n) = (7, 3) and t = 3, the corresponding knot is 10132; both
of these are known (e.g., via the KnotInfo database [Livingston and Moore 2024])
not to be positive braid closures — coincidentally, these knots are not unknotted or
slice. Moreover we can explicitly demonstrate (see below) that if one removes the
assumption of “∞” from part (2)(b) in Theorem 1.3, then the conclusion claimed
there fails for certain loop curves when t > 2. A natural question is then whether
for knots K = Kt with t > 2, m > n and m − tn < 0 or an m − n < n loop curve,
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Figure 2. It can easily be shown that these six curves, from left to
right, (0, 1), (1, 0), (1, 1) ∞, (1, 1) loop, (1, 2) ∞ and (2, 1) ∞,
on 6K are unknotted in S3. One can easily check that the other
(1, 2) and (2, 1) curves (that is, the (1, 2) loop and (2, 1) loop
curves) both yield the left-handed trefoil T2,−3, and hence they are
not unknotted in S3.

there exists unknotted or slice curves on 6K other than those listed in Figure 4. A
follow-up question will be whether there exists slice but not unknotted curves on 6K

for some K = Kt . We can answer the latter question in the affirmative as follows:

Theorem 1.4. Let K = Kt be a twist knot with t > 2 and 6K its Seifert surface, as
in Figure 1, and consider the loop curve (m, n) with m = 3, n = 2 on 6K . Then
this curve, as a smooth knot in S3, is the pretzel knot P(2t − 5, −3, 2). This knot is
never unknotted but it is slice (exactly) when t = 4, in which case this pretzel knot is
also known as the curious knot 820.

Remark 1.5. We note that the choices of m, n values made in Theorem 1.4 are
somewhat special in that they yielded an infinite family of pretzel knots, and that
it includes a slice but not unknotted curve. Indeed, by using the work of Rudolph
[1993], we can show (see Proposition 3.8) that the loop curve (m, n) with m−n = 1,
n > 2 and t > 4 on 6K , as a smooth knot in S3, is never slice. The calculation gets

Fi+1 Fi Fi Fi+1

Fi+1−Fi Fi+1−Fi

Figure 3. The two infinite families of unknotted curves for the
figure-eight knot in S3. The letters on parts of our curve or in
certain locations stands for the number of strands at that particular
curve or location. For example, for the (m, n) ∞ curve on the left
we will show in Section 3B via explicit isotopies how, starting with
the known unknotted (1, 1) ∞ curve, we can recursively obtain the
following sequence of unknotted curves: (1, 1) ∼ (3, 2) ∼ (8, 5) ∼

(21, 13) ∼ (55, 34) ∼ · · · .
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t t t t t

Figure 4. These five curves, from left to right, (0, 1), (1, 0),
(1, 1) ∞, (1, 1) loop and (2, 1) ∞, on 6K , where K = Kt ,
t ̸= 1, −1, are unknotted curves in S3.

quickly complicated once m − n > 1, and it stays an open problem if in this range
one can find other slice but not unknotted curves.

We can further generalize our study of unknotted essential curves on minimal-
genus Seifert surfaces of genus-one knots for the Whitehead doubles of nontrivial
knots. We first introduce some notation. Letting P be the twist knot Kt embedded
(where t = 0 is allowed) in a solid torus V ⊂ S3 and K denote an arbitrary knot in S3,
we identify a tubular neighborhood of K with V in such a way that the longitude
of V is identified with the longitude of K coming from a Seifert surface. The image
of P under this identification is a knot, D±(K , t), called the positive/negative
t-twisted Whitehead double of K . In this situation the knot P is called the pattern
for D±(K , t), and K is referred to as the companion. Figure 5 depicts the positive
−3-twisted Whitehead double of the left-handed trefoil, D+(T2,−3, −3). If one
takes K to be the unknot, then D+(K , t) is nothing but the twist knot Kt .

Theorem 1.6. Let K denote a nontrivial knot in S3. Suppose that 6K is a standard
genus-one Seifert surface for the Whitehead double of K . Then there is precisely
one unknotted homologically essential, simple closed curve in the interior of 6K .

1B. From unknotted curves to contractible 4-manifolds. The problem of finding
unknotted homologically essential curves on a Seifert surface of a genus-one knot is

V

P

νK

Figure 5. On the left is the solid torus V ⊂ S3 and the pattern twist
knot P (in this case t = 0). On the right is the positive −3-twisted
Whitehead double of the left-handed trefoil, and its standard genus-
one Seifert surface.
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interesting on its own, but it is also useful for studying some essential problems in
low-dimensional topology. We expand on one of these problems a little more. An
important and still open question in low-dimensional topology asks: which homology
3-sphere1 bounds a homology 4-ball or contractible 4-manifold (see [Kirby 1978,
Problem 4.2])? This problem can be traced back to the famous Whitney embedding
theorem and other important subsequent results due to Hirsch [1961], Wall [1965],
and Rohlin [1965]. Since then, the research towards understanding this problem
has stayed active. It has been shown that many infinite families of homology
spheres do bound contractible 4-manifolds [Casson and Harer 1981; Fickle 1984;
Stern 1978; Zeeman 1965] and at the same time many powerful techniques and
homology cobordism invariants, mainly coming from Floer and gauge theories
[Manolescu 2016; Fintushel and Stern 1985; Rohlin 1952], have been used to obtain
constraints. See [Şavk 2024] for a detailed recent survey on various constructions
and obstructions mentioned above.

In our case, using our main results, we will be able to list some more homology
spheres that bound contractible 4-manifolds. This is because of the following
theorem of Fickle [1984, Theorem 3.1], which was one of the main motivations for
the research in this paper.

Theorem 1.7 (Fickle). Let K be a knot in S3 that has a genus-one Seifert surface F
with a primitive element [b] ∈ H1(F) such that the curve b is unknotted in S3. If b
has self-linking s, then the homology 3-sphere obtained by 1/(s ± 1) Dehn surgery
on K bounds a contractible2 4-manifold.

Theorem 1.7 was generalized (along with a somewhat more accessible proof
of Fickle’s theorem) by Etnyre and Tosun [2023, Theorem 1] to genus-one knots
in the boundary of a homology 4-ball W , where the assumption on the curve b is
relaxed so that b is slice in W . This will be useful (see Corollary 1.9 below) for
applying to the slice but not unknotted curve/knot found in Theorem 1.4.

We also want to take the opportunity to highlight an interesting and still open
conjecture [Fickle 1984, page 481, Conjecture] attributed to Fintushel and Stern.

Conjecture 1.8 (Fintushel and Stern). Let K be a knot in the boundary of a ho-
mology 4-ball W which has genus-one Seifert surface with a primitive element
[b] ∈ H1(F) such that b is slice in W . If b has self-linking s, then the homology
3-sphere obtained by 1/k(s ± 1), k ≥ 0, Dehn surgery on K bounds a homology
4-ball.

1A homology 3-sphere/4-ball is a closed, oriented, smooth 3-/4-manifold having the integral
homology groups of S3/B4.

2Indeed, this contractible manifold is a Mazur-type manifold, namely, it is a contractible 4-manifold
that has a single handle for each of the indices 0, 1 and 2, where the 2-handle is attached along a knot
that links the 1-handle algebraically once. This condition yields a trivial fundamental group.
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Corollary 1.9. Let Kt be a nontrivial twist knot. Then the homology spheres
obtained by

(1) ±
1
2 Dehn surgery on K1 = 41,

(2) −
1
2 and −

1
4 Dehn surgeries on K−1 = T2,3,

(3) −
1
2 and 1/(t ± 1) and 1/((t − 2) ± 1) Dehn surgeries on Kt for t ̸= ±1,

(4) 1
2 Dehn surgery on K4

bound contractible 4-manifolds.

Corollary 1.10. The homology spheres obtained by −
1
2 Dehn surgery on D+(K , t)

each bound a contractible 4-manifold.

Remark 1.11. The 3-manifolds in Corollary 1.9(2) are the Brieskorn spheres
6(2, 3, 13) and 6(2, 3, 25); they were identified by Casson–Harer and Fickle to
bound contractible 4-manifolds. Also, it was known already that the result of 1

2 Dehn
surgery on the figure-eight knot bounds a contractible 4-manifold (see [Tosun 2022,
Theorem 18 and Figure 6]), and from this we obtain the result in Corollary 1.9(1),
as the figure-eight knot is an amphichiral knot. The result in Corollary 1.10 also
follows from [Fickle 1984, Theorem 3.6].

Remark 1.12. It is known that the result of 1
n Dehn surgery on a slice knot K ⊂ S3

bounds a contractible 4-manifold. To see this, note that at the 4-manifold level with
this surgery operation what we are doing is removing a neighborhood of the slice
disk from B4 (the boundary at this stage is zero surgery on K ) and then attaching
a 2-handle to a meridian of K with framing −n. Now, simple algebraic topology
arguments show that this resulting 4-manifold is contractible.

It is a well-known result [Casson and Gordon 1978] that a nontrivial twist knot
K = Kt is slice if and only if K = K2 (Stevedore’s knot 61). So, by arguments above,
we already know that result of 1

n surgery on K2 bounds a contractible 4-manifold
for any integer n. But, interestingly, we do not recover this by using Theorem 1.3.

Organization. The paper is organized as follows. In Section 2 we set some basic
notation and conventions that will be used throughout the paper. Section 3 contains
the proofs of Theorems 1.2, 1.3 and 1.4. Our main goal will be to organize, case
by case, essential simple closed curves on genus-one Seifert surfaces 6K , through
sometimes lengthy isotopies, into explicit positive or negative braid closures. Once
this is achieved we use a result due to Cromwell that says the Seifert algorithm
applied to the closure of a positive/negative braid closure gives a minimal-genus
surface. This together with some straightforward calculations will help us to
determine the unknotted curves exactly. But sometimes it will not be obvious
how or even possible to reduce an essential simple closed curve to a positive or
negative braid closure (see Sections 3B, 3C and 3D and Figure 34 in Section 5).
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Further analyzing these cases will yield interesting phenomenon listed in Theorems
1.3 and 1.4. Section 4 contains the proof of Theorem 1.6. Finally, Section 5 contains
the proofs of Corollaries 1.9 and 1.10 and some final remarks.

2. Preliminaries

In this section, we set some notation and make preparations for the proofs in the
next three sections. In Figure 6 we record some basic isotopies/conventions that
will be repeatedly used during proofs. Most of these are evident, but for the reader’s
convenience we explain how the moves in parts (a) and (f) work in Figures 7 and 8.
We remind the reader that letters on parts of our curve, as in part (e) of Figure 6, or in
a certain location, are used to denote the number of strands that particular curve has.

Recall also an essential, simple closed curve on 6K can be represented by a pair
of nonnegative integers (m, n), where m is the number of times it runs around the
left band and n is the number of times it runs around the right band in 6K , and
since we are dealing with connected curves we must have that m, n are relatively
prime.

We have two cases: m > n or n > m. For an (m, n) curve with m > n, after
the m strands pass under the n strands on the Seifert surface, the curve can be split
into two sets of strands. For this case, assume that the top set is made of n strands.
They must connect to the n strands going over the right band, leaving the other
set to be made of m − n strands. Now, we can split the other side of the set of m

∼=

∼=

∼=

∼=

= =m m{m

(a)

(b)

(c)

(d)

(e)

−1

+1

m

m

m

m

r

s

−1

−1
∼=−1

r

s

(f)

r

s 1

1∼=
1

r

s

(g)

m

m

m

m

Figure 6. Various isotopies.
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fold ∼=

∼=

∼=

∼=

Figure 7. Diagrammatic proof of the move in Figure 6(a). As
indicated, the passage from the top right figure to the bottom right
is via “smoothing” a creased edge.

strands into two sections. The m − n strands on the right can only go to the bottom
of these two sections, because otherwise the curve would have to intersect itself on
the surface. This curve is referred to as an (m, n) ∞ curve. See Figure 9(a). The
other possibility for an (m, n) curve with m > n has n strands in the bottom set
instead, and they loop around to connect with the n strands going over the right
band. This leaves the other to have m − n strands. We can split the other side of
the set of m strands into two sections. The m − n strands on the right can only go
to the top of these two sections, because again otherwise the curve would have to
intersect itself on the surface. The remaining subsection must be made of n strands
and connect to the n strands going over the right band. This curve is referred to as
an (m, n) loop curve. See Figure 9(b). The case of an (m, n) curve with n > m is
similar. See Figure 9(c),(d).
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Figure 8. Diagrammatic proof of the move in Figure 6(f).
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m − n m − n n − m n − m

(a) (m, n) ∞ (b) (m, n) loop (c) (m, n) ∞ (d) (m, n) loop

Figure 9. Possibilities for an essential, simple closed curve (m, n)

on 6K .

3. Twist knots

In this section we provide the proofs of Theorems 1.2, 1.3 and 1.4. We do this
in four parts. Sections 3A and 3B contain all technical details of Theorem 1.2,
Section 3C contains details of Theorem 1.3, and Section 3D contains Theorem 1.4 .

3A. Twist knot with t < 0. In this section we consider twist knots K = Kt , t ≤ −1.
This in particular includes the right-handed trefoil K−1.

Proposition 3.1. All essential, simple closed curves on 6K can be characterized as
the closure of one of the negative braids in Figure 10.
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Proof. It suffices to show all possible curves for an arbitrary m and n such that
gcd(m, n) = 1 are the closures of either braid in Figure 10. As mentioned earlier we
will deal with cases where both m, n ≥ 1 since cases involving 0 are trivial. There
are four cases to consider. The arguments for each of these will be quite similar,
and so we will explain the first case in detail and refer to the rather self-explanatory
drawings/figures for the remaining cases.

Case 1: (m, n) ∞ curve with m > n > 0. This case is explained in Figure 11. The
picture on top left is the (m, n) curve of interest. The next picture to its right is the
(m, n) curve where we ignore the surface it sits on and use the convention from
Figure 6(e). The next picture is an isotopy where we push the split between n
strands and m − n strands along the dotted blue arc. The next picture is obtained
by simple isotopy. The passage from the top right picture to the bottom right
is via Figure 6(c). The passage from the bottom right to the figure on its left is
obtained by pushing m − n strands around along the green arc. The goal here is
to put the curve in a braid closure position. Finally, by applying simple isotopies
and Figure 6(a) repeatedly we replace all the loops with full negative twists. Note
that we moved the full negative twist on m − n strands clockwise fashion around to
bring it in the bottom of the figure. This gives the picture on the bottom left, which
is the closure of the negative braid depicted in Figure 10(a).

Case 2: (m, n) loop curve with m > n > 0. By a series of isotopies, as indicated in
Figure 12, the (m, n) curve in this case can be simplified to the knot depicted on
the right of Figure 12, which is the closure of negative braid in Figure 10(b).

unzip along

dotted arcFigure 6(a)

Figure 6(c)

Figure 6(a)

∼=

∼=

Figure 11
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∼=

Figure 6(a) unzip along

dotted arc

∼=

Figure 6(a)

Figure 12

Case 3: (m, n) ∞ curve with n > m > 0. By a series of isotopies, as indicated in
Figure 13, the (m, n) curve in this case can be simplified to the knot depicted on
the bottom left of Figure 13, which is the closure of negative braid in Figure 10(c).

∼=

Figure 6(a)

unzip along

dotted arc

∼=

∼=∼=

Figure 6(a)

Figure 13
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Figure 6(a)

∼= ∼= ∼=

Figure 14

Case 4: (m, n) loop curve with n > m > 0. By a series of isotopies, as indicated in
Figure 14, the (m, n) curve in this case can be simplified to the knot depicted on
the right of Figure 14, which is the closure of negative braid in Figure 10(d). □

Next, we determine which of the curves in Proposition 3.1 are unknotted. It is a
classic result due to Cromwell [1989] (see also [Stoimenow 2003, Corollary 4.2])
that the Seifert algorithm applied to the closure of a positive braid gives a minimal-
genus surface.

Proposition 3.2. Let β be a braid as in Figure 10 and K = β̂ be its closure. Let
s(K ) be the number of Seifert circles and l(K ) be the number of crossings in each
braid diagram. Then (s(K ), l(K )) is equal to(
m, |t |n(n − 1) + (m − n)(m − n − 1) + n(m − n)

)
for β as in Figure 10(a),(

m + n, (|t | + 1)n(n − 1) + (m − n)(m − n − 1)

+ nm + 2n(m − n)
)

for β as in Figure 10(b),(
n, (|t − 1|)n(n − 1) + (n − m)(n − m − 1)

+ m(m − 1) + m(n − m)
)

for β as in Figure 10(c),(
m + n, |t |n(n − 1) + m(m − 1) + nm

)
for β as in Figure 10(d).

Proof. Consider the braid β as in Figure 10(a). Clearly, it has m Seifert circles as β

has m strands. Next, we will analyze the three locations in which crossings occur.
First consider the t negative full twists on n strands. Since each strand crosses over
the other n − 1 strands, we obtain |t |n(n − 1) crossings. Second, the negative full
twist on m − n strands produces additional (m − n)(m − n − 1) crossings. Lastly,
notice the part of β where m − n strands overpass the other n strands, and so for
each strand in m −n strands we obtain an additional n crossings. Hence, for K = β̂,
we calculate

l(β̂) = |t |n(n − 1) + (m − n)(m − n − 1) + n(m − n).

The calculations for the other cases are similar. □

We can now prove the first part of Theorem 1.2.
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Proof of Theorem 1.2(a). Proposition 3.1 proves the first half of our theorem. To
determine there are exactly six unknotted curves when t =−1 and five when t <−1,
let B be the set containing the six and five unknotted curves as in Figures 2 and 4,
respectively. It suffices to show an essential, simple closed curve c on 6K , where
c ̸∈ B, cannot be unknotted in S3. We know by Proposition 3.1 that c is the closure
of one of the braids in Figure 10 in S3, where m, n ≥ 1 and gcd(m, n) = 1. We
show, case by case, that the Seifert surface obtained via the Seifert algorithm for
curves c ̸∈ B in each case has positive genus, and hence it cannot be unknotted.

• Let c = (m, n) be the closure of the negative braid as in Figure 10(a) and 6c its
Seifert surface obtained by the Seifert algorithm. There are m Seifert circles, and
by Proposition 3.2,

l(c) = |t |n(n − 1) + (m − n)(m − n − 1) + n(m − n).

Hence

g(6c) =
1
2(1 + l − s) =

1
2

(
m(m − n − 2) + n(|t |(n − 1) + 1) + 1

)
.

If m = n + 1, then we get g(6c) =
1
2 |t |n(n − 1), which is positive as long as

n > 1; note that when c = (2, 1) we indeed get an unknotted curve. If m > n + 1,
then g(6c) ≥

1
2

(
n(|t |(n − 1) + 1) + 1

)
> 0 as long as n > 0. So, c ̸∈ B is not an

unknotted curve as long as m > n ≥ 1.

• Let c = (m, n) be the closure of the negative braid as in Figure 10(b) and 6c its
Seifert surface obtained by the Seifert algorithm. There are n + m Seifert circles,
and by Proposition 3.2,

l(c) = (|t | + 1)n(n − 1) + (m − n)(m − n − 1) + nm + 2n(m − n).

Hence
g(6c) =

1
2

(
m(m + n − 2) + n(|t |(n − 1) − 1) + 1

)
.

One can easily see that this quantity is always positive as long as n ≥ 1. So,
c ̸∈ B is not an unknotted curve when m > n ≥ 1.

• Let c = (m, n) be the closure of the negative braid as in Figure 10(c) and 6c its
Seifert surface obtained by the Seifert algorithm. There are n Seifert circles, and
by Proposition 3.2,

l(c) = (|t | − 1)n(n − 1) + (n − m)(n − m − 1) + m(m − 1) + m(n − m).

Hence
g(6c) =

1
2

(
n(|t |(n − 1) − m − 1) + m2

+ 1
)
.

This is always positive as long as m ≥ 1 and |t | ̸= 1; note that when c = (1, 2)

and |t | = 1 we indeed get an unknotted curve. So, c ̸∈ B is not an unknotted curve
when n > m ≥ 1.
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• Let c = (m, n) be the closure of the negative braid as in Figure 10(d) and 6c its
Seifert surface obtained by the Seifert algorithm. There are n + m Seifert circles,
and by Proposition 3.2,

l(c) = |t |n(n − 1) + m(m − 1) + nm.

Hence
g(6c) =

1
2

(
|t |n(n − 1) + m(m − 2) + n(m − 1) + 1

)
.

One can easily see that this quantity is always positive as long as m ≥ 0. So,
c ̸∈ B is not an unknotted curve when n > m ≥ 1.

This completes the first part of Theorem 1.2. □

3B. Figure-eight knot. The case of figure-eight knot is certainly the most interest-
ing one. It is rather surprising, even to the authors, that there exists a genus-one
knot with infinitely many unknotted curves on its genus-one Seifert surface. As we
will see, understanding homologically essential curves for the figure-eight knot will
be similar to what we did in the previous section. The key difference develops in
Cases 2 and 4 below where we show how, under certain conditions, a homologically
essential (m, n) ∞ (resp. (m, n) loop) curve can be reduced to the homologically
essential (m − n, 2n − m) ∞ (resp. (2m − n, n − m) loop) curve, and how this
recursively produces infinitely many distinct homology classes that are represented
by the unknot, and we will show that certain Fibonacci numbers can be used to
describe these unknotted curves. Finally we will show for the figure-eight knot this
is the only way that an unknotted curve can arise. Adapting the notation developed
thus far we start characterizing homologically essential simple closed curves on the
genus-one Seifert surface 6K of the figure-eight knot K .

Proposition 3.3. All essential, simple closed curves on 6K can be characterized as
the closure of one of the braids in Figure 15 (note the first and third braids from the
left are negative and positive braids, respectively).
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Figure 15. Braid representations of curves on 6K , where K
is the figure-eight knot. From left to right: (m, n) loop curve
with m > n; (m, n) ∞ curve with m > n; (m, n) ∞ curve
with n > m; (m, n) loop curve with n > m.



138 S. DEY, V. KING, C. T. SHAW, B. TOSUN AND B. TRACE
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push along

green curve

Figure 16

Proof. The curves (1, 0) and (0, 1) are clearly unknots. Moreover, because
gcd(m, n) = 1, the only curve with n = m is the (1, 1) curve, which is also the
unknot in S3. For the rest of the arguments below, we will assume n > m or m > n.
There are four cases to consider:

Case 1: (m, n) loop curve with m > n > 0. This curve can be turned into a negative
braid following the process in Figure 16. The reader will observe that the process
here is very similar to those in the previous section. We mention that the passage
from the middle figure on the top to the one on its right is obtained by pushing
the m strands along the green curve till it is clear from a positive loop of n strands.
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Figure 6(a)
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Finally, the middle curve on the bottom is our final curve, which is the closure of
the negative braid to its left.

Case 2: (m, n) ∞ curve with m > n > 0. As mentioned at the beginning, this case
(and Case 4) are much more involved and interesting (in particular the subcases
of Cases 2c and 4c; see the proof Proposition 3.4). Following the process as in
Figure 17, the curve can be isotoped as in the bottom right of that figure, which is the
closure of the braid on its left — that is, the second braid from the left in Figure 15.

Case 3: (m, n) ∞ curve with n > m > 0. This curve can be turned into a positive
braid following the process in Figure 18.

Case 4: (m, n) loop curve with n > m > 0. This curve can be turned into the closure
of a braid following the process in Figure 19. □

We next determine which of these curves are unknotted:

Proposition 3.4. A homologically essential curve c characterized as in Proposition
3.3 is unknotted if and only if it is (a) a trivial curve (1, 0) or (0, 1), (b) an ∞ curve
in the form of (Fi+1, Fi ), or (c) a loop curve in the form of (Fi , Fi+1).

Proof. Let c denote one of these homologically essential curve listed in Proposition
3.3. We will analyze the unknottedness of c in four separate cases.

Case 1: Suppose c = (m, n) is the closure of the negative braid in the bottom left of
Figure 16. Note the minimal Seifert surface of c, 6c, has (n)(m −n)+ (m)(m − 1)

crossings and m Seifert circles. Hence

g(6c) =
1
2(n(m − n) + (m − 1)2).
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Figure 6(a)
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Figure 19

This is a positive integer for all m, n with m > n. So c is never unknotted in S3 as
long as long m > n > 0.

Case 2: Suppose c is of the form in the bottom right of Figure 17. Since this curve
is not a positive or negative braid closure, we cannot directly use Cromwell’s result
as in Case 1 or the previous section. There are three subcases to consider.

Case 2a: m − n = n. Because m and n are relatively prime integers, we must have
that m = 2 and n = 1, and we can easily see that this (2, 1) curve is unknotted.

Case 2b: m − n > n. This curve can be turned into a negative braid following the
process in Figure 20. More precisely, we start, on the top left of that figure, with
the curve appearing on the bottom right of Figure 17. We extend the split along
the dotted blue arc and isotope m strands to reach the next figure. We note that this
splitting can be done since, by assumption, m −2n > 0. Then using Figure 6(a) and
further isotopy we reach the final curve on the bottom right of Figure 20, which is
obviously the closure of the negative braid depicted on the bottom left of that picture.

The minimal Seifert surface coming from this negative braid closure contains
m − n circles and (m − 2n)n + (m − n)(m − n − 1) twists. Hence

g(6c) =
1
2((m − 2n)n + (m − n)(m − n − 2) + 1).

This a positive integer for all integers m, n with m −n > n. So, c is not unknotted
in S3.

Case 2c: m − n < n. We organize this curve some more. We start, on the top left
of Figure 21, with the curve that is on the bottom left of Figure 17. We extend the
split along the dotted blue arc and isotope m − n strands to reach the next figure.
After some isotopies we reach the curve on the bottom left of Figure 21. In other
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words, this subcase of Case 2c leads to a reduced version of the original picture
(top left curve in Figure 17), in the sense that the number of strands over either
handle is less than the number of strands in the original picture.

This case can be further subdivided depending on the relationship between 2n−m
and m − n, but this braid (or rather its closure) will turn into a (m − n, 2n − m) ∞

curve when m − n > 2n − m:

Case 2c(i): 2n−m =m−n. This simplifies to 3n =2m. Because gcd(m, n)=1, this
will only occur for m = 3 and n = 2, and the resulting curve is a (1, 1) ∞ curve. In
other words here we observed that the (3, 2) curve has been reduced to a (1, 1) curve.

Case 2c(ii): 2n − m > m − n. This means that we are dealing with a curve under
Case 3, and we will see that all curves considered there are positive braid closures.

Case 2c(iii): 2n−m <m−n. Here, we remain under Case 2. So for m >n >m−n,
the (m, n) ∞ curve is isotopic to the (m −n, 2n −m) ∞ curve. This isotopy series
will be denoted by (m, n) ∼ (m − n, 2n − m). Equivalently, there is a series of
isotopies such that (m − n, 2n − m) ∼ (m, n). If (k, l) denotes a curve at one stage
of this isotopy, then (k, l) ∼ ((k + l) + k, k + l). So, starting with k = l = 1, we

m
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recursively obtain

(1, 1) ∼ (3, 2) ∼ (8, 5) ∼ (21, 13) ∼ (55, 34) ∼ · · · .

In a similar fashion, if we start with k = 2, l = 1, we obtain

(2, 1) ∼ (5, 3) ∼ (13, 8) ∼ (34, 21) ∼ (89, 55) ∼ · · · .

Notice every curve c above is of the form c = (Fi+1, Fi ), i ∈ Z>0, where Fi

denotes the i-th Fibonacci number. We will call these Fibonacci curves. We choose
(1, 1) and (2, 1) because they are known unknots. As a result, this relation generates
an infinite family of homologically distinct simple closed curves on 6K that are
unknotted in S3.

Case 3: Suppose a curve, c, is of the form in Figure 15(3), which is the closure of
the positive braid depicted in the bottom left of Figure 18. An argument similar
to that applied to Case 1 can be used to show c is never unknotted in S3.

Case 4: Suppose c is of the form as in the bottom right of Figure 19. Similar to
Case 2, there are three subcases to consider.

Case 4a: m = n − m. Then 2m = n. Because gcd(m, n) = 1, m = 1 and n = 2,
resulting in the unknot.

Case 4b: n − m > m. Then n − 2m > 0, and following the isotopies in Figure 22,
the curve can be changed into the closure of the positive braid depicted on the
bottom right of that figure.

Identical to Case 2b, the curve c in this case is never unknotted in S3.

Case 4c: m > n − m. Then 2m − n > 0, and we can split the m strands into two:
a set of n − m strands and a set of 2m − n strands.

∼=

n−m
m

n

n−m

2m − n

m

2m− n n−m

m

split along
dotted arc

Figure 23



UNKNOTTED CURVES ON GENUS-ONE SEIFERT SURFACES 143

This case can be further subdivided depending on the relationship between n −m
and 2m − n, but this braid will turn into a (2m − n, n − m) loop curve when
n − m > 2m − n:

Case 4c(i): 2m − n = n − m. This simplifies to 3m = 2n. Because gcd(m, n) = 1,
this will only occur for m =2 and n =3, and the resulting curve is a (1, 1) loop curve.

Case 4c(ii): n − m < 2m − n. This means that we are dealing with a curve under
Case 1, and we saw that all curves considered there are negative braid closures.

Case 4c(iii): n−m > 2m−n. Here, we remain under Case 4. So for n > m > n−m,
an (m, n) loop curve has the following isotopy series: (m, n) ∼ (2m − n, n − m).
If (k, l) denotes a curve at one stage of this isotopy, then the reverse also holds:
(k, l) ∼ (k + l, (k + l) + l). As a result, much like Case 2c, we can generate two
infinite families of unknotted curves in S3:

(1, 1) ∼ (2, 3) ∼ (5, 8) ∼ (13, 21) ∼ (34, 55) ∼ · · · ,

(1, 2) ∼ (3, 5) ∼ (8, 13) ∼ (21, 34) ∼ (55, 89) ∼ · · · .

Notice every curve c is of the form c = (Fi , Fi+1), i ∈ Z>0. Finally, we show
that this is the only way one can get unknotted curves. That is, we claim:

Lemma 3.5. If a homologically essential curve c on 6K for K = 41 is unknotted,
then it must be a Fibonacci curve.

Proof. From above, it is clear that if our curve c is Fibonacci, then it is unknotted.
So it suffices to show if a curve is not Fibonacci then it is not unknotted. We will
demonstrate this for loop curves under Case 4. Let c be a loop curve that is not
Fibonacci but is unknotted. Since it is unknotted, it fits into either Case 4a or 4c. But
the only unknotted curve from Case 4a is a (1, 1) curve which is a Fibonacci curve,
so c must be under Case 4c. By our isotopy relation, (m, n) ∼ (2m − n, n − m).
So, the curve can be reduced to a minimal form, say (a, b), where (a, b) ̸= (1, 1)

and (a, b) ̸= (2, 1). We will now analyze this reduced curve (a, b):

• If a = b, then (a, b) = (1, 1), a contradiction.

• If a > b, then (a, b) is under Case 1; none of those are unknotted.

• If b − a < a < b, then (a, b) is still under Case 4c, and not in reduced form,
a contradiction.

• If a < b − a < b, then (a, b) is under Case 4b; none of those are unknotted.

• If b − a = a < b, then (a, b) = (2, 1), a contradiction.

So, it has to be that either (a, b) ∼ (1, 1) or (a, b) ∼ (2, 1). Hence, it must be
that c = (Fi , Fi+1) for some i . The argument for the case where c is an ∞ curve
under Case 2 is identical. □
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We end this section with a remark which was observed by the authors at the
initial stages of the research and was also communicated to the authors by F. Misev.

Remark 3.6. An alternative and perhaps slightly easier way to see the existence
of Fibonacci numbers for unknotted curves for the figure-eight knot is as follows:
Recall that the figure-eight knot is fibered and its pseudo-Anosov monodromy
φ : 6 → 6, where 6 is the genus-one Seifert surface, induces a linear map on the
first homology H1(6) = Z ⊕ Z described by the matrix

( 2
1

1
1

)
. By applying this

matrix repeatedly to the unknotted curves (vectors) (0, 1) and (1, 0) one obtains
other unknotted curves that have Fibonacci numbers as their entries exactly as
predicted in Proposition 3.4.

We add that this approach cannot capture the full strength of the results about
the figure-eight knot: namely, showing that any unknotted curve as in Lemma 3.5
on the genus-one Seifert surface of the figure-eight knot must be a Fibonacci curve
or characterizing all homologically essential curves on the Seifert surface of the
figure-eight knot as in Proposition 3.3. Moreover our proof technique is by hand
and works uniformly for all other twist knots we study in this paper.

3C. Twist knot with t > 1: part one. In this section we consider twist knot K = Kt ,
t ≥ 2, and give the proof of Theorem 1.3.

Proposition 3.7. All essential, simple closed curves on 6K can be characterized as
the closure of one of the braids in Figure 24.

Proof. It suffices to show all possible curves for an arbitrary m and n such that
gcd(m, n) = 1 are the closures of braids in Figure 24. Here too there are four cases
to consider but we will analyze these in slightly different order than in the previous
two sections.
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Case 1: (m, n) ∞ curve with n > m > 0. In this case the curve is the closure of a
positive braid, and this is explained in Figure 25. More precisely, we start with the
curve which is drawn in the top left of the figure, and after a sequence of isotopies
this becomes the curve in the bottom right of the figure, which is obviously the
closure of the braid in the bottom left of the figure. In particular, when n > m ≥ 1,
none of these curves will be unknotted.

Case 2: (m, n) loop curve with n > m > 0. In this case too the curve is the closure
of a positive braid, and this is explained in Figure 26. In particular, when n > m > 1,
none of these curves will be unknotted.
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Figure 6(a)&(b)
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Figure 26



146 S. DEY, V. KING, C. T. SHAW, B. TOSUN AND B. TRACE

In the remaining two cases we will follow a slightly different way of identifying
our curves as braid closures. We will see (as is evident in parts (c) and (d) of
Figure 24) that the braids will not be positive or negative braids for general m, n and t
values. We will then verify how under the various hypothesis listed in Theorem 1.3
these braids can be reduced to positive or negative braids.

Case 3: (m, n) ∞ curve with m > n > 0. We explain in Figure 27 below how the
(m, n) ∞ curve with m > n > 0 is the closure of the braid in the bottom left of the
figure. This braid is not obviously a positive or negative braid.

Case 3a: (m, n) ∞ curve with m > n > 0 and m − tn > 0. We want to show
the braid in the bottom left of Figure 27 under the hypothesis that m − tn > 0
can be made a negative braid. We achieve this in Figure 28. More precisely, in
part (a) of the figure we see the braid that we are working on. We apply the move
in Figure 6(f) and some obvious simplifications to reach the braid in part (d). In
part (e) of the figure we reorganize the braid: more precisely, since m − tn > 0
and m − n = m − tn + (t − 1)n, we can split the piece of the braid in part (d) made
of m − n strands as the stack of m − tn strands and a set of t − 1 many n strands.
We then apply the move in Figure 6(f) repeatedly (t −1 times) to obtain the braid in
part (f). We note that the block labeled as “all negative crossings” is not important
for our purposes to draw explicitly but we emphasize that each time we apply the
move in Figure 6(f) it produces a full left-handed twist between a set of n strands
and the rest. Next, sliding −1 full twists one by one from n strands over the block of
these negative crossings we reach part (g). After further obvious simplifications and
organizations in parts (h)–(j) we reach the braid in part (k), which is a negative braid.

Case 3b: (m, n) ∞ curve with m > n > 0 and m − n < n. We want to show in this
case the braid in the bottom left of Figure 27 under the hypothesis that m − n < n
can be made a positive braid (regardless of t value). This is achieved in Figure 29.

t
m n

m− n

−1 t −1 t∼=

−1 t+ 1

m m

m

n n

n

m− n
m− n

m− n

−1
t+ 1

Figure 6(a)&(b)
push along
green arc

Figure 6(b)

Figure 27
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Figure 28

Case 4: (m, n) loop curve with m > n > 0. The arguments for this case are identical
to those in Cases 3 and 3a above. The (m, n) loop curve with m > n > 0 is the
closure of the braid that is drawn in the bottom left of Figure 30.

Case 4a: (m, n) loop curve with m > n > 0 and m − tn > 0. We show the braid,
which the (m, n) ∞ curve with m > n > 0 is the closure of, can be made a negative
braid under the hypothesis m − tn > 0. This follows steps very similar to those in
Case 3a, which is explained through a series drawings in Figure 31.

Case 4b: (m, n) loop curve with m > n > 0 and m −n < n. Finally, we consider the
(m, n) loop curve with m > n > 0 and m −n < n. Interestingly, this curve for t > 2
does not have to be the closure of a positive or negative braid. This will be further
explored in the next section but for now we observe, through Figure 31(a)–(c), that
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Figure 29

when t = 2 the curve is the closure of a negative braid: the braid in (a) in the figure
is the braid from Figure 24(d). After applying the move in Figure 6(f) and simple
isotopies, we obtain the braid in (c) which is clearly a negative braid when t = 2. □

Proof of Theorem 1.3. The proof of part (1) follows from Cases 1 and 2 above.
Parts (2)(a)/(b) follows from Cases 3a/b and Case 4a above. As for part (3), observe
that when n > m by using Cases 1 and 2 we obtain that all homologically essential
curves are the closures of positive braids. When m > n, we have either m − 2n > 0
or m − 2n < 0. In the former case we use Cases 3a and 4a to obtain that all
homologically essential curves are the closures of negative braids. In the latter
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case, first note that m − 2n < 0 is equivalent to m − n < n, Now by Case 3b
all homologically essential ∞ curves are the closures of positive braids, and by
Case 4b all homologically essential loop curves are the closures of negative braids.
Now by using Cromwell’s result and some straightforward genus calculations we
deduce that when m > n > 1 or n > m ≥ 1 there are no unknotted curves among

Figure 31
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the (positive/negative) braid closures obtained in Cases 1–4 above. Therefore, there
are exactly 5 unknotted curves among homologically essential curves on 6K for
K = Kt in Theorem 1.3. □

3D. Twist knot with t > 1: part two. In this section we consider the twist knots
K = Kt , t ≥ 3, and give the proof of Theorem 1.4.

Proof of Theorem 1.4. We show that the loop curve (3, 2) when t ≥ 3 is the pretzel
knot P(2t − 5, −3, 2). This is explained in Figure 32. The braid in (a) is from
Figure 24(d) with m = 3, n = 2, where we moved (t −2) full right-handed twists to
the top right end. We take the closure of the braid and cancel the left-handed half-
twist on the top left with one of the right-handed half-twists on the top right to reach
the knot in (c). In (c)–(g) we implement simple isotopies, and finally reach, in (h),
the pretzel knot P(2t − 5, −3, 2). This knot has genus t − 1 [Kim and Lee 2007,
Corollary 2.7], and so is never unknotted as long as t > 1. This pretzel knot is slice
exactly when 2t − 5 + (−3) = 0, that is, when t = 4. The pretzel knot P(3, −3, 3)

is also known as 820. An interesting observation is that although P(2t − 5, −3, 2)

for t > 2 is not a positive braid closure, it is a quasipositive braid closure. □

Proposition 3.8. The (m, n) loop curve with m − n = 1, n > 3 and t > 4 is never
slice.

Proof. By Rudolph [1993], we have that, for a braid closure β̂ when k+ ̸= k−,

g4(β̂) ≥
1
2(|k+ − k−| − n + 1),

where β is a braid in n strands, and k± is the number of positive and negative
crossings in β. For quasipositive knots, equality holds, in which case, the Seifert
genus is also the same as the four ball (slice) genus.

Now for the loop curve c = (m, n) as in Figure 31(c), we have that

k+ = (t − 2)n(n − 1) and k− = (m − n)(m − n − 1) + 3(m − n)n.

Hence, when m − n = 1, we get that k− = 3n. Notice also that for n ≥ 3, t ≥ 4,
we have k+ > k−. Thus, for n > 3, t > 4, m −n = 1, we obtain c = β̂ is never slice
because

g4(β̂ = c) ≥
1
2((t − 2)n(n − 1) − 3n − m + 1) = n((t − 2)(n − 1) − 4) > 0.

One can manually check that the (4, 3) loop curve when t = 3 is also not slice. □

Remark 3.9. The inequality in the proof above can also be thought as a generaliza-
tion to the Seifert genus calculation formula we used for positive/negative braid
closures, since for those braids when |k+ − k−| is the number of crossings, n, the
braid number, is exactly the number of Seifert circles. Thus Rudolph’s inequality
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can also be used in the previous cases to show that there are no slice knots in the
cases where we found that there are no unknotted curves.

4. Whitehead doubles

Proof of Theorem 1.6. Let f : S1
× D2

→ S3 denote a smooth embedding such that
f (S1

× {0}) = K . Set T = f (S1
× D2). Up to isotopy, the collection of essential,

simple closed, oriented curves in ∂T is parametrized by

{mµ + nλ | m, n ∈ Z and gcd(m, n) = 1},

where µ denotes a meridian in ∂T and λ denotes a standard longitude in ∂T coming
from a Seifert surface [Rolfsen 1990; Saveliev 1999]. With this parametrization,
the only curves that are null-homologous in T are ±µ and the only curves that are
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K

1-handle

A

Figure 33. Standard genus-one Seifert surface F for a double of K .

null-homologous in S3
\ int(T ) are ±λ. Of course ±µ will bound embedded disks

in T , but ±λ will not bound embedded disks in S3
\ int(T ) as K is a nontrivial knot.

In other words, the only compressing curves for ∂T in S3 are meridians.
Suppose now that C is a smooth, simple closed curve in the interior of T and

there is a smoothly embedded 2-disk, say 1, in S3 such that ∂1 = C . Since C
lies in the interior of T , we may assume that 1 meets ∂T transversely in a finite
number of circles. Initially observe that if 1 ∩ ∂T = ∅, then we can use 1 to
isotope C in the interior of T so that the result of this isotopy is a curve in the
interior of T that misses a meridional disk for T . Now suppose that 1 ∩ ∂T ̸= ∅.
We show, in this case too, C can be isotoped to a curve that misses a meridional
disk for T . To this end, let σ denote a simple closed curve in 1∩ ∂T such that σ

is innermost in 1. That is, σ bounds a subdisk, 1′ say, in 1, and the interior of 1′

misses ∂T . There are two cases, depending on whether or not σ is essential in ∂T .
If σ is essential in ∂T , then, as has already been noted, σ must be a meridian. As
such, 1′ will be a meridional disk in T , and C misses 1′. If σ is not essential
in ∂T , then σ bounds an embedded 2-disk, say D, in ∂T . It is possible that 1 meets
the interior of D, but we can still cut and paste 1 along a subdisk of D to reduce
the number of components in 1 ∩ ∂T . Repeating this process yields that if C is
smoothly embedded curve in the interior of T and C is unknotted in S3, then C can
be isotoped in the interior of T so as to miss a meridional disk for T . (see [Rolfsen
1990, Theorem 9] and [Jaco 1980, page 13] for a use of similar ideas).

With all this in place, we return to discuss the Whitehead double of K . Suppose
that F is a standard, genus-one Seifert surface for a double of K . See Figure 5. The
surface F can be viewed as an annulus A with a 1-handle attached to it. Here K is
a core circle for A, and the 1-handle is attached to A as depicted in Figure 33

Observe that F can be constructed so that it lives in the interior of T . Now, the
curve C that passes once over the 1-handle and zero times around A obviously
misses a meridional disk for T , and it obviously is unknotted in S3. On the other
hand, if C is any other essential simple closed curve in the interior of F , then C
must go around A some positive number of times. It is not difficult, upon orienting,
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to see that C can be isotoped so that the strands of C going around A are coherently
oriented. As such, C is homologous to some nonzero multiple of K in T . This, in
turn, implies that C cannot be isotoped in T so as to miss some meridional disk
for T . It follows that C cannot be an unknot in S3. □

5. Contractible 4-manifolds and final remarks

Proof of Corollaries 1.9 and 1.10. In light of Theorem 1.7, the natural task is to
determine the self-linking number s, with respect to the framing induced by the
Seifert surface, for the unknotted curves found in Theorems 1.2 and 1.6. For this
we use the Seifert matrix given by S =

(
−1

0
−1

t

)
where we use two obvious cycles —

both oriented counterclockwise — in 6K . Recall that if c = (m, n) is a loop curve,
then m and n strands are endowed with the same orientation and hence the same
signs. On the other hand, for an ∞ curve they will have opposite orientations and
hence opposite signs. Therefore, given t , the self-linking number of a c = (m, n)

loop curve is s = −m2
− mn + n2t , and the self-linking number of an (m, n) ∞

curve is s = −m2
+ mn + n2t . A quick calculation shows that the six unknotted

curves in Figure 2 for K−1 = T2,3 share self-linking numbers s = −1, −3. As we
explained during the proof of Theorem 1.2 the infinitely many unknotted curves
for the figure-eight knot K1 = 41 reduce (via isotopies) to unknotted curves with
s = −1 or s = 1. The five unknotted curves in Figure 4 for Kt , t < −1 or t > 1,
share self-linking numbers s = −1, t and t − 2 (see [Cochran and Davis 2015]).
Finally, Theorem 1.4 finds a slice but not unknotted curve, which is the curve (3, 2)

with t = 4. One can calculate from the formula above that this curve has self-
linking number s = 1. Finally, the unique unknotted curve from Theorem 1.6 has
self-linking number s = −1. The proofs follow as an obvious consequence of these
calculations and Theorem 1.7 and its generalization in [Etnyre and Tosun 2023]. □

Next, we verify through Figure 34 that how not every essential curve on the
genus-one Seifert surface of a twist knot must be the closure of a positive (or
negative) braid closure. For example, we will show that an (m, n) = (5, 2) ∞

curve on the Seifert surface of the twist knot K3 as a smooth knot is the twist
knot m(52), which is known not to be a positive braid closure (e.g., via the KnotInfo
database). To this end, we start with the braid as in Figure 34(a), which is the
braid in Figure 27 where we substitute m = 5, n = 2 and t = 3. We then apply
the move in Figure 6(f) to the full negative twist on 5 strands to obtain the braid
in Figure 34(b). After a cancellation between a (−1) twist and a (+4) twist and a
small isotopy we get the braid in Figure 34(c). We apply the move in Figure 6(f)
again, this time to the full negative twist on 3 strands from the bottom to obtain
the braid in Figure 34(d). A small simplification gives the braid in Figure 34(e).
Observe that the top strands can be eliminated — here it will be easier to think
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Figure 34. The knot m(52) is an essential curve on the genus-one
Seifert surface of the twist knot K3.

of the corresponding braid closure — to get the 3-braid in Figure 34(f). A further
simplification gives the braid in Figure 34(g). We can organize and simplify this
braid by canceling the encircled half-crossings. This gives the braid in Figure 34(h).
We claim that the closure of this braid is the knot m(52)-mirror of 52. One can see
this by taking the closure and applying simple plane isotopies. This method is quite
easy (and fun) but slightly lengthier. An alternative method is to observe that this
braid has braid description −1, −2, −2, −2, −1, 2, which we can reorder, via braid
isotopy, to be −2, −2, −2, −1, 2, −1. Now a quick inspection in the KnotInfo
database [Livingston and Moore 2024] shows that the knot 52 has braid description
1, 1, 1, 2, −1, 2. So the closure of the braid in Figure 34 is indeed m(52). The
KnotInfo database can also be used to verify the knot m(52) is not the closure of a
positive/negative braid.

Acknowledgments

We thank Audrick Pyronneau and Nicolas Fontova for helpful conversations. We
thank Filip Misev for useful comments on an early draft of this paper. We are also
grateful to the referee for their careful reading and many suggestions. Dey, King, and
Shaw were supported in part by an NSF grant (DMS-2105525). Tosun was supported
in part by grants from the NSF (CAREER DMS-2144363 and DMS-2105525) and
the Simons Foundation (636841, BT and 2023 Simons Fellowship). Part of this
work was carried out while Tosun was a member at the Institute for Advanced
Study, and he acknowledges support from the Charles Simonyi Endowment at the
Institute for Advanced Study.



UNKNOTTED CURVES ON GENUS-ONE SEIFERT SURFACES 155

References

[Casson and Gordon 1978] A. J. Casson and C. M. Gordon, “On slice knots in dimension three”, pp.
39–53 in Algebraic and geometric topology, II, edited by R. J. Milgram, Proc. Sympos. Pure Math.
32, Amer. Math. Soc., Providence, RI, 1978. MR Zbl

[Casson and Harer 1981] A. J. Casson and J. L. Harer, “Some homology lens spaces which bound
rational homology balls”, Pacific J. Math. 96:1 (1981), 23–36. MR Zbl

[Cochran and Davis 2015] T. D. Cochran and C. W. Davis, “Counterexamples to Kauffman’s conjec-
tures on slice knots”, Adv. Math. 274 (2015), 263–284. MR Zbl

[Cromwell 1989] P. R. Cromwell, “Homogeneous links”, J. London Math. Soc. (2) 39:3 (1989),
535–552. MR Zbl
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OF COMPLETE MINIMAL SURFACES IN Rn
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Dedicated to Professor Doan The Hieu

We prove that the generalized Gauss map of a nonflat complete minimal
surface immersed in Rn can omit a generic hypersurface D of degree at most
nn+2(n + 1)n+2.

1. Introduction

Let f = (x1, x2, . . . , xn) : M → Rn be an oriented surface immersed in Rn . Using
systems of isothermal coordinates (x, y), one can consider M as a Riemann surface.
We are interested in the class of minimal surfaces, namely, those which have minimal
areas for all small perturbations. It is a well-known fact that if M is minimal, then
its generalized Gauss map g : M → CPn−1, defined as

g(z) := [∂ f/∂z],

where z = x + iy is a holomorphic chart on M , is a holomorphic map.
In the particular case where n = 3, recalling that the classical Gauss map of M is

the map sending each point p ∈ M to the point in the unit sphere corresponding to
the unit normal vector of M at p. By identifying the unit sphere with the complex
projective line via the stereographic projection, one can view the classical Gauss
map as a map of M into CP1. Osserman [18] proved that if M is a nonflat complete
minimal surface immersed in R3, then the complement of the image of its Gauss
map is of logarithmic capacity zero in CP1. This interesting result could be regarded
as a significant improvement of the classical Bernstein’s theorem. Strengthening
this result, Xavier [22] proved that in this situation, the Gauss map of M can avoid
at most 6 points. Sharp result was obtained by Fujimoto [10], where he proved that
indeed, the Gauss map of M can avoid at most 4 points.

Passing to higher-dimensional case, first step was made by Fujimoto [9], where
the intersection between the generalized Gauss maps of a complete minimal surface
immersed in Rn and family of hyperplanes in CPn−1 was considered. Precisely,
Fujimoto established that:
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Theorem 1.1. If the generalized Gauss map of a nonflat complete minimal surface
in Rn is nondegenerate, it can omit at most q = n2 hyperplanes in CPn−1 in general
position.

Later, Fujimoto himself [11] decreased the number of hyperplanes in the above
statement to q =

1
2 n(n + 1) and it turns out that this number is sharp. Ru [19]

was able to remove the nondegenerate assumption of the generalized Gauss map
in Fujimoto’s result. Since then, by adapting tools and techniques from value
distribution theory of holomorphic curves to study generalized Gauss maps, many
generalizations of the above works of Fujimoto–Ru were made. Note that in these
results, it is required the presence of many hypersurfaces.

In this paper, based on recent progresses towards the hyperbolicity problem [1;
2; 4; 6; 7; 8; 13; 21], we consider the case when there is only one hypersurface of
high enough degree.

Theorem 1.2 (Main Theorem). Let M be a nonflat complete minimal surface
immersed in Rn and let G : M → CPn−1 be its generalized Gauss map. Then G
can avoid a generic hypersurface D ⊂ CPn−1 of degree at most

d = nn+2(n + 1)n+2.

2. Logarithmic jet differentials

Let X be a complex projective variety of dimension n. For a point x ∈ X , consider
the holomorphic germs (C, 0) → (X, x). Two such germs are said to be equivalent
if they have the same Taylor expansion up to order k in some local coordinates
around x . The equivalence class of an analytic germ f : (C, 0)→ (X, x) is called the
k-jet of f , denoted by jk( f ), which is independent of the choice of local coordinates.
A k-jet jk( f ) is said to be regular if d f (0) ̸= 0. For a given point x ∈ X , denote
by jk(X)x the vector space of all k-jets of analytic germs (C, 0) → (X, x), set

Jk(X) :=
⋃

x∈X
Jk(X)x ,

and consider the natural projection

πk : Jk(X) → X.

Then Jk(X) carries the structure of a holomorphic fiber bundle over X , which is
called the k-jet bundle over X . Note that in general, Jk(X) is not a vector bundle.
When k = 1, the 1-jet bundle J1(X) is canonically isomorphic to the tangent
bundle TX of X .

For an open subset U ⊂ X , for ω ∈ H 0(U, T ∗

X ), for a k-jet jk( f ) ∈ Jk(X)|U , the
pullback f ∗ω is of the form A(z) dz for some analytic function A, where z is the
global coordinate of C. Since each derivative A( j) (0 ≤ j ≤ k − 1) is well defined,
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independent of the representation of f in the class jk( f ), the analytic 1-form ω

induces the holomorphic map

(2-1) ω̃ : Jk(X)|U → Ck, jk( f ) →
(

A(z), A(z)(1), . . . , A(z)(k−1)
)
.

Hence on an open subset U , a given local holomorphic coframe ω1 ∧ · · · ∧ωn ̸= 0
yields a trivialization

H 0(U, Jk(X)) → U × (Ck)n

by providing the following new nk independent coordinates:

σ → (πk ◦ σ ; ω̃1 ◦ σ, . . . , ω̃n ◦ σ),

where ω̃i are defined as in (2-1). The components x ( j)
i (1 ≤ i ≤ n, 1 ≤ j ≤ k) of

ω̃i ◦σ are called the jet-coordinates. In a more general setting, where ω is a section
over U of the sheaf of meromorphic 1-forms, the induced map ω̃ is meromorphic.

Now, suppose that D ⊂ X is a normal crossing divisor on X . This means that
at each point x ∈ X , there exist some local coordinates z1, . . . , zℓ, zℓ+1, . . . , zn

(ℓ = ℓ(x)) centered at x in which D is defined by

D = {z1 · · · zℓ = 0}.

Following Iitaka [14], the logarithmic cotangent bundle of X along D, denoted by
T ∗

X (log D), corresponds to the locally free sheaf generated by

dz1

z1
, . . . ,

dzℓ

zℓ

, zℓ+1, . . . , zn

in the above local coordinates around x .
A holomorphic section s ∈ H 0(U, Jk(X)) over an open subset U ⊂ X is said to be

a logarithmic k-jet field if ω̃◦ s are analytic for all sections ω ∈ H 0(U ′, T ∗

X (log D)),
for all open subsets U ′

⊂ U , where ω̃ are induced maps defined as in (2-1). Such
logarithmic k-jet fields define a subsheaf of Jk(X), and this subsheaf is itself a
sheaf of sections of a holomorphic fiber bundle over X , called the logarithmic k-jet
bundle over X along D, denoted by Jk(X, − log D) (see [16]).

The group C∗ admits a natural fiberwise action defined as follows. For local
coordinates

z1, . . . , zℓ, zℓ+1, . . . , zn (ℓ = ℓ(x))

centered at x in which D = {z1 . . . zℓ = 0}, for any logarithmic k-jet field along D
represented by some germ f = ( f1, . . . , fn), if ϕλ(z) = λz is the homothety with
ratio λ ∈ C∗, the action is given by{

(log( fi ◦ ϕλ))
( j)

= λ j (log fi )
( j)

◦ ϕλ (1 ≤ i ≤ ℓ),

( fi ◦ ϕλ)
( j)

= λ j f ( j)
i ◦ ϕλ (ℓ + 1 ≤ i ≤ n).
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A logarithmic jet differential of order k and degree m at a point x ∈ X is
a polynomial Q( f (1), . . . , f (k)) on the fiber over x of Jk(X, − log D) enjoying
weighted homogeneity:

Q( jk( f ◦ ϕλ)) = λm Q( jk( f )) (λ ∈ C∗).

Consider the symbols

d j log zi (1 ≤ j ≤ k, 1 ≤ i ≤ ℓ) and d j zi (1 ≤ j ≤ k, ℓ + 1 ≤ i ≤ n).

Set the weight of d j log zi or d j zi to be j . Then a logarithmic jet differential of
order k and weight k along D at x is a weighted homogeneous polynomial of
degree m whose variables are these symbols. Denote by EGG

k,m T ∗

X (log D)x be the
vector space spanned by such polynomials and set

EGG
k,m T ∗

X (log D) :=
⋃

x∈X
EGG

k,m T ∗

X (log D)x .

By Faà di Bruno’s formula [3; 15], one can check that EGG
k,m T ∗

X (log D) carries the
structure of a vector bundle over X , called logarithmic Green–Griffiths vector bun-
dle [12]. A global section of EGG

k,m T ∗

X (log D) is called a logarithmic jet differential
of order k and weight m along D. Locally, a logarithmic jet differential form can
be written as

(2-2)
∑

α1,...,αk∈Nn

|α1|+2|α2|+···+k|αk |=m

Aα1,...,αk

( ℓ∏
i=1

(d log zi )
α1,i

n∏
i=ℓ+1

(dzi )
α1,i

)
. . .

( ℓ∏
i=1

(dk log zi )
αk,i

n∏
i=ℓ+1

(dkzi )
αk,i

)
,

where
αλ = (αλ,1, . . . , αλ,n) ∈ Nn (1 ≤ λ ≤ k)

are multiindices of length
|αλ| =

∑
1≤i≤n

αλ,i ,

and where Aα1,...,αk are locally defined holomorphic functions.
Assigning the weight s for (dszi )/zi , then one can rewritten d j log zi as an

isobaric polynomial of weight j of variables (dszi )/zi (1 ≤ s ≤ j) with integer
coefficients, namely

d j log zi =

∑
β=(β1,...,β j )∈N j

β1+2β2+···+ jβ j = j

b jβ

(
dzi

zi

)β1

. . .

(
d j zi

zi

)β j

,

where b jβ ∈ Z. Conversely, one can also express (d j zi )/zi as an isobaric polynomial
of weight j of variables ds log zi (1 ≤ s ≤ j) with integer coefficients [2]. Thus
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one can also use the following trivialization of logarithmic jet differentials:

(2-3)
∑

β1,...,βk∈Nn

|β1|+2|β2|+···+k|βk |=m

Bβ1,...,βk

( ℓ∏
i=1

(
dzi

zi

)β1,i n∏
i=ℓ+1

(dzi )
β1,i

)

. . .

( ℓ∏
i=1

(
dkzi

zi

)βk,i n∏
i=ℓ+1

(dkzi )
βk,i

)
,

where
βλ = (βλ,1, . . . , βλ,n) ∈ Nn (1 ≤ λ ≤ k)

are multiindices of length
|βλ| =

∑
1≤i≤n

βλ,i ,

and where Bβ1,...,βk are locally defined holomorphic functions.
Demailly [5] refined the Green–Griffiths’ theory and considered the subbundle

Ek,m T ∗

X (log D) of EGG
k,m T ∗

X (log D), whose sections are logarithmic jet differentials
that are invariant under arbitrary reparametrization of the source C. Let

(X, D, V )

be a log-direct manifold, i.e., a triple consisting of a projective manifold X , a
simple normal crossing divisor D on X and a holomorphic subbundle V of the
logarithmic tangent bundle TX (− log D). Starting with a log-direct manifold
(X0, D0, V0) := (X, D, TX (− log D)), one then defines X1 := P(V0) together with
the natural projection π1 : X1 → X0. Setting D1 := π∗

1 D0, so that π1 becomes a
log-morphism, and defines the subbundle V1 ⊂ TX1(− log D1) as

V1,(x,[v]) :=
{
ξ ∈ TX1,(x,[v])(− log D1) : π∗ξ ∈ C · v

}
,

one obtains the log-direct manifold (X1, D1, V1) from the initial one. Any germ of
a holomorphic map f : (C, 0) → (X \ D, x) can be lifted to f [1]

: C → X1 \ D1.
Inductively, one can construct on X = X0 the Demailly–Semple tower:

(Xk, Dk, Vk) → · · · → (X1, D1, V1) → (X0, D0, V0),

together with the projections πk : Xk → X0. Denote by OXk (1) the tautological line
bundle on Xk . Then the direct image (πk)∗OXk (m) of OXk (m)=OXk (1)⊗m , denoted
by Ek,m T ∗

X (log D), is a locally free subsheaf of EGG
k,m T ∗

X (log D) generated by all
polynomial operators in the derivatives up to order k, which are furthermore invariant
under any change of parametrization (C, 0) → (C, 0). From the construction, one
can immediately check that:

Theorem 2.1 (direct image formula). For any ample line bundle A on X , one has

(2-4) H 0(X, Ek,m T ∗

X (log D) ⊗A−1) ∼= H 0(Xk,OXk (m) ⊗ π∗

k A
−1).
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The bundles EGG
k,m T ∗

X (log D), Ek,m T ∗

X (log D) are fundamental tools in studying
the degeneracy of holomorphic curves into C \ D. By the fundamental vanishing
theorem of entire curves [5; 21], for any ample line bundle A on X , a nontrivial
global section of EGG

k,m T ∗

X (log D)⊗A−1 gives a corresponding algebraic differential
equation that all entire holomorphic function f : C → X \ D must satisfy. The
existence of these sections was proved recently [6; 15], provided that the order of
jet is high enough. However, despite many efforts, the problem of controlling the
base locus of these bundles can be only handled under the condition that the degree
of D must be very large compared with the dimension of the variety [1; 2; 7; 8; 21].

Now we consider the case where D is a generic hypersurface of degree d in CPn .
To guarantee the existence of logarithmic jet differentials along D, we consider the
order jet k = n + 1 and put

k ′
=

1
2 k(k + 1), δ = (k + 1) n + k.

Fixing two positive integers ϵ > 0 and r > δk−1 k(ϵ + kδ). For a smooth hyper-
surface D, denote by Yk(D) the log-Demailly–Semple k-jet tower associated to
(CPn, D, TCPn (− log D)). For a line bundle L on OYk(D), denote by Bs(OYk(D)L)

the base locus of the line bundle L . We will employ the following key result in [2].

Proposition 2.2 [2, Corollary 4.5]. There exist β, β̃ ∈ N such that for any α ≥ 0
and for any generic hypersurface D ∈ |Oϵ+(r+k) δ

CPn(1) |, one has

Bs
(
OYk(D)(β + αδk−1 k ′) ⊗ π∗

0,k O
β̃+α(δk−1 k(ϵ+kδ)−r)

CPn(1)

)
⊂ Yk(D)sing

∪ π−1
0,k (D).

Using this result, Brotbek–Deng confirmed the logarithmic Kobayashi conjecture
in the case where the degree of D is large enough. We extract from their proof that:

Theorem 2.3. Let D ⊂ Pn(C) be a generic smooth hypersurface in Pn(C) having
large enough degree

d ≥ (n + 1)n+3(n + 2)n+3.

Let f : 1 → CPn be a nonconstant holomorphic disk. If f (1) ̸⊂ D, then for
jet order k = n + 1, there exist some weighted degree m, vanishing order m̃ with
m̃ > 2m and some global logarithmic jet differential

P ∈ H 0(CPn, EGG
k,m T ∗

CPn (log D) ⊗OCPn (1)−m̃)
such that

(2-5) P( jk( f )) ̸≡ 0.

Proof. We follow the arguments in [2, Corollary 4.9], with a slightly modification
to get higher vanishing order. First, putting

r0 = 2δk−1 k ′
+ δk−1(δ + 1)2

= δk−1(δ + 1)(δ + 2).
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Since
k(k + δ − 1 + kδ) < (δ + 1)2,

any integer number d ≥ (r0 + k) δ + 2δ can be written as

d = ϵ + (r + k) δ,

where k ≤ ϵ ≤ k + δ − 1 and r > 2δk−1 k ′
+ δk−1 k(ϵ + kδ). For such d, since

lim
α→∞

β + αδk−1 k ′

−β̃ − α(δk−1 k(ϵ + kδ) − r)
=

αδk−1 k ′

r − δk−1 k(ϵ + kδ)
< 1

2 ,

using Proposition 2.2, for α ≫ 1 large enough, there exists some global logarithmic
jet differential

P ∈ H 0(CPn, EGG
k,m T ∗

CPn (log D) ⊗OCPn (1)−m̃)
satisfying (2-5) with m = β + αδk−1 k ′, m̃ = −β̃ − α(δk−1 k(ϵ + kδ) − r) and
m̃ > 2m. Hence it remains to giving a lower bound for (r0 + k) δ + 2δ. This could
be done by a straightforward computation:

(r0 + k) δ + 2δ =
(
δk−1(δ + 1)(δ + 2) + k + 2

)
δ < (n + 1)n+3(n + 2)n+3. □

3. Value distribution theory for holomorphic maps from unit disc into
projective spaces

Let E =
∑

i αi ai be a divisor on the unit disc 1 where αi ≥ 0, ai ∈ 1 and let
k ∈ N ∪{∞}. For each 0 < t < 1, denote by 1t the disk {z ∈ C, |z| < t}. Summing
the k-truncated degrees of the divisor on disks by

n[k](t, E) :=

∑
ai ∈1t

min{k, αi } (0 < t < 1),

the truncated counting function at level k of E is then defined by taking the loga-
rithmic average

N [k](r, E) :=

∫ r

0

n[k](t, E)

t
dt (0 < r < 1).

When k = ∞, we write n(t, E), N (r, E) instead of n[∞](t, E), N [∞](r, E). Let
f : 1 → CPn be an entire curve having a reduced representation f = [ f0 : · · · : fn]

in the homogeneous coordinates [z0 : · · · : zn] of CPn . Let D = {Q = 0} be a divisor
in CPn defined by a homogeneous polynomial Q ∈ C[z0, . . . , zn] of degree d ≥ 1.
If f (1) ̸⊂ D, we define the truncated counting function of f with respect to D as

N [k]

f (r, D) := N [k](r, (Q ◦ f )0),

where (Q ◦ f )0 denotes the zero divisor of Q ◦ f .
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The proximity function of f for the divisor D is defined as

m f (r, D) :=

∫ 2π

0
log

∥ f (reiθ )∥d
∥Q∥

|Q( f )(reiθ )|

dθ

2π
,

where ∥Q∥ is the maximum absolute value of the coefficients of Q and

∥ f (z)∥ = max{| f0(z)|, . . . , | fn(z)|}.

Since |Q( f )| ≤ ∥Q∥ · ∥ f ∥
d , one has m f (r, D) ≥ 0.

Lastly, the Cartan order function of f is defined by

T f (r) :=
1

2π

∫ 2π

0
log∥ f (reiθ )∥ dθ.

With the above notations, the Nevanlinna theory consists of two fundamental
theorems (for comprehensive presentations, see [17; 20]).

Theorem 3.1 (First Main Theorem). Let f : 1 → Pn(C) be a holomorphic curve
and let D be a hypersurface of degree d in CPn such that f (1) ̸⊂ D. Then for
every r > 1, the following holds:

m f (r, D) + N f (r, D) = d T f (r) + O(1),

whence

(3-1) N f (r, D) ≤ d T f (r) + O(1).

On the other side, in the harder part, so-called Second Main Theorem, one tries
to bound the order function from above by some sum of certain counting functions.
Such types of results were given in several situations, and most of them were relied
on the following key estimate.

Theorem 3.2 (logarithmic derivative lemma). Let g be a nonconstant meromorphic
function on the unit disc and let k ≥ 1 be a positive integer number. Then for any
0 < r < 1, the following estimate holds:

mg(k)/g(r) := mg(k)/g(r, ∞) = O
(

log 1
1−r

)
+ O(log Tg(r)) ∥,

where the notation ∥ means that the above estimate holds true for all 0 < r < 1
outside a subset E ⊂ (0, 1) with ∫

E

dr
1 − r

< ∞.
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4. An application of the logarithmic derivative lemma

It is a well-known fact that the growth of the order function of an entire holomorphic
curve could be used to determine its rationality. Replacing the source of the curve
by the unit disc 1, one has:

Definition 4.1. A holomorphic map f : 1 → CPn is said to be transcendental if

lim sup
r→1

T f (r)

log 1
1−r

= ∞.

Theorem 4.2. Let f : 1 → CPn be a holomorphic map and D ⊂ CPn be a generic
hypersurface having large enough degree:

d ≥ (n + 1)n+3(n + 2)n+3.

If f avoids D, then it is not transcendental.

Proof. Employing the logarithmic jet differentials supplied by Theorem 2.3, fol-
lowing the arguments as in [13] and using the logarithmic derivative lemma for
meromorphic functions on unit disc, one gets

T f (r)≤ N [1]

f (r, D)+O
(

log 1
1−r

)
+O(log T f (r))= O

(
1

1−r

)
+O(log T f (r)) ∥,

whence concludes the proof. □

We will also need the following results due to Fujimoto [9].

Proposition 4.3 [9, Proposition 2.5]. Let ϕ be a nowhere zero holomorphic function
on 1 which is not transcendental. Then, for each positive integer number λ, the
following estimate holds:∫ 2π

0

∣∣∣∣ dλ−1

dzλ−1

(
ϕ′

ϕ

)
(reiθ )

∣∣∣∣ dθ ≤
Const.
(1 − r)λ

log
1

1 − r
(0 < r < 1).

Corollary 4.4 [9, Lemma 3.4]. Let ϕ1, . . . , ϕn be nowhere zero holomorphic func-
tions on 1 which are not transcendental. Then, for any n-tuple of positive integer
numbers (λ1, . . . , λn) and for any positive real number t with tn < 1, the following
estimate holds:∫ 2π

0

∣∣∣∣ n∏
j=1

(
ϕ′

j

ϕ j

)(λ j −1)

(reiθ )

∣∣∣∣t

dθ ≤
Const.
(1 − r)s

(
log

1
1 − r

)s

(0 < r < 1),

where s = t
(∑n

j=1 λ j
)
.
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5. Proof of the Main result

Proposition 5.1. Let D ⊂ CPn be a generic smooth hypersurface of degree d and
let f : 1 → CPn

\ D be a nondegenerate holomorphic curve. Suppose that there
exists a global logarithmic jet differential

P ∈ H 0(Pn(C), EGG
n,m T ∗

CPn (log D) ⊗OCPn (1)−m̃)
such that

(5-1) P( jn( f )) ̸≡ 0.

Then, there exists a positive constant K such that∫ 2π

0

∣∣P( jn( f ))(reiθ )
∣∣2/m̃

∥ f (reiθ )∥2 dθ ≤
K

(1 − r)2m/m̃

(
log

1
1 − r

)2m/m̃

for (0 < r < 1).

Proof. Let s be the canonical section of the ample line bundle E := OCPn (1). Since
P vanishes on E with vanishing order m̃, in any local chat Uα of CPn , one can
represent Psm̃ as an isobaric polynomial Pα

s of weight m of variables

dλ uα
j,λ

uα
j,λ

(1 ≤ λ ≤ k, 1 ≤ j ≤ n),

with local holomorphic coefficients, where u j,λ are rational functions on CPn .
Consequently, we get that

|P( jk( f ))| · ∥ f ∥
m̃

≤

∑
α

∣∣∣∣Pα
s

(dλ(uα
j,λ ◦ f )

uα
j,λ ◦ f

)∣∣∣∣.
Since 0 < 2

m̃ < 1, using the elementary inequality

(x1 + · · · + xr )
2/m̃ < x2/m̃

1 + · · · + x2/m̃
r (xi > 0),

the above estimate yields

∣∣P( jn( f ))(reiθ )
∣∣2/m̃

∥ f (reiθ )∥2 <
∑
α

∣∣∣∣Pα
s

(dλ(uα
j,λ ◦ f )

uα
j,λ ◦ f

)∣∣∣∣2/m̃

.

Hence it suffices to prove∫ 2π

0

∣∣∣∣P 2/m̃
s

(dλ(uα
j,λ ◦ f )

uα
j,λ ◦ f

)∣∣∣∣2m/m̃

dθ ≤
Const.

(1 − r)2m/m̃

(
log

1
1 − r

)2m/m̃

(0 < r < 1).

By assumption, f avoids D, hence it is not transcendental by Theorem 4.2. Since
each function uα

j,λ is rational, it follows that uα
j,λ ◦ f is also not transcendental.
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Now, observing that each term
dλ(uα

j,λ ◦ f )

uα
j,λ ◦ f

can be represented as a polynomial Pα
j,λ of variables

(uα
j,λ ◦ f )′

uα
j,λ ◦ f

, . . . ,

(
(uα

j,λ ◦ f )′

uα
j,λ ◦ f

)λ−1

,

which is isobaric of weight λ, using Corollary 4.4, one gets the desired result. □

We will also need the following result of Yau [23] in the sequence.

Theorem 5.2 [23]. Let M be a complete Riemann manifold equipped with a volume
form dσ . Let h be a nonnegative and nonconstant smooth function on M such that
1 log h = 0 almost everywhere. Then

∫
M h p dσ = ∞ for any p > 0.

Now we enter the details of the proof of the Main Theorem. Let f be the
conjugate of G, which is a holomorphic map. It suffices to prove that f is constant.
Suppose on the contrary that this is not the case. Let π : M̃ → M be the universal
covering of M . Then M̃ is also considered as a minimal surface in Rn . Hence
without lost of generality, we may assume M = M̃ . Since there is no compact
minimal surface in Rn , it follows that M is biholomorphic to either C or 1. Thus
we may assume M = C or M = 1. The first case was excluded by recent work
towards Kobayashi’s conjecture (see [2]). Hence it suffices to work in the case
where M = 1. The area form of the metric on M induced from the flat metric
on Rn is given by

dσ = 2∥ f ∥
2 du ∧ dv.

Let P be a global logarithmic jet differential supplied by Theorem 2.3. Then it
is clear that h = |P( jk( f )| ̸≡ 0 and 1 log h = 0 for any z out side the zero set
of h. Since 1 is complete, simply connected and of nonpositive curvature, it has
the infinite area with respect to the metric induced from Rn . Using Theorem 5.2,
one obtains that

(5-2)
∫

1

h2/m̃ dσ = ∞.

On the other hand, using Proposition 5.1, one has∫
1

h2/m̃ dσ = 2
∫

1

h2/m̃
∥ f ∥

2 du dv

= 2
∫ 1

0
r dr

(∫ 2π

0
h(reiθ )2/m̃

∥ f (reiθ )∥2 dθ

)
≤ K

∫ 1

0

r
(1 − r)2m/m̃

(
log

1
1 − r

)2m/m̃

dr.
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The last integral in the above estimate is finite since 2m < m̃. This contradicts (5-2).
Therefore, the map f must be constant, whence concludes the proof of the Main
Theorem.

6. Some discussions

Theorem 1.1 can be recovered via the above jet method. Indeed, according to
Siu [21], the Wronskian can be employed to build a suitable logarithmic jet dif-
ferentials. Precisely, let us consider the inhomogeneous coordinates x1, x2, . . . , xn

of CPn . Let {Hi }1≤i≤q be the family of hyperplanes in general position in CPn .
For each 1 ≤ i ≤ q, denote by Fi the linear form of variables x1, . . . , xn defining
the hyperplane Hi . Put

ω =
Wron(dx1, . . . , dxn)

F1 . . . Fq
,

where Wron denotes the Wronskian. The point is that by the assumption of general
position, at any point x = (x1, . . . , xn), there exists a set I = {i1, . . . , in} having
cardinality n such that F j are nowhere zero in a neighborhood U of x for all j ̸∈ I .
Locally on U , one can write ω as

ω = Const.
Wron(d log Fi1(x), . . . , d log Fin (x))∏

j ̸∈I F j (x)
,

and hence, ω gives rise to a logarithmic jet differentials along the divisor
∑q

i=1 Hi .
The denominator F1 . . . Fq in ω gives the vanishing order q at the infinity hyperplane,
hence direct computation yields immediately that ω is of weight m =

1
2 n(n + 1)

and vanishes on the infinity hyperplane with the vanishing order m̃ = q − (n + 1).
Finally, in view of the result of Fujimoto–Ru, one can expect that the optimal

degree bound in the statement of our Main Theorem should be 1
2 n(n + 1).

Conjecture 6.1. Let M be a nonflat complete minimal surface in Rn and let
G : M → CPn−1 be its generalized Gauss map. Then G could avoid a generic
hypersurface D ⊂ CPn−1 of degree at most

d =
1
2 n(n + 1).
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EXPLICIT BOUNDS ON TORSION OF CM ABELIAN
VARIETIES OVER p-ADIC FIELDS WITH VALUES

IN LUBIN–TATE EXTENSIONS

YOSHIYASU OZEKI

Let K and k be p-adic fields. Let L be the composite field of K and a certain
Lubin–Tate extension over k (including the case where L = K (µ p∞)). We
show that there exists an explicitly described constant C, depending only
on K , k and an integer g ≥ 1, which satisfies the following property: if A/K is
a g-dimensional CM abelian variety, then the order of the p-primary torsion
subgroup of A(L) is bounded by C . We also give a similar bound in the case
where L = K (

p∞√
K ). Applying our results, we study bounds of orders of

torsion subgroups of some CM abelian varieties over number fields with
values in full cyclotomic fields.

1. Introduction

Let p be a prime number and K a p-adic field (that is, a finite extension of Qp). It
is a theorem of Mattuck [1955] that, for a g-dimensional abelian variety A over K
and a finite extension L/K , the Mordell–Weil group A(L) is isomorphic to the
direct sum of Z⊕g·[L:Qp]

p and a finite group. We study some properties of the torsion
subgroup A(L)tor of A(L). Clark and Xarles [2008] gave an explicit upper bound
of the order of A(L)tor of A(L) in terms of p, g and some numerical invariants of L
if A has anisotropic reduction (here, we say that A has anisotropic reduction if its
Néron special fiber does not contain a copy of Gm). This includes the case where A
has potential good reduction. We consider the case where L/K is of infinite degree.
There are some situations in which the torsion part A(L)tor is finite. Suppose that A
has potential good reduction. It is a theorem of Imai [1975] that A(K (µp∞))tor is
finite. Here, K (µp∞) is the extension field of K obtained by adjoining all p-power
roots of unity. Moreover, Kubo and Taguchi [2013] showed that A(K ( p∞√

K ))tor

is also finite, where K ( p∞√
K ) is the extension field of K obtained by adjoining

all p-power roots of all elements of K . The author showed in [Ozeki 2024] that
there exists a “uniform” bound of the order of A(K ( p∞√

K ))tor under the assumption
that A has complex multiplication. (Here we say that A has complex multiplication
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Keywords: abelian varieties, Lubin–Tate extensions.
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if there exists a ring homomorphism F → Q ⊗Z EndK (A) for some algebraic
number field F of degree 2g.)

The main purpose of this paper is to give explicit upper bounds of the orders
of A(K (µp∞))tor and A(K ( p∞√

K ))tor for abelian varieties A/K with complex
multiplication. For this, we should note that to give an upper bound of the order of
the prime-to-p part of A(K (µp∞))tor is not so difficult. In fact, the reduction map
gives an injection from the prime-to-p part of the group which we want to study into
certain rational points of the reduction A of A (if A has good reduction), and the
order of the target is bounded by the Weil bound. Hence the essential obstruction for
our purpose appears in a study of the p-part A(K (µp∞))[p∞

] of A(K (µp∞))tor.
Let us state our main results. For a p-adic field k and a uniformizer π of k,

we denote by kπ/k the Lubin–Tate extension associated with π (that is, kπ is
the extension field of k obtained by adjoining all π-power torsion points of the
Lubin–Tate formal group associated with π ; see [Yoshida 2008] for more details).
For example, we have kπ = Qp(µp∞) if k = Qp and π = p. We set dL := [L : Qp]

for any p-adic field L . For any integer n > 0, we set

8(n) := Max{m ∈ Z>0 | ϕ(m) divides 2n},

H(n) := gcd{#GSp2n(Z/NZ) | N ≥ 3}.

Here, ϕ is Euler’s totient function. There are some upper bounds related with H(n)
and 8(n) (see Section 5). It is a theorem of Silverberg [1992, Corollary 3.3] that
we have H(n) < 2(9n)2n for any n > 0. It follows from elementary arguments that
we have 8(n) < 6n 3

√
n for n > 1. Furthermore, a lower bound (5-3) of ϕ proved

by Rosser and Schoenfeld [1962] gives 8(n) < 4n log log n for n > 339
.

Theorem 1.1 (a special case of Theorem 3.1). Let g > 0 be a positive integer. Let k
be a p-adic field with residue cardinality qk and π a uniformizer of k. Assume the
following conditions:

(i) q−1
k Nrk/Qp(π) is a root of unity;1 and

(ii) dk is prime to (2g)! .

Denote by 0<µ< p the minimum integer such that (q−1
k Nrk/Qp(π))

µ
= 1. For any

g-dimensional abelian variety A over a p-adic field K with complex multiplication,

A(K kπ )[p∞
] ⊂ A[pC

],

where
C := 2g2

· (2g)! ·8(g)H(g) ·µ · dK k + 12g2
− 18g + 10.

In particular,
#A(K kπ )[p∞

] ≤ p2gC .

1This condition is equivalent to saying that some finite extension of kπ contains Qp(µp∞) (see
[Ozeki 2020, Lemma 2.7(2)]).
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As an immediate consequence of the theorem above, we obtain a result for
cyclotomic extensions; see Corollary 3.7. Furthermore, the method of our proof of
Theorem 1.1 can be applied to the field K ( p∞√

K ) discussed in Kubo and Taguchi,
which gives a refinement of the main theorem of [Ozeki 2024].

Theorem 1.2. Let g > 0 be a positive integer. For any g-dimensional abelian
variety A over a p-adic field K with complex multiplication, we have

A(K ( p∞√
K ))[p∞

] ⊂ A[pC
],

where

C := 2g2
· (2g)! · p1+vp(2) · (8(g)H(g))2 · pvp(dK )dK + 12g2

− 18g + 10.

(Here, vp is the p-adic valuation normalized by vp(p)= 1.) In particular,

#A(K ( p∞√
K ))[p∞

] ≤ p2gC .

We can consider some further topics. For example, we do not know what will
happen if we remove the CM assumption from the above theorems. Our proofs
in this paper deeply depend on the theory of locally algebraic representations,
which can be adapted only for abelian representations. This is the main reason
why we cannot remove the CM assumption from our arguments. To overcome
this obstruction, it seems to be helpful for us to study the case of (not necessarily
CM) elliptic curves. We will study this case in future work. We are also interested
in giving the list of the groups that appear as A(K kπ )[p∞

] or A(K ( p∞√
K ))[p∞

].
However, this should be quite difficult; the author does not know such classification
results even for A(K )[p∞

].
Combining the cyclotomic case of Theorem 1.1 and Ribet’s arguments given in

[Katz and Lang 1981], we can obtain a result on a bound of the order of the torsion
subgroup of some CM abelian variety defined over a number field with values in
full cyclotomic fields. (Here, a number field is a finite extension of Q.)

Theorem 1.3. Let g > 0 be an integer. Let K be a number field of degree d , and
denote by h the narrow class number of K . Let K (µ∞) be the field obtained by
adjoining to K all roots of unity. Let A be a g-dimensional abelian variety over K
with complex multiplication which has good reduction everywhere. Then

A(K (µ∞))tor ⊂ A[N ],

where

N :=

(∏
p

p
)2g2

·(2g)!·8(g)H(g)·dh+12g2
−18g+10

.

Here, p ranges over the prime numbers such that either p ≤ (1 +
√

2
dh
)2g or p is

ramified in K .
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We should note that Chou [2019] gave the complete list of the groups that
appear as A(Q(µ∞))tor as A ranges over all elliptic curves defined over Q. For CM
elliptic curves A over a number field K , more precise observations for the order
of A(K (µ∞))tor than ours are studied in [Chou et al. 2021].

Notation. For any perfect field F , we denote by G F the absolute Galois group
of F . In this paper, a p-adic field is a finite extension of Qp. If F is an algebraic
extension of Qp, we denote by OF the ring of integers of F . We also denote by Fab

the maximal abelian extension of F (in a fixed algebraic closure of F). We put
dF = [F : Qp] if F is a p-adic field. For a finite extension F ′/F , we denote by
eF ′/F and fF ′/F the ramification index of F ′/F and the extension degree of the
residue field extension of F ′/F , respectively. We set eF := eF/Qp and fF := fF/Qp ,
and also set qF := p fF . Finally, we denote by 0F the set of Qp-algebra embeddings
of F into a (fixed) algebraic closure Qp of Qp.

2. Evaluations of some p-adic valuations for characters

Fix an algebraic closure Qp of Qp. Throughout this section, we assume that all
p-adic fields are subfields of Qp. Denote by vp the p-adic valuation normalized by
vp(p)= 1. For any continuous character ψ of G K , we often regard ψ as a character
of Gal(K ab/K ). Denote by ArtK the local Artin map K ×

→ Gal(K ab/K ). We set
ψK :=ψ ◦ArtK . Denote by K̂ × the profinite completion of K ×. Note that the local
Artin map induces a topological isomorphism ArtK : K̂ × ∼

−→ Gal(K ab/K ). For a
uniformizer πK of K , denote by χπK :G K →O×

K the Lubin–Tate character associated
with πK (see [Serre 1989, Chapter III, A4]). By definition, the character χπK is
characterized by χπK ,K (πK )= 1 and χπK ,K (x)= x−1 for any x ∈ O×

K . Let π be a
uniformizer of k and denote by kπ the Lubin–Tate extension of k associated with π .
The field corresponding to the kernel of the Lubin–Tate character χπ : Gk → O×

k
is kπ , and kπ is a totally ramified abelian extension of k.

Proposition 2.1. Let ψ1, . . . , ψn : G K → Q×
p be continuous characters. Then

Min
{ n∑

i=1

vp(ψi (σ )− 1)
∣∣∣ σ ∈ G K kπ

}

≤ Min
{ n∑

i=1

vp(ψi,K k(ω)− 1)
∣∣∣ ω ∈ Nr−1

K k/k(π
fK k/k Z)

}
.

Proof. This is [Ozeki 2024, Proposition 2.1] but we include a proof here for
completeness. Let M be the maximal unramified extension of k contained in K k.
The group Art−1

k (Gal(kab/M)) contains Art−1
k (Gal(kab/kur))= O×

k . Furthermore,
Art−1

k (Gal(kab/M)) is a subgroup of k̂×
=π Ẑ ×O×

k of index [M : k] = fK k/k . Thus
it holds that Art−1

k (Gal(kab/M))= π fK k/k Ẑ ×O×

k . Since Art−1
k (Gal(kab/kπ ))= π Ẑ,
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we obtain that Art−1
k (Gal(kab/Mkπ )) = π fK k/k Ẑ. If we denote by ResK k/k the

natural restriction map from Gal((K k)ab/K k) to Gal(kab/k), it is not difficult to
check that Res−1

K k/k(Gal(kab/Mkπ )) = Gal((K k)ab/K kπ ), and therefore we find
that Art−1

K k

(
Gal((K k)ab/K kπ )

)
= Nr−1

K k/k(π
fK k/k Ẑ). Now the lemma follows from

Min
{ n∑

i=1

vp(ψi (σ )− 1)
∣∣∣ σ ∈ G K kπ

}
= Min

{ n∑
i=1

vp(ψi,K k ◦ Art−1
K k(σ )− 1)

∣∣∣ σ ∈ Gal((K k)ab/K kπ )
}
. □

We often use p-adic Hodge theory, which plays an important role in this paper.
For the basic notion of p-adic Hodge theory, it is helpful for the reader to refer
to [Fontaine 1994a; 1994b]. Let Bcris be the Fontaine’s p-adic period ring and set
DK

cris(V ) := (Bcris ⊗Qp V )G K for any Qp-representation V of G K . Let us denote
by K0 the maximal unramified subextension of K/Qp and denote by ϕK0 the
arithmetic Frobenius map of K0, that is, the (unique) lift of the p-th power map on
the residue field of K0. Since BG K

cris = K0, DK
cris(V ) is a K0-vector space. Moreover,

DK
cris(V ) is a filtered ϕ-module over K ; it is of finite dimension over K0, it is

equipped with a bijective ϕK0-semilinear Frobenius operator ϕ and it is equipped
with a decreasing exhaustive and separated filtration on DK

cris(V )⊗K0 K . We say
that V is crystalline if the equality dimQp V = dimK0 DK

cris(V ) holds. Let M be
a finite extension of Qp and ψ : G K → M× a continuous character. We denote
by M(ψ) the Qp-representation of G K underlying a 1-dimensional M-vector space
endowed with an M-linear action by G K via ψ . We say that ψ is crystalline if
M(ψ) is crystalline. On the other hand, we denote by K × the Weil restriction
ResK/Qp(Gm). This is an algebraic torus such that, for a Qp-algebra R, the R-valued
points K ×(R) of K × is Gm(R ⊗Qp K ).

Proposition 2.2. Let ψ : G K → M× be a continuous character.

(1) M(ψ) is crystalline if and only if there exists a (necessarily unique) Qp-
homomorphism ψalg : K ×

→ M× such that ψK and ψalg (on Qp-points)
coincide on O×

K (⊂ K ×(Qp)).

(2) Assume M(ψ) is crystalline, and let ψalg be as in (1). (Note M(ψ−1) is also
crystalline.) The filtered ϕ-module DK

cris(M(ψ
−1))= (Bcris ⊗Qp M(ψ−1))G K

over K is free of rank 1 over K0 ⊗Qp M , and its K0-linear endomorphism ϕ fK

is given by the action of the product ψK (πK ) ·ψ
−1
alg (πK ) ∈ M×. Here, πK is

any uniformizer of K .

Proof. This is Proposition B.4 of [Conrad 2011]. □

Let ψ : G K → M× be a crystalline character. For any σ ∈ 0M , let χσM : IσM →

σM× be the restriction to the inertia IσM of the Lubin–Tate character associated
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with any choice of uniformizer of σM (it depends on the choice of a uniformizer
of σM , but its restriction to the inertia subgroup does not). Assume that K contains
the Galois closure of M/Qp. Then

ψ =

∏
σ∈0M

σ−1
◦χ

hσ
σM

on the inertia IK for some integer hσ . Equivalently, the character ψalg on Qp-points
coincides with

∏
σ∈0M

σ−1
◦Nr−hσ

K/σM . Note that {hσ | σ ∈ 0M} is the set of Hodge–
Tate weights of M(ψ), that is, C ⊗Qp M(ψ) ≃

⊕
σ∈0M

C(hσ ), where C is the
completion of Qp.

For integers d, h and a p-adic field M , we define a constant C(d,M, h) by

(2-1) C(d,M, h) := vp(d/dM)+h+
1
2

dM

(
dM +vp(eM)−

1
eM

+vp(2)(dM −1)
)
.

Theorem 2.3. Let ψ1, . . . , ψn : G K → M× be crystalline characters and h ≥ 0 an
integer. Assume that M is a Galois extension of Qp and K contains M. Suppose
that, for each i , we have

ψi =

∏
σ∈0M

σ−1
◦χ

hi,σ
M

on the inertia IK ; thus {hi,σ | σ ∈ 0M} is the set of Hodge–Tate weights of M(ψi ).
We assume the following conditions:

(i) {hi,σ |σ ∈0M} contains at least two different integers for each i . (In particular,
we have M ̸= Qp.)

(ii) Min{vp(hi,σ − hi,τ ) | σ, τ ∈ 0M} ≤ h for each i .

Then:

(1) There exists an element ω̂ ∈ ker NrM/Qp such that for every 1 ≤ i ≤ n,

(2-2) 1 + vp(2)≤ vp(ψi,K (ω̂)
−1

− 1)≤ δ(i) + C(dK ,M, h).

Here,

δ(i) :=

{
0 if i = 1, 2,

2i − 5 if i ≥ 3.

(2) Let ω̂ be as in (1). For any x ∈ K ×, there exists an integer 0 ≤ s(x) ≤ n such
that for every 1 ≤ i ≤ n,

(2-3) vp(ψi,K (xω̂ps(x)
)−1

− 1)≤ n + δ(i) + C(dK ,M, h).

Proof. Take an element x ∈ OM such that OM = Zp[x]. We set p′
:= p or p′

:= 4
if p ̸= 2 or p = 2, respectively, and put x ′

= p′x . Set mτ
r,σ := dK/M(hr,τσ − hr,σ )
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for 1 ≤ r ≤ n and σ, τ ∈ 0M . We also set

yτr,ℓ :=

∑
σ∈0M

mτ
r,σ (σ

−1x ′)ℓ−1

for 1 ≤ ℓ≤ dM . (Note that yτr,1 = 0.) Set

ωℓ := exp((x ′)ℓ−1) and ωτℓ :=
τωℓ

ωℓ

for any 1 ≤ ℓ≤ dM and τ ∈0M . Here, exp denotes the p-adic exponential map (see
[Neukirch 1999, Chapter II, Proposition 5.5]). By construction, ωτℓ ∈ ker NrM/Qp .

Lemma 2.4. exp(yτr,ℓ)= ψr,K (ω
τ
ℓ )

−1.

Proof. We see

ψr,K (ωℓ)
−1

=

∏
σ∈0M

σ−1
◦ NrK/M(ωℓ)

hr,σ =

( ∏
σ∈0M

σ−1ω
hr,σ
ℓ

)dK/M

.

We also have ψr,K (τωℓ)
−1

=
(∏

σ∈0M
σ−1τω

hr,σ
ℓ

)dK/M
=

(∏
σ∈0M

σ−1ω
hr,τσ
ℓ

)dK/M .
Thus we have

ψr,K (ω
τ
ℓ )

−1
=

( ∏
σ∈0M

σ−1ω
hr,τσ−hr,σ
ℓ

)dK/M

=

∏
σ∈0M

σ−1ω
mτ

r,σ
ℓ .

On the other hand, we have

exp(yτr,ℓ)= exp
( ∑
σ∈0M

mτ
r,σ (σ

−1x ′)ℓ−1
)

=

∏
σ∈0M

exp((σ−1x ′)ℓ−1)m
τ
r,σ

=

∏
σ∈0M

σ−1ω
mτ

r,σ
ℓ . □

We furthermore need the following evaluation.

Lemma 2.5. For each 1 ≤ r ≤ n, there exist τr ∈ 0M and an integer 2 ≤ ℓr ≤ dM

such that
vp(y

τr
r,ℓr
)≤ C(dK ,M, h).

Proof. Fix r . By assumption (i), there exist τ1, τ2 ∈ 0M such that hr,τ1 ̸= hr,τ2 .
Choose τ1 and τ2 so that vp(hr,τ1 − hr,τ2) = Min{vp(hr,σ − hr,τ ) | σ, τ ∈ 0M},
and set τ := τ2τ

−1
1 ∈ 0M . We write 0M = {τ1, τ2, . . . , τdM }. Note that mτ

r,τ1
=

dK/M(hr,τ2 − hr,τ1) is not zero. We denote by X ∈ Md(OM) the matrix whose
(i, j)-component is (τ−1

i x ′) j−1. Then we have

(2-4) (yτr,1 · · · yτr,dM
)= (mτ

r,τ1
· · · mτ

r,τdM
)X
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and

det X =

∏
1≤i< j≤dM

(τ−1
j x ′

− τ−1
i x ′)= (p′)

1
2 dM (dM−1)

∏
1≤i< j≤dM

(τ−1
j x − τ−1

i x).

We also have

vp

( ∏
1≤i< j≤dM

(τ−1
j x − τ−1

i x)
)

=

∑
1≤i< j≤dM

vp(τ
−1
j x − τ−1

i x)

=
1
2

∑
1≤i, j≤dM ,i ̸= j

vp(τ
−1
j x − τ−1

i x)

=
1
2

dMvp(DM/Qp)≤
1
2

dM

(
1 + vp(eM)−

1
eM

)
.

(see [Serre 1979, Chapter 3, Section 6, Proposition 13]), where DM/Qp is the
different ideal of M/Qp. We find

(2-5) vp(det X)≤
1
2

dM

(
dM + vp(eM)−

1
eM

+ vp(2)(dM − 1)
)
.

By (2-4), we have mτ
r,τ1

det X =
∑dM

ℓ=1 yτr,ℓxℓ for some xℓ ∈OM , which gives the fact
that there exists an integer ℓr = ℓ with the property that vp(yτr,ℓ)≤ vp(mτ

r,τ1
det X).

By (2-5), we have

vp(yτr,ℓ)≤ vp(dK/M)+ vp(hr,τ1 − hr,τ2)+ vp(det X)≤ C(dK ,M, h),

as desired. We remark that ℓ is not equal to 1 since yτr,1 is zero. □

Now we return to the proof of Theorem 2.3. Take τr and ℓr as in Lemma 2.5
with the additional condition that

(2-6) vp(y
τr
r,ℓr
)= Min{vp(yτr,ℓ) | τ ∈ 0M , 2 ≤ ℓ≤ dM}.

Here we consider an element ω̂∈ ker NrM/Qp which is of the form ω̂=
∏n

r=1(ω
τr
ℓr
)sr ,

where sr is defined inductively by the following:

(s1, s2)=


(0, 1) if vp(y

τ1
1,ℓ1
)= vp(y

τ2
1,ℓ2
),

(1, 0) if vp(y
τ1
1,ℓ1
) ̸= vp(y

τ2
1,ℓ2
) and vp(y

τ1
2,ℓ1
)= vp(y

τ2
2,ℓ2
),

(1, 1) if vp(y
τ1
1,ℓ1
) ̸= vp(y

τ2
1,ℓ2
) and vp(y

τ1
2,ℓ1
) ̸= vp(y

τ2
2,ℓ2
).

s3 =

{
p if vp(s1 yτ1

3,ℓ1
+ s2 yτ2

3,ℓ2
) ̸= vp(pyτ3

3,ℓ3
),

p2 if vp(s1 yτ1
3,ℓ1

+ s2 yτ2
3,ℓ2
)= vp(pyτ3

3,ℓ3
).

For r ≥ 4,

sr =

{
psr−1 if vp

(∑r−1
j=1 s j yτ j

r,ℓ j

)
̸= vp(psr−1 yτr

r,ℓr
),

p2sr−1 if vp
(∑r−1

j=1 s j yτ j
r,ℓ j

)
= vp(psr−1 yτr

r,ℓr
).
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We claim that we have

1 + vp(2)≤ vp

( n∑
r=1

sr yτr
i,ℓr

)
≤ δ(i) + C(dK ,M, h)

for any i , where δ(i) is as in the statement (1). The inequality 1 + vp(2) ≤

vp
(∑n

r=1 sr yτr
i,ℓr

)
is clear since we always have 1 + vp(2)≤ vp(yτi,ℓ) by definition

of yτi,ℓ. We show vp
(∑n

r=1 sr yτr
i,ℓr

)
≤ δ(i) + C(dK ,M, h) by induction on i .

• Suppose either i = 1 or i = 2. By (2-6) and the inequality 0< vp(sr ) for r ≥ 3,
it is not difficult to check vp

(∑n
r=1 sr yτr

i,ℓr

)
= vp(y

τi
i,ℓi
). Furthermore, we have

vp(y
τi
i,ℓi
)≤ C(dK ,M, h)= δ(i) + C(dK ,M, h) by Lemma 2.5.

• Suppose i ≥ 3. By definition of si we have vp
(∑i−1

r=1 sr yτr
i,ℓr

)
̸= vp(si yτi

i,ℓi
).

We also have vp
(∑n

r=i sr yτr
i,ℓr

)
= vp(si yτi

i,ℓi
) since vp(si yτi

i,ℓi
) < vp(sr yτr

i,ℓr
) for

i < r . Hence, it follows from Lemma 2.5 that we have

vp

( n∑
r=1

sr yτr
i,ℓr

)
= Min

{
vp

( i−1∑
r=1

sr yτr
i,ℓr

)
, vp(si yτi

i,ℓi
)

}
≤ vp(psi−1 yτi

i,ℓi
)≤ 1 + vp(si−1)+ C(dK ,M, h)

if i ≥ 4. Since we have vp(si−1)≤ 2(i −3) if i ≥ 4, the claim for i ≥ 4 follows.
The claim for i = 3 follows by a similar manner; we have vp(

∑n
r=1 sr yτr

3,ℓr
)≤

vp(pyτ3
3,ℓ3
)≤ 1 + C(dK ,M, h)= δ(3) + C(dK ,M, h).

By construction of ω̂ and Lemma 2.4, we see

ψi,K (ω̂)
−1

=

n∏
r=1

ψi,K (ω
τr
ℓr
)−sr =

n∏
r=1

exp(sr yτr
i,ℓr
)= exp

( n∑
r=1

sr yτr
i,ℓr

)
.

Thus we find vp(ψi,K (ω̂)
−1

− 1)= vp(
∑n

r=1 sr yτr
i,ℓr
). Therefore, the claim above

gives Theorem 2.3(1).
To show Theorem 2.3(2), we set mi :=ψi,K (x)−1

−1 and θ (s)i =ψi,K (ω̂
ps
)−1

−1
for any s ≥ 0. It follows from the condition vp(ψi,K (ω̂)

−1
− 1) ≥ 1 + vp(2) that

the equality vp(θ
(s)
i ) = s + vp(θ

(0)
i ) holds. For each 1 ≤ i ≤ n, there exists at

most only one integer s ≥ 0 so that vp(mi )= vp(θ
(s)
i ) since {vp(θ

(s)
i )}s is strictly

increasing. Hence, there exists an integer 0 ≤ s(x) ≤ n with the property that
vp(mi ) ̸= vp(θ

(s(x))
i ) for every 1 ≤ i ≤ n (by the pigeonhole principle). With this

choice of s(x), we obtain vp(ψi,K (xω̂ps(x)
)−1

−1)= vp(mi + θ
(s(x))
i +miθ

(s(x))
i )≤

vp(θ
(n)
i )= n + vp(θ

(0)
i ). This finishes the proof of (2). □

3. Proof of main theorems

The main purpose of this section is to show Theorems 1.1 and 1.2. For Theorem 1.1,
we show a slightly refined statement as follows.
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Theorem 3.1. Let g > 0 be a positive integer. Let k be a p-adic field with residue
cardinality qk and π a uniformizer of k. Put p′

= p or p′
= 4 if p ̸= 2 or p = 2,

respectively. Let µ≥ 1 be the smallest integer2 so that

(q−1
k Nrk/Qp(π))

µ
≡ 1 mod p′.

Assume the following conditions:3

(i) vp
(
(q−1

k Nrk/Qp(π))
µ

− 1
)
> g · (2g)! ·8(g)H(g) ·µ · dK k/k fk , and

(ii) dk is prime to (2g)! .

Then, for any g-dimensional abelian variety A over a p-adic field K with complex
multiplication, we have

A(K kπ )[p∞
] ⊂ A[pC

],

where
C := 2g2

· (2g)! ·8(g)H(g) ·µ · dK k + 12g2
− 18g + 10.

In particular,
#A(K kπ )[p∞

] ≤ p2gC .

Our proofs of Theorems 3.1 and 1.2 proceed by similar methods. As in the
previous section, we fix an algebraic closure Qp of Qp and suppose that K is a
subfield of Qp. In this section, we often use the following technical constants:

Lg(m) := [logp(1 + p
1
2 m)2g

],

C(m,M, h) := vp

( m
dM

)
+ h +

1
2

dM

(
dM + vp(eM)−

1
eM

+ vp(2)(dM − 1)
)
.

Here, m ≥ 1 and h ≥ 0 are integers and M is a p-adic field.

Remark 3.2. (1) mg ≤ Lg(m) < g(m + 1 + vp(2)) for any prime p and m ≥ 1,
and Lg(m) < g(m + 1) if (p,m) ̸= (2, 1), (2, 2).

(2) Moreover,4

Lg(m)= mg for m ≥ 8g.

This can be checked as follows: It suffices to show (1 + p
1
2 m)2g < pmg+1 for

m ≥ 8g. This inequality is equivalent to (1 + p−
1
2 m)2g < p. Thus it is enough

to show (1 + 2−
1
2 m0)2g < 2 where m0 := 8g. By the inequalities 2g < 22g and(2g

r

)
< 22g for 0 ≤ r ≤ 2g, we find, as desired,

(1+2−
1
2 m0)2g

= 1+

2g∑
r=1

(2g
r

)(1
2

) 1
2 rm0

< 1+2g ·22g
(1

2

) 1
2 m0

< 1+

(1
2

) 1
2 m0−4g

= 2.

2If q−1
k Nrk/Qp (π) is a root of unity, the constant µ here coincides with the µ in Theorem 1.1.

3Condition (i) depends on the choice of K . However, the author hopes that this condition can be
replaced with one that does not depend on K , as in Theorem 1.1(i).

4The value 8g here is “rough” but it is enough for our proofs.
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Special cases. We consider Theorem 3.1 under some additional hypothesis. In this
section, we show:

Proposition 3.3. Let the situation be as in Theorem 3.1 except assuming not (i) but

(i)′ vp
(
(q−1

k Nrk/Qp(π))
µ

− 1
)
> Lg((2g)! ·µ · dK k/k fk).

Moreover, we assume that A has good reduction over K and all the endomorphisms
of A are defined over K . Put

Cg(K , k)= vp(dK k)+
1
2(2g)!

(
(2g)! + vp((2g)!)+ vp(2)((2g)! − 1)

)
,

1g(K , k)= Max
{
Cg(K , k), Lg((2g)! ·µ · dK k/k fk)

}
.

Then
A(K kπ )[p∞

] ⊂ A[pC
],

where
C := 2g1g(K , k)+ 12g2

− 18g + 10.

Proof. Put T = Tp(A) and V = Vp(A) for brevity. Let ρ : G K → GLZp(T ) be the
continuous homomorphism obtained by the G K -action on T . Fix an isomorphism
ι : T ∼

−→ Z⊕2g
p of Zp-modules. We have an isomorphism ι̂ : GLZp(T )≃ GL2g(Zp)

relative to ι. We abuse notation by writing ρ for the composite map G K →

GLZp(T ) ≃ GL2g(Zp) of ρ and ι̂. Now let P ∈ T and denote by P the image
of P in T/pnT . By definition, we have ι(σ P)= ρ(σ)ι(P) for σ ∈ G K . Suppose
that P ∈ (T/pnT )G K kπ . This implies σ P − P ∈ pnT for any σ ∈ G K kπ . This is
equivalent to saying that (ρ(σ )− E)ι(P) ∈ pnZ⊕2g

p , and this in particular implies
det(ρ(σ )− E)ι(P) ∈ pnZ⊕2g

p for any σ ∈ GG K kπ
. Thus det(ρ(σ )− E)P ∈ pnT

for any σ ∈ G K kπ . Put

c = Min{vp(det(ρ(σ )− E)) | σ ∈ G K kπ }.

Then we see P ∈ pn−cT (if c is finite and n > c) and this shows (T/pnT )G K kπ ⊂

pn−cT/pnT . This implies an inequality

(3-1) A(K kπ )[p∞
] ⊂ A[pc

]

if c is finite.
On the other hand, we recall that A has complex multiplication and all the

endomorphisms of A are defined over K . Thus there exists an injective ring
homomorphism from a number field F of degree 2g into Q⊗Z EndK (A). By [Serre
and Tate 1968, Theorem 5(i)], we know that V is a free F ⊗Q Qp-module of rank
one and the G K -action on V commutes with F ⊗Q Qp-action. Let

∏n
i=1 Fi denote

the decomposition of F ⊗Q Qp into a finite product of p-adic fields. This induces
a decomposition V ≃

⊕n
i=1 Vi of Qp[G K ]-modules. Each Vi is equipped with a

structure of one-dimensional Fi -modules and the G K -action on Vi commutes with
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the Fi -action. Let ρi : G K → GLQp(Vi ) be the homomorphism obtained by the G K -
action on Vi . Since ρi is abelian, it follows that (Vi ⊗Qp Qp)

ss
≃

⊕dFi
j=1 Qp(ψi, j )

for some continuous characters ψi, j : G K → Q×
p . Here, the superscript “ss” stands

for the semisimplification. As is well known, ψi, j satisfies the following properties
(since the G K -action on Vi is given by a character G K → F×

i ):

(a) ψi,1, . . . , ψi,dFi
are Qp-conjugate with each other, that is, ψi,k = τkℓ ◦ψi,ℓ for

some τkℓ ∈ GQp .

(b) ψi,1, . . . , ψi,dFi
have values in a p-adic field Mi (in the fixed algebraic clo-

sure Qp of Qp) which is Qp-isomorphic to the Galois closure of Fi/Qp (in
an algebraic closure of Fi ). We remark that dMi divides dFi ! .

In particular,
vp(det ρi (σ )− E)= dFivp(ψi (σ )− 1),

where ψi := ψi,1. Let M be the composite field of M1, . . . ,Mn , and we regard
ψ1, . . . , ψn as characters of G K with values in M×, that is, ψi : G K → M×. The
field M is a Galois extension of Qp in Qp and dM divides dF1 ! dF2 ! · · · dFn ! . Since∑n

i=1 dFi = 2g, we find

(3-2) dM | (2g)! .

(Here, we recall that the product of n natural numbers is divisible by n! for any
natural number n.) In particular, we have M ∩ k = Qp since dk is prime to (2g)! ,
and then we obtain

ker NrM/Qp ⊂ ker NrMk/k ⊂ ker NrKM k/k .

Here, KM is the composite K M of K and M . It follows from Proposition 2.1 that

(3-3) c ≤ Min{vp(det(ρ(σ )− E)) | σ ∈ G KM kπ }

= Min
{ n∑

i=1

dFivp(ψi (σ )− 1)
∣∣∣ σ ∈ G KM kπ

}

≤ Min
{ n∑

i=1

dFivp(ψi,KM k(πω)
−1

− 1)
∣∣∣ ω ∈ ker NrKM k/k

}

≤ Min
{ n∑

i=1

dFivp(ψi,KM k(πω)
−1

− 1)
∣∣∣ ω ∈ ker NrM/Qp

}

≤ Min
{ n∑

i=1

dFivp(ψ
µ
i,KM k(πω)

−1
− 1)

∣∣∣ ω ∈ ker NrM/Qp

}
.

Here, µ is the integer appeared in the statement of Theorem 3.1. Note that ψi is
a crystalline character since A has good reduction over K (see [Fontaine 1982,
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Section 6]; see also [Coleman and Iovita 1999, Theorem 1]). By rearranging the
numbering of subscripts, we may suppose the following situation for some 0 ≤ r ≤ n.

(I) For 1 ≤ i ≤ r , the set of the Hodge–Tate weights of M(ψi ) is {0, 1}.

(II) For r < i ≤ n, the set of the Hodge–Tate weights of M(ψi ) is either {1} or {0}.

Lemma 3.4. For r < i ≤ n and any ω ∈ ker NrM/Qp , we have

vp(ψ
µ
i,KM k(πω)

−1
− 1)≤ Lg((2g)! · dK k/k fk ·µ).

Proof. In this proof we set L := KM k. We know that the morphismψi,alg : L×
→ M×

corresponding to ψi |GL is trivial or Nr−1
L/Qp

on Qp-points. This in particular gives
ψi,L(ω)= 1. Since π eL/k

L π−1 is a p-adic unit for any uniformizer πL of L , we find

ψi,L(πω)
−1

= ψi,L(π)
−1

= ψi,L(π
−eL/k
L ·π

eL/k
L π−1)= α

−eL/k
i ·ψi,alg(π)

−1,

where αi := ψi,L(πL)ψi,alg(πL)
−1. Denote by L ′ the unramified extension of L of

degree µeL/k .

(I) Suppose that the set of the Hodge–Tate weights of M(ψi ) is {0}. In this case,
ψi,alg is trivial and thus we have ψµi,L(πω)

−1
= α−µeL/k

i . It follows from Lemma 9
of [Ozeki 2024] that ψµi,L(πω)

−1 is a unit root of the characteristic polynomial
f (T ) of the geometric Frobenius endomorphism of A/FL′ . Since f (1)= #A(FqL′ ),

we see vp(ψ
µ
i,L(πω)

−1
− 1)≤ vp(#A(FqL′ ))≤ [logp #A(FqL′ )]. It follows from the

Weil bound that vp(ψ
µ
i,L(πω)

−1
− 1)≤ Lg( fL ′). Since we have fL ′ = µeL/k fL =

dL/K k ·µ · dK k/k fk ≤ (2g)! ·µ · dK k/k fk . we obtain the desired inequality.

(II) Suppose that the set of the Hodge–Tate weights of M(ψi ) is {1}. In this case
ψi,alg is Nr−1

L/Qp
on Qp-points. If we set β := q−1

k Nrk/Qp(π), we find

ψ
µ
i,L(πω)

−1
− 1 = (α−1

i Nrk/Qp(π)
fL/k )µeL/k − 1

= ((α−1
i qL)

µeL/k − 1)βµdL/k + (βµdL/k − 1).

It again follows from Lemma 9 of [Ozeki 2024] that (α−1
i qL)

µeL/k is a unit root of
the characteristic polynomial f ∨(T ) of the geometric Frobenius endomorphism
of A∨

/FL′ . Since f ∨(1) = #A∨(FqL′ ), the same argument as in (I) shows that
vp((α

−1
i qL)

µeL/k − 1)≤ Lg( fL ′)≤ Lg((2g)! ·µ · dK k/k fk). In particular, we have
vp(β

µdL/k − 1) > vp((α
−1
i qL)

µeL/k − 1) by the assumption (i)′. Since β is a p-adic
unit, we obtain vp(ψ

µ
i,L(πω)

−1
−1)=vp((α

−1
i qL)

µeL/k −1)≤ Lg((2g)!·µ·dK k/k fk),
as desired. □

By (3-3) and the lemma, in the case where r = 0, we have

(3-4) c ≤

n∑
i=1

dFi Lg((2g)! ·µ · dK k/k fk)= 2gLg((2g)! ·µ · dK k/k fk).
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In the rest of the proof, we assume r > 0. By (3-3) and the lemma again, we have

c ≤ Min
{ r∑

i=1

dFivp(ψ
µ
i,KM k(πω)

−1
− 1)

∣∣∣ ω ∈ ker NrM/Qp

}
+ Lg((2g)! ·µ · dK k/k fk)

n∑
i=r+1

dFi .

Here we remark that vp(µ) = 0 and the Hodge–Tate weights of ψµi for each
1 ≤ i ≤ r consist of 0 and µ. Hence, applying Theorem 2.3 to the set of characters
ψ
µ

1 , . . . , ψ
µ
r : G KM k → M×, an element x = π and h = 0, there exists an element

ω̂ ∈ ker NrM/Qp and an integer 0 ≤ s = s(π)≤ r as in the theorem. Then

c ≤

r∑
i=1

dFivp(ψ
µ
i,KM k(πω̂

ps
)−1

− 1)+ Lg((2g)! ·µ · dK k/k fk)

n∑
i=r+1

dFi

≤

r∑
i=1

dFi (r + δ(i) + C(dKM k,M, 0))+ Lg((2g)! ·µ · dK k/k fk)

n∑
i=r+1

dFi

≤ 2g10 +

r∑
i=1

dFi (r + δ(i)),

where10 := Max
{
C(dKM k,M, 0), Lg((2g)!·µ·dK k/k fk)

}
. Since dM divides (2g)! ,

we also have

C(dKM k,M, 0) < vp(dK k)+
1
2(2g)!

(
(2g)! + vp((2g)!)+ vp(2)((2g)! − 1)

)
.

Thus, for the constant 1g(K , k) defined in the statement of the proposition, we
obtain 10 ≤1g(K , k) and c ≤ 2g1g(K , k)+

∑r
i=1 dFi (r + δ(i)).

• If r ≤ 2, we have
∑r

i=1 dFi (r + δ(i))=
∑r

i=1 dFi r ≤ r · 2g ≤ 4g.

• If r>2, we have
∑r

i=1 dFi (r+δ(i))=r
∑r

i=1 dFi +
∑r

i=3 dFi δ(i)≤n
∑n

i=1 dFi +∑n
i=3 dFi (2n−5)≤n·2g+(2n−5)(

∑n
i=1 dFi −2)≤2g·2g+(4g−5)·(2g−2)=

12g2
− 18g + 10.

Therefore, for any r > 0, we find

c ≤ 2g1g(K , k)+ 12g2
− 18g + 10.

Note that this inequality holds also for the case r = 0 by (3-4). Now the proposition
follows from (3-1). □

General cases. We show Theorems 3.1 and 1.2. For this, we need the following
observations given by Serre and Tate [1968] and Silverberg [1992].

Theorem 3.5. Let A be a g-dimensional abelian variety over K .
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(1) Put m = 3 or m = 4 if p ̸= 3 or p = 3, respectively. Then A has semistable
reduction over K (A[m]) and all the endomorphisms of A are defined over K (A[m]).

(2) Let L be the intersection of the fields K (A[N ]) for all integers N > 2. Then all
the endomorphisms of A are defined over L and [L : K ] divides H(g).

(3) Assume A has potential good reduction. Let ρA,ℓ : G K → GLZp(Tℓ(A)) be the
continuous homomorphism defined by the G K -action on the Tate module Tℓ(A) for
any prime ℓ.

(i) For any prime ℓ not equal to p, let Hℓ be the kernel of the restriction of ρA,ℓ

to IK . Then Hℓ is an open subgroup of IK , which is independent of the choice
of ℓ. Moreover, if we set c := [IK : Hℓ], then there exists a finite totally ramified
extension L/K of degree c such that A has good reduction over L.

(ii) If A has complex multiplication and all the endomorphisms of A are defined
over K , then the constant c above satisfies c ≤8(g).

(4) Assume A has complex multiplication. Then there exists a finite extension L/K
of degree at most 8(g)H(g) such that A has good reduction over L and all the
endomorphisms of A are defined over L.

Proof. Item (1) follows from [Silverberg 1992, Theorem 4.1] and Raynaud’s criterion
of semistable reduction [SGA 7I 1972, Proposition 4.7]. Item (2) is [Silverberg 1992,
Theorem 4.1], and (4) is an immediate consequence of (2) and (3) since A must have
potential good reduction under the condition that A has complex multiplication.
The assertions in (3) are consequences of results given in Sections 2 and 4 of [Serre
and Tate 1968] but some of them are not directly mentioned in loc. cit. Thus we
give a proof here, just in case. The first statement related to Hℓ in (3)(i) is [Serre
and Tate 1968, Section 2, Theorem 2, p. 496]. The group H is a closed normal
subgroup of G K , which is also open in IK . Let 0 be the closure of the subgroup
of G K generated by any choice of a lift of the qK -th Frobenius element in GFqK

.
The projection G K → GFqK

gives an isomorphism of 0 onto GFqK
; in particular,

G K is the semidirect product of 0 and IK . Let K0/K be the field extension (of
infinite degree) corresponding to 0 ⊂ G K , and let M/K ur be the finite extension
corresponding to H := Hℓ ⊂ IK . Note that A has good reduction over M . Now we
set L := K0∩M . Then L/K is totally ramified since so is K0/K . Furthermore, it is
immediate to check H0∩ IK = H ; this shows L K ur

= M . Hence we obtain that A
has good reduction over L and [L : K ] = [M : K ur

] = c. This shows (3)(i). Next
we show (3)(ii). By assumptions on A, there exists a number field F of degree 2g
which is a subalgebra of Q ⊗Z EndK (A). It follows from [Serre and Tate 1968,
Theorem 5(i)] that Vℓ(A) has a structure of free (F ⊗Q Qℓ)-module of rank one
and the G K -action on Vℓ(A) commutes with F ⊗Q Qℓ. Thus we may consider ρA,ℓ

as a character G K → (F ⊗Q Qℓ)
×. Moreover, the image of this character restricted
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to IK has values in the group µ(F) of roots of unity contained in F by [Serre and
Tate 1968, Section 4, Theorem 6, p. 503]. Thus we obtain the fact that c divides the
order m of µ(F). On the other hand, since µm is a subset of F , we have ϕ(m) | 2g.
Therefore, we obtain c ≤ m ≤8(g), as desired. □

Now we are ready to show our main theorems. First we show Theorem 3.1.

Proof of Theorem 3.1. Let A be as in the theorem. Since A has complex multiplica-
tion, it follows from Theorem 3.5(4) that there exists a finite extension L/K such
that dL/K ≤8(g)H(g), A has good reduction over L , and all the endomorphisms
of A are defined over L . In addition, we have

vp
(
(q−1

k Nrk/Qp(π))
µ

− 1
)
> g · (2g)! ·8(g)H(g) ·µ · dK k/k fk

= Lg
(
(2g)! ·8(g)H(g) ·µ · dK k/k fk

)
≥ Lg((2g)! ·µ · dLk/k fk)

by assumption (i) and Remark 3.2(2). So we can apply Proposition 3.3 to A/L; we
have

A(Lkπ )[p∞
] ⊂ A[pC ′

],

where C ′
= 2g1g(L , k)+ 12g2

− 18g + 10. Here,

Cg(L , k)= vp(dLk)+
1
2(2g)!

(
(2g)! + vp((2g)!)+ vp(2)((2g)! − 1)

)
,

1g(L , k)= Max
{
Cg(L , k), Lg((2g)! ·µ · dLk/k fk)

}
.

Note that we have vp(dLk) < dLk ≤8(g)H(g) · dK k and Lg((2g)! ·µ · dLk/k fk)≤

g · (2g)! ·8(g)H(g) ·µ · dK k . Therefore, it suffices to show

8(g)H(g) · dK k +
1
2(2g)!

(
(2g)! + vp((2g)!)+ vp(2)((2g)! − 1)

)
< g · (2g)! ·8(g)H(g) ·µ · dK k

for the proof but this is clear. □

Remark 3.6. In the proof of Theorem 3.1, we referred to the field extension L/K
of Theorem 3.5(4) and the upper bound 8(g)H(g) of [L : K ]. By Theorem 3.5(1),
we may refer to the field K (A[m]) instead of the above L . Since we have a natural
embedding from Gal(K (A[m])/K ) into GL(A[m]) ≃ GL2g(Z/mZ), we obtain a
bound for the extension degree of K (A[m])/K ; we have [K (A[m]) : K ] ≤ G(g),
where

G(n) :=

{
#GL2n(Z/3Z)=

∏2n−1
i=0 (3

2n
− 3i ) if p ̸= 3,

#GL2n(Z/4Z)= 24n2 ∏2n−1
i=0 (2

2n
− 2i ) if p = 3

for n> 0. Note that we have G(n)<m4n2
. It is not difficult to check the inequalities

8(1)H(1) > G(1) and 8(g)H(g) < G(g) for g > 1 (see Section 5). Hence, only
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in the case g = 1 of elliptic curves, we can obtain smaller bound than that given in
Theorem 3.1 by replacing 8(g)H(g) with G(1).

Applying Theorem 1.1 with k = Qp and π = p, we immediately obtain the
following.

Corollary 3.7. Let A be a g-dimensional abelian variety over a p-adic field K with
complex multiplication. Then we have

A(K (µp∞))[p∞
] ⊂ A[pC

],

where
C := 2g2

· (2g)! ·8(g)H(g) · dK + 12g2
− 18g + 10.

In particular,
#A(K (µp∞))[p∞

] ≤ p2gC .

Next we show Theorem 1.2.

Proof of Theorem 1.2. We follow essentially the same argument as for Theorem 3.1.
Put K̂ = K ( p∞√

K ).

Step 1: First we consider the case where A has good reduction over K and all the
endomorphisms of A are defined over K . Put ν = vp(dK )+ 1 + vp(2) and

Cg(K )= vp(dK )+ ν+
1
2(2g)!

(
(2g)! + vp((2g)!)+ vp(2)((2g)! − 1)

)
,

1g(K )= Max
{
Cg(K ), Lg((2g)! · pν · dK )

}
.

Following the proof of Proposition 3.3, we show

(3-5) A(K̂ )[p∞
] ⊂ A[pC ′

],

where C ′
:= 2g1g(K )+12g2

−18g+10. Let ρ : G K → GLZp(Tp(A))≃ GL2g(Zp),
M/Qp and ψ1, . . . , ψn : G K → M× be as in the proof of Proposition 3.3. If
we denote by K̂ab the maximal abelian extension of K contained in K̂ , all the
points of A(K̂ )[p∞

] are in fact defined over K̂ab since ρ is abelian. Thus, setting
c := Min{vp(det(ρ(σ )− E)) | σ ∈ G K̂ab}, we find

(3-6) A(K̂ )[p∞
] = A(K̂ab)[p∞

] ⊂ A[pc
]

if c is finite (see arguments just above (3-1)). On the other hand, we set G :=

Gal(K̂/K ) and H :=Gal(K̂/K (µp∞)). Let χp :G K →Z×
p be the p-adic cyclotomic

character. Since we have στσ−1
= τχp(σ ) for any σ ∈ G and τ ∈ H , we see

(G,G)⊃ (G, H)⊃ Hχp(σ )−1. Hence we have a natural surjection

(3-7) H/Hχp(σ )−1 ↠ H/(G,G)= Gal(K̂ab/K (µp∞)) for any σ ∈ G.

Lemma 3.8. χp(σ0)− 1 = pν for some σ0 ∈ G.
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Proof. We set

K ′
:=

{
K (µp) if p ̸= 2,
K (µ4) if p = 2.

If we denote by pℓ the order of the set of p-power roots of unity in K ′, we see
K ′

∩ Qp(µp∞) = Qp(µpℓ) and thus χp(G K ′) = 1 + pℓZp. Furthermore, since
[Qp(µpℓ) : Qp] divides [K ′

: K ][K : Qp], we see pℓ−1−vp(2) | dK . Hence we obtain
χp(G K ′)⊃ 1 + pνZp and the lemma follows. □

By the lemma above and (3-7), we see that Gal(K̂ab/K (µp∞)) is of exponent pν ,
that is, σ ∈ G K (µp∞ ) implies σ pν

∈ G K̂ab
. This shows c ≤Min{vp(det(ρ(σ )pν

−E)) |
σ ∈ G K (µp∞ )}. Mimicking the arguments for inequalities (3-3), we find

c ≤ Min
{ n∑

i=1

dFivp(ψ
pν
i,KM

(πω)−1
− 1)

∣∣∣ ω ∈ ker NrM/Qp

}
.

Now the inequality (3-6) follows by completely the same method as the proof of
Proposition 3.3 (with replacing the pair (k, µ) there with (Qp, pν)).

Step 2: Next we consider the general case. Since A has complex multiplication,
it follows from Theorem 3.5(4) that there exists a finite extension L/K such that
dL/K ≤8(g)H(g), A has good reduction over L and all the endomorphisms of A
are defined over L . Thus we can apply the result of Step 1 to A/L; we have

A(K̂ )[p∞
] ⊂ A(L̂)[p∞

] ⊂ A[pC ′′

],

where C ′′
:= 2g1g(L)+ 12g2

− 18g + 10. We find

Lg
(
(2g)! · pvp(dL )+1+vp(2) · dL

)
= Lg

(
(2g)! · p1+vp(2) · pvp(dL/K )dL/K · pvp(dK )dK

)
≤ Lg

(
(2g)! · p1+vp(2) · (dL/K )

2
· pvp(dK )dK

)
≤ g · (2g)! · p1+vp(2) · (8(g)H(g))2 · pvp(dK )dK .

(For the last equality, see Remark 3.2(2).) Now Theorem 1.2 immediately follows
by 1g(L)≤ g · (2g)! · p1+vp(2) · (8(g)H(g))2 · pvp(dK )dK . □

One of the keys for our arguments above is a theory of locally algebraic repre-
sentations. Thus our method essentially works also for abelian varieties A with the
property that the G K -action on the semisimplification of Vp(A)⊗Qp Qp is abelian.
For example, this is the case where A has good ordinary reduction.

Proposition 3.9. Let g > 0 be a positive integer. Let K and k be p-adic fields.
Let π be a uniformizer of k. Assume that q−1

k Nrk/Qp(π) is a root of unity; we denote
by 0 < µ < p the minimum integer such that (q−1

k Nrk/Qp(π))
µ

= 1. Then, for
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any g-dimensional abelian variety A over K with good ordinary reduction, we have

A(K kπ )[p∞
] ⊂ A[p2gLg(µdK k/k fk)].

In particular,

#A(K kπ )[p∞
] ≤ p4g2 Lg(µdK k/k fk) < p4g3(µdK k/k fk+1+vp(2)).

Proof. Put V = Vp(A), T = Tp(A) and c = Min{vp(det(ρ(σ )− E)) | σ ∈ G K kπ }.

By the same argument as the beginning of the proof of Proposition 3.3, we obtain

(3-8) A(K kπ )[p∞
] ⊂ A[pc

]

if c is finite. Since A has good ordinary reduction, we have an exact sequence
0 → V1 → V → V2 → 0 of Qp[G K ]-modules with the following properties:

(i) V1 ≃ W ⊗Qp Qp(1) for some unramified representation W of G K , and

(ii) V2 is unramified.

Hence, taking a p-adic field M large enough, we have (V ⊗Qp M)ss
≃

⊕2g
i=1 M(ψi )

for some continuous crystalline characters ψi : G K → M×. Furthermore, for every i ,
the set of the Hodge–Tate weights of M(ψi ) is either {1} or {0}. By Proposition 2.1,
we have c ≤

∑2g
i=1 vp(ψ

µ
i,K k(π)

−1
− 1). Let K ′ be the unramified extension of K k

of degree µeK k/k . By a similar method of the proof of Lemma 3.4, we find that
ψ
µ
i,K k(π)

−1 is a unit root of the characteristic polynomial f (T ) of the geometric
Frobenius endomorphism of A/FK ′ ; otherwise, ψµi,K k(π)

−1 is a unit root of the char-
acteristic polynomial f ∨(T ) of the geometric Frobenius endomorphism of A∨

/FK ′ .
We know f (1) = #A(FqK ′ ) and f ∨(1) = #A∨(FqK ′ ), and their p-adic valuations
are bounded by Lg( fK ′) by the Weil bound. Since we have fK ′ = fK ′/K k fK k =

µdK k/k fk, we obtain c ≤
∑2g

i=1 vp(ψ
µ
i,K k(π)

−1
− 1)≤ 2gLg(µdK k/k fk). Now the

result follows from (3-8). □

4. Abelian varieties over number fields

In this section, we suppose that K is a number field. The goal of this section is
to give a proof of Theorem 1.3. The theorem is an immediate consequence of the
following proposition.

Proposition 4.1. Let g, K , d and h be as in Theorem 1.3.

(1) Let A be a g-dimensional abelian variety over K with semistable reduction
everywhere. Let p0 be the smallest prime number such that A has good
reduction at some finite place of K above p0. Then A(K (µ∞))[p] is zero if
p > (1 +

√
p0

dh)2g, p is unramified in K , and A has good reduction at some
finite place of K above p.
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(2) Let A be a g-dimensional abelian variety over K with complex multiplication
which has good reduction everywhere. Then, for any prime p, we have

A(K (µ∞))[p∞
] ⊂ A[pC

],

where C := 2g2
· (2g)! ·8(g)H(g) · dh + 12g2

− 18g + 10.

Proof. Let A be a g-dimensional abelian variety over K with semistable reduction
everywhere. Let K ′ be the maximal extension of K contained in K (µ∞) which
is unramified at all finite places of K . Note that K ′ is a finite abelian extension
of K . In particular, it follows from class field theory that [K ′

: K ] is a divisor of
the narrow class number h of K . If we denote by L p the maximal extension of K
contained in K (µ∞) which is unramified at all places except for places dividing p
and the infinite places, then it is shown in [Katz and Lang 1981, Appendix, Lemma]
that L p = K ′(µp∞).

(1) Here we mainly follow Ribet’s arguments in [Katz and Lang 1981]. We suppose
that p is prime to 2p0 and also suppose that p is unramified in K . Assume that
A(K (µ∞))[p] ̸= O . We claim that there exists a g-dimensional abelian variety A′

over K ′ which is K ′-isogenous to A such that A′(K ′)[p] ̸= O . We denote by G
and H the absolute Galois groups of K ′ and K (µ∞), respectively. The assumption
A(K (µ∞))[p] ̸= O is equivalent to the assumption A[p]

H
̸= O . Let W be a simple

G-submodule of A[p]
H . Ribet showed in the proof of Theorem 2 of [Katz and

Lang 1981] that, since A has semistable reduction everywhere over K ′, W is one-
dimensional over Fp and the action of G on W factors through Gal(K ′(µp)/K ′).
Since p is unramified at K ′, we find that the G-action on W is given by χn

p for some
0 ≤ n ≤ p − 1, where χ p is the mod p cyclotomic character. Moreover, since A
has good reduction at some finite place of K ′ above p (̸= 2) and p is unramified
in K ′, it follows from the classification of Tate and Oort [1970, pp. 15–16] that n
is equal to 0 or 1. Thus W is isomorphic to Fp or Fp(1). If we are in the former
case, we have A′(K ′)[p] ̸= O for A′

:= A. Suppose that we are in the latter case.
Then there exists a surjection A∨

[p] → Fp of G-modules. If we denote by C the
kernel of this surjection, then the G-action on A∨

[p] preserves C . This implies
that A′

:= A∨/C is an abelian variety defined over K ′ and we find that there exists
a trivial G-submodule of A′

[p] of order p. Thus we have A′(K ′)[p] ̸= O . This
finishes the proof of the claim.

Now we take a prime p′

0 of K ′ above p0 such that A has good reduction at p′

0.
Since A′ above is K ′-isogenous to A, we know that A′ has good reduction at p′

0 by
[Serre and Tate 1968, Section 1, Corollary 2]. If we denote by K ′

p′

0
the completion

of K ′ at p′

0 and also denote by Fp′

0
the residue field of K ′

p′

0
, then reduction modulo p′

0
gives an injective homomorphism

A′(K ′)[p] ⊂ A′(K ′

p′

0
)[p] ↪→ A′(Fp′

0
).
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We recall that A′(K ′)[p] ̸= O . Since the order of Fp′

0
is bounded by pdh

0 , it follows
from the Weil bound that p < (1 +

√
p0

dh)2g. This finishes the proof.

(2) Let A be an abelian variety as in the statement. Since A has good reduction
everywhere over K , it follows from the Néron–Ogg–Shafarevich criterion that the
G K -action on A[p∞

] is unramified outside p. This gives the fact that the G K -action
on A(K (µp∞))[p∞

] factors through Gal(L p/K )= Gal(K ′(µp∞)/K ). Thus

A(K (µ∞))[p∞
] = A(K ′(µp∞))[p∞

].

Since we have [K ′
: Q] ≤ dh, the result follows from Corollary 3.7. □

5. Bounds on 8(n) and H(n)

We recall the definitions of 8(n) and H(n):

8(n) := Max{m ∈ Z>0 | ϕ(m) divides 2n},

H(n) := gcd{#GSp2n(Z/NZ) | N ≥ 3}.

Here, ϕ is the Euler’s totient function. The values of 8(n), H(n) (and G(n) for
p ̸= 3; see Remark 3.6) for small n are given in Tables 1–3. In this section, we
study some upper bounds of 8 and H .

The function H. For the function H , we refer to results of [Silverberg 1992,
Sections 3 and 4]. The exact formula for H(n) is as follows:

H(n)=
1

2n−1

∏
q

qr(q),

where the product is over primes q ≤ 2n + 1,

r(2)= [n] +

∞∑
j=0

[
2n
2 j

]
and r(q)=

∞∑
j=0

[
2n

q j (q − 1)

]
if q is odd.

Moreover, we have:

Theorem 5.1 [Silverberg 1992, Corollary 3.3]. We have

H(n) < 2(9n)2n

for any n > 0.

The function 8. Next we consider the function 8. At first, we remark that 8(n)
must be even since ϕ(x) = ϕ(2x) if x is odd. Furthermore, 8(n) is not a power
of 2. (In fact, we have ϕ(2r )= ϕ(2r−1

· 3) if r ≥ 2.) Thus it holds that

(5-1) 8(n)= Max
{
m ∈ Z>0 | ϕ(m) divides 2n, and m = 2r x,

where r ≥ 1 and x ≥ 3 is odd
}
.
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We show some elementary formulas.

Proposition 5.2. (1) 8(1)= 6 and 6 ≤8(n) < 6n 3
√

n for n > 1.

(2) Put t = v2(n)+ 2 and let p1 = 2< p2 < · · ·< pt be the first t prime numbers.
Then

8(n)≤ 2n
t∏

i=1

pi

pi − 1
.

In particular, 8(n)≤ 6n if n is odd.

(3) If n > 3 is an odd prime, we have5

8(n)=

{
6 if 2n + 1 is not prime,

4n + 2 if 2n + 1 is prime.

Proof. To check8(1)= 6 is an easy exercise. Since ϕ(6)= 2 | 2n, we have8(n)≥ 6
for any n. Suppose that n > 1. We take an even integer m > 0 of the form 2r x ,
where r ≥ 1 and x ≥ 3 is odd, such that ϕ(m) | 2n. Let m = 2r ∏s

i=1 qei
i be the prime

factorization of m with r, s, e1, . . . , es ≥ 1. Since ϕ(m)= 2r−1 ∏s
i=1 qei −1

i (qi − 1)
and ϕ(m) | 2n, we have v2(2n)≥ r − 1 + s and thus

(5-2) r + s ≤ v2(n)+ 2.

Then we find

2n ≥ ϕ(m)= m
(

1 −
1
2

) s∏
i=1

(
1 −

1
qi

)
≥ m

s+1∏
i=1

(
1 −

1
pi

)
≥ m

t∏
i=1

(
1 −

1
pi

)
.

This shows (2). Furthermore, we have

8(n)≤ 2n
t∏

i=1

pi

pi − 1
= 6n

t∏
i=3

pi

pi − 1
≤ 6n

( 5
5−1

)v2(n)

≤ 6n ·

(5
4

)log2(n)
< 6n · 2

1
3 log2(n).

Thus we obtain (1). Let us show (3). From now on we assume that n > 3 is an
odd prime. Assume that m ̸= 6. Since n is odd, it follows from (5-2) that the
prime factorization of m is of the form m = 2qe for some odd prime q. Then
1
2ϕ(m)= qe−1 1

2(q − 1) divides n. Since n > 3 is a prime and m ̸= 6, we find e = 1
and 1

2(q − 1) = n. This implies 2n + 1 must be prime and m = 4n + 2. Now the
result follows. □

5A prime number p is called a Sophie Germain prime if 2p + 1 is also prime. It is not known
whether there exist infinitely many Sophie Germain primes or not. On the other hand, there exist
infinitely many primes which are not Sophie Germain primes. In fact, every prime number p with
p ≡ 1 mod 3 is not a Sophie Germain prime.
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n 8(n) n 8(n) n 8(n) n 8(n)

1 21
· 31 31 21

· 31 61 21
· 31 91 21

· 31

2 22
· 31 32 24

· 31
· 51 62 22

· 31 92 22
· 31

· 471

3 21
· 32 33 21

· 671 63 21
· 1271 93 21

· 32

4 21
· 31

· 51 34 22
· 31 64 21

· 31
· 51

· 171 94 22
· 31

5 21
· 111 35 21

· 711 65 21
· 1311 95 21

· 1911

6 21
· 31

· 71 36 21
· 33

· 51 66 21
· 32

· 231 96 23
· 31

· 51
· 71

7 21
· 31 37 21

· 31 67 21
· 31 97 21

· 31

8 22
· 31

· 51 38 22
· 31 68 21

· 1371 98 21
· 1971

9 21
· 33 39 21

· 791 69 21
· 1391 99 21

· 1991

10 21
· 31

· 111 40 21
· 31

· 51
· 111 70 21

· 31
· 711 100 21

· 31
· 53

11 21
· 231 41 21

· 831 71 21
· 31 101 21

· 31

12 21
· 32

· 51 42 21
· 31

· 72 72 21
· 32

· 51
· 71 102 21

· 31
· 1031

13 21
· 31 43 21

· 31 73 21
· 31 103 21

· 31

14 21
· 291 44 22

· 31
· 231 74 21

· 1491 104 22
· 31

· 531

15 21
· 311 45 21

· 311 75 21
· 1511 105 21

· 2111

16 23
· 31

· 51 46 21
· 31

· 471 76 21
· 31

· 51 106 21
· 31

· 1071

17 21
· 31 47 21

· 31 77 21
· 231 107 21

· 31

18 21
· 32

· 71 48 22
· 31

· 51
· 71 78 21

· 31
· 791 108 21

· 34
· 51

19 21
· 31 49 21

· 31 79 21
· 31 109 21

· 31

20 21
· 31

· 52 50 21
· 53 80 22

· 31
· 51

· 111 110 21
· 31

· 112

21 21
· 72 51 21

· 1031 81 21
· 35 111 21

· 2231

22 21
· 31

· 231 52 21
· 31

· 531 82 21
· 31

· 831 112 21
· 31

· 51
· 291

23 21
· 471 53 21

· 1071 83 21
· 1671 113 21

· 2271

24 21
· 31

· 51
· 71 54 21

· 33
· 71 84 22

· 31
· 72 114 21

· 2291

25 21
· 111 55 21

· 112 85 21
· 111 115 21

· 471

26 21
· 531 56 22

· 31
· 291 86 21

· 1731 116 22
· 31

· 591

27 21
· 34 57 21

· 32 87 21
· 591 117 21

· 791

28 21
· 31

· 291 58 21
· 31

· 591 88 21
· 31

· 51
· 231 118 22

· 31

29 21
· 591 59 21

· 31 89 21
· 1791 119 21

· 2391

30 21
· 32

· 111 60 21
· 31

· 71
· 111 90 21

· 33
· 111 120 21

· 31
· 52

· 71

Table 1. 8(n).
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Let us consider an upper bound of8 by using an “analytic” lower bound function
of ϕ given by Rosser and Schoenfeld. If we denote by γ Euler’s constant,6 it is
shown in [Rosser and Schoenfeld 1962, Theorem 15] that7

(5-3) ϕ(m) >
m

eγ log log m +
3

log log m

for m ≥ 3. We set
9(n) := Max{m ∈ Z>0 | ϕ(m)≤ 2n}.

We clearly have 8(n)≤9(n) for all n > 0.

Proposition 5.3. For any real number C > 2eγ , we have

9(n) < Cn log log n

for any n large enough.

Proof. The result should be well known as a consequence of Mertens’ theorem:

lim inf
n

ϕ(n) log log n
n

= e−γ .

Using (5-3) instead of Mertens’ theorem, we can obtain a slightly refined statement
(see Remark 5.4). So, for later use, we write down a proof with using (5-3). Put
f (x)= C log log x . Take any integer N > 0 satisfying the following: for all x > N ,

(i) f (x) > 1
x

ee2
, and

(ii) f (x) > 2eγ
(
log log(x f (x))+ 1

)
.

(The assumption C > 2eγ asserts the existence of such N .) Take any integer n > N .
It suffices to show n satisfies the desired inequality. Assume there exists an integer m
such that both ϕ(m)≤ 2n and m ≥ n f (n) hold. Since eγ > 3/(log log x) for x > ee2

and m (≥ n f (n)) > ee2
, we find

1
eγ

·
m

log log m + 1
<

m

eγ log log m +
3

log log m

< ϕ(m)≤ 2n

by (5-3). Also, n f (n)/(log log(n f (n))+1)≤ m/(log log m +1) since the function
x/(log log x +1) is strictly increasing for x > e and m ≥ n f (n) (> ee2

) > e. Hence
1
eγ

·
n f (n)

log log(n f (n))+ 1
< 2n,

which gives f (n) < 2eγ (log log(n f (n))+ 1). This contradicts condition (ii). We
conclude that if ϕ(m) ≤ 2n, then m < n f (n). This implies that 9(n) < n f (n) =

Cn log log n. □

6γ =
∫

∞

1
( 1
[x]

−
1
x
)

dx = 0.57721 . . . . Note also eγ = 1.78107 . . . .
7More precisely, that theorem states ϕ(m) >m/(eγ log log m + 5/(2 log log m)) for m ≥ 3 except

when m is the product of the first nine primes, m = 223092870 = 2 · 3 · 5 · ·7 · 11 · 13 · 17 · 19 · 23.
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n H(n)

1 24
· 31

2 28
· 32

· 51

3 211
· 34

· 51
· 71

4 216
· 35

· 52
· 71

5 219
· 36

· 52
· 71

· 111

6 223
· 38

· 53
· 72

· 111
· 131

7 226
· 39

· 53
· 72

· 111
· 131

8 232
· 310

· 54
· 72

· 111
· 131

· 171

9 235
· 313

· 54
· 73

· 111
· 131

· 171
· 191

10 239
· 314

· 56
· 73

· 112
· 131

· 171
· 191

11 242
· 315

· 56
· 73

· 112
· 131

· 171
· 191

· 231

12 247
· 317

· 57
· 74

· 112
· 132

· 171
· 191

· 231

13 250
· 318

· 57
· 74

· 112
· 132

· 171
· 191

· 231

14 254
· 319

· 58
· 74

· 112
· 132

· 171
· 191

· 231
· 291

15 257
· 321

· 58
· 75

· 113
· 132

· 171
· 191

· 231
· 291

· 311

16 264
· 322

· 59
· 75

· 113
· 132

· 172
· 191

· 231
· 291

· 311

17 267
· 323

· 59
· 75

· 113
· 132

· 172
· 191

· 231
· 291

· 311

18 271
· 326

· 510
· 76

· 113
· 133

· 172
· 192

· 231
· 291

· 311
· 371

19 274
· 327

· 510
· 76

· 113
· 133

· 172
· 192

· 231
· 291

· 311
· 371

20 279
· 328

· 512
· 76

· 114
· 133

· 172
· 192

· 231
· 291

· 311
· 371

· 411

21 282
· 330

· 512
· 78

· 114
· 133

· 172
· 192

· 231
· 291

· 311
· 371

· 411
· 431

22 286
· 331

· 513
· 78

· 114
· 133

· 172
· 192

· 232
· 291

· 311
· 371

· 411
· 431

23 289
· 332

· 513
· 78

· 114
· 133

· 172
· 192

· 232
· 291

· 311
· 371

· 411
· 431

· 471

24 295
· 334

· 514
· 79

· 114
· 134

· 173
· 192

· 232
· 291

· 311
· 371

· 411
· 431

· 471

25 298
· 335

· 514
· 79

· 115
· 134

· 173
· 192

· 232
· 291

· 311
· 371

· 411
· 431

· 471

Table 2. H(n).

Remark 5.4. For a given C , we can modify the phrase “for any n large enough” in
the statement of Proposition 5.3. For example, let us consider the case C = 4. By
studying (i) and (ii) in the above proof more carefully, we can show

9(n) < 4n log log n for any n > e(1.001e)9 .
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n G(n)

1 24
· 31

2 29
· 36

· 51
· 131

3 213
· 315

· 51
· 71

· 112
· 132

4 219
· 328

· 52
· 71

· 112
· 132

· 411
· 10931

5 223
· 345

· 52
· 71

· 114
· 133

· 411
· 611

· 7571
· 10931

6 228
· 366

· 53
· 72

· 114
· 134

· 231
· 411

· 611
· 731

· 7571
· 10931

· 38511

7 232
· 391

· 53
· 72

· 114
· 134

· 231
· 411

· 611
· 731

· 5471
· 7571

· 10932
· 38511

· 7971611

Table 3. G(n) (for p ̸= 3).

Here we check the above inequality. Condition (ii) is equivalent to

(log x)C/(2eγ )−1 > e
(

1 +
log(C log log x)

log x

)
.

We assume x > ee9
. Since C/(2eγ )−1> 4

3.6 −1 =
1
9 and log(C log log x)/log x <

0.001, inequality (ii) holds if (log x)
1
9 > 1.001e, that is, x > e(1.001e)9 . Note that (i)

clearly holds for such x .
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