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We prove that the generalized Gauss map of a nonflat complete minimal
surface immersed in Rn can omit a generic hypersurface D of degree at most
nn+2(n + 1)n+2.

1. Introduction

Let f = (x1, x2, . . . , xn) : M → Rn be an oriented surface immersed in Rn . Using
systems of isothermal coordinates (x, y), one can consider M as a Riemann surface.
We are interested in the class of minimal surfaces, namely, those which have minimal
areas for all small perturbations. It is a well-known fact that if M is minimal, then
its generalized Gauss map g : M → CPn−1, defined as

g(z) := [∂ f/∂z],

where z = x + iy is a holomorphic chart on M , is a holomorphic map.
In the particular case where n = 3, recalling that the classical Gauss map of M is

the map sending each point p ∈ M to the point in the unit sphere corresponding to
the unit normal vector of M at p. By identifying the unit sphere with the complex
projective line via the stereographic projection, one can view the classical Gauss
map as a map of M into CP1. Osserman [18] proved that if M is a nonflat complete
minimal surface immersed in R3, then the complement of the image of its Gauss
map is of logarithmic capacity zero in CP1. This interesting result could be regarded
as a significant improvement of the classical Bernstein’s theorem. Strengthening
this result, Xavier [22] proved that in this situation, the Gauss map of M can avoid
at most 6 points. Sharp result was obtained by Fujimoto [10], where he proved that
indeed, the Gauss map of M can avoid at most 4 points.

Passing to higher-dimensional case, first step was made by Fujimoto [9], where
the intersection between the generalized Gauss maps of a complete minimal surface
immersed in Rn and family of hyperplanes in CPn−1 was considered. Precisely,
Fujimoto established that:
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Theorem 1.1. If the generalized Gauss map of a nonflat complete minimal surface
in Rn is nondegenerate, it can omit at most q = n2 hyperplanes in CPn−1 in general
position.

Later, Fujimoto himself [11] decreased the number of hyperplanes in the above
statement to q =

1
2 n(n + 1) and it turns out that this number is sharp. Ru [19]

was able to remove the nondegenerate assumption of the generalized Gauss map
in Fujimoto’s result. Since then, by adapting tools and techniques from value
distribution theory of holomorphic curves to study generalized Gauss maps, many
generalizations of the above works of Fujimoto–Ru were made. Note that in these
results, it is required the presence of many hypersurfaces.

In this paper, based on recent progresses towards the hyperbolicity problem [1;
2; 4; 6; 7; 8; 13; 21], we consider the case when there is only one hypersurface of
high enough degree.

Theorem 1.2 (Main Theorem). Let M be a nonflat complete minimal surface
immersed in Rn and let G : M → CPn−1 be its generalized Gauss map. Then G
can avoid a generic hypersurface D ⊂ CPn−1 of degree at most

d = nn+2(n + 1)n+2.

2. Logarithmic jet differentials

Let X be a complex projective variety of dimension n. For a point x ∈ X , consider
the holomorphic germs (C, 0) → (X, x). Two such germs are said to be equivalent
if they have the same Taylor expansion up to order k in some local coordinates
around x . The equivalence class of an analytic germ f : (C, 0)→ (X, x) is called the
k-jet of f , denoted by jk( f ), which is independent of the choice of local coordinates.
A k-jet jk( f ) is said to be regular if d f (0) ̸= 0. For a given point x ∈ X , denote
by jk(X)x the vector space of all k-jets of analytic germs (C, 0) → (X, x), set

Jk(X) :=
⋃

x∈X
Jk(X)x ,

and consider the natural projection

πk : Jk(X) → X.

Then Jk(X) carries the structure of a holomorphic fiber bundle over X , which is
called the k-jet bundle over X . Note that in general, Jk(X) is not a vector bundle.
When k = 1, the 1-jet bundle J1(X) is canonically isomorphic to the tangent
bundle TX of X .

For an open subset U ⊂ X , for ω ∈ H 0(U, T ∗

X ), for a k-jet jk( f ) ∈ Jk(X)|U , the
pullback f ∗ω is of the form A(z) dz for some analytic function A, where z is the
global coordinate of C. Since each derivative A( j) (0 ≤ j ≤ k − 1) is well defined,



ON THE GAUSS MAPS OF COMPLETE MINIMAL SURFACES IN Rn 159

independent of the representation of f in the class jk( f ), the analytic 1-form ω

induces the holomorphic map

(2-1) ω̃ : Jk(X)|U → Ck, jk( f ) →
(

A(z), A(z)(1), . . . , A(z)(k−1)
)
.

Hence on an open subset U , a given local holomorphic coframe ω1 ∧ · · · ∧ωn ̸= 0
yields a trivialization

H 0(U, Jk(X)) → U × (Ck)n

by providing the following new nk independent coordinates:

σ → (πk ◦ σ ; ω̃1 ◦ σ, . . . , ω̃n ◦ σ),

where ω̃i are defined as in (2-1). The components x ( j)
i (1 ≤ i ≤ n, 1 ≤ j ≤ k) of

ω̃i ◦σ are called the jet-coordinates. In a more general setting, where ω is a section
over U of the sheaf of meromorphic 1-forms, the induced map ω̃ is meromorphic.

Now, suppose that D ⊂ X is a normal crossing divisor on X . This means that
at each point x ∈ X , there exist some local coordinates z1, . . . , zℓ, zℓ+1, . . . , zn

(ℓ = ℓ(x)) centered at x in which D is defined by

D = {z1 · · · zℓ = 0}.

Following Iitaka [14], the logarithmic cotangent bundle of X along D, denoted by
T ∗

X (log D), corresponds to the locally free sheaf generated by

dz1

z1
, . . . ,

dzℓ

zℓ

, zℓ+1, . . . , zn

in the above local coordinates around x .
A holomorphic section s ∈ H 0(U, Jk(X)) over an open subset U ⊂ X is said to be

a logarithmic k-jet field if ω̃◦ s are analytic for all sections ω ∈ H 0(U ′, T ∗

X (log D)),
for all open subsets U ′

⊂ U , where ω̃ are induced maps defined as in (2-1). Such
logarithmic k-jet fields define a subsheaf of Jk(X), and this subsheaf is itself a
sheaf of sections of a holomorphic fiber bundle over X , called the logarithmic k-jet
bundle over X along D, denoted by Jk(X, − log D) (see [16]).

The group C∗ admits a natural fiberwise action defined as follows. For local
coordinates

z1, . . . , zℓ, zℓ+1, . . . , zn (ℓ = ℓ(x))

centered at x in which D = {z1 . . . zℓ = 0}, for any logarithmic k-jet field along D
represented by some germ f = ( f1, . . . , fn), if ϕλ(z) = λz is the homothety with
ratio λ ∈ C∗, the action is given by{

(log( fi ◦ ϕλ))
( j)

= λ j (log fi )
( j)

◦ ϕλ (1 ≤ i ≤ ℓ),

( fi ◦ ϕλ)
( j)

= λ j f ( j)
i ◦ ϕλ (ℓ + 1 ≤ i ≤ n).
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A logarithmic jet differential of order k and degree m at a point x ∈ X is
a polynomial Q( f (1), . . . , f (k)) on the fiber over x of Jk(X, − log D) enjoying
weighted homogeneity:

Q( jk( f ◦ ϕλ)) = λm Q( jk( f )) (λ ∈ C∗).

Consider the symbols

d j log zi (1 ≤ j ≤ k, 1 ≤ i ≤ ℓ) and d j zi (1 ≤ j ≤ k, ℓ + 1 ≤ i ≤ n).

Set the weight of d j log zi or d j zi to be j . Then a logarithmic jet differential of
order k and weight k along D at x is a weighted homogeneous polynomial of
degree m whose variables are these symbols. Denote by EGG

k,m T ∗

X (log D)x be the
vector space spanned by such polynomials and set

EGG
k,m T ∗

X (log D) :=
⋃

x∈X
EGG

k,m T ∗

X (log D)x .

By Faà di Bruno’s formula [3; 15], one can check that EGG
k,m T ∗

X (log D) carries the
structure of a vector bundle over X , called logarithmic Green–Griffiths vector bun-
dle [12]. A global section of EGG

k,m T ∗

X (log D) is called a logarithmic jet differential
of order k and weight m along D. Locally, a logarithmic jet differential form can
be written as

(2-2)
∑

α1,...,αk∈Nn

|α1|+2|α2|+···+k|αk |=m

Aα1,...,αk

( ℓ∏
i=1

(d log zi )
α1,i

n∏
i=ℓ+1

(dzi )
α1,i

)
. . .

( ℓ∏
i=1

(dk log zi )
αk,i

n∏
i=ℓ+1

(dkzi )
αk,i

)
,

where
αλ = (αλ,1, . . . , αλ,n) ∈ Nn (1 ≤ λ ≤ k)

are multiindices of length
|αλ| =

∑
1≤i≤n

αλ,i ,

and where Aα1,...,αk are locally defined holomorphic functions.
Assigning the weight s for (dszi )/zi , then one can rewritten d j log zi as an

isobaric polynomial of weight j of variables (dszi )/zi (1 ≤ s ≤ j) with integer
coefficients, namely

d j log zi =

∑
β=(β1,...,β j )∈N j

β1+2β2+···+ jβ j = j

b jβ

(
dzi

zi

)β1

. . .

(
d j zi

zi

)β j

,

where b jβ ∈ Z. Conversely, one can also express (d j zi )/zi as an isobaric polynomial
of weight j of variables ds log zi (1 ≤ s ≤ j) with integer coefficients [2]. Thus
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one can also use the following trivialization of logarithmic jet differentials:

(2-3)
∑

β1,...,βk∈Nn

|β1|+2|β2|+···+k|βk |=m

Bβ1,...,βk

( ℓ∏
i=1

(
dzi

zi

)β1,i n∏
i=ℓ+1

(dzi )
β1,i

)

. . .

( ℓ∏
i=1

(
dkzi

zi

)βk,i n∏
i=ℓ+1

(dkzi )
βk,i

)
,

where
βλ = (βλ,1, . . . , βλ,n) ∈ Nn (1 ≤ λ ≤ k)

are multiindices of length
|βλ| =

∑
1≤i≤n

βλ,i ,

and where Bβ1,...,βk are locally defined holomorphic functions.
Demailly [5] refined the Green–Griffiths’ theory and considered the subbundle

Ek,m T ∗

X (log D) of EGG
k,m T ∗

X (log D), whose sections are logarithmic jet differentials
that are invariant under arbitrary reparametrization of the source C. Let

(X, D, V )

be a log-direct manifold, i.e., a triple consisting of a projective manifold X , a
simple normal crossing divisor D on X and a holomorphic subbundle V of the
logarithmic tangent bundle TX (− log D). Starting with a log-direct manifold
(X0, D0, V0) := (X, D, TX (− log D)), one then defines X1 := P(V0) together with
the natural projection π1 : X1 → X0. Setting D1 := π∗

1 D0, so that π1 becomes a
log-morphism, and defines the subbundle V1 ⊂ TX1(− log D1) as

V1,(x,[v]) :=
{
ξ ∈ TX1,(x,[v])(− log D1) : π∗ξ ∈ C · v

}
,

one obtains the log-direct manifold (X1, D1, V1) from the initial one. Any germ of
a holomorphic map f : (C, 0) → (X \ D, x) can be lifted to f [1]

: C → X1 \ D1.
Inductively, one can construct on X = X0 the Demailly–Semple tower:

(Xk, Dk, Vk) → · · · → (X1, D1, V1) → (X0, D0, V0),

together with the projections πk : Xk → X0. Denote by OXk (1) the tautological line
bundle on Xk . Then the direct image (πk)∗OXk (m) of OXk (m)=OXk (1)⊗m , denoted
by Ek,m T ∗

X (log D), is a locally free subsheaf of EGG
k,m T ∗

X (log D) generated by all
polynomial operators in the derivatives up to order k, which are furthermore invariant
under any change of parametrization (C, 0) → (C, 0). From the construction, one
can immediately check that:

Theorem 2.1 (direct image formula). For any ample line bundle A on X , one has

(2-4) H 0(X, Ek,m T ∗

X (log D) ⊗A−1) ∼= H 0(Xk,OXk (m) ⊗ π∗

k A
−1).
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The bundles EGG
k,m T ∗

X (log D), Ek,m T ∗

X (log D) are fundamental tools in studying
the degeneracy of holomorphic curves into C \ D. By the fundamental vanishing
theorem of entire curves [5; 21], for any ample line bundle A on X , a nontrivial
global section of EGG

k,m T ∗

X (log D)⊗A−1 gives a corresponding algebraic differential
equation that all entire holomorphic function f : C → X \ D must satisfy. The
existence of these sections was proved recently [6; 15], provided that the order of
jet is high enough. However, despite many efforts, the problem of controlling the
base locus of these bundles can be only handled under the condition that the degree
of D must be very large compared with the dimension of the variety [1; 2; 7; 8; 21].

Now we consider the case where D is a generic hypersurface of degree d in CPn .
To guarantee the existence of logarithmic jet differentials along D, we consider the
order jet k = n + 1 and put

k ′
=

1
2 k(k + 1), δ = (k + 1) n + k.

Fixing two positive integers ϵ > 0 and r > δk−1 k(ϵ + kδ). For a smooth hyper-
surface D, denote by Yk(D) the log-Demailly–Semple k-jet tower associated to
(CPn, D, TCPn (− log D)). For a line bundle L on OYk(D), denote by Bs(OYk(D)L)

the base locus of the line bundle L . We will employ the following key result in [2].

Proposition 2.2 [2, Corollary 4.5]. There exist β, β̃ ∈ N such that for any α ≥ 0
and for any generic hypersurface D ∈ |Oϵ+(r+k) δ

CPn(1) |, one has

Bs
(
OYk(D)(β + αδk−1 k ′) ⊗ π∗

0,k O
β̃+α(δk−1 k(ϵ+kδ)−r)

CPn(1)

)
⊂ Yk(D)sing

∪ π−1
0,k (D).

Using this result, Brotbek–Deng confirmed the logarithmic Kobayashi conjecture
in the case where the degree of D is large enough. We extract from their proof that:

Theorem 2.3. Let D ⊂ Pn(C) be a generic smooth hypersurface in Pn(C) having
large enough degree

d ≥ (n + 1)n+3(n + 2)n+3.

Let f : 1 → CPn be a nonconstant holomorphic disk. If f (1) ̸⊂ D, then for
jet order k = n + 1, there exist some weighted degree m, vanishing order m̃ with
m̃ > 2m and some global logarithmic jet differential

P ∈ H 0(CPn, EGG
k,m T ∗

CPn (log D) ⊗OCPn (1)−m̃)
such that

(2-5) P( jk( f )) ̸≡ 0.

Proof. We follow the arguments in [2, Corollary 4.9], with a slightly modification
to get higher vanishing order. First, putting

r0 = 2δk−1 k ′
+ δk−1(δ + 1)2

= δk−1(δ + 1)(δ + 2).
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Since
k(k + δ − 1 + kδ) < (δ + 1)2,

any integer number d ≥ (r0 + k) δ + 2δ can be written as

d = ϵ + (r + k) δ,

where k ≤ ϵ ≤ k + δ − 1 and r > 2δk−1 k ′
+ δk−1 k(ϵ + kδ). For such d , since

lim
α→∞

β + αδk−1 k ′

−β̃ − α(δk−1 k(ϵ + kδ) − r)
=

αδk−1 k ′

r − δk−1 k(ϵ + kδ)
< 1

2 ,

using Proposition 2.2, for α ≫ 1 large enough, there exists some global logarithmic
jet differential

P ∈ H 0(CPn, EGG
k,m T ∗

CPn (log D) ⊗OCPn (1)−m̃)
satisfying (2-5) with m = β + αδk−1 k ′, m̃ = −β̃ − α(δk−1 k(ϵ + kδ) − r) and
m̃ > 2m. Hence it remains to giving a lower bound for (r0 + k) δ + 2δ. This could
be done by a straightforward computation:

(r0 + k) δ + 2δ =
(
δk−1(δ + 1)(δ + 2) + k + 2

)
δ < (n + 1)n+3(n + 2)n+3. □

3. Value distribution theory for holomorphic maps from unit disc into
projective spaces

Let E =
∑

i αi ai be a divisor on the unit disc 1 where αi ≥ 0, ai ∈ 1 and let
k ∈ N ∪{∞}. For each 0 < t < 1, denote by 1t the disk {z ∈ C, |z| < t}. Summing
the k-truncated degrees of the divisor on disks by

n[k](t, E) :=

∑
ai ∈1t

min{k, αi } (0 < t < 1),

the truncated counting function at level k of E is then defined by taking the loga-
rithmic average

N [k](r, E) :=

∫ r

0

n[k](t, E)

t
dt (0 < r < 1).

When k = ∞, we write n(t, E), N (r, E) instead of n[∞](t, E), N [∞](r, E). Let
f : 1 → CPn be an entire curve having a reduced representation f = [ f0 : · · · : fn]

in the homogeneous coordinates [z0 : · · · : zn] of CPn . Let D = {Q = 0} be a divisor
in CPn defined by a homogeneous polynomial Q ∈ C[z0, . . . , zn] of degree d ≥ 1.
If f (1) ̸⊂ D, we define the truncated counting function of f with respect to D as

N [k]

f (r, D) := N [k](r, (Q ◦ f )0),

where (Q ◦ f )0 denotes the zero divisor of Q ◦ f .
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The proximity function of f for the divisor D is defined as

m f (r, D) :=

∫ 2π

0
log

∥ f (reiθ )∥d
∥Q∥

|Q( f )(reiθ )|

dθ

2π
,

where ∥Q∥ is the maximum absolute value of the coefficients of Q and

∥ f (z)∥ = max{| f0(z)|, . . . , | fn(z)|}.

Since |Q( f )| ≤ ∥Q∥ · ∥ f ∥
d , one has m f (r, D) ≥ 0.

Lastly, the Cartan order function of f is defined by

T f (r) :=
1

2π

∫ 2π

0
log∥ f (reiθ )∥ dθ.

With the above notations, the Nevanlinna theory consists of two fundamental
theorems (for comprehensive presentations, see [17; 20]).

Theorem 3.1 (First Main Theorem). Let f : 1 → Pn(C) be a holomorphic curve
and let D be a hypersurface of degree d in CPn such that f (1) ̸⊂ D. Then for
every r > 1, the following holds:

m f (r, D) + N f (r, D) = d T f (r) + O(1),

whence

(3-1) N f (r, D) ≤ d T f (r) + O(1).

On the other side, in the harder part, so-called Second Main Theorem, one tries
to bound the order function from above by some sum of certain counting functions.
Such types of results were given in several situations, and most of them were relied
on the following key estimate.

Theorem 3.2 (logarithmic derivative lemma). Let g be a nonconstant meromorphic
function on the unit disc and let k ≥ 1 be a positive integer number. Then for any
0 < r < 1, the following estimate holds:

mg(k)/g(r) := mg(k)/g(r, ∞) = O
(

log 1
1−r

)
+ O(log Tg(r)) ∥,

where the notation ∥ means that the above estimate holds true for all 0 < r < 1
outside a subset E ⊂ (0, 1) with ∫

E

dr
1 − r

< ∞.
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4. An application of the logarithmic derivative lemma

It is a well-known fact that the growth of the order function of an entire holomorphic
curve could be used to determine its rationality. Replacing the source of the curve
by the unit disc 1, one has:

Definition 4.1. A holomorphic map f : 1 → CPn is said to be transcendental if

lim sup
r→1

T f (r)

log 1
1−r

= ∞.

Theorem 4.2. Let f : 1 → CPn be a holomorphic map and D ⊂ CPn be a generic
hypersurface having large enough degree:

d ≥ (n + 1)n+3(n + 2)n+3.

If f avoids D, then it is not transcendental.

Proof. Employing the logarithmic jet differentials supplied by Theorem 2.3, fol-
lowing the arguments as in [13] and using the logarithmic derivative lemma for
meromorphic functions on unit disc, one gets

T f (r)≤ N [1]

f (r, D)+O
(

log 1
1−r

)
+O(log T f (r))= O

(
1

1−r

)
+O(log T f (r)) ∥,

whence concludes the proof. □

We will also need the following results due to Fujimoto [9].

Proposition 4.3 [9, Proposition 2.5]. Let ϕ be a nowhere zero holomorphic function
on 1 which is not transcendental. Then, for each positive integer number λ, the
following estimate holds:∫ 2π

0

∣∣∣∣ dλ−1

dzλ−1

(
ϕ′

ϕ

)
(reiθ )

∣∣∣∣ dθ ≤
Const.
(1 − r)λ

log
1

1 − r
(0 < r < 1).

Corollary 4.4 [9, Lemma 3.4]. Let ϕ1, . . . , ϕn be nowhere zero holomorphic func-
tions on 1 which are not transcendental. Then, for any n-tuple of positive integer
numbers (λ1, . . . , λn) and for any positive real number t with tn < 1, the following
estimate holds:∫ 2π

0

∣∣∣∣ n∏
j=1

(
ϕ′

j

ϕ j

)(λ j −1)

(reiθ )

∣∣∣∣t

dθ ≤
Const.
(1 − r)s

(
log

1
1 − r

)s

(0 < r < 1),

where s = t
(∑n

j=1 λ j
)
.
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5. Proof of the Main result

Proposition 5.1. Let D ⊂ CPn be a generic smooth hypersurface of degree d and
let f : 1 → CPn

\ D be a nondegenerate holomorphic curve. Suppose that there
exists a global logarithmic jet differential

P ∈ H 0(Pn(C), EGG
n,m T ∗

CPn (log D) ⊗OCPn (1)−m̃)
such that

(5-1) P( jn( f )) ̸≡ 0.

Then, there exists a positive constant K such that∫ 2π

0

∣∣P( jn( f ))(reiθ )
∣∣2/m̃

∥ f (reiθ )∥2 dθ ≤
K

(1 − r)2m/m̃

(
log

1
1 − r

)2m/m̃

for (0 < r < 1).

Proof. Let s be the canonical section of the ample line bundle E := OCPn (1). Since
P vanishes on E with vanishing order m̃, in any local chat Uα of CPn , one can
represent Psm̃ as an isobaric polynomial Pα

s of weight m of variables

dλ uα
j,λ

uα
j,λ

(1 ≤ λ ≤ k, 1 ≤ j ≤ n),

with local holomorphic coefficients, where u j,λ are rational functions on CPn .
Consequently, we get that

|P( jk( f ))| · ∥ f ∥
m̃

≤

∑
α

∣∣∣∣Pα
s

(dλ(uα
j,λ ◦ f )

uα
j,λ ◦ f

)∣∣∣∣.
Since 0 < 2

m̃ < 1, using the elementary inequality

(x1 + · · · + xr )
2/m̃ < x2/m̃

1 + · · · + x2/m̃
r (xi > 0),

the above estimate yields

∣∣P( jn( f ))(reiθ )
∣∣2/m̃

∥ f (reiθ )∥2 <
∑
α

∣∣∣∣Pα
s

(dλ(uα
j,λ ◦ f )

uα
j,λ ◦ f

)∣∣∣∣2/m̃

.

Hence it suffices to prove∫ 2π

0

∣∣∣∣P 2/m̃
s

(dλ(uα
j,λ ◦ f )

uα
j,λ ◦ f

)∣∣∣∣2m/m̃

dθ ≤
Const.

(1 − r)2m/m̃

(
log

1
1 − r

)2m/m̃

(0 < r < 1).

By assumption, f avoids D, hence it is not transcendental by Theorem 4.2. Since
each function uα

j,λ is rational, it follows that uα
j,λ ◦ f is also not transcendental.
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Now, observing that each term
dλ(uα

j,λ ◦ f )

uα
j,λ ◦ f

can be represented as a polynomial Pα
j,λ of variables

(uα
j,λ ◦ f )′

uα
j,λ ◦ f

, . . . ,

(
(uα

j,λ ◦ f )′

uα
j,λ ◦ f

)λ−1

,

which is isobaric of weight λ, using Corollary 4.4, one gets the desired result. □

We will also need the following result of Yau [23] in the sequence.

Theorem 5.2 [23]. Let M be a complete Riemann manifold equipped with a volume
form dσ . Let h be a nonnegative and nonconstant smooth function on M such that
1 log h = 0 almost everywhere. Then

∫
M h p dσ = ∞ for any p > 0.

Now we enter the details of the proof of the Main Theorem. Let f be the
conjugate of G, which is a holomorphic map. It suffices to prove that f is constant.
Suppose on the contrary that this is not the case. Let π : M̃ → M be the universal
covering of M . Then M̃ is also considered as a minimal surface in Rn . Hence
without lost of generality, we may assume M = M̃ . Since there is no compact
minimal surface in Rn , it follows that M is biholomorphic to either C or 1. Thus
we may assume M = C or M = 1. The first case was excluded by recent work
towards Kobayashi’s conjecture (see [2]). Hence it suffices to work in the case
where M = 1. The area form of the metric on M induced from the flat metric
on Rn is given by

dσ = 2∥ f ∥
2 du ∧ dv.

Let P be a global logarithmic jet differential supplied by Theorem 2.3. Then it
is clear that h = |P( jk( f )| ̸≡ 0 and 1 log h = 0 for any z out side the zero set
of h. Since 1 is complete, simply connected and of nonpositive curvature, it has
the infinite area with respect to the metric induced from Rn . Using Theorem 5.2,
one obtains that

(5-2)
∫

1

h2/m̃ dσ = ∞.

On the other hand, using Proposition 5.1, one has∫
1

h2/m̃ dσ = 2
∫

1

h2/m̃
∥ f ∥

2 du dv

= 2
∫ 1

0
r dr

(∫ 2π

0
h(reiθ )2/m̃

∥ f (reiθ )∥2 dθ

)
≤ K

∫ 1

0

r
(1 − r)2m/m̃

(
log

1
1 − r

)2m/m̃

dr.
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The last integral in the above estimate is finite since 2m < m̃. This contradicts (5-2).
Therefore, the map f must be constant, whence concludes the proof of the Main
Theorem.

6. Some discussions

Theorem 1.1 can be recovered via the above jet method. Indeed, according to
Siu [21], the Wronskian can be employed to build a suitable logarithmic jet dif-
ferentials. Precisely, let us consider the inhomogeneous coordinates x1, x2, . . . , xn

of CPn . Let {Hi }1≤i≤q be the family of hyperplanes in general position in CPn .
For each 1 ≤ i ≤ q, denote by Fi the linear form of variables x1, . . . , xn defining
the hyperplane Hi . Put

ω =
Wron(dx1, . . . , dxn)

F1 . . . Fq
,

where Wron denotes the Wronskian. The point is that by the assumption of general
position, at any point x = (x1, . . . , xn), there exists a set I = {i1, . . . , in} having
cardinality n such that F j are nowhere zero in a neighborhood U of x for all j ̸∈ I .
Locally on U , one can write ω as

ω = Const.
Wron(d log Fi1(x), . . . , d log Fin (x))∏

j ̸∈I F j (x)
,

and hence, ω gives rise to a logarithmic jet differentials along the divisor
∑q

i=1 Hi .
The denominator F1 . . . Fq in ω gives the vanishing order q at the infinity hyperplane,
hence direct computation yields immediately that ω is of weight m =

1
2 n(n + 1)

and vanishes on the infinity hyperplane with the vanishing order m̃ = q − (n + 1).
Finally, in view of the result of Fujimoto–Ru, one can expect that the optimal

degree bound in the statement of our Main Theorem should be 1
2 n(n + 1).

Conjecture 6.1. Let M be a nonflat complete minimal surface in Rn and let
G : M → CPn−1 be its generalized Gauss map. Then G could avoid a generic
hypersurface D ⊂ CPn−1 of degree at most

d =
1
2 n(n + 1).
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