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We consider homologically essential simple closed curves on Seifert surfaces
of genus-one knots in S3, and in particular those that are unknotted or slice
in S3. We completely characterize all such curves for most twist knots: they
are either positive or negative braid closures; moreover, we determine exactly
which of those are unknotted. A surprising consequence of our work is that
the figure-eight knot admits infinitely many unknotted essential curves up to
isotopy on its genus-one Seifert surface, and those curves are enumerated
by Fibonacci numbers. On the other hand, we prove that many twist knots
admit homologically essential curves that cannot be positive or negative braid
closures. Indeed, among those curves, we exhibit an example of a slice but
not unknotted homologically essential simple closed curve. We continue our
investigation of unknotted essential curves for arbitrary Whitehead doubles
of nontrivial knots, and obtain that there is precisely one unknotted essential
simple closed curve in the interior of a double’s standard genus-one Seifert
surface. As a consequence we obtain many new examples of 3-manifolds that
bound contractible 4-manifolds.

1. Introduction

Suppose K ⊆ S3 is a genus g knot with Seifert surface 6K . Let b be a curve in 6K

which is homologically essential — that is, it is not separating 6K — and a simple
closed curve — that is, it has one component and does not intersect itself. Further-
more, we will focus on those that are unknotted or slice in S3 — that is, each bounds
a disk in S3 or B4. In this paper we seek to make progress on the following problem:

Problem. Characterize and, if possible, list all such curves b for the pair (K , 6K ),
where K is a genus-one knot and 6K its Seifert surface.

Our original motivation for studying this problem comes from the intimate
connection between unknotted or slice homologically essential curves on a Seifert
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Figure 1. On the left is the twist knot Kt , where the box contains t
full right-handed twists if t ∈ Z>0, and |t | full left-handed twists
if t ∈ Z<0. On the right is the standard Seifert surface for Kt .

surface of a genus-one knot and 3-manifolds that bound contractible 4-manifolds.
We defer the detailed discussion of this connection to Section 1B, where we also
provide some historical perspective. For now, however, we will focus on getting a
hold on the stated problem above for a class of genus-one knots, and as we will
make clear in the next few results, this problem is already remarkably interesting
and fertile on its own.

1A. Main results. A well-studied class of genus-one knots is that of the so-called
twist knot K = Kt , which is described by the diagram on the left of Figure 1 (cf.
[Casson and Gordon 1978, page 182]). We note that with this convention K−1 is
the right-handed trefoil T2,3 and K1 is the figure-eight knot 41. We will consider
the genus-one Seifert surface 6K for K = Kt , as depicted on the right of Figure 1.

Theorem 1.1. Let t ≤ 2. Then the genus-one Seifert surface 6K of K = Kt admits
infinitely many homologically essential, unknotted curves if and only if t = 1, that
is, if and only if K is the figure-eight knot 41.

Indeed, we can be more precise and characterize all homologically essential,
simple closed curves on 6K , from which Theorem 1.1 follows easily. To state this we
recall an essential simple closed curve c on 6K can be represented (almost uniquely)
by a pair of nonnegative integers (m, n), where m is the number of times c = (m, n)

runs around the left band and n is the number of times it runs around the right band
in 6K . Moreover, since c is connected, we can assume gcd(m, n) = 1. Finally, to
uniquely describe c, we call c an ∞ curve if its orientation switches from one band
to the other or a loop curve if it has the same orientation on both bands (see Figure 9).

Theorem 1.2. Let K = Kt be a twist knot and 6K its Seifert surface, as in Figure 1.
Then:

(1) For K = Kt with t ≤−1, we can characterize all homologically essential simple
closed curves on 6K as the closures of negative braids in Figure 10. In the case
of the right-handed trefoil K−1 = T2,3, exactly 6 of these (see Figure 2) are un-
knotted in S3. For t < −1, exactly 5 of these (see Figure 4) are unknotted in S3.

(2) For K = K1 = 41, we can characterize all homologically essential simple
closed curves on 6K as the closures of braids in Figure 15. A curve on this
surface is unknotted in S3 if and only if it is
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(a) a trivial curve (1, 0) or (0, 1),
(b) an ∞ curve in the form of (Fi+1, Fi ), or
(c) a loop curve in the form of (Fi , Fi+1), where Fi represents the i-th Fi-

bonacci number (see Figure 3).

For twist knots K = Kt with t > 1 the situation is more complicated. Under
further hypothesis on the parameters m, n we can obtain results similar to those
in Theorem 1.2, and these will be enough to extend the theorem entirely to the
case of K = K2, so-called Stevedore’s knot 61 (here we use the KnotInfo data-
base [Livingston and Moore 2024] for identifying small knots and their various
properties). More precisely we have:

Theorem 1.3. Let K = Kt be a twist knot and 6K its Seifert surface, as in Figure 1.
Then:

(1) When t > 1 and m < n, we can characterize all homologically essential simple
closed curves on 6K as the closures of positive braids in Figure 24(a),(b).
Exactly 5 of these (see Figure 4) are unknotted in S3.

(2) When t > 1 and m > n:

(a) If m − tn > 0, then we can characterize all homologically essential simple
closed curves on 6K as the closures of negative braids in Figures 28 and 31.
Exactly 5 of these (see Figure 4) are unknotted in S3.

(b) If m − n < n and the curve is an ∞ curve, then we can characterize all
homologically essential simple closed curves on 6K as the closures of
positive braids in Figure 29. Exactly 5 of these (see Figure 4) are unknotted
in S3.

(3) For K = K2 = 61, we can characterize all homologically essential simple
closed curves on 6K as the closures of positive or negative braids. Exactly 5
of these (see Figure 4) are unknotted in S3.

What Theorem 1.3 cannot cover is the case t > 2, m > n and m − tn < 0 or
when m − n < n and the curve is a loop curve. Indeed in this range not every
homologically essential curve is a positive or negative braid closure. For example,
when (m, n)= (5, 2) and t = 3 one obtains that the corresponding essential ∞ curve,
as a smooth knot in S3, is the knot m(52) (see Figure 34 in Section 5 for a verification
of this), and for (m, n) = (7, 3) and t = 3, the corresponding knot is 10132; both
of these are known (e.g., via the KnotInfo database [Livingston and Moore 2024])
not to be positive braid closures — coincidentally, these knots are not unknotted or
slice. Moreover we can explicitly demonstrate (see below) that if one removes the
assumption of “∞” from part (2)(b) in Theorem 1.3, then the conclusion claimed
there fails for certain loop curves when t > 2. A natural question is then whether
for knots K = Kt with t > 2, m > n and m − tn < 0 or an m − n < n loop curve,
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Figure 2. It can easily be shown that these six curves, from left to
right, (0, 1), (1, 0), (1, 1) ∞, (1, 1) loop, (1, 2) ∞ and (2, 1) ∞,
on 6K are unknotted in S3. One can easily check that the other
(1, 2) and (2, 1) curves (that is, the (1, 2) loop and (2, 1) loop
curves) both yield the left-handed trefoil T2,−3, and hence they are
not unknotted in S3.

there exists unknotted or slice curves on 6K other than those listed in Figure 4. A
follow-up question will be whether there exists slice but not unknotted curves on 6K

for some K = Kt . We can answer the latter question in the affirmative as follows:

Theorem 1.4. Let K = Kt be a twist knot with t > 2 and 6K its Seifert surface, as
in Figure 1, and consider the loop curve (m, n) with m = 3, n = 2 on 6K . Then
this curve, as a smooth knot in S3, is the pretzel knot P(2t − 5, −3, 2). This knot is
never unknotted but it is slice (exactly) when t = 4, in which case this pretzel knot is
also known as the curious knot 820.

Remark 1.5. We note that the choices of m, n values made in Theorem 1.4 are
somewhat special in that they yielded an infinite family of pretzel knots, and that
it includes a slice but not unknotted curve. Indeed, by using the work of Rudolph
[1993], we can show (see Proposition 3.8) that the loop curve (m, n) with m−n = 1,
n > 2 and t > 4 on 6K , as a smooth knot in S3, is never slice. The calculation gets

Fi+1 Fi Fi Fi+1

Fi+1−Fi Fi+1−Fi

Figure 3. The two infinite families of unknotted curves for the
figure-eight knot in S3. The letters on parts of our curve or in
certain locations stands for the number of strands at that particular
curve or location. For example, for the (m, n) ∞ curve on the left
we will show in Section 3B via explicit isotopies how, starting with
the known unknotted (1, 1) ∞ curve, we can recursively obtain the
following sequence of unknotted curves: (1, 1) ∼ (3, 2) ∼ (8, 5) ∼

(21, 13) ∼ (55, 34) ∼ · · · .
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t t t t t

Figure 4. These five curves, from left to right, (0, 1), (1, 0),
(1, 1) ∞, (1, 1) loop and (2, 1) ∞, on 6K , where K = Kt ,
t ̸= 1, −1, are unknotted curves in S3.

quickly complicated once m − n > 1, and it stays an open problem if in this range
one can find other slice but not unknotted curves.

We can further generalize our study of unknotted essential curves on minimal-
genus Seifert surfaces of genus-one knots for the Whitehead doubles of nontrivial
knots. We first introduce some notation. Letting P be the twist knot Kt embedded
(where t = 0 is allowed) in a solid torus V ⊂ S3 and K denote an arbitrary knot in S3,
we identify a tubular neighborhood of K with V in such a way that the longitude
of V is identified with the longitude of K coming from a Seifert surface. The image
of P under this identification is a knot, D±(K , t), called the positive/negative
t-twisted Whitehead double of K . In this situation the knot P is called the pattern
for D±(K , t), and K is referred to as the companion. Figure 5 depicts the positive
−3-twisted Whitehead double of the left-handed trefoil, D+(T2,−3, −3). If one
takes K to be the unknot, then D+(K , t) is nothing but the twist knot Kt .

Theorem 1.6. Let K denote a nontrivial knot in S3. Suppose that 6K is a standard
genus-one Seifert surface for the Whitehead double of K . Then there is precisely
one unknotted homologically essential, simple closed curve in the interior of 6K .

1B. From unknotted curves to contractible 4-manifolds. The problem of finding
unknotted homologically essential curves on a Seifert surface of a genus-one knot is

V

P

νK

Figure 5. On the left is the solid torus V ⊂ S3 and the pattern twist
knot P (in this case t = 0). On the right is the positive −3-twisted
Whitehead double of the left-handed trefoil, and its standard genus-
one Seifert surface.
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interesting on its own, but it is also useful for studying some essential problems in
low-dimensional topology. We expand on one of these problems a little more. An
important and still open question in low-dimensional topology asks: which homology
3-sphere1 bounds a homology 4-ball or contractible 4-manifold (see [Kirby 1978,
Problem 4.2])? This problem can be traced back to the famous Whitney embedding
theorem and other important subsequent results due to Hirsch [1961], Wall [1965],
and Rohlin [1965]. Since then, the research towards understanding this problem
has stayed active. It has been shown that many infinite families of homology
spheres do bound contractible 4-manifolds [Casson and Harer 1981; Fickle 1984;
Stern 1978; Zeeman 1965] and at the same time many powerful techniques and
homology cobordism invariants, mainly coming from Floer and gauge theories
[Manolescu 2016; Fintushel and Stern 1985; Rohlin 1952], have been used to obtain
constraints. See [Şavk 2024] for a detailed recent survey on various constructions
and obstructions mentioned above.

In our case, using our main results, we will be able to list some more homology
spheres that bound contractible 4-manifolds. This is because of the following
theorem of Fickle [1984, Theorem 3.1], which was one of the main motivations for
the research in this paper.

Theorem 1.7 (Fickle). Let K be a knot in S3 that has a genus-one Seifert surface F
with a primitive element [b] ∈ H1(F) such that the curve b is unknotted in S3. If b
has self-linking s, then the homology 3-sphere obtained by 1/(s ± 1) Dehn surgery
on K bounds a contractible2 4-manifold.

Theorem 1.7 was generalized (along with a somewhat more accessible proof
of Fickle’s theorem) by Etnyre and Tosun [2023, Theorem 1] to genus-one knots
in the boundary of a homology 4-ball W , where the assumption on the curve b is
relaxed so that b is slice in W . This will be useful (see Corollary 1.9 below) for
applying to the slice but not unknotted curve/knot found in Theorem 1.4.

We also want to take the opportunity to highlight an interesting and still open
conjecture [Fickle 1984, page 481, Conjecture] attributed to Fintushel and Stern.

Conjecture 1.8 (Fintushel and Stern). Let K be a knot in the boundary of a ho-
mology 4-ball W which has genus-one Seifert surface with a primitive element
[b] ∈ H1(F) such that b is slice in W . If b has self-linking s, then the homology
3-sphere obtained by 1/k(s ± 1), k ≥ 0, Dehn surgery on K bounds a homology
4-ball.

1A homology 3-sphere/4-ball is a closed, oriented, smooth 3-/4-manifold having the integral
homology groups of S3/B4.

2Indeed, this contractible manifold is a Mazur-type manifold, namely, it is a contractible 4-manifold
that has a single handle for each of the indices 0, 1 and 2, where the 2-handle is attached along a knot
that links the 1-handle algebraically once. This condition yields a trivial fundamental group.
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Corollary 1.9. Let Kt be a nontrivial twist knot. Then the homology spheres
obtained by

(1) ±
1
2 Dehn surgery on K1 = 41,

(2) −
1
2 and −

1
4 Dehn surgeries on K−1 = T2,3,

(3) −
1
2 and 1/(t ± 1) and 1/((t − 2) ± 1) Dehn surgeries on Kt for t ̸= ±1,

(4) 1
2 Dehn surgery on K4

bound contractible 4-manifolds.

Corollary 1.10. The homology spheres obtained by −
1
2 Dehn surgery on D+(K , t)

each bound a contractible 4-manifold.

Remark 1.11. The 3-manifolds in Corollary 1.9(2) are the Brieskorn spheres
6(2, 3, 13) and 6(2, 3, 25); they were identified by Casson–Harer and Fickle to
bound contractible 4-manifolds. Also, it was known already that the result of 1

2 Dehn
surgery on the figure-eight knot bounds a contractible 4-manifold (see [Tosun 2022,
Theorem 18 and Figure 6]), and from this we obtain the result in Corollary 1.9(1),
as the figure-eight knot is an amphichiral knot. The result in Corollary 1.10 also
follows from [Fickle 1984, Theorem 3.6].

Remark 1.12. It is known that the result of 1
n Dehn surgery on a slice knot K ⊂ S3

bounds a contractible 4-manifold. To see this, note that at the 4-manifold level with
this surgery operation what we are doing is removing a neighborhood of the slice
disk from B4 (the boundary at this stage is zero surgery on K ) and then attaching
a 2-handle to a meridian of K with framing −n. Now, simple algebraic topology
arguments show that this resulting 4-manifold is contractible.

It is a well-known result [Casson and Gordon 1978] that a nontrivial twist knot
K = Kt is slice if and only if K = K2 (Stevedore’s knot 61). So, by arguments above,
we already know that result of 1

n surgery on K2 bounds a contractible 4-manifold
for any integer n. But, interestingly, we do not recover this by using Theorem 1.3.

Organization. The paper is organized as follows. In Section 2 we set some basic
notation and conventions that will be used throughout the paper. Section 3 contains
the proofs of Theorems 1.2, 1.3 and 1.4. Our main goal will be to organize, case
by case, essential simple closed curves on genus-one Seifert surfaces 6K , through
sometimes lengthy isotopies, into explicit positive or negative braid closures. Once
this is achieved we use a result due to Cromwell that says the Seifert algorithm
applied to the closure of a positive/negative braid closure gives a minimal-genus
surface. This together with some straightforward calculations will help us to
determine the unknotted curves exactly. But sometimes it will not be obvious
how or even possible to reduce an essential simple closed curve to a positive or
negative braid closure (see Sections 3B, 3C and 3D and Figure 34 in Section 5).
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Further analyzing these cases will yield interesting phenomenon listed in Theorems
1.3 and 1.4. Section 4 contains the proof of Theorem 1.6. Finally, Section 5 contains
the proofs of Corollaries 1.9 and 1.10 and some final remarks.

2. Preliminaries

In this section, we set some notation and make preparations for the proofs in the
next three sections. In Figure 6 we record some basic isotopies/conventions that
will be repeatedly used during proofs. Most of these are evident, but for the reader’s
convenience we explain how the moves in parts (a) and (f) work in Figures 7 and 8.
We remind the reader that letters on parts of our curve, as in part (e) of Figure 6, or in
a certain location, are used to denote the number of strands that particular curve has.

Recall also an essential, simple closed curve on 6K can be represented by a pair
of nonnegative integers (m, n), where m is the number of times it runs around the
left band and n is the number of times it runs around the right band in 6K , and
since we are dealing with connected curves we must have that m, n are relatively
prime.

We have two cases: m > n or n > m. For an (m, n) curve with m > n, after
the m strands pass under the n strands on the Seifert surface, the curve can be split
into two sets of strands. For this case, assume that the top set is made of n strands.
They must connect to the n strands going over the right band, leaving the other
set to be made of m − n strands. Now, we can split the other side of the set of m

∼=

∼=

∼=

∼=

= =m m{m

(a)

(b)

(c)

(d)

(e)

−1

+1

m

m

m

m

r

s

−1

−1
∼=−1

r

s

(f)

r

s 1

1∼=
1

r

s

(g)

m

m

m

m

Figure 6. Various isotopies.
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fold ∼=

∼=

∼=

∼=

Figure 7. Diagrammatic proof of the move in Figure 6(a). As
indicated, the passage from the top right figure to the bottom right
is via “smoothing” a creased edge.

strands into two sections. The m − n strands on the right can only go to the bottom
of these two sections, because otherwise the curve would have to intersect itself on
the surface. This curve is referred to as an (m, n) ∞ curve. See Figure 9(a). The
other possibility for an (m, n) curve with m > n has n strands in the bottom set
instead, and they loop around to connect with the n strands going over the right
band. This leaves the other to have m − n strands. We can split the other side of
the set of m strands into two sections. The m − n strands on the right can only go
to the top of these two sections, because again otherwise the curve would have to
intersect itself on the surface. The remaining subsection must be made of n strands
and connect to the n strands going over the right band. This curve is referred to as
an (m, n) loop curve. See Figure 9(b). The case of an (m, n) curve with n > m is
similar. See Figure 9(c),(d).

r

r r r

r r

r

s

s s

s s

s

s
s

r+s

r

∼= ∼=

∼=

∼=
∼=

−1

−1

−1

−1

−1

∼=

Figure 8. Diagrammatic proof of the move in Figure 6(f).
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m n
t

m n
t

m > n n > m

m n
t

m n
t

m n
t

m n
t

m − n m − n n − m n − m

(a) (m, n) ∞ (b) (m, n) loop (c) (m, n) ∞ (d) (m, n) loop

Figure 9. Possibilities for an essential, simple closed curve (m, n)

on 6K .

3. Twist knots

In this section we provide the proofs of Theorems 1.2, 1.3 and 1.4. We do this
in four parts. Sections 3A and 3B contain all technical details of Theorem 1.2,
Section 3C contains details of Theorem 1.3, and Section 3D contains Theorem 1.4 .

3A. Twist knot with t < 0. In this section we consider twist knots K = Kt , t ≤ −1.
This in particular includes the right-handed trefoil K−1.

Proposition 3.1. All essential, simple closed curves on 6K can be characterized as
the closure of one of the negative braids in Figure 10.

−1

t

m− n

n

n

n−m

m

−1

−1

t− 1

· · ·

· · ·

t

−1

n

m

m

n

· · ·

· · ·

(a) (b)

(c) (d)

m

· · ·

· · ·

−1

−1

tn

m− n

n
m

· · ·

· · ·

Figure 10
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Proof. It suffices to show all possible curves for an arbitrary m and n such that
gcd(m, n) = 1 are the closures of either braid in Figure 10. As mentioned earlier we
will deal with cases where both m, n ≥ 1 since cases involving 0 are trivial. There
are four cases to consider. The arguments for each of these will be quite similar,
and so we will explain the first case in detail and refer to the rather self-explanatory
drawings/figures for the remaining cases.

Case 1: (m, n) ∞ curve with m > n > 0. This case is explained in Figure 11. The
picture on top left is the (m, n) curve of interest. The next picture to its right is the
(m, n) curve where we ignore the surface it sits on and use the convention from
Figure 6(e). The next picture is an isotopy where we push the split between n
strands and m − n strands along the dotted blue arc. The next picture is obtained
by simple isotopy. The passage from the top right picture to the bottom right
is via Figure 6(c). The passage from the bottom right to the figure on its left is
obtained by pushing m − n strands around along the green arc. The goal here is
to put the curve in a braid closure position. Finally, by applying simple isotopies
and Figure 6(a) repeatedly we replace all the loops with full negative twists. Note
that we moved the full negative twist on m − n strands clockwise fashion around to
bring it in the bottom of the figure. This gives the picture on the bottom left, which
is the closure of the negative braid depicted in Figure 10(a).

Case 2: (m, n) loop curve with m > n > 0. By a series of isotopies, as indicated in
Figure 12, the (m, n) curve in this case can be simplified to the knot depicted on
the right of Figure 12, which is the closure of negative braid in Figure 10(b).

unzip along

dotted arcFigure 6(a)

Figure 6(c)

Figure 6(a)

∼=

∼=

Figure 11
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∼=

Figure 6(a) unzip along

dotted arc

∼=

Figure 6(a)

Figure 12

Case 3: (m, n) ∞ curve with n > m > 0. By a series of isotopies, as indicated in
Figure 13, the (m, n) curve in this case can be simplified to the knot depicted on
the bottom left of Figure 13, which is the closure of negative braid in Figure 10(c).

∼=

Figure 6(a)

unzip along

dotted arc

∼=

∼=∼=

Figure 6(a)

Figure 13
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Figure 6(a)

∼= ∼= ∼=

Figure 14

Case 4: (m, n) loop curve with n > m > 0. By a series of isotopies, as indicated in
Figure 14, the (m, n) curve in this case can be simplified to the knot depicted on
the right of Figure 14, which is the closure of negative braid in Figure 10(d). □

Next, we determine which of the curves in Proposition 3.1 are unknotted. It is a
classic result due to Cromwell [1989] (see also [Stoimenow 2003, Corollary 4.2])
that the Seifert algorithm applied to the closure of a positive braid gives a minimal-
genus surface.

Proposition 3.2. Let β be a braid as in Figure 10 and K = β̂ be its closure. Let
s(K ) be the number of Seifert circles and l(K ) be the number of crossings in each
braid diagram. Then (s(K ), l(K )) is equal to(
m, |t |n(n − 1) + (m − n)(m − n − 1) + n(m − n)

)
for β as in Figure 10(a),(

m + n, (|t | + 1)n(n − 1) + (m − n)(m − n − 1)

+ nm + 2n(m − n)
)

for β as in Figure 10(b),(
n, (|t − 1|)n(n − 1) + (n − m)(n − m − 1)

+ m(m − 1) + m(n − m)
)

for β as in Figure 10(c),(
m + n, |t |n(n − 1) + m(m − 1) + nm

)
for β as in Figure 10(d).

Proof. Consider the braid β as in Figure 10(a). Clearly, it has m Seifert circles as β

has m strands. Next, we will analyze the three locations in which crossings occur.
First consider the t negative full twists on n strands. Since each strand crosses over
the other n − 1 strands, we obtain |t |n(n − 1) crossings. Second, the negative full
twist on m − n strands produces additional (m − n)(m − n − 1) crossings. Lastly,
notice the part of β where m − n strands overpass the other n strands, and so for
each strand in m −n strands we obtain an additional n crossings. Hence, for K = β̂,
we calculate

l(β̂) = |t |n(n − 1) + (m − n)(m − n − 1) + n(m − n).

The calculations for the other cases are similar. □

We can now prove the first part of Theorem 1.2.
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Proof of Theorem 1.2(a). Proposition 3.1 proves the first half of our theorem. To
determine there are exactly six unknotted curves when t =−1 and five when t <−1,
let B be the set containing the six and five unknotted curves as in Figures 2 and 4,
respectively. It suffices to show an essential, simple closed curve c on 6K , where
c ̸∈ B, cannot be unknotted in S3. We know by Proposition 3.1 that c is the closure
of one of the braids in Figure 10 in S3, where m, n ≥ 1 and gcd(m, n) = 1. We
show, case by case, that the Seifert surface obtained via the Seifert algorithm for
curves c ̸∈ B in each case has positive genus, and hence it cannot be unknotted.

• Let c = (m, n) be the closure of the negative braid as in Figure 10(a) and 6c its
Seifert surface obtained by the Seifert algorithm. There are m Seifert circles, and
by Proposition 3.2,

l(c) = |t |n(n − 1) + (m − n)(m − n − 1) + n(m − n).

Hence

g(6c) =
1
2(1 + l − s) =

1
2

(
m(m − n − 2) + n(|t |(n − 1) + 1) + 1

)
.

If m = n + 1, then we get g(6c) =
1
2 |t |n(n − 1), which is positive as long as

n > 1; note that when c = (2, 1) we indeed get an unknotted curve. If m > n + 1,
then g(6c) ≥

1
2

(
n(|t |(n − 1) + 1) + 1

)
> 0 as long as n > 0. So, c ̸∈ B is not an

unknotted curve as long as m > n ≥ 1.

• Let c = (m, n) be the closure of the negative braid as in Figure 10(b) and 6c its
Seifert surface obtained by the Seifert algorithm. There are n + m Seifert circles,
and by Proposition 3.2,

l(c) = (|t | + 1)n(n − 1) + (m − n)(m − n − 1) + nm + 2n(m − n).

Hence
g(6c) =

1
2

(
m(m + n − 2) + n(|t |(n − 1) − 1) + 1

)
.

One can easily see that this quantity is always positive as long as n ≥ 1. So,
c ̸∈ B is not an unknotted curve when m > n ≥ 1.

• Let c = (m, n) be the closure of the negative braid as in Figure 10(c) and 6c its
Seifert surface obtained by the Seifert algorithm. There are n Seifert circles, and
by Proposition 3.2,

l(c) = (|t | − 1)n(n − 1) + (n − m)(n − m − 1) + m(m − 1) + m(n − m).

Hence
g(6c) =

1
2

(
n(|t |(n − 1) − m − 1) + m2

+ 1
)
.

This is always positive as long as m ≥ 1 and |t | ̸= 1; note that when c = (1, 2)

and |t | = 1 we indeed get an unknotted curve. So, c ̸∈ B is not an unknotted curve
when n > m ≥ 1.
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• Let c = (m, n) be the closure of the negative braid as in Figure 10(d) and 6c its
Seifert surface obtained by the Seifert algorithm. There are n + m Seifert circles,
and by Proposition 3.2,

l(c) = |t |n(n − 1) + m(m − 1) + nm.

Hence
g(6c) =

1
2

(
|t |n(n − 1) + m(m − 2) + n(m − 1) + 1

)
.

One can easily see that this quantity is always positive as long as m ≥ 0. So,
c ̸∈ B is not an unknotted curve when n > m ≥ 1.

This completes the first part of Theorem 1.2. □

3B. Figure-eight knot. The case of figure-eight knot is certainly the most interest-
ing one. It is rather surprising, even to the authors, that there exists a genus-one
knot with infinitely many unknotted curves on its genus-one Seifert surface. As we
will see, understanding homologically essential curves for the figure-eight knot will
be similar to what we did in the previous section. The key difference develops in
Cases 2 and 4 below where we show how, under certain conditions, a homologically
essential (m, n) ∞ (resp. (m, n) loop) curve can be reduced to the homologically
essential (m − n, 2n − m) ∞ (resp. (2m − n, n − m) loop) curve, and how this
recursively produces infinitely many distinct homology classes that are represented
by the unknot, and we will show that certain Fibonacci numbers can be used to
describe these unknotted curves. Finally we will show for the figure-eight knot this
is the only way that an unknotted curve can arise. Adapting the notation developed
thus far we start characterizing homologically essential simple closed curves on the
genus-one Seifert surface 6K of the figure-eight knot K .

Proposition 3.3. All essential, simple closed curves on 6K can be characterized as
the closure of one of the braids in Figure 15 (note the first and third braids from the
left are negative and positive braids, respectively).
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Figure 15. Braid representations of curves on 6K , where K
is the figure-eight knot. From left to right: (m, n) loop curve
with m > n; (m, n) ∞ curve with m > n; (m, n) ∞ curve
with n > m; (m, n) loop curve with n > m.
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Proof. The curves (1, 0) and (0, 1) are clearly unknots. Moreover, because
gcd(m, n) = 1, the only curve with n = m is the (1, 1) curve, which is also the
unknot in S3. For the rest of the arguments below, we will assume n > m or m > n.
There are four cases to consider:

Case 1: (m, n) loop curve with m > n > 0. This curve can be turned into a negative
braid following the process in Figure 16. The reader will observe that the process
here is very similar to those in the previous section. We mention that the passage
from the middle figure on the top to the one on its right is obtained by pushing
the m strands along the green curve till it is clear from a positive loop of n strands.
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Finally, the middle curve on the bottom is our final curve, which is the closure of
the negative braid to its left.

Case 2: (m, n) ∞ curve with m > n > 0. As mentioned at the beginning, this case
(and Case 4) are much more involved and interesting (in particular the subcases
of Cases 2c and 4c; see the proof Proposition 3.4). Following the process as in
Figure 17, the curve can be isotoped as in the bottom right of that figure, which is the
closure of the braid on its left — that is, the second braid from the left in Figure 15.

Case 3: (m, n) ∞ curve with n > m > 0. This curve can be turned into a positive
braid following the process in Figure 18.

Case 4: (m, n) loop curve with n > m > 0. This curve can be turned into the closure
of a braid following the process in Figure 19. □

We next determine which of these curves are unknotted:

Proposition 3.4. A homologically essential curve c characterized as in Proposition
3.3 is unknotted if and only if it is (a) a trivial curve (1, 0) or (0, 1), (b) an ∞ curve
in the form of (Fi+1, Fi ), or (c) a loop curve in the form of (Fi , Fi+1).

Proof. Let c denote one of these homologically essential curve listed in Proposition
3.3. We will analyze the unknottedness of c in four separate cases.

Case 1: Suppose c = (m, n) is the closure of the negative braid in the bottom left of
Figure 16. Note the minimal Seifert surface of c, 6c, has (n)(m −n)+ (m)(m − 1)

crossings and m Seifert circles. Hence

g(6c) =
1
2(n(m − n) + (m − 1)2).
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This is a positive integer for all m, n with m > n. So c is never unknotted in S3 as
long as long m > n > 0.

Case 2: Suppose c is of the form in the bottom right of Figure 17. Since this curve
is not a positive or negative braid closure, we cannot directly use Cromwell’s result
as in Case 1 or the previous section. There are three subcases to consider.

Case 2a: m − n = n. Because m and n are relatively prime integers, we must have
that m = 2 and n = 1, and we can easily see that this (2, 1) curve is unknotted.

Case 2b: m − n > n. This curve can be turned into a negative braid following the
process in Figure 20. More precisely, we start, on the top left of that figure, with
the curve appearing on the bottom right of Figure 17. We extend the split along
the dotted blue arc and isotope m strands to reach the next figure. We note that this
splitting can be done since, by assumption, m −2n > 0. Then using Figure 6(a) and
further isotopy we reach the final curve on the bottom right of Figure 20, which is
obviously the closure of the negative braid depicted on the bottom left of that picture.

The minimal Seifert surface coming from this negative braid closure contains
m − n circles and (m − 2n)n + (m − n)(m − n − 1) twists. Hence

g(6c) =
1
2((m − 2n)n + (m − n)(m − n − 2) + 1).

This a positive integer for all integers m, n with m −n > n. So, c is not unknotted
in S3.

Case 2c: m − n < n. We organize this curve some more. We start, on the top left
of Figure 21, with the curve that is on the bottom left of Figure 17. We extend the
split along the dotted blue arc and isotope m − n strands to reach the next figure.
After some isotopies we reach the curve on the bottom left of Figure 21. In other
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words, this subcase of Case 2c leads to a reduced version of the original picture
(top left curve in Figure 17), in the sense that the number of strands over either
handle is less than the number of strands in the original picture.

This case can be further subdivided depending on the relationship between 2n−m
and m − n, but this braid (or rather its closure) will turn into a (m − n, 2n − m) ∞

curve when m − n > 2n − m:

Case 2c(i): 2n−m =m−n. This simplifies to 3n =2m. Because gcd(m, n)=1, this
will only occur for m = 3 and n = 2, and the resulting curve is a (1, 1) ∞ curve. In
other words here we observed that the (3, 2) curve has been reduced to a (1, 1) curve.

Case 2c(ii): 2n − m > m − n. This means that we are dealing with a curve under
Case 3, and we will see that all curves considered there are positive braid closures.

Case 2c(iii): 2n−m <m−n. Here, we remain under Case 2. So for m >n >m−n,
the (m, n) ∞ curve is isotopic to the (m −n, 2n −m) ∞ curve. This isotopy series
will be denoted by (m, n) ∼ (m − n, 2n − m). Equivalently, there is a series of
isotopies such that (m − n, 2n − m) ∼ (m, n). If (k, l) denotes a curve at one stage
of this isotopy, then (k, l) ∼ ((k + l) + k, k + l). So, starting with k = l = 1, we

m
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recursively obtain

(1, 1) ∼ (3, 2) ∼ (8, 5) ∼ (21, 13) ∼ (55, 34) ∼ · · · .

In a similar fashion, if we start with k = 2, l = 1, we obtain

(2, 1) ∼ (5, 3) ∼ (13, 8) ∼ (34, 21) ∼ (89, 55) ∼ · · · .

Notice every curve c above is of the form c = (Fi+1, Fi ), i ∈ Z>0, where Fi

denotes the i-th Fibonacci number. We will call these Fibonacci curves. We choose
(1, 1) and (2, 1) because they are known unknots. As a result, this relation generates
an infinite family of homologically distinct simple closed curves on 6K that are
unknotted in S3.

Case 3: Suppose a curve, c, is of the form in Figure 15(3), which is the closure of
the positive braid depicted in the bottom left of Figure 18. An argument similar
to that applied to Case 1 can be used to show c is never unknotted in S3.

Case 4: Suppose c is of the form as in the bottom right of Figure 19. Similar to
Case 2, there are three subcases to consider.

Case 4a: m = n − m. Then 2m = n. Because gcd(m, n) = 1, m = 1 and n = 2,
resulting in the unknot.

Case 4b: n − m > m. Then n − 2m > 0, and following the isotopies in Figure 22,
the curve can be changed into the closure of the positive braid depicted on the
bottom right of that figure.

Identical to Case 2b, the curve c in this case is never unknotted in S3.

Case 4c: m > n − m. Then 2m − n > 0, and we can split the m strands into two:
a set of n − m strands and a set of 2m − n strands.
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This case can be further subdivided depending on the relationship between n −m
and 2m − n, but this braid will turn into a (2m − n, n − m) loop curve when
n − m > 2m − n:

Case 4c(i): 2m − n = n − m. This simplifies to 3m = 2n. Because gcd(m, n) = 1,
this will only occur for m =2 and n =3, and the resulting curve is a (1, 1) loop curve.

Case 4c(ii): n − m < 2m − n. This means that we are dealing with a curve under
Case 1, and we saw that all curves considered there are negative braid closures.

Case 4c(iii): n−m > 2m−n. Here, we remain under Case 4. So for n > m > n−m,
an (m, n) loop curve has the following isotopy series: (m, n) ∼ (2m − n, n − m).
If (k, l) denotes a curve at one stage of this isotopy, then the reverse also holds:
(k, l) ∼ (k + l, (k + l) + l). As a result, much like Case 2c, we can generate two
infinite families of unknotted curves in S3:

(1, 1) ∼ (2, 3) ∼ (5, 8) ∼ (13, 21) ∼ (34, 55) ∼ · · · ,

(1, 2) ∼ (3, 5) ∼ (8, 13) ∼ (21, 34) ∼ (55, 89) ∼ · · · .

Notice every curve c is of the form c = (Fi , Fi+1), i ∈ Z>0. Finally, we show
that this is the only way one can get unknotted curves. That is, we claim:

Lemma 3.5. If a homologically essential curve c on 6K for K = 41 is unknotted,
then it must be a Fibonacci curve.

Proof. From above, it is clear that if our curve c is Fibonacci, then it is unknotted.
So it suffices to show if a curve is not Fibonacci then it is not unknotted. We will
demonstrate this for loop curves under Case 4. Let c be a loop curve that is not
Fibonacci but is unknotted. Since it is unknotted, it fits into either Case 4a or 4c. But
the only unknotted curve from Case 4a is a (1, 1) curve which is a Fibonacci curve,
so c must be under Case 4c. By our isotopy relation, (m, n) ∼ (2m − n, n − m).
So, the curve can be reduced to a minimal form, say (a, b), where (a, b) ̸= (1, 1)

and (a, b) ̸= (2, 1). We will now analyze this reduced curve (a, b):

• If a = b, then (a, b) = (1, 1), a contradiction.

• If a > b, then (a, b) is under Case 1; none of those are unknotted.

• If b − a < a < b, then (a, b) is still under Case 4c, and not in reduced form,
a contradiction.

• If a < b − a < b, then (a, b) is under Case 4b; none of those are unknotted.

• If b − a = a < b, then (a, b) = (2, 1), a contradiction.

So, it has to be that either (a, b) ∼ (1, 1) or (a, b) ∼ (2, 1). Hence, it must be
that c = (Fi , Fi+1) for some i . The argument for the case where c is an ∞ curve
under Case 2 is identical. □
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We end this section with a remark which was observed by the authors at the
initial stages of the research and was also communicated to the authors by F. Misev.

Remark 3.6. An alternative and perhaps slightly easier way to see the existence
of Fibonacci numbers for unknotted curves for the figure-eight knot is as follows:
Recall that the figure-eight knot is fibered and its pseudo-Anosov monodromy
φ : 6 → 6, where 6 is the genus-one Seifert surface, induces a linear map on the
first homology H1(6) = Z ⊕ Z described by the matrix

( 2
1

1
1

)
. By applying this

matrix repeatedly to the unknotted curves (vectors) (0, 1) and (1, 0) one obtains
other unknotted curves that have Fibonacci numbers as their entries exactly as
predicted in Proposition 3.4.

We add that this approach cannot capture the full strength of the results about
the figure-eight knot: namely, showing that any unknotted curve as in Lemma 3.5
on the genus-one Seifert surface of the figure-eight knot must be a Fibonacci curve
or characterizing all homologically essential curves on the Seifert surface of the
figure-eight knot as in Proposition 3.3. Moreover our proof technique is by hand
and works uniformly for all other twist knots we study in this paper.

3C. Twist knot with t > 1: part one. In this section we consider twist knot K = Kt ,
t ≥ 2, and give the proof of Theorem 1.3.

Proposition 3.7. All essential, simple closed curves on 6K can be characterized as
the closure of one of the braids in Figure 24.

Proof. It suffices to show all possible curves for an arbitrary m and n such that
gcd(m, n) = 1 are the closures of braids in Figure 24. Here too there are four cases
to consider but we will analyze these in slightly different order than in the previous
two sections.



UNKNOTTED CURVES ON GENUS-ONE SEIFERT SURFACES 145

∼=

Figure 6(a)&(b)

unzip along

dotted arc

Figure 6(a)&(b)

Figure 25

Case 1: (m, n) ∞ curve with n > m > 0. In this case the curve is the closure of a
positive braid, and this is explained in Figure 25. More precisely, we start with the
curve which is drawn in the top left of the figure, and after a sequence of isotopies
this becomes the curve in the bottom right of the figure, which is obviously the
closure of the braid in the bottom left of the figure. In particular, when n > m ≥ 1,
none of these curves will be unknotted.

Case 2: (m, n) loop curve with n > m > 0. In this case too the curve is the closure
of a positive braid, and this is explained in Figure 26. In particular, when n > m > 1,
none of these curves will be unknotted.
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In the remaining two cases we will follow a slightly different way of identifying
our curves as braid closures. We will see (as is evident in parts (c) and (d) of
Figure 24) that the braids will not be positive or negative braids for general m, n and t
values. We will then verify how under the various hypothesis listed in Theorem 1.3
these braids can be reduced to positive or negative braids.

Case 3: (m, n) ∞ curve with m > n > 0. We explain in Figure 27 below how the
(m, n) ∞ curve with m > n > 0 is the closure of the braid in the bottom left of the
figure. This braid is not obviously a positive or negative braid.

Case 3a: (m, n) ∞ curve with m > n > 0 and m − tn > 0. We want to show
the braid in the bottom left of Figure 27 under the hypothesis that m − tn > 0
can be made a negative braid. We achieve this in Figure 28. More precisely, in
part (a) of the figure we see the braid that we are working on. We apply the move
in Figure 6(f) and some obvious simplifications to reach the braid in part (d). In
part (e) of the figure we reorganize the braid: more precisely, since m − tn > 0
and m − n = m − tn + (t − 1)n, we can split the piece of the braid in part (d) made
of m − n strands as the stack of m − tn strands and a set of t − 1 many n strands.
We then apply the move in Figure 6(f) repeatedly (t −1 times) to obtain the braid in
part (f). We note that the block labeled as “all negative crossings” is not important
for our purposes to draw explicitly but we emphasize that each time we apply the
move in Figure 6(f) it produces a full left-handed twist between a set of n strands
and the rest. Next, sliding −1 full twists one by one from n strands over the block of
these negative crossings we reach part (g). After further obvious simplifications and
organizations in parts (h)–(j) we reach the braid in part (k), which is a negative braid.

Case 3b: (m, n) ∞ curve with m > n > 0 and m − n < n. We want to show in this
case the braid in the bottom left of Figure 27 under the hypothesis that m − n < n
can be made a positive braid (regardless of t value). This is achieved in Figure 29.
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m m

m

n n

n

m− n
m− n

m− n

−1
t+ 1

Figure 6(a)&(b)
push along
green arc

Figure 6(b)

Figure 27



UNKNOTTED CURVES ON GENUS-ONE SEIFERT SURFACES 147

Figure 28

Case 4: (m, n) loop curve with m > n > 0. The arguments for this case are identical
to those in Cases 3 and 3a above. The (m, n) loop curve with m > n > 0 is the
closure of the braid that is drawn in the bottom left of Figure 30.

Case 4a: (m, n) loop curve with m > n > 0 and m − tn > 0. We show the braid,
which the (m, n) ∞ curve with m > n > 0 is the closure of, can be made a negative
braid under the hypothesis m − tn > 0. This follows steps very similar to those in
Case 3a, which is explained through a series drawings in Figure 31.

Case 4b: (m, n) loop curve with m > n > 0 and m −n < n. Finally, we consider the
(m, n) loop curve with m > n > 0 and m −n < n. Interestingly, this curve for t > 2
does not have to be the closure of a positive or negative braid. This will be further
explored in the next section but for now we observe, through Figure 31(a)–(c), that
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Figure 29

when t = 2 the curve is the closure of a negative braid: the braid in (a) in the figure
is the braid from Figure 24(d). After applying the move in Figure 6(f) and simple
isotopies, we obtain the braid in (c) which is clearly a negative braid when t = 2. □

Proof of Theorem 1.3. The proof of part (1) follows from Cases 1 and 2 above.
Parts (2)(a)/(b) follows from Cases 3a/b and Case 4a above. As for part (3), observe
that when n > m by using Cases 1 and 2 we obtain that all homologically essential
curves are the closures of positive braids. When m > n, we have either m − 2n > 0
or m − 2n < 0. In the former case we use Cases 3a and 4a to obtain that all
homologically essential curves are the closures of negative braids. In the latter
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case, first note that m − 2n < 0 is equivalent to m − n < n, Now by Case 3b
all homologically essential ∞ curves are the closures of positive braids, and by
Case 4b all homologically essential loop curves are the closures of negative braids.
Now by using Cromwell’s result and some straightforward genus calculations we
deduce that when m > n > 1 or n > m ≥ 1 there are no unknotted curves among

Figure 31
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the (positive/negative) braid closures obtained in Cases 1–4 above. Therefore, there
are exactly 5 unknotted curves among homologically essential curves on 6K for
K = Kt in Theorem 1.3. □

3D. Twist knot with t > 1: part two. In this section we consider the twist knots
K = Kt , t ≥ 3, and give the proof of Theorem 1.4.

Proof of Theorem 1.4. We show that the loop curve (3, 2) when t ≥ 3 is the pretzel
knot P(2t − 5, −3, 2). This is explained in Figure 32. The braid in (a) is from
Figure 24(d) with m = 3, n = 2, where we moved (t −2) full right-handed twists to
the top right end. We take the closure of the braid and cancel the left-handed half-
twist on the top left with one of the right-handed half-twists on the top right to reach
the knot in (c). In (c)–(g) we implement simple isotopies, and finally reach, in (h),
the pretzel knot P(2t − 5, −3, 2). This knot has genus t − 1 [Kim and Lee 2007,
Corollary 2.7], and so is never unknotted as long as t > 1. This pretzel knot is slice
exactly when 2t − 5 + (−3) = 0, that is, when t = 4. The pretzel knot P(3, −3, 3)

is also known as 820. An interesting observation is that although P(2t − 5, −3, 2)

for t > 2 is not a positive braid closure, it is a quasipositive braid closure. □

Proposition 3.8. The (m, n) loop curve with m − n = 1, n > 3 and t > 4 is never
slice.

Proof. By Rudolph [1993], we have that, for a braid closure β̂ when k+ ̸= k−,

g4(β̂) ≥
1
2(|k+ − k−| − n + 1),

where β is a braid in n strands, and k± is the number of positive and negative
crossings in β. For quasipositive knots, equality holds, in which case, the Seifert
genus is also the same as the four ball (slice) genus.

Now for the loop curve c = (m, n) as in Figure 31(c), we have that

k+ = (t − 2)n(n − 1) and k− = (m − n)(m − n − 1) + 3(m − n)n.

Hence, when m − n = 1, we get that k− = 3n. Notice also that for n ≥ 3, t ≥ 4,
we have k+ > k−. Thus, for n > 3, t > 4, m −n = 1, we obtain c = β̂ is never slice
because

g4(β̂ = c) ≥
1
2((t − 2)n(n − 1) − 3n − m + 1) = n((t − 2)(n − 1) − 4) > 0.

One can manually check that the (4, 3) loop curve when t = 3 is also not slice. □

Remark 3.9. The inequality in the proof above can also be thought as a generaliza-
tion to the Seifert genus calculation formula we used for positive/negative braid
closures, since for those braids when |k+ − k−| is the number of crossings, n, the
braid number, is exactly the number of Seifert circles. Thus Rudolph’s inequality
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2t−4 half-twists︷︸︸︷
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2t−5 half-twists︷︸︸︷ 2t−5 half-twists︷︸︸︷

2t−5 half-twists︷︸︸︷
2t−5 half-twists︷︸︸︷

(a) (b)

(c)
(d)

(e) (f)

(g)

(h)

Figure 32

can also be used in the previous cases to show that there are no slice knots in the
cases where we found that there are no unknotted curves.

4. Whitehead doubles

Proof of Theorem 1.6. Let f : S1
× D2

→ S3 denote a smooth embedding such that
f (S1

× {0}) = K . Set T = f (S1
× D2). Up to isotopy, the collection of essential,

simple closed, oriented curves in ∂T is parametrized by

{mµ + nλ | m, n ∈ Z and gcd(m, n) = 1},

where µ denotes a meridian in ∂T and λ denotes a standard longitude in ∂T coming
from a Seifert surface [Rolfsen 1990; Saveliev 1999]. With this parametrization,
the only curves that are null-homologous in T are ±µ and the only curves that are
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K

1-handle

A

Figure 33. Standard genus-one Seifert surface F for a double of K .

null-homologous in S3
\ int(T ) are ±λ. Of course ±µ will bound embedded disks

in T , but ±λ will not bound embedded disks in S3
\ int(T ) as K is a nontrivial knot.

In other words, the only compressing curves for ∂T in S3 are meridians.
Suppose now that C is a smooth, simple closed curve in the interior of T and

there is a smoothly embedded 2-disk, say 1, in S3 such that ∂1 = C . Since C
lies in the interior of T , we may assume that 1 meets ∂T transversely in a finite
number of circles. Initially observe that if 1 ∩ ∂T = ∅, then we can use 1 to
isotope C in the interior of T so that the result of this isotopy is a curve in the
interior of T that misses a meridional disk for T . Now suppose that 1 ∩ ∂T ̸= ∅.
We show, in this case too, C can be isotoped to a curve that misses a meridional
disk for T . To this end, let σ denote a simple closed curve in 1∩ ∂T such that σ

is innermost in 1. That is, σ bounds a subdisk, 1′ say, in 1, and the interior of 1′

misses ∂T . There are two cases, depending on whether or not σ is essential in ∂T .
If σ is essential in ∂T , then, as has already been noted, σ must be a meridian. As
such, 1′ will be a meridional disk in T , and C misses 1′. If σ is not essential
in ∂T , then σ bounds an embedded 2-disk, say D, in ∂T . It is possible that 1 meets
the interior of D, but we can still cut and paste 1 along a subdisk of D to reduce
the number of components in 1 ∩ ∂T . Repeating this process yields that if C is
smoothly embedded curve in the interior of T and C is unknotted in S3, then C can
be isotoped in the interior of T so as to miss a meridional disk for T . (see [Rolfsen
1990, Theorem 9] and [Jaco 1980, page 13] for a use of similar ideas).

With all this in place, we return to discuss the Whitehead double of K . Suppose
that F is a standard, genus-one Seifert surface for a double of K . See Figure 5. The
surface F can be viewed as an annulus A with a 1-handle attached to it. Here K is
a core circle for A, and the 1-handle is attached to A as depicted in Figure 33

Observe that F can be constructed so that it lives in the interior of T . Now, the
curve C that passes once over the 1-handle and zero times around A obviously
misses a meridional disk for T , and it obviously is unknotted in S3. On the other
hand, if C is any other essential simple closed curve in the interior of F , then C
must go around A some positive number of times. It is not difficult, upon orienting,
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to see that C can be isotoped so that the strands of C going around A are coherently
oriented. As such, C is homologous to some nonzero multiple of K in T . This, in
turn, implies that C cannot be isotoped in T so as to miss some meridional disk
for T . It follows that C cannot be an unknot in S3. □

5. Contractible 4-manifolds and final remarks

Proof of Corollaries 1.9 and 1.10. In light of Theorem 1.7, the natural task is to
determine the self-linking number s, with respect to the framing induced by the
Seifert surface, for the unknotted curves found in Theorems 1.2 and 1.6. For this
we use the Seifert matrix given by S =

(
−1

0
−1

t

)
where we use two obvious cycles —

both oriented counterclockwise — in 6K . Recall that if c = (m, n) is a loop curve,
then m and n strands are endowed with the same orientation and hence the same
signs. On the other hand, for an ∞ curve they will have opposite orientations and
hence opposite signs. Therefore, given t , the self-linking number of a c = (m, n)

loop curve is s = −m2
− mn + n2t , and the self-linking number of an (m, n) ∞

curve is s = −m2
+ mn + n2t . A quick calculation shows that the six unknotted

curves in Figure 2 for K−1 = T2,3 share self-linking numbers s = −1, −3. As we
explained during the proof of Theorem 1.2 the infinitely many unknotted curves
for the figure-eight knot K1 = 41 reduce (via isotopies) to unknotted curves with
s = −1 or s = 1. The five unknotted curves in Figure 4 for Kt , t < −1 or t > 1,
share self-linking numbers s = −1, t and t − 2 (see [Cochran and Davis 2015]).
Finally, Theorem 1.4 finds a slice but not unknotted curve, which is the curve (3, 2)

with t = 4. One can calculate from the formula above that this curve has self-
linking number s = 1. Finally, the unique unknotted curve from Theorem 1.6 has
self-linking number s = −1. The proofs follow as an obvious consequence of these
calculations and Theorem 1.7 and its generalization in [Etnyre and Tosun 2023]. □

Next, we verify through Figure 34 that how not every essential curve on the
genus-one Seifert surface of a twist knot must be the closure of a positive (or
negative) braid closure. For example, we will show that an (m, n) = (5, 2) ∞

curve on the Seifert surface of the twist knot K3 as a smooth knot is the twist
knot m(52), which is known not to be a positive braid closure (e.g., via the KnotInfo
database). To this end, we start with the braid as in Figure 34(a), which is the
braid in Figure 27 where we substitute m = 5, n = 2 and t = 3. We then apply
the move in Figure 6(f) to the full negative twist on 5 strands to obtain the braid
in Figure 34(b). After a cancellation between a (−1) twist and a (+4) twist and a
small isotopy we get the braid in Figure 34(c). We apply the move in Figure 6(f)
again, this time to the full negative twist on 3 strands from the bottom to obtain
the braid in Figure 34(d). A small simplification gives the braid in Figure 34(e).
Observe that the top strands can be eliminated — here it will be easier to think
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−1

4

−1

−1

−1

4

3−1 3

2

−1

2

(a)

(d)

(e)

(h)

(b)

(c)

(f)

(g)

Figure 34. The knot m(52) is an essential curve on the genus-one
Seifert surface of the twist knot K3.

of the corresponding braid closure — to get the 3-braid in Figure 34(f). A further
simplification gives the braid in Figure 34(g). We can organize and simplify this
braid by canceling the encircled half-crossings. This gives the braid in Figure 34(h).
We claim that the closure of this braid is the knot m(52)-mirror of 52. One can see
this by taking the closure and applying simple plane isotopies. This method is quite
easy (and fun) but slightly lengthier. An alternative method is to observe that this
braid has braid description −1, −2, −2, −2, −1, 2, which we can reorder, via braid
isotopy, to be −2, −2, −2, −1, 2, −1. Now a quick inspection in the KnotInfo
database [Livingston and Moore 2024] shows that the knot 52 has braid description
1, 1, 1, 2, −1, 2. So the closure of the braid in Figure 34 is indeed m(52). The
KnotInfo database can also be used to verify the knot m(52) is not the closure of a
positive/negative braid.
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BENJAMIN MATTHIAS RUPPIK and HANNAH TURNER

43R-motivic v1-periodic homotopy
EVA BELMONT, DANIEL C. ISAKSEN and HANA JIA KONG

85Higher-genus quantum K -theory
YOU-CHENG CHOU, LEO HERR and YUAN-PIN LEE

123Unknotted curves on genus-one Seifert surfaces of Whitehead doubles
SUBHANKAR DEY, VERONICA KING, COLBY T. SHAW,
BÜLENT TOSUN and BRUCE TRACE

157On the Gauss maps of complete minimal surfaces in Rn

DINH TUAN HUYNH

171Explicit bounds on torsion of CM abelian varieties over p-adic fields
with values in Lubin–Tate extensions

YOSHIYASU OZEKI

Pacific
JournalofM

athem
atics

2024
Vol.330,N

o.1


	1. Introduction
	1A. Main results
	1B. From unknotted curves to contractible 4-manifolds

	2. Preliminaries
	3. Twist knots
	3A. Twist knot with t<0
	3B. Figure-eight knot
	3C. Twist knot with t>1: part one
	3D. Twist knot with t>1: part two

	4. Whitehead doubles
	5. Contractible 4-manifolds and final remarks
	Acknowledgments
	References
	
	

