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EXPLICIT BOUNDS ON TORSION OF CM ABELIAN
VARIETIES OVER p-ADIC FIELDS WITH VALUES
IN LUBIN-TATE EXTENSIONS

YOSHIYASU OZEKI

Let K and k be p-adic fields. Let L be the composite field of K and a certain
Lubin-Tate extension over k (including the case where L = K (u,~)). We
show that there exists an explicitly described constant C, depending only
on K, k and an integer g > 1, which satisfies the following property: if A g is
a g-dimensional CM abelian variety, then the order of the p-primary torsion
subgroup of A(L) is bounded by C. We also give a similar bound in the case
where L = K(* 0«0/7). Applying our results, we study bounds of orders of
torsion subgroups of some CM abelian varieties over number fields with
values in full cyclotomic fields.

1. Introduction

Let p be a prime number and K a p-adic field (that is, a finite extension of Q). It
is a theorem of Mattuck [1955] that, for a g-dimensional abelian variety A over K
and a finite extension L/K, the Mordell-Weil group A(L) is isomorphic to the
direct sum of Zj‘?g 1L:@p] and a finite group. We study some properties of the torsion
subgroup A (L) of A(L). Clark and Xarles [2008] gave an explicit upper bound
of the order of A(L)or of A(L) in terms of p, g and some numerical invariants of L
if A has anisotropic reduction (here, we say that A has anisotropic reduction if its
Néron special fiber does not contain a copy of G,,). This includes the case where A
has potential good reduction. We consider the case where L/K is of infinite degree.
There are some situations in which the torsion part A (L), is finite. Suppose that A
has potential good reduction. It is a theorem of Imai [1975] that A(K (14p>))or 18
finite. Here, K (1) is the extension field of K obtained by adjoining all p-power
roots of unity. Moreover, Kubo and Taguchi [2013] showed that A(K (" O\O/E))tor
is also finite, where K ( "/K) is the extension field of K obtained by adjoining
all p-power roots of all elements of K. The author showed in [Ozeki 2024] that
there exists a “uniform” bound of the order of A(K (" O«o/f))tor under the assumption
that A has complex multiplication. (Here we say that A has complex multiplication
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if there exists a ring homomorphism F — Q ®z Endg(A) for some algebraic
number field F of degree 2g.)

The main purpose of this paper is to give explicit upper bounds of the orders
of A(K(ttp=))or and A(K (" W))tor for abelian varieties A/K with complex
multiplication. For this, we should note that to give an upper bound of the order of
the prime-to-p part of A(K (it p=))or is not so difficult. In fact, the reduction map
gives an injection from the prime-to- p part of the group which we want to study into
certain rational points of the reduction A of A (if A has good reduction), and the
order of the target is bounded by the Weil bound. Hence the essential obstruction for
our purpose appears in a study of the p-part A(K (up~))[p™] of A(K (1t p>))ior-

Let us state our main results. For a p-adic field k and a uniformizer w of k,
we denote by k,/k the Lubin—Tate extension associated with & (that is, k, is
the extension field of k obtained by adjoining all & -power torsion points of the
Lubin-Tate formal group associated with 77; see [ Yoshida 2008] for more details).
For example, we have k; = Q,(upx) if k =Q), and 7 = p. We setdy :=[L:Q,]
for any p-adic field L. For any integer n > 0, we set

O (n) :=Max{m € Z.¢ | ¢(m) divides 2n},

H(n) := gcd{#GSp,,(Z/NZ) | N > 3}.
Here, ¢ is Euler’s totient function. There are some upper bounds related with H (n)
and @ (n) (see Section 5). It is a theorem of Silverberg [1992, Corollary 3.3] that
we have H (n) < 2(9n)" for any n > 0. It follows from elementary arguments that

we have ®(n) < 6n./n for n > 1. Furthermore, a lower bound (5-3) of ¢ proved
by Rosser and Schoenfeld [1962] gives & (n) < 4nloglogn for n > 3%,

Theorem 1.1 (a special case of Theorem 3.1). Let g > 0 be a positive integer. Let k
be a p-adic field with residue cardinality q; and 7 a uniformizer of k. Assume the
following conditions:

1) q,:INrk/@p () is a root ofunity;1 and

(1) dy is prime to (2g)!.
Denote by 0 < . < p the minimum integer such that (q, lNrk /@, (@)* = 1. For any

g-dimensional abelian variety A over a p-adic field K with complex multiplication,

A(Kky)[p™]1 C A[pC1.
where
C:=2g> - (29)!- ®(g)H(g) - - dxx + 12> — 18g + 10.

In particular,
#A(Kko)[p™] < p*©.

IThis condition is equivalent to saying that some finite extension of k contains Qp (o) (see
[Ozeki 2020, Lemma 2.7(2)]).
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As an immediate consequence of the theorem above, we obtain a result for
cyclotomic extensions; see Corollary 3.7. Furthermore, the method of our proof of
Theorem 1.1 can be applied to the field K (” VK) discussed in Kubo and Taguchi,
which gives a refinement of the main theorem of [Ozeki 2024].

Theorem 1.2. Let g > 0 be a positive integer. For any g-dimensional abelian
variety A over a p-adic field K with complex multiplication, we have

AK ("VEK)[p™®] C A[pCl,
where

Ci=2¢> 29 p' ™ @ (@(9)H(9))* - p'r Wk +12¢% — 18g + 10.
(Here, v, is the p-adic valuation normalized by v,(p) = 1.) In particular,
#AKK ('VE))[p™1 < p*€.

We can consider some further topics. For example, we do not know what will
happen if we remove the CM assumption from the above theorems. Our proofs
in this paper deeply depend on the theory of locally algebraic representations,
which can be adapted only for abelian representations. This is the main reason
why we cannot remove the CM assumption from our arguments. To overcome
this obstruction, it seems to be helpful for us to study the case of (not necessarily
CM) elliptic curves. We will study this case in future work. We are also interested
in giving the list of the groups that appear as A(Kk;)[p®] or A(K ( ”O«O/E))[poo].
However, this should be quite difficult; the author does not know such classification
results even for A(K)[p].

Combining the cyclotomic case of Theorem 1.1 and Ribet’s arguments given in
[Katz and Lang 1981], we can obtain a result on a bound of the order of the torsion
subgroup of some CM abelian variety defined over a number field with values in
full cyclotomic fields. (Here, a number field is a finite extension of (1.)

Theorem 1.3. Let g > 0 be an integer. Let K be a number field of degree d, and
denote by h the narrow class number of K. Let K (Loo) be the field obtained by
adjoining to K all roots of unity. Let A be a g-dimensional abelian variety over K
with complex multiplication which has good reduction everywhere. Then

A(K (oo))tor C A[N],
where

242-(2g)!-®(g)H(g)-dh+12g2—18g+10
N = ( p)
)4

dh
Here, p ranges over the prime numbers such that either p < (1++/2" )* or p is
ramified in K.
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We should note that Chou [2019] gave the complete list of the groups that
appear as A(Q(to))tor as A ranges over all elliptic curves defined over Q0. For CM
elliptic curves A over a number field K, more precise observations for the order
of A(K (4x0))tor than ours are studied in [Chou et al. 2021].

Notation. For any perfect field F, we denote by G g the absolute Galois group
of F. In this paper, a p-adic field is a finite extension of Q. If F' is an algebraic
extension of Q,,, we denote by O the ring of integers of F'. We also denote by F ab
the maximal abelian extension of F (in a fixed algebraic closure of F). We put
drp =[F : Q,]if F is a p-adic field. For a finite extension F’/F, we denote by
er)r and frp the ramification index of F '/F and the extension degree of the
residue field extension of F’/F, respectively. We set er := er/q@, and fr := fr/q,,
and also set g := p/*. Finally, we denote by I'¢ the set of Q@ p-algebra embeddings
of F into a (fixed) algebraic closure Q pof Q,.

2. Evaluations of some p-adic valuations for characters

Fix an algebraic closure @ p of Q,. Throughout this section, we assume that all
p-adic fields are subfields of Q p- Denote by v, the p-adic valuation normalized by
v,(p) = 1. For any continuous character ¥ of G ¢, we often regard  as a character
of Gal(K®/K). Denote by Arty the local Artin map K* — Gal(K®/K). We set
Yk := ¥ oArtg. Denote by K* the profinite completion of K *. Note that the local
Artin map induces a topological isomorphism Artg : K* => Gal(K® /K). For a
uniformizer g of K, denote by xr, :Gx — OIX( the Lubin-Tate character associated
with g (see [Serre 1989, Chapter 111, A4]). By definition, the character y, is
characterized by X, x(7mx) =1 and xr, x(x) = x~! forany x € O}Q. Let 7 be a
uniformizer of k and denote by &, the Lubin—Tate extension of k associated with 7.
The field corresponding to the kernel of the Lubin-Tate character x, : Gy — O}
is kr, and k; is a totally ramified abelian extension of k.

Proposition 2.1. Let ¥y, ..., ¥, : Gg — @; be continuous characters. Then

Min{ Zv,,(w,-(o) -1 ‘ o€ GKkn}
i=1

n
< Min{ Y Wik —1) |we Nr}}(/k(ﬂfk"/"z)}.
i=1
Proof. This is [Ozeki 2024, Proposition 2.1] but we include a proof here for
completeness. Let M be the maximal unramified extension of k contained in Kk.
The group Artk_1 (Gal(k®/M)) contains Artk_1 (Gal(k*®/ k")) = O « - Furthermore,
Artk_1 (Gal(k*®®/M)) is a subgroup of kX =l x (f)kX of index [M : k] = fkg k. Thus
it holds that Art;' (Gal(k®™/M)) = r fruZ x OF. Since Art; ' (Gal(k™®/ky)) = 2,
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we obtain that Artk_l(Gal(kab /Mky)) = wfxiiZ, If we denote by Resgy/« the
natural restriction map from Gal((K k)2 /K k) to Gal(k®/k), it is not difficult to
check that Resy, /k(Gal(kab/Mk )) = Gal((Kk)*®/Kk,), and therefore we find

that Arty (Gal((Kk)ab/Kk )) Nr}}{/k(nf”/kz) Now the lemma follows from
Min{ 3 v, (Wite) = 1) ‘a c GKkn}
i=1 n
_ . —1 ab
_Mm{va(wi,KkoArth(a)—l) o € Gal((Kk) /Kk,,)}. a
i=1

We often use p-adic Hodge theory, which plays an important role in this paper.
For the basic notion of p-adic Hodge theory, it is helpful for the reader to refer
to [Fontaine 1994a; 1994b]. Let B, be the Fontaine’s p-adic period ring and set
DCIfIS(V) = (Buris ®q, V)G« for any Q,-representation V of Gg. Let us denote
by K, the maximal unramified subextension of K/Q, and denote by ¢k, the
arithmetic Frobenius map of KO, that is, the (unique) lift of the p-th power map on
the residue field of K. Since Bm’: Ko, Dgls(V) is a Kp-vector space. Moreover,
DX (V) is a filtered @-module over K; it is of finite dimension over Ky, it is

Cris
equipped with a bijective gg,-semilinear Frobenius operator ¢ and it is equipped
with a decreasing exhaustive and separated filtration on Dcm(V) Qk, K. We say
that V' is crystalline if the equality dimg, V = dimg, Crls(V) holds. Let M be
a finite extension of Q, and ¥ : Gg — M™ a continuous character. We denote
by M () the Q,-representation of G ¢ underlying a 1-dimensional M -vector space
endowed with an M-linear action by Gk via . We say that ¢ is crystalline if
M () is crystalline. On the other hand, we denote by K* the Weil restriction
Resg/q , (Gp,). This is an algebraic torus such that, for a Q ,-algebra R, the R-valued

points K*(R) of K™ is G, (R ®q, K).
Proposition 2.2. Let v : Gxg — M™ be a continuous character.

(1) M() is crystalline if and only if there exists a (necessarily unique) Q-
homomorphism ryg : K* — M> such that yx and Yrae (on Q,-points)
coincide on O (C K*(Q))).

(2) Assume M (V) is crystalline, and let Yryy be as in (1). (Note MY is also
crystalline.) The filtered ¢-module DCI;S(M(ng_l)) = (Buis ®q, M(y~1))Ck
over K is free of rank 1 over Ko ®q, M, and its Ko linear endomorphism ¢/
is given by the action of the product Y (mx) - V1) (mx) € M*. Here, mk is
any uniformizer of K.

Proof. This is Proposition B.4 of [Conrad 2011]. U

alg

Let ¢ : Gk — M ™ be a crystalline character. For any o € 'y, let xour @ Ioyr —
o M* be the restriction to the inertia I, of the Lubin-Tate character associated
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with any choice of uniformizer of o M (it depends on the choice of a uniformizer
of o M, but its restriction to the inertia subgroup does not). Assume that K contains
the Galois closure of M/Q,. Then

U= l_[ U_IOX;"I’W

O’EFM

on the inertia /g for some integer 4. Equivalently, the character ;¢ on Q,-points
coincides with [ [, el o1 oNr}% - Note that {h, | o € 'y} is the set of Hodge—
Tate weights of M(y), that is, C ®q, M ({) =~ & C(hy), where C is the
completion of Q.

For integers d, h and a p-adic field M, we define a constant C(d, M, h) by

UEFM

(@-1) €, M, by = vy (d/dy)+h+ 3y (g +vp(en) — éwp(z)(dM— D).

Theorem 2.3. Let Yy, ..., ¥, : Gg — M be crystalline characters and h > 0 an
integer. Assume that M is a Galois extension of Q, and K contains M. Suppose

that, for each i, we have
—1 hi.a
Y = | | O Xy

(TGFM
on the inertia Ik ; thus {h; 5 | 0 € Ty} is the set of Hodge—Tate weights of M (;).
We assume the following conditions:
(1) {his |0 €Ty} contains at least two different integers for each i. (In particular,
we have M # Q,.)
(ii) Min{v,(h; s —h;.) | o, T € Uy} < h for each i.
Then:

(1) There exists an element & € ker Nruyyq, such that for every 1 <i <n,
(2-2) 14+0,(2) < v, (i x (@) = 1) <8¢ + C(dx, M, h).

Here,
[0 fi=12
O N2i-5 ifi=3.

(2) Let & be as in (1). For any x € K*, there exists an integer 0 < s(x) < n such
that for every 1 <i <n,

s(x)

(2-3) v,(Wi k(x@dP )T 1) <n+8g)+ C(dg, M, h).

Proof. Take an element x € Oy such that Oy = Z,[x]. We set p':=p or p':=4
if p #2 or p =2, respectively, and put x’ = p’x. Set m[ , :=di/m(hyro — hr.o)
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for 1 <r <mnando, tely. Wealso set
)’:’[ — Z m;g(o_—lx/)é—l
oely
for 1 < £ < dy;. (Note that yf’l =0.) Set
Tw
wei=exp((x))H and o} = =
Wy

for any 1 <¢ <dys and v € I');. Here, exp denotes the p-adic exponential map (see
[Neukirch 1999, Chapter II, Proposition 5.5]). By construction, w; € kerNryq, .

Lemma 2.4. exp(y},) = Wr,l((a)g)_l.
Proof. We see

dx/m

Urk (@)™ = [ o7 oNrg /()™ = ( [ Ula)zm> :

oel'y oel'y

_ hyond 1 hraond
We also have ¥, g (tw,) ™! = (]_[aerM ol g“’) K — (]_[aerM oL, )M,
Thus we have

dk/m et
wr,K(a)E)_l — ( 1_[ o~ r,ra r,a) — 0'_16()6 r.a.

oely

On the other hand, we have

exp(y’,) =exp< > mf,(,(olx’)“) = ] exptc™"x")* ="y
oel'y oel'y

_1 mf
_ ] oo 0

oel'y
We furthermore need the following evaluation.

Lemma 2.5. For each 1 <r <n, there exist 7, € 'y; and an integer 2 < {, < dy
such that

v, (37, ) < Cldg, M, h).

Proof. Fix r. By assumption (i), there exist tj, 7o € I'yy such that h, , # h, o,.
Choose 71 and 1 so that v,(h, ., — hyr,) = Min{v,(h, o — h,7) | 0,7 € 'y},
and set 7 := rzrl_] € I'y. We write I'yy = {11, 72, .. ., 74,,}. Note that mr 0=
dx/m(hyr, — hy7) is not zero. We denote by X € Md(OM) the matrix whose

(i, j)-component is (T, x/)f !, Then we have

(2-4) OF1 - Ygy) = (ME o mie )X
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and

-1 -1 Ldu@du—1 -1 -1
detX = l_[ (; x' =t x) = (p/)zm@n=D 1_[ (t; x—1 Xx).
I<i<j<dy I<i<j<dm

We also have

”P( 1_[ (fjlx_filx)): Z Up(tflx_fflx)

I<i<j=dm I<i<j<dy
-1 -1
E vp(tj X—1 X)
1<i,j<dm,i#]j

1 1 1
= Jduvy(Dusa,) = ydu(1+vplen) — ).
em

N —

2

(see [Serre 1979, Chapter 3, Section 6, Proposition 13]), where DM/@F is the
different ideal of M /Q,. We find

@5)  up(detX) < Sdu(du +vplen) - é 0,y — ).

By (2-4), we have mf’ ., det X = ZZZ 1 y; ,X¢ for some x; € Oy, which gives the fact
that there exists an integer £, = ¢ with the property that v, (y;,) < v,(m; , det X).
By (2-5), we have

vp(Vfe) S vp(diym) + Vp(hy gy — hyzy) + v, (det X) < Cdg, M, h),
as desired. We remark that £ is not equal to 1 since y[, is zero. (]

Now we return to the proof of Theorem 2.3. Take 7, and ¢, as in Lemma 2.5
with the additional condition that

(2-6) vp(yF,) = Min{v, (37,) | T € Tar. 2 < € < di).

Here we consider an element & € ker Nry;/q, which is of the form & = [T, (a)Z)S’,
where s, is defined inductively by the following:

O, 1) ifv,(y',) =vp(31%,):

(s1.52) = 1 (1LO) if v, (v]'y,) # vp(3,) and vp(33Yy) = vp(377,):
(LD if v,y # vp(,) and vy (35',) # v, (077,)-
P if vy, 5253 # vp(pyE,),

§3 = .
P2 if vp(sly;gl +s2y3r,2£2) = Up(py;}&)-

For r > 4,

. -1 Tj r
e
- . -1 Tj r
s if v, (Z;Zl Sjyr,'/ej) = v, (Psr—1Y,,)-
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We claim that we have

n
1+0,(2) < vp(Zsry,-’;@,) < 8+ Cdx, M, h)
r=1
for any i, where ) is as in the statement (1). The inequality 1 + v,(2) <
vp(Xor_y sryi7, ) is clear since we always have 14-v,(2) < v,(y},) by definition
of yf,. We show v, (> s,ylf’zr) <8+ C(dk, M, h) by induction on i.

* Suppose either i =1 or i =2. By (2-6) and the inequality 0 < v,,(s,) for r > 3,
it is not difficult to check v, (Zf: 1 Sr erL’r) =v, (yZ iei)- Furthermore, we have
vp(yZ"ei) <C(dg,M,h)=464+C(dg, M, h) by Lemma 2.5.

 Suppose i > 3. By definition of s; we have v, (er;ll Sry,f},_) * vp(s,-yif”'zi).

We also have v, (}_r_; s,yZ"er) =, (siyZ"ei) since v (s; yfei) <, (sryz’g’_) for
i < r. Hence, it follows from Lemma 2.5 that we have

n i—1
oo Lot ) =Minfon( St ) vt
r=1

r=1
<vp(psi—1yiy,) < 14v,(si-1) + Cd, M, h)
if i > 4. Since we have v, (s;—1) <2(i —3) if i > 4, the claim for i > 4 follows.

The claim for i = 3 follows by a similar manner; we have v, (}__, s, y3f’ o) =
vp(pyf&) <1+C(dk,M,h) =653+ C(dg, M, h).

By construction of @ and Lemma 2.4, we see

NOR l_lw,K(w >‘”=l_[eXP<Sry§"e,>:e"P(Zs’y ‘)
r=1 r=l

Thus we find v, (¥;, k(@1 —1)= V(O sy yZ"er). Therefore, the claim above
gives Theorem 2.3(1).

To show Theorem 2.3(2), we set m; := ;. x(x)"'—1and G(S) =Y x@P) -1
for any s > 0. It follows from the condition v, (¥; x (®)~ I—D>1+v p(2) that
the equality vp(G( )) =5+ v,,(Q( )) holds. For each 1 < i < n, there exists at
most only one integer s > 0 so that v,(m;) = v, (Ql(s)) since {v,, (GI(S))}S is strictly
increasing. Hence, there exists an integer 0 < s(x) < n with the property that
vp(m;) # v, (9“( 2 ) for every 1 <i < n (by the pigeonhole principle). With this
choice of 5(x), we obtain v, (¥; x (x@ I’M)) I—D=v p(m; +9(‘(x)) +m Q(g(x))) <
v, (9(")) =n-+v, (9( )) This finishes the proof of (2). O

3. Proof of main theorems

The main purpose of this section is to show Theorems 1.1 and 1.2. For Theorem 1.1,
we show a slightly refined statement as follows.
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Theorem 3.1. Let g > 0 be a positive integer. Let k be a p-adic field with residue
cardinality q; and 7 a uniformizer of k. Put p’ = por p' =4if p#2o0r p =2,
respectively. Let i > 1 be the smallest integer* so that

(¢; 'Nryg, (m)* =1 mod p'.

Assume the following conditions:’

(i) vp((g 'Nrgjo, )" —1) > g (2g)! - P(g)H(8) - 1o+ di/ fi» and
(i1) dy is prime to (2g)!.
Then, for any g-dimensional abelian variety A over a p-adic field K with complex
multiplication, we have
A(Kk)[p™] C Alp©],
where
C:=2g>-(29)!- ®(g)H(g) - - dxx + 12> — 18g + 10.

In particular,
#A(Kky)[p™] < p*

Our proofs of Theorems 3.1 and 1.2 proceed by similar methods. As in the
previous section, we fix an algebraic closure Q, of Q, and suppose that K is a
subfield of Q,. In this section, we often use the following technical constants:

Lo(m) :=[log, (1 + p2"™)*],

Clm, M. h) = v,,(dM) th+ ;dM<dM +up(en) — i +0,(2)(dy — 1))

Here, m > 1 and h > 0 are integers and M is a p-adic ﬁeld.

Remark 3.2. (1) mg < Ly,(m) < g(m + 1+ v,(2)) for any prime p and m > 1,
and Ly (m) < g(m + 1) if (p,m) # (2, 1), (2,2).

(2) Moreover,*
Lo(m)=mg for m > 8g.

This can be checked as follows: It suffices to show (1 + p%’")zg < p™&t! for
m > 8g. This inequality is equivalent to (1 + p_%’")zg < p. Thus it is enough
to show (1 +272"0)2¢ < 2 where mg := 8g. By the inequalities 2g < 22¢ and
(Zg) <228 for 0 < r < 2g, we find, as desired,

1 1 Lon—4
(1+2—%'"°>2g=1+Z(2rg)(%)zrmo <142e2%(3) <14 (3) " =2
r=1

21f a9 ! Nry, /Q, () is a root of unity, the constant p here coincides with the  in Theorem 1.1.

3Condition (i) depends on the choice of K. However, the author hopes that this condition can be
replaced with one that does not depend on K, as in Theorem 1.1(1).

4The value 8¢ here is “rough” but it is enough for our proofs.
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Special cases. We consider Theorem 3.1 under some additional hypothesis. In this
section, we show:

Proposition 3.3. Let the situation be as in Theorem 3.1 except assuming not (i) but

() v, ((g 'Nrgyg, )* = 1) > Le((29)! - - drasa fi).

Moreover, we assume that A has good reduction over K and all the endomorphisms
of A are defined over K. Put

Co(K, k) = v,(dki) + 22! ((29)! + v, ((29)) +v,(2)((2g)! — 1)),
Ag(K, k) =Max{Cy(K, k), Lg((2)!- it~ diisi fi) }-
Then
A(Kk)[p™] C A[p©],
where
C:=2gA (K, k)+12g* — 18g + 10.

Proof. Put T =T,(A) and V = V,,(A) for brevity. Let p : Gk — GLz,(T) be the
continuous homomorphism obtained by the G g-action on T. Fix an isomorphism
1: T = Z;‘fzé’ of Z ,-modules. We have an isomorphism 7 : GLZP(T) >~ GLyg(Z))
relative to «. We abuse notation by writing p for the composite map Gx —
GLz,(T) >~ GLyg(Z)) of p and {. Now let P € T and denote by P the image
of P in T/p"T. By definition, we have t(o P) = p(o)t(P) for o € Gg. Suppose
that P € (T/p"T)C* . This implies o P — P € p"T for any o € Gy, . This is
equivalent to saying that (p(o) — E)t(P) € p"fozg , and this in particular implies
det(p(o) — E)t(P) € p”Z?zg for any o € GGy, . Thus det(p(0) — E)P € p"T
for any o € Gy, . Put

¢ =Min{v,(det(p(0) — E)) |0 € Gky, }-

Then we see P € p"~“T (if c is finite and n > ¢) and this shows (T /p"T )&% C
p"¢T/p"T. This implies an inequality

(3-1) A(Kkr)[p™] C Alp°]

if ¢ is finite.

On the other hand, we recall that A has complex multiplication and all the
endomorphisms of A are defined over K. Thus there exists an injective ring
homomorphism from a number field F of degree 2g into Q ®z Endg (A). By [Serre
and Tate 1968, Theorem 5(i)], we know that V is a free F ®q Q,-module of rank
one and the G g-action on V commutes with F ®g Q-action. Let []/_, F; denote
the decomposition of F' ®g Q,, into a finite product of p-adic fields. This induces
a decomposition V >~ @_, V; of Q,[G g ]-modules. Each V; is equipped with a
structure of one-dimensional F;-modules and the G g -action on V; commutes with
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the Fj-action. Let p; : Gk — GLq, (V;) be the homomorphlsm obtained by the G-
action on V;. Since p; is abelian, it follows that (V; ®q, Q p)> = @ @ » (Wi j)
for some continuous characters ¥; ; : Gx — @X Here, the superscript ¢ ss” stands
for the semisimplification. As is well known, W:, ; satisfies the following properties
(since the G g-action on V; is given by a character Gy — FiX):
@ Yit, ..., Wi,dFl. are (Q,-conjugate with each other, that is, V; x = Tk o ¥ ¢ for
some Ty € G@p.

®) Y¥i1, ..., Wi,dFl- have values in a p-adic field M; (in the fixed algebraic clo-

sure Q,, of Q) which is Q ,-isomorphic to the Galois closure of F;/Q, (in
an algebraic closure of F;). We remark that dy, divides dF,!.

In particular,
vp(det pi(0) — E) =drvp(Yi(o) — 1),

where ; := ;1. Let M be the composite field of My, ..., M,, and we regard
Y1, ..., ¥y as characters of G with values in M *, that is, ¥; : Gx — M ™. The
field M is a Galois extension of @, in @p and dy divides df,!dp,!- - - dF,!. Since
Yo dr =2g, we find

(3-2) du | (28)!.

(Here, we recall that the product of n natural numbers is divisible by n! for any
natural number #.) In particular, we have M Nk = Q,, since dj is prime to (2g)!,
and then we obtain

ker Nry /@, C ker Nrask/x C ker Nrg k/k-
Here, K, is the composite K M of K and M. It follows from Proposition 2.1 that

(33) ¢ <Min{v,(det(p(0) — E)) | 0 € Gy, )

n
= Min{ 3" drv,(¥i(0) — 1) ’ e GKMkﬂ}
i=1
n
<Min{ > " drv, Wik, (rew)~ = 1) wekerNrKMk/k}
i=1

n
<Min{ Y " drv, (Wi k(o) = 1) o€ kerNrM/@p}
i=1

n
<Minj Y “drv, (Yl (o)™t = 1) wekerNrM/@p}.
i=1

Here, p is the integer appeared in the statement of Theorem 3.1. Note that ¥; is
a crystalline character since A has good reduction over K (see [Fontaine 1982,
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Section 6]; see also [Coleman and Iovita 1999, Theorem 1]). By rearranging the
numbering of subscripts, we may suppose the following situation for some 0 <r <n.

(D) For 1 <i <r, the set of the Hodge—Tate weights of M (y;) is {0, 1}.
(II) For r <i < n, the set of the Hodge—Tate weights of M (v;) is either {1} or {0}.

Lemma 3.4. Forr <i <n and any o € ker NrM/@p, we have
vyl k) = 1) < Lo (29)! - diiyi fic- 1)

Proof. In this proof we set L := K y7k. We know that the morphism v; gjo : L™ — M ™
corresponding to v;|g, is trivial or Nr /l@p on Q,-points. This in particular gives
Y r(w) =1. Since ﬂzL/kn_l is a p-adic unit for any uniformizer wr;, of L, we find

-1 -1 —eLk _er/_—1 —eL/k -1
Yip(rw)™ = L(7) =¢i,L(JTL t '7TLL/ T )=O[i v ‘wi,alg(”) s

where o; := V; 1 (7TL) Vi alg (rz)~!. Denote by L’ the unramified extension of L of
degree pep k.

(I) Suppose that the set of the Hodge—Tate weights of M (i;) is {0}. In this case,
Vi alg 18 trivial and thus we have 1//# | (mw)~! = a7 ek, Tt follows from Lemma 9
of [Ozeki 2024] that 1//;,‘ 7 (mw)~! is a unit root of the characteristic polynomial
f(T) of the geometric Frobenius endomorphism of A¢,,. Since f(1) = #A(F,,,),
we see v, (Yl (o)~ — 1) < v, #A(F,,,)) < [log, #A(F,,,)]. It follows from the
Weil bound that vp(wi’fL(na))_l —1) < Ly(fr). Since we have f1r = pey i fr =
drki-m-dgi/e fe < (2€)!- - dii/k fi. we obtain the desired inequality.

(Il) Suppose that the set of the Hodge—Tate weights of M (y;) is {1}. In this case
Vi alg 18 er/l@p on @ ,-points. If we set B := ¢, ]Nrk /Q, (), we find

ViL (mw)™ = 1= (O‘i_lNrk/@p () rkyterse — 1

= (o qu)" = DB 4 (B — 1),

It again follows from Lemma 9 of [Ozeki 2024] that (o; qu)’“L/k is a unit root of
the characteristic polynomial fV(T) of the geometric Frobenius endomorphism
of AV JE,- Since f V(1) = #AY (Fg,,), the same argument as in (I) shows that
vp((ozi_qu)WL/k —1) < Lg(fr) < Lg((29)!- i - dgyx fi)- In particular, we have
vp(,B“dL/k -1 > vp((ozi_qu)“eL/k — 1) by the assumption (i)’. Since B is a p-adic
unit, we obtain v, (!, (Tw) ' —1) = v, (e qL)# 1/ — 1) < Lo ((29) podicisi fo).
as desired. O

By (3-3) and the lemma, in the case where » = 0, we have

(3-4) c=< ZdF,-Lg(Qg)! “pdiryk fi) =28Lg((28)! - dgryi fr)-
i=1
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In the rest of the proof, we assume r > 0. By (3-3) and the lemma again, we have

,
c< Min{ > drv, Wl o) = 1) |we kerNrM/@p}

i=1

n
+Le((29)! - diapifi) Y dr,.
i=r+l

Here we remark that v,(u) = 0 and the Hodge-Tate weights of wi“ for each
1 <i <r consist of 0 and u. Hence, applying Theorem 2.3 to the set of characters
1/ff‘, R w,“ :Ggyk — M™, an element x = and i = 0, there exists an element
@ € ker Nry, /@, and an integer 0 < s = s(7r) <r as in the theorem. Then

r n
¢ <> drv,(Yly, (@) = D)+ L) - diipifi) Y d,
i=1 i=r+l

r n
<D dr(r +86) + Cldyh: M. 0) + Lo (29)!- - diiyife) Y, dr,
i=1 i=r+1

,
<2gA0+ ) _dr(r+5a),
i=1

where Ag :=Max{C(dk,k, M, 0), Lg((2¢)! u-dki/k fi) }. Since dy divides (2g)!,
we also have

Cldiyk, M, 0) < v,(dxr) +32)1((28)! + v, ((20)) +v,(2)(29)! - D).

Thus, for the constant A, (K, k) defined in the statement of the proposition, we
obtain Ag < Ay(K, k) and ¢ <2gA (K, k) + Zle dr, (r +6)).

o Ifr <2, wehave ) |, dr(r+68u) =Y i_drr <r-2g <4g.

o Ifr>2,wehave ) ;_, dr,(r4+8u)=r Y i_dr+Y i_3drdoy<n) i dr+
> i—3dr,(2n—=5)<n-2g+Q2n—5)(3_;_, dr,—2) <2g-2g+(4g—5)-(2g—2) =
12g% — 18g + 10.

Therefore, for any r > 0, we find
¢ <2gA (K, k)+12g* — 18g + 10.

Note that this inequality holds also for the case r = 0 by (3-4). Now the proposition
follows from (3-1). [l

General cases. We show Theorems 3.1 and 1.2. For this, we need the following
observations given by Serre and Tate [1968] and Silverberg [1992].

Theorem 3.5. Let A be a g-dimensional abelian variety over K.
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(1) Putm =3 orm =4 if p #3 or p =3, respectively. Then A has semistable
reduction over K (A[m]) and all the endomorphisms of A are defined over K (A[m]).

(2) Let L be the intersection of the fields K (A[N]) for all integers N > 2. Then all
the endomorphisms of A are defined over L and [L : K] divides H(g).

(3) Assume A has potential good reduction. Let pa ¢ : Gx — GLz,(T;(A)) be the
continuous homomorphism defined by the G g-action on the Tate module Ty(A) for
any prime £.

(1) For any prime £ not equal to p, let H; be the kernel of the restriction of pa ¢
to Ix. Then Hy is an open subgroup of Ik, which is independent of the choice
of £. Moreover, if we set ¢ := [l : Hy], then there exists a finite totally ramified
extension L /K of degree c such that A has good reduction over L.

(i1) If A has complex multiplication and all the endomorphisms of A are defined
over K, then the constant ¢ above satisfies ¢ < ®(g).

(4) Assume A has complex multiplication. Then there exists a finite extension L /K
of degree at most ®(g)H (g) such that A has good reduction over L and all the
endomorphisms of A are defined over L.

Proof. Ttem (1) follows from [Silverberg 1992, Theorem 4.1] and Raynaud’s criterion
of semistable reduction [SGA 71 1972, Proposition 4.7]. Item (2) is [Silverberg 1992,
Theorem 4.1], and (4) is an immediate consequence of (2) and (3) since A must have
potential good reduction under the condition that A has complex multiplication.
The assertions in (3) are consequences of results given in Sections 2 and 4 of [Serre
and Tate 1968] but some of them are not directly mentioned in loc. cit. Thus we
give a proof here, just in case. The first statement related to Hy in (3)(i) is [Serre
and Tate 1968, Section 2, Theorem 2, p. 496]. The group H is a closed normal
subgroup of G g, which is also open in Ix. Let I' be the closure of the subgroup
of Gk generated by any choice of a lift of the gk -th Frobenius element in Gf,, .
The projection Gk — Gy, gives an isomorphism of I" onto Gy, ; in particular,
Gk is the semidirect product of I and /x. Let K/K be the field extension (of
infinite degree) corresponding to I' C G, and let M /K" be the finite extension
corresponding to H := H; C Ix. Note that A has good reduction over M. Now we
set L:=KrNM. Then L/K is totally ramified since so is K/ K. Furthermore, it is
immediate to check HI' N Ix = H; this shows LK"" = M. Hence we obtain that A
has good reduction over L and [L : K] = [M : K"] = c. This shows (3)(i). Next
we show (3)(ii). By assumptions on A, there exists a number field F of degree 2g
which is a subalgebra of ) ®7 Endg (A). It follows from [Serre and Tate 1968,
Theorem 5(i)] that V;(A) has a structure of free (F ®g Q¢)-module of rank one
and the G g-action on Vy(A) commutes with F' ®g Q. Thus we may consider p4 ¢
as a character Gy — (F ®qg Q¢)*. Moreover, the image of this character restricted
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to Ix has values in the group p(F) of roots of unity contained in F by [Serre and
Tate 1968, Section 4, Theorem 6, p. 503]. Thus we obtain the fact that ¢ divides the
order m of (F). On the other hand, since w,, is a subset of F, we have ¢(m) | 2g.
Therefore, we obtain ¢ <m < ®(g), as desired. U

Now we are ready to show our main theorems. First we show Theorem 3.1.

Proof of Theorem 3.1. Let A be as in the theorem. Since A has complex multiplica-
tion, it follows from Theorem 3.5(4) that there exists a finite extension L/K such
that d; jx < ®(g)H (g), A has good reduction over L, and all the endomorphisms
of A are defined over L. In addition, we have
vp((g 'Nijo, (1) —1) > g - (2)!- (9 H(8) - ju- /i S
=Lo((29)!- P()H(Q) - - drisk i)
> Lg((28)! - w-drisi fi)
by assumption (i) and Remark 3.2(2). So we can apply Proposition 3.3 to A/L; we

have
A(Lky)[p™] C A[p©,

where C' =2gA, (L, k) +12g> — 18g + 10. Here,

Co(L, k) = v,(dri) + 2 2)!((29)! + v, ((28)) + v,(2)((29)! — 1)),
Ag(L, k) =Max|Cy(L, k), Le((29)!- o - drisi fo))-

Note that we have v, (dpi) < dpx < P(g)H(g) -dgi and Lg((28)!- - dpiyi fx) <
g-2g)-P(g)H(g) - u - dgy. Therefore, it suffices to show

() H(g) - dix + 529! (2)! +v,(22)) +v,(2)((20)! — 1))
<g-(2g)!-P(e)H(g) - p-dkk

for the proof but this is clear. U

Remark 3.6. In the proof of Theorem 3.1, we referred to the field extension L/K
of Theorem 3.5(4) and the upper bound ®(g)H (g) of [L : K]. By Theorem 3.5(1),
we may refer to the field K (A[m]) instead of the above L. Since we have a natural
embedding from Gal(K (A[m])/K) into GL(A[m]) >~ GLy¢(Z/mZ), we obtain a
bound for the extension degree of K (A[m])/K; we have [K(A[m]) : K] < G(g),
where

G(n) .= {#GLZ"(Z/3Z) = 1_11-2251(32” — 3i) if p #3,

#GL,,(Z/42) = 2*"° M7, @ =2 ifp=3

for n > 0. Note that we have G (n) < m* Tt is not difficult to check the inequalities
O(1)H(1) > G(1) and P(g)H(g) < G(g) for g > 1 (see Section 5). Hence, only
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in the case g = 1 of elliptic curves, we can obtain smaller bound than that given in
Theorem 3.1 by replacing ®(g)H (g) with G(1).

Applying Theorem 1.1 with k = @, and 7 = p, we immediately obtain the
following.

Corollary 3.7. Let A be a g-dimensional abelian variety over a p-adic field K with
complex multiplication. Then we have

A(K (np))[p™®1 C A[p€],
where
C:=2g% (2g)!- ®(g)H(g) - dg + 12g* — 18g + 10.

In particular,
H#AK (jup))[p™] < p*€.
Next we show Theorem 1.2.

Proof of Theorem 1.2. We follow essentially the same argument as for Theorem 3.1.
Put K = K( "VK).

Step 1: First we consider the case where A has good reduction over K and all the
endomorphisms of A are defined over K. Put v =v,(dg) +1+v,(2) and

Co(K) =v,(di) + v+ 520)!((20)! +v,(22)) +v,(2)(29)! — 1)),
Ag(K) =Max{Cy(K), Ly ((29)!- p”-dx)}.

Following the proof of Proposition 3.3, we show
(3-5) AK)[p™1C AIp©,

where C':=2gA,(K)+ 12g2—18g+10.Let p: Gx — GLz,(Tp(A)) =GLyg(Z)p),
M/Qp, and ¥, ..., ¥, : Gg — M™ be as in the proof of Proposition 3.3. If
we denote by Ieab the maximal abelian extension of K contained in K , all the
points of A(I% )[p°°] are in fact defined over I%ab since p is abelian. Thus, setting
¢ :=Min{v,(det(p(0) — E)) | 0 € Gg,}, we find

(3-6) AK)[p™] = A(Kp)[p™] C A[p]

if ¢ is finite (see arguments just above (3-1)). On the other hand, we set G :=
Gal(Ie/K) and H ::Gal(I%/K(,upoo)). Letx,:Gg — Z; be the p-adic cyclotomic
character. Since we have oo ~! = %) for any o € G and © € H, we see
(G, G) D (G, H) D> H*@)~! Hence we have a natural surjection

(3-7)  H/H*™' & H/(G, G) = Gal(Kuw/K (11~)) forany o €G.

Lemma 3.8. Xxp(o0) —1=p" forsome oy € G.
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Proof. We set
K = {K(Mp) if p#2,
K(us) if p=2.

If we denote by p’ the order of the set of p-power roots of unity in K/, we see
K'NQp(up=) = Qp(pye) and thus x,(Gg) =1+ p[Zp. Furthermore, since
[Qp (1) : Qp] divides [K': K][K : Q)], we see pt 17 @ | dr . Hence we obtain
Xxp(Gg') D1+ p"Z, and the lemma follows. O

By the lemma above and (3- 7) we see that Gal([% ab/ K (11 p)) is of exponent pY,
thatis, o € Gk () implies L= G ;.. This shows ¢ < Min{v, (det(p (o)’ —E))|
0 € Gk (u,~)}- Mimicking the arguments for inequalities (3-3), we find

c< Min{ Y drv, g, o) = 1) |we kerNrM/@p}.
i=1

Now the inequality (3-6) follows by completely the same method as the proof of
Proposition 3.3 (with replacing the pair (k, ) there with (Q,, p*)).

Step 2: Next we consider the general case. Since A has complex multiplication,
it follows from Theorem 3.5(4) that there exists a finite extension L /K such that
drjxk < P(g)H(g), A has good reduction over L and all the endomorphisms of A
are defined over L. Thus we can apply the result of Step 1 to A/L; we have

AK)[p™1 C A(L)[p™]1C A[p°],
where C” :=2gA,(L) + 12g% — 18g + 10. We find

Lg((Zg)! . pvp(dL)+l+vp(2) ‘dL) — Lg((2g)! . p1+v,;(2) . pUp(dL/K)dL/K _pv,,(dk)dK)
Ly(@g)! p' ™ @ - (dyyx)* - prdy)
<g Q) p' T (D()H(g))? - p'r .

(For the last equality, see Remark 3.2(2).) Now Theorem 1.2 immediately follows

One of the keys for our arguments above is a theory of locally algebraic repre-
sentations. Thus our method essentially works also for abelian varieties A with the
property that the G g-action on the semisimplification of V,(A) ®q, Q p 1s abelian.
For example, this is the case where A has good ordinary reduction.

Proposition 3.9. Let g > 0 be a positive integer. Let K and k be p-adic fields.
Let 7 be a uniformizer of k. Assume that q,;lNrk/@p () is a root of unity; we denote
by 0 < u < p the minimum integer such that (qk_lNrk/@p (m)* = 1. Then, for
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any g-dimensional abelian variety A over K with good ordinary reduction, we have

A(Kk)[p™]C A[ngLS’(Mde/kfk)].

In particular,

#A(Kky)[p™®] < p482Lg(Md1<k/kfk) < p4gS(Mde/kfk+l+Up(2))‘

Proof. Put V. =V,(A), T =T,(A) and ¢ = Min{v,(det(p(c) — E)) | 0 € Gk, }-
By the same argument as the beginning of the proof of Proposition 3.3, we obtain

(3-8) A(Kkz)[p™] C Alp‘]

if ¢ is finite. Since A has good ordinary reduction, we have an exact sequence
0—Vi—V—V,— 0of Q,[Gk]-modules with the following properties:

() Vi~ WR®q, Q,(1) for some unramified representation W of G, and

(i1) V, is unramified.

Hence, taking a p-adic field M large enough, we have (V ®q, M)™ =~ @,zi M)
for some continuous crystalline characters ¥; : Gx — M *. Furthermore, for every i,
the set of the Hodge—Tate weights of M (v;) is either {1} or {0}. By Proposition 2.1,
we have ¢ < lei 1 Vp (wi’f Kk (7)~! = 1). Let K’ be the unramified extension of Kk
of degree peky k. By a similar method of the proof of Lemma 3.4, we find that

i’f Kk ()~! is a unit root of the characteristic polynomial f(7') of the geometric
Frobenius endomorphism of A /> Otherwise, wl.’f Kk ()~! is a unit root of the char-
acteristic polynomial f"(7') of the geometric Frobenius endomorphism of AY ..
We know f(1) = #A(F,,,) and fV(1) = #AV(F,,,), and their p-adic valuations
are bounded by L(fx) by the Weil bound. Since we have fx' = fx/ ki fxx =
Hvde/kfk’ we obtain ¢ < leil Up(l//l-lka(T[)fl - < Zng(Mde/kfk)‘ Now the
result follows from (3-8). O

4. Abelian varieties over number fields

In this section, we suppose that K is a number field. The goal of this section is
to give a proof of Theorem 1.3. The theorem is an immediate consequence of the
following proposition.

Proposition 4.1. Let g, K, d and h be as in Theorem 1.3.

(1) Let A be a g-dimensional abelian variety over K with semistable reduction
everywhere. Let py be the smallest prime number such that A has good
reduction at some finite place of K above py. Then A(K (o)) p] is zero if
p>{0+ mdh )28, p is unramified in K, and A has good reduction at some
finite place of K above p.
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(2) Let A be a g-dimensional abelian variety over K with complex multiplication
which has good reduction everywhere. Then, for any prime p, we have

A(K (o)) [p™]1 C A[p©],
where C :=2g%- (2g)!- ®(g)H(g) -dh + 12g> — 18g + 10.

Proof. Let A be a g-dimensional abelian variety over K with semistable reduction
everywhere. Let K’ be the maximal extension of K contained in K (jto,) Which
is unramified at all finite places of K. Note that K’ is a finite abelian extension
of K. In particular, it follows from class field theory that [K’ : K] is a divisor of
the narrow class number i of K. If we denote by L, the maximal extension of K
contained in K (i4~) Which is unramified at all places except for places dividing p
and the infinite places, then it is shown in [Katz and Lang 1981, Appendix, Lemma]
that L, = K'(p).

(1) Here we mainly follow Ribet’s arguments in [Katz and Lang 1981]. We suppose
that p is prime to 2pg and also suppose that p is unramified in K. Assume that
A(K (4o0))[p] £ O. We claim that there exists a g-dimensional abelian variety A’
over K’ which is K’-isogenous to A such that A'(K")[p] # O. We denote by G
and H the absolute Galois groups of K’ and K (1), respectively. The assumption
A(K (1t00))[p] # O is equivalent to the assumption A[p]* # O. Let W be a simple
G-submodule of A p]H . Ribet showed in the proof of Theorem 2 of [Katz and
Lang 1981] that, since A has semistable reduction everywhere over K', W is one-
dimensional over [, and the action of G on W factors through Gal(K'(11,)/K").
Since p is unramified at K’, we find that the G-action on W is given by X', for some
0 <n < p—1, where ¥, is the mod p cyclotomic character. Moreover, since A
has good reduction at some finite place of K’ above p (# 2) and p is unramified
in K’, it follows from the classification of Tate and Oort [1970, pp. 15-16] that n
is equal to O or 1. Thus W is isomorphic to [, or [, (1). If we are in the former
case, we have A'(K')[p] # O for A’ := A. Suppose that we are in the latter case.
Then there exists a surjection A”[p] — [F, of G-modules. If we denote by C the
kernel of this surjection, then the G-action on AY[p] preserves C. This implies
that A’ := AV /C is an abelian variety defined over K’ and we find that there exists
a trivial G-submodule of A’[p] of order p. Thus we have A’ (K’)[p] # O. This
finishes the proof of the claim.

Now we take a prime p;, of K" above pg such that A has good reduction at py,.
Since A’ above is K'-isogenous to A, we know that A’ has good reduction at p;, by
[Serre and Tate 1968, Section 1, Corollary 2]. If we denote by K ¥;6 the completion
of K’ at p; and also denote by [y, the residue field of Kﬁg’ then reduction modulo pj,
gives an injective homomorphism

A'(KN[pl € A'(K )l = A'(Fy).
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We recall that A’(K")[p] # O. Since the order of [y is bounded by p(‘)”’, it follows
from the Weil bound that p < (1 + ./ podh )?€. This finishes the proof.

(2) Let A be an abelian variety as in the statement. Since A has good reduction
everywhere over K, it follows from the Néron—-Ogg—Shafarevich criterion that the
G g -action on A[ p®°] is unramified outside p. This gives the fact that the G g -action
on A(K (@ p=))[p*] factors through Gal(L ,/K) = Gal(K'(up~)/K). Thus

A(K (o)) [p™] = A(K (1 p)) [P™].
Since we have [K' : Q] < dh, the result follows from Corollary 3.7. O

5. Bounds on ®(n) and H (n)
We recall the definitions of ®(n) and H (n):
®(n) :=Max{m € Z.¢ | ¢(m) divides 2n},
H(n) := gcd{#GSp,,(Z/NZ) | N > 3}.

Here, ¢ is the Euler’s totient function. The values of ®(n), H(n) (and G (n) for
p # 3; see Remark 3.6) for small n are given in Tables 1-3. In this section, we
study some upper bounds of ® and H.

The function H. For the function H, we refer to results of [Silverberg 1992,
Sections 3 and 4]. The exact formula for H (n) is as follows:

1
Hmn)=>=—]]q".
q

2I’l

where the product is over primes g < 2n + 1,

>.[2n ad 2n . )
r2)=[n]+ ]2::0 |:2—J:| and r(q) = jZ::O [m} if g is odd.

Moreover, we have:
Theorem 5.1 [Silverberg 1992, Corollary 3.3]. We have
H(n) <2(9n)*"
foranyn > Q.
The function ®. Next we consider the function ®. At first, we remark that ® (n)

must be even since ¢(x) = ¢(2x) if x is odd. Furthermore, ® (n) is not a power
of 2. (In fact, we have ¢(2") = @(2"~1.3) if r > 2.) Thus it holds that

5-1) d(n)= Max{m € Z~g | ¢(m) divides 2n, and m = 2" x,
where r > 1 and x > 3 is odd}.
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We show some elementary formulas.
Proposition 5.2. (1) ®(1) =6and 6 < ®(n) < 6n.y/n forn > 1.

(2) Putt =vo(n)+2andlet py =2 < py <--- < p; be the first t prime numbers.
Then

CI>(n)<2nl_[pl_1

In particular, ®(n) < 6n if n is odd.
(3) Ifn > 3 is an odd prime, we have’

6 if 2n+ 1 is not prime,

Q(n) = ) o
dn+2 if 2n+1 is prime.

Proof. To check ®(1) =6 is an easy exercise. Since ¢(6) =2 |2n, we have ®(n) > 6
for any n. Suppose that n > 1. We take an even integer m > 0 of the form 2" x,
where r > 1 and x > 3 is odd, such that ¢(m) | 2n. Letm =2"[]}_, q;" be the prime
factorization of m with r, s, ey, ..., e; > 1. Since p(m) =2"~ 1 ]_[l 1‘1; i — 1)
and ¢(m) | 2n, we have v(2n) > r — 1 + s and thus

(5-2) r+s <v(n)+2.
Then we find

2nz¢(m>:m(1_%)g<1_%)>mﬁ<1_5)zm§(l_é).

This shows (2). Furthermore, we have
t

t
pl Di 5 v2(n)
®(n) <2n — 6n < 6n( )

i=1 1
1
< bn- (%) " 20w,

Thus we obtain (1). Let us show (3). From now on we assume that n > 3 is an
odd prime. Assume that m # 6. Since n is odd, it follows from (5-2) that the
prime factorization of m is of the form m = 2¢°¢ for some odd prime g. Then
%(p(m) = qe_lé(q — 1) divides n. Since n > 3 is a prime and m # 6, we find e = 1
and %(q — 1) = n. This implies 2n 4+ 1 must be prime and m = 4n + 2. Now the
result follows. (]

A prime number p is called a Sophie Germain prime if 2p + 1 is also prime. It is not known
whether there exist infinitely many Sophie Germain primes or not. On the other hand, there exist
infinitely many primes which are not Sophie Germain primes. In fact, every prime number p with
p =1 mod 3 is not a Sophie Germain prime.
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n d(n) n d(n) n d(n) n d(n)

1 2!.3! 31 2'.3! 61 2'.3! 91 2!.3!

2 22.31 32 24.31.5! 62 22.31 92 2%.31.471
3 21.32 33 2l.67! 63 2'.127! 93 2!.32

4 21.31.5! 34 22.3! 64 2'.31.50.171 | 94 22.3!

5 2b.q1! 35 2L.71! 65 2!'.131! 95 2!.191!

6 2!.31.71 36 2'.3%3.5! 66 2!'.32.23! 96 23.31.51.71
7 2!.3! 37 21.3! 67 2'.3! 97 2!.3!

g 22.31.5! 38 22.3! 68 2'.137! 98 2!.197!

9 21.33 39 2'.79! 69 2'.139! 99 2!.199!

10 2'.3'.11! 40 2'.3'.5t.11t 70 2t.31.71! 100 2'.31.53
11 2!.23! 41 2!.83! 71 2!.3! 101 2'.3!

12 2'.32.5! 42 21.31.72 72 2'.32.50.71 | 102 2'.3'.103!
13 2!.3! 43 2!.3! 73 2!.3! 103 2!'.3!

14 2'.29! 44 22.31.231 74 2'.149! 104 2%.3!.53!
15 2'.31! 45 2!.31! 75 2'.151! 105 2'.211

16 23.31.51 46 2!.31.471 76 2'.31.5! 106 2'.3'.107!
17 2'.3! 47 2!.3! 77 2'.23! 107 2'.3!

18 2'.32.7! 48 22.3'.51.71 178 2!.31.79! 108 2!'.34.5!
19 2'.3! 49 21.3! 79 2!.3! 109 2!'.3!

20 2!'.31.52 50 2'.5° 80 22.3L.51.11'| 110 2'.3'.112
21 2'.72 51 2'.103! 81 2!.3° 111 2'.223!

22 21.31.23! 52 20.31.53! 82 2!.31.83! 112 20.31.51.209!
23 2'.47! 53 2'.107! 83 2'.167! 113 2'.227!

24 2'.31.50.71 | 54 21.33.71 84 22.3l.72 114 2'.229!

25 211! 55 21.112 85 2l.11! 115 2t.47!

26 2!'.531 56 22.31.29! 86 2'.173! 116 22.3!.59!
27 2'.34 57 2!.32 87 2!.59! 117 2'.79!

28 21.31.29! 58 2!.31.59! 88 21.31.51.231 1118 22.3!

29 2!'.59! 59 2!.3! 89 2!.179! 119 2'.239!

30 2'.32.11! 60 2'-31.7t.11t |90 2!.33.11! 120 2!.31.52.71

Table 1. ®(n).



194 YOSHIYASU OZEKI

Let us consider an upper bound of ® by using an “analytic” lower bound function
of ¢ given by Rosser and Schoenfeld. If we denote by y Euler’s constant,® it is
shown in [Rosser and Schoenfeld 1962, Theorem 15] that’

(5-3) @(m) >

m

e? loglogm + m
for m > 3. We set
V(n):=Max{m € Z-qy | ¢(m) < 2n}.

We clearly have ®(n) < W(n) for all n > 0.

Proposition 5.3. For any real number C > 2eY, we have
W (n) < Cnloglogn

for any n large enough.

Proof. The result should be well known as a consequence of Mertens’ theorem:

log I
hm lnf M — e_y‘
n n
Using (5-3) instead of Mertens’ theorem, we can obtain a slightly refined statement
(see Remark 5.4). So, for later use, we write down a proof with using (5-3). Put

f(x) =Cloglog x. Take any integer N > 0 satisfying the following: for all x > N,
(i) fx) > %eez, and

(i) f(x) > 2e” (loglog(xf (x)) +1).
(The assumption C > 2¢e? asserts the existence of such N.) Take any integer n > N.
It suffices to show n satisfies the desired inequality. Assume there exists an integer m
such that both ¢ (m) <2n and m > nf (n) hold. Since e” > 3/(loglog x) for x > e
and m (= nf(n)) > eez, we find

1 m m

. <
e’ loglogm+1 e7loglogm+ 1og1§>gm

< @(m) <2n

by (5-3). Also, nf (n)/(loglog(nf(n)) +1) <m/(loglogm + 1) since the function
x/(loglog x 4 1) is strictly increasing for x > e and m > nf (n) (> eez) > e. Hence
1 nf(n)

e’ loglog(nf(n)) + 1
which gives f(n) < 2e¥ (loglog(nf(n)) + 1). This contradicts condition (ii). We
conclude that if ¢(m) < 2n, then m < nf (n). This implies that ¥ (n) < nf(n) =
Cnloglogn. ([

< 2n,

Sy = /(g7 — +) dx =0.57721 ... Note also e” = 1.78107......

"More precisely, that theorem states ¢ (m) > m/(e¥ loglogm + 5/(2loglogm)) for m > 3 except
when m is the product of the first nine primes, m = 223092870 =2-3-5.-7-11-13-17-19-23.
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Table 2. H(n).

Remark 5.4. For a given C, we can modify the phrase “for any n large enough” in
the statement of Proposition 5.3. For example, let us consider the case C = 4. By
studying (i) and (ii) in the above proof more carefully, we can show

W(n) <4nloglogn forany n>e

(1.001e)°
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n G(n)

1 2+.3!

2 2°.36.5'.13!

3 213.315.50.71.112.13?

4 219.3%8.52.71.112.132.41".1093!

5 22.3%.52.70.11*. 133 . 41" . 61! . 757" - 1093!

6 228.3%.53.72.114.13%.23".41'.61'.73".757' . 1093" - 3851"

7 2%2.390.53.72.114.134. 23" . 41" . 61" . 731 . 547" . 757" . 10932 - 3851" - 797161

Table 3. G(n) (for p # 3).

Here we check the above inequality. Condition (ii) is equivalent to

(logx) /@1 e<1 4 log(C loglogx))'
log x

We assume x > ¢¢ . Since C/Q2e") - 1> % —1= % and log(C log lgogx)/logx <
0.001, inequality (i) holds if (logx)s > 1.001e, that is, x > ¢1-:0919" Note that (i)
clearly holds for such x.
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