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REGULARITY OF MANIFOLDS WITH INTEGRAL SCALAR
CURVATURE BOUND AND ENTROPY LOWER BOUND

SHANGZHI ZOU

We generalize the work of Lee, Naber and Neumayer on regularity of man-
ifolds with lower-bounded scalar curvature and almost Euclidean entropy.
We show the same result in the case of integral bounded scalar curvature.

In addition, we also obtain a compactness theorem and an a prior L p

scalar curvature bound estimate for p < 1.

1. Introduction

Local regularity is important in the study of manifolds under curvature restrictions.
Cheeger [1970] demonstrated that the injectivity radius is uniformly bounded below
by a positive constant for compact manifolds with bounded sectional curvature,
noncollapsing volume, and bounded diameter. Gromov [1981] further showed
a C1,α harmonic radius estimate on such manifolds. These results play a crucial
role in the proof of compactness and finiteness theorems (see also [Greene and Wu
1988; Kasue 1989; Peters 1987]). Anderson [1990] extended the C1,α regularity to
manifolds with bounded Ricci curvature and bounded injectivity. In the case that
the manifold admits only a lower bound on Ricci curvature, Anderson and Cheeger
[1992] have given a Cα harmonic radius estimate under an additional assumption
on the injectivity radius. Moreover, Cheeger and Colding [Colding 1997; Cheeger
and Colding 1997] further proved that for manifolds with almost nonnegative Ricci
curvature, the unit geodesic ball is Gromov–Hausdorff close to the Euclidean ball
if and only if they are close in volume. This is also true for manifolds with integral
Ricci curvature lower bound, which is proved by Tian and Zhang [2016].

Regularity of manifolds with bounded scalar curvature would be much more
difficult. Recently, Lee, Naber, and Neumayer [Lee et al. 2023] showed that the
unit ball of a complete manifold is close to the Euclidean ball in the dp-distance
whenever the scalar curvature, as well as the Perelman ν-functional, is almost
nonnegative. This gives a weaker regularity than the usual Gromov–Hausdorff
closeness. This paper aims to generalize their result to the integral scalar curvature
bound case.
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Recall the Perelman W-functional (see [Perelman 2002] or [Chow et al. 2010]).
For a complete manifold (M, g), τ > 0, and f ∈ C∞(M),

W(g, f, τ ) =

∫
M

(
τ(R + |∇ f |

2) + f − n
)
(4πτ)−n/2e− f dvolg.

Letting u = (4πτ)−n/4e− f/2, the Perelman W-function can be reformulated as

(1.1) W(g, u, τ )=

∫
M

(
τ(Ru2

+4|∇u|
2)−u2 log u2

−nu2) dvolg −
1
2 n log(4πτ).

The Perelman entropy µ(g, τ ) is given by

µ(g, τ ) = inf
{
W(g, u, τ )

∣∣∣ ∫
M

u2 dvolg = 1
}
.

Finally, the Perelman ν-functional is given by

ν(g, τ ) = inf{µ(g, τ ′) : τ ′
∈ (0, τ )},

which satisfies the rescaling invariance ν(αg, ατ) = ν(g, τ ) for all α > 0. For
any complete Riemannian manifold (M, g) with bounded geometry, the Perelman
ν-functional is nonpositive. Furthermore, a rigidity result asserts that for such a
manifold, if there exists τ > 0 such that ν(g, τ ) = 0, then (M, g) must be Euclidean
space; see [Perelman 2002; Chau et al. 2011; Lee et al. 2023]. When the complete
manifold admits only nonnegative scalar curvature, Cheng Liang [Cheng 2022]
showed that the manifold must be isometric to Euclidean space whenever the
Euclidean isoperimetric inequality holds.

To investigate the stability of the above rigidity result of manifolds with almost
nonnegative scalar curvature, Lee, Naber and Neumayer consider the Gromov–
Hausdorff convergence under the dp-distance.

Definition 1.2 (dp-distance). Given a Riemannian manifold (Mn, g) and a real
number p ∈ (n, ∞], we define the dp-distance between any x, y ∈ M by

dp(x, y) = sup
{
| f (x) − f (y)| :

∫
M

|∇ f |
p dvolg ≤ 1, f ∈ W 1,p

loc (M) ∩ C0
loc(M)

}
.

Note that this distance makes sense for any space equipped with a W 1,p structure,
ensuring the integrability and differentiability of functions. Let Bp,g(x, r) denote
the ball centered at x of radius r with respect to dp, i.e.,

Bp,g(x, r) = {y ∈ M : dp(x, y) < r}.

Then the rescaled metric g̃ = r−2g satisfies Bp,g̃(x, ρ) = Bp,g(x, ρr1−n/p) for any
ρ > 0.
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For a complete Riemannian manifold (M, g), let Br (x) be the geodesic ball
centered at x ∈ M of radius r , let R− = max{−R, 0}, and let

∥R−∥g,q,r := sup
x∈M

{
r2−n/q

( ∫
Br (x)

|R−|
q
)1/q}

.

We defined the upper bound of capacity as follows.

Definition 1.3 (capacity). Let (Mn, g) be a Riemannian manifold. For fixed r > 0
and N ∈ N+, if for any x ∈ M , there exists {xi }

N
i=1 ⊂ B2r (x) such that {Br (xi )}

N
i=1

forms a covering of B2r (x), then we denote the upper bound of capacity by

Cap(M,g)(r) ≤ N .

The main result of this paper is:

Theorem 1.4 (regularity). Let (Mn, g) be a complete n-manifold with bounded
curvature and fix ε, r, N > 0, p > n and q > n/2. There exists δ = δ(n, ε, N , p, q)

such that if

ν(g, 2r2) ≥ −δ, ∥R−∥g,q,r ≤ δ, Cap(M,g)(r) ≤ N ,

then for all x ∈ M and 0n
∈ Rn , we have

dG H
(
(Bp,g(x, r1−n/p), dp,g), (Bp,geuc(0

n, r1−n/p), dp,geuc)
)
≤ εr1−n/p,

and for any 0 < s ≤ r1−n/p,

1 − ε ≤
volg(Bp,g(x, s))

volgeuc(Bp,geuc(0n, s))
≤ 1 + ε.

Remark 1.5. Note that all the statements exhibit scaling invariance, allowing us to
assume r = 1 in our proofs.

As in the proof of the regularity theorem for manifolds with a pointwise lower
bound on scalar curvature [Lee et al. 2023, Theorem 1.7], the main step in our
argument is to establish an integral estimate for the Ricci curvature along the Ricci
flow; see Lemma 4.1. Once the estimate holds, the proof of Theorem 1.4 is identical
with that in [Lee et al. 2023, Sections 5–7] and thus omitted.

Furthermore, we can immediately obtain results analogous to those presented in
[Lee et al. 2023].

Theorem 1.6 (compactness). Fix ε, r, N > 0, p > n and q > n/2. There exists δ =

δ(n, ε, N , p, q) such that if a sequence of complete pointed Riemannian manifolds
{(Mi , gi , xi )} with bounded curvature satisfies

ν(gi , 2r2) ≥ −δ, ∥(Ri )−∥gi ,q,r ≤ δ, Cap(Mi ,gi )
(r) ≤ N ,

then there is a subsequence of {(Mi , gi , xi )} that converges in the pointed dp sense
to (X, g, x), where X is a pointed rectifiable Riemannian space.
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See [Lee et al. 2023] for definitions of pointed dp convergence and pointed
rectifiable Riemannian spaces.

For closed manifolds, we establish a prior L p(p < 1) bounds for scalar curvature:

Theorem 1.7. Fix n ≥ 2, ε > 0, p ∈ (0, 1) and q > max(n/2, 2p). Let (Mn, g) be
a closed Riemannian n-manifold. There exists δ = δ(n, ε, p, q) > 0 such that if

vol(M)2/n
·

(
/

∫
M

|R−|
q
)1/q

≤ δ and ν(g, 2 vol(M)2/n) ≥ −δ,

then

vol(M)2/n
·

(
/

∫
M

|R|
p
)1/p

≤ ε.

2. Preliminaries

In this paper, unless specified differently, (Mn, g) will always denote a complete
Riemannian manifold of dimension n with bounded curvature.

A Ricci flow (Mn, g(t))t∈[0,T ] is a family of smooth metrics g(t) on a smooth
manifold Mn satisfying the evolution equation

∂t g(t) = −2 Ricg(t) .

Along the Ricci flow, the scalar curvature and the volume form evolve by

(2.1) ∂t R = 1g(t) R + 2|Ricg(t)|
2, ∂t dvolg(t) = −Rg(t) dvolg(t).

Consider the heat operator ∂t −1g(t) coupled to the Ricci flow. Correspondingly,
the operator −∂t − 1g(t) + Rg(t) is called the conjugate heat operator. In particular,
for u, v ∈ C2

0(M × [0, T ]), we have∫
M

v(∂t−1g(t))u dvolg(t)−

∫
M

u(−∂t−1g(t)+Rg(t))v dvolg(t) =
d
dt

∫
M

uv dvolg(t).

Let K ( · , · ; y, s) denote the heat kernel based at (y, s), i.e.,

(∂t − 1x,g(t))K (x, t; y, s) = 0, lim
t→s+

K ( · , t; y, s) = δy .

The heat kernel exists and is positive; see [Guenther 2002]. For fixed (x, t), the
function K (x, t; · , · ) is also the conjugate heat kernel, i.e.,

(−∂s − 1y,g(s) + Rg(s)(y))K (x, t; y, s) = 0, lim
s→t−

K (x, t; · , s) = δx .

For any 0 ≤ s < t < T we have

(2.2)
∫

M
K (x, t; · , s) dvolg(s) = 1.

Set τ(t) = T − t , and let u = u(x, t) be a solution of the conjugate heat equation
along the flow. Chau, Tam and Yu [Chau et al. 2011, Theorem 7.1] show that
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if u( · , T )∈ C∞

0 (M), then the Perelman W-functional, defined in (1.1), is monotone
along the Ricci flow:

W(g(s), u(s), τ (s)) ≤ W(g(t), u(t), τ (t)) for all 0 ≤ s ≤ t ≤ T .

By taking a compactly supported minimizing sequence for µ(g(t), τ (t)), we see
that µ(τ) is also monotone:

(2.3) µ(g(s), τ (s)) ≤ µ(g(t), τ (t)) for all 0 ≤ s ≤ t ≤ T .

In particular, for Ricci flow (M, g(t))t∈(0,2) and s ∈ (0, 1], we have ν(g(s), 1) ≥

ν(g(0), 2).
We restate some basic results of Ricci flow. For the proofs, see [Lee et al. 2023,

Section 3].

Proposition 2.4. Fix n ≥ 2 and λ > 0. There exists δ = δ(n, λ) > 0 such that if
(M, g) satisfies ν(g, 2) ≥ −δ, then the Ricci flow (M, g(t)) with g(0) = g exists for
t ∈ (0, 1] and has the scale-invariant estimate

(2.5) sup
x∈M

|Rmg(t)(x)| ≤
λ

t
for all t ∈ (0, 1].

Moreover, for any x0 ∈ M and t ∈ (0, 1], there is a diffeomorphism

φ : Bg(t)(x0, 16t
1
2 ) → � ⊂ Rn

such that φ(x0) = 0 and

1
2φ∗geuc(φ(x)) ≤ g(t)(x) ≤

3
2φ∗geuc(φ(x)) for all x ∈ Bg(t)(x0, 16t

1
2 ).

In particular, there exists C = C(n) such that

C−1rn
≤ volg(t)(Bg(t)(x, r)) ≤ Crn for all r ∈ (0, 16t

1
2 ).

Combine (2.5) with Shi’s estimate [1989], there exists C = C(k) such that
|∇

k Rmg(t)| are uniformly bounded by C/t1+k/2 for all k. Thus, all Ricci flows are
assumed to have bounded curvature throughout the entire paper.

Let R̂−(t) = supx∈M R−(x, t). It is important to note that the L1 norm of
K ( · , t; y, s) has an upper bound:

(2.6)
∫

M
K ( · , t; y, s) dvolg(s) ≤ exp

( ∫ t

s
R̂−

)
.

In the compact case, this result can be derived from the following computation:

d
dt

∫
M

K ( · , t; y, s) dvolg(t) =

∫
M

△K − RK dvolg(t)

≤ R̂−(t)
∫

M
K ( · , t; y, s) dvolg(t).
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If M is noncompact, consider an exhaustion of M by smooth domains with compact
closure: �1 ⋐ �2 ⋐ · · · ⋐ M . Let K�i (x, t; y, s) be the corresponding Dirichlet
heat kernel on �i . Since �i is compact, we have∫

�i

K�i ( · , t; y, s) dvolg(s) ≤ e
∫ t

s R̂− .

By maximum principle, K�i is an increasing sequence, and K is the limit of K�i

as i tend to infinity. By the monotone convergence theorem, we can ascertain that
the L1 norm of K ( · , t; y, s) also satisfies (2.6).

3. Heat kernel estimates for Ricci flow

In this section, we establish the heat kernel’s upper and lower bounds. The Gaussian
upper bounds for the heat kernel are primarily derived from the heat kernel estimates
by Bamler, Cabezas-Rivas, and Wilking in [Bamler et al. 2019, Proposition 3.1].
Incorporating this result with the log Sobolev inequality (see also [Cao and Zhang
2011; Zhang 2011, Theorem 4.2.1]), we achieve a more precise estimation of the
heat kernel, specifically about integral scalar curvature, as detailed in the following
lemma.

Lemma 3.1. Fix n ≥ 2. There exist δ = δ(n) > 0 and C = C(n) > 0 such that if
(Mn, g(t))t∈[0,1] satisfies ν(g(0), 2) ≥ −δ, then

K (x, t; y, s) ≤
C

(t − s)n/2 exp
(

−
d2

g(s)(x, y)

C(t − s)
+

∫ t

s
R̂−

)
for all 0 ≤ s < t ≤ 1.

Proof. Up to scaling, we only need to show that if ν(g(0), 2) ≥ −δ, then

(3.2) K (x, 1; y, 0) ≤ C exp
(

−C−1d2
g(0)(x, y) +

∫ 1

0
R̂−

)
.

Let p(s) = 1/(1 − s) for s ∈ [0, 1), and let u = u(x, t) be a positive solution of
the heat equation with Dirichlet boundary condition

(∂t − 1)u = 0 in �i × (0, 1), u = 0 on ∂�i × [0, 1].

Let τ = s(1 − s) and v(x, s) = u p(s)/2/∥u p(s)/2
∥2. By (2.3), we compute

d
ds

log∥u∥p(s) =
p′

p2

∫
M

(v2 log v2) −
p − 1

p2

∫
M

(Rv2
+ 4|∇v|

2) −
1
p2

∫
M

Rv2

≤ −s(1 − s)
∫

M
(Rv2

+ 4|∇v|
2) +

∫
M

v2 log v2
+ R̂−(s)

= −
(
W(g(s), v(s), τ )+

1
2 n log(4πτ) + n

)
+ R̂−(s)

≤ δ −
1
2 n log τ + R̂−(s).
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Integrating from s = 0 to s = 1, we find

∥u( · , 1)∥∞ ≤ exp
(

δ + n +

∫ 1

0
R̂−

)
∥u( · , 0)∥1.

Since

sup
x,y

K�i (x, 1; y, 0) = sup
u ̸=0

∥u( · , 1)∥∞

∥u( · , 0)∥1
,

letting i tend to infinity, it follows that

(3.3) K (x, 1; y, 0) ≤ exp
(

δ + n +

∫ 1

0
R̂−

)
.

This implies the desired bound (3.2) if dg(0)(x, y) is controlled. Therefore, our task
reduces to estimating K (x, 1; · , 0) when dg(0)(x, y) is large. The proof closely
parallels that of [Bamler et al. 2019, Proposition 3.1]. The main deviation lies in the
application of formula (2.6) to transform [Bamler et al. 2019, (3.11)] into the form

(3.4) I[Bk] ≤

∫
M/Bg(0)(x,rk)

K (x, 1; · , tk)K ( · , tk; y, tk+1) dvolg(tk)

≤ ak exp
( ∫ tk

tk+1

R̂−

)
.

Thus, further details of the proof are omitted here. □

In preparation for the lower bound estimate, we need the following.

Proposition 3.5. Let (M, g(t))t∈(0,T ] be a Ricci flow. Then the following properties
hold.

(1) (interpolation inequality [Zhang 2011, Theorom 6.5.1]) Let u be a positive
solution to the heat equation (∂t −1)u = 0. Then, for x, y ∈ M and 0 < t ≤ T ,
letting U = supM×[0,T ] u, we have

u(y, t) ≤ u(x, t)
1
2 U

1
2 exp

(d2
g(t)(x, y)

t

)
.

(2) (Perelman’s differential Harnack inequality [Perelman 2002, Corollary 9.4])
Let γ (s) be any smooth curve and suppose w(y, s) = (4π(T − s))−n/2e−h(y,s)

satisfies the conjugate heat equation (∂s + 1 − R)w = 0. Then

−
d
ds

h(γ (s), s) ≤
1
2
(R(γ (s), s) + |γ̇ (s)|2) −

1
2(T −s)

h(γ (s), s).

Then, we establish the lower bound estimate on the heat kernel by using the
same argument as in the proof of [Zhang 2012, Theorem 1.1].
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Lemma 3.6. Fix n ≥ 2 and λ > 0. There exist δ = δ(n, λ) > 0 and C = C(n) > 0
such that if (M, g(t))t∈(0,1] satisfies ν(g(0), 2) ≥ −δ, then for any 0 < s < t ≤ 1,

K (x, t; y, s) ≥
C

(t − s)n/2

(
s
t

)2λ

exp
(

−4d2
g(t)(x, y)

t − s

)
.

Proof. By Proposition 2.4, for any λ > 0, we may choose δ small enough that the
Ricci flow enjoys the scale invariant curvature bounds |Rm| ≤ λ/t . Combining this
with Lemma 3.1,

(3.7) K (x, t; y, s) ≤
C

(t − s)n/2

(
t
s

)λ

for all 0 < s < t ≤ 1.

Let K (x, t; y, l) = (4π(t − l))−n/2e−h(y,l) for l ∈ [s, t], and let γ (l) be the fixed
point x . By Proposition 3.5,

−
d
dl

h(x, l) ≤
1
2

R(x, l) −
1

2(t−l)
h(x, l).

Integrating from s to t , we have h(x, s) ≤
1
2λ log(t/s). Consequently,

(3.8) K (x, t; x, s) ≥ (4π(t − s))−n/2
(

s
t

)λ/2

.

Note that the function K (y′, t ′
; x, s) for (y′, t ′) ∈ M ×[(t + s)/2, t] is a positive

solution to the heat equation. Then Proposition 3.5 implies

K (y, t; y, s)

≤ K (x, t; y, s)
1
2 ·

(
sup(x ′,t ′)∈M×[(t+s)/2,t] K (x ′, t ′

; y, s)
)1

2 exp
(2d2

g(t)(x, y)

t − s

)
.

Combining this with (3.7) and (3.8), we get the lower bound of K (x, t; y, s). □

For 0 < t ≤ 1 and x0 ∈ M , let ϕ : M ×{t} → [0, 1] be a cutoff function such that
ϕ(y)≡ 1 for y ∈ Bg(t)(x0, 8t

1
2 ) and supp ϕ ⊂ Bg(t)(x0, 16t

1
2 ). Let ϕ : M×[0, t]→ R

be the solution of the conjugate heat equation (∂s + 1 − R)ϕ = 0 with terminal
data ϕ(y).

Applying Lemma 3.6, we can derive the following estimates. For the proof, see
[Lee et al. 2023, Proposition 4.4].

Proposition 3.9. Fix n ≥ 2 and λ > 0. There exist δ = δ(n, λ) > 0 and C =

C(n) > 0 such that if (M, g(t))t∈(0,1] satisfies ν(g(0), 2) ≥ −δ, then for all (y, s) ∈

Bg(t)(x0, 4t
1
2 ) × (0, t),

(3.10) ϕ(y, s) ≥ C
(

s
t

)2λ

.
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In addition, if the manifold mentioned above also has almost nonnegative integral
scalar curvature and an upper capacity bound, we can refine the heat kernel estimates
in Lemma 3.1 to obtain lower bounds on scalar curvature along the Ricci flow.
Moreover, the lower scalar curvature bounds ensure that the volume of a given set
does not expend too much along the Ricci flow.

Lemma 3.11. Fix r, N > 0 n > 2 and q > n/2. There exist δ = δ(n, N , q) and
C = C(n, N , q) such that if (Mn, g(t))t∈(0,1/r2] satisfies

ν(g(0), 2r2) ≥ −δ, ∥R−∥g(0),q,r ≤ δ, Cap(M,g(0))(r) ≤ N ,

then for 0 < t ≤ 1/r2,

R(x, t) ≥ −Cδr−(2q−n)/q t−n/(2q) and dvolg(t) ≤ eCδ dvolg(s).

Proof of Lemma 3.11. Up to rescaling, we may assume r = 1. We will use the
upper bound of capacity to prove that for each k ∈ N+ there exists a finite subset
{xi }

N k

i=1 ⊂ Bg(0)(x, k + 1) such that

(3.12) Bg(0)(x, k + 1) ⊆

N k⋃
i=1

Bg(0)(xi , 1).

We argue by induction. For k = 1 and y ∈ M , by the definition of the capacity,
there exists {y j }

N
j=1 such that Bg(0)(y, 2) ⊂

⋃N
j=1 Bg(y j , 1). For k > 1, if there

exists {xi }
N k−1

i=1 such that Bg(0)(x, k) can be covered by {Bg(0)(xi , 1)}N k−1

i=1 , then by
the triangle inequality we have Bg(0)(x, k +1) ⊂

⋃N k−1

i=1 Bg(0)(xi , 2). Since for each
Bg(0)(xi , 2) there is a finite cover {Bg(0)(yi, j , 1)}N

j=1, {Bg(0)(yi, j , 1)}i, j form a cover
for Bg(0)(x, k + 1). Thus (3.12) follows.

Let w be the solution to the heat equation with the initial data w(y, 0)= R−(y, 0).
By maximum principle, −R(x, t) ≤ w(x, t) pointwise. Let S(t) =

∫ t
0 R̂− and

Ax(k, k + 1) = Bg(0)(x, k + 1) \ Bg(0)(x, k) for k ∈ N+. By Hölder’s inequality,
(3.12), (2.2) and Lemma 3.1,

w(x, t) =

∫
M

K (x, t; y, 0)R−(y, 0) dvolg(0)(y)

≤

∞∑
k=0

∥R−∥Lq (Bg(x,k+1))

( ∫
Ax (k,k+1)

K q/(q−1)

)(q−1)/q

≤

∞∑
k=0

sup
Ax (k,k+1)

K 1/q
( ∫

M
K

)(q−1)/q( N k∑
i=1

∥R−∥
q
Lq (Bg(xk

i ,1))

)1/q

≤

∞∑
k=0

C1/q
0 δt−n/(2q) exp

(
−

k2

C0qt
+

S(t)
q

)
N k/q

≤ Cδt−n/(2q)eS(t)/q ,
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where C0 = C0(n) and C = C(n, N , q). In particular, we obtain

(3.13) R̂−(t) ≤ max
x∈M

(w(x, t)) ≤ Cδt−n/(2q)eS(t)/q .

Thus d
dt q · e−S(t)/q

= −e−S(t)/q R̂−(t) ≥ −Cδt−n/(2q). Integrating from 0 to t ,

S(t) ≤ −q log
(

1 −
2Cδ

2q−n

)
for all 0 < t ≤ 1.

If δ ≤ (2q − n)/(4C), then S(t) ≤ q. Substituting this in (3.13), R−( · , t) ≤

R̂−(t) ≤ 2Cδt−n/(2q). By the evolved equation of volume form (2.1), we have
∂τ dvolg(τ ) ≤2Cδτ−n/(2q) dvolg(τ ). Integrating τ from s to t completes the proof. □

4. Integral estimate for Ricci curvature under Ricci flow

In this section, we prove an integral estimate for the Ricci curvature, which is scale
invariant. The proof of Lemma 4.1 is analogous to [Lee et al. 2023, Theorem 4.1].
In our case, we replace the use of pointed lower bound of initial scalar curvature by
the lower bound of w(x, t) along the Ricci flow, as shown in (3.13). For the sake
of completeness, we include the proof.

Lemma 4.1 (integral Ricci estimate). Fix n >2, ε, r, N >0, q >n/2 and θ ∈
[
0, 1

2

)
.

If (Mn, g(t))t∈(0,1/r2] satisfies

ν(g(0), 2r2) ≥ −δ, ∥R−∥g(0),q,r ≤ δ, Cap(M,g(0))(r) ≤ N ,

then for any (x, s) ∈ M × (0, 1/r2
],∫ s

0

(
τ

s

)−θ
/

∫
Bg(s)(x,4s1/2)

|Ricg(τ )| dvolg(τ ) dτ ≤ ε2.

As the evolution equation of the scalar curvature contains the term of |Ric|2, we
can combine the scalar curvature estimate and the heat kernel estimate along the
Ricci flow to estimate |Ric|2ϕ. Combining this estimate with Hölder’s inequality,
we prove Lemma 4.1:

Proof of Lemma 4.1. Up to rescaling the flow, we may assume that t = 1. By
Proposition 2.4 and the volume comparison in Lemma 3.11, there exists a constant
C0 = C0(n, q, N ) such that for any (x, s) ∈ M × [0, 1],

(4.2) volg(s)(Bg(1)(x, 4)) ≥ e−C0δ volg(1)(Bg(1)(x, 4)) ≥ C0.

For fixed 0 < λ ≤
1
4 −

1
2θ , let θ0 = θ + λ, and then we have 1 − 2θ0 ≥

1
2 − θ > 0.

Choose δ small enough that Proposition 3.9 holds for this choice of λ. By Hölder’s
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inequality and (4.2) we get

(4.3)
∫ 1

0
s−θ /

∫
Bg(1)(x,4)

|Ricg(s)| dvolg(s) ds

≤ C−1
0 (1 − 2θ0)

−
1
2

( ∫ 1

0
s2λ

∫
Bg(1)(x,4)

|Ricg(s)|
2 dvolg(s) ds

)1
2

.

Let ϕ be the cutoff function that evolves by the conjugate heat equation as in
Proposition 3.9. Then there exists C1 = C1(n) such that∫ 1

0
s2λ

∫
Bg(1)(x,4)

|Ricg(s)|
2 dvolg(s) ds

≤ C1

∫ 1

0

∫
M

|Ricg(s)|
2ϕ

=
1
2

C1

∫ 1

0

∫
M

(∂s − △)Rg(s)ϕ

=
1
2

C1

( ∫
M

Rg(1)ϕ( · , 1) dvolg(1) −

∫
M

Rg(0)ϕ( · , 0) dvolg(0)

)
.

By Proposition 2.4, we find that
∫

M Rg(1)ϕ( · , 1) dvolg(1) ≤λ volg(1)(Bg(1)(x, 16))≤

C1λ. By (3.13), there exists a constant C2 = C2(n, q, N ) such that

−

∫
M

Rg(0)ϕ( · , 0) dvolg(0)

=

∫
M

R−(x, 0)

∫
M

K (y, 1; x, 0)ϕ(y, 1) dvolg(1)(y) dvolg(0)(x)

=

∫
M

ϕ(y, 1)

∫
M

K (y, 1; x, 0)R−(x, 0) dvolg(0)(x) dvolg(1)(y) ≤ C2δ.

By choosing λ and δ appropriately small, we conclude the proof. □

5. L p bound for the scalar curvature

For closed manifold, we derive an a prior L p (p < 1) bound of scalar curvature,
Theorem 1.7, which we restate below for convenience. The proof of this theorem
closely parallels that of [Lee et al. 2023, Theorem 4.7]. The main difference is that,
since the curvature here is only bounded below in an integral sense, we need to
estimate the L p norm of R + w along the Ricci flow, where w evolves by the heat
equation with initial data R−.

Theorem 1.7. Fix n ≥ 2, ε > 0, p ∈ (0, 1) and q > max(n/2, 2p). Let (Mn, g) be
a closed Riemannian n-manifold. There exists δ = δ(n, ε, p, q) > 0 such that if

vol(M)2/n
·

(
/

∫
M

|R−|
q
)1/q

≤ δ and ν(g, 2 vol(M)2/n) ≥ −δ,
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then

vol(M)2/n
·

(
/

∫
M

|R|
p
)1/p

≤ ε.

Proof. Up to rescaling, we may assume that vol(M) = 1. Choosing δ ≤ ε/2, by
Hölder’s inequality we have

(∫
M |R−|

p
)1/p

≤
(∫

M |R−|
q
)1/q

≤ ε/2, and it is suffices
to show that

∫
M |R+|

p dvolg ≤ (ε/2)p, where R+ = max(R, 0). By Proposition 2.4
and Lemma 3.1, for any fixed λ > 0, we may choose δ small enough that the
Ricci flow (M, g(t)) with g(0) = g exists for t ∈ (0, 1] and there exists a constant
C0 = C0(n) such that

|Rm|≤λ/t, sup
x,y∈M

{K (x, t; y, 0)}≤C0t−n/2 exp
( ∫ t

0
R̂−

)
for all 0< t ≤ 1.

Let w(x, t) be the solution of the heat equation with initial data w(x, 0) =

R−(x, 0) and f (x, t) = R(x, t) + w(x, t), the evolve equation of scalar curvature
in (2.1) implies that (∂t −△) f = 2|Ric|2 ≥ 0. By the maximum principle, we have
f (x, t) ≥ R+(x, t). Thus, we only need to show

∫
M f p dvolg(0) ≤ (ε/2)p.

For any p ∈ (0, 1), we see that f p is a supersolution of the heat equation:

(∂t − △) f p
= p f p−1(∂t − △) f − p(p − 1) f p−1

|∇ f |
2
≥ 2p f p−1

|Ric|2 ≥ 0.

Combining this with Young’s inequality, we have

(5.1)
∫

M
f p dvolg(0)

=

∫
M

f p dvolg(1) −

∫ 1

0

∫
M

(
(∂t − △) f p

− R f p) dvolg(t) dt

≤

∫
M

f p dvolg(1) +

∫ 1

0

∫
M

R f p dvolg(t) dt

≤

∫
M

f p dvolg(1) +

∫ 1

0

∫
M

(R p+1
+ Rw p) dvolg(t) dt

≤

∫
M

f p dvolg(1) +
p
q

∫ 1

0

∫
M

wq dvolg(t) dt

+

∫ 1

0

∫
M

(
R p+1

+
q − p

q
Rq/(q−p)

)
dvolg(t) dt.

To bound the right-hand side of (5.1), let S(t) =
∫ t

0 R̂−. Then Lemma 3.1 implies

w(x, t) =

∫
M

K (x, t; y, 0)R−(y, 0) dvolg(0)(y)

≤

(∫
M

|R−( · , 0)|q dvolg(0)

)1/q( ∫
M

K (x, t; · , 0)q/(q−1) dvolg(0)

)(q−1)/q

≤ δ max
y∈M

K (x, t; y, 0)1/q
≤ C1/q

0 δt−n/(2q)eS(t)/q .
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Similar to the argument in Lemma 3.11, there exists C1 = C1(n, q) such that for
x ∈ M and 0 < t ≤ 1, we have

(5.2) R−(x, t) ≤ w(x, t) ≤ C1δt−n/(2q), dvolg(t) ≤ eC1δ dvolg(0).

By (2.6), we find C2 = C2(n, q) such that for any 0 ≤ s < t ≤ 1 we have∫
M

K ( · , t; y, s) dvolg(t) ≤ exp
( ∫ t

s
R−

)
≤ exp

( ∫ t

s
C1δτ

−n/(2q)

)
dτ ≤ C2.

Then we bound each term on the right-hand side of (5.1) separately. For the first
term, by (5.2) we see that∫

M
f p dvolg(1) =

∫
M

(R+w)p dvolg(1) ≤

∫
M

(λ+C1δ)
p dvolg(1) ≤ (λ+C1δ)

peC1δ.

For the second term, by Hölder’s inequality, we have∫
M

wq( · , t) dvolg(t)

=

∫
M

( ∫
M

R−(y, 0)K (x, t; y, 0) dvolg(0)(y)

)q

dvolg(t)(x)

≤

∫
M

( ∫
M

Rq
−(y, 0)K (x, t; y, 0) dvolg(0)(y)

)
·

( ∫
M

K (x, t; y, 0) dvolg(0)(y)

)
dvolg(t)(x)

=

∫
M

Rq
−(y, 0)

∫
M

K (x, t; y, 0) dvolg(t)(x) dvolg(0)(y)

≤ C2

∫
M

Rq
−(y, 0) dvolg(0)(y) ≤ C2δ

q .

For the third term, let ϕ : M × (0, 1) → R be the solution to the conjugate heat
equation with terminal data ϕ(x, 1) = 1 on M × {1}. Using the same proof as
[Lee et al. 2023, Proposition 4.4], there exists a constant C3 = C3(n) such that for
all y ∈ M and t ∈ (0, 1] we have ϕ(y, t) ≥ C3t2λ. Moreover, by using the same
argument as in the proof of Lemma 4.1, (5.2) implies that there exists a constant
C4 = C4(n, q) such that

(5.3)
∫ 1

0
t2λ

∫
M

|R|
2 dvolg(t) dt ≤ C−1

3

∫ 1

0

∫
M

|R|
2ϕ(y, t) dvolg(t) dt ≤ C4(λ+δ).

For any 0 < α < 2 and 0 < λ < (2 −α)/(4α), let θ = 2λα/(2 −α). Then, by (5.3),∫ 1

0

∫
M

|R|
α dvolg(t) dt ≤

( ∫ 1

0

∫
M

t−θ dvols ds
)λα/θ( ∫ 1

0
s2λ

∫
M

|R|
2 dvols ds

)α/2

≤ 2eC1δCα/2
4 (λ + δ)α/2.
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In particular, there exists a constant C5 = C5(n, p, q) such that∫ 1

0

∫
M

R p+1
+

q − p
q

Rq/(q−p) volg(t) dt ≤ C5(λ+ δ)(p+1)/2
+ C5(λ+ δ)q/(2q−2p).

Finally, by choosing λ and δ sufficiently small, we conclude the proof. □
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