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The proof of Lemma 2.5 of the author’s article “A Hecke algebra isomor-
phism over close local fields” (Pacific J. Math. 319:2 (2022), 307–332) is
incorrect. We use a slight variant of the original approach to correct the
proof. This leads to some modifications to some parts of Section 3 of the
original article, and these are given in Section 2 of this note. With these
modifications, Theorem 4.1 of the original article holds.

We retain the notation in [Ganapathy 2022, Section 2]. Let T be a torus over F .
Then T is determined by the 0F -module X∗(T ). Let T ft be the Néron–Raynaud
model of T and T its identity component. Let m ≥ 1 be such that T splits over an
at most m-ramified Galois extension of F . Then the action of 0F on X∗(T ) factors
through 0F/I m

F . For any field F ′ that is at least m-close to F , we obtain a torus T ′

over F ′ via the action of 0F ′ → 0F ′/I m
F ′

Del−1
m

∼=
−−−→ 0F/I m

F on X∗(T ). This torus splits
over an at most m-ramified extension of F ′. Let T ′ft be the Néron–Raynaud model
of T ′ and T ′ its identity component.

Theorem 0.1 [Chai and Yu 2001, Section 9 ]. Let m ≥ 1 and let h be as in [Chai and
Yu 2001, Section 8]. Assume e≥m+3h. Then for any nonarchimedean local field F ′

that is e-close to F , the group schemes T ft
×OF OF/pm

F and T ′ft
×OF ′ OF ′/pm

F ′ are
isomorphic. In particular,

T ft(OF/pm
F ) ∼= T ′ft(OF ′/pm

F ′)

as groups. This isomorphism continues to hold when we replace T ft by T .

In [Ganapathy 2022, Section 2C], we had constructed a group-theoretic section
of the Kottwitz homomorphism κT,F : T (F) → X∗(T )σIF

and had used Theorem 0.1
for the neutral component T to give a proof of Lemma 2.5 in the same article. If T
splits over an unramified extension of F or is an induced torus over F , the results in
[Ganapathy 2022, Section 2] go through. However, the Kottwitz homomorphism for
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a general torus need not admit a group-theoretic section, as the following example
illustrates.

Example 0.2. Let F̆ be the completion of the maximal unramified subextension
of Q2. Let L = F̆

(√
−1

)
. Then L is a wildly ramified quadratic extension of F̆ .

Let T = Nm1
L/F̆

Gm denote the norm-1 torus. Let γ be the nontrivial element of
Gal(L/F̆). Then X∗(T )IF

∼= Z/2Z. Note that κT,F̆ has a group-theoretic section if
and only if −1 ∈ T (F̆) does not lie in T (F̆)1. Note that

T (F̆)1 = {y ∈ L×
| xγ (x)−1

= y for some x ∈ L×
}.

Since −1 =
(√

−1
)
γ
(√

−1
)−1, −1 indeed lies in T (F̆)1. We conclude that κT,F̆

does not admit a group-theoretic section.

The error in [Ganapathy 2022, Section 2] is that Lemma 2.3 is false in general
(the nλ̃ defined in the line above Lemma 2.3 may not be well-defined). Consequently,
Lemma 2.4 cannot be salvaged to yield a well-defined set of representatives for the
torsion elements of X∗(T )IF that forms a group and is σ -stable.

1. Proof of [Ganapathy 2022, Lemma 2.5]

Let T be a torus over F and let F̃ be the splitting extension of TF̆ in the completion
of Fs . Fix a uniformizer ϖF̃ of F̃ . Consider the Kottwitz homomorphism κT,F̆ :

T (F̆) → X∗(T )IF . Let X∗(T )IF /tor denote the quotient of X∗(T )IF by its torsion
subgroup. Note that X∗(T )IF /tor is isomorphic to HomZ(X∗(T )IF , Z). This leads
to the valuation homomorphism ωT,F̆ : T (F̆) → HomZ(X∗(T )IF , Z). Note that
Ker(ωT,F̆ ) = T (F̆)b = T ft(OF̆ ) is the maximal bounded subgroup of T (F̆) and
it contains T (F̆)1. We will construct a group-theoretic section of the valuation
homomorphism. We will then use Theorem 0.1 for T ft to prove [Ganapathy 2022,
Lemma 2.5] over F̆ . We will show that this isomorphism over F̆ is σ -equivariant
to obtain the required isomorphism over F (see Lemmas 1.2 and 1.3).

1A. A group-theoretic section of the valuation homomorphism and its conse-
quences. Let λ̆1, . . . , λ̆n ∈ X∗(T )IF be such that their images λ̆t

1, . . . , λ̆
t
n form

a basis of X∗(T )IF /tor. Fix λ̃1, . . . , λ̃n ∈ X∗(T ) such that pr(λ̃i ) = λ̆i , where
pr : X∗(T ) → X∗(T )IF is the natural surjection. Define nλ̃i

= λ̃i (ϖF̃ ). Define
nλ̆t

i
= nλ̆i

= NmF̃/F̆ nλ̃i
. For λ̆t

∈ X∗(T )IF /tor, write λ̆t
=

∑
i ci λ̆

t
i and define

nλ̆t =
∏

i nci

λ̆t
i
. Note that n0 = 1 by construction.

Lemma 1.1. The set S := {nλ̆t | λ̆t
∈ X∗(T )IF /tor} is a subgroup of T (F̆). The

map ∇T,F̆ : X∗(T )IF /tor → S , λ̆t
7→ nλ̆t , is a group isomorphism.

Proof. It is clear that S is a subgroup of T (F̆). It is also clear that ∇T,F̆ is a surjective
group homomorphism. We just need to see that it is injective. Suppose nλ̆t = 1.
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We need to show that λ̆t
= 0. Write λ̆t

=
∑

i ci λ̆
t
i . The natural pairing between

X∗(T ) and X∗(T ) induces a perfect pairing ⟨ · , · ⟩ : X∗(T )IF /tor × X∗(T )IF → Z.
Let χ̆1, . . . , χ̆n ∈ X∗(T )IF be such that ⟨λ̃ j , χ̆k⟩ = δ j,k , 1 ≤ j, k ≤ n. Now
nλ̆t =

∏
i NmF̃/F̆ nci

λ̃i
= 1. This implies that 1 = χ̆ j (nλ̆t ) = NmF̃/F̆ χ̆ j (nλ̃ j

)c j =

(NmF̃/F̆ ϖ
c j

F̃
). This forces c j = 0. Since j was arbitrary, this shows that λ̆t

= 0. □

Lemma 1.2. Let T be a torus over F. Let T ft be as above and for m ≥ 1, let
T̆m = Ker(T ft(OF̆ ) → T ft(OF̆/pm

F̆
)). Let e ≥ m + 4h. If F̆ and F̆ ′ are e-close, we

have an isomorphism

T̆m : T (F̆)/T̆m → T ′(F̆ ′)/T̆ ′

m .

Proof. Since T ft(OF̆ ) = T (F̆)b, we have by Theorem 0.1 (which also holds over F̆ ;
see [Chai and Yu 2001]) an isomorphism

T (F̆)b/T̆m → T ′(F̆ ′)b/T̆ ′

m .(1-1)

Since T splits over an at most m-ramified extension of F , the action of 0F on
X∗(T ) factors through 0F/I m

F . Since the action of 0F/I m
F on X∗(T ) is Delm-

equivariant, we have X∗(T )IF
∼= X∗(T )IF ′ and X∗(T )IF /tor ∼= X∗(T )IF ′ /tor via

Delm . We identify these groups via these isomorphisms. Let ϖF̃ ′ be a uniformizer
of F̃ ′ such that ϖF̃ mod prm

F̃
7→ ϖF̃ ′ mod p′rm

F̃
where r = [F̃ : F̆]. For 1 ≤ i ≤ n,

define n′

λ̃i
= λ̃i (ϖF̃ ′), n′

λ̆t
i
= NmF̃ ′/F̆ ′ nλ̃i

. Form the subgroup S ′
⊂ T (F̆ ′) as before.

Since ∇T,F̆ , ∇T ′,F̆ ′ are group isomorphisms, we get

T (F̆)/T̆m ∼= X∗(T )IF /tor × T (F̆)b/T̆m,

and similarly over F̆ ′. These observations, combined with (1-1), finish the proof of
the lemma. □

Lemma 1.3. The isomorphism T̆m : T (F̆)/T̆m → T ′(F̆ ′)/T̆ ′
m of Lemma 1.2 is

σ -equivariant. It induces a group isomorphism Tm : T (F)/Tm → T ′(F ′)/T ′
m .

Proof. We know that the isomorphism in (1-1) is σ -equivariant. We need to see
that for λ̆t

∈ S , σ(nλ̆) mod T̆m 7→ σ ′(n′

λ̆
) mod T̆ ′

m . It suffices to see this for λ̆t
i ,

1 ≤ i ≤ n. Fix i and let λ̆t
= λ̆t

i . Write

(1-2) σ(λ̆t) =

∑
j

c j λ̆
t
j .

Let σ̃ be any lift of σ to 0F/I m
F and we denote its action on X∗(T ) as σ̃ . We know

σ(nλ̆t ) = NmF̃/F̆ σ̃ (nλ̃) = NmF̃/F̆ σ̃ (λ̃)(σ̃ (ϖF̃ ))

and
nσ(λ̆t ) =

∏
j

NmF̃/F̆ nc j

λ̃ j
=

∏
j

NmF̃/F̆ λ̃ j (ϖF̃ )c j .
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Equation (1-2) implies that σ̃ (λ̃) −
∑

j c j λ̃ j ∈ X∗(T )(IF ), so

σ̃ (λ̃) −

∑
j

c j λ̃ j =

∑
k

dk(γk(µ̃k) − µ̃k),

for suitable γk ∈ IF/I m
F and µ̃k ∈ X∗(T ). Now,

σ̃ (λ̃)(σ̃ (ϖF̃ )) =

∏
j

λ̃ j (σ̃ (ϖF̃ )c j ) ·

∏
k

(γk(µk) − µk)(σ̃ (ϖF̃ )dk )

Define

uλ̃,σ̃ =

∏
j

λ̃ j ((σ̃ (ϖF̃ )ϖ−1
F̃

)c j )
∏

k

µk
(
γ −1

k (σ̃ (ϖF̃ ))(σ̃ (ϖF̃ )−1)dk
)

and define uλ̆,σ = NmF̃/F̆ uλ̃,σ̃ . Then we have σ(nλ̆t ) = uλ̆,σ · nσ(λ̆t ).
By construction of T̆m , we have nσ(λ̆t ) mod T̆m 7→ n′

σ(λ̆t )
mod T̆ ′

m . Further uλ̃,σ̃ ∈

T (F̃)1. Recall that r =[F̃ : F̆]. With ϖF̃ and ϖF̃ ′ as above, the map X∗(T )→T (F̃),
λ̃ 7→ λ̃(ϖF̃ ), is a group-theoretic section of the Kottwitz homomorphism over F̃ ,
and using the Chai–Yu isomorphism T (F̃)1/T̃rm ∼= T ′(F̃ ′)1/T̃ ′

rm we obtain that

T̃rm : T (F̃)/T̃rm ∼= T (F̃ ′)/T̃ ′

rm

as groups. Since under the isomorphism OF̃/prm
F̃

∼= OF̃ ′/prm
F̃ ′

, we have

σ̃ (ϖF̃ )ϖ−1
F̃

mod prm
F̃ 7→ σ̃ ′(ϖ ′

F̃ )ϖ ′−1
F̃

mod prm
F̃ ′

,

γ −1
k (σ̃ (ϖF̃ ))(σ̃ (ϖF̃ ))−1 mod prm

F̃ 7→ γ ′−1
k (σ̃ ′(ϖ ′

F̃ ))(σ̃ ′(ϖ ′

F̃ ))−1 mod prm
F̃ ′

we have that uλ̃,σ̃ mod T̃rm 7→ uλ̃′,σ̃ ′ mod T̃ ′
rm via T̃rm . By the functoriality of the

Chai–Yu isomorphism [2001, Section 9.2], we have the commutative diagram

T (F̃)1/T̃rm T (F̆)1/T̆m

T ′(F̃ ′)1/T̃ ′
rm T ′(F̆ ′)1/T̆ ′

m

Nm

∼= ∼=

Nm

It follows that uλ̆,σ mod T̆m 7→u′

λ̆,σ ′
mod T̆ ′

m . We have proved that σ(nλ̆t ) mod T̆m 7→

σ ′(n′

λ̆t ) mod T̆ ′
m for all λ̆t

= λ̆t
i , 1 ≤ i ≤ n. Hence this same claim holds for all

λ̆t
∈ X∗(T )IF /tor. This implies that T̆m is σ -equivariant. The claim that T̆m

restricts to an isomorphism Tm : T (F)/Tm → T ′(F ′)/T ′
m follows from the fact that

H 1(σ, T̆m) = 1 (see [Serre 1979, Chapter XII, §3, Lemma 3]). □

1B. Some remarks. Assume e ≥ m+4h. We have σ -equivariant isomorphisms T̆m

and T̆m+h constructed above (we also have T̃rm and T̃r(m+h)). Let t ∈ T (F̆)b with
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κT,F̆ (t) = µ̆. Write t = NmF̃/F̆ t̃ , with t̃ ∈ T (F̃). By functoriality of the Chai–Yu
isomorphism (for TF̆ ↪→ RF̆ = ResF̃/F̆ TF̃ ), we have the commutative diagram

T (F̆)b/T̆m+h T (F̃)b/T̃r(m+h)

T ′(F̆ ′)b/T̆ ′

m+h T ′(F̃ ′)b/T̃ ′

r(m+h)

i

T̆m+h T̃r(m+h)

i ′

As explained in [Aubert and Varma 2024, Theorem 2.5.3], it follows from the
arguments in [Chai and Yu 2001, Section 8] that T (F̆)b ∩ T̃r(m+h) ⊂ T̆m . Let
t̃ ′

∈ T (F̃ ′) be such that T̃r(m+h)(t̃ mod T̃r(m+h)) = t̃ ′ mod T̃ ′

r(m+h). Using the Galois
equivariance of T̃r(m+h) and the commutativity of the above diagram, we have
T̆m+h(t mod T (F̆)b ∩ T̃r(m+h)) = t ′ mod T ′(F̆ ′)b ∩ T̃ ′

r(m+h) where t ′
= NmF̃ ′/F̆ ′ t̃ ′.

Hence T̆m(t mod T̆m) = T̆m+h(t mod T̆m) = t ′ mod T̆ ′
m . By Diagram (7.3.1) in

[Kottwitz 1997], κT ′,F̆ ′(t ′) = µ̆.
Now, let t ∈ T (F̆). Write t = t1nµ̆t for suitable t1 ∈ T (F̆)b and µ̆t

∈ X∗(T )IF /tor.
Then κT,F̆ (t) = κT,F̆ (t1) + µ̆. Also t mod T̆m 7→ (t ′

1 mod T̆ ′
m)(n′

µ̆t mod T̆ ′
m) for a

suitable t ′

1 ∈ T ′(F̆ ′)b. Then κT ′,F̆ ′(t ′

1n′

µ̆t ) = κT ′,F̆ ′(t ′

1) + µ̆. By the preceding
paragraph, we see that κT,F̆ (t1) = κT ′,F̆ ′(t ′

1). Hence T̆m is compatible with the
Kottwitz homomorphism κT,F̆ . Also Tm is compatible with κT,F .

2. Modifications to [Ganapathy 2022, Section 3]

2A. Modifications to [Ganapathy 2022, Section 3A]. The correction given in
Section 1 leads to some corrections in [Ganapathy 2022, Section 3]. One important
modification is that we need to replace the set of representatives {nλ̆ | λ̆ ∈ X∗(T )IF }

and {nλ̆ad
| λ̆ ∈ X∗(Tad)IF } used in the proofs in [Ganapathy 2022, Section 3A] with

the set of representatives given in Lemma 2.1. Let M , M∗, A, S, T , B and σ be as
in [Ganapathy 2022, Section 3]. So M∗ is an inner form of a quasisplit connected,
reductive group M with Mad ∼= ResL/F PGLn for a finite separable extension L/F .
Let F̃ ⊃ L F̆ be the splitting extension of TF̆ . Let e =[L : L∩ F̆] and f =[L∩ F̆ : F].
Fix a uniformizer ϖF̃ of F̃ .

Lemma 2.1. Let ωT,F̆ : T (F̆) → X∗(T )IF /tor and ωTad,F̆ = κTad,F̆ : Tad(F̆) →

X∗(Tad)IF be the valuation homomorphisms on T and Tad, respectively. There exist
group-theoretic sections ∇T,F̆ : X∗(T )IF /tor → T (F̆) and ∇Tad,F̆ : X∗(Tad)IF →

Tad(F̆) of ωT,F̆ and ωTad,F̆ , respectively, such that ∇T,F̆ and ∇Tad,F̆ agree on the
subset X∗(Tsc)IF .

Proof. Let us begin by noting that X∗(Tad) has a Z-basis permuted by 0F and
X∗(Tad)IF is torsion-free and admits a Z-basis permuted by σ . Note that Mad,F̃ =∏

1≤i≤e,1≤ j≤ f M (i, j)
ad,F̃

where each M (i, j)
ad,F̃

∼= PGLn /F̃ . Following the notation of
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[Bourbaki 2002], for 1 ≤ i ≤ e, 1 ≤ j ≤ f , let

λ̃
(i, j)
ad,n−1 = ϵ

(i, j)
1 −

1
n
(ϵ

(i, j)
1 + ϵ

(i, j)
2 + · · · + ϵ(i, j)

n ),

and, for 1 ≤ k ≤ n − 2,
λ̃

(i, j)
ad,k = ϵ

(i, j)
k − ϵ

(i, j)
k+1 .

The set
{λ̃

(i, j)
ad,k | 1 ≤ k ≤ n − 1, 1 ≤ i ≤ e, 1 ≤ j ≤ f }

yields a Z-basis of X∗(Tad). Let pr : X∗(Tad) → X∗(Tad)IF be the natural projection.
For 1 ≤ k ≤ n − 1 and 1 ≤ j ≤ f , let λ̆

( j)
ad,k = pr(λ̃(1, j)

ad,k ). Then the set

{λ̆
( j)
ad,k | 1 ≤ k ≤ n − 1, 1 ≤ j ≤ f }

yields a Z-basis of X∗(Tad)IF . Let

n
λ̆

( j)
ad,k

= NmF̃/F̆ λ̃
(1, j)
ad,k (ϖF̃ ), 1 ≤ k ≤ n−2, and n

λ̆
( j)
ad,n−1

= NmF̃/F̆ λ̃
(1, j)
ad,n−1(ϖF̃ ).

The elements n
λ̆

( j)
ad,k

, 1≤k ≤n−1, 1≤ j ≤ f , are used to obtain a set of representatives

{nλ̆ad
| λ̆ad ∈ X∗(Tad)IF }

that form a group; see Lemma 1.1. Let ∇Tad,F̆ : X∗(Tad)IF → Tad(F̆), λ̆ad 7→ nλ̆ad
,

denote this group-theoretic section of ωTad,F̆ .

Next note that X∗(Tsc)IF ⊂ X∗(T )IF /tor. Hence the elements λ̆
( j)
ad,k , 1 ≤ k ≤ n−2,

1 ≤ j ≤ f , lie in X∗(T )IF /tor. Also, j (X∗(T )IF /tor) is of finite index in X∗(Tad)IF ,
so there exists a nonnegative integer r , which we may choose as small as possible,
such that for each 1 ≤ j ≤ f , r · λ̆

( j)
ad,n−1 = j (λ̆( j)

n−1) for a λ̆
( j)
n−1 ∈ X∗(T )IF /tor.

For the same r , there exists λ̃
(1, j)
n−1 ∈ X∗(T ) such that j (λ̃(1, j)

n−1 ) = r · λ̃
(1, j)
ad,n−1 and

pr(λ̃(1, j)
n−1 ) = λ̆

( j)
n−1. For 1 ≤ k ≤ n − 2,

λ̃
(1,1)
ad,k ∈ X∗(T ), pr(λ̃(1,1)

ad,k ) = λ̆
(1)
ad,k and j (λ̆(1)

ad,k) = λ̆
(1)
ad,k .

Set

n
λ̆

( j)
ad,k

= NmF̃/F̆ λ̃
(1, j)
ad,k (ϖF̃ ), 1 ≤ k ≤ n − 2, and n

λ̆
( j)
n−1

= NmF̃/F̆ λ̃
(1, j)
n−1 (ϖF̃ ).

Now, the set {λ̆
( j)
ad,k | 1 ≤ k ≤ n − 2, 1 ≤ j ≤ f } ∪ {λ̆

( j)
n−1 | 1 ≤ j ≤ f } is Z-

linearly independent. Further, it may be extended to a basis of X∗(T )IF /tor. For
the remaining basis elements of X∗(T )IF /tor, we choose representatives as in
Section 1A. This then yields a set of representatives {nλ̆ | λ̆ ∈ X∗(T )IF /tor} that
forms a group. Let ∇T,F̆ : X∗(T )IF /tor→ T (F̆), λ̆→nλ̆ denote this group-theoretic
section of ωT,F̆ . By construction, we have ∇T,F̆ and ∇Tad,F̆ agree on X∗(Tsc)IF .
This finishes the proof of the lemma. □
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Lemmas 3.1 and 3.2 in [Ganapathy 2022] are not affected.
Let �M̆ and �M̆,ad be as in [Ganapathy 2022, Section 3A]. We fix a σ -stable

alcove ă in A (S, F̆) and identify �M̆ with �ă and �M̆ad
with �ă,ad. Let ν̆ad = tη̆ad z̆

be as in [Ganapathy 2022, Section 3A]. With notation as in Lemma 2.1, η̆ad = λ̆
(1)
ad,n−1.

Let z̆ = z̆(1)
= s(1)

1 · · · s(1)
n−1. Let n

λ̆
(1)
ad,n−1

∈ Tad(F̆) be as in Lemma 2.1. We fix a system
of pinnings {xă | ă ∈ 8̆(M, S)} that is σ -stable as in [Ganapathy 2022, Section 3A].
Let n z̆(1) = ns(1)

1
· · · ns(1)

n−1
. Let σ ∗

= Ad(nν̆ad) ◦ σ where nν̆ad = n
λ̆

(1)
ad,n−1

n z̆(1) , and let
M∗

= Mσ ∗

F̆
. Let �M =�σ

M̆
and �M∗ =�σ ∗

M̆
. Similarly define �M,ad and �M∗,ad. By

[Ganapathy 2022, Lemma 3.2] we have �M = �M∗ and �M,ad = �M∗,ad ∼= Z/nZ.
The group j (�M) ⊂ �M,ad is cyclic. Assume [�M,ad : j (�M)] = r and that
j (�M) ̸= 0. Let τ̆0 ∈ �M ⊂ �σ

M̆
be such that j (τ̆0) is a generator of j (�M).

Then j (τ̆0) = ν̆r
adσ(ν̆ad)

r
· · · σ k−1(ν̆ad)

r . Write τ̆0 = tλ̆0
y̆0, where λ̆0 ∈ X∗(T )σIF

and y̆0 ∈ W (M, S). Note that y̆0 = (z̆(1))rσ(z̆(1))r
· · · σ f −1(z̆(1))r . We may and do

assume that λ̆0 ∈ (X∗(T )IF /tor)σ . Let nλ̆0
∈ T (F̆) be as in Lemma 2.1. Note that

nλ̆0
may not be fixed by σ . Let n y̆0 := nr

z̆(1)σ(nr
z̆(1)) · · · σ f −1(nr

z̆(1)).

Lemma 2.2. Let τ̆0 be as in the preceding paragraph. There exists v ∈ T (F̆)1 such
that nτ̆0 = vnλ̆0

n y̆0 ∈ M∗(F) and κM∗,F (nτ̆0) = τ̆0.

Proof. Recall that we have fixed representatives {nλ̆ | λ̆ ∈ X∗(T )IF /tor} that forms a
group. Note that σ(λ̆0)= λ̆0 and σ(y̆0)= y̆0. Let us compute σ ∗(nλ̆0

n y̆0). Using the
definition of n y̆0 , we have σ(n y̆0) = n y̆0 . Using [Ganapathy 2022, Lemma 3.1(b)],
we have

σ ∗(nλ̆0
n y̆0) = σ ∗(nλ̆0

)n
λ̆

(1)
ad,n−1−y̆0(λ̆

(1)
ad,n−1)

n y̆0 .

Now,
u = σ ∗(nλ̆0

)n−1
σ ∗(λ̆0)

∈ T (F̆)1

since its image under κT,F̆ is 0. Since H 1(σ ∗, T (F̆)1) = 1, there exists v ∈ T (F̆)1

such that σ ∗(v)v−1
= u−1. Now σ ∗(vnλ̆0

) = vu−1σ ∗(nλ̆0
) = vnσ ∗(λ̆0)

. Then

σ ∗(vnλ̆0
n y̆0) = vnσ ∗(λ̆0)

n
λ̆

(1)
ad,n−1−y̆0(λ̆

(1)
ad,n−1)

n y̆0 = vn
σ ∗(λ̆0)+λ̆

(1)
ad,n−1−y̆0(λ̆

(1)
ad,n−1)

n y̆0 = vnλ̆0
n y̆0 .

The second equality follows from Lemma 2.1 and that λ̆
(1)
ad,n−1 − y̆0(λ̆

(1)
ad,n−1) ∈

X∗(Tsc)IF ⊂ X∗(T )IF /tor. To get the third equality, note that from the proof of
[Ganapathy 2022, Lemma 3.2], σ ∗(λ̆0)−σ(λ̆0) = λ̆

(1)
ad,n−1−(Ad(z(1))(y̆0))(λ̆

(1)
ad,n−1)

but σ(λ̆0) = λ̆0 and Ad(z(1))(y̆0) = y̆0. This finishes the proof of the lemma. □

Now, given τ̆ = tλ̆w̆ ∈ �M with tλ̆ ∈ X∗(T )IF and w̆ ∈ W (M, S), we have
j (τ̆ ) = s j (τ̆0) for a unique nonnegative integer s with 0 ≤ s < n/r . Let µ̆ = τ̆ −sτ̆0.
Write µ̆ = tµ̆0 · w̆0 ∈ �M . Then j (τ̆ ) = s j (τ̆0) implies that w̆ = y̆s

0, so w̆0 = 1
and the element µ̆ is just given by the translation tµ̆0 ∈ X∗(T )IF . We identify µ̆

and µ̆0. Since σ fixes τ̆ and τ̆0, we have σ(µ̆) = µ̆. We claim that σ ∗(µ̆) = µ̆. To
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see this, note that since j (µ̆) = 0, we have that j (Ad(z̆(1))(µ̆)− µ̆) = 0, but since
Ad(z̆(1))(µ̆) − µ̆ ∈ X∗(Tsc)IF , and since j acts as identity on X∗(Tsc)IF , it follows
that Ad(z̆(1))(µ̆) − µ̆ = 0. This then implies that σ ∗(µ̆) = Ad(z̆(1))(µ̆) = µ̆. So
µ̆ ∈ X∗(T )σ

∗

IF
. Set nτ̆ = nµ̆ns

τ̆0
with nµ̆ ∈ T ∗(F) satisfies κT ∗,F (nµ̆) = µ̆.

Proposition 2.3. Let τ̆ ∈�M∗ =�M . Then σ ∗(nτ̆ )= nτ̆ . In particular, nτ̆ ∈ M∗(F)

and p̃ : �M∗ → M∗(F), τ̆ 7→ nτ̆ , is a (set-theoretic) section of κM∗,F .

Proof. It suffices to prove that σ ∗(nτ̆0) = nτ̆0 , but this is Lemma 2.2. □

2B. Modifications to [Ganapathy 2022, Section 3B]. Via Delm , we have isomor-
phisms X∗(T ) ∼= X∗(T ′) and X∗(Tad) ∼= X∗(T ′

ad) that are 0F/I m
F -equivariant, and

�M̆
∼= �M̆ ′ and �M̆ad

∼= �M̆ ′

ad
. We identify these groups via these isomorphisms.

We construct ∇T ′,F̆ ′ : X∗(T )IF /tor → T ′(F̆ ′), λ̆ 7→ n′

λ̆
, and ∇T ′

ad,F̆ ′ : X∗(Tad)IF →

T ′

ad(F̆ ′), λ̆ 7→ nλ̆, exactly as in Lemma 2.1, but with ϖF̃ replaced with ϖF̃ ′ where
ϖF̃ mod prm

F̃
7→ ϖF̃ ′ mod p′rm

F̃
as in Lemma 1.2. Let τ̆0 be as in Lemma 2.2. Let

n′

λ̆0
, n′

σ ∗(λ̆0)
∈ T ′(F̆ ′) be such that under T̆m , nλ̆0

mod T̆m 7→ n′

λ̆0
mod T̆ ′

m , and simi-
larly for n′

σ ∗(λ̆0)
. Then, since T̆m is σ ∗-equivariant, we have u mod T̆m 7→ u′ mod T̆ ′

m ,
where u′

= σ ′∗(n′

λ̆0
)n′−1

σ ′∗(λ̆0)
. By the proof of the fact that H 1(σ ∗, T (F̆)1) = 1 [Serre

1979, Chapter XII, §3, Lemma 3], it follows that we may choose v′
∈ T (F̆)1

such that σ ∗(v′)v′−1
= u′−1 and such that v mod T̆m 7→ v′ mod T̆ ′

m . Let n′

y̆0
=

n′r
z̆(1)σ

′(n′

z̆(1))
r
· · · σ f −1(n′

z̆(1))
r . Set n′

τ̆0
= v′n′

λ̆0
n′

y̆0
. Given τ̆ ∈ �M , we may write

τ̆ = µ̆+ sτ̆0 for a unique 0 ≤ s < n/r as in the paragraph preceding Proposition 2.3.
Set n′

τ̆
= n′

µ̆
n′s

τ̆0
where n′

µ̆
∈ T ′∗(F ′) with T ∗

m (nµ̆ mod T ∗
m) 7→ n′

µ̆
mod T ′∗

m . Note
that κT ′∗,F ′(n′

µ̆
) = µ̆ by Section 1B. By Proposition 2.3, n′

τ̆
∈ M ′∗(F ′).

Proposition 2.4 [Ganapathy 2022, Proposition 3.4]. Let m ≥ 1 and let e ≥ m + 4h.
If the fields F and F ′ are e-close, then we have an isomorphism M∗(F)/M∗

m
∼=

M ′∗(F ′)/M ′∗
m .

Proof. The proof given in [Ganapathy 2022, Proposition 3.4] works with straight-
forward modifications.

Consider the set theoretic section p̃ : �M∗ → M∗(F) in Proposition 2.3 and let
p be its composition with the natural projection M∗(F) → M∗(F)/M∗

m . Similarly,
we get p̃′

: �M∗
p̃

−→ M ′∗(F ′) and p′.
It suffices to prove that the sections p and p′ satisfy (a) and (b) of [Ganapathy

2022, Proposition 3.4].
To see (a), it suffices to prove that

M∗(F)1/M∗
m M ′∗(F ′)1/M ′∗

m

M∗(F)1/M∗
m M ′∗(F ′)1/M ′∗

m

∼=

Inn(nτ̆ ) Inn(n′

τ̆
)

∼=
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is commutative for τ̆ ∈ �M∗ . Let P̆ be the Iwahori subgroup of M(F̆) (= M∗(F̆))
attached to the σ -stable alcove ă and let P̆ ′ be the corresponding Iwahori subgroup
of M ′(F̆ ′). Then by [Ganapathy 2019, Theorem 4.5], we have that P̆/P̆m ∼= P̆ ′/P̆ ′

m .
Since ν̆ad ∈ �ă,ad, the alcove ă is also σ ∗-stable. By Propositions 4.10 and 6.2
in [Ganapathy 2019], the isomorphism P̆/P̆m ∼= P̆ ′/P̆ ′

m is σ - and σ ∗-equivariant.
This implies that P̆ ∩ M∗(F) = M∗(F)1, P̆m ∩ M∗(F) = M∗

m and similarly that
P̆ ′

∩ M ′∗(F ′) = M ′∗(F ′)1, P̆ ′
m ∩ M ′∗(F ′) = M ′∗

m . Since τ̆ ∈ �M∗ = �σ ∗

ă ⊂ �ă , we
see that nτ̆ normalizes P̆ and P̆m . To finish the proof of (a), it suffices to observe
that the following diagram is commutative:

P̆/P̆m P̆ ′/P̆ ′
m

P̆/P̆m P̆ ′/P̆ ′
m

∼=

Inn(nτ̆ ) Inn(n′

τ̆
)

∼=

This follows by arguing as in the proof of [Ganapathy 2019, Proposition 6.2].
Let us prove (b). The element nn/r

y̆0
equals ă∨(−1) ∈ M∗(F)1 for a suitable

ă ∈ 8̆(M, S).
Let τ̆1, τ̆2 ∈ �M∗ . As in the proof of Proposition 2.3, write τ̆i = µ̆i + si τ̆0, and

τ̆1 + τ̆2 = µ̆ + sτ̆0. Note that s mod (n/r) ≡ s1 + s2 mod (n/r).
Recall that nµ̆, nµ̆1, nµ̆2 ∈ T ∗(F) and nµ̆ mod T ∗

m 7→ n′

µ̆
mod T ′∗

m and for i = 1, 2,
nµ̆i mod T ∗

m 7→ n′

µ̆i
mod T ′∗

m . Write ns
τ̆0

= tsns
y̆0

where ts ∈ T (F̆). Similarly write
n′s

τ̆0
= t ′

sn′s
y̆0

. Then it is straightforward to see that ts mod T̆m 7→ t ′
s mod T̆ ′

m via T̆m .
The same claim holds for tsi , i = 1, 2. Also, ă∨(−1) mod T̆m → ă′∨(−1) mod T̆m .
Finally, we note that nτ̆1+τ̆2n−1

τ̆1
n−1

τ̆2
∈ M∗(F)1∩T (F̆) and by [Ganapathy 2019, Proof

of Proposition 6.2 and Corollary 6.3], we see that on the subgroup M∗(F)1 ∩ T (F̆)

the isomorphism of [Ganapathy 2019, Corollary 6.3] restricts to T ∗
m . Hence the

sections p, p′ satisfy (b). □
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