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ON MULTIPLICITY-FREE WEIGHT MODULES
OVER QUANTUM AFFINE ALGEBRAS

XINGPENG LIU

Our goal is to construct and study the multiplicity-free weight modules of
quantum affine algebras. For this, we introduce the notion of shiftability
condition with respect to a symmetrizable generalized Cartan matrix, and
investigate its applications on the study of quantum affine algebra struc-
tures and the realizations of the infinite-dimensional multiplicity-free weight
modules. We also compute the highest `-weights of the infinite-dimensional
multiplicity-free weight modules as highest `-weight modules.

1. Introduction

Let Uq.g/ be the quantum affine algebra (without derivation) associated to an affine
Lie algebra g over C in which q is not a root of unity. In this note, we are concerned
with infinite-dimensional multiplicity-free weight representations, i.e., those with
all of their weight subspaces one-dimensional, over Uq.g/. As we shall see, these
representations are the basic representations toward the infinite-dimensional modules
of quantum affine algebras.

In the classical cases, the multiplicity-free weight representations over finite-
dimensional simple Lie algebras, or more generally, the bounded weight repre-
sentations have been extensively studied in [Benkart et al. 1997; Britten et al.
1994; Grantcharov and Serganova 2006; 2010]. These representations play a
crucial role in the classification of simple weight modules of finite-dimensional
simple Lie algebras (see [Mathieu 2000]). For the quantum groups of finite type,
Futorny, Hartwig, and Wilson [Futorny et al. 2015] gave a classification of all
infinite-dimensional irreducible multiplicity-free weight representations of type An.
Recently, the infinite-dimensional multiplicity-free weight representations of the
quantum groups of types An, Bn and Cn were constructed in [Chen et al. 2024].

As an important class of multiplicity-free weight modules, the q-oscillator repre-
sentations over Uq.g/ of types A.1/n , C .1/n , A.2/2n , and D.2/nC1 have been obtained in
the works of T. Hayashi [1990] and A. Kuniba and M. Okado [2018; 2013; 2015].
Our goal is to construct infinite-dimensional multiplicity-free weight representations
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of Uq.g/ in a general way. For this, associated to each symmetrizable generalized
Cartan matrix, we introduce a system of equations in a Laurent polynomial ring A
(essentially, the Cartan part of Uq.g/) by the shift operators. We say that the
corresponding generalized Cartan matrix satisfies the shiftability condition if the
system of equations has solutions (see Section 4A). One result of this note is
that an affine Cartan matrix satisfies the shiftability condition if and only if the
relevant Dynkin diagram is one of the types mentioned above (see Theorem 4.2).
The solutions allow us to define Uq.g/-module structures on A, and to relate the
quantum affine algebra structures with the n-fold quantized oscillator algebra. Our
method for the construction is parallel with the earlier work concerning U 0-free
modules [Chen et al. 2024]. Namely, we can get the multiplicity-free weight
modules of Uq.g/ by applying the “weighting” procedure to the above modules
on A. In particular, the q-oscillator representations can also be reconstructed.

For the study of weight representations of quantum affine algebras, the concepts
of `-weights and `-weight vectors have proven especially useful, allowing one to
refine the spectral data properly in weight representations. For example, we have the
classification of irreducible finite-dimensional representations (see [Chari and Press-
ley 1991; 1998]) and infinite-dimensional weight representations of quantum affine
algebras [Hernandez 2005; Mukhin and Young 2014] by highest `-weights (their
highest `-weights are determined by Drinfeld polynomials and rational functions,
respectively). In this note, we shall compute explicitly the highest `-weight of the
q-oscillator representations. For the type A.1/n , the highest `-weights of q-oscillator
representations also were discussed in [Boos et al. 2016; 2017; Kwon and Lee 2023].

The paper is organized as follows. In Section 2, we give some necessary notation,
and review two presentations of quantum affine algebras. In Section 3, we recall
the definition of highest `-weight representations. Then we obtain the classification
of highest `-modules with finite weight multiplicities in general. In Section 4,
we introduce the notion of shiftability condition, and present the solutions to
the corresponding system of equations, which allow us to study the compatible
structures of quantum affine algebras with the n-fold quantized oscillator algebra. In
Section 5, the infinite-dimensional multiplicity-free weight modules are constructed.
In Section 6, we compute the highest `-weight of the q-oscillator representations.

Conventions. Let Z, R, and C be the sets of integers, real numbers and complex
numbers respectively. Denote C n f0g by C� and the set of nonnegative integers
by Z�0. Finally, ıij is the Kronecker symbol.

2. Preliminaries and notation

First, let us recall some necessary notation and two presentations of quantum affine
algebras based on [Beck and Nakajima 2004; Drinfeld 1987; Kac 1990].
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2A. Affine Kac–Moody algebras. Let gD g.X
.r/
N / be an affine Kac–Moody al-

gebra with respect to the generalized Cartan matrix AD .aij /i;j2I of type X .r/N ,
where I D f0; 1; : : : ; ng is an indexed set and X .r/N is a Dynkin diagram from [Kac
1990, Table Aff r], except in the case of X .r/N D A

.2/
2n .n � 1/, where we reverse

the numbering of the simple roots.
Let f˛igi2I � h� (resp. f˛_i gi2I � h) denote the set of simple roots (resp.

simple coroots) such that h j̨ ; ˛_i i D aij . Let Q D
L
i2I Z˛i be the root lattice

of g. Set QC D
L
i2I Z�0˛i . Assume that ı D

P
ai˛i and c D

P
a_i ˛

_
i are the

smallest positive imaginary root and a central element of g, where ai and a_i are
the numerical labels of the Dynkin diagrams of X .r/N and its dual, respectively. Let
f!igi2I denote the fundamental weights of g, i.e., h!i ; ˛_j i D ıij for i; j 2 I .

Let W be the affine Weyl group of g (which is a subgroup of the general linear
group of h�) generated by the simple reflections si .�/ D �� h�; ˛_i i˛i , � 2 h�,
i 2 I . Note that w.ı/ D ı for all w 2 W . Set I0 D I n f0g. Denote by VW the
subgroup of W generated by the simple reflections si for i 2 I0. It is a finite group.

Take the nondegenerate symmetric bilinear form . � ; � / on h� invariant under the
action of W , which is normalized uniquely by .�; ı/D h�; ci for � 2 h�. Define D
as the diagonal matrix diag.d0; : : : ; dn/with diDa�1i a_i . Then .˛i ; j̨ /Ddiaij for
all i; j 2 I . Let4 be the root system of g, 4˙D4\.˙QC/, and let4reD4nZı

be the set of real roots. For each ˛ 24re we set zd˛Dmax
�
1; 1
2
.˛; ˛/

�
. In particular,

write zdi simply for zd˛i
. Then

zdi D

�
1 if r D 1 or X .r/N D A

.2/
2n ;

di otherwise:

Denote by VA D .aij /i;j2I0
the Cartan matrix of finite type, and let Vg be the

associated simple finite-dimensional Lie algebra. Then f˛igi2I0
is a set of simple

roots for Vg. Let VQD
L
i2I0

Z˛i be the root lattice for Vg, and let zP be the weight
lattice of the euclidean space R˝Z

VQ � h� defined as zP D
L
i2I0

Zz!i , where
.z!i ; j̨ / D ıij zdi . Then VQ can be naturally embedded into zP , which provides
a W -invariant action on h� by x.�/D �� .x; �/ı for x 2 zP ; � 2 h�.

Define the extended Weyl group by �W D VW Ë zP . We also have �W DW ËT ,
where T D fw 2 �W j w.4C/ � 4Cg, which is a subgroup of the group of the
Dynkin diagram automorphisms. An expression for w 2 �W is called reduced if
w D �si1 � � � sil , where � 2 T and l is minimal. We call the minimal integer l the
length of w, and denote it by l.w/.

2B. Quantum affine algebras. The quantum affine algebra Uq.g/ in the Drinfeld–
Jimbo realization [Drinfeld 1985; Jimbo 1985] is the unital associative algebra
over C generated by XCi , X�i , K˙1i , i 2 I , with the following relations:

KiK
�1
i DK

�1
i Ki D 1; KiKj DKjKi ;(2-1)
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KiX
˙
j K

�1
i D q

˙aij

i X˙j ;(2-2)

XCi X
�
j �X

�
j X
C
i D ıij

Ki �K
�1
i

qi � q
�1
i

;(2-3)

1�aijX
kD0

.�1/k
�
1� aij

k

�
qi

.X˙i /
kX˙j .X

˙
i /

1�aij�k D 0 for i ¤ j;(2-4)

where q 2C� is not a root of unity and qi Dqdi . We have used the standard notation:

Œm�q D
qm� q�m

q� q�1
; Œm�Šq D Œm�qŒm� 1�q � � � Œ1�q;

�
m

r

�
q

D
Œm�Šq

Œr�ŠqŒm� r�
Š
q

:

In particular, we denote Œm�qi
by Œm�i for simplicity.

Let U 0 be the commutative subalgebra of U WD Uq.g/ generated by Ki ; K�1i ,
i 2 I . It is clear that each element in U 0 is a linear combination of the monomials
Kˇ WD K

b0

0 K
b1

1 � � �K
bn
n for ˇ D

P
i2I bi˛i 2 Q. In particular, Kı is a central

element in U . Let UC (resp. U�) denote the span of monomials in XCi (resp. X�i ).
Recall that U has a canonical triangular decomposition U Š U�˝U 0˝UC. For
later use, we note that UC is graded by QC in the usual way: UC D

L
ˇ2QC

UC
ˇ

.
Let us recall the Hopf algebra structure ofU with the coproduct�, the antipode S ,

and the counit � defined as follows:

�.Ki /DKi ˝Ki ; �.XCi /DX
C
i ˝ 1CKi ˝X

C
i ;

�.X�i /DX
�
i ˝K

�1
i C 1˝X

�
i ;

S.XCi /D�K
�1
i XCi ; S.X�i /D�X

�
i Ki ; S.Ki /DK

�1
i ;

�.XCi /D 0D �.X
�
i /; �.Ki /D 1:

There exists another presentation of U due to Drinfeld [1987]. Just like the
realizations of the affine Kac–Moody algebras g as (twisted) loop algebras, this
presentation of U is generated by the Drinfeld’s “loop-like” generators.

Consider the root datum .XN ; �/ with � a diagram automorphism of XN of
order r . Let AD .xaij /1�i;j�N be the Cartan matrix of the type XN , and let ! be a
fixed primitive r-th root of unity. Note that if r D 1 (i.e., � is an identity) we have
N D n and AD VA; if r > 1, then XN is one of the simply laced types: AN .N � 2/,
DnC1 .n� 2/, or E6. We use Ni 2 I0 to stand for one representative of the � -orbit
of i on f1; 2; : : : ; N g such that Ni � �s.i/ for any s. Take the set of simple roots
fx̨ig1�i�N and the normalized bilinear form . ; / (by abuse of notation) such that
.x̨i ; x̨j /D diaij if r D 1 and otherwise .x̨i ; x̨j /D xaij for 1� i; j �N .

The quantum affine algebra U (add the central elements K˙1=2
ı

) is isomorphic
to the algebra generated by x˙

i;k
.1� i �N; k 2 Z/, hi;k .1� i �N; k 2 Zn f0g/,

k˙1i .1� i �N/, and the central elements C˙1=2, subject to the following relations:
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x˙�.i/;k D !
kx˙i;k; h˙�.i/;k D !

kh˙i;k; k˙1�.i/ D k
˙1
i ;

kik
�1
i D k

�1
i ki D 1; kikj D kjki ; kihj;l D hj;lki ;

kix
˙
j;k D qNi

˙aNi Nj x˙j;kki ;

Œhi;k; hj;l �D ık;�l
1

k

� rX
sD1

�
k.x̨i ; x̨�s.j //

dNi

�
Ni

!ks
�
C k �C�k

qNi � qNi
�1

;(2-5)

Œhi;k; x
˙
j;l �D˙

1

k

� rX
sD1

�
k.x̨i ; x̨�s.j //

dNi

�
Ni

!ks
�
C�jkj=2x˙j;kCl ;

ŒxC
i;k
; x�j;l �D

� rX
sD1

ı�s.i/j!
sl

zdNi

�
C .k�l/=2 C

i;kCl
�C�.k�l/=2 �

i;kCl

qNi � qNi
�1

;

where the  ˙
i;k

are the elements determined by the following identity of the formal
power series in z:

1X
kD0

 ˙i;˙kz
˙k
D k˙1i exp

�
˙.qNi � qNi

�1/

1X
lD1

hi;˙lz
˙l

�
;(2-6)

together with the quantum Serre–Drinfeld relations, whose explicit forms will not
be used in this paper. One can refer to [Drinfeld 1987] for more details and to
[Beck 1994; Jing 1998] and [Damiani 2000; 2012; 2015]1 for a proof.

Under the isomorphism, we have X˙i D x˙i;0, K˙1i D k˙1i for i 2 I0, and
Kı D C . Note that  C

i;�k
D  �

i;k
D 0 for any positive integers k, and  ˙i;0 D k

˙1
i

from the identity (2-6).
From the relations in the Drinfeld presentation, U is essentially generated by

x
˙

i; zdik
.i 2 I0; k 2 Z/, hi; zdik .i 2 I0; k 2 Z n f0g/, k˙1i .i 2 I0/, and the central

elements C˙1=2 (see [Damiani 2012, Proposition 4.25]). Moreover, the quantum
affine algebra U has a triangular decomposition [Chari and Pressley 1994; 1998]:

(2-7) U Š U.6/˝U.0/˝U.>/;

where U.>/ (resp. U.6/) is the subalgebra generated by xC
i; zdik

(resp. x�
i; zdik

),
i 2 I0, k 2Z, and U.0/ is the subalgebra generated by C˙1=2 and k˙i , hi;k , i 2 I0,
k 2 Z n f0g.

3. Highest `-weight representations with finite weight multiplicities

In this section, we recall basic notation of representations over quantum affine
algebras: weight modules, `-weights, and highest `-weight modules. Most of the

1The author used the notation zH˙
i;l

, Hi;l , which is related with the notation  ˙
i;l

, hi;l by zH˙
i;l
D

C l=2k�1i  ˙
i;l

and Hi;l D C l=2hi;l .
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definitions and results in this section are well-known; one can refer to [Chari and
Pressley 1991; Mukhin and Young 2014].

3A. Highest `-weight modules. We begin with the notion of highest `-weight
modules. Thanks to the Hopf algebra structure of U 0 (inherited from U ), the set of
all algebra characters of U 0, i.e., all algebra homomorphisms from U 0 to C, has
an abelian group structure. The addition and the inverse are given by

.�C�/.u/D .�˝�/ ı�.u/; .��/.u/D � ıS.u/

for any algebra characters �;�, and u 2 U 0. Denote this group simply by .X ;C/.
Any ˇ 2 h� induces a character in X by assigning Ki to q.ˇ;˛i / for i 2 I , which
is unique up to a constant multiple of ı, so we still denote it by ˇ 2X .

For a U -module V and � 2X , define

V� D fv 2 V j u:v D �.u/v for all u 2 U 0g:

By the defining relations (2-2) we have X˙i :V� � V�˙˛i
. If V� is nonzero, then

we say � is a weight of V , and V� is a weight space of weight �. A nonzero vector
v 2 V� is called a weight vector of weight �. If the weight space V� is finite-
dimensional, then dimV� is called the multiplicity of the weight �. Call V a weight
module if V D

L
� V�. Moreover, a weight module V is said to be multiplicity-free

if dimV� � 1 for all � 2X .
Throughout this note, we assume that the central element C acts trivially on a

U -module. So any weight � of a U -module is level-zero, that is, �.Kı/D 1.
Note that the actions of the  ˙

i;k
on a U -module commute with each other by

(2-5) and (2-6). For a weight � of V with finite multiplicity, we may refine the
weight space V� as

V� D
M


Wwt.
/D�

V
 ;

V
 D fv 2 V� j 81� i �N; k � 0; 9m 2 Z>0; . 
˙
i;˙k � 


˙
i;˙k/

m:v D 0g;

where 
 D .
˙i;˙k/1�i�N;k2Z�0
is any N -tuple of sequences of complex numbers

satisfying that 
Ci;0

�
i;0 D 1 and 
˙�.i/;˙k D !

˙k
˙i;˙k for all 1 � i � N , and we
associate 
 with a level-zero weight wt.
/2X by setting wt.
/.Ki /D 
Ci;0 for all
i 2 I0. Call such a sequence 
 an `-weight and V
 the `-weight space of 
 if V
 is
not zero.

Given an `-weight 
 , the defining relations in the Drinfeld presentation imply that

 is completely determined by the tuple of complex numbers .
˙i;˙zdik

/i2I0;k2Z�0
.

Note that the 
˙i;k for zdi ∤ k are zero. Hence we may write 
 � .
˙i;˙zdik
/i2I0;k2Z�0

directly without any ambiguity.
Now we can define the highest `-weight modules.
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Definition 3.1. We say V is a highest `-weight modules of highest `-weight 
 if
V DU:v for some nonzero vector v 2 V such that xCi;k :vD 0 for 1� i �N , k 2 Z,
and  ˙i;˙k :v D 


˙
i;˙kv for 1 � i � N , k 2 Z�0. By (2-7), dimV
 D 1, so v is

unique up to a scalar; we call it the highest `-weight vector of V .

3B. The classification theorem: rationality. In this subsection we give the classi-
fication of simple highest `-weight modules with finite weight multiplicity, which
appeared in [Mukhin and Young 2014] for untwisted cases.

We say an `-weight f D .f ˙i;˙zdik
/i2I0;k2Z�0

is rational if there is a tuple of
complex-valued rational functions .fi .z//i2I0

in a formal variable z such that for
each i 2 I0, fi .z/ is regular at 0 and1, fi .0/fi .1/D 1, and

1X
kD0

f C
i; zdik

zk D fi .z/D

1X
kD0

f �
i;�zdik

z�k

in the sense that the left- and right-hand sides are the Laurent expansions of fi .z/
at 0 and1, respectively.

Let R be the set of all rational `-weights. Then R forms an abelian group with the
group operation .f ;g/ 7! fg being given by componentwise multiplication of the
corresponding tuples of rational functions. We will not always distinguish between
a rational `-weight f and the corresponding tuple .fi .z//i2I0

of rational functions.
Recall from [Chari and Pressley 1991; 1998] that simple finite-dimensional

modules of U are highest `-weight modules, and their highest `-weights f are
parametrized by the tuples of the Drinfeld polynomials. More precisely, there exists
a tuple of polynomials .Pi .z//i2I0

with all Pi .z/ having constant coefficient 1
such that f satisfies that for i 2 I0,

fi .z/D

(
q
2 degPn
n .Pn.q

�4
n z/=Pn.z// if .X .r/N ; i/D .A

.2/
2n ; n/;

q
degPi

i .Pi .q
�2
i z/=Pi .z// otherwise:

Therefore, the highest `-weight of any simple finite-dimensional module is rational.
In general, we have the following theorem.

Theorem 3.2. Let V be an irreducible highest `-weight module. Then all weight
spaces of V are finite-dimensional if and only if its highest `-weight f belongs to R.

Proof. For the nontwisted cases, one can refer to [Mukhin and Young 2014, Theorem
3.7]. The proof of the twisted cases is essentially parallel to that of the untwisted
cases thanks to the triangular decomposition (2-7) of the Drinfeld realization. �

4. Shiftability conditions and algebra homomorphisms

In this section, the notion of the shiftability condition with respect to a generalized
Cartan matrix will be introduced, and the compatible structures of the quantum
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affine algebras with the n-fold q-oscillator algebras are given from the q-shiftability
condition.

4A. Shiftability conditions. Let AD .aij /i;j2I be any symmetrizable generalized
Cartan matrix. Let A be the Laurent polynomial ring over C in the variables xi ,
i 2 I , i.e., AD CŒx˙1i ; i 2 I �. For each i 2 I , consider the algebra automorphism
�i WA!A given by �i .xj /D q�ıij

i xj for j 2 I . For any distinct i; j 2 I , we say
a pair of Laurent polynomials .f; g/ in A is .i; j /-shiftable if f , g satisfy

fg D ��1j .f /��1i .g/:

Set fxgi WD .x� x�1/=.qi � q�1i / for any unit x in A, and for simplicity, write
fxg D .x� x�1/=.q� q�1/. Define the elements yi ; y�1i 2A by

y˙1i D
Y
j2I

x
˙aji

j :

Consider the following system of equations with respect to the variables �i , i 2 I ,
in A:

(4-1)
�
�i .�i /��i D fyigi ;

�i�j D �
�1
j .�i /�

�1
i .�j /;

i; j 2 I; i ¤ j:

In general, this system of equations does not always have a solution. It depends on
the choice of the generalized Cartan matrix A. Therefore, we can say A admits the
q-shiftability condition when the corresponding system (4-1) has a solution.

By a quick computation, we obtain a family of solutions to (4-1) for A of types
A2 and A.1/1 .

Example 4.1. (i) For the type A2, a pair of Laurent polynomials .�1; �2/ where
�1 D fqbx1gfbx

�1
1 x2g and �2 D fqbx�11 x2gfbx

�1
2 g for each scalar b 2 C�

is a solution.

(ii) For the typeA.1/1 , consider the Laurent polynomials �0Dfqbx0x�11 gfbx
�1
0 x1g

and �1 D fqbx�10 x1gfbx0x
�1
1 g for any scalar b 2 C�. It is easy to check that

.�0; �1/ is a solution.

In what follows, the q-shiftability condition for the generalized Cartan matrices
of affine types will be investigated. Now assume that A is an affine Cartan matrix
as in Section 2. Then we have the first main result in this section.

Theorem 4.2. There exists an .nC1/-tuple of Laurent polynomials in A satisfying
the system (4-1) if and only ifA is of the typeA.1/n .n�1/, C .1/n .n�2/, A.2/2n .n�1/
or D.2/nC1 .n� 2/.

The proof of Theorem 4.2 will be given in the Appendix. Here we list all tuples
of Laurent polynomials .�i /i2I satisfying (4-1) for each affine Cartan matrix A in
the theorem above.
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For the type A.1/n .n� 1/:�
fqbAz0gfbAz1g; fqbAz1gfbAz2g; : : : ; fqbAzngfbAz0g

�
:

For the type C .1/n .n� 2/:�
fq0bC z

�1
1 g0fbC z1g0; fq1bC z1g1fbC z2g1; : : : ; fqn�1bC zn�1gn�1fbC zngn�1;

fqnbC zngnfbC z
�1
n gn

�
:

For the type A.2/2n .n� 1/:�
f{q�

3
2 z1g0f{q

� 1
2 z1g0; f{q

1
2 z1g1f{q

� 1
2 z2g1; : : : ; f{q

1
2 zn�1gn�1f{q

� 1
2 zngn�1;

{

qn� q�1n
f{q

1
2 zngn

�
:

For the type D.2/nC1 .n� 2/:�
{

q0� q
�1
0

f{q�1z1g0; f{qz1g1f{q
�1z2g1; : : : ; f{qzn�1gn�1f{q

�1zngn�1;

{

qn� q�1n
f{qzngn

�
:

Here, { D
p
�1. The elements zi 2 A involved in the above solutions and the

relations in our notation are given as follows for each type:
For A.1/n ,

zi D x
�1
i�1xi ; z0 D .z1 � � � zn/

�1; yi D ziz
�1
iC1; yn D znz

�1
0 ; b

A
.1/
n
2 C�:

For C .1/n ,

zi D x
�1
i�1xi ; y0 D z

�2
1 ; yi D ziz

�1
iC1; yn D z

2
n; b

C
.1/
n
D q�1=4 or {q�1=4:

For A.2/2n ,

ziDx
�1
i�1xi ; znDx

�1
n�1x

2
n; y0Dz

�2
1 ; yiDziz

�1
iC1; ynDzn; b

A
.2/
2n

D {q�
1
2 :

For D.2/nC1,

z1Dx
�2
0 x1; zi Dx

�1
i�1xi ; znDx

�1
n�1x

2
n; yi D ziz

�1
iC1; ynD zn; y0D z

�1
1 ;

bD.2/

nC1
D {q�1:

By our convention, the Dynkin diagrams of the above four types and the corre-
sponding qi D qdi are the following:

0

q

1

q

2

q

n� 1

q

n

q
� � �

.A
.1/
n /

0

q

1

q
1
2

n� 1

q
1
2

n

q
� � �

.C
.1/
n /
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0

q2

1

q

n� 1

q

n

q
1
2

� � �

.A
.2/
2n /

0

q

1

q2

n� 1

q2

n

q
� � �

.D
.2/
nC1/

Remark 4.3. One can also consider the shiftability condition for a generalized
Cartan matrix A in the classical sense. More precisely, consider the polynomial
ring AC D CŒxi ; i 2 I �, and the algebra automorphisms �i WAC!AC defined by
�i .xj /D xj � ıij for all j 2 I . Write yi D

P
j2I aijxj . Then a similar system of

equations in AC (replace fyigi in (4-1) by yi ) can be obtained.

4B. Quantized oscillator algebra and algebra homomorphisms. One interesting
application of the q-shiftability condition is to study the compatible structures of
quantum affine algebras of types X .r/

N
with the n-fold quantized oscillator algebra.

Fix � 2 C�. The (symmetric) quantized oscillator algebra B� is the unital
associative algebra over C generated by four elements aC, a, k˙1 subject to the
relations:

Œa; aC�� D k; Œa; aC���1 D k�1; kk�1 D k�1kD 1;

kak�1 D ��1a; kaCk�1 D �aC;

where Œx; y�� WDxy���1yx. Then aCaDfkg, aaCDf�kg and fkgaCDaCf�kg,
afkg D f�kga in B� . Here we define fxg D fxg� D .x � x�1/=.� � ��1/ for
x D k or �k.

One can easily check the following results.

Lemma 4.4. (i) There exists a unique C-algebra automorphism (an involution)
# WB�!B� such that #.aC/D�a, #.a/D aC and #.k/D ��1k�1.

(ii) For any b 2 C� and m 2 Z, there exists a family of C-algebra automorphisms
�b;m W B� ! B� such that �b;m.a/ D bkma, �b;m.aC/ D b�1aCk�m and
�b;m.k

˙1/D k˙1.

Consider the algebra B˝n� of the n-fold tensor product of B� . Denote the
generators of its i-th component by aCi , ai and k˙1i , which satisfy the above
relations. Let Uq.X

.r/
N / be the quantum affine algebra U of the type X .r/N in

Theorem 4.2. For convenience, if X is of the type A then we shall deal with
A.1/n�1.n� 2/ instead of A.1/n .n� 1/ from now on.

Fix a solution .�i /i2I in Section 4A. We define the algebra homomorphism
�X.r/

N
WUq.X

.r/
N /!B˝n� as follows: regard �i and �i .�i / as the images of X�i X

C
i

andXCi X
�
i respectively under �X.r/

N
by setting ki Dq�1b�1A z�1i for the typeA.1/n�1,

and ki D {��1=2z�1i otherwise (here we consider the solution with bC D {q�1=4 for
the typeC .1/n ), where � is defined as in the following proposition for each type. Then
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the relations (2-3) for i D j hold under �X.r/
N

since �i satisfies �i .�i /��i D fyigi .
In this sense, A0 WD CŒk˙11 ; : : : ;k˙1n � is a subalgebra of A, and �X.r/

N
.Ki /D yi

for i 2 I . On the other hand, we choose �X.r/
N
.X˙i / 2B˝n� satisfying

�
X

.r/
N

.X˙i /f D �
˙1
i .f /�

X
.r/
N

.X˙i /

for any f 2A0. The above choice yields that the relations (2-1)–(2-4) hold. Then
we get the following algebra homomorphisms, which were obtained in [Hayashi
1990; Kuniba et al. 2015].

Proposition 4.5 [Hayashi 1990; Kuniba et al. 2015]. For a parameter z, there exist
algebra homomorphisms from Uq.X

.r/
N / to B˝n� Œz; z�1� defined as follows.

For the type A.1/n�1 and � D q:

�
A

.1/
n�1;z

W Uq.A
.1/
n�1/!B˝n� Œz; z�1�;

XCi 7! zıi;0aia
C
iC1; X�i 7! z�ıi;0aCi aiC1; Ki 7! k�1i kiC1:

For this type, we always read the index i as i modulo n.
For the type C .1/n and � D q

1
2 :

�
C

.1/
n ;z
W Uq.C

.1/
n /!B˝n� Œz; z�1�;

XC0 7! z.aC1 /
2=Œ2�� ; X�0 7! z�1a21=Œ2�� ; K0 7! ��k

2
1;

XCi 7! aia
C
iC1; X�i 7! aCi aiC1; Ki 7! k�1i kiC1;

XCn 7! a2n=Œ2�� ; X�n 7! .aCn /
2=Œ2�� ; Kn 7! ��

�1k�2n :

For the type A.2/2n and � D q:

�
A

.2/
2n ;z
W Uq.A

.2/
2n /!B˝n� Œz; z�1�;

XC0 7! z.aC1 /
2=Œ2�� ; X�0 7! z�1a21=Œ2�� ; K0 7! ��k

2
1;

XCi 7! aia
C
iC1; X�i 7! aCi aiC1; Ki 7! k�1i kiC1;

XCn 7! {��an; X�n 7! aCn ; Kn 7! {��
1
2k�1n ;

For the type D.2/nC1 and � D q2:

�
D

.2/
nC1

;z
W Uq.D

.2/
nC1/!B˝n� Œz; z�1�;

XC0 7! zaC1 ; X�0 7! {��z
�1a1; K0 7! �{�

1
2k1;

XCi 7! aia
C
iC1; X�i 7! aCi aiC1; Ki 7! k�1i kiC1;

XCn 7! {��an; X�n 7! aCn ; Kn 7! {��
1
2k�1n :

Here, �� D .�C 1/=.� � 1/. �
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5. Multiplicity-free weight modules

In this section, we construct the multiplicity-free weight representations overU from
the solutions and the algebra homomorphisms in the previous section. Throughout,
we assume that U is the quantum affine algebra of type X .r/N in Proposition 4.5.

5A. Module structures on A0. In order to construct the multiplicity-free weight
representations, we first consider the auxiliary U -module structures on A0 D
CŒz˙11 ; z˙12 ; : : : ; z˙1n �.

Let us fix some notation here. Note that ˛0 and ˛n are long roots in the type C .1/n ,
while both of them are short roots in D.2/nC1. In addition, by our assumption, ˛0
is long and ˛n is short in A.2/2n . We define a pair � WD .�1; �2/ of signs such that
�1, �2 are equal to 0 or 1, depending on the length of the roots ˛0 and ˛n for each
type, that is,

.�1; �2/D .1; 1/ for C .1/n ;

.�1; �2/D .1; 0/ for A.2/2n ;

.�1; �2/D .0; 0/ for D.2/nC1:

Fix a solution .�i /i2I of (4-1), and recall the units zi for each type, and the shift
operators �i defined in Section 4A. Put b D bX.r/

N
. Then we have:

Theorem 5.1. Let z be a parameter valued in C�. For an n-tuple f D .fi /1�i�n
such that fi is equal either to 1 or to bzi � b�1z�1i for 1� i � n, there exists a
U -module structure on the algebra A0 for each type defined in the following:

For the type A.1/n�1,

XCi :uD z
ıi;0fi�i

�
fbziC1g

fiC1

�
�i .u/; X�i :uD z

�ıi;0��1i

�
fbzig

fi

�
fiC1�

�1
i .u/;

and K˙1i :uD y˙1i u, for any u 2A0.
For other types,

XC0 :uD z
�0.�0/�0.u/

��11 .f1/�1�0.f1/
; X�0 :uD z

�1f1�1.f1/
�1��10 .u/;

XCi :uD fi�i

�
fbziC1gi

fiC1

�
�i .u/; X�i :uD �

�1
i

�
fbzigi

fi

�
fiC1�

�1
i .u/;

XCn :uD fn�
�1
n�1.fn/

�2�n.u/; X�n :uD
�n�
�1
n .u/

��1n .fn/�n�1.fn/�2
;

and K˙1i :uD y˙1i u, for any u 2A0.

Proof. Taking uD 1 in the above construction we have the precise expressions of
the actions X˙i :1. In addition, for any u 2A0 we have X˙i :uD �

˙1
i .u/X˙i :1. We
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can check each defining relation directly. For the relations (2-2), we have

.KiX
˙
j K

�1
i /:uD yi .X

˙
j :.y

�1
i u//

D yi�
˙1
j .y�1i u/X˙j :1D yi�

˙1
j .y�1i /X˙j :uD q

˙aij

i X˙j :u:

For the relations (2-3), we consider three cases:

(1) If i D j , then we have

.XCi X
�
i �X

�
i X
C
i /:uD u

�
�i .X

�
i :1/X

C
i :1� �

�1
i .XCi :1/X

�
i :1

�
D u.�i .�i /��i /:

Here, �i WD ��1i .XCi :1/X
�
i :1, i 2 I , is just a solution to the system (4-1), by

construction, which implies (2-3) for i D j , as desired.

(2) If ji � j j > 1, then we have �i .fk/ D fk and �i .fbzkgk/ D fbzkgk for k D
j; jC1. Similarly, �j .fk/Dfk and �j .fbzkgk/Dfbzkgk for kD i; iC1. Therefore

XCi X
�
j :uD �i�

�1
j .u/�i .X

�
j :1/X

C
i :1D �i�

�1
j .u/.X�j :1/.X

C
i :1/DX

�
j X
C
i :u:

(3) If ji � j j D 1, we need to do more detailed calculations for each type. First
assume aijaj i D 1. Then we have to show

�i�
�1
j

�
fbzj gj

fj

�
�i .fjC1/fi�i

�
fbziC1gi

fiC1

�
D ��1j

�
fbzj gj

fj

�
fjC1�

�1
j .fi /�i�

�1
j

�
fbziC1gi

fiC1

�
:

If j D i C 1, then �i .fjC1/D fjC1, ��1j .fi /D fi , and �i .fj /D ��1j .fj /, while
for iD jC1, we have ��1j .fiC1/DfiC1, �i .fj /Dfj , and �i .fi /D ��1j .fi /. Both
cases imply the above equality holds. When X .r/N ¤ A

.1/
n�1, a direct computation

yields the following equalities:

fbz1g1�1�0 D �0�
�1
0 fbz1g1; f

�1

1 �˙10 �˙11 .f1/D f1�
�1
1 .f1/

�1 ;

fbzngn�1�n D �
�1

n .fbzngn�1/�
�1

n�1.�n/; f �2
n �˙1n�1�

˙1
n .fn/D fn�

�1
n�1.fn/

�2 :

Then similar arguments for the case that aijaj i D 2 are true. Any tuple .�i /i
satisfying (4-1) and the choice of .fi /i also guarantee that these actions hold under
the quantum Serre relations (2-4). �

Denote by Sz.f / the U -module on A0 related to z and f given by Theorem 5.1.
Recall �X.r/

N
.Ki /D yi in the construction in Section 4B. Then

�
X

.r/
N

.Kı/D
Y
i2I

y
ai

i D

Y
i2I

Y
j2I

x
ajiai

j D

Y
j2I

x
P

i2I ajiai

j D 1:(5-1)

In particular,Kı acts trivially on Sz.f /. Therefore, Sz.f / is finitely U 0-generated
instead of U 0-diagonalizable when restricted as a U 0-module.
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Now let us explain the “weighting” procedure mentioned in the introduction.
That is, to a U -module Sz.f /, we associate a weight module W.Sz.f // in the
following way. Consider the algebra homomorphism from U 0 to A0 that assignsKi
to yi for i 2 I0, which induces a natural group homomorphism from the group of
characters of A0 to X . For any character ' of A0, denote by m' .WD ker'/ the
corresponding maximal ideal of A0. Extending j̨ 2X to a character of A0 by
setting j̨ .yi /D q

aji
j

(still denoting it by j̨ ), we have

Ki :m'Sz.f /�m'Sz.f /; X˙i :m'Sz.f /�m'˙˛i
Sz.f /:

Define
W.Sz.f //D

M
'

Sz.f /=m'Sz.f /;

where ' is taken over all characters of A0.

Corollary 5.2. For any U -module Sz.f /, we have that W.Sz.f // is a weight
module, and all its simple subquotients are multiplicity-free.

Proof. It is clear that Sz.f /=m'Sz.f / is 1-dimensional and Ki acts diagonally.
In particular, Kı acts by 1. The first assertion follows from the previous statements,
and the �-weight space W.Sz.f //� D

L
x'D� Sz.f /=m'Sz.f /, where x' means

the image of ' in X . Since we have

X˙i :Sz.f /=m'Sz.f /� Sz.f /=m'˙˛i
Sz.f /;

the second assertion follows. �

Remark 5.3. In fact, the U -module W.Sz.f // is a q-analog of the coherent family
in the sense of [Nilsson 2016]. This “weighting” procedure was first suggested by
O. Mathieu [2000].

Now let us study the possible highest weights of W.Sz.f // when restricted as
a Uq.Vg/-module. Assume that the weight vector 1Cm'Sz.f / of W.Sz.f // is
a highest weight vector for some '. Then we have XCi :.1Cm'Sz.f // D 0 for
i 2 I0, which implies that

(5-2) .'C˛i /.�i .�i //D 0 for i 2 I0:

The weight �D x' is level-zero and is determined uniquely by the values �.Ki /,
i 2 I0. Therefore, all level-zero weights can be seen automatically as weights
over Uq.Vg/. As a result, we can obtain the following result.

Corollary 5.4. Let � 2X be a weight of W.Sz.f // for some f . If � is a highest
Uq.Vg/-weight, then up to twistings by the automorphisms of Uq.Vg/, we have

(1) for the type A.1/n�1, the weight � is of the form !0C a!s � .aC 1/!sC1 for
some a 2 C and s 2 I up to a constant multiple of ı;
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(2) for the type C .1/n , the weight � has the form 1
2
!0C!n�1�

3
2
!n or 1

2
.!0�!n/,

up to a constant multiple of ı;

(3) for the type A.2/2n (resp. D.2/nC1), the weight �D .�.K0/; : : : ; �.Kn// is defined
as

.�q; 1; : : : ; 1; {q�1=2/ .resp. .�{q; 1; : : : ; 1; {q�1//:

Proof. The result can be deduced directly from (5-2). For example, in the type
A.1/n�1, the equations (5-2) become

(5-3)
�
m0m1 � � �mn�1 D 1;

fqbmigfbmiC1g D 0; 1� i � n� 1;

where we denote '.zi / by mi for i 2 I . Let � D x'. Then �.Ki / D mim
�1
iC1.

To solve the equations (5-3), we consider two cases: if fqbm1g is not zero, then
fbmig D 0 for i � 2; if fqbm1g is zero, then we assume that s is the maximal
index such that fqbmsg is zero, and then fqbmig D 0 for i � s and fbmj g D 0 for
j � sC2. In the first case, the possible solutions are m1D˙bn�1 and mi D˙b�1

for i ¤ 1. Then, up to twistings by sign automorphisms of Uq.Vg/, the weight � is
given by

�.K0/D b
�n; �.K1/D b

n; �.Ki /D 1 for i � 2;

which is of the form .aC 1/!0 � .aC 1/!1 for some a 2 C. In the second case,
mi D˙q

�1b�1 for 0 � i � s, msC1 D˙qsC1bn�1, and mj D˙b�1 otherwise.
Then, up to signs, the weight � is the following:

�.Ks/D q
�s�2b�n; �.KsC1/D q

sC1bn; �.Ki /D 1 for i ¤ s; sC 1;

which is exactly of the form in (1). So assertion (1) follows. �

All simple subquotients obtained in Corollary 5.4 can be realized as q-oscillator
representations by using the Fock space representations of B� and the algebra
homomorphisms in Proposition 4.5 (see, e.g., [Kuniba 2018]). In the following
subsection, we shall recall the q-oscillator representations.

5B. Realization of multiplicity-free weight modules. Let F D
L
m2Z�0

Cjmi be
the Fock space representation of B� on which the generators aC and a act as
the creation and annihilation operators, respectively, and the element aCaD fkg�
corresponds to the number operator; more precisely, for any m 2 Z�0,

aC:jmi D jmC 1i; a:jmi D Œm�� jm� 1i; k˙1:jmi D �˙mjmi:

In particular, a:j0i D 0.



266 XINGPENG LIU

Denote this representation by � WB�! EndC.F /. For any b 2C� and "2 f0; 1g,
we denote by �";b the composition � ı#" ı �b;0 (see Lemma 4.4). Then F has a
new B�-module structure via �";b .

Definition 5.5. Let z be a parameter valued in C�. We define the representation
Fz
";b

of U on the space F˝n via the composition of the algebra homomorphisms
�z WD �X.r/

N ;z
defined in Proposition 4.5 and

B˝n� Œz; z�1�
�"1;b1

˝���˝�"n;bn
�������������! EndC.F

˝n/;

where "D ."i /i 2 f0; 1gn, and bD .bi /i 2 .C�/n.

For any n-tuple .mi /i 2 .Z�0/n, we use jmi WD jm1i˝ � � �˝ jmni for the basis
vector of Fz";b. Let ej be the j -th standard vector in Zn with 1 at the j -th term
and 0 otherwise for 1� j � n. Moreover, set 0 for .0; : : : ; 0/ 2 Zn.

For n � 2, note that U -module actions of X˙1i , Ki for 1 � i � n� 1 on Fz";b,
by Definition 5.5, can be written down uniformly as follows:

XCi :jmi(5-4)
D .�1/"ibib

�1
iC1Œmi=m

"i

i �� Œm
"iC1

iC1 �� jm� .�1/
"iei C .�1/

"iC1eiC1i;

X�i :jmi(5-5)

D .�1/"iC1b�1i biC1Œm
"i

i �� ŒmiC1=m
"iC1

iC1 �� jmC .�1/
"iei � .�1/

"iC1eiC1i;

Ki :jmi D �
�.�1/"i .miC"i /C.�1/

"iC1 .miC1C"iC1/jmi;(5-6)

for m 2 .Z�0/n, where � is defined in Proposition 4.5 for each type, and jmi for
m … .Z�0/

n can be read as 0. Here we remark that the Uq.A
.1/
n�1/-module actions

of X˙0 ; K0 on jmi also have the above forms, where we understand the indices
i; i C 1 as n; 1 .mod n/, respectively.

Regard Uq.An�1/ as the subalgebra of Uq.g/ .n� 2/ via forgetting the actions
of the Drinfeld–Jimbo generators indexed by 0 and n. One can check that Fz";b
as a Uq.An�1/-module is a multiplicity-free weight module. In fact, Fz";b has the
following direct sum decomposition:

Fz";b D
1M

lD�1

Fz;.l/
";b

; Fz;.l/
";b
D

M
jmj"Dl

Cjmi:

For each m 2 Zn, write jmj" D
P
i .�1/

"imi . Each Fz;.l/
";b

is an irreducible,
multiplicity-free weight Uq.An�1/-module by formulae (5-4)–(5-6) as q (or �)
is not a root of unity.

Fix 1� i � n. Define the algebra homomorphism ıi WA0! C by kj 7! �ıij for
1� j � n. It induces an algebra character zıi 2X by

zıi W U
0 �j

U 0
����!A0

ıi
��! C:
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Then we have:

Proposition 5.6. For " 2 f0; 1gn and b 2 .C�/n, we have:

(i) Fz";b is a weight module with dim.Fz";b/� � 1 for any � 2X .

(ii) If dim.Fz";b/� D 1, then there exists m 2 .Z�0/n such that .Fz";b/� D Cjmi

with

(5-7) �D

nX
iD1

.�1/"i .mi C "i /zıi :

Proof. Clearly, Fz";b is a weight module. By (5-6) and the actions of K0 and Kn,
which are defined for X .r/N ¤ A

.1/
n�1 by

K0:jmi D �{
1��1�.�1/

"1 .�1C1/.m1C1=2/jmi;(5-8)

Kn:jmi D {
1C�2��.�1/

"n .�2C1/.mnC1=2/jmi;(5-9)

where �1 and �2 are defined in Section 5A, the relative weight of jmi is given by
the right-hand side of the equality (5-7). By the above statement, dim.Fz";b/� � 1
for any � 2X . �

Consider the following decomposition of Fz";b:

Fz";bDFz;C
";b
˚Fz;�

";b
; Fz;C

";b
D

M
jmj"�0 .mod2/

Cjmi; Fz;�
";b
D

M
jmj"�1 .mod2/

Cjmi:

For 0� s � n, let ">s 2 f0; 1gn satisfy

"1 D � � � D "s D 0; "sC1 D � � � D "n D 1:

For example, ">0 D .1; : : : ; 1/ and ">n D .0; : : : ; 0/.
Then we have:

Proposition 5.7. For any " 2 f0; 1gn and b 2 .C�/n, we have:

(i) As a Uq.A
.1/
n�1/-module, Fz;.l/

";b
is irreducible for any admissible l 2 Z (defined

in (5-10)); it is a highest `-weight module with a highest `-weight vector vl;s if
and only if "D ">s for some 0� s � n, where

(5-10) vl;s D

�
jlesi if l � 0 and 0 < s � n;
j�lesC1i if l < 0 and 0� s < n:

(ii) As Uq.C
.1/
n /-modules, Fz;C";b and Fz;�";b are irreducible; they are highest `-

weight modules with highest `-weight vector vC D j0i and v� D jeni respec-
tively whenever "D ">n.

(iii) As a Uq.A
.2/
2n / or Uq.D

.2/
nC1/-module, Fz";b is irreducible; it is a highest `-

weight module with a highest `-weight vector v D j0i whenever "D ">n.
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Proof. Note Kı acts trivially on Fz";b by (5-1). The defining relations (2-5) imply
that the actions of hi;k , 1� i �N , k 2 Z n f0g on Fz";b commute pairwise. Hence
Fz";b is an `-weight U -module. It is clear that Fz;.l/

";b
is closed under the action of

Uq.A
.1/
n�1/. The irreducibility of Fz;.l/

";b
can be checked by the actions (5-4)–(5-6).

Note that for " D ">0 (resp. " D ">n), Fz;.l/
";b

is finite-dimensional for l < 0

(resp. l � 0). As a Uq.An�1/-module (ignore the actions of X˙0 ; K0), Fz;.l/
";b

is a
highest weight module if and only if "1 � � � � � "n, and the corresponding highest
weight vector can be chosen as (5-10), which is also a highest `-weight vector by
weight consideration.

For X .r/N ¤ A
.1/
n�1, the actions of XC0 and XCn are given by

XC0 :jmi D z
b
��1�1
1

Œ�1C 1��

�1Y
jD0

Œ.m1� j /
"1 �� jmC .�1/

"1.�1C 1/e1i;

and XCn :jmi D xjm� .�1/
"n.�2C 1/eni, where a 2 C� is defined by

x D .�1/"n.1��2/b�2C1
n

{1��2

Œ�2C 1��
��;�2

�2Y
jD0

Œ.mn� j /=.mn� j /
"n �� ;

and ��;�2
D .� � �2C 1/=.�C �2� 1/. Similarly, we can obtain the actions of X�0

and X�n . Assertions (ii) and (iii) can be deduced directly from the above actions. �

6. Highest `-weights

In this section, we focus on the irreducible highest `-weight representations con-
structed in the previous section, and compute their highest `-weights explicitly.

6A. Multiplicity-free highest `-weight modules. Fix 0 < s < n. Let Ws WD F
˝n

be the Uq.A
.1/
n�1/-module defined as follows (see also [Kwon and Lee 2023]):

XC0 :jmi D jmC e1C eni; X�0 :jmi D �Œm1�Œmn�jm� e1� eni;

XCs :jmi D �Œms�ŒmsC1�jm� es � esC1i; X�s :jmi D jmC esC esC1i;

XCi :jmi D Œmi �jm� ei C eiC1i; X�i :jmi D ŒmiC1�jmC ei � eiC1i;

XCj :jmi D ŒmjC1�jmC ej � ejC1i; X�j :jmi D Œmj �jm� ej C ejC1i;

and

K0:jmi D q
m1CmnC1jmi; Ks:jmi D q

�ms�msC1�1jmi;

Ki :jmi D q
miC1�mi jmi; Kj :jmi D q

mj�mjC1 jmi;

where 1 � i < s < j � n� 1 and m 2 .Z�0/n. From the actions (5-4)–(5-6), Ws

is just the twisting of the module F1";b, where "D ">s and bD .1; : : : ; 1/, by the
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automorphism of Uq.A
.1/
n�1/ sending X˙

k
to �X˙

k
for s � k � n along with other

Drinfeld–Jimbo generators fixed. Let W.l/
s denote the l-th irreducible component

of Ws , i.e., W.l/
s D

L
jmj"Dl

Cjmi.
Let .X .r/

N
; �/ be one of the types in Proposition 4.5 except .A.1/n�1; q/. Let

W D F˝n be the U q.X
.r/
N /-module defined as (see [Kuniba and Okado 2015]):

XC0 :jmi D
1

Œ�1C 1��
jmC .�1C 1/e1i;

X�0 :jmi D �.�1/
j�j {1��1

Œ�1C 1��
��;�1

�1Y
jD0

Œm1� j �� jm� .�1C 1/e1i,

K0:jmi D .�1/
j�j{1��1�.�1C1/.m1C1=2/jmi;

XCi :jmi D Œmi �� jm� ei C eiC1i .1� i � n� 1/;

X�i :jmi D ŒmiC1�� jmC ei � eiC1i .1� i � n� 1/;

Ki :jmi D �
�miCmiC1 jmi .1� i � n� 1/;

XCn :jmi D
{1C�2

Œ�2C 1��
��;�2

�2Y
jD0

Œmn� j �� jm� .�2C 1/eni;

X�n :jmi D
1

Œ�2C 1��
jmC .�2C 1/eni;

Kn:jmi D {
1��2��.�2C1/.mnC1=2/jmi;

where m 2 .Z�0/n, j�j D �1C �2, and ��;�i
D .� � �i C 1/=.�C �i � 1/. Here

the �i are defined in Section 5A. This module can be obtained from F1";b with
"D ">n and bD .1; : : : ; 1/ by the automorphism of Uq.X

.r/
N / defined by

X�0 7! .�1/j�jC1X�0 ; K0 7! .�1/j�jC1K0;

XCn 7! .�1/�2XCn ; Kn 7! .�1/�2Kn;

with other generators fixed. For the type C .1/n , denote the irreducible components
F1;˙
";b

of the Uq.C
.1/
n /-module W by W˙, for convenience.

Lemma 6.1. Let L.f / be an irreducible highest `-weight U -module with f D
.fi .z//i2I0

2R. If dimL.f /wt.f /�˛i
D 1 for some i 2 I0 then fi .z/ satisfies

(6-1) fi .z/D f
C
i;0

1�.a�b/z

1�az
;

where a; b 2 C satisfy f C
i;2 zdi
D af

C

i; zdi
and f C

i; zdi
D bf Ci;0.

Proof. Suppose that v 2 L.f / is a nonzero `-weight vector of f . Note that
fx�i;k :v; k 2 Zg spans the weight space L.f /wt.f /�˛i

. If dim.L.f /wt.f /�˛i
/D 1,
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then there exist j 2 Z such that x�
i; zdij

:v is nonzero, and a 2 C such that

(6-2) x�
i; zdi .jC1/

:v D ax�
i; zdij

:v:

Consider the actions of xC
i; zdik

, k 2 Z, on (6-2). The defining relations (2-5) imply

f
C

i; zdi .kCjC1/
�f

�

i; zdi .kCjC1/
D a.f

C

i; zdi .kCj /
�f

�

i; zdi .kCj /
/

for any k 2 Z. Because f �i;k D f
C
i;�k D 0 for k > 0, we have f C

i; zdi .kC1/
D af C

i; zdik
for any k > 0. Taking the series fi .z/D

P1
kD0 z

kf
C

i; zdik
, we have

fi .z/.1� az/D

1X
kD0

zkf C
i; zdik
� a

1X
kD0

zkC1f C
i; zdik

Œ�3pt�D f Ci;0C

1X
kD1

zk.f C
i; zdik
� af C

i; zdi .k�1/
/

D f Ci;0C .f
C

i; zdi

� af Ci;0/z:

Hence fi .z/ has the rational form (6-1). �

6B. Highest `-weights. Let us first study some properties of the Weyl group and
the description of the root vectors of quantum affine algebras, which will enable us
to compute the highest `-weight explicitly.

Lemma 6.2. Let i; j 2 I , and i ¤ j .

(1) If aijaj i D 1, then sj si j̨ D ˛i .

(2) If aijaj i D 2, then sisj si j̨ D j̨ .

Proof. Both (1) and (2) are easy to deduce from sj si j̨ D .aijaj i�1/ j̨ �aij˛i and

sisj si j̨ D .aijaj i � 1/ j̨ C .2� aijaj i /aij˛i ;

respectively. �

Recall the braid group operators associated to �W introduced by Lusztig [1990].
For each simple reflection si , there is an algebra automorphism Ti D Tsi of U
defined by

TiX
C
i D�X

�
i Ki ; TiX

�
i D�K

�1
i XCi ; TiKˇ DKsiˇ ;

TiX
C
j D

�aijX
kD0

.�1/k�aij q�ki .XCi /
.�aij�k/XCj .X

C
i /

.k/ .i ¤ j /;

TiX
�
j D

�aijX
kD0

.�1/k�aij qki .X
�
i /
.k/X�j .X

�
i /
.�aij�k/ .i ¤ j /;

where ˇ 2 Q and .X˙i /
.k/ D .X˙i /

k=Œk�Ši . Then ˆTi D T �1i ˆ, where ˆ is the
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C-linear anti-automorphism of U sending X˙i to X˙i , Ki to K�1i for i 2 I . For
any � 2 T , define T� by T� .X˙i /DX

˙
�.i/

and T� .Ki /DK�.i/.
For later use, we list some well-known properties of braid group operators (see

[Lusztig 1993; Beck 1994]). Choose one element w 2 �W . If �si1si2 � � � sim is a
reduced expression of w, then the automorphism Tw D T�Ti1Ti2 � � �Tim of U is
independent on the choice of the reduced expression ofw. In particular, one reduced
expression can be transformed to another by a finite sequence of braid relations.
If w.˛i /D j̨ then Tw.XCi /D X

C
j . Moreover, if w D si1si2 � � � sim is a reduced

expression and l.wsi /D l.w/C 1, then we have TwXCi 2 U
C.

Remark 6.3. For i � j , put s.i;j / D sisiC1 � � � sj .

(i) In the type A.1/n�1, a reduced expression of z!i for 1� i � n�1 can be chosen as

z!i D �
is�1.1;n�i/s

�1
.2;n�iC1/ � � � s

�1
.i;n�1/;

where � is the diagram automorphism of A.1/n�1 sending j to j C 1 .mod n/ for
j 2 I (see [Jang et al. 2023, Section 3.3]).

(ii) In the type A.2/2n , the reduced expression of z!n can be chosen (see [Damiani
2000, Corollary 4.2.4]) as

z!n D .s0s1 � � � sn/
n:

(iii) In the type C .1/n (resp. D.2/nC1), the reduced expressions of z!n�1 and z!n can
be chosen as

z!n�1 D .s.0;n/sn�1/
n�1 and z!n D �sns.n�1;n/s.n�2;n/ � � � s.1;n/;

respectively, where � is the diagram automorphism of C .1/n (resp. D.2/nC1) sending i
to n� i for i 2 I .

Now, let us define the root vectors in U . We refer the reader to [Beck and
Nakajima 2004] for the construction of root vectorsXC

ˇ
, ˇ 24 (i.e., theEˇ defined

therein). In particular, the real root vectors XC
k zdiı˙˛i

are described explicitly by

XC
k zdiıC˛i

D T �k
z!i
XCi .k � 0/; XC

k zdiı�˛i

D T k
z!i
T �1i XCi .k > 0/:

Then XC
k zdiı˙˛i

2 UC. The imaginary root vectors are defined by

(6-3) z 
i;k zdi
DXC

k zdiı�˛i

XCi � q
�2
i XCi X

C

k zdiı�˛i

.k > 0/;

and define the elements XC
i;k zdiı

by the following formal series in z:

(6-4) exp
�
.qi � q

�1
i /

X
k�1

XC
i;k zdiı

zk
�
D 1C

X
k�1

.qi � q
�1
i / z 

i;k zdi
zk :
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Under the isomorphism of two presentations of Uq.g/, the generators  Ci;k zdi
and

the imaginary root vectors z i;k zdi
are related (see [Beck 1994; Damiani 2012]);

more precisely, for k > 0 and i 2 I0, we have

(6-5)  C
i;k zdi
D o.i/k.qi � q

�1
i /C�k

zdi=2ki z i;k zdi
;

where o W I0! f˙1g is a map such that o.i/D�o.j / whenever

(i) aij � 0 implies that o.i/o.j /D�1,

(ii) in the twisted cases different from A.2/2n , if aij D�2 then o.i/D 1.

Note that o.n/D 1 in the type D.2/nC1 as an;n�1 D�2. Thus, we can deduce that
the map o W I0! f˙1g is uniquely determined in the type D.2/nC1.

In Lemma 6.1, the scalars a and b can be described by the root vectors according
to the above relations, which will become more computable in our case. Let
v 2 L.f / be a nonzero `-weight vector of f . Since C 1=2 acts trivially on L.f /
and ki commutes with z i;k zdi

, this implies that

(6-6) XC
2 zdiı�˛i

:v D o.i/aXC
zdiı�˛i

:v and z 
i; zdi
:v D o.i/

b

qi � q
�1
i

v:

Lemma 6.4. For any i 2 I0 and k 2 Z>0, the root vectors XC
k zdiı�˛i

in Uq.X
.r/
N /

have the following relations:

XC
.kC1/ zdiı�˛i

D

8<:
1

Œ3�Šn
ŒXC
kı�˛n

; ŒXC
ı�˛n

; XCn �q� if .X .r/N ; i/D .A
.2/
2n ; n/;

1
Œ2�i
ŒXC
k zdiı�˛i

; ŒXC
zdiı�˛i

; XCi �q2
i
� otherwise:

Proof. We may use the following relations [Damiani 2000, Proposition 2.2.4,
Corollary 3.2.4] (see [Beck 1994]): for k 2 Z>0,

(6-7)

(
ŒXC
kı�˛n

; XC
n;ı
�D Œ3�ŠnX

C

.kC1/ı�˛n
if .X .r/N ; i/D .A

.2/
2n ; n/;

ŒXC
k zdiı�˛i

; XC
i; zdiı

�D Œ2�iX
C
.kC1/ zdiı�˛i

otherwise:

Note that XC
i; zdiı

2 U is defined by the formal series (6-4). Because, in (6-3),
z i;k zdi

DŒXC
k zdiı�˛i

; XCi �q2
i
, by comparing the coefficients of z in (6-4), we can get

(6-8) XC
i; zdiı
D z 

i; zdi
D ŒXC

zdiı�˛i

; XCi �q2
i
;

which implies the lemma by (6-7) and (6-8). �

Let ˛ 2 QC. We introduce the height ht˛ of ˛ as ht˛ D
P
i2I mi if ˛ DP

i2I mi˛i . Define a subset QC.˛/ of QC as follows:

QC.˛/D fˇ 2QC j ht˛� htˇ D 1; ˛�ˇ ¤ ˛0g:

Let UC.˛/ be the subspace of UC˛ defined as UC.˛/D
P
ˇ2QC.˛/

UC
ˇ
XC
˛�ˇ

.
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Lemma 6.5. (1) For i 2 I0, the root vector XC
ı�˛i

in Uq.A
.1/
n�1/ has the following

form:

XC
ı�˛i
� .�q�1/n�2.XCiC1 � � �X

C
n�1/.X

C
i�1 � � �X

C
2 X
C
1 /X

C
0 .mod UC.ı�˛i //:

(2) In Uq.C
.1/
n /,

XC
ı�˛n�1

� q�n.XCn X
C
n�2 � � �X

C
1 /.X

C
n�1X

C
n�2 � � �X

C
1 /X

C
0 .mod UC.ı�˛n�1//;

XC
ı�˛n
�

�
q�1

Œ2�1

�n�1
.XCn�1/

2.XCn�2/
2
� � �.XC1 /

2XC0 .mod UC.ı�˛n//:

(3) In Uq.A
.2/
2n /,

XC
ı�˛n
� q�2n.XCn�1X

C
n�2 � � �X

C
1 /.X

C
n X
C
n�1 � � �X

C
1 /X

C
0 .mod UC.ı�˛n//:

(4) In Uq.D
.2/
nC1/,

XC
ı�˛n
� q�2nC2XCn�1X

C
n�2 � � �X

C
1 X
C
0 .mod UC.ı�˛n//:

Proof. Thanks to the reduced expressions of z!i in Remark 6.3, the lemma can be
deduced directly by the definition. One can refer to [Jang et al. 2023, Lemma 4.7] for
assertion (1). To see the remaining assertions we define the operators D.1/i and D.2/i
of U for i 2 I0 by D.1/i .X/D ŒX;XCi �qi

and D.2/i .X/D ŒŒX;XCi �; X
C
i �q for any

X 2U , respectively. In the type C .1/n , we note that T�D.s/i DD.s/n�iT� and TjD.s/i D
D.s/i Tj for ji � j j> 1 and s D 1; 2. Write Ts.i;j /

D T.i;j / for simplicity. Then

T.0;n/Tn�1D.s/n D D.s/n T.0;n/Tn�1;

since s.0;n/sn�1˛nD˛n, and for any 0< i <n�1, we have .s.0;n/sn�1/i�1˛1D˛i
and s.iC1;n�1/s.i;n�2/˛n�2 D ˛i by using Lemma 6.2, so we get

.T.0;n/Tn�1/
iT.0;n�2/X

C
n�1 D .T.0;n/Tn�1/

i�1T.0;n/T.0;n�3/X
C
n�2

D .T.0;n/Tn�1/
i�1T.0;n�2/T.0;n�3/Tn�1X

C
n�2

D�.T.0;n/Tn�1/
i�1ŒT.0;n�2/X

C
n�1; X

C
1 �qn�1

D�D.1/i .T.0;n/Tn�1/
i�1T.0;n�2/X

C
n�1;

and
T.iC1;n/T.i;n�1/X

C
n D T.iC1;n�1/T.i;n�2/TnTn�1X

C
n

D T.iC1;n�1/T.i;n�2/T
�1
n�1X

C
n

D
1

Œ2�n�1
ŒŒT.iC1;n�1/X

C
n ; X

C
i �; X

C
i �q

D
1

Œ2�1
D.2/i T.iC1;n�1/X

C
n :
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Finally, the definition of the root vectors and Remark 6.3 imply that

XC
ı�˛n�1

D .T.0;n/Tn�1/
n�2T.0;n/X

C
n�1

D�.T.0;n/Tn�1/
n�2T.0;n�2/D.1/n XCn�1

D�D.1/n .T.0;n/Tn�1/
n�2T.0;n�2/X

C
n�1

D D.1/n D.1/n�2.T.0;n/Tn�1/
n�3T.0;n�2/X

C
n�1

:::

D .�1/n�1D.1/n D.1/n�2 � � �D
.1/
1 T.0;n�2/X

C
n�1

D D.1/n D.1/n�2 � � �D
.1/
1 D.1/n�1 � � �D

.1/
1;qX

C
0 ;

where D.1/i;q .X/D ŒX;X
C
i �q for X 2 U , and

XC
ı�˛n

D T�TnT.n�1;n/ � � �T.2;n/T.1;n�1/X
C
n

D
1

Œ2�1
T�TnT.n�1;n/ � � �T.3;n/D

.2/
1 T.2;n�1/X

C
n

D
1

Œ2�1
D.2/n�1T�TnT.n�1;n/ � � �T.3;n/T.2;n�1/X

C
n

:::

D

�
1

Œ2�1

�n�1
D.2/n�1D

.2/
n�2 � � �D

.2/
1 XC0 ;

which implies assertion (2). Similarly, we can prove that

XC
ı�˛n

D�D.1/n�1 � � �D
.1/
1 D.1/n;q1

D.1/n�1 � � �D
.1/
2 D.1/1;q0

.XC0 / in Uq.A
.2/
2n /;(6-9)

XC
ı�˛n

D .�1/n�1D.1/n�1 � � �D
.1/
1 .XC0 / in Uq.D

.2/
nC1/;(6-10)

which imply (3) and (4). �

Remark 6.6. In order to simplify computations in the following theorem for the
type A.2/2n .n� 2/, we actually only need two terms of XC

ı�˛n
,

(6-11) q�2n.XCn�1X
C
n�2 � � �X

C
1 /.X

C
n X
C
n�1 � � �X

C
1 /X

C
0

� q�2nC1.XCn�1 � � �X
C
1 /

2XC0 X
C
n ;

which can be deduced directly from formula (6-9).

Now we compute the highest `-weights of the q-oscillator representations defined
in Section 6A.
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Theorem 6.7. (1) Fix 0<s <n and l 2Z. The Uq.A
.1/
n�1/-module W.l/

s has highest
`-weight f D .fi .z//i2I0

given by

fi .z/D
ci;l Cu

1C ci;lu
with ci;l D

�
qıi;s�1l�ıi;s.lC1/ if l � 0;
qıi;s.l�1/�ıi;sC1l if l < 0

for 1� i � n� 1, where uD o.s/.�q�1/nz.

(2) The highest `-weight of the Uq.C
.1/
n /-module WC (resp. W�) is given by�

1; : : : ; 1;
q�1=2Cu

1C q�1=2u

� �
resp.

�
1; : : : ; 1;

q1=2Cu

1C q1=2u
;
q�3=2Cu

1C q�3=2u

��
;

where uD o.n/q�n�1z.

(3) The highest `-weight of the Uq.A
.2/
2n /-module (resp. Uq.D

.2/
nC1/-module) W is

given by �
1; : : : ; 1;

{q�1n Cu

1C {q�1n u

�
;

where uD o.n/{�qq�2n�1z (resp. uD q�2nz).

Proof. The proof of the first assertion can be found in [Kwon and Lee 2023, Theorem
4.10]. For (2), we have verified in Proposition 5.7 that vC D j0i and v� D jeni are
highest `-weight vectors ofUq.C .1/n /-modules WC and W� respectively. Therefore,
it follows from Lemma 6.1 and formulae (6-6) that we only need to compute the
actions of XC

2 zdiı�˛i

and z 
i; zdi

on v˙.

Note that XCj :v
˙ D 0 for all j 2 I0. By using Lemma 6.5 we have

XC
ı�˛n

:vC D
q�nC1

Œ2�1
j2eni; XC

ı�˛n
:v� D

q�nC1

Œ2�1
j3eni;

and then

z n;1:v
C
D
q�n�1

Œ2�1
vC; z n;1:v

�
D
q�n�1

Œ2�1
Œ3�1v

�:

Therefore, we have

XC
2ı�˛n

:vC D
1

Œ2�
ŒXC
ı�˛n

; z n;1�:v
C

D
1

Œ2�

�
q�n�1

Œ2�1
XC
ı�˛n

:vC�
q�nC1

Œ2�1
z n;1:j2eni

�
D
q�nC1

Œ2�Œ2�1

�
q�2C1�q�2

Œ4�1Œ3�1

Œ2�1

�
XC
ı�˛n

:vC

D�q�n�3=2XC
ı�˛n

:vC;
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and

XC
2ı�˛n

:v� D
1

Œ2�
ŒXC
ı�˛n

; z n;1�:v
�
D
q�nC1

Œ2�Œ2�1
.q�2Œ3�1X

C

ı�˛n
:v�� z n;1:j3eni/

D
q�nC1

Œ2�Œ2�1

�
q�2Œ3�1C Œ3�1� q

�2 Œ5�1Œ4�1

Œ2�1

�
XC
ı�˛n

:v�

D�q�n�5=2XC
ı�˛n

:v�:

On the other hand,

XC
ı�˛n�1

:v� D�q�njen�1i; z n�1;1:v
�
D q�n�1v�;

and then

XC
2ı�˛n�1

:v� D
1

Œ2�n�1
ŒXC
ı�˛n�1

; z n�1;1�:v
�

D
q�n

Œ2�n�1
.q�1XC

ı�˛n�1
:v�C z n�1;1:jen�1i/

D
q�n

Œ2�n�1
.q�1C 1/XC

ı�˛n�1
:v�

D q�n�1=2XC
ı�˛n�1

:v�:

In other cases, we can check that XC
ı�˛i

:v D 0, so z i;1:v D 0 and XC
2ı�˛i

:v D 0.
Thus, we get (2) as desired.

To get (3), let v WD j0i. We first focus on the type D.2/nC1. By Lemma 6.5(4),

XC
ı�˛n

:v D q�2nC2j2eni; z n;1:v D�q
�2XCn X

C

ı�˛n
:v D�{��q

�2nv;

and then

XC
2ı�˛n

:v D
1

Œ2�
ŒXC
ı�˛n

; z n;1�:v D
1

Œ2�
.�{��q

�2nXC
ı�˛n

:v� q�2nC2 z n;1:jeni/;

D
q�2nC2

Œ2�
.�{��q

�2
� {�� C {�� Œ2��q

�2/XC
ı�˛n

:v

D�{q�2n�1XC
ı�˛n

:v:

For i ¤ n, we have XCzdiı�˛i
:vD 0, and then z i; zdi

:vD 0 and XC
2 zdiı�˛i

:vD 0. This
proves assertion (3) for the type D.2/nC1. For the type A.2/2n , Lemma 6.5(3) yields

XC
ı�˛n

:v D q�2n{�qjeni; z n;1:v D�q
�1XCn X

C

ı�˛n
:v D �2q q

�2n�1v:

Note that all terms in the expression of XC
ı�˛n

vanish on the vector jeni except for
the two terms in (6-11). We can compute the following action by using (6-11):

XC
ı�˛n

:jeni D {�qq
�2n�1

j2eni:
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Therefore,

XC
2ı�˛n

:v D
1

Œ3�Šn
ŒXC
ı�˛n

; z n;1�:v

D
1

Œ3�Šn
.�2q q

�2n�1XC
ı�˛n

:v� {�qq
�2n z n;1:jeni/;

D
q�2n�q

Œ3�Šn
.q�1C 1� q�2Œ2�/XC

ı�˛n
:v

D q�2n�3=2�qX
C

ı�˛n
:v:

Then a D o.n/�qq�2n�3=2 and b D o.n/�qq�2n.q�1=2C q�3=2/. Assertion (3)
for the type A.2/2n follows from Lemma 6.1 and Corollary 5.4(3). �

Appendix: Proof of Theorem 4.2

Proof of Theorem 4.2. For generalized Cartan matrices of finite types, the corre-
sponding system of equations (4-1) has been solved in [Chen et al. 2024]. The
method followed in this appendix is parallel with the one there.

Given an affine Cartan matrix A. Fix one i 2 I and denote by Axi
the subalgebra

of A generated by all x˙1j for j ¤ i . Then there is a natural isomorphism A Š
Axi

Œx˙1i �. Suppose that .�i /i2I is any solution to the system (4-1).
We have the following two crucial lemmas.

Lemma A.1. Any � 2A satisfying �i .�/�� D fyigi has the form

� D ˇCi yi C�0Cˇ
�
i y
�1
i ;

where �0 2Axi
, ˇCi D�qi .qi � q

�1
i /�2 and ˇ�i D�q

�1
i .qi � q

�1
i /�2.

Proof. Let � D
P
k �kx

k
i with �k 2Axi

. Then �i .�/�� D fyigi implies thatX
k

.q�ki � 1/�kx
k
i D

1

qi � q
�1
i

x2i

Y
j¤i

x
aji

j �
1

qi � q
�1
i

x�2i

Y
j¤i

x
�aji

j :

Hence �k is zero unless k D 0;˙2 and

�2 D ˇ
C
i

Y
j¤i

x
aji

j ; ��2 D ˇ
�
i

Y
j¤i

x
�aji

j :

So the lemma is proved. �
Therefore, we may always assume that �i in the system (4-1) satisfies �i D

ˇCi yi C�i;0Cˇ
�
i y
�1
i , where �i;0 2Axi

.
Note that any pair .�i ; �j / is .i; j /-shiftable. This condition can further restrict

the choices of �i;0 and �j;0 when the nodes i and j are not connected in the Dynkin
diagram of A, namely, aij D 0. More precisely, we have:
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Lemma A.2. If aij D 0, then both �i;0 and �j;0 lie in Axi
\Axj

.

Proof. Since aij D 0, we have aj i D 0, and yi 2 Axj
and yj 2 Axi

. If �i;0 D 0,
there is nothing to do. Assume that �i;0 is not zero. We rewrite �i;0 uniquely as
the Laurent polynomial in xj , i.e., a unique form in Axj

Œx˙1j �. Take the nonzero
term in this form of �i;0 such that xj has the highest (resp. lowest) power, denoted
by �i;max (resp. �i;min). Then the shiftability of .�i ; �j / implies that

qmj ˇ
C
j �i;maxyj D ˇ

C
j �i;maxyj ; qljˇ

�
j �i;miny

�1
j D ˇ

�
j �i;miny

�1
j ;

where m D degxj
�i;max and l D degxj

�i;max. Hence m D 0 D l . Then we can
conclude that �i;0 2Axi

\Axj
as desired. Similarly, we have �j;0 2Axi

\Axj
. �

Let us first focus on the rank-two cases. Fix i ¤ j in I and J D fi; j g. Due to
Lemma A.2 we may assume that the nodes i and j are connected. Without loss of
generality, we set �D aij ; �D aj i and j�j � j�j. Then

AJ D

�
2 �

� 2

�
where 1� ��� 4:

Then yi D x2i x
�
j and yj D x�i x

2
j in this case. Assume that 'i and 'j have the

forms as in Lemma A.1, i.e.,

'l D ˇ
C

l
yl C�l;0Cˇ

�
l y
�1
l ;

where 'l;0 2Axl
; l 2 J , and let 'i and 'j satisfy the equality

'i'j D �
�1
j .'i /�

�1
i .'j /: .�/

Record the .xi ; xj /-degrees of a monomial u in A by a degree vector�
degxi

u

degxj
u

�
:

Then a Laurent polynomial f corresponds to a matrix with each column vector
representing for the .xi ; xj /-degrees of certain term of f . Moreover, if 'i;0 is not
zero (resp. 'j;0 is not zero), then we use one vector with a parameter s (resp. t ),�

0

s

� �
resp.

�
t

0

��
;

to stand for the possible .xi ; xj /-degrees of 'i;0 (resp. 'j;0). For example, by
Lemma A.2, if aij D 0, then s and t always equal 0. Therefore, we obtain the
following matrix with possible .xi ; xj /-degrees of terms of 'i'j :0B@ q

�
i q
�
j qti q

�
j 1 q�i q

s
j qti q

s
j q��i qsj 1 qti q

��
j q��i q

��
j

2C� 2C t 2�� � t �� �� 2 t � 2 ��� 2

�C 2 � �� 2 sC 2 s s� 2 2�� �� �2��

1CA ;
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where the first row contains the corresponding shifted coefficients in ��1i .'j /�
�1
j .'i /.

The terms with shifted coefficient 1 can be canceled on the left- and right-hand
sides of the equality .�/, so we may omit such terms. Therefore, we have the matrix0B@ q

2�
j qti q

�
j q�i q

s
j qti q

s
j q��i qsj qti q

��
j q

�2�
j

2C� 2C t � t �� t � 2 ��� 2

�C 2 � sC 2 s s� 2 �� �2��

1CA : .M1/

One useful statement is that if a shifted coefficient is not 1, then the corresponding
degree vector has to be equal to another one in the matrix .M1/ by the equality .�/.
Therefore, we can determine all possible .xi ; xj /-degrees of 'i;0 and 'j;0 as follows:

types .�; �/ possible values of s and t

A2 .�1;�1/ s; t 2 f1;�1g

B2 .D C2/ .�2;�1/ 'i;0 D 0, t D˙2 or s D˙1, t D 0

G2 .�3;�1/ none

A
.1/
1 .�2;�2/ s D 0D t

A
.2/
2 .�4;�1/ 'i;0 D 0, t D 0

Note that there is no .xi ; xj /-degree vector for the type G2 satisfying the above
statement, so neither for the types G.1/2 and D.3/4 . We have obtained all solutions
for the type A.1/1 in Example 4.1. For type A.2/2 , we substitute the reduced forms of
'i;0 and 'j;0, i.e., 'i;0 D 0, 'j;0 2 C�, into (4-1), and then get

'i D
{

qi � q
�1
i

f{q
1
2x2i x

�1
j gi ; 'j D f{q

� 1
2x2i x

�1
j gj f{q

3
2x�2i xj gj :

By our assumption in Section 2, we have i D 1, j D 0 and �0 D 'j , �1 D 'i for
the type A.2/2 .

Let us turn to the higher-rank cases. The next result tells us how to “glue” the
rank-two cases together.

Lemma A.3. Let j 2 I be a node which connects to the other two distinct nodes i
and l in the Dynkin diagram. Assume that �j;0¤ 0 and the pair of integers .m; t/ is
the .xi ; xl/-degree of any nonzero (monomial) term of �j;0. Then we have mt � 0.

Proof. Otherwise, assume that mt > 0 and the corresponding nonzero term of �j;0
is �.1/j;0 . Without loss of generality, we may let m> 0 and t > 0. Consider the term
ˇ�i y

�1
i �.1/j;0 of �i�j which has the factor xm�2i x�aji

j xt�ali
l . So we have that the

shifted coefficient qmi q
�aji
j D qm�aij

i in ��1j �i�
�1
i �j is not 1. However, there is

no other term in �i�j whose .xi ; xj ; xl/-degree vector equals .m�2;�aj i ; t�ali /.
This is a contradiction. Hence mt � 0. �
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Lemma A.3 implies that there is no solution to the system (4-1) for A whose
Dynkin diagram contains D4 or F4 as a subdiagram.

Up to this point, we have ruled out all affine Cartan matrices except those of types
A.1/n .n� 1/, C .1/n .n� 2/, A.2/2n .n� 1/ or D.2/nC1 .n� 2/. Now we can substitute
the reduced forms of the �i;0 into the system (4-1) to determine the coefficients
of the possible terms. Then we obtain all solutions as listed below Theorem 4.2.
Therefore, Theorem 4.2 is proved, as desired.
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ADAM PARUSIŃSKI and ARMIN RAINER

355Noncommutative tensor triangular geometry: classification via
Noetherian spectra

JAMES ROWE

373Regularity of manifolds with integral scalar curvature bound and
entropy lower bound

SHANGZHI ZOU

389Correction to the article A Hecke algebra isomorphism over close local
fields

RADHIKA GANAPATHY

Pacific
JournalofM

athem
atics

2024
Vol.330,N

o.2


	1. Introduction
	2. Preliminaries and notation
	2A. Affine Kac–Moody algebras
	2B. Quantum affine algebras

	3. Highest l-weight representations with finite weight multiplicities
	3A. Highest l-weight modules
	3B. The classification theorem: rationality

	4. Shiftability conditions and algebra homomorphisms
	4A. Shiftability conditions
	4B. Quantized oscillator algebra and algebra homomorphisms

	5. Multiplicity-free weight modules
	5A. Module structures on A0
	5B. Realization of multiplicity-free weight modules

	6. Highest l-weights
	6A. Multiplicity-free highest l-weight modules
	6B. Highest l-weights

	Appendix: Proof of Theorem Theorem 4.2
	Acknowledgements
	References
	
	

