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DIFFERENTIAL GEOMETRIC APPROACH
TO THE DEFORMATION OF A PAIR

OF COMPLEX MANIFOLDS AND HIGGS BUNDLES

TAKASHI ONO

Let X be a complex manifold and (E, θ) be a Higgs bundle over X . We
study the deformation of the triple (X, E, θ). We introduce the differential
graded Lie algebra (DGLA) which governs the deformation. We construct
the Kuranishi family of it and prove it contains all the information of small
deformations of (X, E, θ).

1. Introduction

Let X be a complex manifold and (E, ∂̄E) be a holomorphic vector bundle on
it. Let ∂̄End(E) be the natural holomorphic structure on End(E) induced by E .
Let A1,0(End(E)) be the smooth sections of End(E)⊗�1,0. A Higgs field θ on
(E, ∂̄E) is an additional structure on E such that θ ∈ A1,0(End(E)), ∂̄End(E)θ = 0
and the integrability condition θ∧θ = 0 is satisfied. The Higgs field was introduced
in [Hitchin 1987] for the Riemann surfaces case and generalized to the higher
dimensional case in [Simpson 1988]. We call a triple (X, E, θ) a holomorphic-
Higgs triple.

We study the deformation of holomorphic-Higgs triples. Our goal is to derive
the differential graded Lie algebra (DGLA) which governs the deformation of a
given holomorphic-Higgs triple and construct the Kuranishi family of it. For that
sake, we apply the Kodaira–Spencer theory [1958a; 1958b; 1960]. The advantage
of studying the deformation in the style of Kodaira–Spencer theory is that we can
construct the DGLA differential geometrically. Hence we can use the theory of
Kuranishi [1965] to construct the Kuranishi space.

There is a lot of interesting work in studying the deformation of pairs of a
complex manifold and a holomorphic bundle over it. Such pairs were studied
algebraically in [Huybrechts and Thomas 2010; Li 2008; Martinengo 2009; Sernesi
2006], analytically in [Huang 1995; Siu and Trautmann 1981], and in the style of
Kodaira–Spencer theory [Chan and Suen 2016].
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The deformation of holomorphic-Higgs triples was studied algebraically in
[Martinengo 2012]. In her work, the DGLA was also obtained. The difference
between her work and our work is that she obtained the DGLA purely algebraically
while we obtained it differential geometrically.

We first prove the tuple (L , dL , [ · , · ]L) is a DGLA. We show that this is the
DGLA which governs the deformation afterwards. We prepare some notation.
Let (X, E, θ) be a holomorphic-Higgs triple. Let K be a hermitian metric on
E and ∂K be a (1,0)-part of the Chern connection associated to ∂̄E and K , and
for φ ∈ A0,i (TX), we define {∂K , φ⌟} := ∂K (φ⌟) + (−1)iφ⌟∂K . Let ∂End(E)

K :

A0(End(E)) → A1,0(End(E)) be the differential operator induced by ∂K . Let
[ · , · ] be the standard Lie bracket on A∗(End(E))=

⊕
i Ai (End(E)) and [ · , · ]SN

be the standard Schouten–Nijenhuys bracket on A0,∗(TX)=
⊕

i A0,i (TX).

Theorem 1.1 (Theorem 3.1). Let L i
=

⊕
p+q=i Ap,q(End(E))⊕ A0,i (TX) and

L :=
⊕

i L i . Let (A, φ) ∈ L i and (B, ψ) ∈ L j . We set

[(A, φ), (B, ψ)]L :=(
(−1)i {∂End(E)

K , φ⌟}B − (−1)(i+1) j
{∂

End(E)
K , ψ⌟}A − [A, B], [φ,ψ]SN

)
We define BK ∈ A0,1(Hom(T X,End(E)) and C-linear map CK : A0,p(TX) →

A1,p(End(E)) such that they act on v ∈ A0,p(TX) as

BK (v) := (−1)pv⌟FdK , CK (v) := {∂
End(E)
K , v⌟}θ.

We define dL : L → L as,

dL :=

(
∂̄End(E) BK

0 ∂̄TX

)
+

(
θ CK

0 0

)
.

Then (L , dL , [ · , · ]L) is a DGLA.

This DGLA is the DGLA which governs the deformation of the holomorphic-
Higgs triple. Actually, we have the following.

Theorem 1.2 (see Theorem 3.6 for precise statement). Let (A, φ)∈ L1. Then (A, φ)
defines a holomorphic-Higgs triple if and only if (A, φ) satisfies the Maurer–Cartan
equation

dL(A, φ)− 1
2 [(A, φ), (A, φ)]L = 0.

Since the governing DGLA is constructed differential geometrically, We can
apply the technique of [Kodaira and Spencer 1958a; 1958b; 1960; Kuranishi 1965]
to construct the universal family (= Kuranishi family) for a triple (X, E, θ).

Let 1L be the Laplacian induced by dL . Since 1L is an elliptic operator, Hi
:=

ker(1L : L i
→ L i ) is finite dimensional. Let {η1, . . . , ηn} be a basis of H1. Let d∗

L
be the formal adjoint of dL w.r.t. the L2 metric, H : L i

→ Hi be the projection and
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G be the Green’s operator associated to 1L . The next result is based on [Kuranishi
1965].

Proposition 1.1 (Propositions 4.1 and 4.2). Let t = (t1, . . . , tn) ∈ Cn and ϵ1(t) :=∑
i tiηi . For all |t | ≪ 1 we have a ϵ(t) such that ϵ(t) satisfies the equation

ϵ(t)= ϵ1(t)+ 1
2 d∗

L G[ϵ(t), ϵ(t)]L .

Moreover, ϵ(t) is holomorphic respect to the variable t and ϵ(t) satisfies the Maurer–
Cartan equation

dLϵ(t)− 1
2 [ϵ(t), ϵ(t)]L = 0

if and only if H [ϵ(t), ϵ(t)]L = 0.

Let 1⊂ Cn be a ball small enough so that ϵ(t) is holomorphic on 1. We define
S ⊂1 as

S := {t ∈1 | H [ϵ(t), ϵ(t)]L = 0}.

S might not be smooth, however, it is a complex analytic space. Let Xϵ(t), Eϵ(t),
θϵ(t) be the complex manifold, the holomorphic bundle, and the Higgs field which
ϵ(t) defines, respectively. By combining the above results we have a family of
holomorphic-Higgs triple {(Xϵ(t), Eϵ(t), θϵ(t))}t∈S . We call this family the Kuranishi
family of (X, E, θ) and S the Kuranishi space.

We recall some properties of the Kuranishi family and space for a compact
complex manifold X . Kuranishi [1965] constructed the Kuranishi family and space
for arbitrary compact complex manifold and proved the semiuniversality: any other
deformation of X is obtained by the pullback of the Kuranishi family. Hence the
Kuranishi family contains all the information of small deformations of X . We prove
the abbreviated version of the semiuniversality of Kuranishi space. We show that
{(Xϵ(t), Eϵ(t), θϵ(t))}t∈S has all the information of small deformations of (X, E, θ).

Let | · |k be the k-th Sobolev norm on L1. We assume k ≫ 1.

Theorem 1.3 (Theorem 4.2). Let (X, E, θ) be a holomorphic-Higgs triple. Let S
be a Kuranishi family for (X, E, θ). Let η ∈ L1 be a Maurer–Cartan element. If
|η|k is small enough, then there is a t ∈ S such that (Xη, Eη, θη) is isomorphic to
(Xϵ(t), Eϵ(t), θϵ(t)) (see Section 4 for the meaning of isomorphic).

Some applications of Theorem 1.3. Higgs bundles play a core role in the nonabelian
Hodge correspondence. Let X be a compact Kähler manifold. The nonabelian
Hodge correspondence states there is a one-to-one correspondence in the following
objects on X : semisimple representations of the fundamental group of X , flat
bundles with a harmonic metric (a.k.a. harmonic bundle), and polystable Higgs
bundles with vanishing Chern classes. Here, a harmonic metric is a metric of a flat
bundle such that it induces a harmonic map from X to a certain homogenous space.
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This correspondence for Riemann surfaces was proved by Hitchin [1987], and the
higher dimensional case by Simpson [1988; 1992].

In [Ono 2023], we study the structure of the Kuranishi space for a holomorphic-
Higgs triple (X, E, θ) such that X is a compact Kähler manifold and (E, θ) is a
polystable Higgs bundle with vanishing Chern classes. We show that the Kuranishi
space of such a holomorphic-Higgs triple is isomorphic to the product of the
Kuranishi space of X and the Kuranishi space of the Higgs bundle. This predicts
that once we construct the moduli space which parametrizes a pair of a Kähler
manifold and a polystable Higgs bundle with 0 Chern classes, it locally splits into
the moduli space of the Kähler manifold and the moduli space of the Higgs bundle.
This phenomenon is interesting since we cannot expect such decomposition globally.

Plan of the paper. In Section 2, we define and study the deformation of holomorphic-
Higgs triples. We prove the Newlander–Nirenberg-type theorem in this context
(Proposition 2.6). In Section 3, we construct the DGLA which governs the deforma-
tion of the holomorphic-Higgs triple. In Section 4, we apply the work of Kuranishi
and construct the Kuranishi space for a given holomorphic-Higgs triple and prove
its local completeness.

2. Deformation of holomorphic-Higgs triple

For a smooth manifold X , we define Ap(X) to be a space of smooth p-forms on X ,
and for a smooth vector bundle E → X , we define Ap(E) to be a space of smooth
p-forms which take values in E .

Definition 2.1. Let X be a compact complex manifold. Let ∂̄End(E) be the complex
structure on End(E) induced by E . A Higgs bundle (E, θ) over X is a pair such that

• E is a holomorphic bundle over X ,

• θ is a Higgs field such that θ ∈ A1,0(End(E)), ∂̄End(E)θ = 0, and θ ∧ θ = 0.

We call a triple (X, E, θ) a holomorphic-Higgs triple.

We fix a metric K on E and assume X to be compact throughout this paper.

Definition 2.2. Let (X, E, θ) be a holomorphic-Higgs triple. A family of deforma-
tions of holomorphic-Higgs triples (X , E,2) over a small ball1 centered at the ori-
gin of Cd consists of a complex manifold X , a proper submersive holomorphic map

π : X →1

and a Higgs bundle (E,2) over X such that π−1(0)= X , E|π−1(0)= E ,2|π−1(0)= θ .

By Ehresmann’s theorem and as in [Kodaira 1986, Chapter 7, Lemma 7.1], if
we choose 1 small enough, we have maps F : X ×1→ X and P : E ×1→ E
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such that the diagram below commutes, F is a diffeomorphism and P is a smooth
bundle isomorphism:

E ×1 E

X ×1 X

1

P

F

We can induce a complex structure on X × {t} and a Higgs bundle structure on
E × {t} using F |X×{t} : X × {t} → Xt = π−1(t) and P|E×{t} : E × {t} → E|π−1(t).
We denote this family of holomorphic-Higgs triple {(X t , Et , θt)}t∈1.

Since {X t }t∈1 is a deformation of the complex manifold X , we have a family of
Maurer–Cartan element {φt }t∈1 such that each φt determines the complex structure
of X t .

Let A1,0(X t) := {α ∈ A1(X) | α is a (1,0)-form of X t }, π
1,0
X : A1(X)→ A1,0(X),

and π0,1
X : A1(X)→ A0,1(X) be the natural projection.

Lemma 2.1. α ∈ A1,0(X t) if and only if π0,1
X (α)= φt⌟π

1,0
X (α).

Proof. It is enough to prove it locally. Let x ∈ X and Ux be an open neighborhood
of x . Let (ξ1, . . . , ξn), (z1, . . . , zn) be local coordinates on Ux and (ξ1, . . . , ξn) be
a complex coordinate for X t and (z1, . . . , zn) be a complex coordinate for X .

Let α =
∑

i fi dξi . We have

π
0,1
X (α)=

∑
i, j

fi
∂ξi

∂ z̄ j
dz̄ j and π

1,0
X (α)=

∑
i, j

fi
∂ξi

∂z j
dz j .

Recall that φt =
∑

i, j φ
i
t, j

∂
∂zi

⊗ dz̄ j , (φi
t, j )=

(
∂ξi
∂zk

)−1( ∂ξk
∂ z̄ j

)
. See [Kodaira 1986]

for more details.
Hence

φt⌟π
1,0
X (α)=

( ∑
j,k

φ
j
t,k

∂

∂z j
⊗ dz̄k

)
⌟

( ∑
i, j

fi
∂ξi

∂z j
dz j

)

=

∑
i, j,k

fi
∂ξi

∂z j
φ

j
t,kdz̄k

=

∑
i,k

fi
∂ξi

∂ z̄k
dz̄k = π

0,1
X (α).

To prove the converse, we only have to prove that if ω ∈ A0,1(X t) and π0,1
X (ω)=

φt⌟π
1,0
X (ω) stands then ω= 0. Let ω=

∑
i hi d ξ̄i and assume π0,1

X (ω)=φt⌟π
1,0
X (ω).
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We have π0,1
X (ω) =

∑
i, j hi

∂ξ̄i
∂ z̄ j

dz̄ j and φt⌟π
1,0
X (ω) =

∑
i, j,k hi

∂ξ̄i
∂z j
φ

j
t,kdz̄k . Since

π
0,1
X (ω)= φt⌟π

1,0
X (ω), we have

0 = π
0,1
X (ω)−φt⌟π

1,0
X (ω)=

∑
k

{∑
i

hi

(
∂ξ̄i

∂ z̄k
−

∑
j

∂ξ̄i

∂z j
φ

j
t,k

)}
dz̄k .

Hence (
∂ξ̄i

∂ z̄k
−

∑
j

∂ξ̄i

∂z j
φ

j
t,k

)
(h1, . . . , hn)

T
= 0.

Since φt defines a near complex structure with respect to the original one

det
(
∂ξ̄i

∂ z̄k
−

∑
j

∂ξ̄i

∂z j
φ

j
t,k

)
̸= 0.

Hence (h1, . . . , hn)= 0. This implies ω = 0. □

Lemma 2.2. Let α ∈ A1,0(X t). α is a holomorphic 1-form on X t if and only if
(∂̄ + lψt )π

1,0
X (α)= 0. Here lψt = ∂(ψt⌟)−ψt⌟∂ .

Proof. As in Lemma 2.1, we only have to prove it locally. We use the notation in
the proof of Lemma 2.1.

Let α=
∑

i fi dξi and let α1,0
=π

1,0
X (α). We first calculate (∂̄+lψt )(α

1,0). Since
α1,0

=
∑

i, j fi
∂ξi
∂z j

dz j , we have

∂̄α1,0
= ∂̄

( ∑
i, j

fi
∂ξi

∂z j
dz j

)
=

∑
i, j,k

{
∂ fi

∂ z̄k

∂ξi

∂z j
+ fi

∂2ξi

∂ z̄k∂z j

}
dz̄k ∧ dz j ,

lφt (α
1,0)= lφt

( ∑
i, j

fi
∂ξi

∂z j
dz j

)
= ∂

(
φt⌟

∑
i, j

fi
∂ξi

∂z j
dz j

)
−φt⌟

{ ∑
i, j,k

(
∂ fi

∂zk

∂ξi

∂z j
+ fi

∂2ξi

∂zk∂z j

)
dzk ∧ dz j

}
= ∂

( ∑
i, j,k

fi
∂ξi

∂z j
φ

j
t,kdz̄k

)
−φt⌟

{ ∑
i, j,k

(
∂ fi

∂zk

∂ξi

∂z j

)
dzk ∧ dz j

}
,

and

∂

( ∑
i, j,k

fi
∂ξi

∂z j
φ

j
t,kdz̄k

)
= ∂

( ∑
i,k

fi
∂ξi

∂ z̄k
dz̄k

)
=

∑
i, j,k

∂ fi

∂z j

∂ξi

∂ z̄k
dz j∧dz̄k +

∑
i, j,k

fi
∂2ξi

∂ z̄k∂z j
dz j∧dz̄k

=

∑
i, j,k

∂ fi

∂zk

∂ξi

∂z j

∑
l

φk
t,ldz̄l∧dz j −

∑
i, j,k

∂ fi

∂zk

∂ξi

∂z j

∑
l

φ
j
t,ldz̄l∧dzk

=

∑
i, j,k,l

∂ fi

∂zk

∂ξi

∂z j
φk

t,ldz̄l∧dz j −
∑
i,k,l

∂ fi

∂zk

∂ξi

∂ z̄l
dz̄l∧dzk .
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Hence

(1) (∂̄ + lφt )(α
1,0)=

∑
i, j,k

∂ fi

∂ z̄k

∂ξi

∂z j
dz̄k ∧ dz j +

∑
i, j,k

fi
∂2ξi

∂ z̄k∂z j
dz̄k ∧ dz j

+

∑
i, j,k

∂ fi

∂z j

∂ξi

∂ z̄k
dz j ∧ dz̄k +

∑
i, j,k

fi
∂2ξi

∂ z̄k∂z j
dz j ∧ dz̄k

−

∑
i, j,k,l

∂ fi

∂zk

∂ξi

∂z j
φk

t,ldz̄l ∧ dz j +

∑
i,k,l

∂ fi

∂zk

∂ξi

∂ z̄l
dz̄l ∧ dzk

=

∑
i, j,l

∂ fi

∂ z̄l

∂ξi

∂z j
dz̄l ∧ dz j −

∑
i, j,k,l

∂ fi

∂zk

∂ξi

∂z j
φk

t,ldz̄l ∧ dz j

=

∑
j,l

∑
i

∂ξi

∂z j

(
∂ fi

∂ z̄l
−

∑
k

∂ fi

∂zk
φk

t.l

)
dz̄l ∧ dz j .

If we assume α to be a holomorphic 1-form on X t , this implies that { fi }i are
holomorphic functions on X t . Hence we have

∂ fi

∂ z̄l
−

∑
k

∂ fi

∂zk
φk

t,l = 0.

Hence by (1), when α is a holomorphic 1-form on X t , (∂̄ + lφt )(α
1,0)= 0.

Conversely, if we assume (∂̄ + lφt )(α
1,0)= 0, by (1) we have

∂ξi

∂z j

(
∂ fi

∂ z̄l
−

∑
k

∂ fi

∂zk
φk

t,l

)
= 0.

Since φt defines a near complex structure to X , we have det
(
∂ξi
∂z j

)
̸= 0. Hence

∂ fi
∂ z̄l

−
∑

k
∂ fi
∂zk
φk

t,l = 0. This shows that { fi } are holomorphic function on X t and α
is a holomorphic 1-form on X t . □

By Lemma 2.1, θt can be decomposed as θt = ωt +φt⌟ωt , where ωt = π
1,0
X (θt).

We define an operator Dt : A0(E)→ A1(E) as

Dt(s)= Dt(skek) := (∂ + lφt )s
k
⊗ ek +ωt ∧ s, s ∈ A0(E).

Here, {ek} is a local holomorphic frame of Et and we used the Einstein summation
rule.

Proposition 2.1. Dt is a well defined operator, that is, Dt is independent of the
holomorphic frame of Et . Also Dt satisfies the Leibniz rule:

Dt(α∧ s)= (∂̄ + lφt )α⊗ s + (−1)pα∧ Dt(s)

for every α ∈ Ap(X) and s ∈ A0(E).
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Proof. To prove well-definedness, we need to show that Dt is independent of the
choice of a local holomorphic frame {ek} of Et . Take another local holomorphic
frame { f j } of Et . Let hk

j be a holomorphic function of X t such that f j = hk
j e j .

Then for local section s ∈ A(E), s = s̃ j f j = skek , we have s̃ j hk
j = sk , thus we have

Dt(s̃ j f j )= (∂̄ + lφt )s̃
j
⊗ f j +ωt ∧ (s̃ j f j )

= (∂̄ + lφt )s̃
j
⊗ hk

j ek +ωt ∧ s

= (∂̄ + lφt )(s̃
j hk

j )⊗ ek +ωt ∧ (skek)

= (∂̄ + lφt )(s
k)⊗ ek +ωt(skek)

= Dt(skek).

Hence Dt is well defined.
The Leibniz rule for Dt follows from the fact that α ∈ Ap(X), β ∈ Aq(X),

α∧β = (−1)pqβ∧α stands and ∂̄ + lφt satisfies the Leibniz rule:

(∂̄ + lφt )(α∧β)= (∂̄ + lφt )(α)∧β + (−1)pα∧ (∂̄ + lφt )(β). □

Proposition 2.2. D2
t = 0.

Proof. We calculate D2
t locally and show D2

t = 0. Since Dt satisfies the Leibniz
rule, we only have to prove (∂̄ + lφt )

2
= 0 and D2

t (s)= 0 for s ∈ A0(E).
First we prove (∂̄ + lφt )

2
= 0. According to [Martinengo 2012], we have

(2) (∂̄ + lφt )
2
= l∂̄TXφt−

1
2 [φt ,φt ]

.

Since φt is a Maurer–Cartan element, we have ∂̄TXφt −
1
2 [φt , φt ] = 0. Hence

(∂̄ + lφt )
2
= 0.

Next we prove D2
t (s)= 0 for s ∈ A0(E). Let {ek} be a holomorphic frame for Et .

Assume that s and ωt has a trivialization as s = skek and ωt = gi dzi , gi = (as
i,t)

respect to the frame {ek}. Here sk, as
i,t ∈ A0(X) and gi ∈ A0(End(E)). Since ωt =

π
1,0
X (θt) and θt is a Higgs field we have ωt ∧ωt = 0. Applying Lemma 2.2 and the

fact that Dt satisfies the Leibniz rule, we have

D2
t (s)= D2

t (s
k
⊗ek)

= Dt((∂̄+lφt )s
k
⊗ek +ωt∧s)

= (∂̄+lφt )
2sk

⊗ek +ωt ∧(∂̄+lφt )s
k
⊗ek +(∂̄+lφt )(a

s
i,kskdzi )⊗esωt∧ωt∧s

= ωt ∧(∂̄+lφt )s
k
⊗ek +(∂̄+lφt )(a

s
i,kdzi )∧sk

⊗es

−ωt ∧(∂̄+lφt )s
k
⊗ek +ωt∧ωt∧s

= 0.

Since s ∈ A(E) is an arbitrary smooth section, this proves the claim. □
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Proposition 2.3. We define At := Dt − ∂̄E −{∂K , φt }− θ . Then At ∈ A1(End(E)).
Here ∂K is a (1,0)-part of the Chern connection which is uniquely determined by
∂̄E and the hermitian metric K . {∂K , φt⌟} is the operator such that {∂K , φt⌟} =

∂K (φt⌟)−φt⌟∂K .

Proof. Let f ∈ A0(X) and s ∈ A0(E). Using the Leibniz rule and the fact that the
contraction is only taken in the (1,0)-part, we have

At( f s)= (∂̄+lφt ) f ⊗s+ f Dt(s)−∂̄ f ⊗s− f ∂̄E s+φt⌟∂K ( f s)−θ∧( f s)

= (∂̄−φt⌟∂) f ⊗s+ f Dt(s)−∂̄ f ⊗s− f ∂̄E s+φt⌟(∂ f ⊗s+ f ∂K s)− f θ∧ s

= f (Dt −∂̄E −{∂K , φt }−θ)s

= f At(s).

This shows that At ∈ A1(End(E)). □

We summarize the results so far.

Proposition 2.4. Let (X, E, θ) be a holomorphic-Higgs triple. Let (X , E,2) be a
deformation family of (X, E, θ) over1 and {(X t , Et , θt)}t∈1 be the family obtained
from (X , E,2). Combining φt and θt , we can construct a well-defined differential
operator Dt such that (Dt)

2
= 0. Let At := Dt − ∂̄E − {∂K , φt⌟} − θ . Then

At ∈ A1(End(E)).

We want the converse of the above proposition. Suppose we have a given smooth
family At ∈ A0,1(EndE), Bt ∈ A1,0(EndE) and φt ∈ A0,1(TX) parametrized by
t ∈1.

We define the operator Dt : A0(E)→ A1(E) as

Dt := ∂̄E + {∂K , φt⌟} + At + θ + Bt .

We extend Dt to Ap(E) in an obvious way so that it satisfies the Leibniz rule:

Dt(α⊗ s)= (∂̄ + lφt )α⊗ s + (−1)pα∧ Dt(s).

We want to show that if D2
t = 0, (At , Bt , φt) defines a holomorphic-Higgs triple

(X t , Et , θt). First of all, we have:

Proposition 2.5. If D2
t = 0, φt defines a holomorphic structure on X. We denote

this complex manifold by X t .

Proof. Let f ∈ A0(X) and s ∈ A0(E). Since D2
t = 0, it satisfies the Leibniz rule:

0 = D2
t ( f ⊗ s)= (∂̄ + lφt )

2 f ⊗ s.

Since f and s are arbitrary function and section, we have (∂̄ + lφt )
2
= 0. By (2),

we have
0 = (∂̄ + lφt )

2
= l∂̄TXφt−

1
2 [φt ,φt ]

.



292 TAKASHI ONO

Hence ∂̄TXφt −
1
2 [φt , φt ] = 0. Hence φt defines a integrable complex structure

on X . □

Next, we show that E admits a holomorphic structure over X t and we can induce
a Higgs field on it. Let us define D′

t : A0(E)→ A0,1(E) as D′
t := ∂̄E +{∂K , φt⌟}+At .

We remark that Dt = D′
t + θ + Bt . The next claim was proved in [Moroianu 2007].

Lemma 2.3. ker(D′
t ) generates A0(E) locally.

Proof. See the proof of [Chan and Suen 2016, Lemma 3.11.]. □

The above lemma tells us that for every x ∈ X we have an open neighborhood U
of x and a frame {ek} on U such that {ek} ⊂ ker(D′

t). Let {ek} be a local frame of
E such that {ek} ⊂ ker(D′

t). Let ∂̄t be the Dolbeault operator of X t . We can then
define ∂̄Et by

∂̄Et (s
kek) := ∂̄t sk

⊗ ek .

Let { f j } ⊂ ker(D′
t) be an another local frame of E , then there exist (hk

j ) such that
f j = hk

j ek . Applying D′
t , we have

D′

t( f j )= D′

t(h
k
j e j )= (∂̄ −φt⌟∂)hk

j ⊗ ek .

Since ek is a local frame, we have (∂̄−φt⌟∂)hk
j = 0, which is equivalent to ∂̄t hk

j = 0.
We can now check ∂̄Et is well defined. Let s ∈ A0(E) and assume s has local
trivialization as s = s̃ j f j = skek . Applying ∂̄Et we have

∂̄Et (s
kek)= ∂̄t sk

⊗ ek = ∂̄t(s̃ j hk
j )⊗ ek = ∂̄t s̃ j ⊗ hk

j ek = ∂̄t s̃ j ⊗ f j = ∂̄Et (s̃ j f j ).

This proves the well-definedness. By definition, ∂̄E satisfies the Leibniz rule:

∂̄Et (α⊗ s)= ∂̄tα⊗ s + (−1)pα∧ ∂̄Et s

and ∂̄2
Et

= 0 since φt defines an integral almost complex structure on X . Hence,
by the linearized version of the Newlander–Nirenberg theorem, Et = (E, ∂̄Et ) is a
holomorphic bundle over X t .

We want to show next that θt = θ + Bt + φt⌟(θ + Bt) is a Higgs field for Et

under the above assertion. By Lemma 2.1, θt is a (1,0)-form of X t which takes
value in End(E).

Let ek ⊂ ker(D′
t) be a local frame of E and assume θ+ Bt is written as θ+ Bt =∑

i gi dzi (gi ∈ A0(End(E))) respect to this frame. By Lemma 2.2, to show θt is a
Higgs field on Et , it is enough to show (∂̄+lφt )gi dzi = 0 and (θ+Bt)∧(θ+Bt)= 0.

Since Dt satisfies the Leibniz rule

0 = D2
t (ek)= Dt(Dt(ek))= Dt((θ + Bt)(ek))= Dt(gi dzi (ek))

= (∂̄ + lφt )(gi dzi )ek − gi dzi ∧ Dt(ek)

= (∂̄ + lφt )(gi dzi )ek − (θ + Bt)∧ (θ + Bt)(ek).
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Hence θt is a Higgs field for Et and (X t , Et , θt) is a holomorphic-Higgs triple. In
summary, we have proved the following,

Proposition 2.6. Suppose we have a given smooth family At ∈ A0,1(End(E)),
Bt ∈ A1,0(End(E)), φt ∈ A0,1(TX) parametrized by t. If the induced differential
operator Dt : Ap(E)→ Ap+1(E) satisfies D2

t = 0 and the Leibniz rule

Dt(α∧ s)= (∂̄ + lφt )α⊗ s + (−1)pα∧ Dt(s),

then E admits a holomorphic structure over the complex manifold X t , which we de-
note by Et , and a Higgs field θt such that (X t , Et , θt) is a holomorphic-Higgs triple.

3. DGLA and the Maurer–Cartan equation

Let us recall the definition of DGLA.

Definition 3.1. A differential graded Lie algebra (DGLA) (V, [ · , · ], d) is the date
of Z-graded vector space L =

⊕
i∈Z L i with a bilinear bracket [ · , · ] : V × V → V

and a linear map d such that:

1. [a, b] + (−1)i j
[b, a] = 0 for a ∈ V i , b ∈ V j .

2. The graded Jacobi identity holds:

[a, [b, c]] = [[a, b], c] + (−1)i j
[b, [a, c]], a ∈ V i , b ∈ V j , c ∈ V k .

3. d(V i )⊂ V i+1, d◦d =0 and d[a, b]=[da, b]+(−1)i [a, db] for a ∈ V i , b ∈ V j .
The map d is called the differential of V .

We recall the definition of the Maurer–Cartan equation of a DGLA.

Definition 3.2. The Maurer–Cartan equation of a DGLA V is

da −
1
2 [a, a] = 0, a ∈ V 1.

The solutions of the Maurer–Cartan equation are called the Maurer–Cartan elements
of the DGLA L .

We derive the Maurer–Cartan equation and DGLA which governs the deformation
of the holomorphic-Higgs triple. The next proposition is important to construct the
DGLA. Before we state it, we introduce some notation. Let ∂End(E)

K : A0(End(E))→
A1,0(End(E)) be the differential operator induced by ∂K . Let FdK be the curvature
of the Chern connection. Let the bracket [ · , · ] be the canonical Lie bracket defined
on A∗(End(E)) and [ · , · ]SH be the standard Schouten–Nijenhuys bracket defined
on A0,∗(TX).

Proposition 3.1. Suppose we have a A ∈ A0,1(End(E)), B ∈ A1,0(End(E)) and
φ ∈ A0,1(TX). Let D be the differential operator defined as

D := ∂̄E + {∂K , φ⌟} + θ + A + B.
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D2
= 0 holds if and only if the following two equations hold:

∂̄End(E)(A + B)−φ⌟FdK + [θ, A + B]

+ {∂
End(E)
K , φ⌟}θ + {∂

End(E)
K , φ⌟}(A + B)+ 1

2 [A + B, A + B] = 0,

∂̄TXφ−
1
2 [φ, φ] = 0.

From now on we denote [ · , · ]SH as [ · , · ] if there is no confusion. The proof of
the above proposition will be given at the end of the section.

Let us define some notation. Let L i be L i
:=

⊕
p+q=i Ap,q(End(E))⊕A0,i (TX)).

Let for φ ∈ A0,i (TX), {∂
End(E)
K , φ⌟} := ∂

End(E)
K (φ⌟)+ (−1)iφ⌟∂End(E)

K . Define the
bracket [ · , · ]L : L i

× L j
→ L i+ j by

[(A, φ), (B, ψ)]L :=(
(−1)i {∂End(E)

K , ψ⌟}A − (−1)(i+1) j
{∂

End(E)
K , φ⌟}B − [A, B], [φ,ψ]

)
.

We define BK ∈ A0,1(Hom(T X,End(E)) and the C-linear map CK : A0,p(TX)→
A1,p(End(E)) such that they act on v ∈ A0,p(TX) as

BK (v) := (−1)pv⌟FdK , CK (v) := {∂
End(E)
K , v⌟}θ.

We define the linear operator dL : L → L as

dL :=

(
∂̄End(E) BK

0 ∂̄TX

)
+

(
θ CK

0 0

)
Theorem 3.1.

(
L =

⊕
i L i , [ · , · ]L , dL

)
is a DGLA.

We separate the proof of the theorem into the two propositions below. Before
going to the proof, we introduce some formulas which are useful for the proof.

Lemma 3.1 [Martinengo 2012, Lemma 3.1]. Let iξ (ω)= ξ⌟ω for all ω ∈ A∗(X).
For every ξ, η ∈ A0,∗(TX),

(3) i[ξ,η] = [iξ , [∂, iη]], [iξ , iη] = 0.

We slightly modify Lemma 3.1 so that we can use it in our proof.

Lemma 3.2. Let X be a complex manifold and E be a holomorphic bundle over X.
Let K be a hermitian metric on E and ∂K be a (1,0)-part of the Chern connection.
By considering the degree of the differential form of (3), for any ω ∈ A∗(E) and any
φ ∈ A0, j (TX) and ψ ∈ A0,k(TX), we have

[φ,ψ]⌟ω = φ⌟∂K (ψ⌟ω)

−(−1) jk+k∂K (ψ⌟(φ⌟ω))−(−1) jkψ⌟∂K (φ⌟ω)−(−1) jk+kψ⌟φ⌟∂Kω.

We obtain the corollaries below by applying Lemma 3.2.
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Corollary 3.2. Let A ∈ Ai (End(E)), φ ∈ A0, j (TX) and ψ ∈ A0,k(TX). Then we
have

{∂
End(E)
K , [φ,ψ]⌟}A

= {∂
End(E)
K , φ⌟}{∂End(E)

K , ψ⌟}A − (−1) jk
{∂

End(E)
K , ψ⌟}{∂End(E)

K , φ⌟}A.

Proof. We denote ∂End(E)
K as ∂K in this proof.

Applying Lemma 3.2 to the left-hand side of the equation we have

{∂K , [φ,ψ]⌟}A

= ∂K ([φ,ψ]⌟A)+ (−1) j+k
[φ,ψ]⌟∂K A

= ∂K
{
φ⌟∂K (ψ⌟A)− (−1) jk+k∂K (ψ⌟(φ⌟A))

− (−1) jkψ⌟∂K (φ⌟A)− (−1) jk+kψ⌟φ⌟∂K A
}

+ (−1) j+k
{φ⌟∂K (ψ⌟∂K A)− (−1) jk+k∂K (ψ⌟(φ⌟∂K A))

− (−1) jkψ⌟∂K (φ⌟∂K A)}

= ∂K (φ⌟∂K (ψ⌟A))− (−1) jk∂K (ψ⌟∂K (φ⌟A))− (−1) jk+k∂K (ψ⌟φ⌟∂K A)

+ (−1) j+k{φ⌟∂K (ψ⌟∂K A)− (−1) jk+k∂K (ψ⌟(φ⌟∂K A))

− (−1) jkψ⌟∂K (φ⌟∂K A)
}

= ∂K (φ⌟∂K (ψ⌟A))− (−1) jk∂K (ψ⌟∂K (φ⌟A))− (−1) jk+k∂K (ψ⌟φ⌟∂K A)

+ (−1) j+k{φ⌟∂K (ψ⌟∂K A)− (−1) jk+ j∂K (ψ⌟(φ⌟∂K A))

− (−1) jk+ j+kψ⌟∂K (φ⌟∂K A)
}
.

We apply (3) for the computation of the right-hand side of the equation.

{∂K , φ⌟}{∂K , ψ⌟}A−(−1) jk
{∂K , ψ⌟}{∂K , φ⌟}A

= {∂K , φ⌟}(∂Kψ⌟A+(−1)kψ⌟∂K )A−(−1) jk
{∂K , ψ⌟}(∂Kφ⌟A+(−1) jφ⌟∂K A)

= ∂K (φ⌟∂K (ψ⌟A))+(−1)k∂K (φ⌟ψ⌟∂K A)+(−1) j+kφ⌟∂K (ψ⌟∂K A)

−(−1) jk
{∂K (ψ⌟∂K (φ⌟A))+(−1) j∂K (ψ⌟φ⌟∂K A)+(−1) j+kψ⌟∂K (φ⌟∂K A)}

= ∂K (φ⌟∂K (ψ⌟A))−(−1) jk+k∂K (ψ⌟φ⌟∂K A)+(−1) j+kφ⌟∂K (ψ⌟∂K A)

−(−1) jk∂K (ψ⌟∂K (φ⌟A))−(−1) jk+ j∂K (ψ⌟φ⌟∂K A)

−(−1) jk+ j+kψ⌟∂K (φ⌟∂K A).

Hence we have equality holds. □
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Corollary 3.3. Let FdK be the curvature of the Chern connection. Let φ ∈ A0,i (TX)
and ψ ∈ A0, j (TX). Then we have

[φ,ψ]⌟FdK = (−1)i {∂End(E)
K , φ⌟}ψ⌟FdK − (−1)i j+ j

{∂
End(E)
K , ψ⌟}φ⌟FdK .

Proof. We denote ∂End(E)
K as ∂K in this proof.

Recall that FdK is a (1, 1)-form which takes values in End(E).
Applying Lemma 3.2 to the left-hand side of the equation and by the Bianchi

identity we have

[φ,ψ]⌟FdK = φ⌟∂K (ψ⌟FdK )

− (−1)i j+ j∂K (ψ⌟(φ⌟FdK ))− (−1)i jψ⌟∂K (φ⌟FdK )

− (−1)i j+ jψ⌟φ⌟∂K FdK

= φ⌟∂K (ψ⌟FdK )− (−1)i jψ⌟∂K (φ⌟FdK ).

By direct computation for the right-hand side of the equation, we have

(−1)i {∂K , φ⌟}ψ⌟FdK − (−1)i j+ j
{∂K , ψ⌟}φ⌟FdK

= (−1)i∂K (φ⌟ψ⌟FdK )+φ⌟∂Kψ⌟FdK

− (−1)i j+ j∂K (ψ⌟φ⌟FdK )− (−1)i jψ⌟∂Kφ⌟FdK

= φ⌟∂Kψ⌟FdK − (−1)i jψ⌟∂Kφ⌟FdK .

Hence we have the desired equality. □

By direct computation, we obtain some corollaries.

Corollary 3.4. Let A ∈ Ai (End(E)), B ∈ A j (End(E)) and φ ∈ A0,k(TX). Then

(4) {∂
End(E)
K , φ⌟}[A, B] = [{∂

End(E)
K , φ⌟}A, B] + (−1)ik

[A, {∂End(E)
K , φ⌟}B].

Proof. We denote ∂End(E)
K as ∂K in this proof.

By using local trivialization we have

{∂K ,φ⌟}[A, B]

= ∂K (φ⌟[A, B])+(−1)kφ⌟∂K [A, B]

= ∂(φ⌟[A, B])+[K −1∂K ,φ⌟[A, B]]+(−1)kφ⌟(∂[A, B])+[K −1∂K , [A, B]]

= [∂(φ⌟A), B]+(−1)i+k−1
[φ⌟A,∂B]+(−1)i+ik

[∂A,φ⌟B]+(−1)ik
[A,∂(φ⌟B)]

+(−1)k[φ⌟∂A, B]+(−1)ik+i+1
[∂A,φ⌟B]+(−1)k+i

[φ⌟A,∂B]

+(−1)k+ki
[A,φ⌟∂B]+(−1)k[φ⌟K −1∂K , [A, B]]

= [∂(φ⌟A), B]+(−1)ik[A,∂(φ⌟B)]+(−1)k[φ⌟∂A, B]+(−1)ik+k
[A,φ⌟∂B]

+(−1)k[[φ⌟K −1∂K , A], B]+(−1)ki+k
[A, [φ⌟K −1∂K , B]]

= [{∂K ,φ⌟}A, B]+(−1)ik[A, {∂K ,φ⌟}B].

Hence we have the desired equality. □
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Corollary 3.5. Let A ∈ Ai (End(E)) and φ ∈ A0, j (TX). Then

∂̄End(E){∂
End(E)
K , φ⌟}A

= (−1) j
{∂

End(E)
K , φ⌟}∂̄End(E)A − {∂

End(E)
K , ∂̄TXφ⌟}A − [φ⌟FdK , A].

Proof. We denote ∂End(E)
K as ∂K in this proof.

We prove the above equality by using local trivialization:

∂̄End(E){∂K , φ⌟}A

= ∂̄End(E){∂K (φ⌟)+ (−1) jφ⌟∂K A}

= ∂̄End(E){∂(φ⌟A)+ (−1) j
[φ⌟K −1∂K , A] + (−1) jφ⌟∂A}

= −∂(∂̄TXφ⌟A)+ (−1) j∂(φ⌟∂̄End(E)A)+ (−1) j
[∂̄End E(φ⌟K −1∂K ), A]

+ [φ⌟K −1∂K , ∂̄End(E)A] + (−1) j ∂̄TXφ⌟∂A −φ⌟∂̄End(E)∂A

= (−1) j
{∂K , φ⌟}∂̄End(E)A − [φ⌟FdK , A] − ∂(∂̄TX )φ⌟A

+ (−1) j
[(∂̄TXφ)⌟K −1∂K , A] + (−1) j ∂̄TXφ⌟∂A

= (−1) j
{∂K , φ⌟}∂̄End(E)A − {∂K , ∂̄TXφ⌟}A − [φ⌟FdK , A].

Hence we have the desired equality. □

Proposition 3.2. The bracket [ · , · ]L : L × L → L satisfies the following:

1. For every (A, φ) ∈ L i , (B, ψ) ∈ L j (i, j ∈ Z),

[(A, φ), (B, ψ)]L + (−1)pq
[(B, ψ), (A, φ)]L = 0.

2. The graded Jacobi identity holds: for every (A, φ) ∈ L i , (B, ψ) ∈ L j , (C, τ ) ∈
Lk , and i , j , k,

[(A, φ), [(B, ψ), (C, τ )]L ]L

= [[(A, φ), (B, ψ)]L , (C, τ )]L + (−1)i j
[(B, ψ), [(A, φ), (C, τ )]L ]L

Proof. We denote ∂End(E)
K as ∂K in this proof.

1. is obvious from the definition. We prove 2.
We first calculate each component. First we have

(5) [(A, φ), [(B, ψ), (C, τ )]L ]L

=
[
(A, φ), ((−1) j

{∂K , ψ⌟}C − (−1)( j+1)k
{∂K , τ⌟}B − [B,C], [ψ, τ ])

]
L

=

(
α

[φ, [ψ, τ ]]

)
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where

α = (−1)i {∂K , φ⌟}{(−1) j
{∂K , ψ⌟}C − (−1)( j+1)k

{∂K , τ⌟}B − [B,C]}

− (−1)(i+1)( j+k)
{∂K , [ψ, τ ]⌟}A

− [A, (−1) j
{∂K , ψ⌟}C − (−1)( j+1)k

{∂K , τ⌟}B − [B,C]]

Next we have

(6)
[
[(A, φ), (B, ψ)]L , (C, τ )

]
L =

(
β

[[φ,ψ], τ ]

)
where

β = (−1)i+ j
{∂, [φ,ψ]⌟}C

− (−1)(i+ j+1)k
{∂K , τ⌟}{(−1)i {∂K , φ⌟}B − (−1)(i+1) j

{∂K , ψ⌟}A − [A, B]}

− [(−1)i {∂K , φ⌟}B − (−1)(i+1) j
{∂K , ψ⌟}A − [A, B],C].

We also have

(7) (−1)i j[(B, ψ), [(A, φ), (C, τ )]L
]

L =

(
γ

[ψ, [φ, τ ]

)
where

γ = (−1)i j ((−1)i {∂K , ψ⌟}{(−1)i {∂K , φ⌟}C − (−1)(i+1)k
{∂K , φ⌟}A − [A,C]}

− (−1)( j+1)(i+k)
{∂K , [φ, τ ]⌟}B

− [B, (−1)i {∂K , ψ⌟}(−1)i {∂K , φ⌟}C − (−1)(i+1)k
{∂K , φ⌟}A − [A,C]].

Hence by (5), (6), and (7) we only have to prove the equations

{∂K , [φ,ψ]⌟}A = {∂K , φ⌟}{∂K , ψ⌟}A − (−1) jk
{∂K , ψ⌟}{∂K , φ⌟}A,

{∂K , φ⌟}[A, B] = [{∂K , φ⌟}A, B] + (−1)ik[A, {∂K , φ⌟}B],

[A, [B,C]] = [[A, B],C] + (−1)i j
[B, [A,C]],

[φ, [ψ, τ ]] = [[φ,ψ], τ ] + (−1)i j
[ψ, [φ, τ ]].

The above equations follow from Corollaries 3.2 and 3.4 and the fact that the
Schouten–Nijenhuis bracket satisfies the Jacobi identity. Hence we proved that
[ · , · ]L satisfies the Jacobi identity. □

Proposition 3.3. dL is a differential with respect to the bracket [ · , · ]L , that is,

1. dL(L i )⊂ L i+1,

2. dL ◦ dL = 0,

3. for every (A, φ) ∈ L i , (B, ψ) ∈ L j and i , j ,

dL [(A, φ), (B, ψ)]L = [dL(A, φ), (B, ψ)]L + (−1)i [(A, φ), dL(B, ψ)]L
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Proof. We denote ∂End(E)
K as ∂K in this proof.

1. is obvious from the definition of dL .
We prove 2. for dL ◦dL : L1

→ L3. Let (A, φ)∈ L1. We calculate dL ◦dL(A, φ):

dL(A, φ)=

(
∂̄End(E)A−φ⌟FdK

∂̄T (X)

)
+

(
[θ, A]+{∂K , φ⌟}θ

0

)
· dL

((
∂̄End(E)A−φ⌟FdK

∂̄T (X)φ

)
+

(
[θ, A]+{∂K , φ⌟}θ

0

))
=

(
∂̄End(E) BK

0 ∂̄T (X)

) (
∂̄End(E)A−φ⌟FdK

∂̄T (X)φ

)
(8)

+

(
θ CK

0 0

) (
∂̄End(E)A−φ⌟FdK

∂̄TXφ

)
+

(
∂̄End(E) BK

0 ∂̄TX

) (
[θ, A]+{∂K , φ⌟}θ

0

)
(9)

+

(
θ CK

0 0

) (
[θ, A]+{∂K , φ⌟}θ

0

)
.(10)

Let us show (8) = (9) = (10) = 0:

(8) =

(
∂̄End(E) BK

0 ∂̄TX

) (
∂̄End(E)A−φ⌟FdK

∂̄TXφ

)
=

(
∂̄End(E)◦∂̄End(E)A+∂̄End(E)(φ⌟FdK )+BK (∂̄T (X)φ)

∂̄TX◦∂̄TXφ

)
=

(
∂̄TXφ⌟FdK +φ⌟∂̄End(E)Fdk −∂̄TXφ⌟FdK

0

)
=

(
φ⌟∂̄End(E)Fdk

0

)
= 0.

The last equation comes from the Bianchi identity. Next, we show (9) = 0:

(9) =

(
θ CK

0 0

) (
∂̄End(E)A−φ⌟FdK

∂̄TXφ

)
+

(
∂̄End(E) BK

0 ∂̄TX

) (
[θ, A]+{∂K , φ⌟}θ

0

)
=

(
[θ, ∂̄End(E)A]−[θ, φ⌟FdK ]+{∂K , ∂̄TXφ⌟}θ

0

)
+

(
∂̄End(E)[θ, A]+∂̄End(E)({∂K , φ⌟}θ)

0

)
.

Since θ is a Higgs field, ∂̄End(E)[θ, A] = −[θ, ∂̄End(E)A]. Hence we have

(11) (9) =

(
−[θ, φ⌟FdK ]+{∂K , ∂̄TXφ⌟}θ+∂̄End(E)({∂K , φ⌟}θ)

0

)
.
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By direct computation using the local realization we have

{∂K , ∂̄TXφ⌟}θ = ∂K (∂̄TXφ⌟θ)+ ∂̄TXφ⌟(∂K θ)

= ∂(∂̄TXφ⌟θ)+ [K −1∂K , ∂̄TXφ⌟θ ] + ∂̄TXφ⌟(∂θ + [K −1∂K , θ]).
and

∂̄End(E)({∂K , φ⌟}θ)= ∂̄End(E){∂(φ⌟θ)+ [K −1∂K , φ⌟θ ] −φ⌟(∂θ + [K −1∂K , θ])}

= −∂∂̄(φ⌟θ)+ [FdK , φ⌟θ ] − [K −1∂K , ∂̄End(E)(φ⌟θ)]

− ∂̄TXφ⌟(∂θ + [K −1∂K , θ])−φ⌟[FdK , θ]

= −∂(∂̄TXφ⌟θ)− [φ⌟FdK , θ] − [K −1∂K , ∂̄TXφ⌟θ ]

− ∂̄TXφ⌟(∂θ + [K −1∂K , θ]).

Hence by (11) and the above two displays, we obtain that (9) = 0.
Next, we show (10) = 0:

(12) (10) =

(
θ CK

0 0

) (
[θ, A]+{∂K , φ⌟}θ

0

)
=

(
[θ, {∂K , φ⌟}θ ]

0

)
.

By direct computation using the local realization we have

[θ, {∂K , φ⌟}θ ]

= θ∧{∂K , φ⌟}θ−{∂K , φ⌟}θ∧θ

= θ∧{∂(φ⌟θ)+[K −1∂K , φ⌟θ ]−φ⌟∂θ−φ⌟[K −1∂K , θ]}

−{∂(φ⌟θ)+[K −1∂K , φ⌟]θ−φ⌟∂θ−φ⌟[K −1∂K , θ]}∧θ

= θ∧{∂(φ⌟θ)−φ⌟∂θ−[φ⌟K −1∂K , θ]}−{∂(φ⌟θ)−φ⌟∂θ−[φ⌟K −1∂K , θ]}∧θ

= θ∧∂(φ⌟θ)−θ∧φ⌟∂θ−∂(φ⌟θ)∧θ+(φ⌟∂θ)∧θ.

Since θ ∧ θ = 0, we have

0 = ∂(φ⌟(θ ∧ θ))−φ(∂(θ ∧ θ))

= ∂(φ⌟θ)∧ θ − (φ⌟θ)∧ ∂θ + ∂θ ∧φ⌟θ − θ∧ ∂(φ⌟θ)

− (φ⌟∂θ)∧ θ − ∂θ ∧ (φ⌟θ)+ (φ⌟θ)∧ ∂θ + θ ∧ (φ⌟∂θ)

= ∂(φ⌟θ)∧ θ − θ∧ ∂(φ⌟θ)− (φ⌟∂θ)∧ θ + θ ∧φ⌟∂θ.

Hence by (12) and the above two displays, we obtain that (10) = 0. This completes
the proof of 2.

Next we prove 3.
Let (A, φ) ∈ L i and (B, ψ) ∈ L j . We first calculate each component of 3.
First we have

dL [(A, φ), (B, ψ)]L =

(
α

∂̄TX [φ,ψ]

)
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where

α = (∂̄End(E) + θ)
(
(−1)i {{∂K , φ⌟}B − (−1)(i+1) j

{∂K , ψ⌟}A − [A, B]}
)

+ (−1)i+ j
[φ,ψ]⌟FdK + {∂K , [φ,ψ]⌟}θ.

Next we have

[dL(A, φ), (B, ψ)]L =

(
β

[∂̄TXφ,ψ])

)
,

where

β = (−1)i+1
{∂K , ∂̄TXφ⌟}B

− (−1)(i+2) j
{∂K , ψ⌟}(∂̄End(E)A + (−1)iφ⌟FdK + [θ, A] + {∂K , φ⌟}θ)

− [∂̄End(E)A + (−1)iφ⌟FdK + [θ, A] + {∂K , φ⌟}θ, B].

We also have

(−1)i [(A, φ), dL(B, ψ)]L =

(
γ

(−1)i [φ, ∂̄TXψ]

)
,

where

γ = {∂K , φ⌟}(∂̄End(E)B + (−1) jψ⌟FdK + [θ, B] + {∂K , φ⌟}θ)

− (−1)(i+1)( j+1)+i
{∂K , ∂̄TXψ⌟}A

− (−1)i [A, ∂̄End(E)B + (−1) jψ⌟FdK + [θ, B] + {∂K , ψ⌟}θ ].

Hence by the above equations, we have to prove

∂̄End(E){∂K , φ⌟}A = (−1) j
{∂K , φ}∂̄End(E)A − {∂K , ∂̄TXφ⌟}A − [φ⌟FdK , A],

{∂K , φ⌟}[θ, A] = [{∂K , φ⌟}θ, A] + (−1)i [θ, {∂K , φ⌟}A],

[φ,ψ]⌟FdK = (−1)i {∂K , φ⌟}ψ⌟FdK − (−1)i j+ j
{∂K , ψ⌟}φ⌟FdK ,

[θ, [A, B]] = [[θ, A], B] + (−1)i [A, [θ, B]],

∂̄End(E)[A, B] = [∂̄End(E)A, B] + (−1)i [A, ∂̄End(E)B],

∂̄TX [φ,ψ] = [∂̄TXφ,ψ] + (−1)i [φ, ∂̄TXψ].

These equations follow from Corollaries 3.2–3.5 and the fact that ∂̄End(E) and ∂̄TX

satisfy the Leibniz rule and the canonical bracket satisfies the Jacobi identity. □

Propositions 3.2 and 3.3 show us that (L , [ · , · ]L , dL) is a DGLA. Hence we
proved Theorem 3.1. Combining Propositions 2.6 and 3.1 with Theorem 3.1, we
have:

Theorem 3.6. Given a holomorphic-Higgs triple (X, E, θ) and a smooth family
of elements {At , Bt , φt }t∈1 ⊂ A0,1(End(E))⊕ A1,0(End(E))⊕ A0,1(TX). Then,
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(At , Bt , φt) defines a holomorphic-Higgs triple if and only if (At , Bt , φt) satisfies
the Maurer–Cartan equation

dL(At + Bt , φt)−
1
2 [(At + Bt , φt), (At + Bt , φt)] = 0.(13)

We now give the proof of Proposition 3.1.

Proof of Proposition 3.1. We calculate D2. Using Corollaries 3.2 and 3.5, we have

D2
= (∂̄E + {∂K , φ⌟} + A + θ + B)2

= ∂̄E ∂̄E + ∂̄E {∂K , φ⌟} + {∂K , φ⌟}∂̄E + {∂K , φ⌟}{∂K , φ⌟}

+ {∂K , φ⌟}(A + θ + B)+ (A + θ + B){∂K , φ⌟}

+ ∂̄E(A + θ + B)+ (A + θ + B)∂̄E + [θ, A + B] +
1
2 [A + B, A + B]

= −{∂K , ∂̄TXφ⌟} −φ⌟FdK +
1
2{∂K , [φ, φ]⌟} + ∂̄End(E)(θ + A + B)

+ {∂
End(E)
K , φ⌟}(θ + A + B)+ [θ, A + B] +

1
2 [A + B, A + B]

= −
{
∂K ,

(
∂̄TXφ−

1
2 [φ, φ]

)
⌟
}

+ ∂̄End(E)(A + B)−φ⌟FdK + {∂
End(E)
K , φ⌟}θ + [θ, A + B]

+ {∂
End(E)
K , φ⌟}(A + B)+ 1

2 [A + B, A + B].

Hence by the above calculation, D2
= 0 is equivalent to

∂̄End(E)(A + B)−φ⌟FdK + [θ, A + B]

+{∂
End(E)
K , φ⌟}θ + {∂

End(E)
K , φ⌟}(A + B)+ 1

2 [A + B, A + B] = 0,

∂̄TXφ−
1
2 [φ, φ] = 0.

Hence we have the proof. □

4. Kuranishi family

4A. Construction of Kuranishi family. Kuranishi [1965] constructed a universal
family for any complex manifold X over a possible singular analytic space. We
want to construct a family of holomorphic-Higgs triples over a certain singular
space which becomes a universal family in this context.

Here we recall some differential operators and inequalities we need. These are
commonly used in classical Hodge theory. We choose a hermitian metric g on
X and a hermitian metric K on E . Using these two metrics, we can define an
inner product ( · , · ) on L =

⊕
i L i . We remark that L i and L j are orthogonal with

respect to this inner product. We first define the formal adjoint of dL with respect
to ( · , · ) by

(dLα, β)= (α, d∗

Lβ).
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Then the Laplacian 1L is defined by

1L = dL ◦ d∗

L + d∗

L ◦ dL .

This is an elliptic self-adjoint operator. Hence by Theorem 4.12 in [Wells 1980,
Chapter 4], it has a finite dimensional kernel Hi . We call the elements of Hi a
harmonic form. Let L̃ i be a completion of L i with respect to the inner product
( · , · ), and let H : L i

→ Hi be the harmonic projection. The Green’s operator
G : L i

→ L i is defined by

I = H +1L ◦ G = H + G ◦1L ,

where I is the identity for L i . H and G can be extended to the bounded operator
H,G : L̃ i

→ L̃ i . G commutes with dL and d∗

L .
Now let {η1, . . . , ηn} ⊂ H1 be a basis and ϵ1(t) :=

∑n
j=1 t jη j ∈ H1. Consider

ϵ(t)= ϵ1(t)+ 1
2 d∗

L G[ϵ(t), ϵ(t)]L .

We define the Hölder norm ∥ · ∥k,α as in [Morrow and Kodaira 2006]. We have the
inequalities

∥d∗

Lϵ∥k,α ≤ C1 ∥ϵ∥k+1.α,

∥[ϵ, δ]∥k,α ≤ C2 ∥ϵ∥k+1,α∥δ∥k+1,α.

Douglis and Nirenberg [1955] proved the a priori estimate

∥ϵ∥k,α ≤ C3(∥1Lϵ∥k−2,α + ∥ϵ∥0,α).

Applying these and following the proof of Proposition 2.3 in [Morrow and Kodaira
2006, Chapter 4] one can deduce an estimate for the Green’s operator G:

∥Gϵ∥k,α ≤ C4 ∥ϵ∥k−2,α,

where all Ci ’s are positive constants which depend only on k and α.
Then by applying the proof of Proposition 2.4 in [Morrow and Kodaira 2006,

Chapter 4] or using the implicit function theorem for Banach spaces as in [Kuranishi
1965], we obtain a unique solution ϵ(t) which satisfies

ϵ(t)= ϵ1(t)+ 1
2 d∗

L G[ϵ(t), ϵ(t)]L ,

which is analytic in the variable in t . The solution ϵ(t) is also a smooth section
for L1. By applying the Laplacian to the above equation, we get

1Lϵ(t)− 1
2 d∗

L [ϵ(t), ϵ(t)]L = 0.
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Since ϵ(t) is holomorphic in t , we have∑
i, j

∂2

∂ti∂ t̄ j
ϵ(t)= 0.

Hence we have (
1L +

∑
i, j

∂2

∂ti∂ t̄ j

)
ϵ(t)− 1

2 d∗

L [ϵ(t), ϵ(t)]L = 0.

Since the operator

1L +

∑
i, j

∂2

∂ti∂ t̄ j

is elliptic, we can say that ϵ(t) is smooth by elliptic regularity.
From the discussion so far, we have:

Proposition 4.1. Let {η1, . . . , ηn} ⊂ H1 be a basis. Let t = (t1, . . . , tn) ∈ Cn and
ϵ1(t) :=

∑
i tiηi . For all |t | ≪ 1 we have a ϵ(t) such that ϵ(t) satisfies

ϵ(t)= ϵ1(t)+ 1
2 d∗

L G[ϵ(t), ϵ(t)]L .

Moreover, ϵ(t) is holomorphic with respect to the variable t .

Following Kuranishi [1965] we have:

Proposition 4.2. If we take |t | small enough, the solution ϵ(t) that satisfies

ϵ(t)= ϵ1(t)+ 1
2 d∗

L G[ϵ(t), ϵ(t)]L

solves the Maurer–Cartan equation if and only if H [ϵ(t), ϵ(t)]L = 0. Here H is the
harmonic projection.

Proof. Suppose the Maurer–Cartan equation holds. Then

dLϵ(t)− 1
2 [ϵ(t), ϵ(t)]L = 0.

Hence we have
H [ϵ(t), ϵ(t)]L = 2HdLϵ(t)= 0.

Conversely, suppose that H [ϵ(t), ϵ(t)]L = 0. We have to show

δ(t) := dLϵ(t)− 1
2 [ϵ(t), ϵ(t)]L = 0.

Since ϵ(t) is a solution to

ϵ(t)= ϵ1(t)+ 1
2 d∗

L G[ϵ(t), ϵ(t)]L

and ϵ1(t) is dL -closed, applying dL we get

dLϵ(t)=
1
2 dLd∗

L G[ϵ(t), ϵ(t)]L .
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Hence
2δ(t)= dLd∗

L G[ϵ(t), ϵ(t)]L − [ϵ(t), ϵ(t)]L .

By the Hodge decomposition, we can write

[ϵ(t), ϵ(t)]L = H [ϵ(t), ϵ(t)]L +1L G[ϵ(t), ϵ(t)]L =1L G[ϵ(t), ϵ(t)]L .

Therefore
2δ(t)= dLd∗

L G[ϵ(t), ϵ(t)]L −1L G[ϵ(t), ϵ(t)]L

= −d∗

LdL G[ϵ(t), ϵ(t)]L

= −d∗

L GdL [ϵ(t), ϵ(t)]L

= −2d∗

L G[dLϵ(t), ϵ(t)]L .

Hence we get
δ(t)= −d∗

L G[dLϵ(t), ϵ(t)]L

= −d∗

L G
[
δ(t)+ 1

2 [ϵ(t), ϵ(t)]L , ϵ(t)
]

L

= −d∗

L G[δ(t), ϵ(t)]L .

We used the Jacobi identity in the last equality. Using the estimate

∥[ξ, η]∥k,α ≤ Ck,α∥ξ∥k+1,α∥η∥k+1,α,

we get
∥δ(t)∥k,α ≤ Ck,α∥δ(t)∥k,α∥ϵ(t)∥k,α.

If we take |t | small enough such that Ck,α∥ϵ(t)∥k,α < 1, we obtain δ(t)= 0. This
stands for all |t | small enough. This finishes the proof. □

In the case when H [ϵ(t), ϵ(t)]L = 0 for all t or H2
= 0, we have:

Corollary 4.1. Let n be the dimension of H1. If H [ϵ(t), ϵ(t)]L = 0 for all t , we
have a family of deformation of holomorphic-Higgs triples over a small ball 1
centered at the origin of Cn .

Proof. If H [ϵ(t), ϵ(t)]= 0 for all t , ϵ(t)= (At + Bt , φt) satisfies the Maurer–Cartan
equation and so we obtain family of holomorphic-Higgs triple (X t , Et , θt). Since φt

is holomorphic for variable t , applying the Newlander–Nirenberg theorem, we can
define a complex structure on X := X ×1 such that X t =X |X×{t}. Let E := E ×1.
By applying the linearized Newlander–Nirenberg theorem as in [Moroianu 2007],
we have a local frame {e(x, t)} of E on X such that for each t , {e(x, t)}⊂ ker(D′

t)=

ker(∂̄Et ) and is holomorphic respect to variable t . Let σ : X → E be a smooth
section and locally trivialized as σ(x, t)=

∑
k sk(x, t)ek(x, t) where sk are smooth

function on X . We define ∂̄E : A(E)→ A0,1
X (E) as

∂̄E(σ (x, t)) :=

∑
k

∂̄X sk(x, t)⊗ ek(x, t).



306 TAKASHI ONO

Note that ∂̄E is well defined and ∂̄E |E×t = ∂̄Et . It is clear that ∂̄2
E = 0 so that E is a

holomorphic bundle over X .
Let2= θ+Bt +φt⌟(θ+Bt). Since φt , Bt is holomorphic respect to the variable t

and θ+Bt +φt⌟(θ+Bt) is a Higgs field for (X t , Et), we have ∂̄EndE2=0,2∧2=0.
Hence 2 is a Higgs field for (X , E).

Let π :X = X ×1→1 be a natural projection, this is a holomorphic submersion.
Also π−1(0)= X , E|π−1(0) = E and 2|π−1(0) = θ stands. Hence we have a family
of deformation of a holomorphic-Higgs triple over 1. □

In general, the condition H2
= 0 may not be satisfied. However, we can define a

possible singular analytic space

S := {t ∈1 : H [ϵ(t), ϵ(t)]L = 0}.

Let Xϵ(t), Eϵ(t), θϵ(t) be the complex manifold, the holomorphic bundle, and the
Higgs field defined by ϵ(t). By the above results, we have a family of holomorphic-
Higgs triples {(Xϵ(t), Eϵ(t), θϵ(t))}t∈S . We call this family the Kuranishi family of
(X, E, θ) and S the Kuranishi space.

4B. Local completeness of Kuranishi family. We give a proof of the local com-
pleteness of the Kuranishi family for the deformation of the triple (X, E, θ). Here
we follow Kuranishi’s method.

Recall that in Section 4A we proved that for a given ϵ1(t) =
∑

i tiηi ∈ H1
=

ker(1L : L1
→ L1) the existence of solutions ϵ(t) to

ϵ(t)= ϵ1(t)+ 1
2 d∗

L G[ϵ(t), ϵ(t)]L

and proved that ϵ(t) satisfies the Maurer–Cartan equation if and only if

H [ϵ(t), ϵ(t)]L = 0.

Hence we obtain a family of holomorphic-Higgs triples over

S := {t ∈1 : H [ϵ(t), ϵ(t)]L = 0}.

Before we state the main theorem of this paper, we introduce the Sobolev norm for
L and collect some estimates.

First, let us recall the Sobolev norm on Euclidean space. Let U be an open subset
of Rn and f and g be a complex-valued smooth function on U . Here, U is a closure
of U . We set

( f, g)k :=

∑
|α|<k

∫
U

Dα f · Dαg dx,

where we use the multi-index notation α = (α1, . . . , αn), αi > 0, |α| =
∑

i αi and
Dα

=
(
∂
∂x1

)α1
· · ·

(
∂
∂xn

)αn .
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Then we define k-th Sobolev norm | · |k as

(14) | f |k = | f |
U
k :=

√
( f, f )k .

Let V be a relatively compact open subset of U . By [Morrow and Kodaira 2006,
Chapter 4, Lemma 3.1], we have an estimate such that

(15) | f g|
V
k ≤ c | f |

U
k · |g|

U
k , k ≥ n + 2,

where c is a constant.
By using a partition of unity and the metric of E and X , we can define k-th

Sobolev |η|k for any η ∈ L i
=

⊕
p+q=i Ap,q(End(E))⊕ A0,i (TX). We list some

estimates that we need. Let ck be a constant. Then the following estimates hold
(see [Morrow and Kodaira 2006] for more details):

(16)

|[φ,ψ]k | ≤ ck |φ|k+1|ψ |k+1, k ≥ 2n + 2, dimC X = n,

|Hφ| ≤ ck |φ|k,

|d∗

L Gφ|k ≤ ck |φ|k−1.

From now on, we choose a k large enough such that the above estimates hold.
Let η := (A + B, φ) ∈ L1 be a Maurer–Cartan element and assume |η|k is small

enough so that η can define a holomorphic-Higgs triple. Let Xη, Eη, θη be the
complex manifold, the holomorphic bundle, and the Higgs field which η defines,
respectively. We denote this holomorphic-Higgs triple (Xη, Eη, θη). Let η′

∈ L1 be
another Maurer–Cartan element and assume that η′ also defines a holomorphic-Higgs
triple (Xη′, Eη′, θη′). We denote as (Xη, Eη, θη) ∼= (Xη′, Eη′, θη′) when there is a
biholomorphic map F : Xη → X ′

η, a holomorphic bundle isomorphism8 : Eη → E ′
η

which is compatible with F and θη= 8̂−1
◦F∗(θ ′

η)◦8̂ holds. Here 8̂ : Eη→ F∗(Eη′)

is the holomorphic bundle isomorphism induced by 8. F∗(Eη′) is the pull back of
the bundle Eη′ by F .

Now we state the main theorem of this paper.

Theorem 4.2. Let η := (A+B, φ)∈ L1 be a Maurer–Cartan element. If |η|k is small
enough, then there exists some t ∈ S such that (Xη, Eη, θη)∼= (Xϵ(t), Eϵ(t), θϵ(t)).

Proposition 4.3. Let ϵ1(t) ∈ H1, t ∈ S. Assume that ϵ solves the equation

ϵ = ϵ1(t)+ 1
2 d∗

L G[ϵ, ϵ]L .

If |ϵ|k is small enough, then the solution is unique.

Proof. Suppose ϵ is another solution. Let δ = ϵ− ϵ(t). Then

δ =
1
2 d∗

L G
(
[ϵ, ϵ]L − [ϵ(t), ϵ(t)]L

)
=

1
2 d∗

L G
(
[δ, ϵ(t)]L + [ϵ(t), δ]L + [δ, δ]L

)
=

1
2 d∗

L G
(
2[δ, ϵ(t)]L + [δ, δ]L

)
.
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Estimating |δ|k gives
|δ|k ≤ Dk

(
|δ|k |ϵ(t)|k + |δ|2k

)
≤ Dk |δ|k

(
|ϵ(t)|k + |δ|k

)
.

If |ϵ(t)|k is small enough, the above estimate holds if and only if |δ|k = 0. This
proves the proposition. □

Proposition 4.4. Suppose η ∈ L1 satisfies the Maurer–Cartan equation (13). If
d∗

Lη = 0 and |η|k is small enough, then η = ϵ(t) for some t ∈ S.

Proof. Since η satisfies the Maurer–Cartan equation, we have

dLη−
1
2 [η, η]L = 0.

Since d∗

Lη = 0, we have

1Lη = d∗

LdLη+ dLd∗

Lη

=
1
2 d∗

L [η, η]L .

Hence
η− Hη = G1Lη =

1
2 Gd∗

L [η, η]L .

Let ψ := Hη. Then η = ψ +
1
2 Gd∗

L [η, η]L . By the assumption such that |η|k is
small, |ψ |k is small by (16). Hence ψ = ϵ1(t) for |t | small enough. Hence by
Proposition 4.3, η = ϵ(t) for some t ∈ S. □

In general d∗

Lη ̸= 0 so we must try something else. We follow the idea of
[Kuranishi 1965]. Let us recall how we solved this problem in the complex manifold
setting. The idea is that for a given Maurer–Cartan element φ ∈ A0,1(TX), we
deform φ along a diffeomorphism f : X → X .

Let Xφ be a complex manifold such that the complex structure comes from φ.
Let f : X → X be a diffeomorphism. We can induce a complex structure on X
by f . We denote the corresponding Maurer–Cartan element as φ ◦ f . Note that
f : Xφ◦ f → Xφ is a biholomorphic map.

Kuranishi showed that for every Maurer–Cartan elements φ with |φ|k small,
there is a diffeomorphism f such that ∂̄TX (φ ◦ f ) = 0. We recall how we obtain
such f .

Let g = (gi j̄ ) be a fixed hermitian metric on X . Let ξ =
∑

i ξi (z) ∂∂zi
∈ A0(TX)

and ξ̄ be the conjugate. Let z0 ∈ X . Let c(t)= c(t, z0, ξ)= (c1(t), . . . , cn(t)) be the
geodesic curve starting from z0 with initial velocity ξ+ ξ̄ . Let fξ (z0) := c(1, z0, ξ).
Since X is compact, fξ is a diffeomorphism. By using Taylor expansion for fξ , we
obtain

(17) φ ◦ fξ = φ+ ∂̄TXξ + R(φ, ξ)
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where R(tφ, tξ) = t2 R1(φ, ξ, t) if t is a real number and both R, R1 are smooth
map on X . In [Kuranishi 1965], it was shown that there is a ξ ∈ A0(TX) such that
∂̄TX (φ ◦ fξ )= 0 for any φ with |φ|k small by the implicit function theorem between
Banach spaces.

Let η = (A + B, φ) ∈ L1 be a Maurer–Cartan elements and assume |η|k is
small enough so that η can define a holomorphic-Higgs triple (Xη, Eη, θη). By
Kuranishi’s work we have a ξ ∈ A0(TX) such that ∂̄TX (φ ◦ fξ )= 0.

Let Pξ : E → E be the parallel transport of the Chern connection along fξ . Let
υ ∈ A0(End(E)) and exp(υ) :=

∑
∞

n=0
υn

n!
∈ A0(End(E)). exp(υ) : E → E is an

automorphism and the inverse is given as exp(−υ). Note that (υ, ξ) ∈ L0.
Let8 := Pξ ◦exp(υ). Since Pξ is an isomorphism and compatible with fξ ,8 also

is. Hence there is a smooth bundle isomorphism 8̂ : E → f ∗

ξ Eη which is induced
by 8. Hence we can induce a holomorphic-Higgs triple structure on (X, E, θ) via
8 and fξ . This holomorphic-Higgs triple is isomorphic to (Xη, Eη, θη). We denote
the corresponding Maurer–Cartan element as ηγ := ((A+ B)⋆8, φ ◦ fξ ). We show
the existence of γ := (υ, ξ) ∈ L0 such that d∗

Lηγ = 0.
We first prove the next proposition.

Proposition 4.5. Let ηγ = ((A + B) ⋆8, φ ◦ fξ ), η = (A + B, φ) and γ = (υ, ξ)

be as above. Then we have

(18) ((A + B) ⋆8, φ ◦ fξ )= (A + B, φ)+ dL(υ, ξ)+ R((A, B, φ), (υ, ξ)).

The error term R is of order t2 in the sense that

R(t (A, B, φ), t (υ, ξ))= t2 R1((A, B, φ), (υ, ξ), t).

where t is a real number and R1 is a smooth map.

Proof. Before going to the proof, we prepare some terminologies. Let A ∈

A0,1(End(E)), B ∈ A1,0(End(E)), υ ∈ A(End(E)), φ ∈ A0,1(TX) and ξ ∈ A0(TX).
The map R((A, B, φ), (υ, ξ)) is a smooth map on X such that R depends on
A, B, υ, φ and ξ and R is of order t2 in the sense that

R(t (A, B, φ), t (υ, ξ))= t2 R1((A, B, φ), (υ, ξ), t),

where t is a real number and R1((A, B, φ), (υ, ξ), t) is a smooth map defined on X .
We assume that the same property holds for R((A, φ), (υ, ξ)), R((B, φ), (υ, ξ)).

The map R′((A, B, φ), (υ, ξ)) is a smooth map defined on some open set of X
such that R′ depends on A, B, υ, φ, and ξ and R′ is of order t2 in the sense that

R′(t (A, B, φ), t (υ, ξ))= t2 R′

1((A, B, φ), (υ, ξ), t),
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where t is a real number and R′

1((A, B, φ), (υ, ξ), t) is a smooth map defined on
some open set of X . We assume that the same property holds for R′((A, φ), (υ, ξ)),
R′((B, φ), (υ, ξ)), R′(υ, ξ) and R′(φ, ξ).

By (17), we only have to prove

(19) (A + B) ⋆8

= A+B+∂̄End(E)υ+ξ⌟FdK +[θ, υ]+{∂
End(E)
K , ξ⌟}θ+R((A, B, φ), (υ, ξ)).

First we prove

(20) A ⋆8= A + ∂̄End(E)υ + ξ⌟FdK + R((A, φ), (υ, ξ)).

Let U ′ and U be open sets of X such that U ′
⊂ U and fξ (U ′)⊂ U . We calculate

(A ⋆8− A)(z) for z ∈ U ′. Let {ek} be a holomorphic frame on U for Eη′ . Since
Eη′’s complex structure is induced by 8, 8 : Eη′ → Eη is a holomorphic bundle
isomorphism. Hence 8(ek) is a holomorphic section for Eη. Hence we have

∂̄E ek + {∂K , (φ ◦ fξ )⌟}ek + (A ⋆8)ek = 0,(21)

8−1
◦ (∂̄E + {∂k, φ⌟} + A) ◦8(ek)= 0.(22)

By (17), (21) is equivalent to

(23) ∂̄E ek + {∂K , φ⌟}ek + {∂K , ∂̄TXξ⌟}ek + (A ⋆8)ek + R′(φ, ξ)(ek)= 0.

Let P ′

ξ be the first order of Pξ . Since 8= Pξ ◦ exp(υ), we have an expansion for
8(ek) such that

8(ek)= Pξ ◦ exp(υ)(ek)= ek + P ′

ξ (ek)+ υ(ek)+ R′(υ, ξ)(ek).

Hence (22) is equivalent to

∂̄E ek + {∂K , φ⌟}ek + Aek + ∂̄E(P ′

ξek)− P ′

ξ ∂̄E ek

+ ∂̄Eυek − υ∂̄E(ek)+ R′((A, φ), (υ, ξ))(ek)= 0.

Since ∂̄E(υek)− υ∂̄E ek = (∂̄End(E)υ)ek , we have

(24) ∂̄E ek + {∂K , φ⌟}ek + Aek + ∂̄E(P ′

ξek)− P ′

ξ ∂̄E ek

+ (∂̄End(E)υ)ek + R′((A, φ), (υ, ξ))(ek)= 0.

Hence by (23), (24),

(25) (A ⋆8)ek − Aek + {∂K , ∂̄TXξ⌟}ek − ∂̄E(P ′

ξek)+ P ′

ξ ∂̄E ek

− (∂̄End(E)υ)ek + R′((A, φ), (υ, ξ))(ek)= 0.

We have to prove {∂K , ∂̄TXξ⌟} − ∂̄E ◦ P ′

ξ + P ′

ξ ◦ ∂̄E = −ξ⌟FdK . We prove this for
a holomorphic frame {e′

k} for E on U . Since Pξ is the parallel transport along fξ
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respect to the Chern connection, we have P ′

ξ (e
′

k)= −ξ⌟K −1∂K (e′

k). (See [Spivak
1999] for more details). Hence we have

{∂K , ∂̄TXξ⌟}e′

k − ∂̄E ◦ P ′

ξe
′

k + P ′

ξ ◦ ∂̄E e′

k

= −∂̄TXξ⌟∂K e′

k + ∂̄E(ξ⌟K −1∂K e′

k)

= −∂̄TXξ⌟∂K e′

k + ∂̄TXξ⌟K −1∂K e′

k − ξ⌟(∂̄End(E)(K −1∂K ))e′

k

= (−ξ⌟FdK )e
′

k .

Hence by (25), we have

(A ⋆8)ek = Aek + (∂̄End(E)υ)ek + ξ⌟FdK (ek)+ R′((A, φ), (υ, ξ))(ek).

Since {ek} is an arbitrary holomorphic frame on Eη′ and R′((A, φ), (υ, ξ))(ek) is a
local expression of A ⋆8− A − ∂̄End(E)υ − ξ⌟FdK we proved (20).

Next, we prove that

(26) B ⋆8= B + [θ, υ] + {∂
End(E)
K , ξ⌟}θ + R((B, φ), (υ, ξ)).

We recall that 8̂ : Eη′ → f ∗

ξ (Eη) is a holomorphic bundle isomorphism and θη′ =

8̂−1
◦ f ∗

ξ (θη) ◦ 8̂. Let θ1,0
η′ is the (1, 0)-part of θη′ respect to the original complex

structure, then we have B ⋆8= θ
1,0
η′ − θ . We calculate B ⋆8 locally.

Let (U, z) be a local coordinate and U ′
⊂ U . We assume fξ (U ′) ⊂ U and

ξ =
∑

i ξi (z)
(
∂
∂zi

)
. By the definition of fξ , for z ∈ U ′, we have

fξ (z)=
(
z1 + ξ1(z)+ O(|ξ |2), . . . , zn + ξn(z)+ O(|ξ |2)

)
.

Let {ek} be a holomorphic frame on U for E . Let gi , Bi ∈ A0(End(E)). Assume
that θ is locally expressed as

∑
i gi (z)dzi and B as

∑
i Bi (z)dzi respect to this

frame.
Let the bracket [ · , · ] be the canonical Lie bracket defined on A∗(End(E)). Since

θη = θ + B +φ⌟(θ + B)= (gi + Bi )dzi + (gi + Bi )φ
i
j dz̄ j and 8̂ is induced by 8,

we have

θη′(ek)= 8̂−1
◦ f ∗

ξ (θη)◦8̂(ek)

= 8̂−1
◦{(gi+Bi )( fξ (z))d fξ,i (z)+(gi+Bi )( fξ (z))φi

j ( fξ (z))d f̄ξ, j }◦8̂(ek)

= ((gi+Bi )( fξ (z))d fξ,i (z)+(gi+Bi )( fξ (z))φi
j ( fξ (z))d f̄ξ, j )(ek)

+[(gi+Bi )( fξ (z))d fξ,i (z)+(gi+Bi )( fξ (z))φi
j ( fξ (z))d f̄ξ, j , P ′

ξ ](ek)

+[(gi+Bi )( fξ (z))d fξ,i (z)+(gi+Bi )( fξ (z))φi
j ( fξ (z))d f̄ξ, j , υ](ek)

+R′((B, φ), (υ, ξ))(ek).
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Hence

(27) θ
1,0
η′ (ek)=

(
(gi+Bi )( fξ (z))dzi+(gi+Bi )( fξ (z))

∂ξi

∂z j
dz j

)
(ek)

+

[
((gi+Bi )( fξ (z))dzi+(gi+Bi )( fξ (z))

∂ξi

∂z j
dz j , P ′

ξ

]
(ek)

+

[
((gi+Bi )( fξ (z))dzi+(gi+Bi )( fξ (z))

∂ξi

∂z j
dz j , υ

]
(ek)

+R′((B, φ), (υ, ξ))(ek)

=

(
(gi+Bi )( fξ (z))dzi+gi ( fξ (z))

∂ξi

∂z j
dz j

)
(ek)

+
[
gi ( fξ (z))dzi , P ′

ξ

]
(ek)+

[
gi ( fξ (z))dzi , υ

]
(ek)

+R′((B, φ), (υ, ξ))(ek).

Since fξ (z)= c(z, ξ, 1), we have the Taylor expansion at t = 0 for gi ( fξ (z)) and
Bi ( fξ (z)):

gi ( fξ (z))= gi (z)+ ξ j (z)
∂gi

∂z j
(z)+ O(|ξ |2),

Bi ( fξ (z))= Bi (z)+ ξ j (z)
∂Bi

∂z j
(z)+ O(|ξ |2).

Hence by (27), θ1,0
η′ (ek) becomes

θ
1,0
η′ (ek)=

(
gi (z)dzi + ξ j

∂gi

∂z j
(z)dzi + Bi (z)dzi + gi (z)

∂ξi

∂z j
dz j

)
(ek)

+ [gi (z)dzi , P ′

ξ ](ek)+ [gi (z)dzi , υ](ek)+ R′((B, φ), (υ, ξ))(ek)

= (θ + B)(ek)+

(
ξ j
∂gi

∂z j
(z)dzi + gi (z)

∂ξi

∂z j
dz j

)
(ek)

+ [θ, P ′

ξ ](ek)+ [θ, υ](ek)+ R′((B, φ), (υ, ξ))(ek).

Hence

(28) B ⋆8(ek)= θ1,0
η (ek)− θ(ek)

= B(ek)+

(
ξ j
∂gi

∂z j
(z)dzi + gi (z)

∂ξi

∂z j
dz j

)
(ek)

+ [θ, P ′

ξ ](ek)+ [θ, υ](ek)+ R′((B, φ), (υ, ξ))(ek).

Hence the only thing we have to prove is(
ξ j
∂gi

∂z j
(z)dzi + gi (z)

∂ξi

∂z j
dz j

)
(ek)+ [θ, P ′

ξ ](ek)= ({∂
End(E)
K , ξ⌟}θ)(ek).
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Since {ek} is a local holomorphic frame for E , we have(
ξ j
∂gi

∂z j
(z)dzi +gi (z)

∂ξi

∂z j
dz j

)
(ek)+[θ, P ′

ξ ](ek)

=

(
ξ j
∂gi

∂z j
(z)dzi +gi (z)

∂ξi

∂z j
dz j

)
(ek)+θ(−ξ⌟K −1∂K )(ek)+ξ⌟K −1∂K (θ(ek))

=

(
ξ j
∂gi

∂z j
(z)dzi +gi (z)

∂ξi

∂z j
dz j

)
(ek)+[ξ⌟K −1∂K , θ](ek)

and

{∂K , ξ⌟}θ

= ∂K (ξ⌟θ)+ ξ⌟∂K (θ)

= ∂(ξi (z)gi )+ [K −1∂K , ξ⌟θ ] + ξ j (z)
∂gi

∂z j
dzi − ξi (z)

∂gi

∂z j
dz j + ξ⌟[K −1∂K , θ]

=
∂

∂z j
(ξi (z)gi (z))dz j + ξ j (z)

∂gi

∂z j
dzi − ξi (z)

∂gi

∂z j
dz j + [ξ⌟K −1∂K , θ]

=

(
ξ j
∂gi

∂z j
(z)dzi + gi (z)

∂ξi

∂z j
dz j

)
+ [ξ⌟K −1∂K , θ].

Hence we have the desired equality. Hence by (28) we have

B ⋆8(ek)= B(ek)+ [θ, υ](ek)+ ({∂
End(E)
K , ξ⌟}θ)(ek)+ R′((B, φ), (υ, ξ))(ek).

Since {ek} is an arbitrary local holomorphic frame on E and R′((B, φ), (υ, ξ))(ek)

is a local expression of B ⋆8− B − [θ, υ] − ({∂
End(E)
K , ξ⌟}θ), we proved (26).

Hence by (20) and (26) we proved (19). This completes the proof. □

Recall that H0
= ker(1L) ⊂ L0. Let F0 be the orthogonal complement of H0

w.r.t. the inner product ( · , · ). Note that ker(H)= F0. H is the harmonic projection.
Then, for γ ∈ F0,

η = G1Lγ + Hγ = G1Lγ.

Since d∗

L is zero on L0, d∗

L(γ )= 0. Hence

1Lγ = d∗

LdLγ.

This yields,

(29) γ = Gd∗

LdLγ.

From now on, we think of L1, F0 as normed by the k-th Sobolev norm and by
the (k−1)-th Sobolev norm. Let L1

k−1, L1
k, F0

k be the completion of L1, F0 with
respect to the corresponding norms.
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Proposition 4.6. Let η(γ ) := η+ dLγ + R(η, γ ). There are neighborhoods of the
origin U and V in L1 and F0 such that for any η ∈ U there is a γ ∈ V such that

(30) d∗

L(η(γ ))= 0.

Proof. Let γ := (υ, ξ) ∈ F0. By the definition of η(γ ), (30) is equivalent to

0 = d∗

L(η(γ ))= d∗

Lη+ d∗

LdLγ + d∗

L R(η, γ ).

By (29),
γ = Gd∗

LdLγ = −Gd∗

Lη− Gd∗

L R(η, γ ).

Thus (30) is equivalent to

γ + Gd∗

Lη+ Gd∗

L R(η, γ )= 0.

Let U1 and V1 are neighborhoods of the origin of L1
k and F0

k . By the local property of
R(η, γ ) which we observed in Proposition 4.5, we can define C1 map h :U1×V1 →

L1
k−1 by

h(η, γ )= γ + Gd∗

Lη+ Gd∗

L R(η, γ ).

By the order condition on the error term R, the identity map is the derivative of h
concerning γ at (0, 0). Hence by the implicit function theorem for Banach spaces,
there exists an open neighborhood U0 of 0 ∈ L1

k and a continuous map g : U0 → V1

such that g(0)= 0 and such that h(η, γ )= 0 if and only if γ = g(η) for all η ∈ U0

(see [Lang 1993] for details).
Let U :=U0∩L0 and V := g(U0)∩F0. Let η∈U and γ := g(η). By the previous

section, we have h(η, γ )= 0. If we take U0 small enough, 1L + d∗

L R(η, · )+ d∗

Lη

is a quasilinear elliptic operator. By elliptic regularity, γ is smooth. Hence γ ∈ V .
Hence this completes the proof. □

We can now give the proof of Theorem 4.2.

Proof of Theorem 4.2. Let η ∈ L1 be a Maurer–Cartan element and |η|k ≪ 1.
By Proposition 4.4, we only have to prove the theorem for d∗

T (E)η ̸= 0. By
Proposition 4.6, we have a γ = (υ, ξ) ∈ L0 such that

d∗

Lη+ d∗

LdLγ + d∗

L R(η, γ )= 0.

Let 8 := Pξ ◦ exp(υ). We can induce a structure of holomorphic-Higgs triple
on (X, E, θ) that is isomorphic to (Xη, Eη, θη) by 8 and fξ . We denote the
corresponding Maurer–Cartan element as ηγ . By Proposition 4.5, we have

ηγ = η+ dLγ + R(η, γ ).

We can easily see that d∗

Lηγ = 0. Hence by Proposition 4.4, we have some t ∈ S
such that (Xϵ(t), Eϵ(t), θϵ(t))∼= (Xη, Eη, θη). This completes the proof. □
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