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INTEGRALITY RELATIONS FOR POLYGONAL DISSECTIONS

AARON ABRAMS AND JAMES POMMERSHEIM

Given a parallelogram dissected into triangles, the area of any one of the
triangles of the dissection is integral over the ring generated by the areas of
the other triangles. Given a trapezoid dissected into triangles, the area of any
triangle determined by either diagonal of the trapezoid is integral over the
ring generated by the areas of the triangles in the dissection. In both cases,
the integrality relations are invariant under deformation of the dissection.

The trapezoid theorem implies and provides a new context for Monsky’s
equidissection theorem that a square cannot be dissected into an odd number
of triangles of equal area. A corollary of these results is that the area
polynomials for parallelograms we introduced and studied in previous work
(2014; 2022; 2023) have all leading coefficients equal to ±1.

1. Introduction

We establish several new results about the geometry of dissections of certain
Euclidean plane polygons. A dissection of such a polygon T into triangles is a
collection of triangles in the plane whose union is T and whose interiors are disjoint.

Theorem 1. Let T be a trapezoid in the Euclidean plane with vertices p, q, r, s,
in counterclockwise order. Suppose that T is dissected into n triangles of areas
a1, . . . , an . Then the area of the triangle pqs is integral over Z[a1, . . . , an].

Theorem 2. Let T be a parallelogram in the Euclidean plane with a dissection into
n triangles of areas a1, . . . , an . Then an is integral over Z[a1, . . . , an−1].

Theorem 1 immediately implies Monsky’s theorem [1970] that a parallelogram
cannot be dissected into an odd number of triangles of equal area, since 1

2 is not
integral over Z[1/n] when n is odd. Thus Theorem 1 generalizes and provides
a new context for Monsky’s theorem. However, this cannot be considered a new
proof of Monsky’s theorem, since our proof proceeds along the same lines as the
original, using valuations to 3-color points of a certain affine plane and appealing
to Sperner’s lemma. See [Monsky 1970; Jepsen and Monsky 2008].
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We also show that in a certain sense, the integrality relations arising in these
theorems are invariant under deformation; that is, the integrality relations actually
hold for the quadratic polynomials that express the areas of the triangles, and not
just for the numerical areas ai . See Theorems 1+ and 3 below.

Theorem 2 goes hand in hand with a result about the area polynomial pT

that was introduced in [Abrams and Pommersheim 2014] and further studied in
[Abrams and Pommersheim 2022; 2023]. For any combinatorial triangulation T of a
quadrilateral, there is a unique (up to sign) nonzero homogeneous irreducible integer
polynomial pT with one variable Ai for each triangle such that pT (a1, . . . , an) = 0
whenever T is drawn in the plane with a parallelogram boundary and triangles of ar-
eas a1, . . . , an . Here by combinatorial triangulation we mean a simplicial complex
homeomorphic to a disk, with four vertices on the boundary. (The connection with
dissections is that every dissection of a planar trapezoid can be viewed as the image
of a combinatorial triangulation under a piecewise linear map to the plane which
may collapse some triangles; see, e.g, [AP 2022, Propositions 2 and 5].) The mod 2
structure of pT is completely specified by [AP 2022, Theorem 9.1], which implies in
particular that the coefficients of the leading terms are odd integers. Further, in [AP
2023, Theorem 6.2] it is shown that these leading terms must all be equal up to sign.

Theorem 3. For any combinatorial triangulation T , the area polynomial pT is
monic. That is, for any i the coefficient of Ad

i is ±1, where d = deg pT .

This is a special case of the positivity conjecture from [AP 2022, Conjecture 4].

Remark. Monsky’s equidissection theorem applies to arbitrary dissections, as do
our Theorems 1 and 2, whereas the combinatorial triangulations of Theorem 3 are
by definition simplicial complexes. It is easy to see that Theorem 3 also holds for
any dissection that has an area polynomial (the “hyper” case in the language of
[AP 2022, Defintion 26]). However it is not known whether every dissection of a
parallelogram has this property; this question is discussed in [AP 2022, Section 8].

We also note that integrality conditions have previously appeared in theorems
about equidissections of trapezoids. For example, [Jepsen and Monsky 2008,
Theorem 1.1] (see also [Kasimatis and Stein 1990]) gives a necessary condition
for the existence of an equidissection of a trapezoid of a given shape into a given
number of triangles. Theorem 1 strengthens that result.

The theorems are proved by combining ideas originally due to Monsky [1970]
with some technical machinery developed in [AP 2014; 2022; 2023]. Some fa-
miliarity with those works may be helpful for the reader; in order to focus on the
results, we have not attempted to make the arguments here entirely self-contained.

2. Integrality for trapezoids

In this section, we prove Theorem 1 by establishing an integrality relation for the
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triangle pqs of a dissected trapezoid. In fact we prove a stronger version of this
theorem (Theorem 1+) that allows deformations of the trapezoid.

Let T be a combinatorial triangulation of a quadrilateral pqrs. For each vertex v

other than r , we introduce two variables xv and yv. We treat v = r differently so
that our ring will reflect the geometric condition that pqrs be a trapezoid rather
than an arbitrary quadrilateral. For this final vertex, we introduce a variable t which
represents the ratio of the lengths of side sr to side pq. Thus we work in the
polynomial ring

R = C
[{

xv, yv | v ∈ Vertices(T ) \ {r}
}
, t

]
.

In R, we use the abbreviations xr = xs + t (xq − x p) and yr = ys + t (yq − y p).
In R, it is natural to consider the variables xv and yv as having degree 1, while t
has degree 0.

Orienting the boundary in the direction pqrs endows each triangle 1i of T with
an orientation. For each 1i , we introduce a quadratic polynomial Wi ∈ R which
expresses twice the area of the oriented triangle 1i . For convenience, we prefer
to work with doubled areas throughout. This makes little difference, as all the
relations we obtain will be homogeneous. We use WU ∈ R to denote the quadratic
polynomial representing twice the area of triangle psq; this choice of orientation
is consistent with the other triangles. We sometimes abuse language and refer to
the Wi and WU as the areas.

Theorem 4 (Theorem 1+). Let T be a combinatorial triangulation of a quadrilat-
eral pqrs into n triangles. Let W1, . . . , Wn ∈ R denote the polynomials expressing
the areas of the triangles of T , and let WU ∈ R denote the polynomial expressing
the area of the triangle psq. Then WU is integral over Z[W1, . . . , Wn].

Proof. We use many of the ideas from the proof of Theorem 7.2 (Monsky+) from
[AP 2022]. To show that WU is integral over S = Z[W1, . . . , Wn], it is enough
to show that if ν is a valuation on the fraction field of Z[WU , W1, . . . , Wn] such
that ν(Wi ) ≥ 0 for all i , then ν(WU ) ≥ 0 (see, e.g, [Atiyah and Macdonald 1969,
5.22]). Given such a ν, extend it to the fraction field F = Frac(R) and, following
Monsky [1970], use ν to color each point of F ×F one of three colors A, B, C as
in the proof of [AP 2022, Theorem 7.2].

Let M : F ×F → F ×F be the unique affine transformation taking (x p, y p)

to (0, 0), (xq, yq) to (1, 0), and (xs, ys) to (0, 1). Note that

det M =

∣∣∣∣xq − x p xs − x p
yq − y p ys − y p

∣∣∣∣−1

= −W −1
U .

We now color the vertices of T by using M to pull back the coloring of F ×F .
That is, if v is a vertex of T , then we color v with the color of the point M(xv, yv).
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This assigns p, q, s the colors C , A, B, respectively. As for r , one sees that
M(xr , yr)= (t, 1), so r has color A or B. The boundary of T is thus colored C AAB
or C AB B, and in either case we may apply Sperner’s lemma to conclude that T
has an ABC triangle 1 j . For such a triangle we have ν(Area(M1 j )) ≤ 0, which
means ν(−W −1

U W j ) ≤ 0. Hence ν(W j ) ≤ ν(WU ), which implies ν(WU ) ≥ 0. □

We now show that Theorem 1+ implies Theorem 1.

Proof. Let 1 = pqrs be a trapezoid in the plane with a dissection into n triangles
of areas a1, . . . , an , and let u denote the area of triangle psq. As in [AP 2022,
Propositions 2.6, 3.2], there exists a combinatorial triangulation T with m ≥ n
triangles obtained by poofing the dissection, and a drawing ρ of T that has the
same set of nondegenerate triangles as the original dissection along with m − n
degenerate triangles of area 0. By Theorem 1+, there is an integral equation
gT (WU , W1, . . . , Wm) = 0, where we may take gT to be homogeneous in its m + 1
variables. If u = 0, then we are done. Otherwise, ρ( p) ̸= ρ(q), and we may solve
for t and substitute this value along with the given values of xi and yi into gT .
After this substitution the W j corresponding to degenerate triangles vanish. As
the Wi and WU stand for twice the areas, we now divide by 2deg gT to get the desired
integral equation for u over a1, . . . , an . □

We conclude this section with a consequence for parallelograms which general-
izes a theorem of Monsky.

Corollary 5. Let T = pqrs be a parallelogram in the Euclidean plane with a
dissection into n triangles of areas a1, . . . , an . Let σ denote the area of T . Then
1
2σ is integral over Z[a1, . . . , an].

This corollary implies the fact due to Monsky [1970] that if a square of area 1
in the Euclidean plane is dissected into n triangles of areas a1, . . . , an , then there
is a polynomial f with integer coefficients such that 2 f (a1, . . . , an) = 1. (To see
this, take the integral equation for 1

2σ =
1
2 and multiply by a power of 2 to clear

denominators.) Likewise, Theorem 17 of [AP 2022], which extends Monsky’s
theorem to handle deformations, can be derived from Theorem 1+.

3. The area map for trapezoids

Theorem 1+ tells us that WU is integral over Z[W1, . . . , Wn], i.e., there exists a poly-
nomial g = gT ∈ Z[U, B1, . . . , Bn], monic in U , such that g(WU , W1, . . . , Wn) = 0
in R. Assuming that g has been chosen with minimal degree, we will now show
that almost all points in the zero set of g are realized as areas of triangles in an
actual trapezoidal drawing of T . For this purpose, we introduce a drawing space
Trap(T ) and an area map for this situation.
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Let T be a combinatorial triangulation of a quadrilateral with corners pqrs. A
drawing of T is a map ρ : Vertices(T ) → C2 that takes pqrs to a trapezoid; this
means that the vectors q − p and r − s are linearly dependent. Let Trap = Trap(T )

be the space of drawings of T . An open dense subset of Trap is parameterized by
the affine space X = X (T ) with coordinates xv, yv for all vertices v except r and
an additional coordinate t . We will keep track of the areas of the triangles of T
as well as the area U of the triangle formed by the images of p, s, and q (even
though these vertices probably do not form a triangle of the triangulation); thus let
Y = Y (T ) denote the projective space with one coordinate for each triangle of T
and one additional coordinate U . Now let Area : X 99K Y be the (rational) area
map that records the areas of the triangles in the corresponding coordinates and the
area of the triangle ρ( p), ρ(s), ρ(q) in the U coordinate.

Let V = V (T ) denote the closure of the image of the map Area. Thus V ⊂ Y is
a rational variety.

Theorem 6. For any T , the variety V (T ) is an irreducible hypersurface in Y
defined by a homogeneous polynomial zT (U, B1, . . . , Bn) that is monic in U.

Proof. The parameter space X is irreducible, so V (T ) is also irreducible. To show
V (T ) is a hypersurface, we appeal to the argument from [AP 2014, Theorem 5] that
Area is generically locally injective after modding out by affine transformations. A
dimension count then shows that the image of Area has codimension 1 in Y .

Let zT be the defining equation of V (T ), scaled to have integer coefficients.
We wish to show that zT is monic in U . By Theorem 1+, there exists g ∈

Z[U, B1, . . . , Bn] which is monic in U and such that g(WU , W1, . . . , Wn) = 0
in R. We assume that we have chosen such a g with minimal degree. Note that
g = g(U, B1, . . . , Bn) vanishes on the image of Area, so zT divides g.

We now argue that in fact g = ±zT . The Wi are algebraically independent
over C, because if there were a dependence r(W1, . . . , Wn) = 0, we would have
zT divides r , which implies that zT does not contain the variable U . But then
g, which is a multiple of zT , would not be monic in U , a contradiction. We
conclude that Z[W1, . . . , Wn] is isomorphic to a polynomial ring, which is a UFD.
By Gauss’s lemma, the integral equation g may be chosen to be irreducible as a
polynomial in Q(W1, . . . , Wn)[U ]. It follows that g(U, B1, . . . , Bn) is irreducible
in Q[U, B1, . . . , Bn]. From this we see that g = ±zT , and so zT is monic in U , as
desired. □

4. Integrality for parallelograms

In this section we prove Theorems 2 and 3. The proofs of these integrality theorems
for parallelograms rely on our integrality theorem for trapezoids.
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The polynomial pT for parallelograms, studied in [AP 2014; 2022; 2023], can
be linked to the polynomial zT for trapezoids using a simple geometric observation:
a trapezoid T = pqrs is a parallelogram if and only if its area is twice the area
of triangle pqs. For a triangulated trapezoid, this condition is represented by the
equation −2U = S, where S denotes

∑n
i=1 Bi . This observation implies the relation

pT (B1, . . . , Bn) | zT (−S, 2B1, . . . , 2Bn),

from which we will tease out the monicity of pT .
To do this, one further fact about zT is required.

Proposition 7. For any T , we have zT (U, B, 0, . . . , 0) = ±U e(U + B) f for non-
negative integers e and f .

Proving this requires understanding points of V that are not in the image of the
area map. The paper [AP 2023] studies this question in a nearly identical context,
namely the area map for a triangulated parallelogram. One main conclusion there
is that if w is a point of V then either w is in the image of Area or else there is a
subset of the coordinates that sums nontrivially to 0. This conclusion is also valid
for the trapezoid area map.

Lemma 8. Suppose w = [u : b1 : · · · : bn] ∈ V \ Im Area. Let b0 = u. Then there is
a subset Z of {0, . . . , n} such that

∑
i∈Z bi = 0, but bi ̸= 0 for some i ∈ Z.

Proof. We view Area as the area map associated to the complex T̂ = T ∪U which is
a triangulation of the triangle qrs. The proof is nearly identical to the parallelogram
case [AP 2023, Main Theorem 3]. Here are the main points of the argument. We use
the language of generating paths and bubbles introduced in [AP 2023, Section 3].

Suppose w ∈ V \ Im Area. Then there is a generating path for w, which is a
path γ (s) of drawings in Trap converging to a limiting ρ ∈ Trap as s → 0 and such
that Area(γ (s)) → w.

If ρ maps the boundary qrs to a single point, then ρ contains a bubble. Otherwise
there are two adjacent points of the boundary V1 and V2 such that ρ(V1) ̸= ρ(V2).
Using an invertible affine transformation we may assume ρ(V1) = (0, 0) and
ρ(V2) = (1, 0), and a further affine transformation that converges to the identity
as s → 0 fixes γ (s)(V1) = (0, 0) and γ (s)(V2) = (1, 0). We then rescale vertically
so that some vertex is not converging to the x-axis. This produces a new generating
path, with a limiting drawing that we still call ρ. By the elastic lemma of [AP 2023],
ρ must have a bubble.

We conclude that there exists a generating path for w with a bubble. The bubble
corollary of [AP 2023] then asserts that the coordinates inside this bubble sum to
zero but are not all zero. □

We now prove the proposition.
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Proof. From Theorem 1+, zT is monic in U and hence also zT (U, B, 0, . . . , 0) is
monic in U . Thus it suffices to show that the only zeros of zT (U, B, 0, . . . , 0) have
U = 0 or U = −B.

Note that [1 : 0 : · · · ] is not in V , again since zT is monic in U . So we may
assume B ̸= 0, and suppose w = [U : 1 : 0 : · · · ] ∈ V . We will show that U = 0 or
U = −1.

If U = −1, we are done. Otherwise, by Lemma 8, we have w ∈ Im Area. Thus,
there is a drawing with B = 1 and the areas of all other triangles of T equal to 0. It
follows from [AP 2022, Corollary 5.6(1)] that the boundary of T must be drawn as a
degenerate trapezoid. But the vertices of the boundary cannot all be collinear, since
then the Bi would sum to 0. Thus the image of the boundary is a nondegenerate
triangle of area 1, and the four points p, q, r , s map onto the three corners of this
triangle. Thus we see that either the U triangle, psq, or the U ′ triangle, qsr , is
degenerate. However U and U ′ add up to −

∑
Bi , which equals −1. Hence U = 0

or U = −1. □

We now prove Theorems 3 and 2, in that order.

Proof. We first consider the coefficient α of Bd
1 in the polynomial

z̃(B1, . . . , Bn) = z(−S, 2B1, . . . , 2Bn).

This coefficient α is the same as the coefficient of Bd
1 in z(−B1, 2B1, 0, . . . , 0),

which equals ±(−B1)
e B f

1 by the proposition. Thus α = ±1. Since p is a factor
of z̃, it follows from Gauss’s lemma that Bd ′

1 has coefficient ±1 in p, where d ′ is
the degree of p. This proves Theorem 3.

To prove Theorem 2 for triangulations, we view the polynomial pT (B1, . . . , Bn)

as a polynomial in Bn with coefficients in Z[B1, . . . , Bn−1]. We have just established
that the leading coefficient is ±1. Thus pT provides the required integral equation
for Bn over Z[B1, . . . , Bn−1].

To prove Theorem 2 for dissections, apply the poofing argument used in Theorem 1
to produce a combinatorial triangulation to which the previous paragraph applies. □

Example. The triangulation Tn with vertices p = p0, p1, . . . , pn+1 = r , q, s and
triangles Ai = s pi−1 pi and Bi = q pi pi−1 (for 1 ≤ i ≤ n + 1), called the diagonal
case in [AP 2014], has

zTn =

( n+1∏
k=0

ℓk

)(
1
ℓ0

−

n∑
k=0

Ak+1

ℓkℓk+1

)
where ℓk stands for the linear form A1 +· · ·+ Ak + B1 +· · ·+ Bk +U . Its degree is
n +1. For example zT1 = U 2

+2U B1 +U B2 +U B4 + B2
1 + B1 B2 + B1 B3 + B1 B4.

We then have zTn (−S, 2Ai , 2Bi ) = S · pTn , where pTn is computed in [AP 2014].
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