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THE RESTRICTION OF EFFICIENT GEODESICS
TO THE NONSEPARATING COMPLEX OF CURVES

SETH HOVLAND AND GREG VINAL

In the complex of curves of a closed orientable surface of genus g, C(Sg),
a preferred finite set of geodesics between any two vertices, called efficient
geodesics, was introduced by Birman, Margalit, and Menasco (2016). The
main tool they used to establish the existence of efficient geodesics was a
dot graph, which records the intersection pattern of a reference arc with the
simple closed curves associated with a geodesic path. The idea behind the
construction was that a geodesic that is not initially efficient contains shapes
in its corresponding dot graph. These shapes then correspond to surgeries
that reduce the intersection with the reference arc. We show that the efficient
geodesic algorithm can be restricted to the nonseparating curve complex;
the proof of this will involve analysis of the dot graph and its corresponding
surgeries. Moreover, we demonstrate that given any geodesic in the complex
of curves we may obtain an efficient geodesic whose vertices, with the possible
exception of the endpoints, are all nonseparating curves.

1. Introduction

The complex of curves and geodesics. The complex of curves C(S) for a compact
surface S is a simplicial complex whose vertices correspond to isotopy classes of
essential simple closed curves in S and whose edges connect vertices with disjoint
representatives. We can endow the 0-skeleton of C(S) with a metric by defining
the distance between two vertices u and v to be the minimal number of edges
among paths between them. In this paper, as in [Birman et al. 2016], we assume
that the surfaces we are considering are closed and have genus at least two. It is a
fundamental result that in this case C(S) is connected. Thus, the distance is defined
for all pairs of vertices in C(S). The trouble is that the complex of curves is, in
fact, too connected. It turns out that C(S) is locally infinite (for any vertex v there
are infinitely many adjacent vertices w) and there are infinitely many geodesics
between many pairs of vertices. Thus, it is useful to have a preferred finite subset of
geodesics to choose from. This is the idea behind the introduction of tight geodesics
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in [Masur and Minsky 2000]. Birman, Margalit, and Menasco [Birman et al. 2016]
introduced an alternate preferred finite set of geodesics, called efficient geodesics.
The novel feature of this particular set of geodesics is the algorithm used to generate
them. The algorithm can (and has been, in [Glenn et al. 2017]) implemented on a
computer to find efficient geodesics for small distances.

We let N(S) denote the subcomplex of C(S) spanned by vertices corresponding
to nonseparating simple closed curves. This complex is called the complex of
nonseparating curves. Again, it is a standard result that if the genus of S is at least
two, N(S) is connected. The complex of nonseparating curves has attracted interest
in the literature. See [Rasmussen 2020; Hamenstädt 2014; Wright 2023].

We first show that given a geodesic in the complex of curves we can always find
a geodesic whose interior is contained in the subcomplex of nonseparating curves.
It is then natural to wonder whether efficient geodesics exist that are contained in
this subcomplex. Our main result is that they in fact do.

Theorem 1.1. Let g ≥ 2. If v and w are vertices of N(Sg) with d(v, w) ≥ 3, then
there exists an efficient geodesic from v to w in N(Sg). Additionally, there are
finitely many efficient geodesics from v to w.

Efficient geodesics. The idea behind obtaining an efficient geodesic v0, . . . , vn

in C(S) is to iteratively decrease intersections with an arc as we move along the
path. We explain further below. The following construction and results were first
introduced in [Birman et al. 2016]; the reader familiar with these results is invited
to skip to Section 2.

Suppose that γ is an arc in S and α is a simple closed curve in S. Then we say
that γ and α are in minimal position if α is disjoint from the endpoints of γ and the
number of points of intersection of α and γ is smallest over all simple closed curves
homotopic to α through homotopies that do not pass through the endpoints of γ .

Let v0, . . . , vn be a geodesic of length at least three in the complex of curves, and
let α0, α1, and αn be representatives of v0, v1, and vn that are pairwise in minimal
position. A reference arc for the triple α0, α1, αn is an arc γ that is in minimal
position with α1 and whose interior is disjoint from α0 ∪ αn .

We say that the oriented geodesic v0, . . . , vn is initially efficient if

|α1 ∩ γ | ≤ n − 1

for all choices of reference arcs γ . Finally, we say that v =v0, . . . , vn =w is efficient
if the oriented geodesic vk, . . . , vn is initially efficient for each 0 ≤ k ≤ n − 3 and
the oriented geodesic vn, vn−1, vn−2, vn−3 is also initially efficient. Thus, to test
the efficiency of a geodesic we look at all the triples vk, vk+1, vn and count the
intersection of vk+1 with any reference arc. While it may seem impossible to check
intersections with all reference arcs, it turns out that there are finitely many of
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them. Moreover, in special cases it is sufficient to check the intersections of αi ∩αn

for 1 ≤ i ≤ n − 1 [Birman et al. 2016].
Given a vertex path v0, . . . , vn in C(S) with representative curves α0, . . . , αn and

an oriented reference arc γ for α0, α1 and αn , we may traverse γ in the direction
of its orientation and record the order in which the curves α0, . . . , αn intersect γ .
The result is a sequence of natural numbers σ ∈ {1, . . . , n − 1}

N , where N is
the minimal cardinality of γ ∩ (α1 ∪ · · · ∪ αn−1). The sequence σ is called the
intersection sequence of the αi along γ .

The complexity of an oriented path v0, . . . , vn ∈ C(S) is defined to be

n−1∑
k=1

(i(v0, vk) + i(vk, vn)).

We say that a sequence σ of natural numbers is reducible under the following
circumstances: whenever σ arises as an intersection sequence for a path v0, . . . , vn

in C(S) there is another path v0, v
′

1, . . . , v
′

n−1, vn with smaller complexity. The
following proposition demonstrates that paths of minimal complexity must be
initially efficient.

Proposition 1.1 [Birman et al. 2016, Proposition 3.1]. Suppose σ is a sequence of
elements of {1, . . . , n − 1}. If σ has more than n − 1 entries equal to 1, then σ is
reducible.

From the above proposition Birman, Margalit, and Menasco deduce the existence
of initially efficient geodesics.

Proposition 1.2 [Birman et al. 2016, Proposition 3.2]. Let g ≥ 2. If v and w are
vertices of C(S), with d(v, w) ≥ 3, then there exists an initially efficient geodesic
from v to w.

We note that the definition of complexity of a path works when restricted to the
complex of nonseparating curves. It is interesting to consider how this measure
may change when restricted to the nonseparating curve complex. See Questions
2 and 3 in Section 3.

Sawtooth form and the dot graph. The proof of Proposition 1.1 was carried out in
three stages. First, the intersection sequence was put into a normal form. This is
called sawtooth form. Then, associated to the sawtooth form for the sequence is
a diagram called the dot graph. The reducibility of an intersection sequence then
corresponds to certain geometric features in the dot graph. We review these now.

We may exchange the order of intersection of two curves that are adjacent in the
intersection sequence by performing a commutation as described in [Birman et al.
2016, Lemma 3.3]; see Figure 1.
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γ

α ji α ji+1 α′

ji
α′

ji+1

Figure 1. A commutation.

The result is a sequence that is in sawtooth form. That is, we say a sequence
( j1, j2, . . . , jk) of natural numbers is in sawtooth form if

ji < ji+1 =⇒ ji+1 = ji + 1.

An example of a sequence in sawtooth form is (1, 2, 2, 3, 4, 3, 4, 2, 3, 4, 5). Given
a sequence of natural numbers in sawtooth form, we also consider its ascending
sequences, which are the maximal subsequences of the form (k, k+1, . . . , k+m). In
the above example the ascending sequences are (1, 2), (2, 3, 4), (3, 4), (2, 3, 4, 5).
It is clear that if we have an intersection sequence and we perform a finite number
of commutations we may get the intersection sequence into sawtooth form while
keeping the number of intersections of the αi ’s with γ constant.

Next, given an intersection sequence σ in sawtooth form, we may regard it as a
function 1, . . . , N → N and plot it in R2

≥0. The points of the graph of a sequence
will be called dots. We decorate the graph by connecting the dots that lie on a given
line of slope 1; these line segments are called ascending segments. The resulting
decorated graph is called the dot graph of σ and is denoted by G(σ ). See Figure 2.
Again, the idea behind this construction is that given a geodesic that is not efficient
we can see shapes in its corresponding dot graph that correspond to surgeries that
reduce the intersection with the reference arc.

Dot graph polygons and surgery. This section is a summary of [Birman et al. 2016,
Section 3.3]. We first review the surgeries described, and then in the next section
we discuss the results of these surgeries when restricted to N(S).

1
2
3
4
5

Figure 2. The dot graph of (1, 2, 2, 3, 4, 3, 4, 2, 3, 4, 5).
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Figure 3. Dot graph polygons (box, hexagon type 1, hexagon type 2).

After putting an intersection sequence into sawtooth form and constructing its
dot graph, it was shown that if the dot graph contained certain geometric shapes, it
corresponded to a sequence that was reducible. These shapes were called dot graph
polygons. In particular, the existence of a box, hexagon of type I or hexagon of
type II in the dot graph (see Figure 3) implied that the sequence σ was reducible. To
remove these shapes from the dot graph, surgeries on the curves in the intersection
pattern corresponding to these shapes were introduced.

We do surgery on a curve α that intersects our intersection arc γ in at least two
points. We draw a neighborhood of γ so that it is horizontal and oriented to the
right. We then remove from α small neighborhoods of its points of intersection
with γ . This results in a pair of curves. We will then join two of the endpoints back
together forming a new simple closed curve, and discard the other curve. Depending
on how we join pairs of endpoints, we say that α′ is obtained from α by ++, +−,
−+, or −− surgery along γ . The first symbol is + or − depending on whether
the first endpoint of α lies to the left or right of γ , respectively. Similarly for the
second symbol. When we are considering an arbitrary simple closed curve, exactly
two of the four possible surgeries result in a simple closed curve. If we give α an
orientation then two intersection points of α and γ can either agree or disagree in
orientation. If they agree, then the +− and −+ surgeries, which are called odd,
each result in a simple closed curve. Otherwise, the ++ and −− surgeries, called
even surgeries, result in simple closed curves.

Suppose that we have a geodesic in C(S) containing α as a representative for some
vertex vi . If we are to perform surgery on α then it must intersect our intersection
arc γ at least twice (otherwise it stays in the geodesic and is not replaced). Thus,

α α

γ

++ surgery −− surgery +− surgery −+ surgery

Figure 4. Surgery on a curve.
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either α intersects γ consecutively, or between these intersections γ intersects with
at least one other curve β. In the complex of curves, we can immediately get rid
of the first case, where α intersects γ consecutively, by performing the surgeries
described above. This does not follow so easily in the subcomplex of nonseparating
curves (see Proposition 2.5). However, if α does not intersect γ consecutively, as is
the case when we see boxes, and hexagons in the dot graph, we will see that we
have the same choice of surgeries as before.

Using the above surgeries, it was shown in [Birman et al. 2016] that a dot graph
with an empty, unpierced box or an empty, unpierced hexagon of type 1 or 2
corresponds to a sequence that is reducible. This was done by prescribing a
sequence of surgeries that replaced the αi curves with new α′

i that resulted in
a path with smaller complexity. Below we state the required sequence of surgeries
corresponding to the type of dot graph polygon.

Suppose the dot graph G(σ ) has an empty, unpierced box P . Then the corre-
sponding sequence of intersections along γ has the form

αk, . . . , αk+m, αk, . . . , αk+m,

where 1 ≤ k ≤ k + m ≤ n − 1. For the vertices not in {k, . . . , k + m}, they remain
unchanged. We define α′

k, . . . , α
′

k+m inductively: for i = k, . . . , k + m the curve α′

i
is obtained by performing surgery along γ between the two points of αi ∩ γ

corresponding to dots of P; the surgeries are chosen so that they form a path in
the directed graph in Figure 5. The vertices of the graph correspond to the four
types of surgeries described above: the rule is that the second sign of the origin of a
directed edge is opposite of the first sign of the terminus. It is clear from the graph
that the desired sequence of surgeries exists. We demonstrate this procedure in
Figure 5, where we perform −+ surgery on α3, then −− surgery on α4, and finally
+− surgery on α5. It is an easy check that replacing the curves αi with these new
ones results in a reduced intersection sequence σ .

Suppose the dot graph G(σ ) has an empty, unpierced hexagon P of type 1. The
case of a type 2 hexagon is nearly identical so it will be omitted. By definition of
sawtooth form and of a type 1 hexagon, there are no ascending segments of G(σ )

⁺⁺
-⁺

--

- ⁺

Figure 5
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3 4 5 3 4 5 3′ 4′ 5′

Figure 6

in the vertical strip between the leftmost and middle ascending edges of P and any
ascending segments of G(σ ) that lie in the vertical strip between the middle and
rightmost ascending segments have their highest point strictly below the lower-right
horizontal edge of P . See Figure 7.

It follows that the dots of P correspond to a sequence of intersections along γ

of the form

αk, . . . , αk+m, αk, . . . , αk+l, α j1, . . . , α jp , αk+l, . . . , αk+m,

where 1 ≤ k ≤ k + l ≤ k + m ≤ n − 1, p ≥ 0, and each ji < αk+l . See Figure 7,
where k = 3, l = 2, m = 4, and p = 0.

As in the case with the box, whenever we have αi with i ̸∈ {k, . . . , k + m} we
set α′

i = αi . Each of the remaining αi correspond to two dots in P except for αk+l ,
which corresponds to three. Let α′

k+l be the curve obtained from αk+l via surgery
along γ between the first two (leftmost) points of αk+l ∩ γ corresponding to dots
of P and satisfying the following property: α′

k+l does not contain the arc of αk+l

containing the third (rightmost) point of αk+l ∩ γ corresponding to a dot on P .
We then define α′

k+l−1, . . . , α
′

k inductively as before using the directed graph in
Figure 5, and finally, we define α′

k+l+1, . . . , α
′

k+m inductively as before. It is readily
verified that this procedure reduces σ .

Using these surgeries to remove from the dot graph the above polygons results
in an initially efficient geodesic. The last step is to inductively produce initially

2

3

4
5
6
7

Figure 7. Type 1 hexagon.
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Figure 8. The surgery described above on a type 1 hexagon.

efficient geodesics for the triples vk, . . . , vn for each 0 ≤ k ≤ n −3 and the oriented
geodesic vn, vn−1, vn−2, vn−3. This was done in [Birman et al. 2016, Section 3.5].
The exact inductive argument works when restricting to N(S), so our work lies
solely in showing the construction of initially efficient geodesics restricts to N(S).

2. Existence of efficient geodesics in complex of nonseparating curves

Our main result is that efficient geodesics exist in the complex of nonseparating
curves. Since this is a subcomplex of the complex of curves, the fact that there are
finitely many of them follows from [Birman et al. 2016, Theorem 1.1]. We restate
our main theorem:

Theorem 1.1. Let g ≥ 2. If v and w are vertices of N(Sg) with d(v, w) ≥ 3, then
there exists an efficient geodesic from v to w in N(Sg). Additionally, there are
finitely many efficient geodesics from v to w.

Proof of Theorem 1.1. The result lies in following exactly the proof setup for the
complex of curves in [Birman et al. 2016]. We prove the existence of initially
efficient geodesics in N(S) (see Proposition 2.2). Then the additional inductive
step will follow exactly as outlined in [Birman et al. 2016, Section 3.5]. The key
observation of this paper is that Lemma 2.1 holds when restricting to N(S):

Lemma 2.1. Suppose that σ is a sequence of natural numbers in sawtooth form
and that G(σ ) has an empty, unpierced box or an empty, unpierced hexagon of
type 1 or 2. Then σ is reducible (in N(S)).

This will allow us to prove:

Proposition 2.2. Let g ≥ 2. If v and w are vertices of N(S) with d(v, w) ≥ 3, then
there exists an initially efficient geodesic from v to w in N(S).

In [Birman et al. 2016] the existence of the above polygons in the dot graph
came with surgeries on the curves representing vertices in the given geodesic that
removed these shapes in the dot graph. To prove Lemma 2.1, we need only to show
that it is possible to do the surgery constructions outlined in Section 1.4, so that
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each new curve is nonseparating. For most of the surgeries this is straightforward,
while a few need to be redone carefully.

We begin with the well-known fact that a separating curve must intersect any
other curve an even number of times.

Proposition 2.3. Let α be a simple closed curve in S. If α separates S into two
components, then for any simple closed curve β we have the geometric intersection
number, i(α, β), is even.

Proof. Let Sα be the surface that results from splitting S along α. In Sα , the curve β

is either unchanged (all of β is in one of the connected components of Sα) or β is a
collection of arcs with endpoints along α. Each of these arcs has two endpoints.
Thus intersections, should they exist, come in pairs. In either case this gives an
even number of intersections with α. □

The quick test we will use when deciding if a curve made via surgery is nonsep-
arating is to see if i(α′, β) = 1 for some curve β. Next, we must show that given a
geodesic in the complex of curves, we may take all the vertices in the path to be
nonseparating curves. This allows us to start with geodesic in N(S) and attempt
to make it efficient. The following proposition was also observed in [Hamenstädt
2014, Corollary 3.3].

Proposition 2.4. Given a geodesic in C(S) with endpoints v, w ∈ N(S) there exists
a geodesic from v to w with each vertex a nonseparating curve.

Proof. Let v = v0, . . . , vn = w be a geodesic in C(S). If all the vertices in
this geodesic are nonseparating curves then we are done. Assume that vi is a
separating curve in the above geodesic with lowest index i . Then consider the
subpath vi−1, vi , vi+1 because vi is separating it divides the surface S into two
components. Both vi−1 and vi+1 are disjoint from vi however since there is not
an edge between them they intersect each other. Therefore, they are both in one
of the connected components of Sv. In the other connected component choose a
nonseparating simple closed curve v′

i . Such a curve exists, as otherwise vi would
be inessential. This curve is disjoint from both vi−1 and vi+1 and may replace vi

in the geodesic. Continuing in this way gives a geodesic in the subcomplex of
nonseparating curves. □

Notice that the connectivity of N(S) follows immediately from Proposition 2.4.

The trivial surgeries. The above proposition allows us to start with a geodesic path
in N(S); now we wish to do simplifying surgeries on it. We begin with the case
where our reference arc γ sees a curve α consecutively. In C(S), we performed
an even or odd surgery depending on the orientation of α and were guaranteed
that each resulted in a simple closed curve. However, when we restrict to the
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α α α′ α α

γ γ

Figure 9. Odd surgery always results in a nonseparating curve.

subcomplex of nonseparating curves we are no longer guaranteed that both curves
are nonseparating. For instance, take a separating curve and connect sum it with
a nonseparating curve. Then performing surgery along an arc separates the curve
into a separating curve and an nonseparating one. Proposition 2.5 shows, however,
that performing surgery on a nonseparating curve that meets a reference arc γ

consecutively will always yield at least one nonseparating curve.

Proposition 2.5. Let γ be a reference arc, and α be a nonseparating simple closed
curve. Suppose that i(α, γ ) ≥ 2. Then there exists a simple closed curve α′ obtained
from the nonseparating simple closed curve α via some surgery along γ that is still
nonseparating.

Proof. Orient γ and α. Consider two points of intersection that are consecutive
along γ . The orientation of γ and α allow us to assign an index to each intersection
either +1 or −1. If two points of intersection have the same index, we preform an
odd surgery. The resulting curve α′ crosses γ one time and intersects α exactly
once. (See Figure 9 for +− surgery.) We emphasize that we construct α′ so that
outside the local picture in Figure 9, α′ lies just to the right of α. Since i(α, α′) = 1,
α′ is nonseparating.

If the two intersection points have opposite indices we perform an even surgery.
In this case, we may need to make a choice of curve to replace α with, since
one of the surgeries may give a nonseparating curve. One of the curves remains
above γ and the other remains below γ . We argue that at least one of these curves
is nonseparating.

α α

γ

Figure 10. ++ and −− surgery on α.
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γ

α α

γ

Region 1

Region 2

Region 1

Region 2

Region 3

Figure 11. Figure for the proof of Proposition 2.5.

Assume for contradiction that both curves were separating this would divide S
into three connected components. Then joining the curves back together would
give back our original curve α however α would still separate our surface.

Thus, performing an even surgery always results in at least one nonseparating
curve. □

The nontrivial surgeries. We use the dot graph exactly as in [Birman et al. 2016]
to determine how to reduce our intersections sequence. When restricting to the
nonseparating curve complex we need to show that each dot graph polygon has a
surgery that results in the removal of the polygon and whose new curves are all
nonseparating. This will prove Lemma 2.1.

Throughout we assume that σ is an intersection sequence of nonseparating curves
in sawtooth form.

Case 1: Suppose that σ is a sequence of natural numbers in sawtooth form and
that G(σ ) has an empty, unpierced box. Then σ is reducible.

This is the easy case. Carry out the surgeries exactly as in C(S). Performing the
surgeries one at a time, notice that regardless of the type of surgery, the resulting
curve will intersect a curve adjacent to it exactly once. The figures below demon-
strate this when the box has three curves involved. The general case follows exactly
the same. See Figures 13 and 14 for the first two steps in the surgery sequence of a
box containing the curves 3, 4, and 5.

Continuing in this way, removes the box from the dot graph and replaces all
curves with other nonseparating curves.

3

4

5

Figure 12. An empty, unpierced box.
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3 4 5 3 4 5 3 4 5 3 4 5

Figure 13. The intersection sequence corresponding to the above
box in the dot graph. Odd surgery on curve 3 intersects curve 4
exactly once, and thus it is nonseparating. Clearly, an even surgery
would do the same, so there are two surgery options for curve 3
exactly as before.

Case 2: Suppose that σ is a sequence of natural numbers in sawtooth form and
that G(σ ) has an empty, unpierced hexagon of type 1 or 2. Then σ is reducible.

We will treat the case of an empty, unpierced hexagon of type 1. The other
case follows exactly the same procedure. The surgery instructions for this case are
similar to the instructions for C(S) but one new idea is needed. We introduce some
new terminology to simplify the discussion. Given a empty, unpierced hexagon of
type 1 in the dot graph, its vertices have the form

αk, . . . , αk+m, αk, . . . , αk+l, α j1, . . . , α jp , αk+l, . . . , αk+m,

where 1 ≤ k ≤ k + l ≤ k + m ≤ n − 1, p ≥ 0, and each ji < αk+l . We will call the
integer l the step length of the hexagon, the number of vertices in α j1, . . . , α jp the
tail length of the hexagon, and the integer m the total length of the hexagon. From
the dot graph it is easy to see these values. For instance the hexagon in Figure 7 has a
step length 2, and tail length 4. We will call the curve αk+l the curve at step length l.

In the discussion below we will also refer to vertices on the dot graph as being
“above” or “below” each other. This is referring to the actual placement of the
vertices on the dot graph. Along the intersection arc, a curve being “above” another
means that its index is higher than the other.

3 4 5 3 4 5 3 4 5 3 4 5

Figure 14. Now surgery on curve 4 is performed. This time an
even surgery is demonstrated. As in Figure 13, this curve intersects
curve 5 exactly one time, so it is nonseparating. An odd surgery
would do the same.
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Figure 15. These three numbers, along with the starting vertex,
completely determine a type 1 hexagon.

Notice that we may always assume that the tail length of a hexagon is nonzero.
If it were zero, the curve at step length l would occur consecutively in the dot graph,
and a trivial surgery on this curve would remove the hexagon from the dot graph.
We begin the hexagon surgery the same. Consider the curve at step length l, this is
the only curve that occurs three times in the hexagon. There exists a surgery on the
first two intersection points that removes the third intersection point. This surgery is
determined by the orientations of the first two intersection points. However, whatever
surgery is required intersects the curves directly adjacent (above and below in the
dot graph) to it exactly one time, thus the result is nonseparating. See Figure 16.

We now attempt to perform surgeries on the curves that occur below the curve
at step length l. Just as in the box case, these curves have either surgery available
to them since all possible surgeries will intersect the curve directly adjacent to it
(above it in the dot graph) exactly once. Now we are ready perform surgeries on
the curves that occur after the curve at step length l. The curve directly adjacent to

3 4 5 6 7 3 4 5 4 5 6 7 3 4 5 6 7 3 4 5 4 5 6 7

Figure 16. The intersection sequence corresponding to the above
hexagon in the dot graph. Odd surgery on curve 5 intersects curve 6
(and 4) exactly once, and thus it is nonseparating. An even surgery
would do the same, so any required surgery to delete the last 5
vertices in the dot graph works. The ellipses represent curves in
the tail of the hexagon, and the curve 4 is seen in the intersection
sequence because we assume the tail length is nonzero.
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3 4 5 6 7 3 4 5 4 5 6 7 3 4 5 6 7 3 4 5 4 5 6 7

Figure 17. Now surgery on curve 4 is performed. This time an
even surgery is demonstrated. As above this curve intersects the
old curve 5 exactly one time, so it is nonseparating. An odd surgery
would do the same. The same follows for curve 3.

the curve at step length l (above it in the dot graph) may cause issues. We break
this into two cases:

Subcase 2.1: Let m denote the total length of the hexagon, and let l denote the
step length. If m > l + 1, then the surgeries follow exactly as in C(S). This is
clear since all the curves obtained from surgery above the curve at step length l
intersect an adjacent curve (above or below in the dot graph) exactly once. Notice
that for the curve directly above the curve at step length l, αk+l+1, we use the
intersection with the curve above it αk+l+2 to show it is nonseparating. For curves
above αk+l+1 in the dot graph, say α j , we look at the intersection with α j−1 to
show it is nonseparating. See Figure 18.

Subcase 2.2: Let m denote the total length of the hexagon, and let l denote the
step length. If m = l + 1, then we introduce a new surgery on the curve αk+l+1.

All the curves below the curve at step length l have the surgeries performed on
them as before, each is nonseparating. We now need to perform a surgery on the
curve αk+l+1 and argue that is nonseparating.

3 4 5 6 7 3 4 5 4 5 6 7 3 4 5 6 7 3 4 5 4 5 6 7

Figure 18. Surgery on curve 6 is performed. This curve intersects
the curve 7 exactly one time, so it is nonseparating. An odd surgery
would do the same. Notice the surgery would intersect the old
curve 5 twice, so it is not possible to argue that it is nonseparating
with curve 5.
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3

4

5

6

7

Figure 19. Surgery on the curves 3 through 5 will be just fine,
since either type of surgery will intersect the curve directly above
it exactly once. But surgery on 7 will intersect 6 twice.

If the curve αk+l+1 requires odd surgery, then it is nonseparating because the
surgered curve α′

k+l+1 intersects αk+l+1 exactly once as in Proposition 2.5. In the
case where αk+l+1 requires even surgery and the even surgery required forces the
new curve α′

k+l+1 to be separating, will we consider the part of αk+l (the curve at step
length l) that is “inside” of the curve α′

k+l+1 (We call the “inside” of α′

k+l+1 the part
of the surface disjoint from the curve α′

k+l). Since we are assuming our hexagon has
a tail, we will also see the curve αk+l−1 intersect γ one time inside the region along
gamma between the second occurrence of αk+l and the third occurrence of αk+1.
If we were able to perform even surgery on these two parts of αk+l , the resulting
curve is nonseparating since it intersects αk+l−1 exactly once. By the assumption
that α′

k+l+1 is separating, the orientation of αk+l inside of α′

k+l+1 must be consistent
with an even surgery, otherwise αk+l would intersect αk+l+1. See Figure 20.

Let the new nonseparating curve that is obtained by joining the ends of curve αk+l

inside of α′

k+l+1 be denoted by β. We want β to be a replacement curve for
curve αk+l+1 so it must be disjoint from α′

k+l and αk+l+2. Clearly, β is disjoint

3 4 5 6 7 3 4 5 6 5 6 7 3 4 5 6 7 3 4 5 6 5 6 7

Figure 20. After performing surgery on curve 6, and doing the
required even surgery on curve 7 (in the figure it is ++), notice
the two parts of curve 6 bounded by the new curve 7′. If we
assume that 7′ is separating then the two parts of 6 inside 7′ must
be oriented to allow for ++ surgery.
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6′ 7 5 6 7

β 7′

Figure 21. The curve β is disjoint from curve 6′ since 7′ is disjoint
from 6′ and β, and β is on the other side of 7′ than 6′.

from α′

k+l since α′

k+l+1 is disjoint from α′

k+l , β is disjoint from α′

k+l+1 and β is on
the other side of α′

k+l+1 then α′

k+l . This is demonstrated in Figure 21.
Now we need to argue that the curve β is disjoint from the curve αk+l+2. Observe

that α′

k+l+1 must be disjoint from αk+l+2. Indeed, it is obtained by surgery on the
curve αk+l+1 with an arc of γ , both of which are disjoint from αk+l+2, because
αk+l+2 does not enter the hexagon. Thus, if αk+l+2 intersects β it is contained
entirely inside α′

k+l+1 and therefore disjoint from α′

k+l . This is a contradiction.
Since then the curve αk+l+1 is not required in a geodesic path. We would have a
path α0, α

′

1, . . . , α
′

k+l, αk+l+2, . . . ,αn of length n − 1 contradicting the assumption
that the distance between v0 and vn is exactly n. So, β is a nonseparating curve
disjoint from αk+l+2 and α′

k+l . Therefore, β is a suitable replacement for αk+l+1.
The case for a hexagon of type 2 follows the exact same argument. This covers

all the cases, thus proving Lemma 2.1.

3. Conclusion

We have demonstrated that efficient geodesics exist in the nonseparating curve
complex. Moreover, we demonstrated that given any geodesic in the complex
of curves we may obtain an efficient geodesic whose vertices, with the possible
exception of the endpoints, are all nonseparating curves.

Question 1. Birman, Margalit, and Menasco [2016, Theorem 1.1] prove that, given
vertices v0 and vn at distance n in C(S), there are at most n6g−6 vertices that may
appear as the first curve in an initially efficient geodesic. Can this bound be reduced
when we restrict to N(S)?

Question 2. Does replacing a separating curve with a nonseparating curve in a path
ever increase the complexity measure?

Question 3. Find an example of an efficient geodesic that contains a separating
curve. Are there any restrictions on the number of separating curves in a efficient
geodesics?
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