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EXPLICIT BOUNDS ON TORSION OF CM ABELIAN
VARIETIES OVER p-ADIC FIELDS WITH VALUES

IN LUBIN–TATE EXTENSIONS

YOSHIYASU OZEKI

Let K and k be p-adic fields. Let L be the composite field of K and a certain
Lubin–Tate extension over k (including the case where L = K (µ p∞)). We
show that there exists an explicitly described constant C, depending only
on K , k and an integer g ≥ 1, which satisfies the following property: if A/K is
a g-dimensional CM abelian variety, then the order of the p-primary torsion
subgroup of A(L) is bounded by C . We also give a similar bound in the case
where L = K (

p∞√
K ). Applying our results, we study bounds of orders of

torsion subgroups of some CM abelian varieties over number fields with
values in full cyclotomic fields.

1. Introduction

Let p be a prime number and K a p-adic field (that is, a finite extension of Qp). It
is a theorem of Mattuck [1955] that, for a g-dimensional abelian variety A over K
and a finite extension L/K , the Mordell–Weil group A(L) is isomorphic to the
direct sum of Z⊕g·[L:Qp]

p and a finite group. We study some properties of the torsion
subgroup A(L)tor of A(L). Clark and Xarles [2008] gave an explicit upper bound
of the order of A(L)tor of A(L) in terms of p, g and some numerical invariants of L
if A has anisotropic reduction (here, we say that A has anisotropic reduction if its
Néron special fiber does not contain a copy of Gm). This includes the case where A
has potential good reduction. We consider the case where L/K is of infinite degree.
There are some situations in which the torsion part A(L)tor is finite. Suppose that A
has potential good reduction. It is a theorem of Imai [1975] that A(K (µp∞))tor is
finite. Here, K (µp∞) is the extension field of K obtained by adjoining all p-power
roots of unity. Moreover, Kubo and Taguchi [2013] showed that A(K ( p∞√

K ))tor

is also finite, where K ( p∞√
K ) is the extension field of K obtained by adjoining

all p-power roots of all elements of K . The author showed in [Ozeki 2024] that
there exists a “uniform” bound of the order of A(K ( p∞√

K ))tor under the assumption
that A has complex multiplication. (Here we say that A has complex multiplication

MSC2020: 11G10.
Keywords: abelian varieties, Lubin–Tate extensions.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC
BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org/pjm/
https://doi.org/10.2140/pjm.2024.330-1
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


172 YOSHIYASU OZEKI

if there exists a ring homomorphism F → Q ⊗Z EndK (A) for some algebraic
number field F of degree 2g.)

The main purpose of this paper is to give explicit upper bounds of the orders
of A(K (µp∞))tor and A(K ( p∞√

K ))tor for abelian varieties A/K with complex
multiplication. For this, we should note that to give an upper bound of the order of
the prime-to-p part of A(K (µp∞))tor is not so difficult. In fact, the reduction map
gives an injection from the prime-to-p part of the group which we want to study into
certain rational points of the reduction A of A (if A has good reduction), and the
order of the target is bounded by the Weil bound. Hence the essential obstruction for
our purpose appears in a study of the p-part A(K (µp∞))[p∞

] of A(K (µp∞))tor.
Let us state our main results. For a p-adic field k and a uniformizer π of k,

we denote by kπ/k the Lubin–Tate extension associated with π (that is, kπ is
the extension field of k obtained by adjoining all π-power torsion points of the
Lubin–Tate formal group associated with π ; see [Yoshida 2008] for more details).
For example, we have kπ = Qp(µp∞) if k = Qp and π = p. We set dL := [L : Qp]

for any p-adic field L . For any integer n > 0, we set

8(n) := Max{m ∈ Z>0 | ϕ(m) divides 2n},

H(n) := gcd{#GSp2n(Z/NZ) | N ≥ 3}.

Here, ϕ is Euler’s totient function. There are some upper bounds related with H(n)
and 8(n) (see Section 5). It is a theorem of Silverberg [1992, Corollary 3.3] that
we have H(n) < 2(9n)2n for any n > 0. It follows from elementary arguments that
we have 8(n) < 6n 3

√
n for n > 1. Furthermore, a lower bound (5-3) of ϕ proved

by Rosser and Schoenfeld [1962] gives 8(n) < 4n log log n for n > 339
.

Theorem 1.1 (a special case of Theorem 3.1). Let g > 0 be a positive integer. Let k
be a p-adic field with residue cardinality qk and π a uniformizer of k. Assume the
following conditions:

(i) q−1
k Nrk/Qp(π) is a root of unity;1 and

(ii) dk is prime to (2g)! .

Denote by 0<µ< p the minimum integer such that (q−1
k Nrk/Qp(π))

µ
= 1. For any

g-dimensional abelian variety A over a p-adic field K with complex multiplication,

A(K kπ )[p∞
] ⊂ A[pC

],

where
C := 2g2

· (2g)! ·8(g)H(g) ·µ · dK k + 12g2
− 18g + 10.

In particular,
#A(K kπ )[p∞

] ≤ p2gC .

1This condition is equivalent to saying that some finite extension of kπ contains Qp(µp∞) (see
[Ozeki 2020, Lemma 2.7(2)]).
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As an immediate consequence of the theorem above, we obtain a result for
cyclotomic extensions; see Corollary 3.7. Furthermore, the method of our proof of
Theorem 1.1 can be applied to the field K ( p∞√

K ) discussed in Kubo and Taguchi,
which gives a refinement of the main theorem of [Ozeki 2024].

Theorem 1.2. Let g > 0 be a positive integer. For any g-dimensional abelian
variety A over a p-adic field K with complex multiplication, we have

A(K ( p∞√
K ))[p∞

] ⊂ A[pC
],

where

C := 2g2
· (2g)! · p1+vp(2) · (8(g)H(g))2 · pvp(dK )dK + 12g2

− 18g + 10.

(Here, vp is the p-adic valuation normalized by vp(p)= 1.) In particular,

#A(K ( p∞√
K ))[p∞

] ≤ p2gC .

We can consider some further topics. For example, we do not know what will
happen if we remove the CM assumption from the above theorems. Our proofs
in this paper deeply depend on the theory of locally algebraic representations,
which can be adapted only for abelian representations. This is the main reason
why we cannot remove the CM assumption from our arguments. To overcome
this obstruction, it seems to be helpful for us to study the case of (not necessarily
CM) elliptic curves. We will study this case in future work. We are also interested
in giving the list of the groups that appear as A(K kπ )[p∞

] or A(K ( p∞√
K ))[p∞

].
However, this should be quite difficult; the author does not know such classification
results even for A(K )[p∞

].
Combining the cyclotomic case of Theorem 1.1 and Ribet’s arguments given in

[Katz and Lang 1981], we can obtain a result on a bound of the order of the torsion
subgroup of some CM abelian variety defined over a number field with values in
full cyclotomic fields. (Here, a number field is a finite extension of Q.)

Theorem 1.3. Let g > 0 be an integer. Let K be a number field of degree d , and
denote by h the narrow class number of K . Let K (µ∞) be the field obtained by
adjoining to K all roots of unity. Let A be a g-dimensional abelian variety over K
with complex multiplication which has good reduction everywhere. Then

A(K (µ∞))tor ⊂ A[N ],

where

N :=

(∏
p

p
)2g2

·(2g)!·8(g)H(g)·dh+12g2
−18g+10

.

Here, p ranges over the prime numbers such that either p ≤ (1 +
√

2
dh
)2g or p is

ramified in K .
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We should note that Chou [2019] gave the complete list of the groups that
appear as A(Q(µ∞))tor as A ranges over all elliptic curves defined over Q. For CM
elliptic curves A over a number field K , more precise observations for the order
of A(K (µ∞))tor than ours are studied in [Chou et al. 2021].

Notation. For any perfect field F , we denote by G F the absolute Galois group
of F . In this paper, a p-adic field is a finite extension of Qp. If F is an algebraic
extension of Qp, we denote by OF the ring of integers of F . We also denote by Fab

the maximal abelian extension of F (in a fixed algebraic closure of F). We put
dF = [F : Qp] if F is a p-adic field. For a finite extension F ′/F , we denote by
eF ′/F and fF ′/F the ramification index of F ′/F and the extension degree of the
residue field extension of F ′/F , respectively. We set eF := eF/Qp and fF := fF/Qp ,
and also set qF := p fF . Finally, we denote by 0F the set of Qp-algebra embeddings
of F into a (fixed) algebraic closure Qp of Qp.

2. Evaluations of some p-adic valuations for characters

Fix an algebraic closure Qp of Qp. Throughout this section, we assume that all
p-adic fields are subfields of Qp. Denote by vp the p-adic valuation normalized by
vp(p)= 1. For any continuous character ψ of G K , we often regard ψ as a character
of Gal(K ab/K ). Denote by ArtK the local Artin map K ×

→ Gal(K ab/K ). We set
ψK :=ψ ◦ArtK . Denote by K̂ × the profinite completion of K ×. Note that the local
Artin map induces a topological isomorphism ArtK : K̂ × ∼

−→ Gal(K ab/K ). For a
uniformizer πK of K , denote by χπK :G K →O×

K the Lubin–Tate character associated
with πK (see [Serre 1989, Chapter III, A4]). By definition, the character χπK is
characterized by χπK ,K (πK )= 1 and χπK ,K (x)= x−1 for any x ∈ O×

K . Let π be a
uniformizer of k and denote by kπ the Lubin–Tate extension of k associated with π .
The field corresponding to the kernel of the Lubin–Tate character χπ : Gk → O×

k
is kπ , and kπ is a totally ramified abelian extension of k.

Proposition 2.1. Let ψ1, . . . , ψn : G K → Q×
p be continuous characters. Then

Min
{ n∑

i=1

vp(ψi (σ )− 1)
∣∣∣ σ ∈ G K kπ

}

≤ Min
{ n∑

i=1

vp(ψi,K k(ω)− 1)
∣∣∣ ω ∈ Nr−1

K k/k(π
fK k/k Z)

}
.

Proof. This is [Ozeki 2024, Proposition 2.1] but we include a proof here for
completeness. Let M be the maximal unramified extension of k contained in K k.
The group Art−1

k (Gal(kab/M)) contains Art−1
k (Gal(kab/kur))= O×

k . Furthermore,
Art−1

k (Gal(kab/M)) is a subgroup of k̂×
=π Ẑ ×O×

k of index [M : k] = fK k/k . Thus
it holds that Art−1

k (Gal(kab/M))= π fK k/k Ẑ ×O×

k . Since Art−1
k (Gal(kab/kπ ))= π Ẑ,
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we obtain that Art−1
k (Gal(kab/Mkπ )) = π fK k/k Ẑ. If we denote by ResK k/k the

natural restriction map from Gal((K k)ab/K k) to Gal(kab/k), it is not difficult to
check that Res−1

K k/k(Gal(kab/Mkπ )) = Gal((K k)ab/K kπ ), and therefore we find
that Art−1

K k

(
Gal((K k)ab/K kπ )

)
= Nr−1

K k/k(π
fK k/k Ẑ). Now the lemma follows from

Min
{ n∑

i=1

vp(ψi (σ )− 1)
∣∣∣ σ ∈ G K kπ

}
= Min

{ n∑
i=1

vp(ψi,K k ◦ Art−1
K k(σ )− 1)

∣∣∣ σ ∈ Gal((K k)ab/K kπ )
}
. □

We often use p-adic Hodge theory, which plays an important role in this paper.
For the basic notion of p-adic Hodge theory, it is helpful for the reader to refer
to [Fontaine 1994a; 1994b]. Let Bcris be the Fontaine’s p-adic period ring and set
DK

cris(V ) := (Bcris ⊗Qp V )G K for any Qp-representation V of G K . Let us denote
by K0 the maximal unramified subextension of K/Qp and denote by ϕK0 the
arithmetic Frobenius map of K0, that is, the (unique) lift of the p-th power map on
the residue field of K0. Since BG K

cris = K0, DK
cris(V ) is a K0-vector space. Moreover,

DK
cris(V ) is a filtered ϕ-module over K ; it is of finite dimension over K0, it is

equipped with a bijective ϕK0-semilinear Frobenius operator ϕ and it is equipped
with a decreasing exhaustive and separated filtration on DK

cris(V )⊗K0 K . We say
that V is crystalline if the equality dimQp V = dimK0 DK

cris(V ) holds. Let M be
a finite extension of Qp and ψ : G K → M× a continuous character. We denote
by M(ψ) the Qp-representation of G K underlying a 1-dimensional M-vector space
endowed with an M-linear action by G K via ψ . We say that ψ is crystalline if
M(ψ) is crystalline. On the other hand, we denote by K × the Weil restriction
ResK/Qp(Gm). This is an algebraic torus such that, for a Qp-algebra R, the R-valued
points K ×(R) of K × is Gm(R ⊗Qp K ).

Proposition 2.2. Let ψ : G K → M× be a continuous character.

(1) M(ψ) is crystalline if and only if there exists a (necessarily unique) Qp-
homomorphism ψalg : K ×

→ M× such that ψK and ψalg (on Qp-points)
coincide on O×

K (⊂ K ×(Qp)).

(2) Assume M(ψ) is crystalline, and let ψalg be as in (1). (Note M(ψ−1) is also
crystalline.) The filtered ϕ-module DK

cris(M(ψ
−1))= (Bcris ⊗Qp M(ψ−1))G K

over K is free of rank 1 over K0 ⊗Qp M , and its K0-linear endomorphism ϕ fK

is given by the action of the product ψK (πK ) ·ψ
−1
alg (πK ) ∈ M×. Here, πK is

any uniformizer of K .

Proof. This is Proposition B.4 of [Conrad 2011]. □

Let ψ : G K → M× be a crystalline character. For any σ ∈ 0M , let χσM : IσM →

σM× be the restriction to the inertia IσM of the Lubin–Tate character associated
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with any choice of uniformizer of σM (it depends on the choice of a uniformizer
of σM , but its restriction to the inertia subgroup does not). Assume that K contains
the Galois closure of M/Qp. Then

ψ =

∏
σ∈0M

σ−1
◦χ

hσ
σM

on the inertia IK for some integer hσ . Equivalently, the character ψalg on Qp-points
coincides with

∏
σ∈0M

σ−1
◦Nr−hσ

K/σM . Note that {hσ | σ ∈ 0M} is the set of Hodge–
Tate weights of M(ψ), that is, C ⊗Qp M(ψ) ≃

⊕
σ∈0M

C(hσ ), where C is the
completion of Qp.

For integers d, h and a p-adic field M , we define a constant C(d,M, h) by

(2-1) C(d,M, h) := vp(d/dM)+h+
1
2

dM

(
dM +vp(eM)−

1
eM

+vp(2)(dM −1)
)
.

Theorem 2.3. Let ψ1, . . . , ψn : G K → M× be crystalline characters and h ≥ 0 an
integer. Assume that M is a Galois extension of Qp and K contains M. Suppose
that, for each i , we have

ψi =

∏
σ∈0M

σ−1
◦χ

hi,σ
M

on the inertia IK ; thus {hi,σ | σ ∈ 0M} is the set of Hodge–Tate weights of M(ψi ).
We assume the following conditions:

(i) {hi,σ |σ ∈0M} contains at least two different integers for each i . (In particular,
we have M ̸= Qp.)

(ii) Min{vp(hi,σ − hi,τ ) | σ, τ ∈ 0M} ≤ h for each i .

Then:

(1) There exists an element ω̂ ∈ ker NrM/Qp such that for every 1 ≤ i ≤ n,

(2-2) 1 + vp(2)≤ vp(ψi,K (ω̂)
−1

− 1)≤ δ(i) + C(dK ,M, h).

Here,

δ(i) :=

{
0 if i = 1, 2,

2i − 5 if i ≥ 3.

(2) Let ω̂ be as in (1). For any x ∈ K ×, there exists an integer 0 ≤ s(x) ≤ n such
that for every 1 ≤ i ≤ n,

(2-3) vp(ψi,K (xω̂ps(x)
)−1

− 1)≤ n + δ(i) + C(dK ,M, h).

Proof. Take an element x ∈ OM such that OM = Zp[x]. We set p′
:= p or p′

:= 4
if p ̸= 2 or p = 2, respectively, and put x ′

= p′x . Set mτ
r,σ := dK/M(hr,τσ − hr,σ )
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for 1 ≤ r ≤ n and σ, τ ∈ 0M . We also set

yτr,ℓ :=

∑
σ∈0M

mτ
r,σ (σ

−1x ′)ℓ−1

for 1 ≤ ℓ≤ dM . (Note that yτr,1 = 0.) Set

ωℓ := exp((x ′)ℓ−1) and ωτℓ :=
τωℓ

ωℓ

for any 1 ≤ ℓ≤ dM and τ ∈0M . Here, exp denotes the p-adic exponential map (see
[Neukirch 1999, Chapter II, Proposition 5.5]). By construction, ωτℓ ∈ ker NrM/Qp .

Lemma 2.4. exp(yτr,ℓ)= ψr,K (ω
τ
ℓ )

−1.

Proof. We see

ψr,K (ωℓ)
−1

=

∏
σ∈0M

σ−1
◦ NrK/M(ωℓ)

hr,σ =

( ∏
σ∈0M

σ−1ω
hr,σ
ℓ

)dK/M

.

We also have ψr,K (τωℓ)
−1

=
(∏

σ∈0M
σ−1τω

hr,σ
ℓ

)dK/M
=

(∏
σ∈0M

σ−1ω
hr,τσ
ℓ

)dK/M .
Thus we have

ψr,K (ω
τ
ℓ )

−1
=

( ∏
σ∈0M

σ−1ω
hr,τσ−hr,σ
ℓ

)dK/M

=

∏
σ∈0M

σ−1ω
mτ

r,σ
ℓ .

On the other hand, we have

exp(yτr,ℓ)= exp
( ∑
σ∈0M

mτ
r,σ (σ

−1x ′)ℓ−1
)

=

∏
σ∈0M

exp((σ−1x ′)ℓ−1)m
τ
r,σ

=

∏
σ∈0M

σ−1ω
mτ

r,σ
ℓ . □

We furthermore need the following evaluation.

Lemma 2.5. For each 1 ≤ r ≤ n, there exist τr ∈ 0M and an integer 2 ≤ ℓr ≤ dM

such that
vp(y

τr
r,ℓr
)≤ C(dK ,M, h).

Proof. Fix r . By assumption (i), there exist τ1, τ2 ∈ 0M such that hr,τ1 ̸= hr,τ2 .
Choose τ1 and τ2 so that vp(hr,τ1 − hr,τ2) = Min{vp(hr,σ − hr,τ ) | σ, τ ∈ 0M},
and set τ := τ2τ

−1
1 ∈ 0M . We write 0M = {τ1, τ2, . . . , τdM }. Note that mτ

r,τ1
=

dK/M(hr,τ2 − hr,τ1) is not zero. We denote by X ∈ Md(OM) the matrix whose
(i, j)-component is (τ−1

i x ′) j−1. Then we have

(2-4) (yτr,1 · · · yτr,dM
)= (mτ

r,τ1
· · · mτ

r,τdM
)X
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and

det X =

∏
1≤i< j≤dM

(τ−1
j x ′

− τ−1
i x ′)= (p′)

1
2 dM (dM−1)

∏
1≤i< j≤dM

(τ−1
j x − τ−1

i x).

We also have

vp

( ∏
1≤i< j≤dM

(τ−1
j x − τ−1

i x)
)

=

∑
1≤i< j≤dM

vp(τ
−1
j x − τ−1

i x)

=
1
2

∑
1≤i, j≤dM ,i ̸= j

vp(τ
−1
j x − τ−1

i x)

=
1
2

dMvp(DM/Qp)≤
1
2

dM

(
1 + vp(eM)−

1
eM

)
.

(see [Serre 1979, Chapter 3, Section 6, Proposition 13]), where DM/Qp is the
different ideal of M/Qp. We find

(2-5) vp(det X)≤
1
2

dM

(
dM + vp(eM)−

1
eM

+ vp(2)(dM − 1)
)
.

By (2-4), we have mτ
r,τ1

det X =
∑dM

ℓ=1 yτr,ℓxℓ for some xℓ ∈OM , which gives the fact
that there exists an integer ℓr = ℓ with the property that vp(yτr,ℓ)≤ vp(mτ

r,τ1
det X).

By (2-5), we have

vp(yτr,ℓ)≤ vp(dK/M)+ vp(hr,τ1 − hr,τ2)+ vp(det X)≤ C(dK ,M, h),

as desired. We remark that ℓ is not equal to 1 since yτr,1 is zero. □

Now we return to the proof of Theorem 2.3. Take τr and ℓr as in Lemma 2.5
with the additional condition that

(2-6) vp(y
τr
r,ℓr
)= Min{vp(yτr,ℓ) | τ ∈ 0M , 2 ≤ ℓ≤ dM}.

Here we consider an element ω̂∈ ker NrM/Qp which is of the form ω̂=
∏n

r=1(ω
τr
ℓr
)sr ,

where sr is defined inductively by the following:

(s1, s2)=


(0, 1) if vp(y

τ1
1,ℓ1
)= vp(y

τ2
1,ℓ2
),

(1, 0) if vp(y
τ1
1,ℓ1
) ̸= vp(y

τ2
1,ℓ2
) and vp(y

τ1
2,ℓ1
)= vp(y

τ2
2,ℓ2
),

(1, 1) if vp(y
τ1
1,ℓ1
) ̸= vp(y

τ2
1,ℓ2
) and vp(y

τ1
2,ℓ1
) ̸= vp(y

τ2
2,ℓ2
).

s3 =

{
p if vp(s1 yτ1

3,ℓ1
+ s2 yτ2

3,ℓ2
) ̸= vp(pyτ3

3,ℓ3
),

p2 if vp(s1 yτ1
3,ℓ1

+ s2 yτ2
3,ℓ2
)= vp(pyτ3

3,ℓ3
).

For r ≥ 4,

sr =

{
psr−1 if vp

(∑r−1
j=1 s j yτ j

r,ℓ j

)
̸= vp(psr−1 yτr

r,ℓr
),

p2sr−1 if vp
(∑r−1

j=1 s j yτ j
r,ℓ j

)
= vp(psr−1 yτr

r,ℓr
).
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We claim that we have

1 + vp(2)≤ vp

( n∑
r=1

sr yτr
i,ℓr

)
≤ δ(i) + C(dK ,M, h)

for any i , where δ(i) is as in the statement (1). The inequality 1 + vp(2) ≤

vp
(∑n

r=1 sr yτr
i,ℓr

)
is clear since we always have 1 + vp(2)≤ vp(yτi,ℓ) by definition

of yτi,ℓ. We show vp
(∑n

r=1 sr yτr
i,ℓr

)
≤ δ(i) + C(dK ,M, h) by induction on i .

• Suppose either i = 1 or i = 2. By (2-6) and the inequality 0< vp(sr ) for r ≥ 3,
it is not difficult to check vp

(∑n
r=1 sr yτr

i,ℓr

)
= vp(y

τi
i,ℓi
). Furthermore, we have

vp(y
τi
i,ℓi
)≤ C(dK ,M, h)= δ(i) + C(dK ,M, h) by Lemma 2.5.

• Suppose i ≥ 3. By definition of si we have vp
(∑i−1

r=1 sr yτr
i,ℓr

)
̸= vp(si yτi

i,ℓi
).

We also have vp
(∑n

r=i sr yτr
i,ℓr

)
= vp(si yτi

i,ℓi
) since vp(si yτi

i,ℓi
) < vp(sr yτr

i,ℓr
) for

i < r . Hence, it follows from Lemma 2.5 that we have

vp

( n∑
r=1

sr yτr
i,ℓr

)
= Min

{
vp

( i−1∑
r=1

sr yτr
i,ℓr

)
, vp(si yτi

i,ℓi
)

}
≤ vp(psi−1 yτi

i,ℓi
)≤ 1 + vp(si−1)+ C(dK ,M, h)

if i ≥ 4. Since we have vp(si−1)≤ 2(i −3) if i ≥ 4, the claim for i ≥ 4 follows.
The claim for i = 3 follows by a similar manner; we have vp(

∑n
r=1 sr yτr

3,ℓr
)≤

vp(pyτ3
3,ℓ3
)≤ 1 + C(dK ,M, h)= δ(3) + C(dK ,M, h).

By construction of ω̂ and Lemma 2.4, we see

ψi,K (ω̂)
−1

=

n∏
r=1

ψi,K (ω
τr
ℓr
)−sr =

n∏
r=1

exp(sr yτr
i,ℓr
)= exp

( n∑
r=1

sr yτr
i,ℓr

)
.

Thus we find vp(ψi,K (ω̂)
−1

− 1)= vp(
∑n

r=1 sr yτr
i,ℓr
). Therefore, the claim above

gives Theorem 2.3(1).
To show Theorem 2.3(2), we set mi :=ψi,K (x)−1

−1 and θ (s)i =ψi,K (ω̂
ps
)−1

−1
for any s ≥ 0. It follows from the condition vp(ψi,K (ω̂)

−1
− 1) ≥ 1 + vp(2) that

the equality vp(θ
(s)
i ) = s + vp(θ

(0)
i ) holds. For each 1 ≤ i ≤ n, there exists at

most only one integer s ≥ 0 so that vp(mi )= vp(θ
(s)
i ) since {vp(θ

(s)
i )}s is strictly

increasing. Hence, there exists an integer 0 ≤ s(x) ≤ n with the property that
vp(mi ) ̸= vp(θ

(s(x))
i ) for every 1 ≤ i ≤ n (by the pigeonhole principle). With this

choice of s(x), we obtain vp(ψi,K (xω̂ps(x)
)−1

−1)= vp(mi + θ
(s(x))
i +miθ

(s(x))
i )≤

vp(θ
(n)
i )= n + vp(θ

(0)
i ). This finishes the proof of (2). □

3. Proof of main theorems

The main purpose of this section is to show Theorems 1.1 and 1.2. For Theorem 1.1,
we show a slightly refined statement as follows.
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Theorem 3.1. Let g > 0 be a positive integer. Let k be a p-adic field with residue
cardinality qk and π a uniformizer of k. Put p′

= p or p′
= 4 if p ̸= 2 or p = 2,

respectively. Let µ≥ 1 be the smallest integer2 so that

(q−1
k Nrk/Qp(π))

µ
≡ 1 mod p′.

Assume the following conditions:3

(i) vp
(
(q−1

k Nrk/Qp(π))
µ

− 1
)
> g · (2g)! ·8(g)H(g) ·µ · dK k/k fk , and

(ii) dk is prime to (2g)! .

Then, for any g-dimensional abelian variety A over a p-adic field K with complex
multiplication, we have

A(K kπ )[p∞
] ⊂ A[pC

],

where
C := 2g2

· (2g)! ·8(g)H(g) ·µ · dK k + 12g2
− 18g + 10.

In particular,
#A(K kπ )[p∞

] ≤ p2gC .

Our proofs of Theorems 3.1 and 1.2 proceed by similar methods. As in the
previous section, we fix an algebraic closure Qp of Qp and suppose that K is a
subfield of Qp. In this section, we often use the following technical constants:

Lg(m) := [logp(1 + p
1
2 m)2g

],

C(m,M, h) := vp

( m
dM

)
+ h +

1
2

dM

(
dM + vp(eM)−

1
eM

+ vp(2)(dM − 1)
)
.

Here, m ≥ 1 and h ≥ 0 are integers and M is a p-adic field.

Remark 3.2. (1) mg ≤ Lg(m) < g(m + 1 + vp(2)) for any prime p and m ≥ 1,
and Lg(m) < g(m + 1) if (p,m) ̸= (2, 1), (2, 2).

(2) Moreover,4

Lg(m)= mg for m ≥ 8g.

This can be checked as follows: It suffices to show (1 + p
1
2 m)2g < pmg+1 for

m ≥ 8g. This inequality is equivalent to (1 + p−
1
2 m)2g < p. Thus it is enough

to show (1 + 2−
1
2 m0)2g < 2 where m0 := 8g. By the inequalities 2g < 22g and(2g

r

)
< 22g for 0 ≤ r ≤ 2g, we find, as desired,

(1+2−
1
2 m0)2g

= 1+

2g∑
r=1

(2g
r

)(1
2

) 1
2 rm0

< 1+2g ·22g
(1

2

) 1
2 m0

< 1+

(1
2

) 1
2 m0−4g

= 2.

2If q−1
k Nrk/Qp (π) is a root of unity, the constant µ here coincides with the µ in Theorem 1.1.

3Condition (i) depends on the choice of K . However, the author hopes that this condition can be
replaced with one that does not depend on K , as in Theorem 1.1(i).

4The value 8g here is “rough” but it is enough for our proofs.
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Special cases. We consider Theorem 3.1 under some additional hypothesis. In this
section, we show:

Proposition 3.3. Let the situation be as in Theorem 3.1 except assuming not (i) but

(i)′ vp
(
(q−1

k Nrk/Qp(π))
µ

− 1
)
> Lg((2g)! ·µ · dK k/k fk).

Moreover, we assume that A has good reduction over K and all the endomorphisms
of A are defined over K . Put

Cg(K , k)= vp(dK k)+
1
2(2g)!

(
(2g)! + vp((2g)!)+ vp(2)((2g)! − 1)

)
,

1g(K , k)= Max
{
Cg(K , k), Lg((2g)! ·µ · dK k/k fk)

}
.

Then
A(K kπ )[p∞

] ⊂ A[pC
],

where
C := 2g1g(K , k)+ 12g2

− 18g + 10.

Proof. Put T = Tp(A) and V = Vp(A) for brevity. Let ρ : G K → GLZp(T ) be the
continuous homomorphism obtained by the G K -action on T . Fix an isomorphism
ι : T ∼

−→ Z⊕2g
p of Zp-modules. We have an isomorphism ι̂ : GLZp(T )≃ GL2g(Zp)

relative to ι. We abuse notation by writing ρ for the composite map G K →

GLZp(T ) ≃ GL2g(Zp) of ρ and ι̂. Now let P ∈ T and denote by P the image
of P in T/pnT . By definition, we have ι(σ P)= ρ(σ)ι(P) for σ ∈ G K . Suppose
that P ∈ (T/pnT )G K kπ . This implies σ P − P ∈ pnT for any σ ∈ G K kπ . This is
equivalent to saying that (ρ(σ )− E)ι(P) ∈ pnZ⊕2g

p , and this in particular implies
det(ρ(σ )− E)ι(P) ∈ pnZ⊕2g

p for any σ ∈ GG K kπ
. Thus det(ρ(σ )− E)P ∈ pnT

for any σ ∈ G K kπ . Put

c = Min{vp(det(ρ(σ )− E)) | σ ∈ G K kπ }.

Then we see P ∈ pn−cT (if c is finite and n > c) and this shows (T/pnT )G K kπ ⊂

pn−cT/pnT . This implies an inequality

(3-1) A(K kπ )[p∞
] ⊂ A[pc

]

if c is finite.
On the other hand, we recall that A has complex multiplication and all the

endomorphisms of A are defined over K . Thus there exists an injective ring
homomorphism from a number field F of degree 2g into Q⊗Z EndK (A). By [Serre
and Tate 1968, Theorem 5(i)], we know that V is a free F ⊗Q Qp-module of rank
one and the G K -action on V commutes with F ⊗Q Qp-action. Let

∏n
i=1 Fi denote

the decomposition of F ⊗Q Qp into a finite product of p-adic fields. This induces
a decomposition V ≃

⊕n
i=1 Vi of Qp[G K ]-modules. Each Vi is equipped with a

structure of one-dimensional Fi -modules and the G K -action on Vi commutes with
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the Fi -action. Let ρi : G K → GLQp(Vi ) be the homomorphism obtained by the G K -
action on Vi . Since ρi is abelian, it follows that (Vi ⊗Qp Qp)

ss
≃

⊕dFi
j=1 Qp(ψi, j )

for some continuous characters ψi, j : G K → Q×
p . Here, the superscript “ss” stands

for the semisimplification. As is well known, ψi, j satisfies the following properties
(since the G K -action on Vi is given by a character G K → F×

i ):

(a) ψi,1, . . . , ψi,dFi
are Qp-conjugate with each other, that is, ψi,k = τkℓ ◦ψi,ℓ for

some τkℓ ∈ GQp .

(b) ψi,1, . . . , ψi,dFi
have values in a p-adic field Mi (in the fixed algebraic clo-

sure Qp of Qp) which is Qp-isomorphic to the Galois closure of Fi/Qp (in
an algebraic closure of Fi ). We remark that dMi divides dFi ! .

In particular,
vp(det ρi (σ )− E)= dFivp(ψi (σ )− 1),

where ψi := ψi,1. Let M be the composite field of M1, . . . ,Mn , and we regard
ψ1, . . . , ψn as characters of G K with values in M×, that is, ψi : G K → M×. The
field M is a Galois extension of Qp in Qp and dM divides dF1 ! dF2 ! · · · dFn ! . Since∑n

i=1 dFi = 2g, we find

(3-2) dM | (2g)! .

(Here, we recall that the product of n natural numbers is divisible by n! for any
natural number n.) In particular, we have M ∩ k = Qp since dk is prime to (2g)! ,
and then we obtain

ker NrM/Qp ⊂ ker NrMk/k ⊂ ker NrKM k/k .

Here, KM is the composite K M of K and M . It follows from Proposition 2.1 that

(3-3) c ≤ Min{vp(det(ρ(σ )− E)) | σ ∈ G KM kπ }

= Min
{ n∑

i=1

dFivp(ψi (σ )− 1)
∣∣∣ σ ∈ G KM kπ

}

≤ Min
{ n∑

i=1

dFivp(ψi,KM k(πω)
−1

− 1)
∣∣∣ ω ∈ ker NrKM k/k

}

≤ Min
{ n∑

i=1

dFivp(ψi,KM k(πω)
−1

− 1)
∣∣∣ ω ∈ ker NrM/Qp

}

≤ Min
{ n∑

i=1

dFivp(ψ
µ
i,KM k(πω)

−1
− 1)

∣∣∣ ω ∈ ker NrM/Qp

}
.

Here, µ is the integer appeared in the statement of Theorem 3.1. Note that ψi is
a crystalline character since A has good reduction over K (see [Fontaine 1982,
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Section 6]; see also [Coleman and Iovita 1999, Theorem 1]). By rearranging the
numbering of subscripts, we may suppose the following situation for some 0 ≤ r ≤ n.

(I) For 1 ≤ i ≤ r , the set of the Hodge–Tate weights of M(ψi ) is {0, 1}.

(II) For r < i ≤ n, the set of the Hodge–Tate weights of M(ψi ) is either {1} or {0}.

Lemma 3.4. For r < i ≤ n and any ω ∈ ker NrM/Qp , we have

vp(ψ
µ
i,KM k(πω)

−1
− 1)≤ Lg((2g)! · dK k/k fk ·µ).

Proof. In this proof we set L := KM k. We know that the morphismψi,alg : L×
→ M×

corresponding to ψi |GL is trivial or Nr−1
L/Qp

on Qp-points. This in particular gives
ψi,L(ω)= 1. Since π eL/k

L π−1 is a p-adic unit for any uniformizer πL of L , we find

ψi,L(πω)
−1

= ψi,L(π)
−1

= ψi,L(π
−eL/k
L ·π

eL/k
L π−1)= α

−eL/k
i ·ψi,alg(π)

−1,

where αi := ψi,L(πL)ψi,alg(πL)
−1. Denote by L ′ the unramified extension of L of

degree µeL/k .

(I) Suppose that the set of the Hodge–Tate weights of M(ψi ) is {0}. In this case,
ψi,alg is trivial and thus we have ψµi,L(πω)

−1
= α−µeL/k

i . It follows from Lemma 9
of [Ozeki 2024] that ψµi,L(πω)

−1 is a unit root of the characteristic polynomial
f (T ) of the geometric Frobenius endomorphism of A/FL′ . Since f (1)= #A(FqL′ ),

we see vp(ψ
µ
i,L(πω)

−1
− 1)≤ vp(#A(FqL′ ))≤ [logp #A(FqL′ )]. It follows from the

Weil bound that vp(ψ
µ
i,L(πω)

−1
− 1)≤ Lg( fL ′). Since we have fL ′ = µeL/k fL =

dL/K k ·µ · dK k/k fk ≤ (2g)! ·µ · dK k/k fk . we obtain the desired inequality.

(II) Suppose that the set of the Hodge–Tate weights of M(ψi ) is {1}. In this case
ψi,alg is Nr−1

L/Qp
on Qp-points. If we set β := q−1

k Nrk/Qp(π), we find

ψ
µ
i,L(πω)

−1
− 1 = (α−1

i Nrk/Qp(π)
fL/k )µeL/k − 1

= ((α−1
i qL)

µeL/k − 1)βµdL/k + (βµdL/k − 1).

It again follows from Lemma 9 of [Ozeki 2024] that (α−1
i qL)

µeL/k is a unit root of
the characteristic polynomial f ∨(T ) of the geometric Frobenius endomorphism
of A∨

/FL′ . Since f ∨(1) = #A∨(FqL′ ), the same argument as in (I) shows that
vp((α

−1
i qL)

µeL/k − 1)≤ Lg( fL ′)≤ Lg((2g)! ·µ · dK k/k fk). In particular, we have
vp(β

µdL/k − 1) > vp((α
−1
i qL)

µeL/k − 1) by the assumption (i)′. Since β is a p-adic
unit, we obtain vp(ψ

µ
i,L(πω)

−1
−1)=vp((α

−1
i qL)

µeL/k −1)≤ Lg((2g)!·µ·dK k/k fk),
as desired. □

By (3-3) and the lemma, in the case where r = 0, we have

(3-4) c ≤

n∑
i=1

dFi Lg((2g)! ·µ · dK k/k fk)= 2gLg((2g)! ·µ · dK k/k fk).
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In the rest of the proof, we assume r > 0. By (3-3) and the lemma again, we have

c ≤ Min
{ r∑

i=1

dFivp(ψ
µ
i,KM k(πω)

−1
− 1)

∣∣∣ ω ∈ ker NrM/Qp

}
+ Lg((2g)! ·µ · dK k/k fk)

n∑
i=r+1

dFi .

Here we remark that vp(µ) = 0 and the Hodge–Tate weights of ψµi for each
1 ≤ i ≤ r consist of 0 and µ. Hence, applying Theorem 2.3 to the set of characters
ψ
µ

1 , . . . , ψ
µ
r : G KM k → M×, an element x = π and h = 0, there exists an element

ω̂ ∈ ker NrM/Qp and an integer 0 ≤ s = s(π)≤ r as in the theorem. Then

c ≤

r∑
i=1

dFivp(ψ
µ
i,KM k(πω̂

ps
)−1

− 1)+ Lg((2g)! ·µ · dK k/k fk)

n∑
i=r+1

dFi

≤

r∑
i=1

dFi (r + δ(i) + C(dKM k,M, 0))+ Lg((2g)! ·µ · dK k/k fk)

n∑
i=r+1

dFi

≤ 2g10 +

r∑
i=1

dFi (r + δ(i)),

where10 := Max
{
C(dKM k,M, 0), Lg((2g)!·µ·dK k/k fk)

}
. Since dM divides (2g)! ,

we also have

C(dKM k,M, 0) < vp(dK k)+
1
2(2g)!

(
(2g)! + vp((2g)!)+ vp(2)((2g)! − 1)

)
.

Thus, for the constant 1g(K , k) defined in the statement of the proposition, we
obtain 10 ≤1g(K , k) and c ≤ 2g1g(K , k)+

∑r
i=1 dFi (r + δ(i)).

• If r ≤ 2, we have
∑r

i=1 dFi (r + δ(i))=
∑r

i=1 dFi r ≤ r · 2g ≤ 4g.

• If r>2, we have
∑r

i=1 dFi (r+δ(i))=r
∑r

i=1 dFi +
∑r

i=3 dFi δ(i)≤n
∑n

i=1 dFi +∑n
i=3 dFi (2n−5)≤n·2g+(2n−5)(

∑n
i=1 dFi −2)≤2g·2g+(4g−5)·(2g−2)=

12g2
− 18g + 10.

Therefore, for any r > 0, we find

c ≤ 2g1g(K , k)+ 12g2
− 18g + 10.

Note that this inequality holds also for the case r = 0 by (3-4). Now the proposition
follows from (3-1). □

General cases. We show Theorems 3.1 and 1.2. For this, we need the following
observations given by Serre and Tate [1968] and Silverberg [1992].

Theorem 3.5. Let A be a g-dimensional abelian variety over K .



EXPLICIT BOUNDS ON TORSION OF CM ABELIAN VARIETIES 185

(1) Put m = 3 or m = 4 if p ̸= 3 or p = 3, respectively. Then A has semistable
reduction over K (A[m]) and all the endomorphisms of A are defined over K (A[m]).

(2) Let L be the intersection of the fields K (A[N ]) for all integers N > 2. Then all
the endomorphisms of A are defined over L and [L : K ] divides H(g).

(3) Assume A has potential good reduction. Let ρA,ℓ : G K → GLZp(Tℓ(A)) be the
continuous homomorphism defined by the G K -action on the Tate module Tℓ(A) for
any prime ℓ.

(i) For any prime ℓ not equal to p, let Hℓ be the kernel of the restriction of ρA,ℓ

to IK . Then Hℓ is an open subgroup of IK , which is independent of the choice
of ℓ. Moreover, if we set c := [IK : Hℓ], then there exists a finite totally ramified
extension L/K of degree c such that A has good reduction over L.

(ii) If A has complex multiplication and all the endomorphisms of A are defined
over K , then the constant c above satisfies c ≤8(g).

(4) Assume A has complex multiplication. Then there exists a finite extension L/K
of degree at most 8(g)H(g) such that A has good reduction over L and all the
endomorphisms of A are defined over L.

Proof. Item (1) follows from [Silverberg 1992, Theorem 4.1] and Raynaud’s criterion
of semistable reduction [SGA 7I 1972, Proposition 4.7]. Item (2) is [Silverberg 1992,
Theorem 4.1], and (4) is an immediate consequence of (2) and (3) since A must have
potential good reduction under the condition that A has complex multiplication.
The assertions in (3) are consequences of results given in Sections 2 and 4 of [Serre
and Tate 1968] but some of them are not directly mentioned in loc. cit. Thus we
give a proof here, just in case. The first statement related to Hℓ in (3)(i) is [Serre
and Tate 1968, Section 2, Theorem 2, p. 496]. The group H is a closed normal
subgroup of G K , which is also open in IK . Let 0 be the closure of the subgroup
of G K generated by any choice of a lift of the qK -th Frobenius element in GFqK

.
The projection G K → GFqK

gives an isomorphism of 0 onto GFqK
; in particular,

G K is the semidirect product of 0 and IK . Let K0/K be the field extension (of
infinite degree) corresponding to 0 ⊂ G K , and let M/K ur be the finite extension
corresponding to H := Hℓ ⊂ IK . Note that A has good reduction over M . Now we
set L := K0∩M . Then L/K is totally ramified since so is K0/K . Furthermore, it is
immediate to check H0∩ IK = H ; this shows L K ur

= M . Hence we obtain that A
has good reduction over L and [L : K ] = [M : K ur

] = c. This shows (3)(i). Next
we show (3)(ii). By assumptions on A, there exists a number field F of degree 2g
which is a subalgebra of Q ⊗Z EndK (A). It follows from [Serre and Tate 1968,
Theorem 5(i)] that Vℓ(A) has a structure of free (F ⊗Q Qℓ)-module of rank one
and the G K -action on Vℓ(A) commutes with F ⊗Q Qℓ. Thus we may consider ρA,ℓ

as a character G K → (F ⊗Q Qℓ)
×. Moreover, the image of this character restricted
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to IK has values in the group µ(F) of roots of unity contained in F by [Serre and
Tate 1968, Section 4, Theorem 6, p. 503]. Thus we obtain the fact that c divides the
order m of µ(F). On the other hand, since µm is a subset of F , we have ϕ(m) | 2g.
Therefore, we obtain c ≤ m ≤8(g), as desired. □

Now we are ready to show our main theorems. First we show Theorem 3.1.

Proof of Theorem 3.1. Let A be as in the theorem. Since A has complex multiplica-
tion, it follows from Theorem 3.5(4) that there exists a finite extension L/K such
that dL/K ≤8(g)H(g), A has good reduction over L , and all the endomorphisms
of A are defined over L . In addition, we have

vp
(
(q−1

k Nrk/Qp(π))
µ

− 1
)
> g · (2g)! ·8(g)H(g) ·µ · dK k/k fk

= Lg
(
(2g)! ·8(g)H(g) ·µ · dK k/k fk

)
≥ Lg((2g)! ·µ · dLk/k fk)

by assumption (i) and Remark 3.2(2). So we can apply Proposition 3.3 to A/L; we
have

A(Lkπ )[p∞
] ⊂ A[pC ′

],

where C ′
= 2g1g(L , k)+ 12g2

− 18g + 10. Here,

Cg(L , k)= vp(dLk)+
1
2(2g)!

(
(2g)! + vp((2g)!)+ vp(2)((2g)! − 1)

)
,

1g(L , k)= Max
{
Cg(L , k), Lg((2g)! ·µ · dLk/k fk)

}
.

Note that we have vp(dLk) < dLk ≤8(g)H(g) · dK k and Lg((2g)! ·µ · dLk/k fk)≤

g · (2g)! ·8(g)H(g) ·µ · dK k . Therefore, it suffices to show

8(g)H(g) · dK k +
1
2(2g)!

(
(2g)! + vp((2g)!)+ vp(2)((2g)! − 1)

)
< g · (2g)! ·8(g)H(g) ·µ · dK k

for the proof but this is clear. □

Remark 3.6. In the proof of Theorem 3.1, we referred to the field extension L/K
of Theorem 3.5(4) and the upper bound 8(g)H(g) of [L : K ]. By Theorem 3.5(1),
we may refer to the field K (A[m]) instead of the above L . Since we have a natural
embedding from Gal(K (A[m])/K ) into GL(A[m]) ≃ GL2g(Z/mZ), we obtain a
bound for the extension degree of K (A[m])/K ; we have [K (A[m]) : K ] ≤ G(g),
where

G(n) :=

{
#GL2n(Z/3Z)=

∏2n−1
i=0 (3

2n
− 3i ) if p ̸= 3,

#GL2n(Z/4Z)= 24n2 ∏2n−1
i=0 (2

2n
− 2i ) if p = 3

for n> 0. Note that we have G(n)<m4n2
. It is not difficult to check the inequalities

8(1)H(1) > G(1) and 8(g)H(g) < G(g) for g > 1 (see Section 5). Hence, only
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in the case g = 1 of elliptic curves, we can obtain smaller bound than that given in
Theorem 3.1 by replacing 8(g)H(g) with G(1).

Applying Theorem 1.1 with k = Qp and π = p, we immediately obtain the
following.

Corollary 3.7. Let A be a g-dimensional abelian variety over a p-adic field K with
complex multiplication. Then we have

A(K (µp∞))[p∞
] ⊂ A[pC

],

where
C := 2g2

· (2g)! ·8(g)H(g) · dK + 12g2
− 18g + 10.

In particular,
#A(K (µp∞))[p∞

] ≤ p2gC .

Next we show Theorem 1.2.

Proof of Theorem 1.2. We follow essentially the same argument as for Theorem 3.1.
Put K̂ = K ( p∞√

K ).

Step 1: First we consider the case where A has good reduction over K and all the
endomorphisms of A are defined over K . Put ν = vp(dK )+ 1 + vp(2) and

Cg(K )= vp(dK )+ ν+
1
2(2g)!

(
(2g)! + vp((2g)!)+ vp(2)((2g)! − 1)

)
,

1g(K )= Max
{
Cg(K ), Lg((2g)! · pν · dK )

}
.

Following the proof of Proposition 3.3, we show

(3-5) A(K̂ )[p∞
] ⊂ A[pC ′

],

where C ′
:= 2g1g(K )+12g2

−18g+10. Let ρ : G K → GLZp(Tp(A))≃ GL2g(Zp),
M/Qp and ψ1, . . . , ψn : G K → M× be as in the proof of Proposition 3.3. If
we denote by K̂ab the maximal abelian extension of K contained in K̂ , all the
points of A(K̂ )[p∞

] are in fact defined over K̂ab since ρ is abelian. Thus, setting
c := Min{vp(det(ρ(σ )− E)) | σ ∈ G K̂ab}, we find

(3-6) A(K̂ )[p∞
] = A(K̂ab)[p∞

] ⊂ A[pc
]

if c is finite (see arguments just above (3-1)). On the other hand, we set G :=

Gal(K̂/K ) and H :=Gal(K̂/K (µp∞)). Let χp :G K →Z×
p be the p-adic cyclotomic

character. Since we have στσ−1
= τχp(σ ) for any σ ∈ G and τ ∈ H , we see

(G,G)⊃ (G, H)⊃ Hχp(σ )−1. Hence we have a natural surjection

(3-7) H/Hχp(σ )−1 ↠ H/(G,G)= Gal(K̂ab/K (µp∞)) for any σ ∈ G.

Lemma 3.8. χp(σ0)− 1 = pν for some σ0 ∈ G.
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Proof. We set

K ′
:=

{
K (µp) if p ̸= 2,
K (µ4) if p = 2.

If we denote by pℓ the order of the set of p-power roots of unity in K ′, we see
K ′

∩ Qp(µp∞) = Qp(µpℓ) and thus χp(G K ′) = 1 + pℓZp. Furthermore, since
[Qp(µpℓ) : Qp] divides [K ′

: K ][K : Qp], we see pℓ−1−vp(2) | dK . Hence we obtain
χp(G K ′)⊃ 1 + pνZp and the lemma follows. □

By the lemma above and (3-7), we see that Gal(K̂ab/K (µp∞)) is of exponent pν ,
that is, σ ∈ G K (µp∞ ) implies σ pν

∈ G K̂ab
. This shows c ≤Min{vp(det(ρ(σ )pν

−E)) |
σ ∈ G K (µp∞ )}. Mimicking the arguments for inequalities (3-3), we find

c ≤ Min
{ n∑

i=1

dFivp(ψ
pν
i,KM

(πω)−1
− 1)

∣∣∣ ω ∈ ker NrM/Qp

}
.

Now the inequality (3-6) follows by completely the same method as the proof of
Proposition 3.3 (with replacing the pair (k, µ) there with (Qp, pν)).

Step 2: Next we consider the general case. Since A has complex multiplication,
it follows from Theorem 3.5(4) that there exists a finite extension L/K such that
dL/K ≤8(g)H(g), A has good reduction over L and all the endomorphisms of A
are defined over L . Thus we can apply the result of Step 1 to A/L; we have

A(K̂ )[p∞
] ⊂ A(L̂)[p∞

] ⊂ A[pC ′′

],

where C ′′
:= 2g1g(L)+ 12g2

− 18g + 10. We find

Lg
(
(2g)! · pvp(dL )+1+vp(2) · dL

)
= Lg

(
(2g)! · p1+vp(2) · pvp(dL/K )dL/K · pvp(dK )dK

)
≤ Lg

(
(2g)! · p1+vp(2) · (dL/K )

2
· pvp(dK )dK

)
≤ g · (2g)! · p1+vp(2) · (8(g)H(g))2 · pvp(dK )dK .

(For the last equality, see Remark 3.2(2).) Now Theorem 1.2 immediately follows
by 1g(L)≤ g · (2g)! · p1+vp(2) · (8(g)H(g))2 · pvp(dK )dK . □

One of the keys for our arguments above is a theory of locally algebraic repre-
sentations. Thus our method essentially works also for abelian varieties A with the
property that the G K -action on the semisimplification of Vp(A)⊗Qp Qp is abelian.
For example, this is the case where A has good ordinary reduction.

Proposition 3.9. Let g > 0 be a positive integer. Let K and k be p-adic fields.
Let π be a uniformizer of k. Assume that q−1

k Nrk/Qp(π) is a root of unity; we denote
by 0 < µ < p the minimum integer such that (q−1

k Nrk/Qp(π))
µ

= 1. Then, for
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any g-dimensional abelian variety A over K with good ordinary reduction, we have

A(K kπ )[p∞
] ⊂ A[p2gLg(µdK k/k fk)].

In particular,

#A(K kπ )[p∞
] ≤ p4g2 Lg(µdK k/k fk) < p4g3(µdK k/k fk+1+vp(2)).

Proof. Put V = Vp(A), T = Tp(A) and c = Min{vp(det(ρ(σ )− E)) | σ ∈ G K kπ }.

By the same argument as the beginning of the proof of Proposition 3.3, we obtain

(3-8) A(K kπ )[p∞
] ⊂ A[pc

]

if c is finite. Since A has good ordinary reduction, we have an exact sequence
0 → V1 → V → V2 → 0 of Qp[G K ]-modules with the following properties:

(i) V1 ≃ W ⊗Qp Qp(1) for some unramified representation W of G K , and

(ii) V2 is unramified.

Hence, taking a p-adic field M large enough, we have (V ⊗Qp M)ss
≃

⊕2g
i=1 M(ψi )

for some continuous crystalline characters ψi : G K → M×. Furthermore, for every i ,
the set of the Hodge–Tate weights of M(ψi ) is either {1} or {0}. By Proposition 2.1,
we have c ≤

∑2g
i=1 vp(ψ

µ
i,K k(π)

−1
− 1). Let K ′ be the unramified extension of K k

of degree µeK k/k . By a similar method of the proof of Lemma 3.4, we find that
ψ
µ
i,K k(π)

−1 is a unit root of the characteristic polynomial f (T ) of the geometric
Frobenius endomorphism of A/FK ′ ; otherwise, ψµi,K k(π)

−1 is a unit root of the char-
acteristic polynomial f ∨(T ) of the geometric Frobenius endomorphism of A∨

/FK ′ .
We know f (1) = #A(FqK ′ ) and f ∨(1) = #A∨(FqK ′ ), and their p-adic valuations
are bounded by Lg( fK ′) by the Weil bound. Since we have fK ′ = fK ′/K k fK k =

µdK k/k fk, we obtain c ≤
∑2g

i=1 vp(ψ
µ
i,K k(π)

−1
− 1)≤ 2gLg(µdK k/k fk). Now the

result follows from (3-8). □

4. Abelian varieties over number fields

In this section, we suppose that K is a number field. The goal of this section is
to give a proof of Theorem 1.3. The theorem is an immediate consequence of the
following proposition.

Proposition 4.1. Let g, K , d and h be as in Theorem 1.3.

(1) Let A be a g-dimensional abelian variety over K with semistable reduction
everywhere. Let p0 be the smallest prime number such that A has good
reduction at some finite place of K above p0. Then A(K (µ∞))[p] is zero if
p > (1 +

√
p0

dh)2g, p is unramified in K , and A has good reduction at some
finite place of K above p.
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(2) Let A be a g-dimensional abelian variety over K with complex multiplication
which has good reduction everywhere. Then, for any prime p, we have

A(K (µ∞))[p∞
] ⊂ A[pC

],

where C := 2g2
· (2g)! ·8(g)H(g) · dh + 12g2

− 18g + 10.

Proof. Let A be a g-dimensional abelian variety over K with semistable reduction
everywhere. Let K ′ be the maximal extension of K contained in K (µ∞) which
is unramified at all finite places of K . Note that K ′ is a finite abelian extension
of K . In particular, it follows from class field theory that [K ′

: K ] is a divisor of
the narrow class number h of K . If we denote by L p the maximal extension of K
contained in K (µ∞) which is unramified at all places except for places dividing p
and the infinite places, then it is shown in [Katz and Lang 1981, Appendix, Lemma]
that L p = K ′(µp∞).

(1) Here we mainly follow Ribet’s arguments in [Katz and Lang 1981]. We suppose
that p is prime to 2p0 and also suppose that p is unramified in K . Assume that
A(K (µ∞))[p] ̸= O . We claim that there exists a g-dimensional abelian variety A′

over K ′ which is K ′-isogenous to A such that A′(K ′)[p] ̸= O . We denote by G
and H the absolute Galois groups of K ′ and K (µ∞), respectively. The assumption
A(K (µ∞))[p] ̸= O is equivalent to the assumption A[p]

H
̸= O . Let W be a simple

G-submodule of A[p]
H . Ribet showed in the proof of Theorem 2 of [Katz and

Lang 1981] that, since A has semistable reduction everywhere over K ′, W is one-
dimensional over Fp and the action of G on W factors through Gal(K ′(µp)/K ′).
Since p is unramified at K ′, we find that the G-action on W is given by χn

p for some
0 ≤ n ≤ p − 1, where χ p is the mod p cyclotomic character. Moreover, since A
has good reduction at some finite place of K ′ above p (̸= 2) and p is unramified
in K ′, it follows from the classification of Tate and Oort [1970, pp. 15–16] that n
is equal to 0 or 1. Thus W is isomorphic to Fp or Fp(1). If we are in the former
case, we have A′(K ′)[p] ̸= O for A′

:= A. Suppose that we are in the latter case.
Then there exists a surjection A∨

[p] → Fp of G-modules. If we denote by C the
kernel of this surjection, then the G-action on A∨

[p] preserves C . This implies
that A′

:= A∨/C is an abelian variety defined over K ′ and we find that there exists
a trivial G-submodule of A′

[p] of order p. Thus we have A′(K ′)[p] ̸= O . This
finishes the proof of the claim.

Now we take a prime p′

0 of K ′ above p0 such that A has good reduction at p′

0.
Since A′ above is K ′-isogenous to A, we know that A′ has good reduction at p′

0 by
[Serre and Tate 1968, Section 1, Corollary 2]. If we denote by K ′

p′

0
the completion

of K ′ at p′

0 and also denote by Fp′

0
the residue field of K ′

p′

0
, then reduction modulo p′

0
gives an injective homomorphism

A′(K ′)[p] ⊂ A′(K ′

p′

0
)[p] ↪→ A′(Fp′

0
).
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We recall that A′(K ′)[p] ̸= O . Since the order of Fp′

0
is bounded by pdh

0 , it follows
from the Weil bound that p < (1 +

√
p0

dh)2g. This finishes the proof.

(2) Let A be an abelian variety as in the statement. Since A has good reduction
everywhere over K , it follows from the Néron–Ogg–Shafarevich criterion that the
G K -action on A[p∞

] is unramified outside p. This gives the fact that the G K -action
on A(K (µp∞))[p∞

] factors through Gal(L p/K )= Gal(K ′(µp∞)/K ). Thus

A(K (µ∞))[p∞
] = A(K ′(µp∞))[p∞

].

Since we have [K ′
: Q] ≤ dh, the result follows from Corollary 3.7. □

5. Bounds on 8(n) and H(n)

We recall the definitions of 8(n) and H(n):

8(n) := Max{m ∈ Z>0 | ϕ(m) divides 2n},

H(n) := gcd{#GSp2n(Z/NZ) | N ≥ 3}.

Here, ϕ is the Euler’s totient function. The values of 8(n), H(n) (and G(n) for
p ̸= 3; see Remark 3.6) for small n are given in Tables 1–3. In this section, we
study some upper bounds of 8 and H .

The function H. For the function H , we refer to results of [Silverberg 1992,
Sections 3 and 4]. The exact formula for H(n) is as follows:

H(n)=
1

2n−1

∏
q

qr(q),

where the product is over primes q ≤ 2n + 1,

r(2)= [n] +

∞∑
j=0

[
2n
2 j

]
and r(q)=

∞∑
j=0

[
2n

q j (q − 1)

]
if q is odd.

Moreover, we have:

Theorem 5.1 [Silverberg 1992, Corollary 3.3]. We have

H(n) < 2(9n)2n

for any n > 0.

The function 8. Next we consider the function 8. At first, we remark that 8(n)
must be even since ϕ(x) = ϕ(2x) if x is odd. Furthermore, 8(n) is not a power
of 2. (In fact, we have ϕ(2r )= ϕ(2r−1

· 3) if r ≥ 2.) Thus it holds that

(5-1) 8(n)= Max
{
m ∈ Z>0 | ϕ(m) divides 2n, and m = 2r x,

where r ≥ 1 and x ≥ 3 is odd
}
.
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We show some elementary formulas.

Proposition 5.2. (1) 8(1)= 6 and 6 ≤8(n) < 6n 3
√

n for n > 1.

(2) Put t = v2(n)+ 2 and let p1 = 2< p2 < · · ·< pt be the first t prime numbers.
Then

8(n)≤ 2n
t∏

i=1

pi

pi − 1
.

In particular, 8(n)≤ 6n if n is odd.

(3) If n > 3 is an odd prime, we have5

8(n)=

{
6 if 2n + 1 is not prime,

4n + 2 if 2n + 1 is prime.

Proof. To check8(1)= 6 is an easy exercise. Since ϕ(6)= 2 | 2n, we have8(n)≥ 6
for any n. Suppose that n > 1. We take an even integer m > 0 of the form 2r x ,
where r ≥ 1 and x ≥ 3 is odd, such that ϕ(m) | 2n. Let m = 2r ∏s

i=1 qei
i be the prime

factorization of m with r, s, e1, . . . , es ≥ 1. Since ϕ(m)= 2r−1 ∏s
i=1 qei −1

i (qi − 1)
and ϕ(m) | 2n, we have v2(2n)≥ r − 1 + s and thus

(5-2) r + s ≤ v2(n)+ 2.

Then we find

2n ≥ ϕ(m)= m
(

1 −
1
2

) s∏
i=1

(
1 −

1
qi

)
≥ m

s+1∏
i=1

(
1 −

1
pi

)
≥ m

t∏
i=1

(
1 −

1
pi

)
.

This shows (2). Furthermore, we have

8(n)≤ 2n
t∏

i=1

pi

pi − 1
= 6n

t∏
i=3

pi

pi − 1
≤ 6n

( 5
5−1

)v2(n)

≤ 6n ·

(5
4

)log2(n)
< 6n · 2

1
3 log2(n).

Thus we obtain (1). Let us show (3). From now on we assume that n > 3 is an
odd prime. Assume that m ̸= 6. Since n is odd, it follows from (5-2) that the
prime factorization of m is of the form m = 2qe for some odd prime q. Then
1
2ϕ(m)= qe−1 1

2(q − 1) divides n. Since n > 3 is a prime and m ̸= 6, we find e = 1
and 1

2(q − 1) = n. This implies 2n + 1 must be prime and m = 4n + 2. Now the
result follows. □

5A prime number p is called a Sophie Germain prime if 2p + 1 is also prime. It is not known
whether there exist infinitely many Sophie Germain primes or not. On the other hand, there exist
infinitely many primes which are not Sophie Germain primes. In fact, every prime number p with
p ≡ 1 mod 3 is not a Sophie Germain prime.
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n 8(n) n 8(n) n 8(n) n 8(n)

1 21
· 31 31 21

· 31 61 21
· 31 91 21

· 31

2 22
· 31 32 24

· 31
· 51 62 22

· 31 92 22
· 31

· 471

3 21
· 32 33 21

· 671 63 21
· 1271 93 21

· 32

4 21
· 31

· 51 34 22
· 31 64 21

· 31
· 51

· 171 94 22
· 31

5 21
· 111 35 21

· 711 65 21
· 1311 95 21

· 1911

6 21
· 31

· 71 36 21
· 33

· 51 66 21
· 32

· 231 96 23
· 31

· 51
· 71

7 21
· 31 37 21

· 31 67 21
· 31 97 21

· 31

8 22
· 31

· 51 38 22
· 31 68 21

· 1371 98 21
· 1971

9 21
· 33 39 21

· 791 69 21
· 1391 99 21

· 1991

10 21
· 31

· 111 40 21
· 31

· 51
· 111 70 21

· 31
· 711 100 21

· 31
· 53

11 21
· 231 41 21

· 831 71 21
· 31 101 21

· 31

12 21
· 32

· 51 42 21
· 31

· 72 72 21
· 32

· 51
· 71 102 21

· 31
· 1031

13 21
· 31 43 21

· 31 73 21
· 31 103 21

· 31

14 21
· 291 44 22

· 31
· 231 74 21

· 1491 104 22
· 31

· 531

15 21
· 311 45 21

· 311 75 21
· 1511 105 21

· 2111

16 23
· 31

· 51 46 21
· 31

· 471 76 21
· 31

· 51 106 21
· 31

· 1071

17 21
· 31 47 21

· 31 77 21
· 231 107 21

· 31

18 21
· 32

· 71 48 22
· 31

· 51
· 71 78 21

· 31
· 791 108 21

· 34
· 51

19 21
· 31 49 21

· 31 79 21
· 31 109 21

· 31

20 21
· 31

· 52 50 21
· 53 80 22

· 31
· 51

· 111 110 21
· 31

· 112

21 21
· 72 51 21

· 1031 81 21
· 35 111 21

· 2231

22 21
· 31

· 231 52 21
· 31

· 531 82 21
· 31

· 831 112 21
· 31

· 51
· 291

23 21
· 471 53 21

· 1071 83 21
· 1671 113 21

· 2271

24 21
· 31

· 51
· 71 54 21

· 33
· 71 84 22

· 31
· 72 114 21

· 2291

25 21
· 111 55 21

· 112 85 21
· 111 115 21

· 471

26 21
· 531 56 22

· 31
· 291 86 21

· 1731 116 22
· 31

· 591

27 21
· 34 57 21

· 32 87 21
· 591 117 21

· 791

28 21
· 31

· 291 58 21
· 31

· 591 88 21
· 31

· 51
· 231 118 22

· 31

29 21
· 591 59 21

· 31 89 21
· 1791 119 21

· 2391

30 21
· 32

· 111 60 21
· 31

· 71
· 111 90 21

· 33
· 111 120 21

· 31
· 52

· 71

Table 1. 8(n).
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Let us consider an upper bound of8 by using an “analytic” lower bound function
of ϕ given by Rosser and Schoenfeld. If we denote by γ Euler’s constant,6 it is
shown in [Rosser and Schoenfeld 1962, Theorem 15] that7

(5-3) ϕ(m) >
m

eγ log log m +
3

log log m

for m ≥ 3. We set
9(n) := Max{m ∈ Z>0 | ϕ(m)≤ 2n}.

We clearly have 8(n)≤9(n) for all n > 0.

Proposition 5.3. For any real number C > 2eγ , we have

9(n) < Cn log log n

for any n large enough.

Proof. The result should be well known as a consequence of Mertens’ theorem:

lim inf
n

ϕ(n) log log n
n

= e−γ .

Using (5-3) instead of Mertens’ theorem, we can obtain a slightly refined statement
(see Remark 5.4). So, for later use, we write down a proof with using (5-3). Put
f (x)= C log log x . Take any integer N > 0 satisfying the following: for all x > N ,

(i) f (x) > 1
x

ee2
, and

(ii) f (x) > 2eγ
(
log log(x f (x))+ 1

)
.

(The assumption C > 2eγ asserts the existence of such N .) Take any integer n > N .
It suffices to show n satisfies the desired inequality. Assume there exists an integer m
such that both ϕ(m)≤ 2n and m ≥ n f (n) hold. Since eγ > 3/(log log x) for x > ee2

and m (≥ n f (n)) > ee2
, we find

1
eγ

·
m

log log m + 1
<

m

eγ log log m +
3

log log m

< ϕ(m)≤ 2n

by (5-3). Also, n f (n)/(log log(n f (n))+1)≤ m/(log log m +1) since the function
x/(log log x +1) is strictly increasing for x > e and m ≥ n f (n) (> ee2

) > e. Hence
1
eγ

·
n f (n)

log log(n f (n))+ 1
< 2n,

which gives f (n) < 2eγ (log log(n f (n))+ 1). This contradicts condition (ii). We
conclude that if ϕ(m) ≤ 2n, then m < n f (n). This implies that 9(n) < n f (n) =

Cn log log n. □

6γ =
∫

∞

1
( 1
[x]

−
1
x
)

dx = 0.57721 . . . . Note also eγ = 1.78107 . . . .
7More precisely, that theorem states ϕ(m) >m/(eγ log log m + 5/(2 log log m)) for m ≥ 3 except

when m is the product of the first nine primes, m = 223092870 = 2 · 3 · 5 · ·7 · 11 · 13 · 17 · 19 · 23.
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n H(n)

1 24
· 31

2 28
· 32

· 51

3 211
· 34

· 51
· 71

4 216
· 35

· 52
· 71

5 219
· 36

· 52
· 71

· 111

6 223
· 38

· 53
· 72

· 111
· 131

7 226
· 39

· 53
· 72

· 111
· 131

8 232
· 310

· 54
· 72

· 111
· 131

· 171

9 235
· 313

· 54
· 73

· 111
· 131

· 171
· 191

10 239
· 314

· 56
· 73

· 112
· 131

· 171
· 191

11 242
· 315

· 56
· 73

· 112
· 131

· 171
· 191

· 231

12 247
· 317

· 57
· 74

· 112
· 132

· 171
· 191

· 231

13 250
· 318

· 57
· 74

· 112
· 132

· 171
· 191

· 231

14 254
· 319

· 58
· 74

· 112
· 132

· 171
· 191

· 231
· 291

15 257
· 321

· 58
· 75

· 113
· 132

· 171
· 191

· 231
· 291

· 311

16 264
· 322

· 59
· 75

· 113
· 132

· 172
· 191

· 231
· 291

· 311

17 267
· 323

· 59
· 75

· 113
· 132

· 172
· 191

· 231
· 291

· 311

18 271
· 326

· 510
· 76

· 113
· 133

· 172
· 192

· 231
· 291

· 311
· 371

19 274
· 327

· 510
· 76

· 113
· 133

· 172
· 192

· 231
· 291

· 311
· 371

20 279
· 328

· 512
· 76

· 114
· 133

· 172
· 192

· 231
· 291

· 311
· 371

· 411

21 282
· 330

· 512
· 78

· 114
· 133

· 172
· 192

· 231
· 291

· 311
· 371

· 411
· 431

22 286
· 331

· 513
· 78

· 114
· 133

· 172
· 192

· 232
· 291

· 311
· 371

· 411
· 431

23 289
· 332

· 513
· 78

· 114
· 133

· 172
· 192

· 232
· 291

· 311
· 371

· 411
· 431

· 471

24 295
· 334

· 514
· 79

· 114
· 134

· 173
· 192

· 232
· 291

· 311
· 371

· 411
· 431

· 471

25 298
· 335

· 514
· 79

· 115
· 134

· 173
· 192

· 232
· 291

· 311
· 371

· 411
· 431

· 471

Table 2. H(n).

Remark 5.4. For a given C , we can modify the phrase “for any n large enough” in
the statement of Proposition 5.3. For example, let us consider the case C = 4. By
studying (i) and (ii) in the above proof more carefully, we can show

9(n) < 4n log log n for any n > e(1.001e)9 .
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n G(n)

1 24
· 31

2 29
· 36

· 51
· 131

3 213
· 315

· 51
· 71

· 112
· 132

4 219
· 328

· 52
· 71

· 112
· 132

· 411
· 10931

5 223
· 345

· 52
· 71

· 114
· 133

· 411
· 611

· 7571
· 10931

6 228
· 366

· 53
· 72

· 114
· 134

· 231
· 411

· 611
· 731

· 7571
· 10931

· 38511

7 232
· 391

· 53
· 72

· 114
· 134

· 231
· 411

· 611
· 731

· 5471
· 7571

· 10932
· 38511

· 7971611

Table 3. G(n) (for p ̸= 3).

Here we check the above inequality. Condition (ii) is equivalent to

(log x)C/(2eγ )−1 > e
(

1 +
log(C log log x)

log x

)
.

We assume x > ee9
. Since C/(2eγ )−1> 4

3.6 −1 =
1
9 and log(C log log x)/log x <

0.001, inequality (ii) holds if (log x)
1
9 > 1.001e, that is, x > e(1.001e)9 . Note that (i)

clearly holds for such x .
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