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HIGHER-GENUS QUANTUM K -THEORY

YOU-CHENG CHOU, LEO HERR AND YUAN-PIN LEE

We prove genus g invariants in quantum K-theory are determined by genus
zero invariants of a smooth stack in the spirit of K. Costello’s result in
Gromov–Witten theory.

0. Introduction

Let X be a smooth quasiprojective variety over C. Let Mg,R(X, β) be the space
of genus g, R-pointed stable maps to X with degree β. The perfect obstruction
theory on Mg,R(X, β) [Behrend and Fantechi 1997] endows the moduli stack with
a “virtual structure sheaf” Ovir

Mg,R(X,β)
[Lee 2004].

Let αi ∈ K ◦(X) and L i be the universal cotangent line bundles. When the
insertion

� :=
∑

I

aI

R∏
i=1

Lki
i ⊗ ev∗i αi

has an action by SR , the permutation-equivariant pushforward

(1)
∑

j

(−1) j H j (Mg,R(X, β),Ovir
⊗�)

is an element in the Grothendieck group of SR-representations with ⊕, i.e., virtual
representations. We can also take a subgroup of SR instead. These are by definition
the permutation-equivariant quantum K-invariants.

The main theorem of this paper is the following.

Theorem 0.1 (see Theorem 3.1). Genus g quantum K-invariants on X can be
computed from permutation-equivariant genus zero quantum K-invariants on

[Symg+1 X ] = [X g+1/Sg+1].

A similar statement holds for X a smooth DM stack with projective coarse moduli
space.
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We believe the higher-genus permutation-equivariant quantum K-theory of X can
also be computed from genus zero theory of [Symg+1 X ] by extending our methods.

When the target, X itself or [Symg+1 X ], is a Deligne–Mumford stack, the
definition of Mg,R(X, β) involves twisted/orbifold curves and twisted stable maps.
The domain curves are families of pointed nodal curves with cyclic gerbe structures
at the marked points and nodes, such that the gerbe structures at the nodes are
balanced. This means they are locally stack quotients of the node R[x, y]/(xy) by
the antidiagonal action

ζ.(x, y) := (ζ x, ζ−1 y), ζ ∈ µr .

Note that we do not require the µr -gerbe structures at the marked points to be trivial
in families as in [Costello 2006]. Twisted stable maps are representable morphisms
from twisted curves to the target with finite automorphisms. Mg,R(X, β) are the
moduli stacks of (twisted) stable maps with the discrete data g, R, β.

Hence, the marked points are no longer literal “points”, but gerbes. Due to
the nontrivial gerbes at the marked points, the evaluation maps have the natural
codomain a partially rigidified inertia stack Ī(X), instead of the inertia stack IX .
This has been done in [Chen and Ruan 2002; 2004] and [Abramovich et al. 2008]
in the context of cohomology and Chow groups.

We only need one class pulled back from Ī(−) as opposed to ordinary K-theory,
which comes from [Symk X ] for some k ≤ g+ 1 in Section 3B. We do not need the
full K-theory of Ī([Symg+1 X ]).

The appearance of permutation-equivariant K-theory is quite natural, not simply
a “technical clutch”. In cohomological Gromov–Witten theory, we often rely
on the fact that the substacks (“strata”) appearing in “common operations” (e.g.,
fixed-point loci in torus localizations or the components of inertia stacks of the
moduli) are variants of known quantities in the sense of induction. These variants
can be identified with the actual known quantities in Gromov–Witten theory by
simple modifications. For example, for the purpose of computing Gromov–Witten
invariants, we have ∫

[M/Sn]

· · · =
1
n!

∫
[M]
π∗( . . . ).

These equalities are no longer true in quantum K-theory. In fact, we have

χ([M/Sn], . . . )= χSn (M, π
∗( . . . ))Sn .

We note that K-theory on [M/Sn] can be identified with the Sn-equivariant K-
theory on M , and χSn (−)

Sn is the pushforward in the Sn-equivariant theory, i.e.,
the Sn-invariant part (−)Sn of alternating sum of sheaf cohomologies viewed as
Sn representations χSn (−). This necessitates permutation-equivariant quantum
K-theory.
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Quantum K-theory has already been defined for stacks; see, e.g., [Tonita and
Tseng 2013] and [Zhang, Section 2.4]. A comparison of the quantum K-theories
with trivial and nontrivial gerbes at marked points can be found in [Zhang, Remark
2.8]. See also [Abramovich et al. 2002, Sections 4.4, 4.5] in the cohomological
context. We allow nontrivial gerbes and recall the basic definitions in Section 1E.

Quantum K-invariants are roughly Gromov–Witten invariants computed in K-
theory instead of cohomology or Chow groups. The idea of computing genus g
Gromov–Witten invariants of any smooth projective variety X in terms of genus zero
quantum K-invariants of quotient stack [Symg+1 X ] goes back to M. Kontsevich
and was independently obtained in K. Costello’s thesis [Costello 2006]. This paper
can be considered as a K-theoretic version of this circle of ideas.

The calculation of genus zero quantum K-theoretic invariants is simpler and
self-contained, while the higher-genus invariants necessarily involve invariants of
lower genus. Genus-0 quantum K-theory is much better understood, with additional
finite difference structure in addition to the usual D-module structure.

Quantum K-theory has connections with modern enumerative geometry, inte-
grable systems, representation theory, geometric combinatorics and theoretical
physics. Its influence on theoretical physics is largely its relation to 3-dimensional
topological field theory. See the pioneering works of N. Nekrasov, H. Jockers,
P. Mayr etc. [Jockers and Mayr 2019; 2020]. For its connection to representation
theory, see [Okounkov 2017]. At the very onset of the quantum K-theory, it was
intimately connected to integrable systems. See, for example, [Givental and Lee
2003]. It has also inspired much progress in geometric combinatorics through works
like [Buch and Mihalcea 2011; Buch et al. 2013; 2020]. Most of these works are in
genus zero. We hope that our algorithm will prove useful in the further development
of higher-genus quantum K-theory.

We work exclusively with schemes, stacks, etc. locally of finite-type over the
complex numbers C. In particular, they are locally noetherian.

1. Higher-genus quantum K-invariants

Let C ′ be a general genus g smooth curve with a general divisor B of degree
d = g + 1. There is exactly one ramified cover f : C ′ → P1 of degree d with
ramification divisor B = f ∗∞ over infinity by Riemann–Roch (see [Costello 2006,
Lemma 6.0.1] and [Herr and Wise 2023, Theorem 3.12]. The following facts come
from Costello [2006].

• This entails a birational map between moduli spaces (Lemma 1.16).

• By adding stack structure ·̃ , we can make f : C̃ ′→ P̃1 a finite étale cover.
This is pulled back along a map P̃1→ BSd from a stacky genus zero curve to
the moduli space BSd of finite étale degree d covers.
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We can similarly interpolate between genus g and genus zero maps to a fixed
smooth, quasiprojective target X .

Remark 1.1. Write ⟨d⟩ = {1, 2, . . . , d} for the ordered set of d elements. An
Sd -torsor P→ X is equivalent to the data of a finite étale degree d cover

T ′ := (P ×⟨d⟩)/Sd → X.

The universal d-sheeted cover

(pt×⟨d⟩)/Sd → BSd

can be noncanonically identified with the map BSd−1→ BSd induced by any of
the d inclusions Sd−1 ⊆ Sd .

Consider a twisted, representable stable map C̃ ′→ X together with a finite étale
degree d cover C̃ ′→ C̃ of a stacky curve C̃ of genus zero. To promote C̃ ′ to a
marked curve, we need only order the fibers of the marked points of C̃ .

Our data is pulled back from the universal finite étale degree d cover mapping
to X :

C̃ ′ [(Xd
×⟨d⟩)/Sd ]

C̃ [Symd X ] = [Xd/Sd ]

⌜

and the whole diagram has finitely many automorphisms over the right arrow if and
only if the map C̃→ [Symd X ] is stable.

Definition 1.2. The stack K̃0,n([Symd X ]) parameterizes families C̃→ S of twisted
curves of genus zero with n marked points and a representable map C̃→[Symd X ]
together with an ordering of the fibers over the marked points. The marked points
of C̃ may be nontrivial gerbes over S.

The stack K̃0,n([Symd X ]) equivalently parametrizes families of ramified d-
sheeted covers C ′ → C together with maps C ′ → X that have finitely many
automorphisms. All ramification points are marked and the fibers above the marked
points of C are all the marked points of C ′. By “ordering of the fibers”, we mean
that the fibers of C ′→ C over each marked point of C must be ordered, a torsor
for a product of symmetric groups. We later consider variants where less of the
marked points of C ′→ C are ordered; see Figure 2.

Our twisted/stacky stable maps and curves are different from [Costello 2006].
For families of curves C̃→ S over a base scheme S, the i-th marked point of C̃
may be a nontrivial µri gerbe for ri ∈ Z≥1. We fix the orders ri later.

We want to apply the K-theoretic version of Costello’s pushforward formula
[Chou et al. 2023, Theorem 2.7] to a square from [Herr and Wise 2023, Section 3.2]
introduced in Section 1A:
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(2)

K̃4(Sd X) Mg,R(X)

K̃4(BSd) Mg,R

q

π ′
⌜

π

p

The stacks Mg,R(X) of stable maps and Mg,R of prestable curves are standard.
We do not fix a curve class β, so this space is a disjoint union over choices of β.

We denote K̃4(Sd X) ⊆ K̃0,n([Symd X ]) a substack with appropriate discrete
invariants fixed in Section 1B. The stack K̃4(BSd), denoted M̃0,n(BSd) in [Herr
and Wise 2023, before Lemma 3.6], is approximately the stack of prestable maps
C̃→ BSd from the genus zero twisted base curves parameterized in K̃4(Sd X).

The obstruction theory for π ′ is pulled back from π . The problem is that p is of
degree

e = k!(g!)#J (g!)k,

while the K-theoretic virtual pushforward formula so far only applies to birational
maps. We decompose p as a finite étale torsor of degree e composed with a
birational map to which the pushforward formula applies.

1A. Costello’s square (2). We describe (2). Write ⟨d⟩ = {1, 2, . . . , d}. A subset
A ⊆ ⟨ℓ⟩ will be fixed later; the symbols Mg,R(X), Mg,R refer to moduli stacks of
ordinary stable maps and prestable curves with R = ℓ− #A marked points. We
do not fix the curve class β for simplicity. We assume R ≥ 1.

The substack K̃4(Sd X) ⊆ K̃0,n([Symd X ]) parametrizes stable maps of genus
zero curves to [Symd X ], identified with triples C← C ′→ X above. The 4 refers
to fixed discrete invariants (see Section 1B): ramification profiles of C ′→ C , the
numbers n and ℓ of marked points for C and C ′, the genus of C ′, and the degree d
of C ′ → C . The number ℓ ≤ dn is the sum of the degrees of the fibers in the
ramification profiles. These invariants satisfy Riemann–Hurwitz to ensure that the
space is nonempty:

(3) 2g− 2=−2d +
∑
P∈C ′

(eP − 1).

The functor q forgets the marked points A ⊆ ⟨ℓ⟩ of C ′ and then takes the
stabilization C ′→ X of the resulting map C ′→ X .

The map π ′ forgets the stable map to X . To make the diagram commute, π ′ must
remember the stabilization C ′ of C ′ → X . Define the stack K̃4(BSd) of triples
C← C ′→ D, where C ′→ C is a ramified cover of type 4 and C ′→ D a partial
stabilization after forgetting A ⊆ ⟨ℓ⟩. The map p sends this triple to D. The
square (2) is cartesian and p is proper by Lemma 3.9 and Corollary 3.7 of [Herr
and Wise 2023], respectively.
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Remark 1.3. The degree e= k!(g!)#J (g!)k differs from both [Herr and Wise 2023,
Theorem 3.12] and [Costello 2006, Lemma 6.0.1]. Our use of nontrivial gerbes
instead of trivialized gerbes accounts for the difference from [Herr and Wise 2023].
Costello’s version is reconciled in Remark 3.15 of loc. cit. Our degree can be
computed using the proof of Theorem 3.12 of loc. cit. or by taking into account the
degrees of the universal gerbes.

The degree e is the order of a group 0 = (Sg)
J
× Sg ≀ Sk that reorders marked

points of C ′→ C discussed in Section 1D.
The stabilization C ′→ X was omitted in [Costello 2006], leading to nonproper

moduli stacks or noncommutative diagrams. This could be rectified using Costello’s
technology of weighted graphs instead of our partial stabilizations.

1B. Specifying 4. We unpack our discrete data:

4=


g(C ′)= g, g(C)= 0, d = g+ 1,

⟨ℓ⟩ → ⟨n⟩ is ⟨k⟩× ⟨d⟩
pr1
7−→ ⟨k⟩, J ×⟨d⟩

pr1
7−→ J, I 7→∞,

∀ j ∈ J, r j = 1, ∀ j ∈ ⟨k⟩, r j = 2, γ : I → Z≥1, r∞ = lcm(γ (i)),⊔
J Bµ1 = ∗→ BSd ,

⊔
i∈⟨k⟩Bµ2

φ
−→ BSd .


See Figure 1 for an example which is Figure 2 in [Herr and Wise 2023].

Ramification profiles are specified by an action of µr on an unordered set of
size d. Take a small loop around p ∈ C , and its lifts to C ′ identify which of the
d sheets come together over p. Encode this action in a map Bµr → BSd up to
isomorphism.

Remark 1.4. The category of maps BG→ BH has:

• Objects: homomorphisms f : G→ H .

• Morphisms f1 → f2: elements h ∈ H which conjugate one morphism to
another f1 = h f2h−1. They are all isomorphisms.

C ′

C

J k ∞

Figure 1. A cover in 4, g = 3, d = 4. Marked points are black if
forgotten A⊆ ⟨ℓ⟩ and white if remembered under the map to Mg,R .
The space K̃

∗

4∗(BSd) forgets the ordering on the black marked points.
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Objects of the category Hom(Bµr , BSd) can be identified with actions µr
⟳

⟨d⟩.
Isomorphisms between two such actions are relabelings of the set ⟨d⟩ of d elements.
So an isomorphism class of functors Bµr→ BSd is an action of µr on an unlabeled
set with d elements.

The action µr

⟳

⟨d⟩ contains the information of a ramification point C ′→C of a
map of curves. The stacky quotient [⟨d⟩/µr ] is the fiber of C̃ ′→ C̃ over the point
Bµr ∈C . To extract the set-theoretic fiber, we take the coarse moduli space ⟨d⟩/µr .
This gives an unlabeled set with some number of elements between 1 and d. In
families, Bµr is allowed to be a nontrivial gerbe.

A point p ∈C is simply ramified if its fiber consists of d−1 points, where exactly
two of the d sheets come together and the other points in the fiber are unramified.
This corresponds to the action µr

⟳

⟨d⟩ with one 2-cycle and the rest of the points
fixed, up to reordering ⟨d⟩.

Let k≥ 0 be an integer, g= g(C ′) be the genus of C ′, and fix the degree d= g+1.
Divide the n marked points of C into three sets:

• {∞}: write I ⊆C ′ for the fiber over this point∞∈C . This point has ramification
described by a map Bµr∞ → BSd or function γ : I → Z≥1. That is, γ (i) is the
size of the stabilizer of i in the corresponding action µr∞

⟳

⟨d⟩.

• J : these points J ⊆ C have no ramification.

• ⟨k⟩: these points have simple ramification.

This gives partitions

⟨n⟩ = J ⊔ ⟨k⟩ ⊔ {∞}, ⟨ℓ⟩ = J ×⟨g+ 1⟩ ⊔ ⟨kg⟩ ⊔ I.

The map ⟨ℓ⟩ → ⟨n⟩ on marked points is compatible with these partitions.
The j-th marked point of C is a µr j -gerbe, where r j = 1 at unramified points

j ∈ J , r j = 2 for the k simple ramification points and ∞ has r∞ = lcm(γ (i))
the least common multiple of the ramification function γ on I . These data are
subject to a constraint easier seen with trivialized gerbes: the sum BZ→ BSd of
the classifying space maps from all the composites Z→ µr → Sd be zero, lest the
space be empty. This corresponds to the presentation of π1(P

1
\ ⟨n⟩) via generators

whose product is trivial.
Let A⊆⟨ℓ⟩ consist of all of ⟨kg⟩, none of I , and a subset of J×⟨g+ 1⟩ such that

J ×⟨g+ 1⟩\ A→ J is a bijection. Note that the set ⟨ℓ⟩\ A= I ⊔ J has R elements.
Take k = #I + 3g − 1 so that all the dimensions agree [Herr and Wise 2023,

Theorem 3.12]:
dim K̃4(BSd)= dimMg,R.

We can now prove our main equality between virtual fundamental classes. We
first recall their definition in K-theory.
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1C. K-theory. Let Y be a finite-type noetherian algebraic stack. The K-theory
of Y is the K-theory of a category of lis-ét sheaves on Y , for which there are two
main options:

• K◦(Y ): coherent sheaves, otherwise known as G-theory G(Y ).

• K ◦(Y ): locally free sheaves of finite rank.

We work with Q-coefficients, tensoring these groups up to Q-vector spaces

K◦(Y )= K◦(Y )⊗Q, K ◦(Y )= K ◦(Y )⊗Q.

These groups are generated by classes [F] of coherent/locally free lis-ét sheaves F
on Y , modulo relations [F ′] + [F ′′] = [F] for each exact sequence

0→ F ′→ F→ F ′′→ 0.

See [Chou et al. 2023, Section 1] for discussion.
The groups K ◦, K◦ coincide on Y whenever every coherent sheaf F admits a

finite resolution by locally free sheaves. Under certain hypotheses on Y , this is
equivalent to Y being a quotient stack [Edidin et al. 2001, Remark 2.15].

Let f : X→Y be a map between finite-type noetherian algebraic stacks. Pullback
and pushforward of sheaves sometimes induce maps on K ◦ and K◦.

• K ◦: pullback f ∗ always exists and pushforward f∗ makes sense when X→ Y is
finite étale.
• K◦: pullback f ∗ exists when f is flat. Armed with a perfect obstruction theory,
we can also define a pullback f ! even if f is not flat.

If f is proper and of DM-type, define the pushforward f∗ on K◦-theory as the
alternating sum

(4) f∗ F :=
∑

i

(−1)i Ri f∗ F.

We must check that this sum is finite.

When the map f : X→ Y is clear from context, we write β|X = f ∗β for classes
β ∈ K ◦(Y ) or β ∈ K◦(Y ) without risk of confusion.

Lemma 1.5. Let p : X→ Y be a proper, DM-type morphism between finite-type
noetherian algebraic stacks. The pushforward

p∗ : K◦(X)→ K◦(Y ).

of (4) is well defined on K◦-theory.

Proof. We argue that the sum (4) is finite. Write X for the relative coarse moduli
space of the map p and N for a number larger than the dimensions of the fibers of
X→ Y . This is possible using quasicompactness of Y .
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We claim Ri p∗ F vanishes for i > N for any coherent sheaf F . The claim is étale
local in Y and so is the formation of the relative coarse moduli space X , so we can
assume Y is an affine scheme. The map t : X→ X is finite flat, so pushforward is
exact Rt∗ = t∗. This reduces to the representable case X→ Y . Because Y is affine,
it results from dimensional vanishing [Stacks 2005–, 0A4R]. □

Pushforward from a proper DM stack to a point is denoted χ .

Example 1.6. If the morphism p : X→ Y is not of DM-type, the pushforward need
not be well defined. Take BGm→ pt. The cohomology of BGm is freely generated
as a ring by the first Chern class of the universal line bundle and does not vanish in
any degree.

Example 1.7. Let G be a finite group. Sheaf pushforward along p : BG→ pt sends
a complex G-representation V to the invariant subspace V G . The pushforward is
then the alternating sum of group cohomology

χ(V )=
∑

(−1)i [H i (G, V )].

Because we work over C, the structure sheaf of pt is Opt = C. Likewise G-
representations V on BG = [Spec C/G] are complex representations, and the order
of the group #G is invertible in V . The group cohomology therefore vanishes:

H i (G, V )= 0, i ̸= 0.

The alternating sum is just the first term χ(V )= [V G
].

The projection formula holds in both K ◦ and K◦, where defined

(5) f∗(α⊗ f ∗β)= f∗ α⊗β.

This results from the formula on the level of sheaves [Stacks 2005–, 08EU].
The main K-theory classes we are interested in are the fundamental class
[OX ] ∈ K◦(X) and the virtual fundamental class (also known as virtual struc-
ture sheaf ) [Lee 2004, Section 2.3; Qu 2018, Definition 2.2; Chou et al. 2023,
Definition 1.2]. Consider a map f : X→M from a DM stack X to a smooth stack M
endowed with a perfect obstruction theory CX/M ⊆ E . The virtual fundamental
class [Ovir

X ] is the image of the structure sheaf of the normal cone [OCX/M ] under
the isomorphism [Chou et al. 2023, Remark 1.6]

[Ovir
X ] = σ

∗
[OCX/M ], σ ∗ : K◦(E)≃ K◦(X).

Example 1.8. Let π : Y = BG × X → X be a trivial gerbe for a finite group G.
Suppose X has a perfect obstruction theory over some M and Y is given the
induced perfect obstruction theory. Then the virtual fundamental class pulls back
π∗[Ovir

X ] = [O
vir
Y ].
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Example 1.7 describes π∗ as taking G-invariants of a representation. Then we
have π∗ π∗[OX ] = [OX ]. Using the projection formula, this implies that the virtual
fundamental class also pushes forward:

π∗[Ovir
Y ] = π∗(π

∗
[Ovir

X ]⊗ [OY ])= [Ovir
X ]⊗π∗ π

∗
[OX ] = [Ovir

X ].

Proposition 1.9. Let π : G→ X be a gerbe banded by a finite group G. The base X
is a scheme or algebraic stack which we emphasize lies over C. Then the structure
sheaf pushes forward to the structure sheaf , both as sheaves and in K-theory:

Rπ∗OG = π∗OG =OX , π∗[OG] = [OX ] ∈ K◦(X).

The same holds for virtual fundamental classes if G is given the induced perfect
obstruction theory from X :

π∗[G]vir
= [X ]vir in K◦(X).

Proof. The statement on sheaves implies that on K-theoretic classes and is local
in X . We can then assume that G is trivial, fitting in a pullback square:

G BG

X pt

⌜

Example 1.7 covers the case of BG → pt, and the general case results from
cohomology and base change applied to this square.

The statement on virtual fundamental classes results from Example 1.8. □

Remark 1.10. The proof of Proposition 1.9 does not work for schemes over Z.
The groups H i (G, V ) for i ̸= 0 are torsion, and so are the sheaves Riπ∗V for any
coherent sheaf on G. But this does not mean they vanish in K◦ ⊗Q. Tensoring
−⊗Q kills K-theoretic classes that are torsion in the group law on K-theory, not
the classes of sheaves that themselves are torsion.

The trivial gerbe [Spec Z/G]→Spec Z satisfies Example 1.7 and Proposition 1.9,
because the classes of torsion groups vanish in the K-theory of the integers. But
this statement does not localize.

We need two related theorems on the behavior of (virtual) fundamental classes
under pushforward. These extend Hironaka’s theorem and Costello’s theorem,
respectively.

Theorem 1.11 (Hironaka’s pushforward theorem [Chou et al. 2023, Proposi-
tion 2.3]). Let p : X → Y be a proper birational map of smooth DM stacks. The
pushforward of the fundamental class of X is that of Y in K-theory:

p∗[OX ] = [OY ] in K◦(Y ).
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Our Costello-type pushforward theorem was originally in the more general
context of log geometry. We remove log structures in our citation for simplicity.

Theorem 1.12 (Costello’s pushforward theorem [Chou et al. 2023, Theorem 2.7]).
Consider a pullback square of algebraic stacks

X Y

M N

p

⌜

q

with X, Y DM stacks and M, N smooth. Suppose Y→ N is equipped with a perfect
obstruction theory and X→ M is given the pullback perfect obstruction theory. If
the map q is proper birational, the pushforward of the virtual class of X is that of Y

p∗[Ovir
X ] = [O

vir
Y ] in K◦(Y ).

To use these theorems, it is important that the relevant maps are proper and
birational. Birational maps f : X→ Y of stacks must have an open dense subset of
each X and Y that are isomorphic.

Remark 1.13. For stacks, pure degree one [Herr and Wise 2023, Definition 2.3]
and birational are not the same. The map p : BZ/2⊔ BZ/2→ pt is pure degree one
but not birational. The pushforward of the fundamental class is not the fundamental
class:

p∗[OBZ/2⊔BZ/2] = 2 · [Opt] in K◦(pt).

If a morphism of schemes is of pure degree one, it is birational. More generally,
if X → Y is a morphism of stacks of pure degree one inducing a representable
morphism U → V on open dense substacks U ⊆ X, V ⊆ Y , it is birational.

1D. An intermediary stack. The moduli stack K̃4(BSd) parametrizes a triple
C ← C ′ → D of curves over any base S. We introduce a variant K̃

∗

4∗(BSd)

to describe how virtual classes push forward in Proposition 1.17.
The functor p : K̃4(BSd)→Mg,n sends such a triple to D. The map p is proper

of degree e = k!(g!)#J (g!)k [Herr and Wise 2023, Section 3]. This map forgets
everything about C ′→ C , including the ordering of the forgotten marked points
under C ′→ D.

Let A ⊆ ⟨ℓ⟩ be the points forgotten under p as in Figure 1. Let K̃
∗

4∗(BSd) be
the space similar to K̃4(BSd), but where the marked points A ⊆ ⟨ℓ⟩ are unordered.
The forgetful map K̃4(BSd)→ K̃

∗

4∗(BSd) is a torsor under

0 := (Sg)
J
× Sg ≀ Sk .
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The group Sg ≀Sk := Sk⋉(Sg)
k is the wreath product. There is a short exact sequence

1→ Sk
g→ Sg ≀ Sk→ Sk→ 1

and a section Sk 99K Sg ≀ Sk of the quotient. We may view Sg ≀ Sk as a subgroup
of Sgk by choosing an identification of ⟨gk⟩ with ⟨g⟩× ⟨k⟩.

The k copies of Sg reorder the unramified points in the fibers with simple
ramification points, while Sk reorders the fibers themselves and their images ⟨k⟩⊆C .

Example 1.14. Isomorphisms of curves in K̃
∗

4∗(BSd) need not stabilize the un-
ordered marked points. For example, P1 with three unordered points has automor-
phism group S3 by interchanging the points 0, 1,∞. The moduli space of genus
zero curves with three unordered points is then BS3.

These choices of ordering certain marked points can also be made on the moduli
of stable maps to the stack [Symd X ].

Definition 1.15. Let K̃4(Sd X) ⊆ K̃0,n([Symd X ]) be the moduli space of repre-
sentable stable maps to [Symd X ] with discrete invariants 4. This parameterizes
étale, d-sheeted covers C̃ ′→ C̃ with minimal stack structure together with stable
maps C̃ ′→ X . The curves may have nontrivial gerbes at marked points. All the
marked points of C ′ and C are ordered.

Define K∗4(S
d X) analogously to K̃

∗

4∗(BSd) by forgetting the ordering on the
marked points of C ′ corresponding to A ⊆ ⟨ℓ⟩ (see Figure 2).

K̃4(Sd X)

M̃4(Sd X) K∗4(S
d X) Mg,R(X)

K4(Sd X)

0/

/0̃

v

/Sk

ψ

(d:1)J
×/S#I

φ

Figure 2. The stacks of stable maps to a fixed target X . Mg,R(X)
is the ordinary space of stable maps to X . The rest are spaces of
stacky genus zero maps C̃→ [Symd X ]. These can be interpreted
as ramified finite covers C ′→C of nonstacky curves together with
a map C ′ → X satisfying a stability condition. The difference
between M̃4(Sd X), K̃4(Sd X), K∗4(S

d X), K4(Sd X) lies in which
points of C ′,C are ordered. The maps “/G” between them are
quotients by various groups G reordering the marked points. The
one exception is K∗4(S

d X)→ K4(Sd X), which is a quotient fol-
lowed by a d#J -sheeted cover (denoted (d : 1)J ).
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Extend (2) to the cartesian diagram

(6)

K̃4(Sd X) K∗4(S
d X) Mg,R(X)

K̃4(BSd) K̃
∗

4∗(BSd) Mg,R

q

v

π ′
⌜

w

⌜
π

ν

p

ω

Lemma 1.16. The map ω : K̃
∗

4∗(BSd)→Mg,R is proper and birational.

Proof. Fix a generic smooth D and prescribed ramification divisor B=
∑

i∈I d(i)[i]
over∞ specified by 4. The proof of [Herr and Wise 2023, Theorem 3.12] shows
that there is exactly one cover C ′→C with ramification in B and C ′→ D a partial
stabilization. The map is thus proper and of pure degree one, but this is not yet
sufficient by Remark 1.13.

We argue that ω is generically representable, hence birational. The proof of [Herr
and Wise 2023, Theorem 3.12] shows that if D ∈Mg,R(X) is general, the preimage
under ω is exactly one cover C ′→ C with C ′ = D. Consider automorphisms

C ′ C ′

C C

∼

∼

of the map C ′ → C . These form a subgroup of automorphisms of C ′ because
C ′→ C is an epimorphism. Since the map Aut(C ′→ C)→ Aut(D) is injective,
the map is generically representable and hence birational. □

Hironaka’s pushforward theorem (see Theorem 1.11) equates their fundamental
classes:

ω∗[OK̃
∗

4∗ (BSd )
] = [OMg,n ] in K◦(Mg,n).

Costello’s pushforward theorem (see Theorem 1.12) likewise equates the virtual
fundamental classes:

Proposition 1.17. The fundamental class pushes forward along the map w in (6):

ω∗[OK̃
∗

4∗ (BSd )
] = [OMg,n ] in K◦(Mg,n).

As a result, the virtual fundamental class pushes forward the same way:

w∗[Ovir
K∗4(Sd X)] = [O

vir
Mg,R(X)

] in K◦(Mg,R(X)).

The wreath product Sg ≀ Sk arises naturally as the automorphism group of the
projection ⟨g⟩× ⟨k⟩ → ⟨k⟩ of marked points of C ′→ C :
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Remark 1.18 (thanks to J. Rufus Lawrence). The iterated stack-theoretic symmetric
product [Symk

[Symg X ]] is isomorphic to the global quotient

[Symk
[Symg X ]] ≃ [X gk/(Sg ≀ Sk)].

To make sense of [Symk
−] applied to a stack S , use its functor of points

[SymkS ](T )=

{
T ′ S

T

k:1

}
,

where T ′→ T is a k-sheeted cover that is part of the moduli.
Consider the evaluation map corresponding to a point C ′→C of K∗4(S

d X) over
a base T . Upon ordering the k-marked points i of C , we get a map to [Symg X ]
corresponding to each i . Ordering the k-marked points of C entails a k-sheeted
cover of T with a map to [Symg X ]. These evaluation maps are precisely

K∗4(S
d X)→ [Symk

[Symg X ]] = [X gk/(Sg ≀ Sk)].

Two more stacks M̃4(Sd X),K4(Sd X). The stack K̃4(Sd X) is the simplest because
all the marked points of C ′ and C are ordered, but we will not actually use it for
our theorem. The variant K∗4(S

d X) above is virtually birational to Mg,R(X). We
need two more variants, completing Figure 2.

Definition 1.19. Let M̃4(Sd X) be the moduli space of representable twisted stable
maps C→ [Symd X ]. It is the same as K̃4(Sd X), except the marked points of C ′

are not ordered. The only difference from twisted stable maps C→ [Symd X ] in
the literature is the nontrivial gerbes.

The quotient maps K̃4(Sd X)→ M̃4(Sd X), K̃4(Sd X)→ K∗4(S
d X) forget dif-

ferent marked points, so there is not a map between them. Define K4(Sd X) to
forget all the marked points of both, so only the points of C that are not in ⟨k⟩ ⊆ C
are ordered.

As shown in Figure 2, there are quotient maps from K̃4(Sd X) to all the others
M̃4(Sd X), K4(Sd X), K∗4(S

d X) by various groups reordering marked points. The
map M̃4(Sd X)→ K4(Sd X) quotients by Sk , while K∗4(S

d X)→ K4(Sd X) is a
composite of many d-sheeted covers indexed by J and a quotient by S#I .

Remark 1.20. Remark that R = 1 when #I = 1 and J =∅. In that case, k = 3g.
The map K∗4(S

d X)→ K is an isomorphism precisely when one of the conditions
holds:

• R = 1.

• #I = 1 and g = 0.

See Figure 2.
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Remark 1.21. The finite étale maps

K̃4(Sd X) K∗4(S
d X)

M̃4(Sd X) K4(Sd X)

v

φ

ψ

in Figure 2 all equate virtual fundamental classes under pullback:

v∗[Ovir
K∗4(Sd X)] = [O

vir
K̃4(Sd X)], etc.

1E. Gromov–Witten invariants in the K◦-theory of stacks. Quantum K◦-theoretic
invariants have been defined variously in the literature [Tonita and Tseng 2013]
[Zhang, Section 2.4]. Our definition parallels [Abramovich et al. 2008], adding in
ψ classes. Our invariants differ by a scaling factor due to conventions over whether
gerbes at marked points are trivialized; see [Tonita and Tseng 2013; Zhang, Remark
2.8] or the original [Abramovich et al. 2002, Sections 4.4, 4.5] for comparison. We
allow nontrivial gerbes.

For any moduli space K of stable maps C→ Y from n-pointed curves, there is
an evaluation map

ev : K→ Y n.

If Y is a stack and we take representable twisted stable maps C̃ → Y in say
K = Mg,n(Y ), the “points” of C̃ are not quite points, but µr -banded gerbes. The
evaluation map doesn’t produce points of Y , but cyclic gerbes mapping representably
to Y . Cyclic gerbes representably embedded in Y form the rigidified cyclotomic
inertia stack Ī(Y ) [Abramovich et al. 2008, Section 3], so the evaluation map is

ev : K→ (Ī(Y ))n.

The stack Ī(Y ) is closely related to the inertia stack I Y . The universal gerbe
over Ī(Y ) can be identified with representable maps from the trivial gerbe

Homrep(Bµr , Y ).

Fixing an isomorphism µr ≃ Z/r over C, we get a map to the inertia stack

Homrep(Bµr , Y ) I Y

Ī(Y )

by composing BZ→ Bµr → Y . See Section 3C for a worked example.
Instead of pulling back K◦-theoretic classes from Y , we pull back from K◦(Ī(Y )).

In our case, Y = [Symd X ] and our evaluation map is

evC,∞ : K̃4(Sd X)→ Ī([Symd X ]).
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Now we add in ψ classes. Write U→Mg,n for the universal curve and L i for
the conormal bundle at the i-th marked section σi :

L i := Nσi ≃ σ
∗

i TU/Mg,n .

Use the same notation for their pullback to any moduli space with prestable curves,
for example, Kg,n(Y ),Mg,n . The classes of L i ∈ K ◦(Mg,n) and their pullbacks to
various moduli stacks are referred to as ψ classes.

Beware that maps between moduli spaces involving stabilization do not have the
same ψ classes. We compare the ψ class of a map C→ X with the stabilization C st

in Section 2.
The stack Kg,n(Y ) supports an obstruction theory relative to Mg,n that lets us

define virtual fundamental classes Ovir
Kg,n(Y ) in K◦(Kg,n(Y )). Classes

α1, . . . , αn in K◦(Ī(Y ))

and exponents e1, . . . , en give rise to a (descendent) Gromov–Witten invariant

⟨α1 Le1
1 , . . . , αn Len

n ⟩ = χ
(
Ovir

Kg,n(Y )⊗
∏

ev∗i αi ⊗ Lei
i

)
in Q.

We are equally interested in power series of these invariants.
When Y = [Symd X ], there are two twisted curves C̃ ′→ C̃ and hence two evalua-

tion maps and two sets of ψ classes. The ψ classes of C̃ ′ are the same as the marked
points of C̃ below. The main technical problem in Theorem 3.1 will be converting
between classes pulled back along the evaluation map of C̃ ′ and that of C̃ . Genuine
Gromov–Witten invariants have classes ev∗α pulled back from the evaluation map
of C̃ , not that of C̃ ′. This convention parrots [Abramovich et al. 2008].

1F. Permutation-equivariant K-theory. The K-theory of K4(Sd X) is equivalent
to permutation-equivariant K-theory of M̃4(Sd X), as in [Givental 2017]. Ordinary
quantum K-theory entails “correlators” defined as the integrals:

⟨α1 Lm1
1 , . . . , αn Lmn

n ⟩ := χ
(
Ovir

K4(Sd X)⊗
∏

ev∗i (αi )Lmi
i

)
in K◦(pt)=Q.

How can we compute Euler characteristics of K4(Sd X) by working on M̃4(Sd X)?
Take the pullback square

M̃4(Sd X) pt

K4(Sd X) BSk pt

ψ
⌜

−
Sk

Denote pushforward along K4(Sd X)→ BSk by χSk (−). This remembers the Sk-
representation on the virtual vector space χ(ψ∗(−)). To get the ordinary Euler
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characteristic χ(−) on K4(Sd X), we have to take the virtual Sk-invariants of the
virtual representation χSk (−):

χ(−)= (χSk (−))
Sk .

These should be derived invariants, but we work over Q. The higher-group coho-
mologies of Sk valued in a representation all vanish, so the distinction is moot.

The class ψ∗(−) on M̃4(Sd X) will be a Gromov–Witten invariant where the
insertions at the marked points forgotten under ψ are identical. In our case, we
only care about insertions away from those forgotten marked points. We will only
integrate classes at ordered marked points of both K4(Sd X) and M̃4(Sd X).

Even if we insert away from the permuted points A ⊆ ⟨ℓ⟩, the action of 0 still
nontrivially permutes the sections:

Example 1.22. Consider S3 acting on M0,4=P1 by permuting the last three marked
points. The generating function of the S3-invariant quantum K-invariants on M0,4

with only L1 can be calculated

χ

(
[M0,4/S3],

1
1− q1 L1

)
=

1
(1− q2

1 )(1− q3
1 )
.

Indeed, L1 = O(1), M0,4 = P1, and H≥1(M0,4, Ld
1) = 0 for all d ≥ 0. The case

d = 1 has the sections the linear functions on P1, which are never S3-invariant
(up to Möbius transformations). It is easy to see that d = 2 and d = 3 have invariant
sections. In fact, [M0,4/S3] = P(2, 3) and the formula follows [Lee and Qu 2014].

1G. Grothendieck–Riemann–Roch (GRR). This expository section explains why
Grothendieck–Riemann–Roch (GRR) does not reduce equivariant Euler character-
istics to ordinary ones on stacks, the way it would for schemes.

Using Grothendieck–Riemann–Roch for schemes, one would expect an equality

[Ovir
K̃4(Sd X)]

?
= [Ovir

K∗4(Sd X)]
⊕#0 in K◦(K∗4(S

d X))Q.

Coupled with the projection formula, this would reduce permutation equivariant
integrals to ordinary ones.

For schemes, this holds. Let π : P→ X be a G-torsor with P, X schemes for
some finite group G. GRR gives a commutative square

K◦(P) A∗(P)Q

K◦(X) A∗(X)Q.

π∗ π∗

The Todd classes cancel out since P→ X is étale and TX |P = TP , so one can take
the horizontal arrows as the Chern character isomorphisms. Since the pushforward
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in Chow groups gives π∗[P] = #G · [X ] and the horizontal isomorphisms send 1
to 1, we have

(7) π∗[OP ] = [O⊕#G
X ].

These formulas do not hold for stacks!
Take P = pt, X = BG. The analogous GRR square

(8)
K◦(pt) A∗(pt)C

K◦(BG) A∗(BG)C

still commutes [Edidin 2013, Section 5], and the Todd class terms vanish. But the
lower horizontal arrow is not multiplicative and does not send 1 to 1! One cannot
identify π∗Opt and O⊕#G

BG .

Example 1.23. Let G = Z/2 and consider the quotient map pt→ BG. The inertia
stack is

IBG = BG ⊔ pt,

so its rational Chow groups are A∗(IBG)= C⊕2. The GRR square for the quotient
π : pt→ BG is then

K◦(pt) A∗(pt)

K◦(BG) A∗(IBG)≃ C⊕2.

ch(−)

π∗ π∗

ch(−)

The Todd classes are trivial here.
The Chern character of the trivial representation OBG is (1, 1). By GRR [Edidin

2013, Theorem 5.4], the Chern character of π∗Opt is

ch(π∗Opt)= (2, 0) in A∗(IBG)≃ C⊕2.

We can see that π∗Opt ̸=O2
BG .

Remark 1.24. One can define a Borel equivariant K◦ theory for stacks in which
formula (7) holds using [Noohi 2012]. One can equip them with virtual fundamental
classes and study Borel equivariant quantum K-theory.

The problem with (8) is that pt→ BG introduces stack structure. It is repre-
sentable, but points in BG have more automorphisms than pt does. We want the
opposite of representable, that the automorphism groups of points surject. We can
prove a version of (7) in this setting [Herr and Lee].
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2. Stabilization and ψ classes

2A. Costello’s lemma for stabilizing ψ classes. We recall the following three
categories defined in [Costello 2006, Section 3]: 0u , which contains the label of
nodal curves; 0t , which contains the label of twisted nodal curves; and 0c, which
contains labels of twisted marked curves C and C′ with an étale morphism C′→ C.
They are related by the diagram

0c 0t 0u,
s,t r

where r, t stand for source and target of the étale map C′→ C and r maps C to its
coarse moduli space. These categories will depend on a semigroup A. Furthermore,
one can relate the functors between graphs into morphisms of stacks of moduli of
curves by applying the functor M.

Given η ∈ 0c consider the diagram

Mη
s
−→Ms(η)

r
−→Mr(s(η))

π
−→Mν(I ),

where I ⊊ T (s(η)) is a chosen finite subset such that after removing tails in I ,
s(η) remains stable. Let ν(I ) be obtained from r(s(η)) by removing the tails in I
and denote the resulting contraction map by π .

To compare the pullback of ψ classes via s, r and π , we define the notation
S(e, t, I ) as follows: Consider the diagram

Mγ →Mr(s(η))
π
−→Mν(I ),

where γ → r(s(η)) is a contraction of 0u . Now let t ∈ T (γ ) \ I and e ∈ E(γ ). Let

S(e, t, I ) :=
{

1 if t is in a vertex of γe contracted after forgetting the tails I ,
0, otherwise.

Here γe is obtained by contracting all edges of γ except e.
Costello described the pullback of ψ classes in Chow groups.

Lemma 2.1 [Costello 2006, Section 4.1]. For each t ∈ T (ν(I )), we have

s∗r∗π∗(ψt)= m(t)ψt −
∑

f :γ→η

S( f, t, I )[M f ],

where the sum is over f : γ → η in 0c with #E(t (γ ))= #E( f )= 1, M f ↪→Mη

is the closed substack supported on the image of f , and

S( f, t, I ) :=
∑

e∈E(s(γ ))

m(e) S(e, t, I )

is the corresponding multiplicity.

A similar result holds in K-theory:
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Lemma 2.2. For each t ∈ T (ν(I )), we have

s∗r∗π∗(L t)= L⊗m(t)
t ⊗O

(
−

∑
f :γ→η

S( f, t, I )M f

)
,

with f : γ → η and S( f, t, I ) defined in previous lemma.

We would like to write O(kM f ) in terms of a torsion sheaf.

2B. Explicit formulas for stabilizing ψ classes in K-theory. Before addressing
stable maps to a target V , we work on the moduli of curves. Let π :Mg,m+n→Mg,m .
We introduce some notations below.

Decoration. Decorations index trees of rational curves to be contracted under
forgetting points and stabilizing (see Figure 3).

For the special case m = 1, we denote a decoration of degree r as

a = (a1,1, . . . , a1,n1) . . . (ar,1, . . . , ar,nr ).

We further assume that

{a1,1, . . . , a1,n1, . . . , ar,1, . . . , ar,nr } ⊂ {2, 3, . . . , n+ 1} = [2, n+ 1]

and
ai,1 < ai,2 < · · ·< ai,ni for all i .

For the general case, a corresponding decoration is denoted by

a = (a1, a2, . . . , am),

where each ai is a decoration in the special case m = 1 and their disjoint set union
forms a subset of [m+1,m+n]. We also denote it by a if no confusion may occur.

Degeneration strata. Given m = 1 and a decoration a, we define the corresponding
degeneration strata of codimension r on Mg,1+n as

Mg,1+n ⊃ D1,a :=

( ⋂
1≤i≤r

D1a1,1...a1,n1 a2,1...ai,ni

)
,

where Dabcde... is the divisor with markings abcde . . . lying on the rational tail.
This is the closure of the locus where the curves have rational tails indexed by a.

For the general case, given a decoration a, we define the corresponding stratum

Mg,m+n ⊃ D⟨m⟩,a :=
⋂

1≤i≤m

Di,ai .
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Normal bundle. Given m = 1 and a strata D1,a as above, we have

O2
D1,a
= λ−1(⊕

r
i=1L1i )OD1,a .

Here L1i is the normal bundle of the i-th node. More precisely, it can be described as

O2
D1,a1,1 ...ai,ni

= λ−1(L̃ i )OD1,a1,1 ...ai,ni
.

Then we define
L1i := L̃ i |D1,a .

For the general case, we denote by L j i the normal bundle of the i-th node of the
tail containing the marking j for 1≤ j ≤ m.

Type. Given m = 1 and a decoration a or its corresponding strata DA1a , we define
its type to be 0 if

a1,1 < a j,k for any ( j, k) ̸= (1, 1),

we define its type to be l = (l1 . . . ls) if

a1,1 > a2,1 > · · ·> al1−1,1,

al1,1 > al1+1,1 > · · ·> al2−1,1,

...

als ,1 > als+1,1 > · · ·> ar,1

and
a1,1 > al1,1 > · · ·> als ,1.

Given a general decoration a = (a1, . . . , am), we define its type on each ai as in
the special case and also denote it by l if no confusion may occur. We also say it is
of type 0 if ai is of type 0 for all i .

Polynomial corresponding to decoration. Given m = 1 and a decoration a of
type (0), we define its corresponding polynomial with r variables to be

F1,a(x1, . . . , xr )=

(
1−

r∏
i=1

xi

)
.

For a partition a of type (l1, . . . , ls), we define its corresponding polynomial to be

F1,a(x1, . . . , xr )=

s∑
j=0

(
1−

l j+1−1∏
i=l j

xi

)
.

Here we set l0 = 1 and ls+1 = r + 1.
For the general case, given a decoration a = (a1, . . . , am), we define Fi,ai as in

the special case for all i = 1, . . . ,m.
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Figure 3. Rational tails corresponding to the decoration a = (a1, a2, a3)

of type 0, with a1= (a111)(a121)(a131, a132, a133)= (4)(8)(5, 7, 14), a2=

(a211)(a221, a222, a223)(a231) = (6)(10, 12, 13)(11), a3 = (a311) = (9).
The smallest numbered marked point on each rational tail (except 1, 2,
and 3) must be on the P1 farthest from the main component to be type 0.

Difference operator. We define the difference operator δ on a (multi)variable poly-
nomial F(x)= F(x1, . . . , xn) as

δ(F(x)) :=
F(x)−

∑
i F(x)|xi=1+ · · ·+ (−1)n F(x)|x1=···=xn=1

(1− x1) · · · (1− xn)
.

Lemma 2.3. Let π : Mg,m+n→ Mg,m . Then we have

π∗(L1)= L1+
∑

a:type 0

(−1)codim Da ODa ∈ K 0(Mg,m+n).

Proof. We decompose π as

Mg,m+n
πm+n
−−−→ Mg,m+n−1→ · · · → Mg,m+1

πm+1
−−−→ Mg,m

and compute π∗(L1)= π
∗
m+n . . . π

∗

m+1(L1) step by step.
Given a stratum D ⊂ Mg,m+n of type 0, we consider the inclusion-exclusion

formula
π∗m+nOπm+n(D) =

r∑
i=1

ODi −

∑
i< j

ODi∩D j + . . . ,

where π∗m+n(πm+n(D))=
⋃r

i=1 Di with Di irreducible strata.
Note that OD will show up in either the first or the second term of the right-hand

side depending on whether ftn+m(D) is stable or not. Since πn+m(D) is still of
type 0. The lemma follows by induction. □
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Remark 2.4. This expression is not symmetric with respect to indices m+ 1, . . . ,
m+ n since we chose a special order of pull-backs. Different choices of pull-back
order will result in different expressions. Nevertheless, any expression will give the
same element in K 0(Mg,n+m).

Lemma 2.5. Let π : Mg,1+n → Mg,1, a be a decoration, and G be any power
series. Then

Coeff(OD1,a , π
∗G(L1))= δ(G(L1− F1,a)),

where F1,a = F1,a(L11, . . . , L1,deg a) with L1 j defined above. When applying δ-
operator on the right-hand side, we view G(L1 − F1,a) as power series with
variables {L i j } and view L1 as constant.

Proof. We start with a special case m = 1 and n = 2. By previous lemma, we have

π∗L1 = L1−OD12 −OD13 −OD123 +OD(12)(3) .

Let G(x) be any power series. To compute Coeff(OD(12)(3),G(π∗L1)), we introduce
the following process:

Write x =OD12 and y =OD123 and hence OD(12)(3) = xy. Now we have

Coeff(OD(12)(3),G(π∗L1))

=
G(L1− x − y+ xy)+G(L1− y)+G(L1− x)+G(L1)

xy

∣∣∣
x=1−L11,y=1−L12

.

= δ
(
G(L1− (1− L11 L12))

)
.

Some remarks are in order:

• L11 and L12 are characterized by x2
= (1− L11) x and y2

= (1− L12) y.

• The second equality above follows from the definition of δ. Here we view
G(L1− (1− L11 L12)) as power series in L11 and L12.

• 1− L11 L12 is exactly the polynomial F1,(12)(3)(L11, L12), i.e., the polynomial
corresponding to the strata D(12)(3).

For general case, we can compute the coefficient of D1,a using the above computa-
tion process. It suffices to find the polynomial corresponding to D1,a . To find the
polynomial, we compute

−

∑
a′:type 0

D1,a′⊃D1,a

(−1)codim D1,a′OD1,a′
·OD1,a′

∣∣
D1,a
= F1,a(L11, . . . , L1 deg a)OD1,a .

A direct computation shows that it is exactly the polynomial we defined above. □
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Theorem 2.6. Let π : Mg,m+n → Mg,m and G = G(x1, . . . , xm) be any power
series of m variables. Then

π∗G(L1, . . . , Lm)

= G(L1, . . . , Lm)+
∑

a:all decorations

OD⟨m⟩,a δ(G(L1− F1,a1, . . . , Lm − Fm,am )),

where Fi,ai = Fi,ai (L i1, . . . , L i deg ai ) with L i j defined above. When applying the
δ-operator on the right-hand side, we view

G(L1− F1,a1, . . . , Lm − Fm,am )

as power series with variables {L i j } and view L i as constant.

Proof. It follows from the definition that

D⟨m⟩,a :=
⋂

1≤i≤m

Di,ai ,

and the following observation that if F(x1, . . . , xr )=
∏r

i=1 Fi (x i ), then

δ(F(x1, . . . , xr ))=

r∏
i=1

δ(Fi (x i )).

Here x i could be multiindices. □

Corollary 2.7. Let π : Mg,m+n→ Mg,m . Then we have

π∗e
∑m

i=1 ri L i = e
∑m

i=1 ri L i +

∑
a:all decorations

OD⟨m⟩,a

m∏
i=1

δ(eri (L i−Fi,ai )).

Use the same assumptions as in the previous theorem when applying δ-operator on
the right-hand side.

Proof. Take G to be e
∑m

i=1 ri L i and apply the previous theorem. Notice that if
F(x1, . . . , xr )=

∏r
i=1 Fi (x i ), then

δ(F(x1, . . . , xr ))=

r∏
i=1

δ(Fi (x i )).

Here x i could be multiindices. □

2C. Application to the map w : K∗
4(S

d X) → M g,R(X). We continue to write
R = ℓ− #A = I ⊔ J for the number of marked points of D. Consider the map
p : K̃4(BSd)→Mg,R sending a triple C← C ′→ D to D as before.

Write Mi , L ′i , and L i for the cotangent line bundles on D, C ′ and C respectively.
Let ι : ⟨R⟩ ⊆ ⟨ℓ⟩ be the inclusion of marked points such that ι(i)∈C ′ maps to i ∈ D.
Write ῑ(i) for the corresponding point of C .
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Given f : γ → η lying over D, we define F f,ῑ(i) as

F f,ῑ(i) = Fi,ai (L
m(1)
i1 , . . . , Lm(deg ai )

i deg ai
).

The power m is given by the ramification between nodes, Fi,ai is defined in the
point target case, and ai is the combinatorial type of f . The definition of type is
exactly the same as the point case.

Proposition 2.8. Let G = G(x1, . . . , xR) be any power series of R variables. Then

p∗(G(M1, . . . ,MR))

= G(Lm(t1)
ῑ(1) , . . . , Lm(tR)

ῑ(R) )+
∑

f :γ→η

OM f δ(G(L
m(tR)
ῑ(1) − F f,ῑ(1), . . . , Lm(tR)

ῑ(R) − F f,ῑ(R))),

where δ only applies on variables {L i j }.

Proof. The proof is similar to the point case. We only need to take care of the
difference coming from ramification points.

For the power on marked points, note that p∗Mi = (L ′i )
m(ti ) + torsion part

and L ′i = L ῑ(i) since C̃ ′→ C̃ is étale.
For the definition of F f,ῑ(i), if D is a divisor, note that

Om D :=O−O(−m D)=O− (O−OD)
m
= δ(Lm

e )OD,

where Le is characterized by O2
D = (1− Le)OD. This explains the power in the

definition of F f,ῑ(i). □

Remark 2.9. The cover C̃ ′→ C̃ is étale, so any marked point i ∈ C̃ ′ and its image
s ∈ C̃ will have the same ψ classes L ′i = Ls . Proposition 2.8 writes the pullback
p∗G(M1, . . . ,MR) as a power series in L ′i ; plugging in Ls for each L ′i in the fiber
of s ∈ C̃ rewrites this pullback as a power series H(L1, . . . , Ln). This power series
is invariant under Aut(C̃ ′|C̃), giving an analogous formula on K∗4(S

d X):

ω∗G(M1, . . . ,MR)= H∗(L1, . . . , Ln).

Remark 2.10. The map φ : K∗4(S
d X)→ K4(Sd X) is a finite étale map. The ψ

classes of K∗4(S
d X) are pulled back from those of K4(Sd X). If H(L⃗) is a power

series with coefficients αI ∈ K ◦(K∗4(S
d X)) in K-theory, write Hφ(L⃗) for the power

series on K4(Sd X) with coefficients the pushforwards φ∗αI of the coefficients
of H(L⃗). If β ∈ K◦(K4(Sd X)), α ∈ K ◦(K∗4(S

d X)), the projection formula equates

φ∗(φ
∗β⊗ H(L⃗)⊗α)= β⊗ Hφ(L⃗)⊗φ∗ α.

Remark 2.11. We sketch how to compute the coefficients OM f in terms of divisors
on the moduli space of curves, and then how to deal with those divisors in quantum
K-theory. This makes the power series Hφ(L⃗) computable.
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A map of covers f : γ → η induces a map f∗ :Mγ →Mη with image a closed
substack M f . The map f∗ :Mγ →M f is a combination of a finite étale torsor for
the automorphisms Aut( f |η) of the source over the target and a gerbe part for the
stacky points. By Proposition 1.9, the gerbe part does not affect the pushforward.
The pushforward is then related to the regular representation of the sheaf Aut( f |η).

After the above reductions, it remains to explain that quantum K-invariants
involving the torsion structure sheaf OS supported on boundary strata S can be
written in terms of the “usual” quantum K-invariants. In the cohomological Gromov–
Witten theory, this is achieved by the splitting axiom, as the boundary stratum consist
of the substacks indexed by the “dual graphs” exhibiting the imposed nodes of the
general curves. In quantum K-theory a parallel splitting axiom is also available,
albeit in a more sophisticated form. See [Givental 2000] and the genus reduction
and splitting axioms in [Lee 2004, Section 4.3] for details. One will then have to
push these coefficients forward as outlined in Section 3A.

3. Main theorem

Let α1, . . . , αR ∈ K ◦(X) be classes and form

α = α1 ⊠ · · ·⊠αR = α1|X R ⊗ · · ·⊗αR|X R ∈ K ◦(X R).

Let G(M⃗) a power series in the ψ classes of Mg,R(X) with coefficients arbitrary
classes in K ◦(Mg,R(X)).

Form the Gromov–Witten invariant

χ
(
Ovir

Mg,R(X)
⊗ ev∗

∏
αi G(M⃗)

)
in K◦(pt)=Q.

Write H(L⃗) for the power series in the ψ-classes L i which is equal to ω∗G(M⃗) by
Remark 2.9. Likewise write Hφ(L⃗) with the power series with coefficients given
by the pushforwards of those of H(L⃗) as in Remark 2.10.

Theorem 3.1. Gromov–Witten invariants on Mg,R(X) are equal to Sk-invariant
Euler characteristics on the space M̃4(Sd X) of stable genus zero maps to [Symd X ]:

χ(Ovir
Mg,R(X)

⊗ ev∗αG(M⃗))= χ(Ovir
K∗4(Sd X)⊗ ev∗αH(L⃗))

= χ(Ovir
K4(Sd X)⊗φ∗(ev

∗α)Hφ(L⃗))

= χSk

(
Ovir

M̃4(Sd X)⊗ψ
∗
(
φ∗(ev∗α)Hφ(L⃗)

))Sk
.

Proof. For the first equality, apply the projection formula for w : K∗4(S
d X)→

Mg,R(X) and the equality of virtual fundamental classes from Proposition 1.17.
The evaluation maps are compatible and the power series H(L⃗) is designed to be
the pullback w∗G(M⃗).
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The second equality results from the projection formula and the pullback

φ∗[Ovir
K4(Sd X)] = [O

vir
K∗4(Sd X)].

The power series Hφ(L⃗) applies φ∗ to the coefficients, so we are using the projection
formula for each monomial of H(L⃗) one at a time.

The third equality results from the Sk-quotient ψ : M̃4(Sd X)→ K4(Sd X) as in
Section 1F. The pullback

M̃4(Sd X) pt

K4(Sd X) BSk

ψ
⌜

equates the underlying vector space of χSk (V ) with the pullback χ(ψ∗V ). The
pushforward map BSk→ pt then takes the quotient (−)Sk by Sk . □

We have reduced Gromov–Witten invariants on Mg,R(X) to some equivariant
Euler characteristics on M̃4(Sd X). But are these Euler characteristics actually
Gromov–Witten invariants?

Lemma 3.2. The equivariant Euler characteristic

χ
(
Ovir

K4(Sd X)⊗φ∗

(
ev∗

∏
αi

)
Hφ(L⃗)

)
is a “Gromov–Witten invariant” in genus zero. In other words, the class φ∗ev∗

∏
αi

can be described as the pullback of a class via the evaluation map of K4(Sd X).

We spend the rest of the section proving Lemma 3.2. This lemma was essentially
left to the reader in [Costello 2006], although it is simpler in Chow groups than in
K-theory. Reducing the part Hφ(L⃗) is left to the reader, following Remark 2.11
and the process we outline for the evaluation classes.

3A. Turning equivariant Euler characteristics on M̃4(Sd X) into proper Gromov–
Witten invariants. We need to show that φ∗ev∗α is pulled back from the evaluation
map on K4(Sd X). We first show it is pulled back from a natural map

K4(Sd X)→ ([Symd X ])J
×[Sym#I X ].

In the covers C ′→ C parameterized by K4(Sd X), none of the marked points
of C ′ are ordered. Write Q j → K4(Sd X) for j ∈ J for the d-sheeted cover of
preimages of j ∈ C in C ′. Likewise, let P→ K4(Sd X) be the S#I -torsor ordering
the preimages in C ′ of∞∈ C . The product over K4(Sd X) of all these d-sheeted
covers and the S#I -torsor is K∗:

K∗4(S
d X)=

∏
K4(Sd X)

Q j ×K4(Sd X) P→ K4(Sd X).
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Considering the map Q j → X as a d-sheeted cover of K, it is parameterized by
a map to [Symd X ]:

Q j X ×[Symd−1 X ]

K4(Sd X) [Symd X ]

⌜
w j

The equivariant map P→ X I is also parameterized by a map to a symmetric product
stack, but with different total space:

P X#I

K4(Sd X) [Sym#I X ]

⌜
wI

There is then a pullback square

(9)

K∗4(S
d X)

∏
Q j ×P X J

× ([Symd−1 X ])J
× X#I X R

K4(Sd X) K4(Sd X)R ([Symd X ])J
×[Sym#I X ]

φ
⌜ ⌜

w

1

Take classes α1, · · · , αR ∈ K ◦(X). Write

α := α1 ⊠ · · ·⊠αR

for the tensor product of the pullback of these classes to X J
× ([Symd−1 X ])J

× X I .
Pullback and pushforward in K ◦ theory along cartesian squares commute (5), so
the resulting classes on K4(Sd X) are the same:

(10) φ∗(α|K∗4(Sd X))= (w∗ α)|K4(Sd X) in K ◦(K4(Sd X)).

3B. Evaluation maps. We have shown that φ∗ev∗α is pulled back from the map
K4(Sd X)→ ([Symd X ])J

×[Sym#I X ]. We need to compare this with the natural
evaluation map on K4(Sd X).

Gromov–Witten invariants are certain integrals of K theoretic classes pulled
back from the evaluation maps as defined in Section Section 1E. To make sense of
this, we need to be pedantic about the correct evaluation map for each target stack.

For spaces parameterizing multiple curves C1,C2 such as Hurwitz stacks, there
is more than one evaluation map. We default to the evaluation maps of the base
curve of the cover to be correct.

Example 3.3. The space M̃4(Sd X) parameterizes ramified covers C ′→C together
with a map C ′→ X . There are n ordered marked points of C and ℓ unordered
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points of C ′. The resulting evaluation map is

ev : M̃4(Sd X)→ Ī([Symd X ])n.

Example 3.4. The space K4(Sd X) is similar to M̃4(Sd X) but harder, because
the k gerbey points on C are not even ordered. That part of the evaluation map
lands in a symmetric stack of a symmetric stack

ev : K4(Sd X)→ Ī
(
([Symd X ])J

×[Symk
[Symd X ]]× [Symd X ]

)
.

The evaluation maps fit in a commutative square:

M̃4(Sd X) Ī
(
([Symd X ])J

× ([Symd X ])k ×[Symd X ]
)

K4(Sd X) Ī
(
([Symd X ])J

×[Symk
[Symd X ]]× [Symd X ]

)
ev

ev

We won’t need classes on the middle factor Ī([Symk
[Symd X ]]). Write ev′ for

the projection away from this factor on the evaluation map of K4(Sd X):

ev′ : K4(Sd X)→ Ī
(
([Symd X ])J

×[Symd X ]
)
.

Remark 3.5. The 2-functor Ī(−) does not distribute over products because of the
representability requirement. For example, the identity map on BZ/2× BZ/2 is
representable, but it doesn’t factor through a representable map to either factor. It
is more accurate to say the evaluation map lands in the product of Ī(−) applied to
each factor, so it is a product of the evaluation maps for each marked point.

Our ramification points are µr -banded gerbes mapping to BSd . Given a map
Bµr → BSd , we can extract the set theoretic fiber of the stacky point of C̃ ′→ C̃
by taking the set-theoretic quotient ⟨d⟩/µr of the corresponding action as in
Remark 1.4.

More generally, we have a µr -gerbe G→ T with a map G→ [Symd X ]. This
means a finite étale cover G̃→ G of degree d. The coarse moduli space of G is T ,
and that of G̃ is a finite étale cover T ′→ T . The degree k of this cover is some
number less than d. The map G̃→ X factors through T ′ because X is a scheme.
This procedure gives a map

(11) c : Ī([Symd X ])→
⊔
k≤d

[Symk X ],

sending G → [Symd X ] to T ′ → X . We describe this map in detail in the next
Section Section 3C.
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Because we fixed the discrete data 4 for K4(Sd X), we know which component
of each factor of

⊔
k≤d [Symk X ] it maps to

K4(Sd X) ([Symd X ])J
×[Sym#I X ]

Ī
(
([Symd X ])J

×[Symd X ]
) (⊔

k[Symk X ]
)J∪∞

ev′ inc

c

Let β be a class in K ◦
(
([Symd X ])J

× [Sym#I X ]
)
. Because the map inc is an

inclusion of components, we have

inc∗ inc∗ β = β.

Then the pullback β|K4(Sd X) is the same as the class

ev′∗c∗ inc∗ β in K ◦(K4(Sd X)).

Proof of Lemma 3.2. Take β = w∗ α above. Then

φ∗(α|K∗4(Sd X))= (w∗ α)|K4(Sd X) = ev′∗c∗ inc∗w∗ α,

using equation (10) and the discussion immediately above. This expresses the
factor φ∗(α|K∗4(Sd X)) in the Gromov–Witten invariant as a class pulled back via the
evaluation map on K4(Sd X). □

3C. Describing the map c. We describe the map c in detail using the inertia stack
I([Symd X ]). This section is purely expository, and an example is given at the end.

The inertia stack of a quotient stack [Y/G] is the disjoint union of the quotients

I ([Y/G])=
⊔

g∈G conj classes

[Y g/Cg]

of the fixed locus Y g by the centralizer Cg ⊆ G.
For [Symd X ], we have Y = Xd and G= Sd . Conjugacy classes of Sd are indexed

by cycle types, the multiset of lengths of cycles. For example,

g1 := (12)(34)(5)∈ S5 7→ {2, 2, 1}, g2 := (234)(761)(5)(89)∈ S9 7→ {3, 3, 1, 2}.

Let Ns be the number of cycles of length s, N :=
∑

Ns the total number of
cycles, and t the cardinality of the set of distinct lengths in the cycle type. We
include all cycles of length one N1, so

∑
i Ni = d . For g1, g2 above,

g1 7→ N1 = 1, N2 = 2, t = 2, g2 7→ N1 = 1, N2 = 1, N3 = 2, t = 3.

The centralizer of a cycle type g is

Cg = SN1 × SN2 ⋊ (Z/2)
N2 × SN3 ⋊ (Z/3)

N3 · · · × SNt ⋊ (Z/t)Nt .
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The fixed locus (Xd)g ⊆ Xd is the multidiagonal

(Xd)g = {(x1, · · · , xd) | xi = x j if i, j in the same cycle},

so (Xd)g ∼= X N . For g1, g2, we have

(Xd)g1 = {(x, x, y, y, z)} ∈ X5, (Xd)g2 = {(x, x, x, y, y, y, z, w,w)} ⊆ X9.

Write Hi = SNi ⋊ (Z/ i)Ni = Z/ i ≀ SNi . There is an exact sequence

0→ (Z/ i)Ni → Hi → SNi → 1

and a splitting SNi ⊆ Hi . The subgroups Z/ i act trivially on the diagonal fixed
locus X ⊆ X Ni , so the stack quotient is a trivial gerbe

[X/(Z/ i)] = X × BZ/ i.

The quotient X N/
∏

Hi is the product of symmetric products

X N/
∏

Hi =
∏

i

[SymNi [X/(Z/ i)]] =
∏

i

[SymNi (X × BZ/ i)].

On each component, there is a map to a single symmetric product∏
[SymNi (X × BZ/ i)] →

∏
[SymNi X ] c′

−→ [SymN X ].

The second map c′ takes t covers T ′i → T of degrees Ni and assembles them into
one cover T ′ =

⊔
T ′i → T of degree N . This gives a map

(12) c̄ : I ([Symd X ])→
⊔
N≤d

[SymN X ].

The reader can check this coincides with the map c defined in (11).

Lemma 3.6. There is a commutative diagram

I ([Symd X ])

Ī([Symd X ]),
⊔

k≤d [Symk X ]

c̄

c

where c is the map (11) and c̄ is (12).

We explain the above from the point of view of covers. A T -point of I ([Symd X ])
is a map T×Bµr→[Symd X ], which is a d-sheeted cover P→ T×Bµr . Write P0
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for the pullback d-sheeted cover of T :

P0 P

T T × Bµr

⌜

so P = [P0/µr ].
Fix a generator Z/r ≃ µr . If T is a geometric point, P0 ≃ ⟨d⟩ and µr

⟳

P0 is
an element σ ∈ Sd . Its order is the lcm of the cycle lengths, which divides r ; r is
equal to the lcm when the map T × Bµr → [Symd X ] is representable. Reordering
P0 ≃ ⟨d⟩ conjugates σ , so σ is well defined as a conjugacy class.

Even if T is not a geometric point, this defines a locally constant function

T 7→ Sd/ad Sd , t 7→ [σ ]

from T to the conjugacy classes of Sd . This decomposes I ([Symd X ]) into compo-
nents corresponding to cycle type, or partitions of d .

Given a partition d =
∑

i Ni corresponding to the cycle type of σ ∈ Sd , a point
T → I ([Symd X ]) factors through the corresponding component if its fibers at
geometric points are isomorphic to ⟨d⟩/σ . The Ni different orbits of i points may
be interchanged in families over T , and each such orbit may vary in a BZ/ i family.
The collection of orbits of i points is parameterized by the stack

[SymNi (BZ/ i)].

We have
∏
[SymNi (X × BZ/ i)] instead because we also need a map to X .

The case d = 5. If d = 5, the seven cycle types/partitions are

5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1.

The corresponding components of I ([Sym5 X ]) are

X × BZ/5, X2
× BZ/4, X2

× BZ/3× BZ/2, X/(Z/3)× X2/S2,

X × X2/(S2 ⋊ (Z/2)2), X/Z/2× X3/S3, X5/S5.

Project away from the cyclic gerbes BZ/ i :

X, X2, X2, X ×[Sym2 X ], [Sym2 X ]× X, X ×[Sym3 X ], [Sym5 X ].

For example, consider a trivial gerbe b : Bµ4 → [Sym5 X ] mapping to the
symmetric product. This corresponds to a 5-sheeted cover P → Bµ4, counting
stacky multiplicity.

The composite pt→ Bµ4→ [Sym5 X ] → BS5 parameterizes a 5-sheeted cover
of the point, which we trivialize and view as ⟨5⟩. The action of µ4 on ⟨5⟩ can be



HIGHER-GENUS QUANTUM K -THEORY 117

viewed as a map µ4→ S5. Choose a generator to identify µ4 ≃ Z/4 and let σ ∈ S5

be the image of the generator.
The element σ has order dividing 4. Take, for example,

σ = g1 = (12)(34)(5).

Its order 2 is not 4, so the classifying map b is not representable.
The stack quotient of ⟨5⟩ by Z/4 · σ is a disjoint union

Bµ2 ⊔ Bµ2 ⊔ Bµ4.

This is the 5-sheeted cover P→ Bµ4. The corresponding point pt→ I ([Sym5 X ])
factors through the component of the partition 2+2+1, i.e., X× X2/(S2⋊ (Z/2)2)
above.

The cover comes with a map P→ X . The map c̄ takes coarse moduli spaces of
P→ Bµ4, obtaining ⟨3⟩ → pt. The map P→ X factors through ⟨3⟩ because X is
a scheme with no stack structure. This sends the component X × X2/(S2 ⋊ (Z/2)2)
to [Sym3 X ].

4. Elliptic curves example

We apply our theorem in the case of elliptic curves, with g = R = 1, d = 2,
and X = pt. The symmetric product is the classifying stack [Symd X ] = BSd . The
results are reassuring but not surprising. See Figure 4.

We know the map w is proper and birational. For elliptic curves, more is true.

Lemma 4.1. The map w : K̃∗4∗(BSd)→ M1,1 is an isomorphism.

Proof. The map on coarse moduli spaces is an isomorphism P1
= P1. It remains to

show the stack structure is the same; i.e., the automorphism groups of the admissible
covers C ′→C are the same as that of the stabilization D=C ′st. We already checked
this for a generic elliptic curve in the proof of Lemma 1.16.

C ′

C · · ·

· · ·

· · ·

k ∞

Figure 4. An elliptic curve C ′ and its double cover of C = P1

simply ramified at four points: 4 with g= 1, d= 2, k= 0. Marked
points are white if remembered and black if forgotten under the
map p : K̃4(BSd)→M1,1.
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C ′1 C ′0 D

Figure 5. The admissible cover C ′→ C which stabilizes to the
nodal cubic C ′st

= D. The components of C ′ are labeled C ′0,C ′1
and they each doubly cover a component of C . The pair of nodes P
is the intersection C ′0 ∩C ′1 of the components.

We want to show Aut(C ′→C)=Aut(D). Again, it helps that automorphisms of
the covering map are a subgroup of automorphisms of the source Aut(C ′→ C)⊆
Aut(C ′). These automorphisms must send ramification points to ramification points,
and it will be clear that they also send the preimage I ∈ C ′ of infinity to itself.

For all the smooth elliptic curves D, the source is already stable C ′= D and
the unique map C ′ → C = P1 is the quotient by the elliptic involution. This
identifies Aut(C ′→C)≃Aut(D) for all smooth elliptic curves with automorphism
group Z/2. The smooth curves j = 0, 1728 remain, as does the singular cubic.

The curve j = 1728 has the equation

y2
= x3
− x .

The automorphism group Z/4 is generated by (x, y) 7→ (−x, iy). This commutes
with the automorphism x 7→ −x of P1. Likewise j = 0 has the equation

y2
= x3
− 1.

Letting ζ be a sixth root of unity, the automorphism group is generated by the map
(x, y) 7→ (ζ 2x, ζ 3 y). This also commutes with an automorphism of P1.

For the singular elliptic curve D, the preimage is an admissible cover C ′→C with
both source and target reducible. See Figure 5. Each consists of two components,
labeled C ′i ,Ci for i = 0, 1. Assume that the point in I ⊆ C ′ lies on C ′0.

The map restricts to two double covers C ′i → Ci of P1’s. The preimage P ⊆ C ′

of the singular point of C is a pair of nodes joining C ′0,C ′1.
Any automorphism of C ′ must restrict to an automorphism of each component

because of the marked point. Any automorphism ϕ of C ′ restricts to an automor-
phism of the pair of nodes P which determines ϕ. This is because ϕ must preserve
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at least three points on each component, the nodes and the ramification points. All
such automorphisms lie over C , so Aut(C ′→C)=Aut(P)=Z/2. This is the same
automorphism group of the singular stabilization D = C ′st, the nodal cubic. □

The map φ : K∗4(BSd)→ K4(BSd) is also an isomorphism by Remark 1.20,
so Theorem 3.1 merely says that quantum K invariants on M1,1 = P(4, 6) are
equivariant Euler characteristics on its natural S3-cover by M̃4(BSd).

This cover is pulled back from the quotient P1
→P(2, 3) by S3 acting on λ∈P1.

This map classically parameterizes the Legendre form

y2
= x(x − 1)(x − λ)

of an elliptic curve. The map M̃4(BSd)→K4(BSd)= M1,1 then fits in a pullback
square

M̃4(BSd) M1,1

P1 P(2, 3)

⌜

/S3

with vertical arrows µ2-gerbes.
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