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This collaborative work was based on the proposed problem and prior work of our senior member,
Kenan İnce. After several years of work and the writing and submission of this paper, Kenan passed
away unexpectedly. They were an exceptional human, mathematician, and advocate. We dedicate this

paper to them.

The untwisting number of a knot K is the minimum number of null-homologous
twists required to convert K to the unknot. Such a twist can be viewed as
a generalization of a crossing change, since a classical crossing change can
be effected by a null-homologous twist on 2 strands. While the unknotting
number gives an upper bound on the smooth 4-genus, the untwisting number
gives an upper bound on the topological 4-genus. The surgery description
number, which allows multiple null-homologous twists in a single twisting
region to count as one operation, lies between the topological 4-genus and
the untwisting number. We show that the untwisting and surgery description
numbers are different for infinitely many knots, though we also find that the
untwisting number is at most twice the surgery description number plus 1.

1. Introduction

Given two knot diagrams D1, D2 of knots K1, K2 which differ only inside small
disks 1 ⊂ D1, 1′

⊂ D2 containing at least one crossing, a local move on K1 is
the act of replacing 1 with 1′, and hence converting D1 to D2. An unknotting
operation is a local move such that, for any diagram D of a knot K , we may
transform D into a diagram of the unknot via a finite sequence of these local
moves. A natural question in knot theory is: given an unknotting operation and
a knot K , how many such operations are needed to turn K into the unknot? The
most common such unknotting operation is a crossing change, which gives rise
to the unknotting number u(K ). While the unknotting number is quite simple to
define, its computation is frequently difficult. For example, Milnor’s conjecture
about the unknotting number of torus knots was only proven about 25 years later
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Figure 1. A left-handed null-homologous twist on 4 strands.

by Kronheimer and Mrowka [1993; 1995]. In this paper, we study additional
unknotting operations, many of which are generalizations of the crossing change.
See Table 1 for an organized list of the related invariants.

One of the primary unknotting operations studied in this paper is a null-homolog-
ous twist. Mathieu and Domergue [1988] defined this generalization of unknot-
ting number and it was subsequently considered by Livingston [2002]. A null-
homologous twist on a knot K is the result of a ±1-surgery on a null-homologous
unknot U ⊂ S3

− K bounding a disk D such that D∩ K = 2k points for any k ∈ Z≥1.
Diagrammatically, this is the result of adding a full right- or left-handed twist in the
twisting region indicated by the unknot U, where lk(K , U ) = 0. See Figure 1 for a
diagrammatic representation. It is described in [Ince 2016] how a crossing change
may be encoded as a null-homologous twist where D ∩ K = 2. In particular, this
implies null-homologous twists are unknotting operations.

The corresponding knot invariant is the untwisting number tu(K ), which is
defined as the minimum length, taken over all diagrams of K , of a sequence of
null-homologous twists beginning at K and resulting in the unknot. This has been
the subject of much research in recent years [Baader et al. 2020; Ince 2016; 2017;
Livingston 2021; McCoy 2021a; 2021b].

There are many variations of the unknotting number and untwisting number, see
Table 1. One variant we will study, due to Nakanishi [2005] (and called the “surgical
description number” in that paper), is what we and many other authors call the
surgery description number sd(K ) of a knot. Again we consider null-homologous
twists but now allow any number of full twists to be added in the twisting region;
we may call this a null-homologous m-twist for m ∈ Z to specify the number of
twists (with sign) being effected. Then sd(K ) is the minimal number of m-twists
necessary to unknot K . (Here, the value of m may change from move to move.)

Another natural variant (due to Murakami [1990]) is the algebraic unknotting
number ua(K ), the minimum number of crossing changes necessary to turn a given
knot into an Alexander polynomial-one knot. Freedman [1982] showed that knots
with Alexander polynomial equal to one are topologically slice (in other words,
with topological 4-genus gtop

4 = 0); topologically slice knots are indistinguishable
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invariant definition

u(K ) unknotting number of K , i.e., minimal number of crossing
changes to unknot

ua(K ) alg. unknotting number, minimal number of crossing
changes to Alexander polynomial-one knot

tua(K ) alg. untwisting number, minimal number of null-homologous
twists to Alexander polynomial-one knot

tu(K ) untwisting number, i.e., the minimal number of null-homologous
twists to unknot

sd(K ) surgery description number, i.e., the minimal number
of null-homologous multitwists (on the same region of K ) to unknot

sda(K ) algebraic surgery description number, i.e., the minimal number
of null-homologous multitwists (on the same region of K )
to Alexander polynomial-one knot

galg(K ) algebraic genus, i.e., minimal difference in genus between
a Seifert surface F for K and a subsurface whose boundary is an
Alexander polynomial-one knot

Table 1. Overview of knot invariants appearing in this paper.

from the unknot by classical invariants, or knot invariants derived from the Seifert
matrix. We consider the similarly defined algebraic untwisting number tua(K )

and algebraic surgery description number sda(K ), measuring the number of null-
homologous twists or m-twists, respectively, needed to obtain a knot with Alexander
polynomial-one, as well.

A tight classical upper bound on the topological 4-genus gtop
4 of a knot is the

algebraic genus galg defined in [Feller and Lewark 2018]. Distinguishing the
algebraic genus from other upper bounds on gtop

4 , such as the algebraic unknotting
number, is often achieved by using the bound galg ≤ g3, where g3(K ) is the 3-genus
of K . In Section 3, we provide the first (to our knowledge) known infinite family
of knots Ln for which galg(Ln) < ua(Ln) for all n ∈ N, and since the 3-genus of
our examples is large, we do so without using g3.

The untwisting number connects to recent work of Manolescu and Piccirillo
[2023] on candidates for exotic definite 4-manifolds, which uses the concept of
strong H-sliceness in definite connected sums of ±CP2. (See Section 3 for a
related definition.) It follows from Proposition 4.1 of [Ince 2017] that, if K can
be unknotted using n positive (respectively, negative) nullhomologous twists, then
K is strongly topologically H -slice in X := B4#n

∓ CP2 ∼= #n
∓ CP2. We use this

fact to obstruct knots from having sda = 1 in Section 3.
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Results. Our main results involve various relationships between the untwisting
number and the surgery description number. To start, we give the first known
examples (to the authors’ knowledge) such that sd ̸= tu. See Section 4 for a
description of these knots.

Theorem 1.1. There are infinitely many knots {Kn} with sd(Kn)=1 and tu(Kn)=2.

This, of course, leads to questions about how far apart the surgery description
number and the untwisting number can be.

Question 1.2. Can tu and sd be arbitrarily far apart?

Answering such a question is made more difficult by the close relationships
between tu and sd both in definition and in values, demonstrated by the two results:

Theorem 1.3. Let K ⊂ S3 be a knot. Then sda(K ) ≤ tua(K ) ≤ 2 sda(K ).

Theorem 1.4. Let K ⊂ S3 be a knot. Then sd(K ) ≤ tu(K ) ≤ 2 sd(K ) + 1.

The proof of Theorem 1.3 relies on the work of Duncan McCoy [2021b] relating
the untwisting number to the algebraic genus. The proof of Theorem 1.4 is con-
structive (involving surgery diagrams and Kirby calculus) and allows one to reduce
multiple twists in a single region to at most 3 twists in separate regions.

Organization. In Section 2, we give formal definitions of all relevant invariants, as
well as some useful prior results. We also prove Theorem 1.3 as a consequence of
[McCoy 2021b]. We prove Theorem 1.1 in Section 4 by providing an infinite family
of examples where the invariants disagree. Theorem 1.4 is proved in Section 5.

2. Algebraic untwisting invariants

One way to study an unknotting operation is to analyze its impact on the Alexander
polynomial of a knot. The effect of an operation on the Alexander polynomial gives
rise to algebraic unknotting operations:

Definition 2.1. Given an unknotting operation U and a knot K , the algebraic U-
number Ua(K ) is the minimal number of U-operations that must be performed in
order to convert K into a knot with Alexander polynomial-one.

We certainly have that Ua(K ) ≤ U(K ) for any unknotting operation U and
knot K . A lower bound on the algebraic unknotting and untwisting numbers is the
topological 4-genus. Another (typically tighter) upper bound on the topological
4-genus is the algebraic genus, defined by Feller and Lewark [2018].

Definition 2.2. The algebraic genus galg(K ) of a knot K is the minimum difference
in genus g(F)− g(F ′) between a Seifert surface F for K and a subsurface F ′

⊂ F
with the property that ∂ F ′

= K ′ is a knot with 1K ′(t) = 1.
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We note that Definition 2.2 implies that a knot K has galg(K ) = 0 if and only if
1K (t) = 1. McCoy proves the following useful characterization of the sensitivity
of the algebraic genus to null-homologous twisting.

Theorem 2.3 [McCoy 2021b, Theorem 1.1]. If K and K ′ are knots and m, n ∈ Z

are such that a null-homologous m-twist followed by a null-homologous n-twist
on K results in K ′ and −mn is a square, then

|galg(K ) − galg(K ′)| ≤ 1.

Proposition 2.4 [McCoy 2021b, Proposition 3.1]. Given a knot K with galg(K )> 0,
there exists a knot K ′ with galg(K ′) = galg(K ) − 1 such that K can be obtained
from K ′ by one right-handed and one left-handed null-homologous twist.

Feller and Lewark [2018] show that for a knot K the algebraic genus and the
algebraic unknotting number are related by galg(K ) ≤ ua(K ) ≤ 2galg(K ). We will
show that in fact

(2.5) galg(K ) ≤ sda(K ) ≤ ua(K ) ≤ 2galg(K ) ≤ 2 sda(K )

and that sda(K ) can provide a better lower bound for ua(K ) than galg(K ). We
begin by showing that the algebraic genus is in fact a lower bound on the algebraic
surgery description number.

Proposition 2.6. Let K ⊂ S3 be a knot. Then galg(K ) ≤ sda(K ).

Proof. Suppose that K is a knot with sda(K ) = k. Then there exists a sequence of k
null-homologous mi -twists (for 1 ≤ i ≤ k) converting K to a knot with Alexander
polynomial-one (which by definition has algebraic genus 0). By Theorem 2.3 (with
n = 0), each of these mi -twists decreases the algebraic genus by at most 1, whence
galg(K ) ≤ k. □

Note that in conjunction with the fact that gtop
4 ≤ galg we have that sda and sd are

upper bounds on the topological 4-genus. Before proving Theorem 1.3, we need to
note the following result of İnce.

Theorem 2.7 [Ince 2016, Theorem 1.1]. Let K ⊂ S3 be a knot. Then we have
ua(K ) = tua(K ).

We are now ready to prove Theorem 1.3: that, sda(K ) ≤ tua(K ) ≤ 2 sda(K ) for
any knot K .

Proof of Theorem 1.3 and inequality (2.5). Since any single null-homologous twist
is an m-twist with m = ±1, we have sda(K ) ≤ tua(K ) for any knot K . Combining
Proposition 2.6 with Feller and Lewark’s [2018] result that ua(K ) ≤ 2galg(K ), we
have that ua(K ) ≤ 2 sda(K ). Theorem 1.3 and inequality (2.5) now follow from
Theorem 2.7. □
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Note. Borodzik [2019] showed that the minimal number of null-homologous twists
on two strands needed to convert a knot K into a knot with Alexander polynomial-
one is always less than three times the algebraic surgery description number. In
fact, our Theorem 1.3, together with the fact that a crossing change is a special case
of a null-homologous two-strand twist and the fact that ua = tua , refines this upper
bound to twice the algebraic surgery description number.

Even though the algebraic unknotting ua(K ) and untwisting numbers tua(K )

coincide, the algebraic surgery description number sda(K ) can be strictly less than
ua(K ) = tua(K ); this is the content of Corollary 4.4.

To conclude that the algebraic surgery description number sda(K ) can be a
better lower bound on the algebraic unknotting number ua(K ) than the algebraic
genus galg(K ), we should show that there is a knot for which galg(K ) ̸= sda(K ).
We provide infinitely many examples with this property in the next section.

3. Infinite families of knots with galg < sda

A knot K ⊂ S3 is called topologically H-slice in a closed, smooth 4-manifold M
if K ⊂ ∂(M \ B4) bounds a locally flat, properly embedded, null-homologous
topological disk in M \ B4. In the context of this paper, if a knot K can be converted
to a knot which is topologically slice in B4 via only left-handed or, respectively,
only right-handed nullhomologous m-twists, then K is topologically H -slice in
#n ±CP2 for some n. The following proposition is well known and follows from, for
instance, [Conway and Nagel 2020, Theorem 3.8]. To interpret their theorem in our
setting, consider a knot K (trivially a colored link) which bounds a null-homologous
disk D in #mCP2. Here D can be thought of as an annular cobordism from K to
the unknot with no double-points.

Proposition 3.1. If a knot K is topologically H-slice in #mCP2, then for any ω ∈ S1

with 1K (ω) ̸= 0,
−2m ≤ σK (ω) ≤ 0,

where σK (ω) is the Levine–Tristram signature function of K.

In particular, the proposition above implies that if the signature function of a
knot takes on both positive and negative values, then sda ̸= 1.

Theorem 3.2. If K and K ′ are knots such that

• ua(K ) = ua(K ′) = 1,

• the signature function of K takes a positive value at a nonroot of 1K (t), and

• the signature function of K ′ takes a negative value at a nonroot of 1K ′(t),

then galg(K #K ′) = 1. If , in addition, the signature function of K #K ′ takes both pos-
itive and negative values at a nonroot of 1K #K ′(t), then galg(K #K ′) < sda(K #K ′).
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Proof. Suppose K and K ′ are knots which satisfy the assumptions of Theorem 3.2.
Now consider the knot J = K #K ′. Note that because K and K ′ have nontrivial
signature functions, neither K nor K ′ has Alexander polynomial-one. So 1J (t) ̸= 1
and galg(J ) ̸=0. Because ua(K )=ua(K ′)=1, the knots K and K ′ can be converted
into knots with Alexander polynomial-one via a single crossing change. Recall
that a crossing change can change the Levine–Tristram signature function by at
most ±2, where the sign depends on the sign of the crossing change (see, for
example, [Conway 2021, Proposition 3(1)]). This implies that the crossing changes
converting K and K ′ to knots with trivial Alexander polynomial can be taken to be
of opposite signs. So the knot J can be converted into a knot J ′ with 1J ′(t) = 1
via a sequence of two crossing changes, one positive and one negative. Since a
crossing change can be realized by single null-homologous twist, by Theorem 2.3
we have that

|galg(J ) − galg(J ′)| ≤ 1.

Because 1J ′(t) = 1, we have that galg(J ′) = 0. So galg(J ) = 1 as desired.
Now, suppose that K and K ′ also satisfy that σJ (ω)=σK (ω)+σK ′(ω) takes both

positive and negative values. By Proposition 3.1, J = K #K ′ is not topologically
H -slice in #m ± CP2 for any m ∈ N. In particular, J cannot be converted to a
topologically slice knot using a single null-homologous m-twist. Thus we have
sda(J ) > 1. □

Theorem 3.3. There exists an infinite family {Kn}
∞

n=2 of prime knots such that
galg(Kn) < sda(Kn) for all n ≥ 2.

Note. In fact, since the Levine–Tristram signature and algebraic unknotting number
of a knot K are invariants of the S-equivalence class of its Seifert matrix, for
any Seifert matrices V, V ′ satisfying the conditions of Theorem 3.2, there exist
infinitely many knots K , K ′ with Seifert matrices in the S-equivalence classes
of V, V ′, respectively, satisfying the conclusions of the theorem. In particular,
our Kn can be chosen to have any adjective (e.g., hyperbolic, quasipositive, . . . )
for which there are infinitely many representative knots with that property in each
S-equivalence class, since our proof relies only on the S-equivalence class of Kn .

In the proof below, we exhibit a concrete family of prime knots via cabling
because cabling seems to be of independent interest.

Proof. Suppose that K and K ′ are knots which satisfy all the assumptions of
Theorem 3.2. For example, we can take K = 1032 and K ′

= −1082 (see Figure 2).
For n ≥ 2, let Kn := (K #K ′)n,1, the (n, 1)-cable of K #K ′. Note that the (n, 1)-
cable of any knot (where n ≥ 2) is prime by [Cromwell 2004, Theorem 4.4.1].
Then we have that galg(Kn) ̸= 0 because 1Kn (t) = 1T (n,1)(t) · 1K1#K2(t

n) ̸= 1
(by [Lickorish 1997, Theorem 6.15] since galg(K1#K2) ̸= 0). On the other hand,
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Figure 2. Top: the knots 1032 (left) and 1082 (right) with red unknots
indicating an unknotting crossing change for each. Bottom: the Levine–
Tristram signature functions for 1032 and −1082 (reparametrized so
that ω = e2π i t ).

Feller et al. [2022] tells us how galg acts under satellite operations. In particular,
galg(Kn)≤ galg(T (n, 1))+galg(K1#K2)= 1, where T (n, 1) denotes the (n, 1)-torus
knot. So we have that galg(Kn) = 1.

Also, by [Litherland 1979, Theorem 2], σKn (ω)=σT (n,1)(ω)+σK1#K2(ω
n). Since

σK1#K2(ω) takes both positive and negative values, so does σKn (ω) = σK1#K2(ω
n).

Proposition 3.1 then implies that sda(Kn) > 1. □

We remark that, for any knot K with galg(K )= 1 and sda(K )≥ 2, inequality (2.5)
implies that sda(K ) = ua(K ) = 2. In particular, the knots Kn from Theorem 3.3
satisfy galg(Kn) = 1 < 2 = sda(Kn) = ua(Kn) for all n ≥ 2. A literature search
suggests that {Kn} is the first known infinite family of knots for which galg < ua .
Note that, in [Feller and Lewark 2018], the 3-genus is used to distinguish between
galg and ua for various knots since galg(K )≤ g3(K ) while ua ≤ 2g3(K ). In our case,
the 3-genus of the Kn grows large, and we use a different strategy for distinguishing
between galg and ua .

4. Relationships between the surgery description and untwisting numbers

In the last section, we found an infinite family of knots for which ua = tua = sda = 2.
Other examples can be found where ua = tua = sda are abundant. We now endeavor
to find examples where the two quantities (and other similar quantities) disagree.
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In particular, in this section, we examine the square of inequalities below, and show
that each inequality can be strict for infinitely many knots:

(4.1)

sda ≤ tua

≤ ≤

sd ≤ tu

It is easy to find infinitely many knots such that the vertical inequalities in (4.1)
are strict; for example, any nontrivial knots with Alexander polynomial-one satisfy
sda < sd and tua < tu. Finding such examples for the horizontal inequalities in (4.1)
is more challenging.

It is known that u(K ) and tu(K ) can be arbitrarily different [Ince 2016]. In
contrast, we can find no examples of knots in the literature with sd(K ) ̸= tu(K ).
We provide the first known examples below; in fact, we find an infinite family {Kn}

of knots satisfying the stronger inequality sd(Kn) < tua(Kn) for all n ≥ 2. This is
the content of Theorem 1.1. The same family provides infinitely many examples
where sda < tua = ua .

For the proof of Theorem 1.1, we employ an obstruction to a knot having
algebraic unknotting number 1 due to Borodzik and Friedl [2015], which in turn
generalizes an unknotting number 1 obstruction due to Lickorish [1985]. The
obstruction involves the linking pairing on the first homology of the double-branched
cover 6(K ); see, e.g., [Gordon 1978] for a discussion of the linking pairing.

Theorem 4.2 [Borodzik and Friedl 2015, Theorems 4.5 and 4.6]. If a knot K can be
algebraically unknotted by a single crossing change, then there exists a generator h
of H1(6(K ); Z) such that its linking pairing satisfies

l(h, h) =
±2

det(K )
∈ Q/Z.

The proof of Theorem 1.1 follows Lickorish’s proof that the knot P(3, 1, 3) does
not have unknotting number 1 (the main theorem of Lickorish [1985]).

Theorem 1.1. There are infinitely many knots {Kn} with sd(Kn) = 1 and tu(Kn) =

tua(Kn) = 2.

Proof. Suppose the family Kn is the set of pretzel knots of the form P(10n+3, 1, 3);
see Figure 3 for two isotopic diagrams and note that the boxed numbers represent
half-twists. We first note that sd(Kn) = 1 by performing the +1/2-surgery (or
equivalently a −2-twist) on the curve C indicated in the figure. After the surgery,
we obtain the pretzel knots P(10n + 3, 1, −1), all of which are isotopic to the
unknot.
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10n + 3

10n + 3

C

Figure 3. Diagrams of the Pretzel knots Kn = P(10n + 3, 1, 3);
the boxed numbers represent half-twists. Left: a standard diagram
for 3-strand pretzel knots, together with an unknotted curve C
where a +1/2 Dehn surgery can be applied to convert Kn to the
unknot. Right: a diagram for the same knot in which it is more
clear that the knots are two-bridge. In fact, they have Conway
notation C(10n + 3, 1, 3).

To conclude that tu(Kn) = 2, it is enough to show that tu(Kn) ̸= 1; tu(Kn) ≤ 2
since the surgery description move can be effected by two (single) null-homologous
twists.

To show that tu(Kn) ̸=1, first recall that tua(K )≤ tu(K ) and that tua(K )=ua(K )

for any knot K . Note that 1Kn (t) ̸= 1 for each n ≥ 2 (see, e.g., [Lickorish 1997,
Example 6.9]), so that tua(Kn) ̸= 0. We then assume that tua(Kn) = 1 for contra-
diction, and prove that the linking pairing on H1(6(Kn); Z) does not satisfy the
condition in Theorem 4.2 for any n ≥ 1.

First, note that the knots Kn are 2-bridge; see Figure 3. Each two-bridge knot
has a (nonunique) associated fraction p/q with the property that 62(K ) ∼= L(p, q);
see, e.g., [Kawauchi 1996, Chapter 2] for a discussion of two-bridge knots. In fact,
{Kn} are precisely those 2-bridge knots with continued fraction of the form

[10n + 3, 1, 3] = 10n + 3 +
1

1+
1
3

=
40n+15

4
.

Hence the double-branched covers of these knots 6(Kn) ∼= L(40n + 15, 4) are
lens spaces. So in particular, 6(Kn) can be obtained as surgery on a knot J (in fact
the unknot) via 40n+15

4 -surgery. This implies that H1(6(Kn); Z) is cyclic of order
40n + 15 generated by µ the image of a meridian of J after surgery, and moreover
that l(µ, µ) =

4
40n+15 [Lickorish 1985].

Any generator h of H1(6(Kn)) is of the form h = tµ for some integer t . Let h
be the generator which must exist according to Theorem 4.2 so that

(4.3) ±2
40n+15

= l(h, h) = l(tµ, tµ) = t2
· l(µ, µ) =

4t2

40n+15
∈ Q/Z.
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Figure 4. The knots 1068 (left) and 11a103 (right) can be converted
to the unknot by inserting two left (resp. right)-handed twists in
the regions indicated by the red unknots.

For the two fractions on the far left and far right of (4.3) to be equivalent in Q/Z,
we must have ±2 ≡ 4t2 (mod 40n+15) so that ±2 must be a square (mod 40n+15).
We will show that this is not true.

If ±2 is a square (mod 40n + 15) then it also must be a square (mod a) where a
is any factor of 40n + 15. In particular, ±2 must be a square (mod 5). But neither
−2 ≡ 3 nor 2 are squares (mod 5). This is a contradiction, and hence tua(Kn) ̸= 1
for each n, which forces tu(Kn) ̸= 1. □

Since sda(K ) ≤ sd(K ) for all knots K , the next corollary immediately follows.

Corollary 4.4. There are infinitely many knots {Kn} for which sda(Kn) = 1 while
tua(Kn) = ua(Kn) = 2.

Note that Corollary 4.4 is the biggest gap we could hope for in the sense that
sda(K ) ≤ tua(K ) = ua(K ) ≤ 2 sda(K ).

While Theorem 1.1 provides infinitely many examples where sd < tua , one
might ask if sd ≤ tua in general. The following theorem provides an answer to this
question in the negative.

Theorem 4.5. The (p, 1)-cable of the untwisted Whitehead double of any nontrivial
knot, which we denote Dp, has tua(Dp) = ua(Dp) = 0 < 1 = sd(Dp) for all p ∈ N.

Proof. First, note that the Alexander polynomial of Dp, for any p, is equal to 1 (see
the cabling relation in [Lickorish 1997]). Thus tua(Dp) = 0. On the other hand,
since Dp is not unknotted, we must have that sd(Dp) ≥ 1. In fact, one can see
that sd(Dp) = 1 by performing a single null-homologous twist about the clasping
region in the untwisted Whitehead double. □

Note. To distinguish between sd and tu, obstructions from Heegaard–Floer homol-
ogy can be used, though this seems feasible only to show that sd = 1 < 2 = tu
for individual knots. In particular, the sd-moves in Figure 4 show that the knots
1068 and 11a103 have sd(K ) = 1, though the facts that tu(1068), tu(11a103) = 2 are
results of [Ince 2017, Theorems 1.3, 1.4].
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For all examples we produce with sd ̸= tu the two invariants in fact only differ
by 1. In Section 5 below, we will prove Theorem 1.4 which states that the ratio
of tu to sd is at most 3. This leaves open the following question.

Question 4.6. Does there exist a knot K with sd(K ) = 1 but tu(K ) = 3, or in
general so that tu(K ) = 2 sd(K ) + 1?

Note that the techniques used in the proof of Theorem 1.1 cannot be used to
obstruct a knot K with sd(K ) = 1 from having tu(K ) ≤ 2 since the algebraic
invariants can differ at most by a factor of 2 by Theorem 1.3. It also seems unlikely
that the Floer theoretic techniques of Ince [2017] would alone be enough to answer
Question 4.6 given the difficulty in obstructing knots from being H -slice in indefinite
4-manifolds [Kjuchukova et al. 2021]. Thus, new techniques are likely needed to
answer the question above.

5. An inequality relating surgery description number and untwisting number

In the previous section we asked whether a knot K with sd(K ) = 1 and tu(K ) = 3
can exist, or more generally, if a knot with 2 sd(K ) + 1 = tu(K ) exists. In this
section, we show that the untwisting number is at most twice the surgery description
number plus 1.

The following theorem was inspired by the work of Borodzik [2019] on algebraic
k-simple knots. In addition, Duncan McCoy suggested the last portion of the proof
of Theorem 1.4, improving the upper bound from an earlier version of the paper.

Theorem 1.4. For any knot K , we have that sd(K ) ≤ tu(K ) ≤ 2 sd(K ) + 1.

Note that while the following proof involves a series of Kirby calculus moves, the
moves used are slam dunk moves (away from the knot), and handle slides involving
only the added components (never the original knot); thus none of the moves alter
the isotopy class of the knot. The result is diagrammatic. For a reference on Kirby
calculus, see [Gompf and Stipsicz 1999].

Proof. The first inequality is clear from the definitions. To show the second
inequality, we will first show that an unknot of framing ±1/(2k + 1) which is null-
homologous in the complement of K can be replaced (via careful Kirby calculus)
with two unlinked, null-homologous unknots, one with framing +1 and one with
framing −1. Thus 2k + 1 full twists in a single twisting region can be realized by a
sequence of two full twists (of opposite signs) in some diagram of K . This process
(Procedure 1) is described below; an example in the case of five left-handed twists
is shown in Figure 5. Throughout, we abuse notation and keep names of unknots
unchanged after they have undergone a handle slide.
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Figure 5. A sequence of Kirby moves which shows that apply-
ing 5 parallel null-homologous twists can be obtained by two null-
homologous twists. Top row: effecting null-homologous twist(s) (left)
and a slam dunk move (right). From second row: handle addition (left)
and isotopy (right).

Procedure 1. (1) Use a reverse slam dunk move to view the ±1/(2k + 1)-framed
unknot as a 0-framed unknot U1 geometrically linked once with a ∓(2k +1)-framed
unknot U2 as in Figure 5 (top row).

(2) By repeatedly sliding U2 over U1, one can change the framing on U2 to ∓1. See
Figure 5 (second and third row). Note that, in each handle slide, only the portion
of U2 near U1 is affected. While this changes how K and U2 are geometrically
linked, the unknots U1 and U2 remain linked once.
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(3) Finally, slide U1 over U2. This has the effect of changing the framing of U1

by ∓1. See Figure 5 (third row, right and bottom row, left). After an isotopy
(Figure 5, bottom row, right), it is not hard to see that the resulting U1 and U2 are
unlinked.

We now show that unknots with framings ±1 and ±1/(2k) which are null-
homologous in the complement of K can be replaced (again, via Kirby calculus)
with three unlinked, null-homologous unknots, two with framings ±1 and one with
framing ∓1. The process is described below; an example is shown in Figure 6.

Procedure 2. (1) Use a reverse slam dunk move to view the ±1/(2k)-framed
unknot as a 0-framed unknot U1 geometrically linked once with a ∓(2k)-framed
unknot U2 as in Figure 6 (top row).

(2) At the beginning of the procedure we assumed we had unknots with framings
±1 and ±1/(2k). Call the unknot with ±1 framing U3. Slide U2 over U3 with
framing ±1 to change the framing on U2 by 1. See 6 (middle row, left). At this
stage, U2 is linked with both U1 and U3.

(3) Slide U3 over U1 in order to unlink U3 from U2. The result is that, after an
isotopy, U3 is completely unlinked from U1 and U2. In addition, U1 and U2 are
in position to perform the procedure from the previous paragraph. See Figure 6
(middle row, right and bottom row).

(4) Apply steps (2) and (3) of Procedure 1.

1/4

+1

0+1 − 4

0

+1

− 3
0

+1− 3

0

+1

− 3

Figure 6. A sequence of Kirby moves to replace +1- and +1/4-framed
null-homologous unknots in the knot complement with an unlinked +1-
framed component and two components linked once, one with framing 0.
Top row: null-homologous unknots in knot complement (left) and a
slam dunk move (right). Middle row: handle addition. Bottom: isotopy.
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Thus, to see the upper bound, consider the following cases.

• First, if the surgery description number can be realized using only ±(2k + 1)-
moves (odd numbers of full twists in each twisting region), then we apply Proce-
dure 1 to reduce each (2k + 1)-move to a +1- and −1-move. Thus, in this case,
tu(K ) ≤ 2 sd(K ).
• Second, if at least one ±(2k)-move (even number of full twists in a single twisting
region) is required to realize the surgery description number, then replace one of the
±(2k)-moves with parallel ±1- and ±(2k −1)-framed unknots. Call the ±1-framed
unknot U3 and now use Procedure 2 with U3 to reduce each remaining ±(2k)-moves
to a +1- and −1-move. Thus, tu(K ) ≤ 2 sd(K ) + 1. □

Note. In the proof of Theorem 1.4, the upper bound of 2 sd(K ) + 1 can only be
sharp when every minimal sd-sequence for K involves only even numbers of full
twists. In all other cases, consider a minimal sd-sequence which involves at least
one null-homologous (2k + 1)-twist for some k ∈ Z. We may use Procedure 1 on
all ±1/(2k + 1)-framed unknots to convert each into two ±1-framed unknots, then
use Procedure 2 on all ±1/(2k)-framed unknots (if one exists) using one of the
±1-framed unknots obtained via Procedure 1 to build an untwisting sequence of
length 2 sd(K ).
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