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INTEGRALITY RELATIONS FOR POLYGONAL DISSECTIONS

AARON ABRAMS AND JAMES POMMERSHEIM

Given a parallelogram dissected into triangles, the area of any one of the
triangles of the dissection is integral over the ring generated by the areas of
the other triangles. Given a trapezoid dissected into triangles, the area of any
triangle determined by either diagonal of the trapezoid is integral over the
ring generated by the areas of the triangles in the dissection. In both cases,
the integrality relations are invariant under deformation of the dissection.

The trapezoid theorem implies and provides a new context for Monsky’s
equidissection theorem that a square cannot be dissected into an odd number
of triangles of equal area. A corollary of these results is that the area
polynomials for parallelograms we introduced and studied in previous work
(2014; 2022; 2023) have all leading coefficients equal to ±1.

1. Introduction

We establish several new results about the geometry of dissections of certain
Euclidean plane polygons. A dissection of such a polygon T into triangles is a
collection of triangles in the plane whose union is T and whose interiors are disjoint.

Theorem 1. Let T be a trapezoid in the Euclidean plane with vertices p, q, r, s,
in counterclockwise order. Suppose that T is dissected into n triangles of areas
a1, . . . , an . Then the area of the triangle pqs is integral over Z[a1, . . . , an].

Theorem 2. Let T be a parallelogram in the Euclidean plane with a dissection into
n triangles of areas a1, . . . , an . Then an is integral over Z[a1, . . . , an−1].

Theorem 1 immediately implies Monsky’s theorem [1970] that a parallelogram
cannot be dissected into an odd number of triangles of equal area, since 1

2 is not
integral over Z[1/n] when n is odd. Thus Theorem 1 generalizes and provides
a new context for Monsky’s theorem. However, this cannot be considered a new
proof of Monsky’s theorem, since our proof proceeds along the same lines as the
original, using valuations to 3-color points of a certain affine plane and appealing
to Sperner’s lemma. See [Monsky 1970; Jepsen and Monsky 2008].

MSC2020: primary 52B45; secondary 51M25.
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We also show that in a certain sense, the integrality relations arising in these
theorems are invariant under deformation; that is, the integrality relations actually
hold for the quadratic polynomials that express the areas of the triangles, and not
just for the numerical areas ai . See Theorems 1+ and 3 below.

Theorem 2 goes hand in hand with a result about the area polynomial pT

that was introduced in [Abrams and Pommersheim 2014] and further studied in
[Abrams and Pommersheim 2022; 2023]. For any combinatorial triangulation T of a
quadrilateral, there is a unique (up to sign) nonzero homogeneous irreducible integer
polynomial pT with one variable Ai for each triangle such that pT (a1, . . . , an) = 0
whenever T is drawn in the plane with a parallelogram boundary and triangles of ar-
eas a1, . . . , an . Here by combinatorial triangulation we mean a simplicial complex
homeomorphic to a disk, with four vertices on the boundary. (The connection with
dissections is that every dissection of a planar trapezoid can be viewed as the image
of a combinatorial triangulation under a piecewise linear map to the plane which
may collapse some triangles; see, e.g, [AP 2022, Propositions 2 and 5].) The mod 2
structure of pT is completely specified by [AP 2022, Theorem 9.1], which implies in
particular that the coefficients of the leading terms are odd integers. Further, in [AP
2023, Theorem 6.2] it is shown that these leading terms must all be equal up to sign.

Theorem 3. For any combinatorial triangulation T , the area polynomial pT is
monic. That is, for any i the coefficient of Ad

i is ±1, where d = deg pT .

This is a special case of the positivity conjecture from [AP 2022, Conjecture 4].

Remark. Monsky’s equidissection theorem applies to arbitrary dissections, as do
our Theorems 1 and 2, whereas the combinatorial triangulations of Theorem 3 are
by definition simplicial complexes. It is easy to see that Theorem 3 also holds for
any dissection that has an area polynomial (the “hyper” case in the language of
[AP 2022, Defintion 26]). However it is not known whether every dissection of a
parallelogram has this property; this question is discussed in [AP 2022, Section 8].

We also note that integrality conditions have previously appeared in theorems
about equidissections of trapezoids. For example, [Jepsen and Monsky 2008,
Theorem 1.1] (see also [Kasimatis and Stein 1990]) gives a necessary condition
for the existence of an equidissection of a trapezoid of a given shape into a given
number of triangles. Theorem 1 strengthens that result.

The theorems are proved by combining ideas originally due to Monsky [1970]
with some technical machinery developed in [AP 2014; 2022; 2023]. Some fa-
miliarity with those works may be helpful for the reader; in order to focus on the
results, we have not attempted to make the arguments here entirely self-contained.

2. Integrality for trapezoids

In this section, we prove Theorem 1 by establishing an integrality relation for the
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triangle pqs of a dissected trapezoid. In fact we prove a stronger version of this
theorem (Theorem 1+) that allows deformations of the trapezoid.

Let T be a combinatorial triangulation of a quadrilateral pqrs. For each vertex v

other than r , we introduce two variables xv and yv. We treat v = r differently so
that our ring will reflect the geometric condition that pqrs be a trapezoid rather
than an arbitrary quadrilateral. For this final vertex, we introduce a variable t which
represents the ratio of the lengths of side sr to side pq. Thus we work in the
polynomial ring

R = C
[{

xv, yv | v ∈ Vertices(T ) \ {r}
}
, t

]
.

In R, we use the abbreviations xr = xs + t (xq − x p) and yr = ys + t (yq − y p).
In R, it is natural to consider the variables xv and yv as having degree 1, while t
has degree 0.

Orienting the boundary in the direction pqrs endows each triangle 1i of T with
an orientation. For each 1i , we introduce a quadratic polynomial Wi ∈ R which
expresses twice the area of the oriented triangle 1i . For convenience, we prefer
to work with doubled areas throughout. This makes little difference, as all the
relations we obtain will be homogeneous. We use WU ∈ R to denote the quadratic
polynomial representing twice the area of triangle psq; this choice of orientation
is consistent with the other triangles. We sometimes abuse language and refer to
the Wi and WU as the areas.

Theorem 4 (Theorem 1+). Let T be a combinatorial triangulation of a quadrilat-
eral pqrs into n triangles. Let W1, . . . , Wn ∈ R denote the polynomials expressing
the areas of the triangles of T , and let WU ∈ R denote the polynomial expressing
the area of the triangle psq. Then WU is integral over Z[W1, . . . , Wn].

Proof. We use many of the ideas from the proof of Theorem 7.2 (Monsky+) from
[AP 2022]. To show that WU is integral over S = Z[W1, . . . , Wn], it is enough
to show that if ν is a valuation on the fraction field of Z[WU , W1, . . . , Wn] such
that ν(Wi ) ≥ 0 for all i , then ν(WU ) ≥ 0 (see, e.g, [Atiyah and Macdonald 1969,
5.22]). Given such a ν, extend it to the fraction field F = Frac(R) and, following
Monsky [1970], use ν to color each point of F ×F one of three colors A, B, C as
in the proof of [AP 2022, Theorem 7.2].

Let M : F ×F → F ×F be the unique affine transformation taking (x p, y p)

to (0, 0), (xq, yq) to (1, 0), and (xs, ys) to (0, 1). Note that

det M =

∣∣∣∣xq − x p xs − x p
yq − y p ys − y p

∣∣∣∣−1

= −W −1
U .

We now color the vertices of T by using M to pull back the coloring of F ×F .
That is, if v is a vertex of T , then we color v with the color of the point M(xv, yv).
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This assigns p, q, s the colors C , A, B, respectively. As for r , one sees that
M(xr , yr)= (t, 1), so r has color A or B. The boundary of T is thus colored C AAB
or C AB B, and in either case we may apply Sperner’s lemma to conclude that T
has an ABC triangle 1 j . For such a triangle we have ν(Area(M1 j )) ≤ 0, which
means ν(−W −1

U W j ) ≤ 0. Hence ν(W j ) ≤ ν(WU ), which implies ν(WU ) ≥ 0. □

We now show that Theorem 1+ implies Theorem 1.

Proof. Let 1 = pqrs be a trapezoid in the plane with a dissection into n triangles
of areas a1, . . . , an , and let u denote the area of triangle psq. As in [AP 2022,
Propositions 2.6, 3.2], there exists a combinatorial triangulation T with m ≥ n
triangles obtained by poofing the dissection, and a drawing ρ of T that has the
same set of nondegenerate triangles as the original dissection along with m − n
degenerate triangles of area 0. By Theorem 1+, there is an integral equation
gT (WU , W1, . . . , Wm) = 0, where we may take gT to be homogeneous in its m + 1
variables. If u = 0, then we are done. Otherwise, ρ( p) ̸= ρ(q), and we may solve
for t and substitute this value along with the given values of xi and yi into gT .
After this substitution the W j corresponding to degenerate triangles vanish. As
the Wi and WU stand for twice the areas, we now divide by 2deg gT to get the desired
integral equation for u over a1, . . . , an . □

We conclude this section with a consequence for parallelograms which general-
izes a theorem of Monsky.

Corollary 5. Let T = pqrs be a parallelogram in the Euclidean plane with a
dissection into n triangles of areas a1, . . . , an . Let σ denote the area of T . Then
1
2σ is integral over Z[a1, . . . , an].

This corollary implies the fact due to Monsky [1970] that if a square of area 1
in the Euclidean plane is dissected into n triangles of areas a1, . . . , an , then there
is a polynomial f with integer coefficients such that 2 f (a1, . . . , an) = 1. (To see
this, take the integral equation for 1

2σ =
1
2 and multiply by a power of 2 to clear

denominators.) Likewise, Theorem 17 of [AP 2022], which extends Monsky’s
theorem to handle deformations, can be derived from Theorem 1+.

3. The area map for trapezoids

Theorem 1+ tells us that WU is integral over Z[W1, . . . , Wn], i.e., there exists a poly-
nomial g = gT ∈ Z[U, B1, . . . , Bn], monic in U , such that g(WU , W1, . . . , Wn) = 0
in R. Assuming that g has been chosen with minimal degree, we will now show
that almost all points in the zero set of g are realized as areas of triangles in an
actual trapezoidal drawing of T . For this purpose, we introduce a drawing space
Trap(T ) and an area map for this situation.
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Let T be a combinatorial triangulation of a quadrilateral with corners pqrs. A
drawing of T is a map ρ : Vertices(T ) → C2 that takes pqrs to a trapezoid; this
means that the vectors q − p and r − s are linearly dependent. Let Trap = Trap(T )

be the space of drawings of T . An open dense subset of Trap is parameterized by
the affine space X = X (T ) with coordinates xv, yv for all vertices v except r and
an additional coordinate t . We will keep track of the areas of the triangles of T
as well as the area U of the triangle formed by the images of p, s, and q (even
though these vertices probably do not form a triangle of the triangulation); thus let
Y = Y (T ) denote the projective space with one coordinate for each triangle of T
and one additional coordinate U . Now let Area : X 99K Y be the (rational) area
map that records the areas of the triangles in the corresponding coordinates and the
area of the triangle ρ( p), ρ(s), ρ(q) in the U coordinate.

Let V = V (T ) denote the closure of the image of the map Area. Thus V ⊂ Y is
a rational variety.

Theorem 6. For any T , the variety V (T ) is an irreducible hypersurface in Y
defined by a homogeneous polynomial zT (U, B1, . . . , Bn) that is monic in U.

Proof. The parameter space X is irreducible, so V (T ) is also irreducible. To show
V (T ) is a hypersurface, we appeal to the argument from [AP 2014, Theorem 5] that
Area is generically locally injective after modding out by affine transformations. A
dimension count then shows that the image of Area has codimension 1 in Y .

Let zT be the defining equation of V (T ), scaled to have integer coefficients.
We wish to show that zT is monic in U . By Theorem 1+, there exists g ∈

Z[U, B1, . . . , Bn] which is monic in U and such that g(WU , W1, . . . , Wn) = 0
in R. We assume that we have chosen such a g with minimal degree. Note that
g = g(U, B1, . . . , Bn) vanishes on the image of Area, so zT divides g.

We now argue that in fact g = ±zT . The Wi are algebraically independent
over C, because if there were a dependence r(W1, . . . , Wn) = 0, we would have
zT divides r , which implies that zT does not contain the variable U . But then
g, which is a multiple of zT , would not be monic in U , a contradiction. We
conclude that Z[W1, . . . , Wn] is isomorphic to a polynomial ring, which is a UFD.
By Gauss’s lemma, the integral equation g may be chosen to be irreducible as a
polynomial in Q(W1, . . . , Wn)[U ]. It follows that g(U, B1, . . . , Bn) is irreducible
in Q[U, B1, . . . , Bn]. From this we see that g = ±zT , and so zT is monic in U , as
desired. □

4. Integrality for parallelograms

In this section we prove Theorems 2 and 3. The proofs of these integrality theorems
for parallelograms rely on our integrality theorem for trapezoids.
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The polynomial pT for parallelograms, studied in [AP 2014; 2022; 2023], can
be linked to the polynomial zT for trapezoids using a simple geometric observation:
a trapezoid T = pqrs is a parallelogram if and only if its area is twice the area
of triangle pqs. For a triangulated trapezoid, this condition is represented by the
equation −2U = S, where S denotes

∑n
i=1 Bi . This observation implies the relation

pT (B1, . . . , Bn) | zT (−S, 2B1, . . . , 2Bn),

from which we will tease out the monicity of pT .
To do this, one further fact about zT is required.

Proposition 7. For any T , we have zT (U, B, 0, . . . , 0) = ±U e(U + B) f for non-
negative integers e and f .

Proving this requires understanding points of V that are not in the image of the
area map. The paper [AP 2023] studies this question in a nearly identical context,
namely the area map for a triangulated parallelogram. One main conclusion there
is that if w is a point of V then either w is in the image of Area or else there is a
subset of the coordinates that sums nontrivially to 0. This conclusion is also valid
for the trapezoid area map.

Lemma 8. Suppose w = [u : b1 : · · · : bn] ∈ V \ Im Area. Let b0 = u. Then there is
a subset Z of {0, . . . , n} such that

∑
i∈Z bi = 0, but bi ̸= 0 for some i ∈ Z.

Proof. We view Area as the area map associated to the complex T̂ = T ∪U which is
a triangulation of the triangle qrs. The proof is nearly identical to the parallelogram
case [AP 2023, Main Theorem 3]. Here are the main points of the argument. We use
the language of generating paths and bubbles introduced in [AP 2023, Section 3].

Suppose w ∈ V \ Im Area. Then there is a generating path for w, which is a
path γ (s) of drawings in Trap converging to a limiting ρ ∈ Trap as s → 0 and such
that Area(γ (s)) → w.

If ρ maps the boundary qrs to a single point, then ρ contains a bubble. Otherwise
there are two adjacent points of the boundary V1 and V2 such that ρ(V1) ̸= ρ(V2).
Using an invertible affine transformation we may assume ρ(V1) = (0, 0) and
ρ(V2) = (1, 0), and a further affine transformation that converges to the identity
as s → 0 fixes γ (s)(V1) = (0, 0) and γ (s)(V2) = (1, 0). We then rescale vertically
so that some vertex is not converging to the x-axis. This produces a new generating
path, with a limiting drawing that we still call ρ. By the elastic lemma of [AP 2023],
ρ must have a bubble.

We conclude that there exists a generating path for w with a bubble. The bubble
corollary of [AP 2023] then asserts that the coordinates inside this bubble sum to
zero but are not all zero. □

We now prove the proposition.
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Proof. From Theorem 1+, zT is monic in U and hence also zT (U, B, 0, . . . , 0) is
monic in U . Thus it suffices to show that the only zeros of zT (U, B, 0, . . . , 0) have
U = 0 or U = −B.

Note that [1 : 0 : · · · ] is not in V , again since zT is monic in U . So we may
assume B ̸= 0, and suppose w = [U : 1 : 0 : · · · ] ∈ V . We will show that U = 0 or
U = −1.

If U = −1, we are done. Otherwise, by Lemma 8, we have w ∈ Im Area. Thus,
there is a drawing with B = 1 and the areas of all other triangles of T equal to 0. It
follows from [AP 2022, Corollary 5.6(1)] that the boundary of T must be drawn as a
degenerate trapezoid. But the vertices of the boundary cannot all be collinear, since
then the Bi would sum to 0. Thus the image of the boundary is a nondegenerate
triangle of area 1, and the four points p, q, r , s map onto the three corners of this
triangle. Thus we see that either the U triangle, psq, or the U ′ triangle, qsr , is
degenerate. However U and U ′ add up to −

∑
Bi , which equals −1. Hence U = 0

or U = −1. □

We now prove Theorems 3 and 2, in that order.

Proof. We first consider the coefficient α of Bd
1 in the polynomial

z̃(B1, . . . , Bn) = z(−S, 2B1, . . . , 2Bn).

This coefficient α is the same as the coefficient of Bd
1 in z(−B1, 2B1, 0, . . . , 0),

which equals ±(−B1)
e B f

1 by the proposition. Thus α = ±1. Since p is a factor
of z̃, it follows from Gauss’s lemma that Bd ′

1 has coefficient ±1 in p, where d ′ is
the degree of p. This proves Theorem 3.

To prove Theorem 2 for triangulations, we view the polynomial pT (B1, . . . , Bn)

as a polynomial in Bn with coefficients in Z[B1, . . . , Bn−1]. We have just established
that the leading coefficient is ±1. Thus pT provides the required integral equation
for Bn over Z[B1, . . . , Bn−1].

To prove Theorem 2 for dissections, apply the poofing argument used in Theorem 1
to produce a combinatorial triangulation to which the previous paragraph applies. □

Example. The triangulation Tn with vertices p = p0, p1, . . . , pn+1 = r , q, s and
triangles Ai = s pi−1 pi and Bi = q pi pi−1 (for 1 ≤ i ≤ n + 1), called the diagonal
case in [AP 2014], has

zTn =

( n+1∏
k=0

ℓk

)(
1
ℓ0

−

n∑
k=0

Ak+1

ℓkℓk+1

)
where ℓk stands for the linear form A1 +· · ·+ Ak + B1 +· · ·+ Bk +U . Its degree is
n +1. For example zT1 = U 2

+2U B1 +U B2 +U B4 + B2
1 + B1 B2 + B1 B3 + B1 B4.

We then have zTn (−S, 2Ai , 2Bi ) = S · pTn , where pTn is computed in [AP 2014].
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THE h-PRINCIPLE FOR MAPS TRANSVERSE TO
BRACKET-GENERATING DISTRIBUTIONS

ARITRA BHOWMICK

Given a smooth bracket-generating distribution D of constant growth on a
manifold M , we prove that maps from an arbitrary manifold 6 to M , which
are transverse to D, satisfy the complete h-principle. This partially settles a
question posed by M. Gromov (1986).

1. Introduction

A distribution D on a manifold M is a (smooth) subbundle of the tangent bundle TM .
Given such a D, we can consider the sheaf 0D of local sections to D, i.e, local vector
fields on M taking values in D. The distribution D is called bracket-generating if at
each point x ∈ M , the tangent space Tx M is spanned by the vector fields obtained
by taking finitely many successive Lie brackets of vector fields in 0D. We say D
is (r − 1)-step bracket-generating at x ∈ M , if there exists some integer r = r(x)

such that

Tx M = Span
{
[X1, . . . , [Xk−1, Xk] . . . ]x | X1, . . . , Xk ∈ 0D, 1≤ k ≤ r

}
.

Note that what we call a (r − 1)-step bracket-generating is usually called an r -step
bracket-generating distribution elsewhere in the literature. Bracket-generating
distributions are the stepping stone for the field of sub-Riemannian geometry
[Gromov 1996; Montgomery 2002].

One possible way to study a given distribution D is via smooth maps u :6→ M
from an arbitrary manifold 6 and looking at how the image of the differential
du : T 6→ TM intersects D. The map u is said to be transverse to D if we have
that du(Tσ6)+Du(σ ) = Tu(σ )M holds for every σ ∈6. Gromov [1986] asked the
reader to prove the following.

Theorem. Given a bracket-generating distribution D on a manifold M , maps
6→ M transverse to D satisfy the h-principle.
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The idea of the proof as indicated in [Gromov 1986, p. 84] contained an error
which was later acknowledged in [Gromov 1996, p. 254]. Eliashberg and Mishachev
[2002, p. 136] showed that the proof indeed goes through if the distribution D is
contact. In fact, their argument remains valid for any strongly bracket-generating
distribution (or fat distribution, see [Montgomery 2002] for a definition). Moreover,
they also planned out a strategy that could work for an arbitrary bracket-generating
distribution as well. Del Pino and Shin [2020] carried out the ideas of Eliashberg
and Mishachev [2002] and proved the h-principle for smooth maps transverse to
real analytic bracket-generating distributions on a real analytic manifold. Their
argument heavily depends on estimating the codimension of certain semianalytic
sets in the jet bundle. It was also conjectured in the same article that Gromov’s
original statement should hold for a smooth bracket-generating distribution if certain
higher-order jet calculations are performed.

The main goal of this article is to identify a suitable higher jet “regularity”
condition (Definition 3.1) so that the sheaf of D-horizontal maps R→ M satisfying
this regularity is microflexible. The difficulty lies in proving the local h-principle
for this class of maps provided the distribution is equiregularly bracket-generating
(Definition 2.3), which is proved in Theorem 3.7. Then, applying Gromov’s analytic
and sheaf-theoretic techniques, the h-principles for transverse maps (Theorem 4.1)
and for transverse immersions (Theorem 4.3), follow by a standard argument. We
refer to [Gromov 1986; Eliashberg and Mishachev 2002] for the details of this
theory.

The article is organized as follows: In Section 2, we recall some basic notions
about bracket-generating distributions. In Section 3, we obtain the regularity
criterion for maps R→ M horizontal to a bracket-generating distribution and prove
the local h-principle for such maps. In Section 4 we prove the main h-principles.

2. Bracket-generating distributions

Definition 2.1. A distribution of rank n (and corank p) on a manifold M is a
smooth vector subbundle of rank n (and corank p) of the tangent bundle TM .

Given any distribution D ⊂ TM , we have the sheaf of local sections 0D, which
is a sheaf of local vector fields on M . By the notation X ∈D we shall mean a local
section X ∈ 0D defined on some unspecified open set of M . Given two arbitrary
sheaves E,F of vector fields on M (not necessarily given as sheaves of sections of
some distribution), we can define the sheaf

[E,F] = Span
{
[X, Y ] | X ∈ E, Y ∈ F

}
,

where the span is taken over C∞(M). Inductively, we then define

D0
= 0, D1

= D, Di+1
= Di

+ [D,Di
], i ≥ 1.
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Definition 2.2. A distribution D is said to be bracket-generating if for each x ∈ M
we have Tx M = Dr+1

x for some r = r(x). D is said to have type m = m(x) at x
for the (r + 2)-tuple m= (0= m0 ≤ · · · ≤ mr+1 = dim M), where mi = rkDi

x for
0≤ i ≤ r + 1.

For a generic bracket-generating distribution D on M , the number of steps it
takes to bracket-generate Tx M is nonconstant and the sheaves Di may fail to be of
constant rank.

Definition 2.3. A bracket-generating distribution D on M is said to be r-step
bracket-generating if Tx M = Dr+1

x for all x ∈ M . Furthermore, D is said to be
equiregular (or, of constant growth) of type m= (m0 < · · ·< mr+1) if D has the
type m at every x ∈ M .

Throughout this article, we shall mostly restrict ourselves to equiregular distribu-
tions D of some fixed type m. In particular, each Ds will be a distribution, and we
get a flag

0= D0
⊂ D = D1

⊂ D2
⊂ · · · ⊂ Dr+1

= TM.

It should be noted that in general, equiregularity is a nongeneric condition on the
germs of distributions of a given rank, although most of the interesting distributions
appearing in the literature possess this property.

Example 2.4. Contact and Engel distributions are well-studied examples of bracket-
generating distributions that bracket-generates the tangent bundle in 1 and 2 steps
respectively. More generally, we have Goursat structures which are certain rank 2,
r -step bracket-generating distributions on manifolds of dimension r + 2. Note that
all of these distributions are equiregular as well. On the other hand, the Martinet
distribution, given as the kernel ker(dz− y2dx) on R3 is not equiregular. We refer
to [Montgomery 2002] for many more examples.

We shall need the following lemma in the next section.

Lemma 2.5. Let D be an equiregular bracket-generating distribution on M , of type
m = (m0 < · · · < mr+1). Set ps = rk

(
Ds+1/Ds) = ms+1−ms > 0. Then, for any

x ∈ M and for 1≤ j ≤ ps , 1≤ s ≤ r , there exists a collection of vectors

τ s, j
∈ Dx , ηs, j

∈ Ds
x \D

s−1
x , ζ s, j

∈ Ds+1
x \Ds

x ,

and 1-forms λs, j defined near x , such that:

• For each 1≤ s ≤ r , Ds+1
x = Ds

x +Span⟨ζ s,1
x , . . . , ζ

s,ps
x ⟩.

• The 1-forms {λs, j
} are dual to {ζ s, j

} at x. Also, {λs, j
| 1≤ j ≤ ps, 1≤ s ≤ r}

is a frame for the annihilator bundle of D near x.
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• For each 1≤ s ≤ s ′ ≤ r and 1≤ j ≤ ps , 1≤ j ′ ≤ ps′ , we have

dλs′, j ′
|x(τ

s, j , ηs, j )=

{
δ j, j ′, s ′ = s,
0, s ′ > s,

where δ j, j ′ is the Kronecker’s delta function.

Proof. Since Ds+1
=Ds

+[D,Ds
], we have the well-defined sheaf homomorphism

�s
: D⊗Ds/Ds−1

→ Ds+1/Ds,

X ⊗ (Y mod Ds−1) 7→ −[X, Y ] mod Ds .

Furthermore, �s is C∞(M)-linear and hence, for vectors X ∈ Dx , Y ∈ Ds
x we have

the linear maps

�s
x(X, Y mod Ds−1

x )=−[X̃ , Ỹ ]x mod Ds
x ,

where X̃ ∈ D, Ỹ ∈ Ds are arbitrary extensions of X, Y respectively. Thus, we have
that �s

: D⊗Ds/Ds−1
→ Ds+1/Ds is a bundle map, which is surjective since D is

bracket-generating, for 1≤ s ≤ r .
Choose vectors τ s, j

∈Dx , ηs, j
∈Ds

x \Ds−1
x so that {�s

x(τ
s, j , ηs, j ) | 1≤ j ≤ ps}

forms a frame of Ds+1
x /Ds

x . Let us consider some arbitrary extensions τ̃ s, j
∈ D,

η̃s, j
∈ Ds
\Ds−1 of τ s, j , ηs, j respectively, and denote ζ̃ s, j

=−[τ̃ s, j , η̃s, j
] ∈ Ds+1.

Note that �s(τ̃ s, j , η̃s, j ) = ζ̃ s, j mod Ds . Since TM = ⊕r
s=0D

s+1/Ds , we have a
local framing

TM =
loc.

D⊕Span⟨ζ̃ s, j , 1≤ j ≤ ps, 1≤ s ≤ r⟩

near x . Next, choose independent local 1-forms λs, j near x , which are in the
annihilator bundle AnnD (i.e., λs, j

|D = 0), and {λs, j
} is dual to {ζ̃ s, j

}. Note that

Ds
=
loc.

⋂
s′≥s

ps′⋂
j=1

ker λs′, j , 1≤ s ≤ r.

Hence, for s ′ ≥ s, we have

dλs′, j ′(τ s, j , ηs, j )=
[
τ̃ s, j (λs′, j ′(η̃s, j )︸ ︷︷ ︸

0

)− η̃s, j (λs′, j ′(τ̃ s, j )︸ ︷︷ ︸
0

)− λs′, j ′([τ̃ s, j , η̃s, j
]︸ ︷︷ ︸

−ζ̃ s, j

)
]

x

= λs′, j ′(ζ s, j )=

{
δ j ′, j , s ′ = s,
0, s ′ > s.

This concludes the proof of Lemma 2.5. □

3. Regularity of horizontal curves

Let us fix an arbitrary distribution D that has rank n and corank p on M with
dim M = N = n+ p. Given a manifold 6, a map u :6→M is called D-horizontal
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if du(Tσ6)⊂ Du(σ ) for each σ ∈6. For simplicity, let us assume that D is given
as the kernel of 1-forms λ1, . . . , λp on M . Then, D-horizontal maps 6→ M are
precisely the solutions of the following nonlinear differential operator:

(1)
D : C∞(6, M)→�1(6, Rp)= 0 hom(T 6, Rp),

u 7→ (u∗λ1, . . . , u∗λp).

To find solutions of D, we appeal to the Nash–Gromov implicit function theorem.
As a first step, linearizing D at some u : 6 → M we get the linear differential
operator:

(2)
Lu : 0u∗TM→�1(6, Rp),

ξ 7→
[
X 7→

(
dλs(ξ, u∗X)+ X (λs

◦ ξ)
)p

s=1

]
,

which restricts to the bundle map on 0u∗D:

Lu := Lu|0u∗D : ξ 7→ [X 7→ (dλs(ξ, u∗X))].

An immersion u :6→M is called (dλs)-regular if the bundle map Lu is surjective.
In general, (dλs)-regularity depends on our choice of 1-forms λs , whereas (dλs)-
regularity of a D-horizontal map is independent of any such choice. A (dλs)-regular
horizontal immersion is also called �-regular, where � : 32D→ TM/D is the
associated curvature 2-form. It follows that the sheaf of �-regular horizontal maps
6→ M is microflexible [Gromov 1986, p. 339]. Note that (dλs)-regularity is a
first-order condition on the class of maps. For the existence of a (dλs)-regular
horizontal map, even when dim 6 = 1, D must be 1-step bracket-generating. We
now identify a suitable higher-order regularity for maps R→ M horizontal to an
arbitrary distribution.

W-regular horizontal curves. The arguments presented in this section follow the
general scheme of algebraically solving (underdetermined) linear partial differential
operators as in [Gromov 1986, p. 155]. Briefly, the idea is as follows. In order to
solve the linear operator Lu for some u, ideally we need to find out some linear
operator Mu : �

1(6, Rp)→ 0u∗TM so that Lu ◦Mu = Id holds. This involves
solving partial differential equations in the coefficients of Mu , which is in general
hard to do. Instead, we try to look for a linear operator Su : 0u∗TM→�1(6, Rp)

satisfying Su ◦Lu = Id, where Lu : �
1(6, Rp)→ 0u∗TM is the formal adjoint

of Lu . Note that this system is algebraic in the coefficients of Su , and thus are
considerably easier to solve. Once we get a smooth solution Su , we can take the
formal adjoint of the whole equation, and obtain Lu ◦Su = Id, since Lu = Lu .
Taking Mu =Su we then have the desired solution to the original problem. This
observation was used by Gromov to prove the fact that a generic underdetermined
linear operator admits (universal) a right inverse [Gromov 1986, p. 156]. Although
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Lu is underdetermined, we are not able to appeal to this theorem directly, since we
do not know whether the operator is sufficiently generic in the sense of Gromov.
Instead, we explicitly identify a class of maps u for which the algebraic system
always admits a (smooth) solution. We would like to note that a similar approach
was also successfully used in [De Leo 2019], where the author proved the existence
of nonfree isometric immersions.

Without loss of generality, we assume M = RN and fix some coordinates
y1, . . . , yN on M . Let us write the 1-forms λs as

λs
= λs

µ dyµ, 1≤ s ≤ p.

We also fix the (global) coordinate t on R. For a function u : R → RN , the
linearization operator Lu (see (2)) is then given as

(3)
Lu : C∞(R, RN )→ C∞(R, Rp),

ξ = (ξµ)→
(
(∂µλs

ν ◦ u) ∂t uν ξµ
+ (λs

µ ◦ u) ∂t ξµ
)p

s=1.

Written in a matrix form we have Lu(ξ)=L0
u ξ+L1

u ∂t ξ where the p×N matrices Li
u

are given as

(4) L0
u =

(
(∂µλs

ν ◦ u) ∂t uν
)

p×N , L1
u = (λs

µ ◦ u)p×N .

Taking the formal adjoint of Lu , we get the first-order operator

Ru : C∞(R, Rp)→ C∞(R, RN )

which can be written as

(5) Ru =R0
u +R1

u ∂t = (L0
u − ∂t L

1
u)

†
− (L1

u)
† ∂t .

Observe that

(6) L0
u − ∂t L

1
u =

(
(∂µλs

ν ◦ u) ∂t uν
− ∂t(λ

s
µ ◦ u)

)
p×N

=
(
(∂µλs

ν ◦ u− ∂ν λs
µ ◦ u) ∂t uν

)
p×N =

(
−(ιu∗∂t dλs)(∂µ)

)
p×N .

Let us now consider the equation

(7) S ◦Ru = Id

for an arbitrary order q linear operator S : C∞(R, RN )→ C∞(R, Rp) given as

S :=S0
+S1 ∂t + · · ·+Sq∂

q
t ,

where Si are p×N matrices of functions. Note that (7) is algebraic in the entries of
the matrices Si . In fact, equation (7) represents a total of p2(q+2) many equations
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in pN (q + 1) many variables, namely, {Si
αβ | 1≤ α ≤ p, 1≤ β ≤ N , 0≤ i ≤ q}.

This system is underdetermined if and only if

(8) p2(q + 2) < pN (q + 1) ⇔ nq > p− n.

Expanding out (7) we have

Id=S ◦Ru = (S0
+S1∂t + · · ·+Sq∂

q
t ) ◦ (R0

u +R1
u ∂t)

= (S0 R0
u +S1∂t R

0
u + · · ·+Sq∂

q
t R

0
u)

+
(
S0 R1

u +S1(R0
u + ∂t R

1
u)+ · · ·+Sq(q∂

q−1
t R0

u + ∂
q
t R

1
u)

)
∂t

+ · · ·

+
(
Sq−1R1

u +Sq(R0
u + q∂t R

1
u)

)
∂

q
t

+Sq R1
u ∂

q+1
t .

Comparing both sides, we get the block-matrix system:

(9)
(
S0 S1 . . . Sq−1 Sq

)

×


R0

u R1
u . . . 0 0

∂t R
0
u R0

u + ∂t R
1
u . . . 0 0

...
...

...
...

∂
q−1
t R0

u (q − 1) ∂
q−2
t R0

u + ∂
q−1
t R1

u . . . R1
u 0

∂
q
t R

0
u q∂

q−1
t R0

u + ∂
q
t R

1
u . . . R0

u + q∂t R
1
u R1

u


=

(
Idp×p 0p×p . . . 0p×p 0p×p

)
.

Let us denote

(10) Ru := −(L0
u − ∂t L

1
u)= (ιu∗∂t dλs)p×N , 3 := L1

u = (λs
µ ◦ u)p×N ,

so that from (5) we have

(11) R0
u =−(Ru)

† and R1
u =−3†.

Taking the adjoint of the coefficient matrix in (9) and multiplying by −1 we then
get the following matrix:

(12) A :=



Ru ∂t Ru . . . ∂
q−1
t Ru ∂

q
t Ru

3 Ru + ∂t3 . . . (q − 1) ∂
q−1
t Ru + ∂

q−1
t 3 q∂

q−1
t Ru + ∂

q
t 3

0 3 . . . . . . . . .
...

...
. . .

...
...

0 0 . . . 3 Ru + q∂t3

0 0 . . . 0 3


.
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A is a matrix of size p(q + 2)× N (q + 1), which depends on the (q + 1)-th jet of
the map u. The rows of this matrix can be linearly independent only if nq ≥ p− n
holds (see (8)). Under the full rank condition, one can always solve for Si smoothly
in (9), and thus solving (7). It should be noted that there is no unique solution,
but instead, we have an affine space of them. The full rank of A will enable us to
choose a solution that varies smoothly depending on jq+1

u (x).

Definition 3.1. For some fixed q satisfying nq ≥ p− n, let us define the relation
W ⊂ J q+1(R, RN ) as

W =
{

jq+1
u (x) | dux is injective and A = A( jq+1

u (x)) has full (row) rank
}
.

A smooth solution of W is called a W-regular or weakly (dλs)-regular map. We
denote by SolW the space of all W-regular maps.

Lemma 3.2. (dλs)-regular maps are W-regular.

Proof. If an immersion u : R→ RN is (dλs)-regular, then the block
(Ru

3

)
2p×N in

the top left corner of A has full (row) rank, which makes the first two row-blocks
of A full rank. On the other hand, the 3 blocks on the “off-diagonal” are always
full rank, since the rows of 3 consist of linearly independent 1-forms {λs

}. Note
that there is no overlap between the

(Ru
3

)
2p×N block and the rest of the diagonal 3

blocks. Hence, the rows of A are linearly independent whenever u is (dλs)-regular,
i.e., u is then W-regular. □

In light of the above lemma, one observes that the first row-block of A is the one
where the rank of A might drop, and one may consider W-regularity as the natural
higher-order analog of dλs-regularity. This observation shall become more clear in
the proof of Theorem 3.7. Let us now show that Lu admits a universal right inverse
over W-regular maps, i.e., one can solve Lu ◦Mu = Id for any W-regular map u,
such that Mu depends smoothly on u.

Proposition 3.3. Fix q satisfying nq ≥ p− n and the relation W ⊂ J q+1(R, RN ).
Then, for W-regular maps u : R→ RN , there exists a linear partial differential
operator Mu : C∞(R, Rp)→ C∞(R, RN ) of order q , satisfying Lu ◦Mu = Id.
Furthermore, the assignment

SolW ×C∞(R, Rp) ∋ (u, P) 7→M(u, P) :=Mu(P) ∈ C∞(R, RN )

is a differential operator, nonlinear of order 2q + 1 in the first variable.

Proof. Fix a jet σ = jq+1
u (t) ∈W|t , represented by some map u : Op(t)→ RN .

The first-order operator Ru defined on Op(t) gives rise to the (linear) symbol map

1Rσ
: J 1(R, Rp)|t → J 0(R, RN )|t = C∞(R, RN )|t .
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For any jet j1
P(t) ∈ J 1(R, Rp)|t represented by some P : Op(t)→ Rp, we then

have 1Rσ
( j1

P(t))=Ru(P)(t). We define 1
(q)

Rσ
: J q+1(R, Rp)|t → J q(R, RN )|t by

1
(q)

Rσ
( jq+1

P (t))= jq
Ru(P)(t).

Since σ ∈W , the matrix Aσ = A( jq+1
u (t)) has full row rank. We can then readily

solve for S j
=S j (σ ) in (9), in terms of rational polynomials of the terms of Aσ .

Indeed, we get a (linear) map 1Sσ
: J q(R, RN )|t → C∞(R, Rp)|t satisfying the

commutative diagram

J q+1(R, Rp)|t J q(R, RN )|t

J 0(R, Rp)|t

1
(q)

Rσ

pq+1
0

1Sσ

Consider an open neighborhood U (σ )⊂W of σ so that the denominators of all the
rational polynomials in 1Sσ

remain nonzero for all jets τ ∈U (σ ). Shrinking U (σ )

if necessary, assume that U (σ ) projects down to an open neighborhood V (σ )⊂ R

of t . We then have a smooth map

1σ :U (σ )× J q(V (σ ), RN )→ C∞(V (σ ), Rp),

so that for τ ∈U (σ )|s with s ∈ V (σ ) and for any jq+1
P (s), the following holds:

1σ

(
τ, 1

(q)

Rτ
( jq+1

P (s))
)
= pq+1

0 ( jq+1
P (s))= P(s).

Note that 1σ is nonlinear in the first term, whereas it is linear in the second term.
We now have an open cover U = {U (σ )}σ∈W of W . Fix a partition of unity
{ρα}α∈3 on W subordinate to U, so that supp ρα ⊂Uα for some Uα ∈U. We denote
the corresponding open set Vα ⊂ R and the map

1α :Uα × J q(Vα, RN )→ C∞(Vα, Rp).

Define the bundle map

1S :W × J q(R, RN )→ C∞(R, Rp)

via the formula
1S(τ, η) :=

∑
α

1α(τ, ρα(τ )η).

Since each 1α is linear in the second argument, the map 1S is well-defined and
smooth. Now, for jets τ = jq+1

u (s) ∈W and η= jq+1
P (s) ∈ J q+1(R, Rp), we have
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1S(τ, 1
(q)

Rτ
(η))=

∑
α

1α

(
τ, ρα(τ )1

(q)

Rτ
(η)

)
=

∑
α

1α

(
τ, 1

(q)

Rτ
(ρα(τ )η)

)
, as 1

(q)

Rτ
is linear

=

∑
α

pq+1
0 (ρα(τ )η), by the construction of 1α

= pq+1
0

(∑
α

ρα(τ )η

)
= pq+1

0 (η)= P(s).

Define S : SolW ×C∞(R, RN )→ C∞(R, Rp) via the formula

S(u, ξ)=1S( jq+1
u , jq

ξ ).

The operator S is nonlinear of order q + 1 in the first component and linear of
order q in the second component. We have S(u,Ru(P))= P for any u ∈ SolW
and P ∈ C∞(R, Rp).

Lastly, define the operator M : SolW ×C∞(R, Rp)→ C∞(R, RN ) by

M(u, P)=Mu(P)=Su(P),

where Su : C∞(R, Rp)→ C∞(R, RN ) is the formal adjoint to the operator Su :

ξ 7→S(u, ξ). We have

Lu ◦Mu =Ru ◦Su =Su ◦Ru = Id= Id for any u ∈ SolW.

Clearly M is a differential operator, which is linear of order q in the second
component. Since taking adjoint of the q-th order operator Su itself has order q,
we have M is nonlinear of order 2q + 1 in the first component. □

Following Gromov’s terminology [Gromov 1986, pp. 115–116], Proposition 3.3
implies that for any q satisfying nq ≥ p− n, the first-order operator

D : C∞(R, RN )→ C∞(R, Rp)

is infinitesimally invertible over W-regular maps, with defect 2q + 1 and order of
inversion q . For α ≥ 0, denote the relation of α-infinitesimal solutions of D= 0 as

(13) Rα
tang = { j

α+1
u (x) | jα

D(u)(x)= 0} ⊂ Jα+1(R, RN ), α ≥ 0.

Next, for α ≥ (2q + 1)− 1= 2q denote the relation of W-regular α-infinitesimal
solutions of D= 0 by

(14) Wα = (pα+1
q+1)−1(W)∩Rα

tang ⊂ Jα+1(R, RN ).
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Each Wα has the same C∞-solutions for α≥2q , namely, the W-regular D-horizontal
curves. Denote the sheaves

(15) 8W
= SolWα and 9W

α = 0Wα for α ≥ 2q.

A direct application of the results in [Gromov 1986, pp. 118–120] then gives us:

Theorem 3.4. Fix q satisfying nq ≥ p− n, where p = corkD, n = rkD. Then:

• 8W is microflexible.

• For any
α ≥max{2q + 1+ q, 2.1+ 2q} = 3q + 1,

the jet map jα+1
:8W

→9W
α is a local weak homotopy equivalence.

Remark 3.5. It should be noted that the W-regularity of D-horizontal maps R→M
is independent of any choice of coordinates on M or choice of defining 1-forms λs .
Indeed, these are precisely the class of maps R→ M over which the operator D
(see (1)) is infinitesimally invertible. Since the solution space D= 0 is independent
of any choice, so is the regularity of such maps.

Local h-principle for W-regular horizontal curves. To keep the notation light,
throughout the rest of this section, we shall treat any higher jet jq

u (x) formally as
variables. That is, jq

u (x) really represents the tuple of formal maps

(F i
: ⊙

i Tx R→ Tu(x) RN , 1≤ i ≤ q)

in the jet space J q
(x,u(x))(R, RN ), and each component ∂ i

t u(x) ≡ F i (∂ i
t ) ∈ RN are

independent variables. For any 1-form λ defining D near y = u(x), the components
of the higher jets jq

λ (y) will be treated as known scalar values.
Now, consider the first-order relation

(16) Rimm-tang =
{

j1
u (x) ∈ J 1(R, RN ) | dux is injective and Im dux ⊂ Du(x)

}
.

The solution sheaf SolRimm-tang consists of all the D-horizontal immersed curves. It
follows from (13) that Rimm-tang⊂R0

tang. For any α≥q , where q satisfies nq≥ p−n,
we have from (14) that the jet projection map pα+1

1 : Jα+1(R, RN )→ J 1(R, RN )

restricts to a map
pα+1

1 |Wα
:Wα→Rimm-tang.

In fact, we have the following commutative diagram:

Wα Rα
tang Jα+1(R, RN )

Rimm-tang R0
tang J 1(R, RN )

pα+1
1 |Wα

pα+1
1 |Rα

tang
pα+1

1

Note that pα+1
1 is an affine bundle. Let us now make the following easy observation.
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Lemma 3.6. For any σ ∈R0
tang, the fiber of pα+1

1 |Rα
tang over σ is contractible.

Proof. A jet jα+1
u (x)∈Rα

tang⊂ Jα+1(R, RN ) is defined by the equation jα
D(u)(x)= 0

(see (13)), which expands to the following system:

(17)

0= ∂k
t (u∗λs(∂t))|x

= ∂k
t ((λs

µ ◦ u) ∂t uµ)|x

⇒ (λs
µ ◦ u) ∂k+1

t uµ
|x + terms involving j k

u (x)= 0

,

where 1≤ s ≤ p, 0≤ k ≤ α. Recall the matrix 3= (λs
µ ◦ u(x))p×N from (10) and

denote by ∂k
t u the column vector ∂k

t u = (∂k
t uµ(x))N×1. Then, equation (17) can

be expressed as the following affine system:

(18)

3∂t u = 0

3∂2
t u =

(
−(∂ν λs

µ ◦ u) ∂t uν ∂t uµ
)

p×1

∣∣
x

...

3∂α+1
t u = p× 1 vector involving jα

u (x)

 .

Note that we have R0
tang|(x,u(x)) = ker 3. Since 3 has full rank, given any value of

σ = j1
u (x) ≡ ∂t u ∈ R0

tang, the above system can always be solved in a triangular
way. Clearly, at each step the solution space is affine. It follows that the fiber of
pα+1

1 |Rα
tang over σ is contractible. □

The discussion so far had no extra assumption on the distribution D. From this
point onwards, we shall only consider equiregular, bracket-generating distributions.
The main goal of this section is to prove the following.

Theorem 3.7. Let D be an equiregular bracket-generating distribution of rank
n and corank p on RN=n+p, with type m. Let q0 satisfy nq0 ≥ p − n. Fix a jet
σ = j1

u (x) ∈Rimm-tang. Then for each K ≥ 1, there exists some q(m, K )≥ q0, such
that for any α ≥ q(m, K ) the complement of the fiber Wα|σ = (pα+1

1 |Wα
)−1(σ ) has

codimension at least K in Rα
tang|σ = (pα+1

1 |Rα
tang)
−1(σ ).

As a corollary, we get the local h-principle for W-regular horizontal maps.

Corollary 3.8. The sheaf map 8W
→ 0Rimm-tang induced by the differential map

is a local weak homotopy equivalence.

Proof. Fix some jet σ ∈Rimm-tang. It follows from Theorem 3.7 and Lemma 3.6 that
the fiber of pα+1

1 |Wα
over σ is K-connected for α sufficiently large. Hence, passing

to the infinity jet, we get that the fiber is weakly contractible. By an argument of
Gromov [1986, p. 77], the sheaf map p∞1 : 9

W
∞
= 0W∞→ 0Rimm-tang is then a

local weak homotopy equivalence. Also, from Theorem 3.4 we have the sheaf map
j∞ :8W

→9W
∞

is a local weak homotopy equivalence. But then the composition
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∂ q+1t
u appears

only in this region

Ru ∂t Ru
3

3

3

3

∂
q
t Ru ∂α

t Ru

the highest-order jet ∂α+1
t u

appears only in this block

c∂q
t Ru + · · ·

Figure 1. Highest-order jet of u in A.

p∞1 ◦ j∞ :8W
→ 0Rimm-tang is a local weak homotopy equivalence as well. Note

that the composition map is nothing but the differential map u 7→ du. □

To prove Theorem 3.7, we need to understand the equations involved in defining
the relation Wα ⊂ Jα+1(R, RN ) as in (14). We have already seen in Lemma 3.6 that
given a jet σ ∈Rimm-tang, the fiber of Rα

tang|σ is the solution space of a triangular
affine system (see (18)). But a jet jα+1

u (x) ∈ Wα|σ ⊂ Rα
tang|σ must satisfy W-

regularity as well, i.e., the matrix A = A( jα+1
u (x)) as given in (12) must have

independent rows. We note the following features of the matrix that will become
useful later in the proof.

Firstly, the 3 blocks in the off-diagonal of A have full rank. Thus, the rank can
only drop at the first row-block. In any block above the 3-diagonal, the highest-
order jet term ∂

q+1
t u is contributed by the ∂

q
t Ru factor, and it appears linearly. In

fact, from (10) we have

(19) ∂
q
t Ru =

(
dλs(∂

q+1
t u, ∂µ)

)
p×N + a p× N matrix in jq

u (x).

Furthermore, no component of ∂
q+1
t u appears anywhere below the diagonal passing

through this block (see Figure 1). In particular, in each column-block, the highest-
order derivative of u occurs in the first row-block only.

Secondly, each column-block of A has N many columns, which can be labeled by
the framing {∂1, . . . , ∂N } of T RN , as it is clear from (19). For any arbitrary choice of
frame {W1, . . . , WN }, we can always perform some (invertible) column operations
on A so that the columns in the target column-block, say the (q + 1)-th column-
block, are now labeled by {W1, . . . , WN }. Indeed, if we write Wi =W j

i ∂ j , then one
can consider the invertible matrix W = (W j

1 . . . W j
N )N×N , so that multiplying the

∂
q
t Ru block from the right by W transforms it into the following block:

(20)
(
dλs(∂

q+1
t u, Wµ)

)
p×N + a p× N matrix in jq

u (x).
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We extend this W to a block-diagonal-matrix W̃ of size N (α + 1)× N (α + 1)

by putting W as the (q + 1)-th diagonal block, and IdN in all the other diagonal
positions. Now, if we multiply the matrix A by W̃ from the right, it will perform
column manipulations precisely at the (q + 1)-th column-block. In particular, the
top row-block in this column is now (∂

q
t Ru)W , and thus by looking at (20), we may

label this column-block by W1, . . . , WN . Note that this process does not change
the rank of the matrix, since the column manipulation is invertible by construction.

In the proof, for each column-block of A, we shall only prescribe a subframe
of T RN (obtained by using Lemma 2.5), which will then be arbitrarily extended to
a full frame. Performing the column manipulation as described above will make
sure that the target column-block is labeled first by the prescribed subframe and
then by the arbitrary choice of extension. As we shall see, we are not interested
in the columns which are labeled arbitrarily during this process. If the matrix
has full (row) rank after discarding a few columns, then the original matrix will
also have full rank. Thus, given a subframe, say, (W1, . . . , Wt) for the (q + 1)-th
column-block, we shall say that the (q + 1)-th column-block is relabeled by the
subframe, while discarding the arbitrarily extended part.

Let us now proceed with the proof of Theorem 3.7. We refer to page 226, where
the major steps of the proof are carried out in detail for an example case.

Proof of Theorem 3.7. Let σ = j1
u (x) ∈ Rimm-tang be a given jet, and y = u(x).

Suppose D has the type m= (0=m0 < · · ·<mr+1=N =n+p), where ms=dimDs
y

for 0≤ s ≤ r + 1. We denote ps = dim(Ds+1
y /Ds

y)= ms+1−ms for 1≤ s ≤ r and
set p0 = 0. Using Lemma 2.5, we get the vectors

τ s, j
∈ Dy, ηs, j

∈ Ds
y \D

s−1
y , ζ s, j

∈ Ds+1
y \Ds

y, 1≤ j ≤ ps, 1≤ s ≤ r

at y, and the 1-forms λs, j near y. We write the matrix A (see (12)) in terms of
these λs, j ’s. As observed in Remark 3.5, this does not change the relations Wα.

Notations: We label the row- and column-blocks of A starting from 0, so that the
(0, q)-th block is ∂

q
t Ru and the (q+ 1, q)-th block is the 3 block. We will use ζ s,•

to mean the tuple of vectors (ζ s,1, . . . , ζ s,ps ) and similarly τ s,•, ηs,•, λs,• etc. In
particular, the matrix 3 is then given by 3†

= (λ1,• . . . λp,•)N×p. We shall also
use the notation ζ • for the tuple (ζ 1,•, . . . , ζ r,•) of size p, and ζ̂ s,• for 1≤ s ≤ r for
the tuple of size p− ps , obtained by dropping the tuple ζ s,• from ζ •. For notational
convenience, we set ζ̂ 0,•

= ζ •.
Let us first assume K = 1. We need to show that the complement of Wα|σ

in Rα
tang|σ has codimension 1 for some α large enough. To achieve this, we shall

find a polynomial P in the jet variables jα
u (x) so that P being nonzero at some

σ̃ ∈ Rα
tang|σ implies that the matrix A = A(σ̃ ) has full (row) rank. Let us briefly

discuss the proof strategy.
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Step 1: For each column-block of A, we shall prescribe some subframe of Ty RN ,
consisting of some suitable vectors as obtained by Lemma 2.5 (and thus using the
fact that D is bracket-generating). This step (Algorithm 1 ) is recursive, and it will
determine the value of q(m, 1). Extending each subframe arbitrarily to a full frame
and then relabeling the column-blocks, we get a new matrix, say, A1. Since these
operations are invertible, A has full rank if and only if A1 has full rank.

Step 2: We shall consider the submatrix B of A1, with columns labeled by the
prescribed subframes as above and all the rows of A1. B will be a square matrix
and P = det B will be our candidate polynomial in the higher jet variables jα+1

u (x).
Since it is a minor of A1, det B ̸= 0 at some higher jet σ̃ ∈ Rα

tang|σ implies that
A(σ̃ ) has full rank, i.e, σ̃ ∈Wα|σ . We shall keep using the notation 3 and ∂

q
t Ru to

denote the respective blocks in B obtained after the column transformations and
curtailing of A. Performing some more (invertible) row and column operations
on B, we shall produce a new matrix B1, so that det B = det B1. Next, we shall
extract a square submatrix C of B1 and observe that det B = det B1 =± det C .

Step 3: It follows from (18) that if jq
u (x) is solved, then the solution space

for ∂
q+1
t u is given as the affine space Vq + ker 3 = Vq +Du(x), where the N × 1

vector Vq = Vq( jq
u (x)) is obtained using some fixed choice of right inverse 3−1.

In particular, we can write ∂
q+1
t u = Xq τ q

+Vq( jq
u (x)) for 1≤ q ≤ α, where Xq is

some indeterminate and τ q is a vector suitably set in Algorithm 1 to either 0 ∈ Dy

or to one of the vectors τ s, j
∈ Dy chosen earlier. Inductively, we then have

(21) ∂
q+1
t u = Xq τ q

+ terms in X1, . . . , Xq−1, τ 1, . . . , τ q−1 and σ = j1
u (x)

for 1 ≤ q ≤ α. Arbitrary values of X1, . . . , Xα will produce jα+1
u (x) ∈ Rα

tang|σ

from (21). We will replace the values of ∂
q+1
t u in the matrix C . Treating det C as

a polynomial in the indeterminates Xq we shall show that det C is nonvanishing
for suitably large values of Xq . Thus, P = det B is nonvanishing when restricted
to Rα

tang|σ . This will conclude the proof for K = 1.
The crux of the proof lies in suitably choosing the subframes for each of the

column-blocks of A as done in Step 1. We produce a schematic diagram to explain
the process (Figure 2). As discussed earlier, the rank can only drop in the first
row-block consisting of ∂

q
t Ru , which are represented by the red boxes in Figure 2,

whereas the blue boxes represent the 3 blocks. Suppose we have dealt with the
rows corresponding to dλ1,1, . . . dλs′, j ′ of the first row-block in a manner that,
ignoring the rest of the rows from the first row-blcok, the matrix A up to, say, the
q-th column-block has full rank. We could keep choosing ζ • for the subsequent
column-blocks, which will transform all the 3 blocks appearing in those column-
blocks into Idp, and thus make sure that the matrix A, after ignoring the rest of the
rows from the first row-block, is indeed full rank.
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∂
q ′−1
t Ru(

Ru
3

)
this looks
like equation (22)

this looks
like (Idp 0)

ζ s,• ζ s,• ζ s,•

frames are
already chosen

(ζ̂ s−1,•, ηs, j ) (ζ̂ s−2,•, ηs−1, j ) (ζ̂ •, η1, j )

Figure 2. How Algorithm 1 chooses the labeling subframes.

Now, suppose the next row in the first row-block corresponds to dλs, j . We label
the (q + 1)-th column-block by the frame (ζ̂ s−1,•, ηs, j ). It follows from (20) that
the last column of the ∂

q
t Ru block transforms into

dλs, j (∂
q+1
t u, ηs, j )+ a p× 1 vector in jq

u (x).

Since ∂
q+1
t u is a jet that did not appear earlier in the matrix (Figure 1), we can

prescribe its value arbitrarily to make sure that (at least) the row corresponding
to dλs, j in ∂

q
t Ru must be linearly independent. Indeed, it follows from Lemma 3.6,

that given jq
u (x), we may choose ∂

q+1
t u from an affine space, which is parallel to the

distribution D = ker 3, and so, given a particular solution of ∂
q+1
t u, we can always

add a vector proportional to τ q
= τ s, j

∈Ds . This is done in Step 3, by adding Xq τ q

for large value of Xq . It follows from Lemma 3.6 that this will introduce an Xq

variable (with coefficient 1) at the dλs, j row, which does not appear anywhere
below this row. Note that the rows appearing above might have some instances
of Xq , but these rows will be taken care of by some Xq ′ variable appearing earlier.
In other words, each row gets assigned a unique Xq .

But choosing this subframe (ζ̂ s−1, j , ηs, j ) also introduces a column vector of
unknown scalars in the corresponding 3-block at the λs−1,•-rows (see (22)), and in
turn (possibly) reduces the rank for the corresponding row-block. To compensate
for this, we choose a sufficiently high jet of u that we have not used (recall that we
have utilized the jet ∂

q+1
t u so far). Indeed, we may consider ∂

q ′
t u for some q ′≫ q ,

and look at the block to the right of this 3 block where this jet appears for the
first time in this row-block. This is represented by a red dashed arrow in Figure 2,
the arrowhead pointing to the block (the green box in the figure) which is used to
compensate for the drop of rank in the 3 block. It follows from (12) that this block
must look like c∂q ′−1

t Ru + a p× N matrix in jq ′−1
u (x), for some positive integer c.

We now perform the same process as above: we choose another subframe, say,
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Input: q, s, j, d
Output: q
1: function ChooseSubFrame(q, s, j, d)
2: if d = 0 then ▷We are in row-block 0
3: τ q

← τ s, j

4: else ▷We are in row-block d
5: τ q

← 0
6: τ q−d

← τ s, j

7: Pick subframe (ζ̂ s−1,•, ηs, j ) for column-block q
8: q0← q

▷ If s = 1, then ps−1 = 0 and we do not enter the following loop
9: for 1≤ a ≤ ps−1 do
10: for 1≤ b ≤ q0+ 1 do
11: Pick subframe ζ • for column-block q + b
12: τ q

← 0 ∈ Dy

13: q← ChooseSubFrame(q + q0+ 2, s− 1, a, q0+ 1)
return q

Algorithm 1. Algorithm for choosing subframes and τ q ’s.

(ζ̂ s−2, j ′, ηs−1, j ′) for the corresponding column-block, choose a value of ∂
q ′−1
t u,

suitably add some vector proportional to τ s−1, j ′ , and thus make sure that at least
one of the rows of this row-block is now independent. But now we need to keep
doing this recursively, as this will again drop the rank of some 3 block down the
line. The recursion ends when we choose the frame (ζ •, η1, j ), since this frame will
transform the corresponding 3-block into (Idp 0p×1), which already has full rank.

We give a recursive algorithm (Algorithm 1) to choose the appropriate subframes
for some 1 ≤ s ≤ r and some 1 ≤ j ≤ ps starting from some column-block q,
while at the same time suitably fixing the vectors τ q ′

∈ Dy for q ′ ≥ q that needs
to be used later in Step 3. The inputs of the algorithm correspond to the situation
described above: we have dealt with all the rows appearing before the dλs, j -row
in the first row-block, using up till the (q − 1)-th column-block. The integer d
corresponds to the depth of the recursion; we begin at d = 0, and then d increases
as we compensate for subsequent the 3 blocks, as discussed above.

Algorithm 1 outputs the last column-block q for which the subframe and the
vector τ q have been chosen. Note that for s≥ 2, the algorithm is recursive. Whereas
for s = 1, we choose the frame (ζ 0,•, η1, j )= (ζ •, η1, j ) and do not enter the for-loop
since ps−1 = 0 for s = 1. We can now find all the subframes, starting from some
column-block q by Algorithm 2.

As before, Algorithm 2 outputs the last column-block q for which the subframe
and the vector τ q have been chosen. We are now in a position to get a suitable value
of q(m, K ) for K = 1. First, we choose the frame ζ • for each of the column-block
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Input: q
Output: q
1: function ChooseAllSubFrames(q)
2: for 1≤ s ≤ r do
3: for 1≤ j ≤ ps do
4: q← ChooseSubFrame(q, s, j, 0)+ 1

return q − 1

Algorithm 2. Algorithm for choosing all subframes.

0, . . . , q0, where q0 ≥ 0 satisfies nq0 ≥ p−n and set τ 0
= · · · = τ q0 = 0. Then, let

q(m, 1)= ChooseAllSubFrames(q0+ 1). Let us denote the transformed matrix
by A1 = A1( jq(m,1)+1

u (x)). This concludes Step 1.
Next, choose the submatrix B of A1 which are labeled by the prescribed columns

chosen as in Step 1. Firstly, note that whenever we are choosing the subframe ζ •

for column-block q , the 3-block in that column-block of B becomes Idp, since λ•

is dual to ζ •. On the other hand, choosing the frame (ζ̂ s−1,•, ηs, j ) for some (s, j)
with s > 1 makes the 3 block of the form

(22)

Idp1+···+ps−2 0 0
0 0 ∗ps−1×1

0 Idps+···+pr 0


p×(p−ps−1+1)

,

where ∗ represents the column vector (λs,•(ηs, j )). Lastly, choosing (ζ •, η1, j ) trans-
forms the 3 block into (Idp 0p×1)p×(p+1). It follows that B is a square matrix of
size p(q(m, 1)+ 2)× p(q(m, 1)+ 2).

Let us now perform some invertible row and column operations on B, keeping
its rank fixed. Starting from the bottom right corner of B and then going towards
the top left corner, we consider each Id block in the off-diagonal 3 block. Next
using these Id blocks in order, we make everything zero first along the columns and
then along the rows. Denote the new matrix by B1 and observe that det B = det B1.
In any nonzero block of B1 above the 3 diagonal, the highest-order derivative of u,
say ∂

q+1
t u, is still contributed by the ∂

q
t Ru factor of this block. In fact, any of these

blocks look like(
0p×(p′−1) c dλ•(∂

q+1
t u, ηs, j )+ terms in jq

u (x)
)

p×p′

for some integer 1 ≤ c ≤ q(m, 1) and some p′ ∈ {p+ 1, p− ps + 1, 1 ≤ s ≤ r}.
Note that this integer c is the integer coefficient of the respective ∂

q
t Ru factor as

in (12). Let C be the square submatrix of B1 obtained by removing the rows and
columns corresponding to the Id blocks so that we have det B = det B1 =± det C ,
concluding Step 2.
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The columns of C are precisely those columns corresponding to some ηs, j chosen
earlier via Algorithm 2, whereas the rows of C correspond to each row from the
first row-block of B1, and all the rows starting with some λs, j ′(ηs, j ) from the other
row-blocks. Let us now show that det C ̸= 0. We replace ∂

q+1
t u = Xq τ q

+ . . . in C
by using (21). By (i) the construction of C , (ii) the choice of τ q ’s in Algorithm 1,
and (iii) from Lemma 2.5, it follows that in each row of C there exists a unique
column so that the element in this position satisfies the following:

• The element looks like, cXq + terms in X1, . . . , Xq−1, for some q and some
integer 1≤ c ≤ q(m, 1).

• Xq does not appear anywhere in C to the left of this column.

• Xq does not appear anywhere in this column below this row (but may appear
above this row).

Note that, not every variable Xq appears in C , since we have set many τ q
= 0.

In fact, there are precisely q̄ many variables appearing, where C has the size q̄ × q̄ .
Hence, for notational convenience, let us rename the appearing Xq ’s to {Y1, . . . , Yq̄}

in the increasing order. By expanding det C , we then have the recursive formula:

(23)

detC = Yq̄ fq̄−1(σ,Y1,...,Yq̄−1)+gq̄−1(σ,Y1,...,Yq̄−1)

fq̄−1(σ,Y1,...,Yq̄−1)= Yq̄−1 fq̄−2(σ,Y1,...,Yq̄−2)+gq̄−2(σ,Y1,...,Yq̄−2)

...

f2(σ,Y1,Y2)= Y2 f1(σ,Y1)+g1(σ,Y1)

f1(σ,Y1)= Y1 detC̃+g0(σ )


.

Above, fi , gi are polynomial functions, where g0 depends only on the choice of
the first jet σ = j1

u (x). The matrix C̃ has the following property: for each row
of C̃ , there exists a unique column, so that the element in that position is an integer
(corresponding to the coefficient of some Xq ) and everything below this integer in
this column is 0. Indeed, this column corresponds to the unique column of C with
the first occurrence of Xq as discussed above. Then, some column permutation puts
the matrix C̃ in an upper triangular form, with nonzero integers in the diagonal. In
particular, det C̃ ̸= 0. Hence, choosing Y1, Y2, . . . , Yq̄ successively and sufficiently
large, we can see from (23) that det C ̸= 0. In other words, we have shown that the
polynomial det B is nonvanishing when restricted to Rq(m,1)

tang |σ , which concludes
Step 3.

To finish the proof for K = 1, let α > q(m, 1). First perform ChooseAllSub-
Frames(q0+ 1) as above. Next, for q(m, 1)+ 1≤ q ≤ α, choose the subframe ζ •

for the column-block q and set τ q
= 0. We can then continue with the rest of the

argument as above without any change. In particular, for any α ≥ q(m, 1), we have
the codimension of the complement of Wα|σ is at least 1 in Rα

tang|σ .
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Let us now induct over K . Suppose for some K ≥ 1, we have obtained a suitable
q(m, K ) and some polynomials P1, . . . , PK in the jets jq(m,K )

u (x) so that

(Wq(m,K ))
c
⊂{P1=· · ·= PK =0}, codim{P1=· · ·= PK =0}≥K in Rq(m,K )

tang |σ .

We set q(m, K + 1)= ChooseAllSubFrames(q(m, K )+ 1). This will produce a
new polynomial PK+1 involving jets that were not involved in any of the P1, . . . , PK .
But then codim{P1=· · ·= PK+1=0}≥K+1 in Rq(m,K+1)

tang |σ . Also by construction,
(Wq(m,K+1))

c
⊂ {P1 = · · · = PK+1 = 0}. Proceeding similarly as in the K = 1 case,

we can finish the inductive step.
This concludes the proof of Theorem 3.7. □

A toy case. Let us consider a toy case to illustrate the major steps in the proof
of Theorem 3.7. We consider a bracket-generating distribution D, of rank n = 10
and corank p = 4, on a manifold M with dim M = 14. Suppose D3

= TM and
rk(D2/D)= 2= rk(D3/D2). Thus, D has the type

m= (0= m0 < m1 = 10 < m2 = 12 < m3 = 14),

and we have p1 = 2 = p2. For some x ∈ M , using Lemma 2.5, we choose the
necessary vectors τ s, j

∈ Dx , ηs, j
∈ Ds , ζ s, j

∈ Ds+1
x for 1≤ j ≤ ps and 1≤ s ≤ 2

and the 1-forms λs, j . Clearly, for q0 = 0 we have nq0 > p− n =−6. Let us now
determine q(m, 1) and see how Algorithm 2 produces the subframes for different
column-blocks of the matrix A:

pick ζ • for column-block 0, pick (ζ •, η1,1) for column-block 1,

pick (ζ •, η1,2) for column-block 2, pick (ζ̂ 1,•, η2,1) for column-block 3,

pick ζ • for column-blocks 4 to 7, pick (ζ •, η1,1) for column-block 8,

pick ζ • for column-blocks 9 to 12, pick (ζ •, η1,2) for column-block 13,

pick (ζ̂ 1,•, η2,2) for column-block 14, pick ζ • for column-blocks 15 to 29,

pick (ζ •, η1,1) for column-block 30, pick ζ • for column-blocks 31 to 45,

pick (ζ •, η1,2) for column-block 46.

Thus, we may take q(m, 1) = 46. The submatrix B is a square matrix of size
4× (46+ 2)= 192. We also choose the vectors τ q as

τ 1
= τ 1,1, τ 2

= τ 1,2, τ 3
= η2,1, τ 4

= τ 1,1,

τ 9
= τ 1,2, τ 14

= τ 2,2, τ 15
= τ 1,1, τ 31

= τ 1,2

and set all other τ q
= 0 for 0≤ q ≤ 46.

Removing all the rows and columns corresponding to some Id block in the
off-diagonal, we get the matrix C of size 8 × 8 from B. Let us also replace
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∂
q+1
t u = Xq τ q

+ . . . in C . Then C looks like

C =

η1,1 η1,2 η2,1 η1,1 η1,2 η2,1 η1,1 η1,2



X1+∗ ?X2+∗ ?X3+∗ ?X4+∗ ?X9+∗ ?X14+∗ ?X15+∗ ?X31+∗

0X1+∗ X2+∗ ?X3+∗ ?X4+∗ ?X9+∗ ?X14+∗ ?X15+∗ ?X31+∗

0X1+∗ 0X2+∗ X3+∗ ?X4+∗ ?X9+∗ ?X14+∗ ?X15+∗ ?X31+∗

0X1+∗ 0X2+∗ 0X3+∗ ?X4+∗ ?X9+∗ X14+∗ ?X15+∗ ?X31+∗

0 0 λ2,1(η2,1) X4+∗ ?X9+∗ 0X14+∗ ?X15+∗ ?X31+∗

0 0 λ2,2(η2,1) 0X4+∗ X9+∗ 0X14+∗ ?X15+∗ ?X31+∗

0 0 0 0 0 λ2,1(η2,1) X15+∗ ?X31+∗

0 0 0 0 0 λ2,2(η2,1) 0X15+∗ X31+∗ 8×8

Above, ∗ in some ?X i +∗ denotes terms involving X1, . . . , X i−1. Also, to keep the
calculation simple, we have set the (nonzero) integer coefficients to 1 for the highest-
order Xq uniquely associated with each row. We can find a recursive formula for
det C as in (23). In particular, the matrix C̃ is given by

C̃ =



1 ? ? ? ? ? ? ?
0 1 ? ? ? ? ? ?
0 0 1 ? ? ? ? ?
0 0 0 ? ? 1 ? ?
0 0 0 1 ? 0 ? ?
0 0 0 0 1 0 ? ?
0 0 0 0 0 0 1 ?
0 0 0 0 0 0 0 1


8×8

which obviously satisfies det C̃ ̸= 0.

4. The h-principle for transverse maps

Given a distribution D, a map u : 6 → M is said to be transverse to D if the
composition map T 6

du
−→u∗TM λ

−→u∗TM/D is surjective, where λ :TM→TM/D
is the quotient map. We have the following theorem.

Theorem 4.1. Let D be an equiregular bracket-generating distribution on a mani-
fold M. Then, maps transverse to D satisfy the C0-dense parametric h-principle.

Once we have the microflexibility (Theorem 3.4) and the local h-principle
(Corollary 3.8) for W-regular horizontal maps R→M , the proof essentially follows
from the steps outlined as in [Gromov 1986, p. 84]. The details were worked out in
[Eliashberg and Mishachev 2002, Theorem 14.2.1] when the distribution is contact,
and in [Del Pino and Presas 2019, Theorem 4] for the case of Engel distributions.
We include the sketch of the proof for the general case.

Proof of Theorem 4.1. Let Rtran = { j1
u (x) | λ ◦ dux is surjective} ⊂ J 1(6, M)

be the relation of D-transverse maps 6 → M . Since Rtran is open, we have
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SolRtran is microflexible and furthermore, j1
: SolRtran→ 0Rtran is a local weak

homotopy equivalence. To prove the h-principle, we need to find some suitable
(local) microextensions (in the sense of [Bhowmick and Datta 2023, Definition 5.10])
to maps 6̃→ M , where 6̃ =6×R.

Let us consider the following class of maps:

8̃W-tran
=

{
u : 6̃→ M

∣∣∣ u is transverse to D, and for each σ ∈6

u|σ×R is a W-regular, D-horizontal, immersed curve

}
.

We prove the microflexibility and local h-principle for 8̃W-tran. Assuming that
D =

⋂p
s=1 ker λs , let us consider the differential operator

D̃ : C∞(6̃, M)→ hom(T R, Rp)= C∞(6̃, M),

u 7→ (u∗λs
|T R)= (u∗λs(∂t)).

Clearly, u : 6̃→M is a solution of D̃= 0 precisely when u|σ×R is D-horizontal for
each σ ∈6. The linearization of D̃ at some u is then given by a formula identical
to (3). Since t is a global coordinate on 6̃ =6×R, we have a splitting of the jet
spaces. Denote by jq+1,⊥

u (x) the higher derivatives purely along the t direction.
We then see that the matrix A= A( jq+1

u ) as in (12), in fact depends only on jq+1,⊥
u .

Let R̃tran ⊂ J 1(6̃, M) be the relation of D-transverse maps 6̃→ M and define
W tran

⊂ J q+1(6̃, M) by

W tran
=

{
jq+1
u (x) | j1

u (x) ∈ R̃tran, ∂t u(x) ̸= 0, A( jq+1,⊥
u (x)) has full rank

}
.

By similar arguments as in Section 3, the operator D̃ is infinitesimally invertible on
W tran-regular maps.

Let R̃α
tang = { j

α+1
u (x) | jα

D̃(u)
(x)= 0} for α ≥ 0 and then for α ≥ 2q define

W tran
α = (pα+1

q+1)−1(W tran)∩ R̃α
tang ⊂ Jα+1(6̃, M).

It is then immediate that the smooth solutions of W tran
α are all same and in fact

8̃W-tran
=SolW tran

α . Just as in Theorem 3.4, we have the microflexibility for 8̃W-tran,
and jα+1

: 8̃W-tran
→ 0W tran

α is a local weak homotopy equivalence for α large
enough. Since 8̃W-tran is invariant under the pseudogroup of fiber-preserving local
diffeomorphisms of 6̃, we have the flexibility of the restricted sheaf 8̃W-tran

|6×0

[Gromov 1986, p. 78].
Define the relation

R̃tang-tran =
{

j1
u (x) ∈ R̃tran | 0 ̸= ∂t u(x) ∈ Du(x)

}
⊂ J 1(6̃, M).

We have the jet projection map Jα+1(6̃, M)→ J 1(6̃, M) which restricts to a
map W tran

α → R̃tang-tran. Since transversality is a first-order regularity condition,
we deduce analogous to Corollary 3.8 that the map 8̃W-tran

→ 0R̃tang-tran induced
by the differential, is a local weak homotopy equivalence. Now, we have a map
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ev : 0R̃tang-tran→ 0Rtran induced by the restriction u 7→ u|6×0. By choosing some
arbitrary nonvanishing local sections of D, we can easily get local (parametric)
formal extensions along this ev map on contractible open sets of 6. Thus, R̃tang-tran

is a microextension of Rtran. We can now finish the proof of the h-principle as in
[Bhowmick and Datta 2023, Theorem 2.18]. □

We would like to note that Martínez-Aguinaga and Del Pino [2022] recently
have proved the above h-principle (among many other strong results) under similar
constant growth assumption on the distribution, albeit using a completely different
rather geometric technique. We believe that the technique utilized in the present
article can be adapted to a broader class of problems, including the existence of
horizontal immersions of submanifolds. Indeed, this method seems promising to
address the following conjecture by Gromov.

Conjecture [Gromov 1996, p. 259]. Given a distribution D on M , �-regular (i.e.,
(dλs)-regular) D-horizontal immersions 6→ M satisfy the complete h-principle,
provided dim M ≥ (dim 6+ 1) codimD.

Immersions transverse to a distribution. Whenever dim 6≤ dim M , an immersion
u :6→ M is said to be transverse to D if u is an immersion and the composition
map T 6→ u∗(TM/D) is of full rank. The following h-principle is well known.

Theorem 4.2 [Gromov 1986, p. 87; Eliashberg and Mishachev 2002, p. 71]. Let D
be an arbitrary distribution on M. If dim 6 < corkD, then immersions 6→ M
transverse to D satisfy all forms of h-principles.

The critical dimension dim 6 = corkD is not covered by the above theorem.
Although, for the special case of D being either a contact [Eliashberg and Mishachev
2002, Theorem 14.2.2] or an Engel distribution [Del Pino and Presas 2019], the
h-principle holds for all transverse immersions. The h-principle for smooth immer-
sions transverse to real analytic bracket-generating distributions was proved in [Del
Pino and Shin 2020]. We have the following.

Theorem 4.3. Let D be an equiregular bracket-generating distribution. Then,
C0-dense, parametric h-principle holds for immersions 6→ M transverse to D,
provided dim 6 < dim M.

Proof. The proof is identical to that of Theorem 4.1. Denote by Rimm ⊂ J 1(6, M)

the relation of immersions 6→ M , and similarly R̃imm ⊂ J 1(6̃, M) where we
have 6̃ = 6 ×R. Then, Rimm-tran = Rtran ∩Rimm is the relation of immersions
6→ M which are transverse to D. The microextension is provided by the relation

R̃imm-tang-tran = R̃tang-tran ∩ R̃imm,



230 ARITRA BHOWMICK

where R̃tang-tran is as in Theorem 4.1. We have the map

ev : 0R̃imm-tang-tran→ 0Rimm-tran

induced by u 7→ u|6×0. Since we have that dim 6 < dim M , we can always find
nonvanishing (local) extensions along the ev map. The h-principle then follows. □

In particular, we have the h-principle for D-transverse maps 6→M for dim 6=

corkD, provided D is bracket-generating. Also, taking D = TM , Theorem 4.3
reduces to Hirsch’s h-principle for immersions 6→ M [Hirsch 1959].

Remark 4.4. When dim 6 ≥ corkD, one can also treat immersions 6→ (M,D)

transverse to D as partially horizontal immersions [Gromov 1996, p. 256]. It turns
out that all such maps are �•-regular in the sense of Gromov. One can then get a
stronger version of Theorem 4.3, where the distribution can be taken to be arbitrary,
and thus extending Theorem 4.2.
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THE RESTRICTION OF EFFICIENT GEODESICS
TO THE NONSEPARATING COMPLEX OF CURVES

SETH HOVLAND AND GREG VINAL

In the complex of curves of a closed orientable surface of genus g, C(Sg),
a preferred finite set of geodesics between any two vertices, called efficient
geodesics, was introduced by Birman, Margalit, and Menasco (2016). The
main tool they used to establish the existence of efficient geodesics was a
dot graph, which records the intersection pattern of a reference arc with the
simple closed curves associated with a geodesic path. The idea behind the
construction was that a geodesic that is not initially efficient contains shapes
in its corresponding dot graph. These shapes then correspond to surgeries
that reduce the intersection with the reference arc. We show that the efficient
geodesic algorithm can be restricted to the nonseparating curve complex;
the proof of this will involve analysis of the dot graph and its corresponding
surgeries. Moreover, we demonstrate that given any geodesic in the complex
of curves we may obtain an efficient geodesic whose vertices, with the possible
exception of the endpoints, are all nonseparating curves.

1. Introduction

The complex of curves and geodesics. The complex of curves C(S) for a compact
surface S is a simplicial complex whose vertices correspond to isotopy classes of
essential simple closed curves in S and whose edges connect vertices with disjoint
representatives. We can endow the 0-skeleton of C(S) with a metric by defining
the distance between two vertices u and v to be the minimal number of edges
among paths between them. In this paper, as in [Birman et al. 2016], we assume
that the surfaces we are considering are closed and have genus at least two. It is a
fundamental result that in this case C(S) is connected. Thus, the distance is defined
for all pairs of vertices in C(S). The trouble is that the complex of curves is, in
fact, too connected. It turns out that C(S) is locally infinite (for any vertex v there
are infinitely many adjacent vertices w) and there are infinitely many geodesics
between many pairs of vertices. Thus, it is useful to have a preferred finite subset of
geodesics to choose from. This is the idea behind the introduction of tight geodesics
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in [Masur and Minsky 2000]. Birman, Margalit, and Menasco [Birman et al. 2016]
introduced an alternate preferred finite set of geodesics, called efficient geodesics.
The novel feature of this particular set of geodesics is the algorithm used to generate
them. The algorithm can (and has been, in [Glenn et al. 2017]) implemented on a
computer to find efficient geodesics for small distances.

We let N(S) denote the subcomplex of C(S) spanned by vertices corresponding
to nonseparating simple closed curves. This complex is called the complex of
nonseparating curves. Again, it is a standard result that if the genus of S is at least
two, N(S) is connected. The complex of nonseparating curves has attracted interest
in the literature. See [Rasmussen 2020; Hamenstädt 2014; Wright 2023].

We first show that given a geodesic in the complex of curves we can always find
a geodesic whose interior is contained in the subcomplex of nonseparating curves.
It is then natural to wonder whether efficient geodesics exist that are contained in
this subcomplex. Our main result is that they in fact do.

Theorem 1.1. Let g ≥ 2. If v and w are vertices of N(Sg) with d(v, w) ≥ 3, then
there exists an efficient geodesic from v to w in N(Sg). Additionally, there are
finitely many efficient geodesics from v to w.

Efficient geodesics. The idea behind obtaining an efficient geodesic v0, . . . , vn

in C(S) is to iteratively decrease intersections with an arc as we move along the
path. We explain further below. The following construction and results were first
introduced in [Birman et al. 2016]; the reader familiar with these results is invited
to skip to Section 2.

Suppose that γ is an arc in S and α is a simple closed curve in S. Then we say
that γ and α are in minimal position if α is disjoint from the endpoints of γ and the
number of points of intersection of α and γ is smallest over all simple closed curves
homotopic to α through homotopies that do not pass through the endpoints of γ .

Let v0, . . . , vn be a geodesic of length at least three in the complex of curves, and
let α0, α1, and αn be representatives of v0, v1, and vn that are pairwise in minimal
position. A reference arc for the triple α0, α1, αn is an arc γ that is in minimal
position with α1 and whose interior is disjoint from α0 ∪ αn .

We say that the oriented geodesic v0, . . . , vn is initially efficient if

|α1 ∩ γ | ≤ n − 1

for all choices of reference arcs γ . Finally, we say that v =v0, . . . , vn =w is efficient
if the oriented geodesic vk, . . . , vn is initially efficient for each 0 ≤ k ≤ n − 3 and
the oriented geodesic vn, vn−1, vn−2, vn−3 is also initially efficient. Thus, to test
the efficiency of a geodesic we look at all the triples vk, vk+1, vn and count the
intersection of vk+1 with any reference arc. While it may seem impossible to check
intersections with all reference arcs, it turns out that there are finitely many of
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them. Moreover, in special cases it is sufficient to check the intersections of αi ∩αn

for 1 ≤ i ≤ n − 1 [Birman et al. 2016].
Given a vertex path v0, . . . , vn in C(S) with representative curves α0, . . . , αn and

an oriented reference arc γ for α0, α1 and αn , we may traverse γ in the direction
of its orientation and record the order in which the curves α0, . . . , αn intersect γ .
The result is a sequence of natural numbers σ ∈ {1, . . . , n − 1}

N , where N is
the minimal cardinality of γ ∩ (α1 ∪ · · · ∪ αn−1). The sequence σ is called the
intersection sequence of the αi along γ .

The complexity of an oriented path v0, . . . , vn ∈ C(S) is defined to be

n−1∑
k=1

(i(v0, vk) + i(vk, vn)).

We say that a sequence σ of natural numbers is reducible under the following
circumstances: whenever σ arises as an intersection sequence for a path v0, . . . , vn

in C(S) there is another path v0, v
′

1, . . . , v
′

n−1, vn with smaller complexity. The
following proposition demonstrates that paths of minimal complexity must be
initially efficient.

Proposition 1.1 [Birman et al. 2016, Proposition 3.1]. Suppose σ is a sequence of
elements of {1, . . . , n − 1}. If σ has more than n − 1 entries equal to 1, then σ is
reducible.

From the above proposition Birman, Margalit, and Menasco deduce the existence
of initially efficient geodesics.

Proposition 1.2 [Birman et al. 2016, Proposition 3.2]. Let g ≥ 2. If v and w are
vertices of C(S), with d(v, w) ≥ 3, then there exists an initially efficient geodesic
from v to w.

We note that the definition of complexity of a path works when restricted to the
complex of nonseparating curves. It is interesting to consider how this measure
may change when restricted to the nonseparating curve complex. See Questions
2 and 3 in Section 3.

Sawtooth form and the dot graph. The proof of Proposition 1.1 was carried out in
three stages. First, the intersection sequence was put into a normal form. This is
called sawtooth form. Then, associated to the sawtooth form for the sequence is
a diagram called the dot graph. The reducibility of an intersection sequence then
corresponds to certain geometric features in the dot graph. We review these now.

We may exchange the order of intersection of two curves that are adjacent in the
intersection sequence by performing a commutation as described in [Birman et al.
2016, Lemma 3.3]; see Figure 1.
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γ

α ji α ji+1 α′

ji
α′

ji+1

Figure 1. A commutation.

The result is a sequence that is in sawtooth form. That is, we say a sequence
( j1, j2, . . . , jk) of natural numbers is in sawtooth form if

ji < ji+1 =⇒ ji+1 = ji + 1.

An example of a sequence in sawtooth form is (1, 2, 2, 3, 4, 3, 4, 2, 3, 4, 5). Given
a sequence of natural numbers in sawtooth form, we also consider its ascending
sequences, which are the maximal subsequences of the form (k, k+1, . . . , k+m). In
the above example the ascending sequences are (1, 2), (2, 3, 4), (3, 4), (2, 3, 4, 5).
It is clear that if we have an intersection sequence and we perform a finite number
of commutations we may get the intersection sequence into sawtooth form while
keeping the number of intersections of the αi ’s with γ constant.

Next, given an intersection sequence σ in sawtooth form, we may regard it as a
function 1, . . . , N → N and plot it in R2

≥0. The points of the graph of a sequence
will be called dots. We decorate the graph by connecting the dots that lie on a given
line of slope 1; these line segments are called ascending segments. The resulting
decorated graph is called the dot graph of σ and is denoted by G(σ ). See Figure 2.
Again, the idea behind this construction is that given a geodesic that is not efficient
we can see shapes in its corresponding dot graph that correspond to surgeries that
reduce the intersection with the reference arc.

Dot graph polygons and surgery. This section is a summary of [Birman et al. 2016,
Section 3.3]. We first review the surgeries described, and then in the next section
we discuss the results of these surgeries when restricted to N(S).

1
2
3
4
5

Figure 2. The dot graph of (1, 2, 2, 3, 4, 3, 4, 2, 3, 4, 5).
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Figure 3. Dot graph polygons (box, hexagon type 1, hexagon type 2).

After putting an intersection sequence into sawtooth form and constructing its
dot graph, it was shown that if the dot graph contained certain geometric shapes, it
corresponded to a sequence that was reducible. These shapes were called dot graph
polygons. In particular, the existence of a box, hexagon of type I or hexagon of
type II in the dot graph (see Figure 3) implied that the sequence σ was reducible. To
remove these shapes from the dot graph, surgeries on the curves in the intersection
pattern corresponding to these shapes were introduced.

We do surgery on a curve α that intersects our intersection arc γ in at least two
points. We draw a neighborhood of γ so that it is horizontal and oriented to the
right. We then remove from α small neighborhoods of its points of intersection
with γ . This results in a pair of curves. We will then join two of the endpoints back
together forming a new simple closed curve, and discard the other curve. Depending
on how we join pairs of endpoints, we say that α′ is obtained from α by ++, +−,
−+, or −− surgery along γ . The first symbol is + or − depending on whether
the first endpoint of α lies to the left or right of γ , respectively. Similarly for the
second symbol. When we are considering an arbitrary simple closed curve, exactly
two of the four possible surgeries result in a simple closed curve. If we give α an
orientation then two intersection points of α and γ can either agree or disagree in
orientation. If they agree, then the +− and −+ surgeries, which are called odd,
each result in a simple closed curve. Otherwise, the ++ and −− surgeries, called
even surgeries, result in simple closed curves.

Suppose that we have a geodesic in C(S) containing α as a representative for some
vertex vi . If we are to perform surgery on α then it must intersect our intersection
arc γ at least twice (otherwise it stays in the geodesic and is not replaced). Thus,

α α

γ

++ surgery −− surgery +− surgery −+ surgery

Figure 4. Surgery on a curve.
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either α intersects γ consecutively, or between these intersections γ intersects with
at least one other curve β. In the complex of curves, we can immediately get rid
of the first case, where α intersects γ consecutively, by performing the surgeries
described above. This does not follow so easily in the subcomplex of nonseparating
curves (see Proposition 2.5). However, if α does not intersect γ consecutively, as is
the case when we see boxes, and hexagons in the dot graph, we will see that we
have the same choice of surgeries as before.

Using the above surgeries, it was shown in [Birman et al. 2016] that a dot graph
with an empty, unpierced box or an empty, unpierced hexagon of type 1 or 2
corresponds to a sequence that is reducible. This was done by prescribing a
sequence of surgeries that replaced the αi curves with new α′

i that resulted in
a path with smaller complexity. Below we state the required sequence of surgeries
corresponding to the type of dot graph polygon.

Suppose the dot graph G(σ ) has an empty, unpierced box P . Then the corre-
sponding sequence of intersections along γ has the form

αk, . . . , αk+m, αk, . . . , αk+m,

where 1 ≤ k ≤ k + m ≤ n − 1. For the vertices not in {k, . . . , k + m}, they remain
unchanged. We define α′

k, . . . , α
′

k+m inductively: for i = k, . . . , k + m the curve α′

i
is obtained by performing surgery along γ between the two points of αi ∩ γ

corresponding to dots of P; the surgeries are chosen so that they form a path in
the directed graph in Figure 5. The vertices of the graph correspond to the four
types of surgeries described above: the rule is that the second sign of the origin of a
directed edge is opposite of the first sign of the terminus. It is clear from the graph
that the desired sequence of surgeries exists. We demonstrate this procedure in
Figure 5, where we perform −+ surgery on α3, then −− surgery on α4, and finally
+− surgery on α5. It is an easy check that replacing the curves αi with these new
ones results in a reduced intersection sequence σ .

Suppose the dot graph G(σ ) has an empty, unpierced hexagon P of type 1. The
case of a type 2 hexagon is nearly identical so it will be omitted. By definition of
sawtooth form and of a type 1 hexagon, there are no ascending segments of G(σ )

⁺⁺
-⁺

--

- ⁺

Figure 5
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3 4 5 3 4 5 3′ 4′ 5′

Figure 6

in the vertical strip between the leftmost and middle ascending edges of P and any
ascending segments of G(σ ) that lie in the vertical strip between the middle and
rightmost ascending segments have their highest point strictly below the lower-right
horizontal edge of P . See Figure 7.

It follows that the dots of P correspond to a sequence of intersections along γ

of the form

αk, . . . , αk+m, αk, . . . , αk+l, α j1, . . . , α jp , αk+l, . . . , αk+m,

where 1 ≤ k ≤ k + l ≤ k + m ≤ n − 1, p ≥ 0, and each ji < αk+l . See Figure 7,
where k = 3, l = 2, m = 4, and p = 0.

As in the case with the box, whenever we have αi with i ̸∈ {k, . . . , k + m} we
set α′

i = αi . Each of the remaining αi correspond to two dots in P except for αk+l ,
which corresponds to three. Let α′

k+l be the curve obtained from αk+l via surgery
along γ between the first two (leftmost) points of αk+l ∩ γ corresponding to dots
of P and satisfying the following property: α′

k+l does not contain the arc of αk+l

containing the third (rightmost) point of αk+l ∩ γ corresponding to a dot on P .
We then define α′

k+l−1, . . . , α
′

k inductively as before using the directed graph in
Figure 5, and finally, we define α′

k+l+1, . . . , α
′

k+m inductively as before. It is readily
verified that this procedure reduces σ .

Using these surgeries to remove from the dot graph the above polygons results
in an initially efficient geodesic. The last step is to inductively produce initially

2

3

4
5
6
7

Figure 7. Type 1 hexagon.
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Figure 8. The surgery described above on a type 1 hexagon.

efficient geodesics for the triples vk, . . . , vn for each 0 ≤ k ≤ n −3 and the oriented
geodesic vn, vn−1, vn−2, vn−3. This was done in [Birman et al. 2016, Section 3.5].
The exact inductive argument works when restricting to N(S), so our work lies
solely in showing the construction of initially efficient geodesics restricts to N(S).

2. Existence of efficient geodesics in complex of nonseparating curves

Our main result is that efficient geodesics exist in the complex of nonseparating
curves. Since this is a subcomplex of the complex of curves, the fact that there are
finitely many of them follows from [Birman et al. 2016, Theorem 1.1]. We restate
our main theorem:

Theorem 1.1. Let g ≥ 2. If v and w are vertices of N(Sg) with d(v, w) ≥ 3, then
there exists an efficient geodesic from v to w in N(Sg). Additionally, there are
finitely many efficient geodesics from v to w.

Proof of Theorem 1.1. The result lies in following exactly the proof setup for the
complex of curves in [Birman et al. 2016]. We prove the existence of initially
efficient geodesics in N(S) (see Proposition 2.2). Then the additional inductive
step will follow exactly as outlined in [Birman et al. 2016, Section 3.5]. The key
observation of this paper is that Lemma 2.1 holds when restricting to N(S):

Lemma 2.1. Suppose that σ is a sequence of natural numbers in sawtooth form
and that G(σ ) has an empty, unpierced box or an empty, unpierced hexagon of
type 1 or 2. Then σ is reducible (in N(S)).

This will allow us to prove:

Proposition 2.2. Let g ≥ 2. If v and w are vertices of N(S) with d(v, w) ≥ 3, then
there exists an initially efficient geodesic from v to w in N(S).

In [Birman et al. 2016] the existence of the above polygons in the dot graph
came with surgeries on the curves representing vertices in the given geodesic that
removed these shapes in the dot graph. To prove Lemma 2.1, we need only to show
that it is possible to do the surgery constructions outlined in Section 1.4, so that
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each new curve is nonseparating. For most of the surgeries this is straightforward,
while a few need to be redone carefully.

We begin with the well-known fact that a separating curve must intersect any
other curve an even number of times.

Proposition 2.3. Let α be a simple closed curve in S. If α separates S into two
components, then for any simple closed curve β we have the geometric intersection
number, i(α, β), is even.

Proof. Let Sα be the surface that results from splitting S along α. In Sα , the curve β

is either unchanged (all of β is in one of the connected components of Sα) or β is a
collection of arcs with endpoints along α. Each of these arcs has two endpoints.
Thus intersections, should they exist, come in pairs. In either case this gives an
even number of intersections with α. □

The quick test we will use when deciding if a curve made via surgery is nonsep-
arating is to see if i(α′, β) = 1 for some curve β. Next, we must show that given a
geodesic in the complex of curves, we may take all the vertices in the path to be
nonseparating curves. This allows us to start with geodesic in N(S) and attempt
to make it efficient. The following proposition was also observed in [Hamenstädt
2014, Corollary 3.3].

Proposition 2.4. Given a geodesic in C(S) with endpoints v, w ∈ N(S) there exists
a geodesic from v to w with each vertex a nonseparating curve.

Proof. Let v = v0, . . . , vn = w be a geodesic in C(S). If all the vertices in
this geodesic are nonseparating curves then we are done. Assume that vi is a
separating curve in the above geodesic with lowest index i . Then consider the
subpath vi−1, vi , vi+1 because vi is separating it divides the surface S into two
components. Both vi−1 and vi+1 are disjoint from vi however since there is not
an edge between them they intersect each other. Therefore, they are both in one
of the connected components of Sv. In the other connected component choose a
nonseparating simple closed curve v′

i . Such a curve exists, as otherwise vi would
be inessential. This curve is disjoint from both vi−1 and vi+1 and may replace vi

in the geodesic. Continuing in this way gives a geodesic in the subcomplex of
nonseparating curves. □

Notice that the connectivity of N(S) follows immediately from Proposition 2.4.

The trivial surgeries. The above proposition allows us to start with a geodesic path
in N(S); now we wish to do simplifying surgeries on it. We begin with the case
where our reference arc γ sees a curve α consecutively. In C(S), we performed
an even or odd surgery depending on the orientation of α and were guaranteed
that each resulted in a simple closed curve. However, when we restrict to the
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α α α′ α α

γ γ

Figure 9. Odd surgery always results in a nonseparating curve.

subcomplex of nonseparating curves we are no longer guaranteed that both curves
are nonseparating. For instance, take a separating curve and connect sum it with
a nonseparating curve. Then performing surgery along an arc separates the curve
into a separating curve and an nonseparating one. Proposition 2.5 shows, however,
that performing surgery on a nonseparating curve that meets a reference arc γ

consecutively will always yield at least one nonseparating curve.

Proposition 2.5. Let γ be a reference arc, and α be a nonseparating simple closed
curve. Suppose that i(α, γ ) ≥ 2. Then there exists a simple closed curve α′ obtained
from the nonseparating simple closed curve α via some surgery along γ that is still
nonseparating.

Proof. Orient γ and α. Consider two points of intersection that are consecutive
along γ . The orientation of γ and α allow us to assign an index to each intersection
either +1 or −1. If two points of intersection have the same index, we preform an
odd surgery. The resulting curve α′ crosses γ one time and intersects α exactly
once. (See Figure 9 for +− surgery.) We emphasize that we construct α′ so that
outside the local picture in Figure 9, α′ lies just to the right of α. Since i(α, α′) = 1,
α′ is nonseparating.

If the two intersection points have opposite indices we perform an even surgery.
In this case, we may need to make a choice of curve to replace α with, since
one of the surgeries may give a nonseparating curve. One of the curves remains
above γ and the other remains below γ . We argue that at least one of these curves
is nonseparating.

α α

γ

Figure 10. ++ and −− surgery on α.
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γ

α α

γ

Region 1

Region 2

Region 1

Region 2

Region 3

Figure 11. Figure for the proof of Proposition 2.5.

Assume for contradiction that both curves were separating this would divide S
into three connected components. Then joining the curves back together would
give back our original curve α however α would still separate our surface.

Thus, performing an even surgery always results in at least one nonseparating
curve. □

The nontrivial surgeries. We use the dot graph exactly as in [Birman et al. 2016]
to determine how to reduce our intersections sequence. When restricting to the
nonseparating curve complex we need to show that each dot graph polygon has a
surgery that results in the removal of the polygon and whose new curves are all
nonseparating. This will prove Lemma 2.1.

Throughout we assume that σ is an intersection sequence of nonseparating curves
in sawtooth form.

Case 1: Suppose that σ is a sequence of natural numbers in sawtooth form and
that G(σ ) has an empty, unpierced box. Then σ is reducible.

This is the easy case. Carry out the surgeries exactly as in C(S). Performing the
surgeries one at a time, notice that regardless of the type of surgery, the resulting
curve will intersect a curve adjacent to it exactly once. The figures below demon-
strate this when the box has three curves involved. The general case follows exactly
the same. See Figures 13 and 14 for the first two steps in the surgery sequence of a
box containing the curves 3, 4, and 5.

Continuing in this way, removes the box from the dot graph and replaces all
curves with other nonseparating curves.

3

4

5

Figure 12. An empty, unpierced box.
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3 4 5 3 4 5 3 4 5 3 4 5

Figure 13. The intersection sequence corresponding to the above
box in the dot graph. Odd surgery on curve 3 intersects curve 4
exactly once, and thus it is nonseparating. Clearly, an even surgery
would do the same, so there are two surgery options for curve 3
exactly as before.

Case 2: Suppose that σ is a sequence of natural numbers in sawtooth form and
that G(σ ) has an empty, unpierced hexagon of type 1 or 2. Then σ is reducible.

We will treat the case of an empty, unpierced hexagon of type 1. The other
case follows exactly the same procedure. The surgery instructions for this case are
similar to the instructions for C(S) but one new idea is needed. We introduce some
new terminology to simplify the discussion. Given a empty, unpierced hexagon of
type 1 in the dot graph, its vertices have the form

αk, . . . , αk+m, αk, . . . , αk+l, α j1, . . . , α jp , αk+l, . . . , αk+m,

where 1 ≤ k ≤ k + l ≤ k + m ≤ n − 1, p ≥ 0, and each ji < αk+l . We will call the
integer l the step length of the hexagon, the number of vertices in α j1, . . . , α jp the
tail length of the hexagon, and the integer m the total length of the hexagon. From
the dot graph it is easy to see these values. For instance the hexagon in Figure 7 has a
step length 2, and tail length 4. We will call the curve αk+l the curve at step length l.

In the discussion below we will also refer to vertices on the dot graph as being
“above” or “below” each other. This is referring to the actual placement of the
vertices on the dot graph. Along the intersection arc, a curve being “above” another
means that its index is higher than the other.

3 4 5 3 4 5 3 4 5 3 4 5

Figure 14. Now surgery on curve 4 is performed. This time an
even surgery is demonstrated. As in Figure 13, this curve intersects
curve 5 exactly one time, so it is nonseparating. An odd surgery
would do the same.
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Figure 15. These three numbers, along with the starting vertex,
completely determine a type 1 hexagon.

Notice that we may always assume that the tail length of a hexagon is nonzero.
If it were zero, the curve at step length l would occur consecutively in the dot graph,
and a trivial surgery on this curve would remove the hexagon from the dot graph.
We begin the hexagon surgery the same. Consider the curve at step length l, this is
the only curve that occurs three times in the hexagon. There exists a surgery on the
first two intersection points that removes the third intersection point. This surgery is
determined by the orientations of the first two intersection points. However, whatever
surgery is required intersects the curves directly adjacent (above and below in the
dot graph) to it exactly one time, thus the result is nonseparating. See Figure 16.

We now attempt to perform surgeries on the curves that occur below the curve
at step length l. Just as in the box case, these curves have either surgery available
to them since all possible surgeries will intersect the curve directly adjacent to it
(above it in the dot graph) exactly once. Now we are ready perform surgeries on
the curves that occur after the curve at step length l. The curve directly adjacent to

3 4 5 6 7 3 4 5 4 5 6 7 3 4 5 6 7 3 4 5 4 5 6 7

Figure 16. The intersection sequence corresponding to the above
hexagon in the dot graph. Odd surgery on curve 5 intersects curve 6
(and 4) exactly once, and thus it is nonseparating. An even surgery
would do the same, so any required surgery to delete the last 5
vertices in the dot graph works. The ellipses represent curves in
the tail of the hexagon, and the curve 4 is seen in the intersection
sequence because we assume the tail length is nonzero.
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3 4 5 6 7 3 4 5 4 5 6 7 3 4 5 6 7 3 4 5 4 5 6 7

Figure 17. Now surgery on curve 4 is performed. This time an
even surgery is demonstrated. As above this curve intersects the
old curve 5 exactly one time, so it is nonseparating. An odd surgery
would do the same. The same follows for curve 3.

the curve at step length l (above it in the dot graph) may cause issues. We break
this into two cases:

Subcase 2.1: Let m denote the total length of the hexagon, and let l denote the
step length. If m > l + 1, then the surgeries follow exactly as in C(S). This is
clear since all the curves obtained from surgery above the curve at step length l
intersect an adjacent curve (above or below in the dot graph) exactly once. Notice
that for the curve directly above the curve at step length l, αk+l+1, we use the
intersection with the curve above it αk+l+2 to show it is nonseparating. For curves
above αk+l+1 in the dot graph, say α j , we look at the intersection with α j−1 to
show it is nonseparating. See Figure 18.

Subcase 2.2: Let m denote the total length of the hexagon, and let l denote the
step length. If m = l + 1, then we introduce a new surgery on the curve αk+l+1.

All the curves below the curve at step length l have the surgeries performed on
them as before, each is nonseparating. We now need to perform a surgery on the
curve αk+l+1 and argue that is nonseparating.

3 4 5 6 7 3 4 5 4 5 6 7 3 4 5 6 7 3 4 5 4 5 6 7

Figure 18. Surgery on curve 6 is performed. This curve intersects
the curve 7 exactly one time, so it is nonseparating. An odd surgery
would do the same. Notice the surgery would intersect the old
curve 5 twice, so it is not possible to argue that it is nonseparating
with curve 5.
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4

5

6

7

Figure 19. Surgery on the curves 3 through 5 will be just fine,
since either type of surgery will intersect the curve directly above
it exactly once. But surgery on 7 will intersect 6 twice.

If the curve αk+l+1 requires odd surgery, then it is nonseparating because the
surgered curve α′

k+l+1 intersects αk+l+1 exactly once as in Proposition 2.5. In the
case where αk+l+1 requires even surgery and the even surgery required forces the
new curve α′

k+l+1 to be separating, will we consider the part of αk+l (the curve at step
length l) that is “inside” of the curve α′

k+l+1 (We call the “inside” of α′

k+l+1 the part
of the surface disjoint from the curve α′

k+l). Since we are assuming our hexagon has
a tail, we will also see the curve αk+l−1 intersect γ one time inside the region along
gamma between the second occurrence of αk+l and the third occurrence of αk+1.
If we were able to perform even surgery on these two parts of αk+l , the resulting
curve is nonseparating since it intersects αk+l−1 exactly once. By the assumption
that α′

k+l+1 is separating, the orientation of αk+l inside of α′

k+l+1 must be consistent
with an even surgery, otherwise αk+l would intersect αk+l+1. See Figure 20.

Let the new nonseparating curve that is obtained by joining the ends of curve αk+l

inside of α′

k+l+1 be denoted by β. We want β to be a replacement curve for
curve αk+l+1 so it must be disjoint from α′

k+l and αk+l+2. Clearly, β is disjoint

3 4 5 6 7 3 4 5 6 5 6 7 3 4 5 6 7 3 4 5 6 5 6 7

Figure 20. After performing surgery on curve 6, and doing the
required even surgery on curve 7 (in the figure it is ++), notice
the two parts of curve 6 bounded by the new curve 7′. If we
assume that 7′ is separating then the two parts of 6 inside 7′ must
be oriented to allow for ++ surgery.
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6′ 7 5 6 7

β 7′

Figure 21. The curve β is disjoint from curve 6′ since 7′ is disjoint
from 6′ and β, and β is on the other side of 7′ than 6′.

from α′

k+l since α′

k+l+1 is disjoint from α′

k+l , β is disjoint from α′

k+l+1 and β is on
the other side of α′

k+l+1 then α′

k+l . This is demonstrated in Figure 21.
Now we need to argue that the curve β is disjoint from the curve αk+l+2. Observe

that α′

k+l+1 must be disjoint from αk+l+2. Indeed, it is obtained by surgery on the
curve αk+l+1 with an arc of γ , both of which are disjoint from αk+l+2, because
αk+l+2 does not enter the hexagon. Thus, if αk+l+2 intersects β it is contained
entirely inside α′

k+l+1 and therefore disjoint from α′

k+l . This is a contradiction.
Since then the curve αk+l+1 is not required in a geodesic path. We would have a
path α0, α

′

1, . . . , α
′

k+l, αk+l+2, . . . ,αn of length n − 1 contradicting the assumption
that the distance between v0 and vn is exactly n. So, β is a nonseparating curve
disjoint from αk+l+2 and α′

k+l . Therefore, β is a suitable replacement for αk+l+1.
The case for a hexagon of type 2 follows the exact same argument. This covers

all the cases, thus proving Lemma 2.1.

3. Conclusion

We have demonstrated that efficient geodesics exist in the nonseparating curve
complex. Moreover, we demonstrated that given any geodesic in the complex
of curves we may obtain an efficient geodesic whose vertices, with the possible
exception of the endpoints, are all nonseparating curves.

Question 1. Birman, Margalit, and Menasco [2016, Theorem 1.1] prove that, given
vertices v0 and vn at distance n in C(S), there are at most n6g−6 vertices that may
appear as the first curve in an initially efficient geodesic. Can this bound be reduced
when we restrict to N(S)?

Question 2. Does replacing a separating curve with a nonseparating curve in a path
ever increase the complexity measure?

Question 3. Find an example of an efficient geodesic that contains a separating
curve. Are there any restrictions on the number of separating curves in a efficient
geodesics?
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ON MULTIPLICITY-FREE WEIGHT MODULES
OVER QUANTUM AFFINE ALGEBRAS

XINGPENG LIU

Our goal is to construct and study the multiplicity-free weight modules of
quantum affine algebras. For this, we introduce the notion of shiftability
condition with respect to a symmetrizable generalized Cartan matrix, and
investigate its applications on the study of quantum affine algebra struc-
tures and the realizations of the infinite-dimensional multiplicity-free weight
modules. We also compute the highest `-weights of the infinite-dimensional
multiplicity-free weight modules as highest `-weight modules.

1. Introduction

Let Uq.g/ be the quantum affine algebra (without derivation) associated to an affine
Lie algebra g over C in which q is not a root of unity. In this note, we are concerned
with infinite-dimensional multiplicity-free weight representations, i.e., those with
all of their weight subspaces one-dimensional, over Uq.g/. As we shall see, these
representations are the basic representations toward the infinite-dimensional modules
of quantum affine algebras.

In the classical cases, the multiplicity-free weight representations over finite-
dimensional simple Lie algebras, or more generally, the bounded weight repre-
sentations have been extensively studied in [Benkart et al. 1997; Britten et al.
1994; Grantcharov and Serganova 2006; 2010]. These representations play a
crucial role in the classification of simple weight modules of finite-dimensional
simple Lie algebras (see [Mathieu 2000]). For the quantum groups of finite type,
Futorny, Hartwig, and Wilson [Futorny et al. 2015] gave a classification of all
infinite-dimensional irreducible multiplicity-free weight representations of type An.
Recently, the infinite-dimensional multiplicity-free weight representations of the
quantum groups of types An, Bn and Cn were constructed in [Chen et al. 2024].

As an important class of multiplicity-free weight modules, the q-oscillator repre-
sentations over Uq.g/ of types A.1/n , C .1/n , A.2/2n , and D.2/nC1 have been obtained in
the works of T. Hayashi [1990] and A. Kuniba and M. Okado [2018; 2013; 2015].
Our goal is to construct infinite-dimensional multiplicity-free weight representations
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of Uq.g/ in a general way. For this, associated to each symmetrizable generalized
Cartan matrix, we introduce a system of equations in a Laurent polynomial ring A
(essentially, the Cartan part of Uq.g/) by the shift operators. We say that the
corresponding generalized Cartan matrix satisfies the shiftability condition if the
system of equations has solutions (see Section 4A). One result of this note is
that an affine Cartan matrix satisfies the shiftability condition if and only if the
relevant Dynkin diagram is one of the types mentioned above (see Theorem 4.2).
The solutions allow us to define Uq.g/-module structures on A, and to relate the
quantum affine algebra structures with the n-fold quantized oscillator algebra. Our
method for the construction is parallel with the earlier work concerning U 0-free
modules [Chen et al. 2024]. Namely, we can get the multiplicity-free weight
modules of Uq.g/ by applying the “weighting” procedure to the above modules
on A. In particular, the q-oscillator representations can also be reconstructed.

For the study of weight representations of quantum affine algebras, the concepts
of `-weights and `-weight vectors have proven especially useful, allowing one to
refine the spectral data properly in weight representations. For example, we have the
classification of irreducible finite-dimensional representations (see [Chari and Press-
ley 1991; 1998]) and infinite-dimensional weight representations of quantum affine
algebras [Hernandez 2005; Mukhin and Young 2014] by highest `-weights (their
highest `-weights are determined by Drinfeld polynomials and rational functions,
respectively). In this note, we shall compute explicitly the highest `-weight of the
q-oscillator representations. For the type A.1/n , the highest `-weights of q-oscillator
representations also were discussed in [Boos et al. 2016; 2017; Kwon and Lee 2023].

The paper is organized as follows. In Section 2, we give some necessary notation,
and review two presentations of quantum affine algebras. In Section 3, we recall
the definition of highest `-weight representations. Then we obtain the classification
of highest `-modules with finite weight multiplicities in general. In Section 4,
we introduce the notion of shiftability condition, and present the solutions to
the corresponding system of equations, which allow us to study the compatible
structures of quantum affine algebras with the n-fold quantized oscillator algebra. In
Section 5, the infinite-dimensional multiplicity-free weight modules are constructed.
In Section 6, we compute the highest `-weight of the q-oscillator representations.

Conventions. Let Z, R, and C be the sets of integers, real numbers and complex
numbers respectively. Denote C n f0g by C� and the set of nonnegative integers
by Z�0. Finally, ıij is the Kronecker symbol.

2. Preliminaries and notation

First, let us recall some necessary notation and two presentations of quantum affine
algebras based on [Beck and Nakajima 2004; Drinfeld 1987; Kac 1990].
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2A. Affine Kac–Moody algebras. Let gD g.X
.r/
N / be an affine Kac–Moody al-

gebra with respect to the generalized Cartan matrix AD .aij /i;j2I of type X .r/N ,
where I D f0; 1; : : : ; ng is an indexed set and X .r/N is a Dynkin diagram from [Kac
1990, Table Aff r], except in the case of X .r/N D A

.2/
2n .n � 1/, where we reverse

the numbering of the simple roots.
Let f˛igi2I � h� (resp. f˛_i gi2I � h) denote the set of simple roots (resp.

simple coroots) such that h j̨ ; ˛_i i D aij . Let Q D
L
i2I Z˛i be the root lattice

of g. Set QC D
L
i2I Z�0˛i . Assume that ı D

P
ai˛i and c D

P
a_i ˛

_
i are the

smallest positive imaginary root and a central element of g, where ai and a_i are
the numerical labels of the Dynkin diagrams of X .r/N and its dual, respectively. Let
f!igi2I denote the fundamental weights of g, i.e., h!i ; ˛_j i D ıij for i; j 2 I .

Let W be the affine Weyl group of g (which is a subgroup of the general linear
group of h�) generated by the simple reflections si .�/ D �� h�; ˛_i i˛i , � 2 h�,
i 2 I . Note that w.ı/ D ı for all w 2 W . Set I0 D I n f0g. Denote by VW the
subgroup of W generated by the simple reflections si for i 2 I0. It is a finite group.

Take the nondegenerate symmetric bilinear form . � ; � / on h� invariant under the
action of W , which is normalized uniquely by .�; ı/D h�; ci for � 2 h�. Define D
as the diagonal matrix diag.d0; : : : ; dn/with diDa�1i a_i . Then .˛i ; j̨ /Ddiaij for
all i; j 2 I . Let4 be the root system of g, 4˙D4\.˙QC/, and let4reD4nZı

be the set of real roots. For each ˛ 24re we set zd˛Dmax
�
1; 1
2
.˛; ˛/

�
. In particular,

write zdi simply for zd˛i
. Then

zdi D

�
1 if r D 1 or X .r/N D A

.2/
2n ;

di otherwise:

Denote by VA D .aij /i;j2I0
the Cartan matrix of finite type, and let Vg be the

associated simple finite-dimensional Lie algebra. Then f˛igi2I0
is a set of simple

roots for Vg. Let VQD
L
i2I0

Z˛i be the root lattice for Vg, and let zP be the weight
lattice of the euclidean space R˝Z

VQ � h� defined as zP D
L
i2I0

Zz!i , where
.z!i ; j̨ / D ıij zdi . Then VQ can be naturally embedded into zP , which provides
a W -invariant action on h� by x.�/D �� .x; �/ı for x 2 zP ; � 2 h�.

Define the extended Weyl group by �W D VW Ë zP . We also have �W DW ËT ,
where T D fw 2 �W j w.4C/ � 4Cg, which is a subgroup of the group of the
Dynkin diagram automorphisms. An expression for w 2 �W is called reduced if
w D �si1 � � � sil , where � 2 T and l is minimal. We call the minimal integer l the
length of w, and denote it by l.w/.

2B. Quantum affine algebras. The quantum affine algebra Uq.g/ in the Drinfeld–
Jimbo realization [Drinfeld 1985; Jimbo 1985] is the unital associative algebra
over C generated by XCi , X�i , K˙1i , i 2 I , with the following relations:

KiK
�1
i DK

�1
i Ki D 1; KiKj DKjKi ;(2-1)
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KiX
˙
j K

�1
i D q

˙aij

i X˙j ;(2-2)

XCi X
�
j �X

�
j X
C
i D ıij

Ki �K
�1
i

qi � q
�1
i

;(2-3)

1�aijX
kD0

.�1/k
�
1� aij

k

�
qi

.X˙i /
kX˙j .X

˙
i /

1�aij�k D 0 for i ¤ j;(2-4)

where q 2C� is not a root of unity and qi Dqdi . We have used the standard notation:

Œm�q D
qm� q�m

q� q�1
; Œm�Šq D Œm�qŒm� 1�q � � � Œ1�q;

�
m

r

�
q

D
Œm�Šq

Œr�ŠqŒm� r�
Š
q

:

In particular, we denote Œm�qi
by Œm�i for simplicity.

Let U 0 be the commutative subalgebra of U WD Uq.g/ generated by Ki ; K�1i ,
i 2 I . It is clear that each element in U 0 is a linear combination of the monomials
Kˇ WD K

b0

0 K
b1

1 � � �K
bn
n for ˇ D

P
i2I bi˛i 2 Q. In particular, Kı is a central

element in U . Let UC (resp. U�) denote the span of monomials in XCi (resp. X�i ).
Recall that U has a canonical triangular decomposition U Š U�˝U 0˝UC. For
later use, we note that UC is graded by QC in the usual way: UC D

L
ˇ2QC

UC
ˇ

.
Let us recall the Hopf algebra structure ofU with the coproduct�, the antipode S ,

and the counit � defined as follows:

�.Ki /DKi ˝Ki ; �.XCi /DX
C
i ˝ 1CKi ˝X

C
i ;

�.X�i /DX
�
i ˝K

�1
i C 1˝X

�
i ;

S.XCi /D�K
�1
i XCi ; S.X�i /D�X

�
i Ki ; S.Ki /DK

�1
i ;

�.XCi /D 0D �.X
�
i /; �.Ki /D 1:

There exists another presentation of U due to Drinfeld [1987]. Just like the
realizations of the affine Kac–Moody algebras g as (twisted) loop algebras, this
presentation of U is generated by the Drinfeld’s “loop-like” generators.

Consider the root datum .XN ; �/ with � a diagram automorphism of XN of
order r . Let AD .xaij /1�i;j�N be the Cartan matrix of the type XN , and let ! be a
fixed primitive r-th root of unity. Note that if r D 1 (i.e., � is an identity) we have
N D n and AD VA; if r > 1, then XN is one of the simply laced types: AN .N � 2/,
DnC1 .n� 2/, or E6. We use Ni 2 I0 to stand for one representative of the � -orbit
of i on f1; 2; : : : ; N g such that Ni � �s.i/ for any s. Take the set of simple roots
fx̨ig1�i�N and the normalized bilinear form . ; / (by abuse of notation) such that
.x̨i ; x̨j /D diaij if r D 1 and otherwise .x̨i ; x̨j /D xaij for 1� i; j �N .

The quantum affine algebra U (add the central elements K˙1=2
ı

) is isomorphic
to the algebra generated by x˙

i;k
.1� i �N; k 2 Z/, hi;k .1� i �N; k 2 Zn f0g/,

k˙1i .1� i �N/, and the central elements C˙1=2, subject to the following relations:
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x˙�.i/;k D !
kx˙i;k; h˙�.i/;k D !

kh˙i;k; k˙1�.i/ D k
˙1
i ;

kik
�1
i D k

�1
i ki D 1; kikj D kjki ; kihj;l D hj;lki ;

kix
˙
j;k D qNi

˙aNi Nj x˙j;kki ;

Œhi;k; hj;l �D ık;�l
1

k

� rX
sD1

�
k.x̨i ; x̨�s.j //

dNi

�
Ni

!ks
�
C k �C�k

qNi � qNi
�1

;(2-5)

Œhi;k; x
˙
j;l �D˙

1

k

� rX
sD1

�
k.x̨i ; x̨�s.j //

dNi

�
Ni

!ks
�
C�jkj=2x˙j;kCl ;

ŒxC
i;k
; x�j;l �D

� rX
sD1

ı�s.i/j!
sl

zdNi

�
C .k�l/=2 C

i;kCl
�C�.k�l/=2 �

i;kCl

qNi � qNi
�1

;

where the  ˙
i;k

are the elements determined by the following identity of the formal
power series in z:

1X
kD0

 ˙i;˙kz
˙k
D k˙1i exp

�
˙.qNi � qNi

�1/

1X
lD1

hi;˙lz
˙l

�
;(2-6)

together with the quantum Serre–Drinfeld relations, whose explicit forms will not
be used in this paper. One can refer to [Drinfeld 1987] for more details and to
[Beck 1994; Jing 1998] and [Damiani 2000; 2012; 2015]1 for a proof.

Under the isomorphism, we have X˙i D x˙i;0, K˙1i D k˙1i for i 2 I0, and
Kı D C . Note that  C

i;�k
D  �

i;k
D 0 for any positive integers k, and  ˙i;0 D k

˙1
i

from the identity (2-6).
From the relations in the Drinfeld presentation, U is essentially generated by

x
˙

i; zdik
.i 2 I0; k 2 Z/, hi; zdik .i 2 I0; k 2 Z n f0g/, k˙1i .i 2 I0/, and the central

elements C˙1=2 (see [Damiani 2012, Proposition 4.25]). Moreover, the quantum
affine algebra U has a triangular decomposition [Chari and Pressley 1994; 1998]:

(2-7) U Š U.6/˝U.0/˝U.>/;

where U.>/ (resp. U.6/) is the subalgebra generated by xC
i; zdik

(resp. x�
i; zdik

),
i 2 I0, k 2Z, and U.0/ is the subalgebra generated by C˙1=2 and k˙i , hi;k , i 2 I0,
k 2 Z n f0g.

3. Highest `-weight representations with finite weight multiplicities

In this section, we recall basic notation of representations over quantum affine
algebras: weight modules, `-weights, and highest `-weight modules. Most of the

1The author used the notation zH˙
i;l

, Hi;l , which is related with the notation  ˙
i;l

, hi;l by zH˙
i;l
D

C l=2k�1i  ˙
i;l

and Hi;l D C l=2hi;l .
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definitions and results in this section are well-known; one can refer to [Chari and
Pressley 1991; Mukhin and Young 2014].

3A. Highest `-weight modules. We begin with the notion of highest `-weight
modules. Thanks to the Hopf algebra structure of U 0 (inherited from U ), the set of
all algebra characters of U 0, i.e., all algebra homomorphisms from U 0 to C, has
an abelian group structure. The addition and the inverse are given by

.�C�/.u/D .�˝�/ ı�.u/; .��/.u/D � ıS.u/

for any algebra characters �;�, and u 2 U 0. Denote this group simply by .X ;C/.
Any ˇ 2 h� induces a character in X by assigning Ki to q.ˇ;˛i / for i 2 I , which
is unique up to a constant multiple of ı, so we still denote it by ˇ 2X .

For a U -module V and � 2X , define

V� D fv 2 V j u:v D �.u/v for all u 2 U 0g:

By the defining relations (2-2) we have X˙i :V� � V�˙˛i
. If V� is nonzero, then

we say � is a weight of V , and V� is a weight space of weight �. A nonzero vector
v 2 V� is called a weight vector of weight �. If the weight space V� is finite-
dimensional, then dimV� is called the multiplicity of the weight �. Call V a weight
module if V D

L
� V�. Moreover, a weight module V is said to be multiplicity-free

if dimV� � 1 for all � 2X .
Throughout this note, we assume that the central element C acts trivially on a

U -module. So any weight � of a U -module is level-zero, that is, �.Kı/D 1.
Note that the actions of the  ˙

i;k
on a U -module commute with each other by

(2-5) and (2-6). For a weight � of V with finite multiplicity, we may refine the
weight space V� as

V� D
M


Wwt.
/D�

V
 ;

V
 D fv 2 V� j 81� i �N; k � 0; 9m 2 Z>0; . 
˙
i;˙k � 


˙
i;˙k/

m:v D 0g;

where 
 D .
˙i;˙k/1�i�N;k2Z�0
is any N -tuple of sequences of complex numbers

satisfying that 
Ci;0

�
i;0 D 1 and 
˙�.i/;˙k D !

˙k
˙i;˙k for all 1 � i � N , and we
associate 
 with a level-zero weight wt.
/2X by setting wt.
/.Ki /D 
Ci;0 for all
i 2 I0. Call such a sequence 
 an `-weight and V
 the `-weight space of 
 if V
 is
not zero.

Given an `-weight 
 , the defining relations in the Drinfeld presentation imply that

 is completely determined by the tuple of complex numbers .
˙i;˙zdik

/i2I0;k2Z�0
.

Note that the 
˙i;k for zdi ∤ k are zero. Hence we may write 
 � .
˙i;˙zdik
/i2I0;k2Z�0

directly without any ambiguity.
Now we can define the highest `-weight modules.
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Definition 3.1. We say V is a highest `-weight modules of highest `-weight 
 if
V DU:v for some nonzero vector v 2 V such that xCi;k :vD 0 for 1� i �N , k 2 Z,
and  ˙i;˙k :v D 


˙
i;˙kv for 1 � i � N , k 2 Z�0. By (2-7), dimV
 D 1, so v is

unique up to a scalar; we call it the highest `-weight vector of V .

3B. The classification theorem: rationality. In this subsection we give the classi-
fication of simple highest `-weight modules with finite weight multiplicity, which
appeared in [Mukhin and Young 2014] for untwisted cases.

We say an `-weight f D .f ˙i;˙zdik
/i2I0;k2Z�0

is rational if there is a tuple of
complex-valued rational functions .fi .z//i2I0

in a formal variable z such that for
each i 2 I0, fi .z/ is regular at 0 and1, fi .0/fi .1/D 1, and

1X
kD0

f C
i; zdik

zk D fi .z/D

1X
kD0

f �
i;�zdik

z�k

in the sense that the left- and right-hand sides are the Laurent expansions of fi .z/
at 0 and1, respectively.

Let R be the set of all rational `-weights. Then R forms an abelian group with the
group operation .f ;g/ 7! fg being given by componentwise multiplication of the
corresponding tuples of rational functions. We will not always distinguish between
a rational `-weight f and the corresponding tuple .fi .z//i2I0

of rational functions.
Recall from [Chari and Pressley 1991; 1998] that simple finite-dimensional

modules of U are highest `-weight modules, and their highest `-weights f are
parametrized by the tuples of the Drinfeld polynomials. More precisely, there exists
a tuple of polynomials .Pi .z//i2I0

with all Pi .z/ having constant coefficient 1
such that f satisfies that for i 2 I0,

fi .z/D

(
q
2 degPn
n .Pn.q

�4
n z/=Pn.z// if .X .r/N ; i/D .A

.2/
2n ; n/;

q
degPi

i .Pi .q
�2
i z/=Pi .z// otherwise:

Therefore, the highest `-weight of any simple finite-dimensional module is rational.
In general, we have the following theorem.

Theorem 3.2. Let V be an irreducible highest `-weight module. Then all weight
spaces of V are finite-dimensional if and only if its highest `-weight f belongs to R.

Proof. For the nontwisted cases, one can refer to [Mukhin and Young 2014, Theorem
3.7]. The proof of the twisted cases is essentially parallel to that of the untwisted
cases thanks to the triangular decomposition (2-7) of the Drinfeld realization. �

4. Shiftability conditions and algebra homomorphisms

In this section, the notion of the shiftability condition with respect to a generalized
Cartan matrix will be introduced, and the compatible structures of the quantum
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affine algebras with the n-fold q-oscillator algebras are given from the q-shiftability
condition.

4A. Shiftability conditions. Let AD .aij /i;j2I be any symmetrizable generalized
Cartan matrix. Let A be the Laurent polynomial ring over C in the variables xi ,
i 2 I , i.e., AD CŒx˙1i ; i 2 I �. For each i 2 I , consider the algebra automorphism
�i WA!A given by �i .xj /D q�ıij

i xj for j 2 I . For any distinct i; j 2 I , we say
a pair of Laurent polynomials .f; g/ in A is .i; j /-shiftable if f , g satisfy

fg D ��1j .f /��1i .g/:

Set fxgi WD .x� x�1/=.qi � q�1i / for any unit x in A, and for simplicity, write
fxg D .x� x�1/=.q� q�1/. Define the elements yi ; y�1i 2A by

y˙1i D
Y
j2I

x
˙aji

j :

Consider the following system of equations with respect to the variables �i , i 2 I ,
in A:

(4-1)
�
�i .�i /��i D fyigi ;

�i�j D �
�1
j .�i /�

�1
i .�j /;

i; j 2 I; i ¤ j:

In general, this system of equations does not always have a solution. It depends on
the choice of the generalized Cartan matrix A. Therefore, we can say A admits the
q-shiftability condition when the corresponding system (4-1) has a solution.

By a quick computation, we obtain a family of solutions to (4-1) for A of types
A2 and A.1/1 .

Example 4.1. (i) For the type A2, a pair of Laurent polynomials .�1; �2/ where
�1 D fqbx1gfbx

�1
1 x2g and �2 D fqbx�11 x2gfbx

�1
2 g for each scalar b 2 C�

is a solution.

(ii) For the typeA.1/1 , consider the Laurent polynomials �0Dfqbx0x�11 gfbx
�1
0 x1g

and �1 D fqbx�10 x1gfbx0x
�1
1 g for any scalar b 2 C�. It is easy to check that

.�0; �1/ is a solution.

In what follows, the q-shiftability condition for the generalized Cartan matrices
of affine types will be investigated. Now assume that A is an affine Cartan matrix
as in Section 2. Then we have the first main result in this section.

Theorem 4.2. There exists an .nC1/-tuple of Laurent polynomials in A satisfying
the system (4-1) if and only ifA is of the typeA.1/n .n�1/, C .1/n .n�2/, A.2/2n .n�1/
or D.2/nC1 .n� 2/.

The proof of Theorem 4.2 will be given in the Appendix. Here we list all tuples
of Laurent polynomials .�i /i2I satisfying (4-1) for each affine Cartan matrix A in
the theorem above.
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For the type A.1/n .n� 1/:�
fqbAz0gfbAz1g; fqbAz1gfbAz2g; : : : ; fqbAzngfbAz0g

�
:

For the type C .1/n .n� 2/:�
fq0bC z

�1
1 g0fbC z1g0; fq1bC z1g1fbC z2g1; : : : ; fqn�1bC zn�1gn�1fbC zngn�1;

fqnbC zngnfbC z
�1
n gn

�
:

For the type A.2/2n .n� 1/:�
f{q�

3
2 z1g0f{q

� 1
2 z1g0; f{q

1
2 z1g1f{q

� 1
2 z2g1; : : : ; f{q

1
2 zn�1gn�1f{q

� 1
2 zngn�1;

{

qn� q�1n
f{q

1
2 zngn

�
:

For the type D.2/nC1 .n� 2/:�
{

q0� q
�1
0

f{q�1z1g0; f{qz1g1f{q
�1z2g1; : : : ; f{qzn�1gn�1f{q

�1zngn�1;

{

qn� q�1n
f{qzngn

�
:

Here, { D
p
�1. The elements zi 2 A involved in the above solutions and the

relations in our notation are given as follows for each type:
For A.1/n ,

zi D x
�1
i�1xi ; z0 D .z1 � � � zn/

�1; yi D ziz
�1
iC1; yn D znz

�1
0 ; b

A
.1/
n
2 C�:

For C .1/n ,

zi D x
�1
i�1xi ; y0 D z

�2
1 ; yi D ziz

�1
iC1; yn D z

2
n; b

C
.1/
n
D q�1=4 or {q�1=4:

For A.2/2n ,

ziDx
�1
i�1xi ; znDx

�1
n�1x

2
n; y0Dz

�2
1 ; yiDziz

�1
iC1; ynDzn; b

A
.2/
2n

D {q�
1
2 :

For D.2/nC1,

z1Dx
�2
0 x1; zi Dx

�1
i�1xi ; znDx

�1
n�1x

2
n; yi D ziz

�1
iC1; ynD zn; y0D z

�1
1 ;

bD.2/

nC1
D {q�1:

By our convention, the Dynkin diagrams of the above four types and the corre-
sponding qi D qdi are the following:

0

q

1

q

2

q

n� 1

q

n

q
� � �

.A
.1/
n /

0

q

1

q
1
2

n� 1

q
1
2

n

q
� � �

.C
.1/
n /
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0

q2

1

q

n� 1

q

n

q
1
2

� � �

.A
.2/
2n /

0

q

1

q2

n� 1

q2

n

q
� � �

.D
.2/
nC1/

Remark 4.3. One can also consider the shiftability condition for a generalized
Cartan matrix A in the classical sense. More precisely, consider the polynomial
ring AC D CŒxi ; i 2 I �, and the algebra automorphisms �i WAC!AC defined by
�i .xj /D xj � ıij for all j 2 I . Write yi D

P
j2I aijxj . Then a similar system of

equations in AC (replace fyigi in (4-1) by yi ) can be obtained.

4B. Quantized oscillator algebra and algebra homomorphisms. One interesting
application of the q-shiftability condition is to study the compatible structures of
quantum affine algebras of types X .r/

N
with the n-fold quantized oscillator algebra.

Fix � 2 C�. The (symmetric) quantized oscillator algebra B� is the unital
associative algebra over C generated by four elements aC, a, k˙1 subject to the
relations:

Œa; aC�� D k; Œa; aC���1 D k�1; kk�1 D k�1kD 1;

kak�1 D ��1a; kaCk�1 D �aC;

where Œx; y�� WDxy���1yx. Then aCaDfkg, aaCDf�kg and fkgaCDaCf�kg,
afkg D f�kga in B� . Here we define fxg D fxg� D .x � x�1/=.� � ��1/ for
x D k or �k.

One can easily check the following results.

Lemma 4.4. (i) There exists a unique C-algebra automorphism (an involution)
# WB�!B� such that #.aC/D�a, #.a/D aC and #.k/D ��1k�1.

(ii) For any b 2 C� and m 2 Z, there exists a family of C-algebra automorphisms
�b;m W B� ! B� such that �b;m.a/ D bkma, �b;m.aC/ D b�1aCk�m and
�b;m.k

˙1/D k˙1.

Consider the algebra B˝n� of the n-fold tensor product of B� . Denote the
generators of its i-th component by aCi , ai and k˙1i , which satisfy the above
relations. Let Uq.X

.r/
N / be the quantum affine algebra U of the type X .r/N in

Theorem 4.2. For convenience, if X is of the type A then we shall deal with
A.1/n�1.n� 2/ instead of A.1/n .n� 1/ from now on.

Fix a solution .�i /i2I in Section 4A. We define the algebra homomorphism
�X.r/

N
WUq.X

.r/
N /!B˝n� as follows: regard �i and �i .�i / as the images of X�i X

C
i

andXCi X
�
i respectively under �X.r/

N
by setting ki Dq�1b�1A z�1i for the typeA.1/n�1,

and ki D {��1=2z�1i otherwise (here we consider the solution with bC D {q�1=4 for
the typeC .1/n ), where � is defined as in the following proposition for each type. Then
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the relations (2-3) for i D j hold under �X.r/
N

since �i satisfies �i .�i /��i D fyigi .
In this sense, A0 WD CŒk˙11 ; : : : ;k˙1n � is a subalgebra of A, and �X.r/

N
.Ki /D yi

for i 2 I . On the other hand, we choose �X.r/
N
.X˙i / 2B˝n� satisfying

�
X

.r/
N

.X˙i /f D �
˙1
i .f /�

X
.r/
N

.X˙i /

for any f 2A0. The above choice yields that the relations (2-1)–(2-4) hold. Then
we get the following algebra homomorphisms, which were obtained in [Hayashi
1990; Kuniba et al. 2015].

Proposition 4.5 [Hayashi 1990; Kuniba et al. 2015]. For a parameter z, there exist
algebra homomorphisms from Uq.X

.r/
N / to B˝n� Œz; z�1� defined as follows.

For the type A.1/n�1 and � D q:

�
A

.1/
n�1;z

W Uq.A
.1/
n�1/!B˝n� Œz; z�1�;

XCi 7! zıi;0aia
C
iC1; X�i 7! z�ıi;0aCi aiC1; Ki 7! k�1i kiC1:

For this type, we always read the index i as i modulo n.
For the type C .1/n and � D q

1
2 :

�
C

.1/
n ;z
W Uq.C

.1/
n /!B˝n� Œz; z�1�;

XC0 7! z.aC1 /
2=Œ2�� ; X�0 7! z�1a21=Œ2�� ; K0 7! ��k

2
1;

XCi 7! aia
C
iC1; X�i 7! aCi aiC1; Ki 7! k�1i kiC1;

XCn 7! a2n=Œ2�� ; X�n 7! .aCn /
2=Œ2�� ; Kn 7! ��

�1k�2n :

For the type A.2/2n and � D q:

�
A

.2/
2n ;z
W Uq.A

.2/
2n /!B˝n� Œz; z�1�;

XC0 7! z.aC1 /
2=Œ2�� ; X�0 7! z�1a21=Œ2�� ; K0 7! ��k

2
1;

XCi 7! aia
C
iC1; X�i 7! aCi aiC1; Ki 7! k�1i kiC1;

XCn 7! {��an; X�n 7! aCn ; Kn 7! {��
1
2k�1n ;

For the type D.2/nC1 and � D q2:

�
D

.2/
nC1

;z
W Uq.D

.2/
nC1/!B˝n� Œz; z�1�;

XC0 7! zaC1 ; X�0 7! {��z
�1a1; K0 7! �{�

1
2k1;

XCi 7! aia
C
iC1; X�i 7! aCi aiC1; Ki 7! k�1i kiC1;

XCn 7! {��an; X�n 7! aCn ; Kn 7! {��
1
2k�1n :

Here, �� D .�C 1/=.� � 1/. �
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5. Multiplicity-free weight modules

In this section, we construct the multiplicity-free weight representations overU from
the solutions and the algebra homomorphisms in the previous section. Throughout,
we assume that U is the quantum affine algebra of type X .r/N in Proposition 4.5.

5A. Module structures on A0. In order to construct the multiplicity-free weight
representations, we first consider the auxiliary U -module structures on A0 D
CŒz˙11 ; z˙12 ; : : : ; z˙1n �.

Let us fix some notation here. Note that ˛0 and ˛n are long roots in the type C .1/n ,
while both of them are short roots in D.2/nC1. In addition, by our assumption, ˛0
is long and ˛n is short in A.2/2n . We define a pair � WD .�1; �2/ of signs such that
�1, �2 are equal to 0 or 1, depending on the length of the roots ˛0 and ˛n for each
type, that is,

.�1; �2/D .1; 1/ for C .1/n ;

.�1; �2/D .1; 0/ for A.2/2n ;

.�1; �2/D .0; 0/ for D.2/nC1:

Fix a solution .�i /i2I of (4-1), and recall the units zi for each type, and the shift
operators �i defined in Section 4A. Put b D bX.r/

N
. Then we have:

Theorem 5.1. Let z be a parameter valued in C�. For an n-tuple f D .fi /1�i�n
such that fi is equal either to 1 or to bzi � b�1z�1i for 1� i � n, there exists a
U -module structure on the algebra A0 for each type defined in the following:

For the type A.1/n�1,

XCi :uD z
ıi;0fi�i

�
fbziC1g

fiC1

�
�i .u/; X�i :uD z

�ıi;0��1i

�
fbzig

fi

�
fiC1�

�1
i .u/;

and K˙1i :uD y˙1i u, for any u 2A0.
For other types,

XC0 :uD z
�0.�0/�0.u/

��11 .f1/�1�0.f1/
; X�0 :uD z

�1f1�1.f1/
�1��10 .u/;

XCi :uD fi�i

�
fbziC1gi

fiC1

�
�i .u/; X�i :uD �

�1
i

�
fbzigi

fi

�
fiC1�

�1
i .u/;

XCn :uD fn�
�1
n�1.fn/

�2�n.u/; X�n :uD
�n�
�1
n .u/

��1n .fn/�n�1.fn/�2
;

and K˙1i :uD y˙1i u, for any u 2A0.

Proof. Taking uD 1 in the above construction we have the precise expressions of
the actions X˙i :1. In addition, for any u 2A0 we have X˙i :uD �

˙1
i .u/X˙i :1. We
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can check each defining relation directly. For the relations (2-2), we have

.KiX
˙
j K

�1
i /:uD yi .X

˙
j :.y

�1
i u//

D yi�
˙1
j .y�1i u/X˙j :1D yi�

˙1
j .y�1i /X˙j :uD q

˙aij

i X˙j :u:

For the relations (2-3), we consider three cases:

(1) If i D j , then we have

.XCi X
�
i �X

�
i X
C
i /:uD u

�
�i .X

�
i :1/X

C
i :1� �

�1
i .XCi :1/X

�
i :1

�
D u.�i .�i /��i /:

Here, �i WD ��1i .XCi :1/X
�
i :1, i 2 I , is just a solution to the system (4-1), by

construction, which implies (2-3) for i D j , as desired.

(2) If ji � j j > 1, then we have �i .fk/ D fk and �i .fbzkgk/ D fbzkgk for k D
j; jC1. Similarly, �j .fk/Dfk and �j .fbzkgk/Dfbzkgk for kD i; iC1. Therefore

XCi X
�
j :uD �i�

�1
j .u/�i .X

�
j :1/X

C
i :1D �i�

�1
j .u/.X�j :1/.X

C
i :1/DX

�
j X
C
i :u:

(3) If ji � j j D 1, we need to do more detailed calculations for each type. First
assume aijaj i D 1. Then we have to show

�i�
�1
j

�
fbzj gj

fj

�
�i .fjC1/fi�i

�
fbziC1gi

fiC1

�
D ��1j

�
fbzj gj

fj

�
fjC1�

�1
j .fi /�i�

�1
j

�
fbziC1gi

fiC1

�
:

If j D i C 1, then �i .fjC1/D fjC1, ��1j .fi /D fi , and �i .fj /D ��1j .fj /, while
for iD jC1, we have ��1j .fiC1/DfiC1, �i .fj /Dfj , and �i .fi /D ��1j .fi /. Both
cases imply the above equality holds. When X .r/N ¤ A

.1/
n�1, a direct computation

yields the following equalities:

fbz1g1�1�0 D �0�
�1
0 fbz1g1; f

�1

1 �˙10 �˙11 .f1/D f1�
�1
1 .f1/

�1 ;

fbzngn�1�n D �
�1

n .fbzngn�1/�
�1

n�1.�n/; f �2
n �˙1n�1�

˙1
n .fn/D fn�

�1
n�1.fn/

�2 :

Then similar arguments for the case that aijaj i D 2 are true. Any tuple .�i /i
satisfying (4-1) and the choice of .fi /i also guarantee that these actions hold under
the quantum Serre relations (2-4). �

Denote by Sz.f / the U -module on A0 related to z and f given by Theorem 5.1.
Recall �X.r/

N
.Ki /D yi in the construction in Section 4B. Then

�
X

.r/
N

.Kı/D
Y
i2I

y
ai

i D

Y
i2I

Y
j2I

x
ajiai

j D

Y
j2I

x
P

i2I ajiai

j D 1:(5-1)

In particular,Kı acts trivially on Sz.f /. Therefore, Sz.f / is finitely U 0-generated
instead of U 0-diagonalizable when restricted as a U 0-module.
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Now let us explain the “weighting” procedure mentioned in the introduction.
That is, to a U -module Sz.f /, we associate a weight module W.Sz.f // in the
following way. Consider the algebra homomorphism from U 0 to A0 that assignsKi
to yi for i 2 I0, which induces a natural group homomorphism from the group of
characters of A0 to X . For any character ' of A0, denote by m' .WD ker'/ the
corresponding maximal ideal of A0. Extending j̨ 2X to a character of A0 by
setting j̨ .yi /D q

aji
j

(still denoting it by j̨ ), we have

Ki :m'Sz.f /�m'Sz.f /; X˙i :m'Sz.f /�m'˙˛i
Sz.f /:

Define
W.Sz.f //D

M
'

Sz.f /=m'Sz.f /;

where ' is taken over all characters of A0.

Corollary 5.2. For any U -module Sz.f /, we have that W.Sz.f // is a weight
module, and all its simple subquotients are multiplicity-free.

Proof. It is clear that Sz.f /=m'Sz.f / is 1-dimensional and Ki acts diagonally.
In particular, Kı acts by 1. The first assertion follows from the previous statements,
and the �-weight space W.Sz.f //� D

L
x'D� Sz.f /=m'Sz.f /, where x' means

the image of ' in X . Since we have

X˙i :Sz.f /=m'Sz.f /� Sz.f /=m'˙˛i
Sz.f /;

the second assertion follows. �

Remark 5.3. In fact, the U -module W.Sz.f // is a q-analog of the coherent family
in the sense of [Nilsson 2016]. This “weighting” procedure was first suggested by
O. Mathieu [2000].

Now let us study the possible highest weights of W.Sz.f // when restricted as
a Uq.Vg/-module. Assume that the weight vector 1Cm'Sz.f / of W.Sz.f // is
a highest weight vector for some '. Then we have XCi :.1Cm'Sz.f // D 0 for
i 2 I0, which implies that

(5-2) .'C˛i /.�i .�i //D 0 for i 2 I0:

The weight �D x' is level-zero and is determined uniquely by the values �.Ki /,
i 2 I0. Therefore, all level-zero weights can be seen automatically as weights
over Uq.Vg/. As a result, we can obtain the following result.

Corollary 5.4. Let � 2X be a weight of W.Sz.f // for some f . If � is a highest
Uq.Vg/-weight, then up to twistings by the automorphisms of Uq.Vg/, we have

(1) for the type A.1/n�1, the weight � is of the form !0C a!s � .aC 1/!sC1 for
some a 2 C and s 2 I up to a constant multiple of ı;
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(2) for the type C .1/n , the weight � has the form 1
2
!0C!n�1�

3
2
!n or 1

2
.!0�!n/,

up to a constant multiple of ı;

(3) for the type A.2/2n (resp. D.2/nC1), the weight �D .�.K0/; : : : ; �.Kn// is defined
as

.�q; 1; : : : ; 1; {q�1=2/ .resp. .�{q; 1; : : : ; 1; {q�1//:

Proof. The result can be deduced directly from (5-2). For example, in the type
A.1/n�1, the equations (5-2) become

(5-3)
�
m0m1 � � �mn�1 D 1;

fqbmigfbmiC1g D 0; 1� i � n� 1;

where we denote '.zi / by mi for i 2 I . Let � D x'. Then �.Ki / D mim
�1
iC1.

To solve the equations (5-3), we consider two cases: if fqbm1g is not zero, then
fbmig D 0 for i � 2; if fqbm1g is zero, then we assume that s is the maximal
index such that fqbmsg is zero, and then fqbmig D 0 for i � s and fbmj g D 0 for
j � sC2. In the first case, the possible solutions are m1D˙bn�1 and mi D˙b�1

for i ¤ 1. Then, up to twistings by sign automorphisms of Uq.Vg/, the weight � is
given by

�.K0/D b
�n; �.K1/D b

n; �.Ki /D 1 for i � 2;

which is of the form .aC 1/!0 � .aC 1/!1 for some a 2 C. In the second case,
mi D˙q

�1b�1 for 0 � i � s, msC1 D˙qsC1bn�1, and mj D˙b�1 otherwise.
Then, up to signs, the weight � is the following:

�.Ks/D q
�s�2b�n; �.KsC1/D q

sC1bn; �.Ki /D 1 for i ¤ s; sC 1;

which is exactly of the form in (1). So assertion (1) follows. �

All simple subquotients obtained in Corollary 5.4 can be realized as q-oscillator
representations by using the Fock space representations of B� and the algebra
homomorphisms in Proposition 4.5 (see, e.g., [Kuniba 2018]). In the following
subsection, we shall recall the q-oscillator representations.

5B. Realization of multiplicity-free weight modules. Let F D
L
m2Z�0

Cjmi be
the Fock space representation of B� on which the generators aC and a act as
the creation and annihilation operators, respectively, and the element aCaD fkg�
corresponds to the number operator; more precisely, for any m 2 Z�0,

aC:jmi D jmC 1i; a:jmi D Œm�� jm� 1i; k˙1:jmi D �˙mjmi:

In particular, a:j0i D 0.
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Denote this representation by � WB�! EndC.F /. For any b 2C� and "2 f0; 1g,
we denote by �";b the composition � ı#" ı �b;0 (see Lemma 4.4). Then F has a
new B�-module structure via �";b .

Definition 5.5. Let z be a parameter valued in C�. We define the representation
Fz
";b

of U on the space F˝n via the composition of the algebra homomorphisms
�z WD �X.r/

N ;z
defined in Proposition 4.5 and

B˝n� Œz; z�1�
�"1;b1

˝���˝�"n;bn
�������������! EndC.F

˝n/;

where "D ."i /i 2 f0; 1gn, and bD .bi /i 2 .C�/n.

For any n-tuple .mi /i 2 .Z�0/n, we use jmi WD jm1i˝ � � �˝ jmni for the basis
vector of Fz";b. Let ej be the j -th standard vector in Zn with 1 at the j -th term
and 0 otherwise for 1� j � n. Moreover, set 0 for .0; : : : ; 0/ 2 Zn.

For n � 2, note that U -module actions of X˙1i , Ki for 1 � i � n� 1 on Fz";b,
by Definition 5.5, can be written down uniformly as follows:

XCi :jmi(5-4)
D .�1/"ibib

�1
iC1Œmi=m

"i

i �� Œm
"iC1

iC1 �� jm� .�1/
"iei C .�1/

"iC1eiC1i;

X�i :jmi(5-5)

D .�1/"iC1b�1i biC1Œm
"i

i �� ŒmiC1=m
"iC1

iC1 �� jmC .�1/
"iei � .�1/

"iC1eiC1i;

Ki :jmi D �
�.�1/"i .miC"i /C.�1/

"iC1 .miC1C"iC1/jmi;(5-6)

for m 2 .Z�0/n, where � is defined in Proposition 4.5 for each type, and jmi for
m … .Z�0/

n can be read as 0. Here we remark that the Uq.A
.1/
n�1/-module actions

of X˙0 ; K0 on jmi also have the above forms, where we understand the indices
i; i C 1 as n; 1 .mod n/, respectively.

Regard Uq.An�1/ as the subalgebra of Uq.g/ .n� 2/ via forgetting the actions
of the Drinfeld–Jimbo generators indexed by 0 and n. One can check that Fz";b
as a Uq.An�1/-module is a multiplicity-free weight module. In fact, Fz";b has the
following direct sum decomposition:

Fz";b D
1M

lD�1

Fz;.l/
";b

; Fz;.l/
";b
D

M
jmj"Dl

Cjmi:

For each m 2 Zn, write jmj" D
P
i .�1/

"imi . Each Fz;.l/
";b

is an irreducible,
multiplicity-free weight Uq.An�1/-module by formulae (5-4)–(5-6) as q (or �)
is not a root of unity.

Fix 1� i � n. Define the algebra homomorphism ıi WA0! C by kj 7! �ıij for
1� j � n. It induces an algebra character zıi 2X by

zıi W U
0 �j

U 0
����!A0

ıi
��! C:
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Then we have:

Proposition 5.6. For " 2 f0; 1gn and b 2 .C�/n, we have:

(i) Fz";b is a weight module with dim.Fz";b/� � 1 for any � 2X .

(ii) If dim.Fz";b/� D 1, then there exists m 2 .Z�0/n such that .Fz";b/� D Cjmi

with

(5-7) �D

nX
iD1

.�1/"i .mi C "i /zıi :

Proof. Clearly, Fz";b is a weight module. By (5-6) and the actions of K0 and Kn,
which are defined for X .r/N ¤ A

.1/
n�1 by

K0:jmi D �{
1��1�.�1/

"1 .�1C1/.m1C1=2/jmi;(5-8)

Kn:jmi D {
1C�2��.�1/

"n .�2C1/.mnC1=2/jmi;(5-9)

where �1 and �2 are defined in Section 5A, the relative weight of jmi is given by
the right-hand side of the equality (5-7). By the above statement, dim.Fz";b/� � 1
for any � 2X . �

Consider the following decomposition of Fz";b:

Fz";bDFz;C
";b
˚Fz;�

";b
; Fz;C

";b
D

M
jmj"�0 .mod2/

Cjmi; Fz;�
";b
D

M
jmj"�1 .mod2/

Cjmi:

For 0� s � n, let ">s 2 f0; 1gn satisfy

"1 D � � � D "s D 0; "sC1 D � � � D "n D 1:

For example, ">0 D .1; : : : ; 1/ and ">n D .0; : : : ; 0/.
Then we have:

Proposition 5.7. For any " 2 f0; 1gn and b 2 .C�/n, we have:

(i) As a Uq.A
.1/
n�1/-module, Fz;.l/

";b
is irreducible for any admissible l 2 Z (defined

in (5-10)); it is a highest `-weight module with a highest `-weight vector vl;s if
and only if "D ">s for some 0� s � n, where

(5-10) vl;s D

�
jlesi if l � 0 and 0 < s � n;
j�lesC1i if l < 0 and 0� s < n:

(ii) As Uq.C
.1/
n /-modules, Fz;C";b and Fz;�";b are irreducible; they are highest `-

weight modules with highest `-weight vector vC D j0i and v� D jeni respec-
tively whenever "D ">n.

(iii) As a Uq.A
.2/
2n / or Uq.D

.2/
nC1/-module, Fz";b is irreducible; it is a highest `-

weight module with a highest `-weight vector v D j0i whenever "D ">n.
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Proof. Note Kı acts trivially on Fz";b by (5-1). The defining relations (2-5) imply
that the actions of hi;k , 1� i �N , k 2 Z n f0g on Fz";b commute pairwise. Hence
Fz";b is an `-weight U -module. It is clear that Fz;.l/

";b
is closed under the action of

Uq.A
.1/
n�1/. The irreducibility of Fz;.l/

";b
can be checked by the actions (5-4)–(5-6).

Note that for " D ">0 (resp. " D ">n), Fz;.l/
";b

is finite-dimensional for l < 0

(resp. l � 0). As a Uq.An�1/-module (ignore the actions of X˙0 ; K0), Fz;.l/
";b

is a
highest weight module if and only if "1 � � � � � "n, and the corresponding highest
weight vector can be chosen as (5-10), which is also a highest `-weight vector by
weight consideration.

For X .r/N ¤ A
.1/
n�1, the actions of XC0 and XCn are given by

XC0 :jmi D z
b
��1�1
1

Œ�1C 1��

�1Y
jD0

Œ.m1� j /
"1 �� jmC .�1/

"1.�1C 1/e1i;

and XCn :jmi D xjm� .�1/
"n.�2C 1/eni, where a 2 C� is defined by

x D .�1/"n.1��2/b�2C1
n

{1��2

Œ�2C 1��
��;�2

�2Y
jD0

Œ.mn� j /=.mn� j /
"n �� ;

and ��;�2
D .� � �2C 1/=.�C �2� 1/. Similarly, we can obtain the actions of X�0

and X�n . Assertions (ii) and (iii) can be deduced directly from the above actions. �

6. Highest `-weights

In this section, we focus on the irreducible highest `-weight representations con-
structed in the previous section, and compute their highest `-weights explicitly.

6A. Multiplicity-free highest `-weight modules. Fix 0 < s < n. Let Ws WD F
˝n

be the Uq.A
.1/
n�1/-module defined as follows (see also [Kwon and Lee 2023]):

XC0 :jmi D jmC e1C eni; X�0 :jmi D �Œm1�Œmn�jm� e1� eni;

XCs :jmi D �Œms�ŒmsC1�jm� es � esC1i; X�s :jmi D jmC esC esC1i;

XCi :jmi D Œmi �jm� ei C eiC1i; X�i :jmi D ŒmiC1�jmC ei � eiC1i;

XCj :jmi D ŒmjC1�jmC ej � ejC1i; X�j :jmi D Œmj �jm� ej C ejC1i;

and

K0:jmi D q
m1CmnC1jmi; Ks:jmi D q

�ms�msC1�1jmi;

Ki :jmi D q
miC1�mi jmi; Kj :jmi D q

mj�mjC1 jmi;

where 1 � i < s < j � n� 1 and m 2 .Z�0/n. From the actions (5-4)–(5-6), Ws

is just the twisting of the module F1";b, where "D ">s and bD .1; : : : ; 1/, by the



ON MULTIPLICITY-FREE WEIGHT MODULES OVER QUANTUM AFFINE ALGEBRAS 269

automorphism of Uq.A
.1/
n�1/ sending X˙

k
to �X˙

k
for s � k � n along with other

Drinfeld–Jimbo generators fixed. Let W.l/
s denote the l-th irreducible component

of Ws , i.e., W.l/
s D

L
jmj"Dl

Cjmi.
Let .X .r/

N
; �/ be one of the types in Proposition 4.5 except .A.1/n�1; q/. Let

W D F˝n be the U q.X
.r/
N /-module defined as (see [Kuniba and Okado 2015]):

XC0 :jmi D
1

Œ�1C 1��
jmC .�1C 1/e1i;

X�0 :jmi D �.�1/
j�j {1��1

Œ�1C 1��
��;�1

�1Y
jD0

Œm1� j �� jm� .�1C 1/e1i,

K0:jmi D .�1/
j�j{1��1�.�1C1/.m1C1=2/jmi;

XCi :jmi D Œmi �� jm� ei C eiC1i .1� i � n� 1/;

X�i :jmi D ŒmiC1�� jmC ei � eiC1i .1� i � n� 1/;

Ki :jmi D �
�miCmiC1 jmi .1� i � n� 1/;

XCn :jmi D
{1C�2

Œ�2C 1��
��;�2

�2Y
jD0

Œmn� j �� jm� .�2C 1/eni;

X�n :jmi D
1

Œ�2C 1��
jmC .�2C 1/eni;

Kn:jmi D {
1��2��.�2C1/.mnC1=2/jmi;

where m 2 .Z�0/n, j�j D �1C �2, and ��;�i
D .� � �i C 1/=.�C �i � 1/. Here

the �i are defined in Section 5A. This module can be obtained from F1";b with
"D ">n and bD .1; : : : ; 1/ by the automorphism of Uq.X

.r/
N / defined by

X�0 7! .�1/j�jC1X�0 ; K0 7! .�1/j�jC1K0;

XCn 7! .�1/�2XCn ; Kn 7! .�1/�2Kn;

with other generators fixed. For the type C .1/n , denote the irreducible components
F1;˙
";b

of the Uq.C
.1/
n /-module W by W˙, for convenience.

Lemma 6.1. Let L.f / be an irreducible highest `-weight U -module with f D
.fi .z//i2I0

2R. If dimL.f /wt.f /�˛i
D 1 for some i 2 I0 then fi .z/ satisfies

(6-1) fi .z/D f
C
i;0

1�.a�b/z

1�az
;

where a; b 2 C satisfy f C
i;2 zdi
D af

C

i; zdi
and f C

i; zdi
D bf Ci;0.

Proof. Suppose that v 2 L.f / is a nonzero `-weight vector of f . Note that
fx�i;k :v; k 2 Zg spans the weight space L.f /wt.f /�˛i

. If dim.L.f /wt.f /�˛i
/D 1,
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then there exist j 2 Z such that x�
i; zdij

:v is nonzero, and a 2 C such that

(6-2) x�
i; zdi .jC1/

:v D ax�
i; zdij

:v:

Consider the actions of xC
i; zdik

, k 2 Z, on (6-2). The defining relations (2-5) imply

f
C

i; zdi .kCjC1/
�f

�

i; zdi .kCjC1/
D a.f

C

i; zdi .kCj /
�f

�

i; zdi .kCj /
/

for any k 2 Z. Because f �i;k D f
C
i;�k D 0 for k > 0, we have f C

i; zdi .kC1/
D af C

i; zdik
for any k > 0. Taking the series fi .z/D

P1
kD0 z

kf
C

i; zdik
, we have

fi .z/.1� az/D

1X
kD0

zkf C
i; zdik
� a

1X
kD0

zkC1f C
i; zdik

Œ�3pt�D f Ci;0C

1X
kD1

zk.f C
i; zdik
� af C

i; zdi .k�1/
/

D f Ci;0C .f
C

i; zdi

� af Ci;0/z:

Hence fi .z/ has the rational form (6-1). �

6B. Highest `-weights. Let us first study some properties of the Weyl group and
the description of the root vectors of quantum affine algebras, which will enable us
to compute the highest `-weight explicitly.

Lemma 6.2. Let i; j 2 I , and i ¤ j .

(1) If aijaj i D 1, then sj si j̨ D ˛i .

(2) If aijaj i D 2, then sisj si j̨ D j̨ .

Proof. Both (1) and (2) are easy to deduce from sj si j̨ D .aijaj i�1/ j̨ �aij˛i and

sisj si j̨ D .aijaj i � 1/ j̨ C .2� aijaj i /aij˛i ;

respectively. �

Recall the braid group operators associated to �W introduced by Lusztig [1990].
For each simple reflection si , there is an algebra automorphism Ti D Tsi of U
defined by

TiX
C
i D�X

�
i Ki ; TiX

�
i D�K

�1
i XCi ; TiKˇ DKsiˇ ;

TiX
C
j D

�aijX
kD0

.�1/k�aij q�ki .XCi /
.�aij�k/XCj .X

C
i /

.k/ .i ¤ j /;

TiX
�
j D

�aijX
kD0

.�1/k�aij qki .X
�
i /
.k/X�j .X

�
i /
.�aij�k/ .i ¤ j /;

where ˇ 2 Q and .X˙i /
.k/ D .X˙i /

k=Œk�Ši . Then ˆTi D T �1i ˆ, where ˆ is the
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C-linear anti-automorphism of U sending X˙i to X˙i , Ki to K�1i for i 2 I . For
any � 2 T , define T� by T� .X˙i /DX

˙
�.i/

and T� .Ki /DK�.i/.
For later use, we list some well-known properties of braid group operators (see

[Lusztig 1993; Beck 1994]). Choose one element w 2 �W . If �si1si2 � � � sim is a
reduced expression of w, then the automorphism Tw D T�Ti1Ti2 � � �Tim of U is
independent on the choice of the reduced expression ofw. In particular, one reduced
expression can be transformed to another by a finite sequence of braid relations.
If w.˛i /D j̨ then Tw.XCi /D X

C
j . Moreover, if w D si1si2 � � � sim is a reduced

expression and l.wsi /D l.w/C 1, then we have TwXCi 2 U
C.

Remark 6.3. For i � j , put s.i;j / D sisiC1 � � � sj .

(i) In the type A.1/n�1, a reduced expression of z!i for 1� i � n�1 can be chosen as

z!i D �
is�1.1;n�i/s

�1
.2;n�iC1/ � � � s

�1
.i;n�1/;

where � is the diagram automorphism of A.1/n�1 sending j to j C 1 .mod n/ for
j 2 I (see [Jang et al. 2023, Section 3.3]).

(ii) In the type A.2/2n , the reduced expression of z!n can be chosen (see [Damiani
2000, Corollary 4.2.4]) as

z!n D .s0s1 � � � sn/
n:

(iii) In the type C .1/n (resp. D.2/nC1), the reduced expressions of z!n�1 and z!n can
be chosen as

z!n�1 D .s.0;n/sn�1/
n�1 and z!n D �sns.n�1;n/s.n�2;n/ � � � s.1;n/;

respectively, where � is the diagram automorphism of C .1/n (resp. D.2/nC1) sending i
to n� i for i 2 I .

Now, let us define the root vectors in U . We refer the reader to [Beck and
Nakajima 2004] for the construction of root vectorsXC

ˇ
, ˇ 24 (i.e., theEˇ defined

therein). In particular, the real root vectors XC
k zdiı˙˛i

are described explicitly by

XC
k zdiıC˛i

D T �k
z!i
XCi .k � 0/; XC

k zdiı�˛i

D T k
z!i
T �1i XCi .k > 0/:

Then XC
k zdiı˙˛i

2 UC. The imaginary root vectors are defined by

(6-3) z 
i;k zdi
DXC

k zdiı�˛i

XCi � q
�2
i XCi X

C

k zdiı�˛i

.k > 0/;

and define the elements XC
i;k zdiı

by the following formal series in z:

(6-4) exp
�
.qi � q

�1
i /

X
k�1

XC
i;k zdiı

zk
�
D 1C

X
k�1

.qi � q
�1
i / z 

i;k zdi
zk :
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Under the isomorphism of two presentations of Uq.g/, the generators  Ci;k zdi
and

the imaginary root vectors z i;k zdi
are related (see [Beck 1994; Damiani 2012]);

more precisely, for k > 0 and i 2 I0, we have

(6-5)  C
i;k zdi
D o.i/k.qi � q

�1
i /C�k

zdi=2ki z i;k zdi
;

where o W I0! f˙1g is a map such that o.i/D�o.j / whenever

(i) aij � 0 implies that o.i/o.j /D�1,

(ii) in the twisted cases different from A.2/2n , if aij D�2 then o.i/D 1.

Note that o.n/D 1 in the type D.2/nC1 as an;n�1 D�2. Thus, we can deduce that
the map o W I0! f˙1g is uniquely determined in the type D.2/nC1.

In Lemma 6.1, the scalars a and b can be described by the root vectors according
to the above relations, which will become more computable in our case. Let
v 2 L.f / be a nonzero `-weight vector of f . Since C 1=2 acts trivially on L.f /
and ki commutes with z i;k zdi

, this implies that

(6-6) XC
2 zdiı�˛i

:v D o.i/aXC
zdiı�˛i

:v and z 
i; zdi
:v D o.i/

b

qi � q
�1
i

v:

Lemma 6.4. For any i 2 I0 and k 2 Z>0, the root vectors XC
k zdiı�˛i

in Uq.X
.r/
N /

have the following relations:

XC
.kC1/ zdiı�˛i

D

8<:
1

Œ3�Šn
ŒXC
kı�˛n

; ŒXC
ı�˛n

; XCn �q� if .X .r/N ; i/D .A
.2/
2n ; n/;

1
Œ2�i
ŒXC
k zdiı�˛i

; ŒXC
zdiı�˛i

; XCi �q2
i
� otherwise:

Proof. We may use the following relations [Damiani 2000, Proposition 2.2.4,
Corollary 3.2.4] (see [Beck 1994]): for k 2 Z>0,

(6-7)

(
ŒXC
kı�˛n

; XC
n;ı
�D Œ3�ŠnX

C

.kC1/ı�˛n
if .X .r/N ; i/D .A

.2/
2n ; n/;

ŒXC
k zdiı�˛i

; XC
i; zdiı

�D Œ2�iX
C
.kC1/ zdiı�˛i

otherwise:

Note that XC
i; zdiı

2 U is defined by the formal series (6-4). Because, in (6-3),
z i;k zdi

DŒXC
k zdiı�˛i

; XCi �q2
i
, by comparing the coefficients of z in (6-4), we can get

(6-8) XC
i; zdiı
D z 

i; zdi
D ŒXC

zdiı�˛i

; XCi �q2
i
;

which implies the lemma by (6-7) and (6-8). �

Let ˛ 2 QC. We introduce the height ht˛ of ˛ as ht˛ D
P
i2I mi if ˛ DP

i2I mi˛i . Define a subset QC.˛/ of QC as follows:

QC.˛/D fˇ 2QC j ht˛� htˇ D 1; ˛�ˇ ¤ ˛0g:

Let UC.˛/ be the subspace of UC˛ defined as UC.˛/D
P
ˇ2QC.˛/

UC
ˇ
XC
˛�ˇ

.
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Lemma 6.5. (1) For i 2 I0, the root vector XC
ı�˛i

in Uq.A
.1/
n�1/ has the following

form:

XC
ı�˛i
� .�q�1/n�2.XCiC1 � � �X

C
n�1/.X

C
i�1 � � �X

C
2 X
C
1 /X

C
0 .mod UC.ı�˛i //:

(2) In Uq.C
.1/
n /,

XC
ı�˛n�1

� q�n.XCn X
C
n�2 � � �X

C
1 /.X

C
n�1X

C
n�2 � � �X

C
1 /X

C
0 .mod UC.ı�˛n�1//;

XC
ı�˛n
�

�
q�1

Œ2�1

�n�1
.XCn�1/

2.XCn�2/
2
� � �.XC1 /

2XC0 .mod UC.ı�˛n//:

(3) In Uq.A
.2/
2n /,

XC
ı�˛n
� q�2n.XCn�1X

C
n�2 � � �X

C
1 /.X

C
n X
C
n�1 � � �X

C
1 /X

C
0 .mod UC.ı�˛n//:

(4) In Uq.D
.2/
nC1/,

XC
ı�˛n
� q�2nC2XCn�1X

C
n�2 � � �X

C
1 X
C
0 .mod UC.ı�˛n//:

Proof. Thanks to the reduced expressions of z!i in Remark 6.3, the lemma can be
deduced directly by the definition. One can refer to [Jang et al. 2023, Lemma 4.7] for
assertion (1). To see the remaining assertions we define the operators D.1/i and D.2/i
of U for i 2 I0 by D.1/i .X/D ŒX;XCi �qi

and D.2/i .X/D ŒŒX;XCi �; X
C
i �q for any

X 2U , respectively. In the type C .1/n , we note that T�D.s/i DD.s/n�iT� and TjD.s/i D
D.s/i Tj for ji � j j> 1 and s D 1; 2. Write Ts.i;j /

D T.i;j / for simplicity. Then

T.0;n/Tn�1D.s/n D D.s/n T.0;n/Tn�1;

since s.0;n/sn�1˛nD˛n, and for any 0< i <n�1, we have .s.0;n/sn�1/i�1˛1D˛i
and s.iC1;n�1/s.i;n�2/˛n�2 D ˛i by using Lemma 6.2, so we get

.T.0;n/Tn�1/
iT.0;n�2/X

C
n�1 D .T.0;n/Tn�1/

i�1T.0;n/T.0;n�3/X
C
n�2

D .T.0;n/Tn�1/
i�1T.0;n�2/T.0;n�3/Tn�1X

C
n�2

D�.T.0;n/Tn�1/
i�1ŒT.0;n�2/X

C
n�1; X

C
1 �qn�1

D�D.1/i .T.0;n/Tn�1/
i�1T.0;n�2/X

C
n�1;

and
T.iC1;n/T.i;n�1/X

C
n D T.iC1;n�1/T.i;n�2/TnTn�1X

C
n

D T.iC1;n�1/T.i;n�2/T
�1
n�1X

C
n

D
1

Œ2�n�1
ŒŒT.iC1;n�1/X

C
n ; X

C
i �; X

C
i �q

D
1

Œ2�1
D.2/i T.iC1;n�1/X

C
n :
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Finally, the definition of the root vectors and Remark 6.3 imply that

XC
ı�˛n�1

D .T.0;n/Tn�1/
n�2T.0;n/X

C
n�1

D�.T.0;n/Tn�1/
n�2T.0;n�2/D.1/n XCn�1

D�D.1/n .T.0;n/Tn�1/
n�2T.0;n�2/X

C
n�1

D D.1/n D.1/n�2.T.0;n/Tn�1/
n�3T.0;n�2/X

C
n�1

:::

D .�1/n�1D.1/n D.1/n�2 � � �D
.1/
1 T.0;n�2/X

C
n�1

D D.1/n D.1/n�2 � � �D
.1/
1 D.1/n�1 � � �D

.1/
1;qX

C
0 ;

where D.1/i;q .X/D ŒX;X
C
i �q for X 2 U , and

XC
ı�˛n

D T�TnT.n�1;n/ � � �T.2;n/T.1;n�1/X
C
n

D
1

Œ2�1
T�TnT.n�1;n/ � � �T.3;n/D

.2/
1 T.2;n�1/X

C
n

D
1

Œ2�1
D.2/n�1T�TnT.n�1;n/ � � �T.3;n/T.2;n�1/X

C
n

:::

D

�
1

Œ2�1

�n�1
D.2/n�1D

.2/
n�2 � � �D

.2/
1 XC0 ;

which implies assertion (2). Similarly, we can prove that

XC
ı�˛n

D�D.1/n�1 � � �D
.1/
1 D.1/n;q1

D.1/n�1 � � �D
.1/
2 D.1/1;q0

.XC0 / in Uq.A
.2/
2n /;(6-9)

XC
ı�˛n

D .�1/n�1D.1/n�1 � � �D
.1/
1 .XC0 / in Uq.D

.2/
nC1/;(6-10)

which imply (3) and (4). �

Remark 6.6. In order to simplify computations in the following theorem for the
type A.2/2n .n� 2/, we actually only need two terms of XC

ı�˛n
,

(6-11) q�2n.XCn�1X
C
n�2 � � �X

C
1 /.X

C
n X
C
n�1 � � �X

C
1 /X

C
0

� q�2nC1.XCn�1 � � �X
C
1 /

2XC0 X
C
n ;

which can be deduced directly from formula (6-9).

Now we compute the highest `-weights of the q-oscillator representations defined
in Section 6A.
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Theorem 6.7. (1) Fix 0<s <n and l 2Z. The Uq.A
.1/
n�1/-module W.l/

s has highest
`-weight f D .fi .z//i2I0

given by

fi .z/D
ci;l Cu

1C ci;lu
with ci;l D

�
qıi;s�1l�ıi;s.lC1/ if l � 0;
qıi;s.l�1/�ıi;sC1l if l < 0

for 1� i � n� 1, where uD o.s/.�q�1/nz.

(2) The highest `-weight of the Uq.C
.1/
n /-module WC (resp. W�) is given by�

1; : : : ; 1;
q�1=2Cu

1C q�1=2u

� �
resp.

�
1; : : : ; 1;

q1=2Cu

1C q1=2u
;
q�3=2Cu

1C q�3=2u

��
;

where uD o.n/q�n�1z.

(3) The highest `-weight of the Uq.A
.2/
2n /-module (resp. Uq.D

.2/
nC1/-module) W is

given by �
1; : : : ; 1;

{q�1n Cu

1C {q�1n u

�
;

where uD o.n/{�qq�2n�1z (resp. uD q�2nz).

Proof. The proof of the first assertion can be found in [Kwon and Lee 2023, Theorem
4.10]. For (2), we have verified in Proposition 5.7 that vC D j0i and v� D jeni are
highest `-weight vectors ofUq.C .1/n /-modules WC and W� respectively. Therefore,
it follows from Lemma 6.1 and formulae (6-6) that we only need to compute the
actions of XC

2 zdiı�˛i

and z 
i; zdi

on v˙.

Note that XCj :v
˙ D 0 for all j 2 I0. By using Lemma 6.5 we have

XC
ı�˛n

:vC D
q�nC1

Œ2�1
j2eni; XC

ı�˛n
:v� D

q�nC1

Œ2�1
j3eni;

and then

z n;1:v
C
D
q�n�1

Œ2�1
vC; z n;1:v

�
D
q�n�1

Œ2�1
Œ3�1v

�:

Therefore, we have

XC
2ı�˛n

:vC D
1

Œ2�
ŒXC
ı�˛n

; z n;1�:v
C

D
1

Œ2�

�
q�n�1

Œ2�1
XC
ı�˛n

:vC�
q�nC1

Œ2�1
z n;1:j2eni

�
D
q�nC1

Œ2�Œ2�1

�
q�2C1�q�2

Œ4�1Œ3�1

Œ2�1

�
XC
ı�˛n

:vC

D�q�n�3=2XC
ı�˛n

:vC;
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and

XC
2ı�˛n

:v� D
1

Œ2�
ŒXC
ı�˛n

; z n;1�:v
�
D
q�nC1

Œ2�Œ2�1
.q�2Œ3�1X

C

ı�˛n
:v�� z n;1:j3eni/

D
q�nC1

Œ2�Œ2�1

�
q�2Œ3�1C Œ3�1� q

�2 Œ5�1Œ4�1

Œ2�1

�
XC
ı�˛n

:v�

D�q�n�5=2XC
ı�˛n

:v�:

On the other hand,

XC
ı�˛n�1

:v� D�q�njen�1i; z n�1;1:v
�
D q�n�1v�;

and then

XC
2ı�˛n�1

:v� D
1

Œ2�n�1
ŒXC
ı�˛n�1

; z n�1;1�:v
�

D
q�n

Œ2�n�1
.q�1XC

ı�˛n�1
:v�C z n�1;1:jen�1i/

D
q�n

Œ2�n�1
.q�1C 1/XC

ı�˛n�1
:v�

D q�n�1=2XC
ı�˛n�1

:v�:

In other cases, we can check that XC
ı�˛i

:v D 0, so z i;1:v D 0 and XC
2ı�˛i

:v D 0.
Thus, we get (2) as desired.

To get (3), let v WD j0i. We first focus on the type D.2/nC1. By Lemma 6.5(4),

XC
ı�˛n

:v D q�2nC2j2eni; z n;1:v D�q
�2XCn X

C

ı�˛n
:v D�{��q

�2nv;

and then

XC
2ı�˛n

:v D
1

Œ2�
ŒXC
ı�˛n

; z n;1�:v D
1

Œ2�
.�{��q

�2nXC
ı�˛n

:v� q�2nC2 z n;1:jeni/;

D
q�2nC2

Œ2�
.�{��q

�2
� {�� C {�� Œ2��q

�2/XC
ı�˛n

:v

D�{q�2n�1XC
ı�˛n

:v:

For i ¤ n, we have XCzdiı�˛i
:vD 0, and then z i; zdi

:vD 0 and XC
2 zdiı�˛i

:vD 0. This
proves assertion (3) for the type D.2/nC1. For the type A.2/2n , Lemma 6.5(3) yields

XC
ı�˛n

:v D q�2n{�qjeni; z n;1:v D�q
�1XCn X

C

ı�˛n
:v D �2q q

�2n�1v:

Note that all terms in the expression of XC
ı�˛n

vanish on the vector jeni except for
the two terms in (6-11). We can compute the following action by using (6-11):

XC
ı�˛n

:jeni D {�qq
�2n�1

j2eni:
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Therefore,

XC
2ı�˛n

:v D
1

Œ3�Šn
ŒXC
ı�˛n

; z n;1�:v

D
1

Œ3�Šn
.�2q q

�2n�1XC
ı�˛n

:v� {�qq
�2n z n;1:jeni/;

D
q�2n�q

Œ3�Šn
.q�1C 1� q�2Œ2�/XC

ı�˛n
:v

D q�2n�3=2�qX
C

ı�˛n
:v:

Then a D o.n/�qq�2n�3=2 and b D o.n/�qq�2n.q�1=2C q�3=2/. Assertion (3)
for the type A.2/2n follows from Lemma 6.1 and Corollary 5.4(3). �

Appendix: Proof of Theorem 4.2

Proof of Theorem 4.2. For generalized Cartan matrices of finite types, the corre-
sponding system of equations (4-1) has been solved in [Chen et al. 2024]. The
method followed in this appendix is parallel with the one there.

Given an affine Cartan matrix A. Fix one i 2 I and denote by Axi
the subalgebra

of A generated by all x˙1j for j ¤ i . Then there is a natural isomorphism A Š
Axi

Œx˙1i �. Suppose that .�i /i2I is any solution to the system (4-1).
We have the following two crucial lemmas.

Lemma A.1. Any � 2A satisfying �i .�/�� D fyigi has the form

� D ˇCi yi C�0Cˇ
�
i y
�1
i ;

where �0 2Axi
, ˇCi D�qi .qi � q

�1
i /�2 and ˇ�i D�q

�1
i .qi � q

�1
i /�2.

Proof. Let � D
P
k �kx

k
i with �k 2Axi

. Then �i .�/�� D fyigi implies thatX
k

.q�ki � 1/�kx
k
i D

1

qi � q
�1
i

x2i

Y
j¤i

x
aji

j �
1

qi � q
�1
i

x�2i

Y
j¤i

x
�aji

j :

Hence �k is zero unless k D 0;˙2 and

�2 D ˇ
C
i

Y
j¤i

x
aji

j ; ��2 D ˇ
�
i

Y
j¤i

x
�aji

j :

So the lemma is proved. �
Therefore, we may always assume that �i in the system (4-1) satisfies �i D

ˇCi yi C�i;0Cˇ
�
i y
�1
i , where �i;0 2Axi

.
Note that any pair .�i ; �j / is .i; j /-shiftable. This condition can further restrict

the choices of �i;0 and �j;0 when the nodes i and j are not connected in the Dynkin
diagram of A, namely, aij D 0. More precisely, we have:
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Lemma A.2. If aij D 0, then both �i;0 and �j;0 lie in Axi
\Axj

.

Proof. Since aij D 0, we have aj i D 0, and yi 2 Axj
and yj 2 Axi

. If �i;0 D 0,
there is nothing to do. Assume that �i;0 is not zero. We rewrite �i;0 uniquely as
the Laurent polynomial in xj , i.e., a unique form in Axj

Œx˙1j �. Take the nonzero
term in this form of �i;0 such that xj has the highest (resp. lowest) power, denoted
by �i;max (resp. �i;min). Then the shiftability of .�i ; �j / implies that

qmj ˇ
C
j �i;maxyj D ˇ

C
j �i;maxyj ; qljˇ

�
j �i;miny

�1
j D ˇ

�
j �i;miny

�1
j ;

where m D degxj
�i;max and l D degxj

�i;max. Hence m D 0 D l . Then we can
conclude that �i;0 2Axi

\Axj
as desired. Similarly, we have �j;0 2Axi

\Axj
. �

Let us first focus on the rank-two cases. Fix i ¤ j in I and J D fi; j g. Due to
Lemma A.2 we may assume that the nodes i and j are connected. Without loss of
generality, we set �D aij ; �D aj i and j�j � j�j. Then

AJ D

�
2 �

� 2

�
where 1� ��� 4:

Then yi D x2i x
�
j and yj D x�i x

2
j in this case. Assume that 'i and 'j have the

forms as in Lemma A.1, i.e.,

'l D ˇ
C

l
yl C�l;0Cˇ

�
l y
�1
l ;

where 'l;0 2Axl
; l 2 J , and let 'i and 'j satisfy the equality

'i'j D �
�1
j .'i /�

�1
i .'j /: .�/

Record the .xi ; xj /-degrees of a monomial u in A by a degree vector�
degxi

u

degxj
u

�
:

Then a Laurent polynomial f corresponds to a matrix with each column vector
representing for the .xi ; xj /-degrees of certain term of f . Moreover, if 'i;0 is not
zero (resp. 'j;0 is not zero), then we use one vector with a parameter s (resp. t ),�

0

s

� �
resp.

�
t

0

��
;

to stand for the possible .xi ; xj /-degrees of 'i;0 (resp. 'j;0). For example, by
Lemma A.2, if aij D 0, then s and t always equal 0. Therefore, we obtain the
following matrix with possible .xi ; xj /-degrees of terms of 'i'j :0B@ q

�
i q
�
j qti q

�
j 1 q�i q

s
j qti q

s
j q��i qsj 1 qti q

��
j q��i q

��
j

2C� 2C t 2�� � t �� �� 2 t � 2 ��� 2

�C 2 � �� 2 sC 2 s s� 2 2�� �� �2��

1CA ;
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where the first row contains the corresponding shifted coefficients in ��1i .'j /�
�1
j .'i /.

The terms with shifted coefficient 1 can be canceled on the left- and right-hand
sides of the equality .�/, so we may omit such terms. Therefore, we have the matrix0B@ q

2�
j qti q

�
j q�i q

s
j qti q

s
j q��i qsj qti q

��
j q

�2�
j

2C� 2C t � t �� t � 2 ��� 2

�C 2 � sC 2 s s� 2 �� �2��

1CA : .M1/

One useful statement is that if a shifted coefficient is not 1, then the corresponding
degree vector has to be equal to another one in the matrix .M1/ by the equality .�/.
Therefore, we can determine all possible .xi ; xj /-degrees of 'i;0 and 'j;0 as follows:

types .�; �/ possible values of s and t

A2 .�1;�1/ s; t 2 f1;�1g

B2 .D C2/ .�2;�1/ 'i;0 D 0, t D˙2 or s D˙1, t D 0

G2 .�3;�1/ none

A
.1/
1 .�2;�2/ s D 0D t

A
.2/
2 .�4;�1/ 'i;0 D 0, t D 0

Note that there is no .xi ; xj /-degree vector for the type G2 satisfying the above
statement, so neither for the types G.1/2 and D.3/4 . We have obtained all solutions
for the type A.1/1 in Example 4.1. For type A.2/2 , we substitute the reduced forms of
'i;0 and 'j;0, i.e., 'i;0 D 0, 'j;0 2 C�, into (4-1), and then get

'i D
{

qi � q
�1
i

f{q
1
2x2i x

�1
j gi ; 'j D f{q

� 1
2x2i x

�1
j gj f{q

3
2x�2i xj gj :

By our assumption in Section 2, we have i D 1, j D 0 and �0 D 'j , �1 D 'i for
the type A.2/2 .

Let us turn to the higher-rank cases. The next result tells us how to “glue” the
rank-two cases together.

Lemma A.3. Let j 2 I be a node which connects to the other two distinct nodes i
and l in the Dynkin diagram. Assume that �j;0¤ 0 and the pair of integers .m; t/ is
the .xi ; xl/-degree of any nonzero (monomial) term of �j;0. Then we have mt � 0.

Proof. Otherwise, assume that mt > 0 and the corresponding nonzero term of �j;0
is �.1/j;0 . Without loss of generality, we may let m> 0 and t > 0. Consider the term
ˇ�i y

�1
i �.1/j;0 of �i�j which has the factor xm�2i x�aji

j xt�ali
l . So we have that the

shifted coefficient qmi q
�aji
j D qm�aij

i in ��1j �i�
�1
i �j is not 1. However, there is

no other term in �i�j whose .xi ; xj ; xl/-degree vector equals .m�2;�aj i ; t�ali /.
This is a contradiction. Hence mt � 0. �
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Lemma A.3 implies that there is no solution to the system (4-1) for A whose
Dynkin diagram contains D4 or F4 as a subdiagram.

Up to this point, we have ruled out all affine Cartan matrices except those of types
A.1/n .n� 1/, C .1/n .n� 2/, A.2/2n .n� 1/ or D.2/nC1 .n� 2/. Now we can substitute
the reduced forms of the �i;0 into the system (4-1) to determine the coefficients
of the possible terms. Then we obtain all solutions as listed below Theorem 4.2.
Therefore, Theorem 4.2 is proved, as desired.

Acknowledgements

This paper was partially supported by the China Postdoctoral Science Foundation
under grant number 2024M751285 and the NSF of China (11931009, 12161141001,
12171132 and 11771410). The author would like to thank Professor Yun Gao and
Professor Hongjia Chen for discussions and encouragement. The author would also
like to thank the referee for helpful suggestions which improved the exposition of
this paper.

References

[Beck 1994] J. Beck, “Braid group action and quantum affine algebras”, Comm. Math. Phys. 165:3
(1994), 555–568. MR Zbl

[Beck and Nakajima 2004] J. Beck and H. Nakajima, “Crystal bases and two-sided cells of quantum
affine algebras”, Duke Math. J. 123:2 (2004), 335–402. MR Zbl

[Benkart et al. 1997] G. Benkart, D. Britten, and F. Lemire, “Modules with bounded weight multi-
plicities for simple Lie algebras”, Math. Z. 225:2 (1997), 333–353. MR Zbl

[Boos et al. 2016] H. Boos, F. Göhmann, A. Klümper, K. S. Nirov, and A. V. Razumov, “Oscillator
versus prefundamental representations”, J. Math. Phys. 57:11 (2016), art. id. 111702. MR Zbl

[Boos et al. 2017] H. Boos, F. Göhmann, A. Klümper, K. S. Nirov, and A. V. Razumov, “Oscillator
versus prefundamental representations, II: Arbitrary higher ranks”, Journal of Mathematical Physics
58:9 (2017), art. id. 093504. MR Zbl

[Britten et al. 1994] D. J. Britten, J. Hooper, and F. W. Lemire, “SimpleCn modules with multiplicities
1 and applications”, Canad. J. Phys. 72:7-8 (1994), 326–335. MR Zbl

[Chari and Pressley 1991] V. Chari and A. Pressley, “Quantum affine algebras”, Comm. Math. Phys.
142:2 (1991), 261–283. MR Zbl

[Chari and Pressley 1994] V. Chari and A. Pressley, A guide to quantum groups, Cambridge Univ.
Press, 1994. MR Zbl

[Chari and Pressley 1998] V. Chari and A. Pressley, “Twisted quantum affine algebras”, Comm. Math.
Phys. 196:2 (1998), 461–476. MR Zbl

[Chen et al. 2024] H. Chen, Y. Gao, X. Liu, and L. Wang, “U 0-free quantum group representations”,
J. Algebra 642 (2024), 330–366. MR Zbl

[Damiani 2000] I. Damiani, “The R-matrix for (twisted) affine quantum algebras”, pp. 89–144 in
Representations and quantizations (Shanghai, 1998), edited by J. Wang and Z. Lin, China High.
Educ. Press, Beijing, 2000. MR Zbl

https://doi.org/10.1007/BF02099423
http://msp.org/idx/mr/1301623
http://msp.org/idx/zbl/0807.17013
https://doi.org/10.1215/S0012-7094-04-12325-2X
https://doi.org/10.1215/S0012-7094-04-12325-2X
http://msp.org/idx/mr/2066942
http://msp.org/idx/zbl/1062.17006
https://doi.org/10.1007/PL00004314
https://doi.org/10.1007/PL00004314
http://msp.org/idx/mr/1464935
http://msp.org/idx/zbl/0884.17004
https://doi.org/10.1063/1.4966925
https://doi.org/10.1063/1.4966925
http://msp.org/idx/mr/3569252
http://msp.org/idx/zbl/1388.17007
https://doi.org/10.1063/1.5001336
https://doi.org/10.1063/1.5001336
http://msp.org/idx/mr/3703897
http://msp.org/idx/zbl/1388.17008
https://doi.org/10.1139/p94-048
https://doi.org/10.1139/p94-048
http://msp.org/idx/mr/1297597
http://msp.org/idx/zbl/0846.17005
https://doi.org/10.1007/BF02102063
http://msp.org/idx/mr/1137064
http://msp.org/idx/zbl/0739.17004
http://msp.org/idx/mr/1300632
http://msp.org/idx/zbl/0839.17009
https://doi.org/10.1007/s002200050431
http://msp.org/idx/mr/1645027
http://msp.org/idx/zbl/0915.17013
https://doi.org/10.1016/j.jalgebra.2023.11.037
http://msp.org/idx/mr/4685184
http://msp.org/idx/zbl/07791769
http://msp.org/idx/mr/1802170
http://msp.org/idx/zbl/1007.17012


ON MULTIPLICITY-FREE WEIGHT MODULES OVER QUANTUM AFFINE ALGEBRAS 281

[Damiani 2012] I. Damiani, “Drinfeld realization of affine quantum algebras: the relations”, Publ.
Res. Inst. Math. Sci. 48:3 (2012), 661–733. MR Zbl

[Damiani 2015] I. Damiani, “From the Drinfeld realization to the Drinfeld–Jimbo presentation of
affine quantum algebras: injectivity”, Publ. Res. Inst. Math. Sci. 51:1 (2015), 131–171. MR Zbl

[Drinfeld 1985] V. G. Drinfeld, “Hopf algebras and the quantum Yang–Baxter equation”, Dokl. Akad.
Nauk SSSR 283:5 (1985), 1060–1064. In Russian. MR Zbl

[Drinfeld 1987] V. G. Drinfeld, “A new realization of Yangians and of quantum affine algebras”,
Dokl. Akad. Nauk SSSR 296:1 (1987), 13–17. In Russian. MR Zbl

[Futorny et al. 2015] V. Futorny, J. Hartwig, and E. Wilson, “Irreducible completely pointed modules
of quantum groups of type A”, J. Algebra 432 (2015), 252–279. MR Zbl

[Grantcharov and Serganova 2006] D. Grantcharov and V. Serganova, “Category of sp.2n/-modules
with bounded weight multiplicities”, Mosc. Math. J. 6:1 (2006), 119–134, 222. MR Zbl

[Grantcharov and Serganova 2010] D. Grantcharov and V. Serganova, “Cuspidal representations of
sl.nC 1/”, Adv. Math. 224:4 (2010), 1517–1547. MR Zbl

[Hayashi 1990] T. Hayashi, “q-analogues of Clifford and Weyl algebras—spinor and oscillator
representations of quantum enveloping algebras”, Comm. Math. Phys. 127:1 (1990), 129–144. MR
Zbl

[Hernandez 2005] D. Hernandez, “Representations of quantum affinizations and fusion product”,
Transform. Groups 10:2 (2005), 163–200. MR Zbl

[Jang et al. 2023] I.-S. Jang, J.-H. Kwon, and E. Park, “Unipotent quantum coordinate ring and
prefundamental representations for types A.1/n and D.1/n ”, Int. Math. Res. Not. 2023:2 (2023),
1119–1172. MR Zbl

[Jimbo 1985] M. Jimbo, “A q-difference analogue of U.g/ and the Yang–Baxter equation”, Lett.
Math. Phys. 10:1 (1985), 63–69. MR Zbl

[Jing 1998] N. Jing, “On Drinfeld realization of quantum affine algebras”, pp. 195–206 in The
Monster and Lie algebras (Columbus, OH, 1996), edited by J. Ferrar and K. Harada, Ohio State
Univ. Math. Res. Inst. Publ. 7, de Gruyter, Berlin, 1998. MR Zbl

[Kac 1990] V. G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge Univ. Press, 1990. MR
Zbl

[Kuniba 2018] A. Kuniba, “Tetrahedron equation and quantum R matrices for q-oscillator represen-
tations mixing particles and holes”, Symm. Integr. Geom. Methods Appl. 14 (2018), art. id. 067. MR
Zbl

[Kuniba and Okado 2013] A. Kuniba and M. Okado, “Tetrahedron equation and quantum R matrices
for infinite-dimensional modules of Uq.A.1/1 / and Uq.A.2/2 /”, J. Phys. A 46:48 (2013), art. id.
485203. MR Zbl

[Kuniba and Okado 2015] A. Kuniba and M. Okado, “Tetrahedron equation and quantum R matrices
for q-oscillator representations of Uq.A.2/2n /, Uq.C

.1/
n / and Uq.D.2/nC1/”, Comm. Math. Phys. 334:3

(2015), 1219–1244. MR Zbl

[Kuniba et al. 2015] A. Kuniba, M. Okado, and S. Sergeev, “Tetrahedron equation and quantum
R matrices for modular double of Uq.D.2/nC1/, Uq.A

.2/
2n / and Uq.C .1/n /”, Lett. Math. Phys. 105:3

(2015), 447–461. MR Zbl

[Kwon and Lee 2023] J.-H. Kwon and S.-M. Lee, “Affinization of q-oscillator representations of
Uq.gln/”, Lett. Math. Phys. 113:3 (2023), art. id. 58. MR Zbl

[Lusztig 1990] G. Lusztig, “Quantum groups at roots of 1”, Geom. Dedicata 35:1-3 (1990), 89–113.
MR Zbl

https://doi.org/10.2977/PRIMS/86
http://msp.org/idx/mr/2973398
http://msp.org/idx/zbl/1297.17009
https://doi.org/10.4171/PRIMS/150
https://doi.org/10.4171/PRIMS/150
http://msp.org/idx/mr/3367090
http://msp.org/idx/zbl/1394.17036
https://www.mathnet.ru/eng/dan/v283/i5/p1060
http://msp.org/idx/mr/802128
http://msp.org/idx/zbl/0588.17015
https://www.mathnet.ru/eng/dan/v296/i1/p13
http://msp.org/idx/mr/914215
http://msp.org/idx/zbl/0667.16004
https://doi.org/10.1016/j.jalgebra.2015.03.006
https://doi.org/10.1016/j.jalgebra.2015.03.006
http://msp.org/idx/mr/3334148
http://msp.org/idx/zbl/1369.17009
https://doi.org/10.17323/1609-4514-2006-6-1-119-134
https://doi.org/10.17323/1609-4514-2006-6-1-119-134
http://msp.org/idx/mr/2265951
http://msp.org/idx/zbl/1127.17006
https://doi.org/10.1016/j.aim.2009.12.024
https://doi.org/10.1016/j.aim.2009.12.024
http://msp.org/idx/mr/2646303
http://msp.org/idx/zbl/1210.17011
https://doi.org/10.1007/BF02096497
https://doi.org/10.1007/BF02096497
http://msp.org/idx/mr/1036118
http://msp.org/idx/zbl/0701.17008
https://doi.org/10.1007/s00031-005-1005-9
http://msp.org/idx/mr/2195598
http://msp.org/idx/zbl/1102.17009
https://doi.org/10.1093/imrn/rnab283
https://doi.org/10.1093/imrn/rnab283
http://msp.org/idx/mr/4537322
http://msp.org/idx/zbl/1529.17024
https://doi.org/10.1007/BF00704588
http://msp.org/idx/mr/797001
http://msp.org/idx/zbl/0587.17004
http://msp.org/idx/mr/1650669
http://msp.org/idx/zbl/0983.17013
https://doi.org/10.1017/CBO9780511626234
http://msp.org/idx/mr/1104219
http://msp.org/idx/zbl/0716.17022
https://doi.org/10.3842/SIGMA.2018.067
https://doi.org/10.3842/SIGMA.2018.067
http://msp.org/idx/mr/3820395
http://msp.org/idx/zbl/1395.81127
https://doi.org/10.1088/1751-8113/46/48/485203
https://doi.org/10.1088/1751-8113/46/48/485203
http://msp.org/idx/mr/3138389
http://msp.org/idx/zbl/1280.81072
https://doi.org/10.1007/s00220-014-2147-1
https://doi.org/10.1007/s00220-014-2147-1
http://msp.org/idx/mr/3312435
http://msp.org/idx/zbl/1394.16043
https://doi.org/10.1007/s11005-015-0747-0
https://doi.org/10.1007/s11005-015-0747-0
http://msp.org/idx/mr/3312513
http://msp.org/idx/zbl/1394.16043
https://doi.org/10.1007/s11005-023-01675-x
https://doi.org/10.1007/s11005-023-01675-x
http://msp.org/idx/mr/4597691
http://msp.org/idx/zbl/1528.17010
https://doi.org/10.1007/BF00147341
http://msp.org/idx/mr/1066560
http://msp.org/idx/zbl/0714.17013


282 XINGPENG LIU

[Lusztig 1993] G. Lusztig, Introduction to quantum groups, Progress in Mathematics 110, Birkhäuser,
Boston, 1993. MR Zbl

[Mathieu 2000] O. Mathieu, “Classification of irreducible weight modules”, Ann. Inst. Fourier
.Grenoble/ 50:2 (2000), 537–592. MR Zbl

[Mukhin and Young 2014] E. Mukhin and C. A. S. Young, “Affinization of category O for quantum
groups”, Trans. Amer. Math. Soc. 366:9 (2014), 4815–4847. MR Zbl

[Nilsson 2016] J. Nilsson, “U.h/-free modules and coherent families”, J. Pure Appl. Algebra 220:4
(2016), 1475–1488. MR Zbl

Received February 27, 2023. Revised December 15, 2023.

XINGPENG LIU

SHENZHEN INTERNATIONAL CENTER FOR MATHEMATICS

SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

SHENZHEN

CHINA

xpliu127@ustc.edu.cn

http://msp.org/idx/mr/1227098
http://msp.org/idx/zbl/0788.17010
https://doi.org/10.5802/aif.1765
http://msp.org/idx/mr/1775361
http://msp.org/idx/zbl/0962.17002
https://doi.org/10.1090/S0002-9947-2014-06039-X
https://doi.org/10.1090/S0002-9947-2014-06039-X
http://msp.org/idx/mr/3217701
http://msp.org/idx/zbl/1306.17005
https://doi.org/10.1016/j.jpaa.2015.09.013
http://msp.org/idx/mr/3423459
http://msp.org/idx/zbl/1334.17009
mailto:xpliu127@ustc.edu.cn


PACIFIC JOURNAL OF MATHEMATICS
Vol. 330, No. 2, 2024

https://doi.org/10.2140/pjm.2024.330.283

DIFFERENTIAL GEOMETRIC APPROACH
TO THE DEFORMATION OF A PAIR

OF COMPLEX MANIFOLDS AND HIGGS BUNDLES

TAKASHI ONO

Let X be a complex manifold and (E, θ) be a Higgs bundle over X . We
study the deformation of the triple (X, E, θ). We introduce the differential
graded Lie algebra (DGLA) which governs the deformation. We construct
the Kuranishi family of it and prove it contains all the information of small
deformations of (X, E, θ).

1. Introduction

Let X be a complex manifold and (E, ∂̄E) be a holomorphic vector bundle on
it. Let ∂̄End(E) be the natural holomorphic structure on End(E) induced by E .
Let A1,0(End(E)) be the smooth sections of End(E)⊗�1,0. A Higgs field θ on
(E, ∂̄E) is an additional structure on E such that θ ∈ A1,0(End(E)), ∂̄End(E)θ = 0
and the integrability condition θ∧θ = 0 is satisfied. The Higgs field was introduced
in [Hitchin 1987] for the Riemann surfaces case and generalized to the higher
dimensional case in [Simpson 1988]. We call a triple (X, E, θ) a holomorphic-
Higgs triple.

We study the deformation of holomorphic-Higgs triples. Our goal is to derive
the differential graded Lie algebra (DGLA) which governs the deformation of a
given holomorphic-Higgs triple and construct the Kuranishi family of it. For that
sake, we apply the Kodaira–Spencer theory [1958a; 1958b; 1960]. The advantage
of studying the deformation in the style of Kodaira–Spencer theory is that we can
construct the DGLA differential geometrically. Hence we can use the theory of
Kuranishi [1965] to construct the Kuranishi space.

There is a lot of interesting work in studying the deformation of pairs of a
complex manifold and a holomorphic bundle over it. Such pairs were studied
algebraically in [Huybrechts and Thomas 2010; Li 2008; Martinengo 2009; Sernesi
2006], analytically in [Huang 1995; Siu and Trautmann 1981], and in the style of
Kodaira–Spencer theory [Chan and Suen 2016].

MSC2020: primary 32G08; secondary 32G05, 58A14.
Keywords: deformation of complex structure, Kuranishi space.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC
BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org/pjm/
https://doi.org/10.2140/pjm.2024.330-2
https://doi.org/10.2140/pjm.2024.330.283
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


284 TAKASHI ONO

The deformation of holomorphic-Higgs triples was studied algebraically in
[Martinengo 2012]. In her work, the DGLA was also obtained. The difference
between her work and our work is that she obtained the DGLA purely algebraically
while we obtained it differential geometrically.

We first prove the tuple (L , dL , [ · , · ]L) is a DGLA. We show that this is the
DGLA which governs the deformation afterwards. We prepare some notation.
Let (X, E, θ) be a holomorphic-Higgs triple. Let K be a hermitian metric on
E and ∂K be a (1,0)-part of the Chern connection associated to ∂̄E and K , and
for φ ∈ A0,i (TX), we define {∂K , φ⌟} := ∂K (φ⌟) + (−1)iφ⌟∂K . Let ∂End(E)

K :

A0(End(E)) → A1,0(End(E)) be the differential operator induced by ∂K . Let
[ · , · ] be the standard Lie bracket on A∗(End(E))=

⊕
i Ai (End(E)) and [ · , · ]SN

be the standard Schouten–Nijenhuys bracket on A0,∗(TX)=
⊕

i A0,i (TX).

Theorem 1.1 (Theorem 3.1). Let L i
=

⊕
p+q=i Ap,q(End(E))⊕ A0,i (TX) and

L :=
⊕

i L i . Let (A, φ) ∈ L i and (B, ψ) ∈ L j . We set

[(A, φ), (B, ψ)]L :=(
(−1)i {∂End(E)

K , φ⌟}B − (−1)(i+1) j
{∂

End(E)
K , ψ⌟}A − [A, B], [φ,ψ]SN

)
We define BK ∈ A0,1(Hom(T X,End(E)) and C-linear map CK : A0,p(TX) →

A1,p(End(E)) such that they act on v ∈ A0,p(TX) as

BK (v) := (−1)pv⌟FdK , CK (v) := {∂
End(E)
K , v⌟}θ.

We define dL : L → L as,

dL :=

(
∂̄End(E) BK

0 ∂̄TX

)
+

(
θ CK

0 0

)
.

Then (L , dL , [ · , · ]L) is a DGLA.

This DGLA is the DGLA which governs the deformation of the holomorphic-
Higgs triple. Actually, we have the following.

Theorem 1.2 (see Theorem 3.6 for precise statement). Let (A, φ)∈ L1. Then (A, φ)
defines a holomorphic-Higgs triple if and only if (A, φ) satisfies the Maurer–Cartan
equation

dL(A, φ)− 1
2 [(A, φ), (A, φ)]L = 0.

Since the governing DGLA is constructed differential geometrically, We can
apply the technique of [Kodaira and Spencer 1958a; 1958b; 1960; Kuranishi 1965]
to construct the universal family (= Kuranishi family) for a triple (X, E, θ).

Let 1L be the Laplacian induced by dL . Since 1L is an elliptic operator, Hi
:=

ker(1L : L i
→ L i ) is finite dimensional. Let {η1, . . . , ηn} be a basis of H1. Let d∗

L
be the formal adjoint of dL w.r.t. the L2 metric, H : L i

→ Hi be the projection and
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G be the Green’s operator associated to 1L . The next result is based on [Kuranishi
1965].

Proposition 1.1 (Propositions 4.1 and 4.2). Let t = (t1, . . . , tn) ∈ Cn and ϵ1(t) :=∑
i tiηi . For all |t | ≪ 1 we have a ϵ(t) such that ϵ(t) satisfies the equation

ϵ(t)= ϵ1(t)+ 1
2 d∗

L G[ϵ(t), ϵ(t)]L .

Moreover, ϵ(t) is holomorphic respect to the variable t and ϵ(t) satisfies the Maurer–
Cartan equation

dLϵ(t)− 1
2 [ϵ(t), ϵ(t)]L = 0

if and only if H [ϵ(t), ϵ(t)]L = 0.

Let 1⊂ Cn be a ball small enough so that ϵ(t) is holomorphic on 1. We define
S ⊂1 as

S := {t ∈1 | H [ϵ(t), ϵ(t)]L = 0}.

S might not be smooth, however, it is a complex analytic space. Let Xϵ(t), Eϵ(t),
θϵ(t) be the complex manifold, the holomorphic bundle, and the Higgs field which
ϵ(t) defines, respectively. By combining the above results we have a family of
holomorphic-Higgs triple {(Xϵ(t), Eϵ(t), θϵ(t))}t∈S . We call this family the Kuranishi
family of (X, E, θ) and S the Kuranishi space.

We recall some properties of the Kuranishi family and space for a compact
complex manifold X . Kuranishi [1965] constructed the Kuranishi family and space
for arbitrary compact complex manifold and proved the semiuniversality: any other
deformation of X is obtained by the pullback of the Kuranishi family. Hence the
Kuranishi family contains all the information of small deformations of X . We prove
the abbreviated version of the semiuniversality of Kuranishi space. We show that
{(Xϵ(t), Eϵ(t), θϵ(t))}t∈S has all the information of small deformations of (X, E, θ).

Let | · |k be the k-th Sobolev norm on L1. We assume k ≫ 1.

Theorem 1.3 (Theorem 4.2). Let (X, E, θ) be a holomorphic-Higgs triple. Let S
be a Kuranishi family for (X, E, θ). Let η ∈ L1 be a Maurer–Cartan element. If
|η|k is small enough, then there is a t ∈ S such that (Xη, Eη, θη) is isomorphic to
(Xϵ(t), Eϵ(t), θϵ(t)) (see Section 4 for the meaning of isomorphic).

Some applications of Theorem 1.3. Higgs bundles play a core role in the nonabelian
Hodge correspondence. Let X be a compact Kähler manifold. The nonabelian
Hodge correspondence states there is a one-to-one correspondence in the following
objects on X : semisimple representations of the fundamental group of X , flat
bundles with a harmonic metric (a.k.a. harmonic bundle), and polystable Higgs
bundles with vanishing Chern classes. Here, a harmonic metric is a metric of a flat
bundle such that it induces a harmonic map from X to a certain homogenous space.
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This correspondence for Riemann surfaces was proved by Hitchin [1987], and the
higher dimensional case by Simpson [1988; 1992].

In [Ono 2023], we study the structure of the Kuranishi space for a holomorphic-
Higgs triple (X, E, θ) such that X is a compact Kähler manifold and (E, θ) is a
polystable Higgs bundle with vanishing Chern classes. We show that the Kuranishi
space of such a holomorphic-Higgs triple is isomorphic to the product of the
Kuranishi space of X and the Kuranishi space of the Higgs bundle. This predicts
that once we construct the moduli space which parametrizes a pair of a Kähler
manifold and a polystable Higgs bundle with 0 Chern classes, it locally splits into
the moduli space of the Kähler manifold and the moduli space of the Higgs bundle.
This phenomenon is interesting since we cannot expect such decomposition globally.

Plan of the paper. In Section 2, we define and study the deformation of holomorphic-
Higgs triples. We prove the Newlander–Nirenberg-type theorem in this context
(Proposition 2.6). In Section 3, we construct the DGLA which governs the deforma-
tion of the holomorphic-Higgs triple. In Section 4, we apply the work of Kuranishi
and construct the Kuranishi space for a given holomorphic-Higgs triple and prove
its local completeness.

2. Deformation of holomorphic-Higgs triple

For a smooth manifold X , we define Ap(X) to be a space of smooth p-forms on X ,
and for a smooth vector bundle E → X , we define Ap(E) to be a space of smooth
p-forms which take values in E .

Definition 2.1. Let X be a compact complex manifold. Let ∂̄End(E) be the complex
structure on End(E) induced by E . A Higgs bundle (E, θ) over X is a pair such that

• E is a holomorphic bundle over X ,

• θ is a Higgs field such that θ ∈ A1,0(End(E)), ∂̄End(E)θ = 0, and θ ∧ θ = 0.

We call a triple (X, E, θ) a holomorphic-Higgs triple.

We fix a metric K on E and assume X to be compact throughout this paper.

Definition 2.2. Let (X, E, θ) be a holomorphic-Higgs triple. A family of deforma-
tions of holomorphic-Higgs triples (X , E,2) over a small ball1 centered at the ori-
gin of Cd consists of a complex manifold X , a proper submersive holomorphic map

π : X →1

and a Higgs bundle (E,2) over X such that π−1(0)= X , E|π−1(0)= E ,2|π−1(0)= θ .

By Ehresmann’s theorem and as in [Kodaira 1986, Chapter 7, Lemma 7.1], if
we choose 1 small enough, we have maps F : X ×1→ X and P : E ×1→ E
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such that the diagram below commutes, F is a diffeomorphism and P is a smooth
bundle isomorphism:

E ×1 E

X ×1 X

1

P

F

We can induce a complex structure on X × {t} and a Higgs bundle structure on
E × {t} using F |X×{t} : X × {t} → Xt = π−1(t) and P|E×{t} : E × {t} → E|π−1(t).
We denote this family of holomorphic-Higgs triple {(X t , Et , θt)}t∈1.

Since {X t }t∈1 is a deformation of the complex manifold X , we have a family of
Maurer–Cartan element {φt }t∈1 such that each φt determines the complex structure
of X t .

Let A1,0(X t) := {α ∈ A1(X) | α is a (1,0)-form of X t }, π
1,0
X : A1(X)→ A1,0(X),

and π0,1
X : A1(X)→ A0,1(X) be the natural projection.

Lemma 2.1. α ∈ A1,0(X t) if and only if π0,1
X (α)= φt⌟π

1,0
X (α).

Proof. It is enough to prove it locally. Let x ∈ X and Ux be an open neighborhood
of x . Let (ξ1, . . . , ξn), (z1, . . . , zn) be local coordinates on Ux and (ξ1, . . . , ξn) be
a complex coordinate for X t and (z1, . . . , zn) be a complex coordinate for X .

Let α =
∑

i fi dξi . We have

π
0,1
X (α)=

∑
i, j

fi
∂ξi

∂ z̄ j
dz̄ j and π

1,0
X (α)=

∑
i, j

fi
∂ξi

∂z j
dz j .

Recall that φt =
∑

i, j φ
i
t, j

∂
∂zi

⊗ dz̄ j , (φi
t, j )=

(
∂ξi
∂zk

)−1( ∂ξk
∂ z̄ j

)
. See [Kodaira 1986]

for more details.
Hence

φt⌟π
1,0
X (α)=

( ∑
j,k

φ
j
t,k

∂

∂z j
⊗ dz̄k

)
⌟

( ∑
i, j

fi
∂ξi

∂z j
dz j

)

=

∑
i, j,k

fi
∂ξi

∂z j
φ

j
t,kdz̄k

=

∑
i,k

fi
∂ξi

∂ z̄k
dz̄k = π

0,1
X (α).

To prove the converse, we only have to prove that if ω ∈ A0,1(X t) and π0,1
X (ω)=

φt⌟π
1,0
X (ω) stands then ω= 0. Let ω=

∑
i hi d ξ̄i and assume π0,1

X (ω)=φt⌟π
1,0
X (ω).
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We have π0,1
X (ω) =

∑
i, j hi

∂ξ̄i
∂ z̄ j

dz̄ j and φt⌟π
1,0
X (ω) =

∑
i, j,k hi

∂ξ̄i
∂z j
φ

j
t,kdz̄k . Since

π
0,1
X (ω)= φt⌟π

1,0
X (ω), we have

0 = π
0,1
X (ω)−φt⌟π

1,0
X (ω)=

∑
k

{∑
i

hi

(
∂ξ̄i

∂ z̄k
−

∑
j

∂ξ̄i

∂z j
φ

j
t,k

)}
dz̄k .

Hence (
∂ξ̄i

∂ z̄k
−

∑
j

∂ξ̄i

∂z j
φ

j
t,k

)
(h1, . . . , hn)

T
= 0.

Since φt defines a near complex structure with respect to the original one

det
(
∂ξ̄i

∂ z̄k
−

∑
j

∂ξ̄i

∂z j
φ

j
t,k

)
̸= 0.

Hence (h1, . . . , hn)= 0. This implies ω = 0. □

Lemma 2.2. Let α ∈ A1,0(X t). α is a holomorphic 1-form on X t if and only if
(∂̄ + lψt )π

1,0
X (α)= 0. Here lψt = ∂(ψt⌟)−ψt⌟∂ .

Proof. As in Lemma 2.1, we only have to prove it locally. We use the notation in
the proof of Lemma 2.1.

Let α=
∑

i fi dξi and let α1,0
=π

1,0
X (α). We first calculate (∂̄+lψt )(α

1,0). Since
α1,0

=
∑

i, j fi
∂ξi
∂z j

dz j , we have

∂̄α1,0
= ∂̄

( ∑
i, j

fi
∂ξi

∂z j
dz j

)
=

∑
i, j,k

{
∂ fi

∂ z̄k

∂ξi

∂z j
+ fi

∂2ξi

∂ z̄k∂z j

}
dz̄k ∧ dz j ,

lφt (α
1,0)= lφt

( ∑
i, j

fi
∂ξi

∂z j
dz j

)
= ∂

(
φt⌟

∑
i, j

fi
∂ξi

∂z j
dz j

)
−φt⌟

{ ∑
i, j,k

(
∂ fi

∂zk

∂ξi

∂z j
+ fi

∂2ξi

∂zk∂z j

)
dzk ∧ dz j

}
= ∂

( ∑
i, j,k

fi
∂ξi

∂z j
φ

j
t,kdz̄k

)
−φt⌟

{ ∑
i, j,k

(
∂ fi

∂zk

∂ξi

∂z j

)
dzk ∧ dz j

}
,

and

∂

( ∑
i, j,k

fi
∂ξi

∂z j
φ

j
t,kdz̄k

)
= ∂

( ∑
i,k

fi
∂ξi

∂ z̄k
dz̄k

)
=

∑
i, j,k

∂ fi

∂z j

∂ξi

∂ z̄k
dz j∧dz̄k +

∑
i, j,k

fi
∂2ξi

∂ z̄k∂z j
dz j∧dz̄k

=

∑
i, j,k

∂ fi

∂zk

∂ξi

∂z j

∑
l

φk
t,ldz̄l∧dz j −

∑
i, j,k

∂ fi

∂zk

∂ξi

∂z j

∑
l

φ
j
t,ldz̄l∧dzk

=

∑
i, j,k,l

∂ fi

∂zk

∂ξi

∂z j
φk

t,ldz̄l∧dz j −
∑
i,k,l

∂ fi

∂zk

∂ξi

∂ z̄l
dz̄l∧dzk .
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Hence

(1) (∂̄ + lφt )(α
1,0)=

∑
i, j,k

∂ fi

∂ z̄k

∂ξi

∂z j
dz̄k ∧ dz j +

∑
i, j,k

fi
∂2ξi

∂ z̄k∂z j
dz̄k ∧ dz j

+

∑
i, j,k

∂ fi

∂z j

∂ξi

∂ z̄k
dz j ∧ dz̄k +

∑
i, j,k

fi
∂2ξi

∂ z̄k∂z j
dz j ∧ dz̄k

−

∑
i, j,k,l

∂ fi

∂zk

∂ξi

∂z j
φk

t,ldz̄l ∧ dz j +

∑
i,k,l

∂ fi

∂zk

∂ξi

∂ z̄l
dz̄l ∧ dzk

=

∑
i, j,l

∂ fi

∂ z̄l

∂ξi

∂z j
dz̄l ∧ dz j −

∑
i, j,k,l

∂ fi

∂zk

∂ξi

∂z j
φk

t,ldz̄l ∧ dz j

=

∑
j,l

∑
i

∂ξi

∂z j

(
∂ fi

∂ z̄l
−

∑
k

∂ fi

∂zk
φk

t.l

)
dz̄l ∧ dz j .

If we assume α to be a holomorphic 1-form on X t , this implies that { fi }i are
holomorphic functions on X t . Hence we have

∂ fi

∂ z̄l
−

∑
k

∂ fi

∂zk
φk

t,l = 0.

Hence by (1), when α is a holomorphic 1-form on X t , (∂̄ + lφt )(α
1,0)= 0.

Conversely, if we assume (∂̄ + lφt )(α
1,0)= 0, by (1) we have

∂ξi

∂z j

(
∂ fi

∂ z̄l
−

∑
k

∂ fi

∂zk
φk

t,l

)
= 0.

Since φt defines a near complex structure to X , we have det
(
∂ξi
∂z j

)
̸= 0. Hence

∂ fi
∂ z̄l

−
∑

k
∂ fi
∂zk
φk

t,l = 0. This shows that { fi } are holomorphic function on X t and α
is a holomorphic 1-form on X t . □

By Lemma 2.1, θt can be decomposed as θt = ωt +φt⌟ωt , where ωt = π
1,0
X (θt).

We define an operator Dt : A0(E)→ A1(E) as

Dt(s)= Dt(skek) := (∂ + lφt )s
k
⊗ ek +ωt ∧ s, s ∈ A0(E).

Here, {ek} is a local holomorphic frame of Et and we used the Einstein summation
rule.

Proposition 2.1. Dt is a well defined operator, that is, Dt is independent of the
holomorphic frame of Et . Also Dt satisfies the Leibniz rule:

Dt(α∧ s)= (∂̄ + lφt )α⊗ s + (−1)pα∧ Dt(s)

for every α ∈ Ap(X) and s ∈ A0(E).
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Proof. To prove well-definedness, we need to show that Dt is independent of the
choice of a local holomorphic frame {ek} of Et . Take another local holomorphic
frame { f j } of Et . Let hk

j be a holomorphic function of X t such that f j = hk
j e j .

Then for local section s ∈ A(E), s = s̃ j f j = skek , we have s̃ j hk
j = sk , thus we have

Dt(s̃ j f j )= (∂̄ + lφt )s̃
j
⊗ f j +ωt ∧ (s̃ j f j )

= (∂̄ + lφt )s̃
j
⊗ hk

j ek +ωt ∧ s

= (∂̄ + lφt )(s̃
j hk

j )⊗ ek +ωt ∧ (skek)

= (∂̄ + lφt )(s
k)⊗ ek +ωt(skek)

= Dt(skek).

Hence Dt is well defined.
The Leibniz rule for Dt follows from the fact that α ∈ Ap(X), β ∈ Aq(X),

α∧β = (−1)pqβ∧α stands and ∂̄ + lφt satisfies the Leibniz rule:

(∂̄ + lφt )(α∧β)= (∂̄ + lφt )(α)∧β + (−1)pα∧ (∂̄ + lφt )(β). □

Proposition 2.2. D2
t = 0.

Proof. We calculate D2
t locally and show D2

t = 0. Since Dt satisfies the Leibniz
rule, we only have to prove (∂̄ + lφt )

2
= 0 and D2

t (s)= 0 for s ∈ A0(E).
First we prove (∂̄ + lφt )

2
= 0. According to [Martinengo 2012], we have

(2) (∂̄ + lφt )
2
= l∂̄TXφt−

1
2 [φt ,φt ]

.

Since φt is a Maurer–Cartan element, we have ∂̄TXφt −
1
2 [φt , φt ] = 0. Hence

(∂̄ + lφt )
2
= 0.

Next we prove D2
t (s)= 0 for s ∈ A0(E). Let {ek} be a holomorphic frame for Et .

Assume that s and ωt has a trivialization as s = skek and ωt = gi dzi , gi = (as
i,t)

respect to the frame {ek}. Here sk, as
i,t ∈ A0(X) and gi ∈ A0(End(E)). Since ωt =

π
1,0
X (θt) and θt is a Higgs field we have ωt ∧ωt = 0. Applying Lemma 2.2 and the

fact that Dt satisfies the Leibniz rule, we have

D2
t (s)= D2

t (s
k
⊗ek)

= Dt((∂̄+lφt )s
k
⊗ek +ωt∧s)

= (∂̄+lφt )
2sk

⊗ek +ωt ∧(∂̄+lφt )s
k
⊗ek +(∂̄+lφt )(a

s
i,kskdzi )⊗esωt∧ωt∧s

= ωt ∧(∂̄+lφt )s
k
⊗ek +(∂̄+lφt )(a

s
i,kdzi )∧sk

⊗es

−ωt ∧(∂̄+lφt )s
k
⊗ek +ωt∧ωt∧s

= 0.

Since s ∈ A(E) is an arbitrary smooth section, this proves the claim. □
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Proposition 2.3. We define At := Dt − ∂̄E −{∂K , φt }− θ . Then At ∈ A1(End(E)).
Here ∂K is a (1,0)-part of the Chern connection which is uniquely determined by
∂̄E and the hermitian metric K . {∂K , φt⌟} is the operator such that {∂K , φt⌟} =

∂K (φt⌟)−φt⌟∂K .

Proof. Let f ∈ A0(X) and s ∈ A0(E). Using the Leibniz rule and the fact that the
contraction is only taken in the (1,0)-part, we have

At( f s)= (∂̄+lφt ) f ⊗s+ f Dt(s)−∂̄ f ⊗s− f ∂̄E s+φt⌟∂K ( f s)−θ∧( f s)

= (∂̄−φt⌟∂) f ⊗s+ f Dt(s)−∂̄ f ⊗s− f ∂̄E s+φt⌟(∂ f ⊗s+ f ∂K s)− f θ∧ s

= f (Dt −∂̄E −{∂K , φt }−θ)s

= f At(s).

This shows that At ∈ A1(End(E)). □

We summarize the results so far.

Proposition 2.4. Let (X, E, θ) be a holomorphic-Higgs triple. Let (X , E,2) be a
deformation family of (X, E, θ) over1 and {(X t , Et , θt)}t∈1 be the family obtained
from (X , E,2). Combining φt and θt , we can construct a well-defined differential
operator Dt such that (Dt)

2
= 0. Let At := Dt − ∂̄E − {∂K , φt⌟} − θ . Then

At ∈ A1(End(E)).

We want the converse of the above proposition. Suppose we have a given smooth
family At ∈ A0,1(EndE), Bt ∈ A1,0(EndE) and φt ∈ A0,1(TX) parametrized by
t ∈1.

We define the operator Dt : A0(E)→ A1(E) as

Dt := ∂̄E + {∂K , φt⌟} + At + θ + Bt .

We extend Dt to Ap(E) in an obvious way so that it satisfies the Leibniz rule:

Dt(α⊗ s)= (∂̄ + lφt )α⊗ s + (−1)pα∧ Dt(s).

We want to show that if D2
t = 0, (At , Bt , φt) defines a holomorphic-Higgs triple

(X t , Et , θt). First of all, we have:

Proposition 2.5. If D2
t = 0, φt defines a holomorphic structure on X. We denote

this complex manifold by X t .

Proof. Let f ∈ A0(X) and s ∈ A0(E). Since D2
t = 0, it satisfies the Leibniz rule:

0 = D2
t ( f ⊗ s)= (∂̄ + lφt )

2 f ⊗ s.

Since f and s are arbitrary function and section, we have (∂̄ + lφt )
2
= 0. By (2),

we have
0 = (∂̄ + lφt )

2
= l∂̄TXφt−

1
2 [φt ,φt ]

.
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Hence ∂̄TXφt −
1
2 [φt , φt ] = 0. Hence φt defines a integrable complex structure

on X . □

Next, we show that E admits a holomorphic structure over X t and we can induce
a Higgs field on it. Let us define D′

t : A0(E)→ A0,1(E) as D′
t := ∂̄E +{∂K , φt⌟}+At .

We remark that Dt = D′
t + θ + Bt . The next claim was proved in [Moroianu 2007].

Lemma 2.3. ker(D′
t ) generates A0(E) locally.

Proof. See the proof of [Chan and Suen 2016, Lemma 3.11.]. □

The above lemma tells us that for every x ∈ X we have an open neighborhood U
of x and a frame {ek} on U such that {ek} ⊂ ker(D′

t). Let {ek} be a local frame of
E such that {ek} ⊂ ker(D′

t). Let ∂̄t be the Dolbeault operator of X t . We can then
define ∂̄Et by

∂̄Et (s
kek) := ∂̄t sk

⊗ ek .

Let { f j } ⊂ ker(D′
t) be an another local frame of E , then there exist (hk

j ) such that
f j = hk

j ek . Applying D′
t , we have

D′

t( f j )= D′

t(h
k
j e j )= (∂̄ −φt⌟∂)hk

j ⊗ ek .

Since ek is a local frame, we have (∂̄−φt⌟∂)hk
j = 0, which is equivalent to ∂̄t hk

j = 0.
We can now check ∂̄Et is well defined. Let s ∈ A0(E) and assume s has local
trivialization as s = s̃ j f j = skek . Applying ∂̄Et we have

∂̄Et (s
kek)= ∂̄t sk

⊗ ek = ∂̄t(s̃ j hk
j )⊗ ek = ∂̄t s̃ j ⊗ hk

j ek = ∂̄t s̃ j ⊗ f j = ∂̄Et (s̃ j f j ).

This proves the well-definedness. By definition, ∂̄E satisfies the Leibniz rule:

∂̄Et (α⊗ s)= ∂̄tα⊗ s + (−1)pα∧ ∂̄Et s

and ∂̄2
Et

= 0 since φt defines an integral almost complex structure on X . Hence,
by the linearized version of the Newlander–Nirenberg theorem, Et = (E, ∂̄Et ) is a
holomorphic bundle over X t .

We want to show next that θt = θ + Bt + φt⌟(θ + Bt) is a Higgs field for Et

under the above assertion. By Lemma 2.1, θt is a (1,0)-form of X t which takes
value in End(E).

Let ek ⊂ ker(D′
t) be a local frame of E and assume θ+ Bt is written as θ+ Bt =∑

i gi dzi (gi ∈ A0(End(E))) respect to this frame. By Lemma 2.2, to show θt is a
Higgs field on Et , it is enough to show (∂̄+lφt )gi dzi = 0 and (θ+Bt)∧(θ+Bt)= 0.

Since Dt satisfies the Leibniz rule

0 = D2
t (ek)= Dt(Dt(ek))= Dt((θ + Bt)(ek))= Dt(gi dzi (ek))

= (∂̄ + lφt )(gi dzi )ek − gi dzi ∧ Dt(ek)

= (∂̄ + lφt )(gi dzi )ek − (θ + Bt)∧ (θ + Bt)(ek).
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Hence θt is a Higgs field for Et and (X t , Et , θt) is a holomorphic-Higgs triple. In
summary, we have proved the following,

Proposition 2.6. Suppose we have a given smooth family At ∈ A0,1(End(E)),
Bt ∈ A1,0(End(E)), φt ∈ A0,1(TX) parametrized by t. If the induced differential
operator Dt : Ap(E)→ Ap+1(E) satisfies D2

t = 0 and the Leibniz rule

Dt(α∧ s)= (∂̄ + lφt )α⊗ s + (−1)pα∧ Dt(s),

then E admits a holomorphic structure over the complex manifold X t , which we de-
note by Et , and a Higgs field θt such that (X t , Et , θt) is a holomorphic-Higgs triple.

3. DGLA and the Maurer–Cartan equation

Let us recall the definition of DGLA.

Definition 3.1. A differential graded Lie algebra (DGLA) (V, [ · , · ], d) is the date
of Z-graded vector space L =

⊕
i∈Z L i with a bilinear bracket [ · , · ] : V × V → V

and a linear map d such that:

1. [a, b] + (−1)i j
[b, a] = 0 for a ∈ V i , b ∈ V j .

2. The graded Jacobi identity holds:

[a, [b, c]] = [[a, b], c] + (−1)i j
[b, [a, c]], a ∈ V i , b ∈ V j , c ∈ V k .

3. d(V i )⊂ V i+1, d◦d =0 and d[a, b]=[da, b]+(−1)i [a, db] for a ∈ V i , b ∈ V j .
The map d is called the differential of V .

We recall the definition of the Maurer–Cartan equation of a DGLA.

Definition 3.2. The Maurer–Cartan equation of a DGLA V is

da −
1
2 [a, a] = 0, a ∈ V 1.

The solutions of the Maurer–Cartan equation are called the Maurer–Cartan elements
of the DGLA L .

We derive the Maurer–Cartan equation and DGLA which governs the deformation
of the holomorphic-Higgs triple. The next proposition is important to construct the
DGLA. Before we state it, we introduce some notation. Let ∂End(E)

K : A0(End(E))→
A1,0(End(E)) be the differential operator induced by ∂K . Let FdK be the curvature
of the Chern connection. Let the bracket [ · , · ] be the canonical Lie bracket defined
on A∗(End(E)) and [ · , · ]SH be the standard Schouten–Nijenhuys bracket defined
on A0,∗(TX).

Proposition 3.1. Suppose we have a A ∈ A0,1(End(E)), B ∈ A1,0(End(E)) and
φ ∈ A0,1(TX). Let D be the differential operator defined as

D := ∂̄E + {∂K , φ⌟} + θ + A + B.



294 TAKASHI ONO

D2
= 0 holds if and only if the following two equations hold:

∂̄End(E)(A + B)−φ⌟FdK + [θ, A + B]

+ {∂
End(E)
K , φ⌟}θ + {∂

End(E)
K , φ⌟}(A + B)+ 1

2 [A + B, A + B] = 0,

∂̄TXφ−
1
2 [φ, φ] = 0.

From now on we denote [ · , · ]SH as [ · , · ] if there is no confusion. The proof of
the above proposition will be given at the end of the section.

Let us define some notation. Let L i be L i
:=

⊕
p+q=i Ap,q(End(E))⊕A0,i (TX)).

Let for φ ∈ A0,i (TX), {∂
End(E)
K , φ⌟} := ∂

End(E)
K (φ⌟)+ (−1)iφ⌟∂End(E)

K . Define the
bracket [ · , · ]L : L i

× L j
→ L i+ j by

[(A, φ), (B, ψ)]L :=(
(−1)i {∂End(E)

K , ψ⌟}A − (−1)(i+1) j
{∂

End(E)
K , φ⌟}B − [A, B], [φ,ψ]

)
.

We define BK ∈ A0,1(Hom(T X,End(E)) and the C-linear map CK : A0,p(TX)→
A1,p(End(E)) such that they act on v ∈ A0,p(TX) as

BK (v) := (−1)pv⌟FdK , CK (v) := {∂
End(E)
K , v⌟}θ.

We define the linear operator dL : L → L as

dL :=

(
∂̄End(E) BK

0 ∂̄TX

)
+

(
θ CK

0 0

)
Theorem 3.1.

(
L =

⊕
i L i , [ · , · ]L , dL

)
is a DGLA.

We separate the proof of the theorem into the two propositions below. Before
going to the proof, we introduce some formulas which are useful for the proof.

Lemma 3.1 [Martinengo 2012, Lemma 3.1]. Let iξ (ω)= ξ⌟ω for all ω ∈ A∗(X).
For every ξ, η ∈ A0,∗(TX),

(3) i[ξ,η] = [iξ , [∂, iη]], [iξ , iη] = 0.

We slightly modify Lemma 3.1 so that we can use it in our proof.

Lemma 3.2. Let X be a complex manifold and E be a holomorphic bundle over X.
Let K be a hermitian metric on E and ∂K be a (1,0)-part of the Chern connection.
By considering the degree of the differential form of (3), for any ω ∈ A∗(E) and any
φ ∈ A0, j (TX) and ψ ∈ A0,k(TX), we have

[φ,ψ]⌟ω = φ⌟∂K (ψ⌟ω)

−(−1) jk+k∂K (ψ⌟(φ⌟ω))−(−1) jkψ⌟∂K (φ⌟ω)−(−1) jk+kψ⌟φ⌟∂Kω.

We obtain the corollaries below by applying Lemma 3.2.
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Corollary 3.2. Let A ∈ Ai (End(E)), φ ∈ A0, j (TX) and ψ ∈ A0,k(TX). Then we
have

{∂
End(E)
K , [φ,ψ]⌟}A

= {∂
End(E)
K , φ⌟}{∂End(E)

K , ψ⌟}A − (−1) jk
{∂

End(E)
K , ψ⌟}{∂End(E)

K , φ⌟}A.

Proof. We denote ∂End(E)
K as ∂K in this proof.

Applying Lemma 3.2 to the left-hand side of the equation we have

{∂K , [φ,ψ]⌟}A

= ∂K ([φ,ψ]⌟A)+ (−1) j+k
[φ,ψ]⌟∂K A

= ∂K
{
φ⌟∂K (ψ⌟A)− (−1) jk+k∂K (ψ⌟(φ⌟A))

− (−1) jkψ⌟∂K (φ⌟A)− (−1) jk+kψ⌟φ⌟∂K A
}

+ (−1) j+k
{φ⌟∂K (ψ⌟∂K A)− (−1) jk+k∂K (ψ⌟(φ⌟∂K A))

− (−1) jkψ⌟∂K (φ⌟∂K A)}

= ∂K (φ⌟∂K (ψ⌟A))− (−1) jk∂K (ψ⌟∂K (φ⌟A))− (−1) jk+k∂K (ψ⌟φ⌟∂K A)

+ (−1) j+k{φ⌟∂K (ψ⌟∂K A)− (−1) jk+k∂K (ψ⌟(φ⌟∂K A))

− (−1) jkψ⌟∂K (φ⌟∂K A)
}

= ∂K (φ⌟∂K (ψ⌟A))− (−1) jk∂K (ψ⌟∂K (φ⌟A))− (−1) jk+k∂K (ψ⌟φ⌟∂K A)

+ (−1) j+k{φ⌟∂K (ψ⌟∂K A)− (−1) jk+ j∂K (ψ⌟(φ⌟∂K A))

− (−1) jk+ j+kψ⌟∂K (φ⌟∂K A)
}
.

We apply (3) for the computation of the right-hand side of the equation.

{∂K , φ⌟}{∂K , ψ⌟}A−(−1) jk
{∂K , ψ⌟}{∂K , φ⌟}A

= {∂K , φ⌟}(∂Kψ⌟A+(−1)kψ⌟∂K )A−(−1) jk
{∂K , ψ⌟}(∂Kφ⌟A+(−1) jφ⌟∂K A)

= ∂K (φ⌟∂K (ψ⌟A))+(−1)k∂K (φ⌟ψ⌟∂K A)+(−1) j+kφ⌟∂K (ψ⌟∂K A)

−(−1) jk
{∂K (ψ⌟∂K (φ⌟A))+(−1) j∂K (ψ⌟φ⌟∂K A)+(−1) j+kψ⌟∂K (φ⌟∂K A)}

= ∂K (φ⌟∂K (ψ⌟A))−(−1) jk+k∂K (ψ⌟φ⌟∂K A)+(−1) j+kφ⌟∂K (ψ⌟∂K A)

−(−1) jk∂K (ψ⌟∂K (φ⌟A))−(−1) jk+ j∂K (ψ⌟φ⌟∂K A)

−(−1) jk+ j+kψ⌟∂K (φ⌟∂K A).

Hence we have equality holds. □
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Corollary 3.3. Let FdK be the curvature of the Chern connection. Let φ ∈ A0,i (TX)
and ψ ∈ A0, j (TX). Then we have

[φ,ψ]⌟FdK = (−1)i {∂End(E)
K , φ⌟}ψ⌟FdK − (−1)i j+ j

{∂
End(E)
K , ψ⌟}φ⌟FdK .

Proof. We denote ∂End(E)
K as ∂K in this proof.

Recall that FdK is a (1, 1)-form which takes values in End(E).
Applying Lemma 3.2 to the left-hand side of the equation and by the Bianchi

identity we have

[φ,ψ]⌟FdK = φ⌟∂K (ψ⌟FdK )

− (−1)i j+ j∂K (ψ⌟(φ⌟FdK ))− (−1)i jψ⌟∂K (φ⌟FdK )

− (−1)i j+ jψ⌟φ⌟∂K FdK

= φ⌟∂K (ψ⌟FdK )− (−1)i jψ⌟∂K (φ⌟FdK ).

By direct computation for the right-hand side of the equation, we have

(−1)i {∂K , φ⌟}ψ⌟FdK − (−1)i j+ j
{∂K , ψ⌟}φ⌟FdK

= (−1)i∂K (φ⌟ψ⌟FdK )+φ⌟∂Kψ⌟FdK

− (−1)i j+ j∂K (ψ⌟φ⌟FdK )− (−1)i jψ⌟∂Kφ⌟FdK

= φ⌟∂Kψ⌟FdK − (−1)i jψ⌟∂Kφ⌟FdK .

Hence we have the desired equality. □

By direct computation, we obtain some corollaries.

Corollary 3.4. Let A ∈ Ai (End(E)), B ∈ A j (End(E)) and φ ∈ A0,k(TX). Then

(4) {∂
End(E)
K , φ⌟}[A, B] = [{∂

End(E)
K , φ⌟}A, B] + (−1)ik

[A, {∂End(E)
K , φ⌟}B].

Proof. We denote ∂End(E)
K as ∂K in this proof.

By using local trivialization we have

{∂K ,φ⌟}[A, B]

= ∂K (φ⌟[A, B])+(−1)kφ⌟∂K [A, B]

= ∂(φ⌟[A, B])+[K −1∂K ,φ⌟[A, B]]+(−1)kφ⌟(∂[A, B])+[K −1∂K , [A, B]]

= [∂(φ⌟A), B]+(−1)i+k−1
[φ⌟A,∂B]+(−1)i+ik

[∂A,φ⌟B]+(−1)ik
[A,∂(φ⌟B)]

+(−1)k[φ⌟∂A, B]+(−1)ik+i+1
[∂A,φ⌟B]+(−1)k+i

[φ⌟A,∂B]

+(−1)k+ki
[A,φ⌟∂B]+(−1)k[φ⌟K −1∂K , [A, B]]

= [∂(φ⌟A), B]+(−1)ik[A,∂(φ⌟B)]+(−1)k[φ⌟∂A, B]+(−1)ik+k
[A,φ⌟∂B]

+(−1)k[[φ⌟K −1∂K , A], B]+(−1)ki+k
[A, [φ⌟K −1∂K , B]]

= [{∂K ,φ⌟}A, B]+(−1)ik[A, {∂K ,φ⌟}B].

Hence we have the desired equality. □
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Corollary 3.5. Let A ∈ Ai (End(E)) and φ ∈ A0, j (TX). Then

∂̄End(E){∂
End(E)
K , φ⌟}A

= (−1) j
{∂

End(E)
K , φ⌟}∂̄End(E)A − {∂

End(E)
K , ∂̄TXφ⌟}A − [φ⌟FdK , A].

Proof. We denote ∂End(E)
K as ∂K in this proof.

We prove the above equality by using local trivialization:

∂̄End(E){∂K , φ⌟}A

= ∂̄End(E){∂K (φ⌟)+ (−1) jφ⌟∂K A}

= ∂̄End(E){∂(φ⌟A)+ (−1) j
[φ⌟K −1∂K , A] + (−1) jφ⌟∂A}

= −∂(∂̄TXφ⌟A)+ (−1) j∂(φ⌟∂̄End(E)A)+ (−1) j
[∂̄End E(φ⌟K −1∂K ), A]

+ [φ⌟K −1∂K , ∂̄End(E)A] + (−1) j ∂̄TXφ⌟∂A −φ⌟∂̄End(E)∂A

= (−1) j
{∂K , φ⌟}∂̄End(E)A − [φ⌟FdK , A] − ∂(∂̄TX )φ⌟A

+ (−1) j
[(∂̄TXφ)⌟K −1∂K , A] + (−1) j ∂̄TXφ⌟∂A

= (−1) j
{∂K , φ⌟}∂̄End(E)A − {∂K , ∂̄TXφ⌟}A − [φ⌟FdK , A].

Hence we have the desired equality. □

Proposition 3.2. The bracket [ · , · ]L : L × L → L satisfies the following:

1. For every (A, φ) ∈ L i , (B, ψ) ∈ L j (i, j ∈ Z),

[(A, φ), (B, ψ)]L + (−1)pq
[(B, ψ), (A, φ)]L = 0.

2. The graded Jacobi identity holds: for every (A, φ) ∈ L i , (B, ψ) ∈ L j , (C, τ ) ∈
Lk , and i , j , k,

[(A, φ), [(B, ψ), (C, τ )]L ]L

= [[(A, φ), (B, ψ)]L , (C, τ )]L + (−1)i j
[(B, ψ), [(A, φ), (C, τ )]L ]L

Proof. We denote ∂End(E)
K as ∂K in this proof.

1. is obvious from the definition. We prove 2.
We first calculate each component. First we have

(5) [(A, φ), [(B, ψ), (C, τ )]L ]L

=
[
(A, φ), ((−1) j

{∂K , ψ⌟}C − (−1)( j+1)k
{∂K , τ⌟}B − [B,C], [ψ, τ ])

]
L

=

(
α

[φ, [ψ, τ ]]

)
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where

α = (−1)i {∂K , φ⌟}{(−1) j
{∂K , ψ⌟}C − (−1)( j+1)k

{∂K , τ⌟}B − [B,C]}

− (−1)(i+1)( j+k)
{∂K , [ψ, τ ]⌟}A

− [A, (−1) j
{∂K , ψ⌟}C − (−1)( j+1)k

{∂K , τ⌟}B − [B,C]]

Next we have

(6)
[
[(A, φ), (B, ψ)]L , (C, τ )

]
L =

(
β

[[φ,ψ], τ ]

)
where

β = (−1)i+ j
{∂, [φ,ψ]⌟}C

− (−1)(i+ j+1)k
{∂K , τ⌟}{(−1)i {∂K , φ⌟}B − (−1)(i+1) j

{∂K , ψ⌟}A − [A, B]}

− [(−1)i {∂K , φ⌟}B − (−1)(i+1) j
{∂K , ψ⌟}A − [A, B],C].

We also have

(7) (−1)i j[(B, ψ), [(A, φ), (C, τ )]L
]

L =

(
γ

[ψ, [φ, τ ]

)
where

γ = (−1)i j ((−1)i {∂K , ψ⌟}{(−1)i {∂K , φ⌟}C − (−1)(i+1)k
{∂K , φ⌟}A − [A,C]}

− (−1)( j+1)(i+k)
{∂K , [φ, τ ]⌟}B

− [B, (−1)i {∂K , ψ⌟}(−1)i {∂K , φ⌟}C − (−1)(i+1)k
{∂K , φ⌟}A − [A,C]].

Hence by (5), (6), and (7) we only have to prove the equations

{∂K , [φ,ψ]⌟}A = {∂K , φ⌟}{∂K , ψ⌟}A − (−1) jk
{∂K , ψ⌟}{∂K , φ⌟}A,

{∂K , φ⌟}[A, B] = [{∂K , φ⌟}A, B] + (−1)ik[A, {∂K , φ⌟}B],

[A, [B,C]] = [[A, B],C] + (−1)i j
[B, [A,C]],

[φ, [ψ, τ ]] = [[φ,ψ], τ ] + (−1)i j
[ψ, [φ, τ ]].

The above equations follow from Corollaries 3.2 and 3.4 and the fact that the
Schouten–Nijenhuis bracket satisfies the Jacobi identity. Hence we proved that
[ · , · ]L satisfies the Jacobi identity. □

Proposition 3.3. dL is a differential with respect to the bracket [ · , · ]L , that is,

1. dL(L i )⊂ L i+1,

2. dL ◦ dL = 0,

3. for every (A, φ) ∈ L i , (B, ψ) ∈ L j and i , j ,

dL [(A, φ), (B, ψ)]L = [dL(A, φ), (B, ψ)]L + (−1)i [(A, φ), dL(B, ψ)]L
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Proof. We denote ∂End(E)
K as ∂K in this proof.

1. is obvious from the definition of dL .
We prove 2. for dL ◦dL : L1

→ L3. Let (A, φ)∈ L1. We calculate dL ◦dL(A, φ):

dL(A, φ)=

(
∂̄End(E)A−φ⌟FdK

∂̄T (X)

)
+

(
[θ, A]+{∂K , φ⌟}θ

0

)
· dL

((
∂̄End(E)A−φ⌟FdK

∂̄T (X)φ

)
+

(
[θ, A]+{∂K , φ⌟}θ

0

))
=

(
∂̄End(E) BK

0 ∂̄T (X)

) (
∂̄End(E)A−φ⌟FdK

∂̄T (X)φ

)
(8)

+

(
θ CK

0 0

) (
∂̄End(E)A−φ⌟FdK

∂̄TXφ

)
+

(
∂̄End(E) BK

0 ∂̄TX

) (
[θ, A]+{∂K , φ⌟}θ

0

)
(9)

+

(
θ CK

0 0

) (
[θ, A]+{∂K , φ⌟}θ

0

)
.(10)

Let us show (8) = (9) = (10) = 0:

(8) =

(
∂̄End(E) BK

0 ∂̄TX

) (
∂̄End(E)A−φ⌟FdK

∂̄TXφ

)
=

(
∂̄End(E)◦∂̄End(E)A+∂̄End(E)(φ⌟FdK )+BK (∂̄T (X)φ)

∂̄TX◦∂̄TXφ

)
=

(
∂̄TXφ⌟FdK +φ⌟∂̄End(E)Fdk −∂̄TXφ⌟FdK

0

)
=

(
φ⌟∂̄End(E)Fdk

0

)
= 0.

The last equation comes from the Bianchi identity. Next, we show (9) = 0:

(9) =

(
θ CK

0 0

) (
∂̄End(E)A−φ⌟FdK

∂̄TXφ

)
+

(
∂̄End(E) BK

0 ∂̄TX

) (
[θ, A]+{∂K , φ⌟}θ

0

)
=

(
[θ, ∂̄End(E)A]−[θ, φ⌟FdK ]+{∂K , ∂̄TXφ⌟}θ

0

)
+

(
∂̄End(E)[θ, A]+∂̄End(E)({∂K , φ⌟}θ)

0

)
.

Since θ is a Higgs field, ∂̄End(E)[θ, A] = −[θ, ∂̄End(E)A]. Hence we have

(11) (9) =

(
−[θ, φ⌟FdK ]+{∂K , ∂̄TXφ⌟}θ+∂̄End(E)({∂K , φ⌟}θ)

0

)
.
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By direct computation using the local realization we have

{∂K , ∂̄TXφ⌟}θ = ∂K (∂̄TXφ⌟θ)+ ∂̄TXφ⌟(∂K θ)

= ∂(∂̄TXφ⌟θ)+ [K −1∂K , ∂̄TXφ⌟θ ] + ∂̄TXφ⌟(∂θ + [K −1∂K , θ]).
and

∂̄End(E)({∂K , φ⌟}θ)= ∂̄End(E){∂(φ⌟θ)+ [K −1∂K , φ⌟θ ] −φ⌟(∂θ + [K −1∂K , θ])}

= −∂∂̄(φ⌟θ)+ [FdK , φ⌟θ ] − [K −1∂K , ∂̄End(E)(φ⌟θ)]

− ∂̄TXφ⌟(∂θ + [K −1∂K , θ])−φ⌟[FdK , θ]

= −∂(∂̄TXφ⌟θ)− [φ⌟FdK , θ] − [K −1∂K , ∂̄TXφ⌟θ ]

− ∂̄TXφ⌟(∂θ + [K −1∂K , θ]).

Hence by (11) and the above two displays, we obtain that (9) = 0.
Next, we show (10) = 0:

(12) (10) =

(
θ CK

0 0

) (
[θ, A]+{∂K , φ⌟}θ

0

)
=

(
[θ, {∂K , φ⌟}θ ]

0

)
.

By direct computation using the local realization we have

[θ, {∂K , φ⌟}θ ]

= θ∧{∂K , φ⌟}θ−{∂K , φ⌟}θ∧θ

= θ∧{∂(φ⌟θ)+[K −1∂K , φ⌟θ ]−φ⌟∂θ−φ⌟[K −1∂K , θ]}

−{∂(φ⌟θ)+[K −1∂K , φ⌟]θ−φ⌟∂θ−φ⌟[K −1∂K , θ]}∧θ

= θ∧{∂(φ⌟θ)−φ⌟∂θ−[φ⌟K −1∂K , θ]}−{∂(φ⌟θ)−φ⌟∂θ−[φ⌟K −1∂K , θ]}∧θ

= θ∧∂(φ⌟θ)−θ∧φ⌟∂θ−∂(φ⌟θ)∧θ+(φ⌟∂θ)∧θ.

Since θ ∧ θ = 0, we have

0 = ∂(φ⌟(θ ∧ θ))−φ(∂(θ ∧ θ))

= ∂(φ⌟θ)∧ θ − (φ⌟θ)∧ ∂θ + ∂θ ∧φ⌟θ − θ∧ ∂(φ⌟θ)

− (φ⌟∂θ)∧ θ − ∂θ ∧ (φ⌟θ)+ (φ⌟θ)∧ ∂θ + θ ∧ (φ⌟∂θ)

= ∂(φ⌟θ)∧ θ − θ∧ ∂(φ⌟θ)− (φ⌟∂θ)∧ θ + θ ∧φ⌟∂θ.

Hence by (12) and the above two displays, we obtain that (10) = 0. This completes
the proof of 2.

Next we prove 3.
Let (A, φ) ∈ L i and (B, ψ) ∈ L j . We first calculate each component of 3.
First we have

dL [(A, φ), (B, ψ)]L =

(
α

∂̄TX [φ,ψ]

)



DEFORMATION OF A PAIR OF COMPLEX MANIFOLDS AND HIGGS BUNDLES 301

where

α = (∂̄End(E) + θ)
(
(−1)i {{∂K , φ⌟}B − (−1)(i+1) j

{∂K , ψ⌟}A − [A, B]}
)

+ (−1)i+ j
[φ,ψ]⌟FdK + {∂K , [φ,ψ]⌟}θ.

Next we have

[dL(A, φ), (B, ψ)]L =

(
β

[∂̄TXφ,ψ])

)
,

where

β = (−1)i+1
{∂K , ∂̄TXφ⌟}B

− (−1)(i+2) j
{∂K , ψ⌟}(∂̄End(E)A + (−1)iφ⌟FdK + [θ, A] + {∂K , φ⌟}θ)

− [∂̄End(E)A + (−1)iφ⌟FdK + [θ, A] + {∂K , φ⌟}θ, B].

We also have

(−1)i [(A, φ), dL(B, ψ)]L =

(
γ

(−1)i [φ, ∂̄TXψ]

)
,

where

γ = {∂K , φ⌟}(∂̄End(E)B + (−1) jψ⌟FdK + [θ, B] + {∂K , φ⌟}θ)

− (−1)(i+1)( j+1)+i
{∂K , ∂̄TXψ⌟}A

− (−1)i [A, ∂̄End(E)B + (−1) jψ⌟FdK + [θ, B] + {∂K , ψ⌟}θ ].

Hence by the above equations, we have to prove

∂̄End(E){∂K , φ⌟}A = (−1) j
{∂K , φ}∂̄End(E)A − {∂K , ∂̄TXφ⌟}A − [φ⌟FdK , A],

{∂K , φ⌟}[θ, A] = [{∂K , φ⌟}θ, A] + (−1)i [θ, {∂K , φ⌟}A],

[φ,ψ]⌟FdK = (−1)i {∂K , φ⌟}ψ⌟FdK − (−1)i j+ j
{∂K , ψ⌟}φ⌟FdK ,

[θ, [A, B]] = [[θ, A], B] + (−1)i [A, [θ, B]],

∂̄End(E)[A, B] = [∂̄End(E)A, B] + (−1)i [A, ∂̄End(E)B],

∂̄TX [φ,ψ] = [∂̄TXφ,ψ] + (−1)i [φ, ∂̄TXψ].

These equations follow from Corollaries 3.2–3.5 and the fact that ∂̄End(E) and ∂̄TX

satisfy the Leibniz rule and the canonical bracket satisfies the Jacobi identity. □

Propositions 3.2 and 3.3 show us that (L , [ · , · ]L , dL) is a DGLA. Hence we
proved Theorem 3.1. Combining Propositions 2.6 and 3.1 with Theorem 3.1, we
have:

Theorem 3.6. Given a holomorphic-Higgs triple (X, E, θ) and a smooth family
of elements {At , Bt , φt }t∈1 ⊂ A0,1(End(E))⊕ A1,0(End(E))⊕ A0,1(TX). Then,
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(At , Bt , φt) defines a holomorphic-Higgs triple if and only if (At , Bt , φt) satisfies
the Maurer–Cartan equation

dL(At + Bt , φt)−
1
2 [(At + Bt , φt), (At + Bt , φt)] = 0.(13)

We now give the proof of Proposition 3.1.

Proof of Proposition 3.1. We calculate D2. Using Corollaries 3.2 and 3.5, we have

D2
= (∂̄E + {∂K , φ⌟} + A + θ + B)2

= ∂̄E ∂̄E + ∂̄E {∂K , φ⌟} + {∂K , φ⌟}∂̄E + {∂K , φ⌟}{∂K , φ⌟}

+ {∂K , φ⌟}(A + θ + B)+ (A + θ + B){∂K , φ⌟}

+ ∂̄E(A + θ + B)+ (A + θ + B)∂̄E + [θ, A + B] +
1
2 [A + B, A + B]

= −{∂K , ∂̄TXφ⌟} −φ⌟FdK +
1
2{∂K , [φ, φ]⌟} + ∂̄End(E)(θ + A + B)

+ {∂
End(E)
K , φ⌟}(θ + A + B)+ [θ, A + B] +

1
2 [A + B, A + B]

= −
{
∂K ,

(
∂̄TXφ−

1
2 [φ, φ]

)
⌟
}

+ ∂̄End(E)(A + B)−φ⌟FdK + {∂
End(E)
K , φ⌟}θ + [θ, A + B]

+ {∂
End(E)
K , φ⌟}(A + B)+ 1

2 [A + B, A + B].

Hence by the above calculation, D2
= 0 is equivalent to

∂̄End(E)(A + B)−φ⌟FdK + [θ, A + B]

+{∂
End(E)
K , φ⌟}θ + {∂

End(E)
K , φ⌟}(A + B)+ 1

2 [A + B, A + B] = 0,

∂̄TXφ−
1
2 [φ, φ] = 0.

Hence we have the proof. □

4. Kuranishi family

4A. Construction of Kuranishi family. Kuranishi [1965] constructed a universal
family for any complex manifold X over a possible singular analytic space. We
want to construct a family of holomorphic-Higgs triples over a certain singular
space which becomes a universal family in this context.

Here we recall some differential operators and inequalities we need. These are
commonly used in classical Hodge theory. We choose a hermitian metric g on
X and a hermitian metric K on E . Using these two metrics, we can define an
inner product ( · , · ) on L =

⊕
i L i . We remark that L i and L j are orthogonal with

respect to this inner product. We first define the formal adjoint of dL with respect
to ( · , · ) by

(dLα, β)= (α, d∗

Lβ).
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Then the Laplacian 1L is defined by

1L = dL ◦ d∗

L + d∗

L ◦ dL .

This is an elliptic self-adjoint operator. Hence by Theorem 4.12 in [Wells 1980,
Chapter 4], it has a finite dimensional kernel Hi . We call the elements of Hi a
harmonic form. Let L̃ i be a completion of L i with respect to the inner product
( · , · ), and let H : L i

→ Hi be the harmonic projection. The Green’s operator
G : L i

→ L i is defined by

I = H +1L ◦ G = H + G ◦1L ,

where I is the identity for L i . H and G can be extended to the bounded operator
H,G : L̃ i

→ L̃ i . G commutes with dL and d∗

L .
Now let {η1, . . . , ηn} ⊂ H1 be a basis and ϵ1(t) :=

∑n
j=1 t jη j ∈ H1. Consider

ϵ(t)= ϵ1(t)+ 1
2 d∗

L G[ϵ(t), ϵ(t)]L .

We define the Hölder norm ∥ · ∥k,α as in [Morrow and Kodaira 2006]. We have the
inequalities

∥d∗

Lϵ∥k,α ≤ C1 ∥ϵ∥k+1.α,

∥[ϵ, δ]∥k,α ≤ C2 ∥ϵ∥k+1,α∥δ∥k+1,α.

Douglis and Nirenberg [1955] proved the a priori estimate

∥ϵ∥k,α ≤ C3(∥1Lϵ∥k−2,α + ∥ϵ∥0,α).

Applying these and following the proof of Proposition 2.3 in [Morrow and Kodaira
2006, Chapter 4] one can deduce an estimate for the Green’s operator G:

∥Gϵ∥k,α ≤ C4 ∥ϵ∥k−2,α,

where all Ci ’s are positive constants which depend only on k and α.
Then by applying the proof of Proposition 2.4 in [Morrow and Kodaira 2006,

Chapter 4] or using the implicit function theorem for Banach spaces as in [Kuranishi
1965], we obtain a unique solution ϵ(t) which satisfies

ϵ(t)= ϵ1(t)+ 1
2 d∗

L G[ϵ(t), ϵ(t)]L ,

which is analytic in the variable in t . The solution ϵ(t) is also a smooth section
for L1. By applying the Laplacian to the above equation, we get

1Lϵ(t)− 1
2 d∗

L [ϵ(t), ϵ(t)]L = 0.
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Since ϵ(t) is holomorphic in t , we have∑
i, j

∂2

∂ti∂ t̄ j
ϵ(t)= 0.

Hence we have (
1L +

∑
i, j

∂2

∂ti∂ t̄ j

)
ϵ(t)− 1

2 d∗

L [ϵ(t), ϵ(t)]L = 0.

Since the operator

1L +

∑
i, j

∂2

∂ti∂ t̄ j

is elliptic, we can say that ϵ(t) is smooth by elliptic regularity.
From the discussion so far, we have:

Proposition 4.1. Let {η1, . . . , ηn} ⊂ H1 be a basis. Let t = (t1, . . . , tn) ∈ Cn and
ϵ1(t) :=

∑
i tiηi . For all |t | ≪ 1 we have a ϵ(t) such that ϵ(t) satisfies

ϵ(t)= ϵ1(t)+ 1
2 d∗

L G[ϵ(t), ϵ(t)]L .

Moreover, ϵ(t) is holomorphic with respect to the variable t .

Following Kuranishi [1965] we have:

Proposition 4.2. If we take |t | small enough, the solution ϵ(t) that satisfies

ϵ(t)= ϵ1(t)+ 1
2 d∗

L G[ϵ(t), ϵ(t)]L

solves the Maurer–Cartan equation if and only if H [ϵ(t), ϵ(t)]L = 0. Here H is the
harmonic projection.

Proof. Suppose the Maurer–Cartan equation holds. Then

dLϵ(t)− 1
2 [ϵ(t), ϵ(t)]L = 0.

Hence we have
H [ϵ(t), ϵ(t)]L = 2HdLϵ(t)= 0.

Conversely, suppose that H [ϵ(t), ϵ(t)]L = 0. We have to show

δ(t) := dLϵ(t)− 1
2 [ϵ(t), ϵ(t)]L = 0.

Since ϵ(t) is a solution to

ϵ(t)= ϵ1(t)+ 1
2 d∗

L G[ϵ(t), ϵ(t)]L

and ϵ1(t) is dL -closed, applying dL we get

dLϵ(t)=
1
2 dLd∗

L G[ϵ(t), ϵ(t)]L .
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Hence
2δ(t)= dLd∗

L G[ϵ(t), ϵ(t)]L − [ϵ(t), ϵ(t)]L .

By the Hodge decomposition, we can write

[ϵ(t), ϵ(t)]L = H [ϵ(t), ϵ(t)]L +1L G[ϵ(t), ϵ(t)]L =1L G[ϵ(t), ϵ(t)]L .

Therefore
2δ(t)= dLd∗

L G[ϵ(t), ϵ(t)]L −1L G[ϵ(t), ϵ(t)]L

= −d∗

LdL G[ϵ(t), ϵ(t)]L

= −d∗

L GdL [ϵ(t), ϵ(t)]L

= −2d∗

L G[dLϵ(t), ϵ(t)]L .

Hence we get
δ(t)= −d∗

L G[dLϵ(t), ϵ(t)]L

= −d∗

L G
[
δ(t)+ 1

2 [ϵ(t), ϵ(t)]L , ϵ(t)
]

L

= −d∗

L G[δ(t), ϵ(t)]L .

We used the Jacobi identity in the last equality. Using the estimate

∥[ξ, η]∥k,α ≤ Ck,α∥ξ∥k+1,α∥η∥k+1,α,

we get
∥δ(t)∥k,α ≤ Ck,α∥δ(t)∥k,α∥ϵ(t)∥k,α.

If we take |t | small enough such that Ck,α∥ϵ(t)∥k,α < 1, we obtain δ(t)= 0. This
stands for all |t | small enough. This finishes the proof. □

In the case when H [ϵ(t), ϵ(t)]L = 0 for all t or H2
= 0, we have:

Corollary 4.1. Let n be the dimension of H1. If H [ϵ(t), ϵ(t)]L = 0 for all t , we
have a family of deformation of holomorphic-Higgs triples over a small ball 1
centered at the origin of Cn .

Proof. If H [ϵ(t), ϵ(t)]= 0 for all t , ϵ(t)= (At + Bt , φt) satisfies the Maurer–Cartan
equation and so we obtain family of holomorphic-Higgs triple (X t , Et , θt). Since φt

is holomorphic for variable t , applying the Newlander–Nirenberg theorem, we can
define a complex structure on X := X ×1 such that X t =X |X×{t}. Let E := E ×1.
By applying the linearized Newlander–Nirenberg theorem as in [Moroianu 2007],
we have a local frame {e(x, t)} of E on X such that for each t , {e(x, t)}⊂ ker(D′

t)=

ker(∂̄Et ) and is holomorphic respect to variable t . Let σ : X → E be a smooth
section and locally trivialized as σ(x, t)=

∑
k sk(x, t)ek(x, t) where sk are smooth

function on X . We define ∂̄E : A(E)→ A0,1
X (E) as

∂̄E(σ (x, t)) :=

∑
k

∂̄X sk(x, t)⊗ ek(x, t).
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Note that ∂̄E is well defined and ∂̄E |E×t = ∂̄Et . It is clear that ∂̄2
E = 0 so that E is a

holomorphic bundle over X .
Let2= θ+Bt +φt⌟(θ+Bt). Since φt , Bt is holomorphic respect to the variable t

and θ+Bt +φt⌟(θ+Bt) is a Higgs field for (X t , Et), we have ∂̄EndE2=0,2∧2=0.
Hence 2 is a Higgs field for (X , E).

Let π :X = X ×1→1 be a natural projection, this is a holomorphic submersion.
Also π−1(0)= X , E|π−1(0) = E and 2|π−1(0) = θ stands. Hence we have a family
of deformation of a holomorphic-Higgs triple over 1. □

In general, the condition H2
= 0 may not be satisfied. However, we can define a

possible singular analytic space

S := {t ∈1 : H [ϵ(t), ϵ(t)]L = 0}.

Let Xϵ(t), Eϵ(t), θϵ(t) be the complex manifold, the holomorphic bundle, and the
Higgs field defined by ϵ(t). By the above results, we have a family of holomorphic-
Higgs triples {(Xϵ(t), Eϵ(t), θϵ(t))}t∈S . We call this family the Kuranishi family of
(X, E, θ) and S the Kuranishi space.

4B. Local completeness of Kuranishi family. We give a proof of the local com-
pleteness of the Kuranishi family for the deformation of the triple (X, E, θ). Here
we follow Kuranishi’s method.

Recall that in Section 4A we proved that for a given ϵ1(t) =
∑

i tiηi ∈ H1
=

ker(1L : L1
→ L1) the existence of solutions ϵ(t) to

ϵ(t)= ϵ1(t)+ 1
2 d∗

L G[ϵ(t), ϵ(t)]L

and proved that ϵ(t) satisfies the Maurer–Cartan equation if and only if

H [ϵ(t), ϵ(t)]L = 0.

Hence we obtain a family of holomorphic-Higgs triples over

S := {t ∈1 : H [ϵ(t), ϵ(t)]L = 0}.

Before we state the main theorem of this paper, we introduce the Sobolev norm for
L and collect some estimates.

First, let us recall the Sobolev norm on Euclidean space. Let U be an open subset
of Rn and f and g be a complex-valued smooth function on U . Here, U is a closure
of U . We set

( f, g)k :=

∑
|α|<k

∫
U

Dα f · Dαg dx,

where we use the multi-index notation α = (α1, . . . , αn), αi > 0, |α| =
∑

i αi and
Dα

=
(
∂
∂x1

)α1
· · ·

(
∂
∂xn

)αn .
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Then we define k-th Sobolev norm | · |k as

(14) | f |k = | f |
U
k :=

√
( f, f )k .

Let V be a relatively compact open subset of U . By [Morrow and Kodaira 2006,
Chapter 4, Lemma 3.1], we have an estimate such that

(15) | f g|
V
k ≤ c | f |

U
k · |g|

U
k , k ≥ n + 2,

where c is a constant.
By using a partition of unity and the metric of E and X , we can define k-th

Sobolev |η|k for any η ∈ L i
=

⊕
p+q=i Ap,q(End(E))⊕ A0,i (TX). We list some

estimates that we need. Let ck be a constant. Then the following estimates hold
(see [Morrow and Kodaira 2006] for more details):

(16)

|[φ,ψ]k | ≤ ck |φ|k+1|ψ |k+1, k ≥ 2n + 2, dimC X = n,

|Hφ| ≤ ck |φ|k,

|d∗

L Gφ|k ≤ ck |φ|k−1.

From now on, we choose a k large enough such that the above estimates hold.
Let η := (A + B, φ) ∈ L1 be a Maurer–Cartan element and assume |η|k is small

enough so that η can define a holomorphic-Higgs triple. Let Xη, Eη, θη be the
complex manifold, the holomorphic bundle, and the Higgs field which η defines,
respectively. We denote this holomorphic-Higgs triple (Xη, Eη, θη). Let η′

∈ L1 be
another Maurer–Cartan element and assume that η′ also defines a holomorphic-Higgs
triple (Xη′, Eη′, θη′). We denote as (Xη, Eη, θη) ∼= (Xη′, Eη′, θη′) when there is a
biholomorphic map F : Xη → X ′

η, a holomorphic bundle isomorphism8 : Eη → E ′
η

which is compatible with F and θη= 8̂−1
◦F∗(θ ′

η)◦8̂ holds. Here 8̂ : Eη→ F∗(Eη′)

is the holomorphic bundle isomorphism induced by 8. F∗(Eη′) is the pull back of
the bundle Eη′ by F .

Now we state the main theorem of this paper.

Theorem 4.2. Let η := (A+B, φ)∈ L1 be a Maurer–Cartan element. If |η|k is small
enough, then there exists some t ∈ S such that (Xη, Eη, θη)∼= (Xϵ(t), Eϵ(t), θϵ(t)).

Proposition 4.3. Let ϵ1(t) ∈ H1, t ∈ S. Assume that ϵ solves the equation

ϵ = ϵ1(t)+ 1
2 d∗

L G[ϵ, ϵ]L .

If |ϵ|k is small enough, then the solution is unique.

Proof. Suppose ϵ is another solution. Let δ = ϵ− ϵ(t). Then

δ =
1
2 d∗

L G
(
[ϵ, ϵ]L − [ϵ(t), ϵ(t)]L

)
=

1
2 d∗

L G
(
[δ, ϵ(t)]L + [ϵ(t), δ]L + [δ, δ]L

)
=

1
2 d∗

L G
(
2[δ, ϵ(t)]L + [δ, δ]L

)
.
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Estimating |δ|k gives
|δ|k ≤ Dk

(
|δ|k |ϵ(t)|k + |δ|2k

)
≤ Dk |δ|k

(
|ϵ(t)|k + |δ|k

)
.

If |ϵ(t)|k is small enough, the above estimate holds if and only if |δ|k = 0. This
proves the proposition. □

Proposition 4.4. Suppose η ∈ L1 satisfies the Maurer–Cartan equation (13). If
d∗

Lη = 0 and |η|k is small enough, then η = ϵ(t) for some t ∈ S.

Proof. Since η satisfies the Maurer–Cartan equation, we have

dLη−
1
2 [η, η]L = 0.

Since d∗

Lη = 0, we have

1Lη = d∗

LdLη+ dLd∗

Lη

=
1
2 d∗

L [η, η]L .

Hence
η− Hη = G1Lη =

1
2 Gd∗

L [η, η]L .

Let ψ := Hη. Then η = ψ +
1
2 Gd∗

L [η, η]L . By the assumption such that |η|k is
small, |ψ |k is small by (16). Hence ψ = ϵ1(t) for |t | small enough. Hence by
Proposition 4.3, η = ϵ(t) for some t ∈ S. □

In general d∗

Lη ̸= 0 so we must try something else. We follow the idea of
[Kuranishi 1965]. Let us recall how we solved this problem in the complex manifold
setting. The idea is that for a given Maurer–Cartan element φ ∈ A0,1(TX), we
deform φ along a diffeomorphism f : X → X .

Let Xφ be a complex manifold such that the complex structure comes from φ.
Let f : X → X be a diffeomorphism. We can induce a complex structure on X
by f . We denote the corresponding Maurer–Cartan element as φ ◦ f . Note that
f : Xφ◦ f → Xφ is a biholomorphic map.

Kuranishi showed that for every Maurer–Cartan elements φ with |φ|k small,
there is a diffeomorphism f such that ∂̄TX (φ ◦ f ) = 0. We recall how we obtain
such f .

Let g = (gi j̄ ) be a fixed hermitian metric on X . Let ξ =
∑

i ξi (z) ∂∂zi
∈ A0(TX)

and ξ̄ be the conjugate. Let z0 ∈ X . Let c(t)= c(t, z0, ξ)= (c1(t), . . . , cn(t)) be the
geodesic curve starting from z0 with initial velocity ξ+ ξ̄ . Let fξ (z0) := c(1, z0, ξ).
Since X is compact, fξ is a diffeomorphism. By using Taylor expansion for fξ , we
obtain

(17) φ ◦ fξ = φ+ ∂̄TXξ + R(φ, ξ)
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where R(tφ, tξ) = t2 R1(φ, ξ, t) if t is a real number and both R, R1 are smooth
map on X . In [Kuranishi 1965], it was shown that there is a ξ ∈ A0(TX) such that
∂̄TX (φ ◦ fξ )= 0 for any φ with |φ|k small by the implicit function theorem between
Banach spaces.

Let η = (A + B, φ) ∈ L1 be a Maurer–Cartan elements and assume |η|k is
small enough so that η can define a holomorphic-Higgs triple (Xη, Eη, θη). By
Kuranishi’s work we have a ξ ∈ A0(TX) such that ∂̄TX (φ ◦ fξ )= 0.

Let Pξ : E → E be the parallel transport of the Chern connection along fξ . Let
υ ∈ A0(End(E)) and exp(υ) :=

∑
∞

n=0
υn

n!
∈ A0(End(E)). exp(υ) : E → E is an

automorphism and the inverse is given as exp(−υ). Note that (υ, ξ) ∈ L0.
Let8 := Pξ ◦exp(υ). Since Pξ is an isomorphism and compatible with fξ ,8 also

is. Hence there is a smooth bundle isomorphism 8̂ : E → f ∗

ξ Eη which is induced
by 8. Hence we can induce a holomorphic-Higgs triple structure on (X, E, θ) via
8 and fξ . This holomorphic-Higgs triple is isomorphic to (Xη, Eη, θη). We denote
the corresponding Maurer–Cartan element as ηγ := ((A+ B)⋆8, φ ◦ fξ ). We show
the existence of γ := (υ, ξ) ∈ L0 such that d∗

Lηγ = 0.
We first prove the next proposition.

Proposition 4.5. Let ηγ = ((A + B) ⋆8, φ ◦ fξ ), η = (A + B, φ) and γ = (υ, ξ)

be as above. Then we have

(18) ((A + B) ⋆8, φ ◦ fξ )= (A + B, φ)+ dL(υ, ξ)+ R((A, B, φ), (υ, ξ)).

The error term R is of order t2 in the sense that

R(t (A, B, φ), t (υ, ξ))= t2 R1((A, B, φ), (υ, ξ), t).

where t is a real number and R1 is a smooth map.

Proof. Before going to the proof, we prepare some terminologies. Let A ∈

A0,1(End(E)), B ∈ A1,0(End(E)), υ ∈ A(End(E)), φ ∈ A0,1(TX) and ξ ∈ A0(TX).
The map R((A, B, φ), (υ, ξ)) is a smooth map on X such that R depends on
A, B, υ, φ and ξ and R is of order t2 in the sense that

R(t (A, B, φ), t (υ, ξ))= t2 R1((A, B, φ), (υ, ξ), t),

where t is a real number and R1((A, B, φ), (υ, ξ), t) is a smooth map defined on X .
We assume that the same property holds for R((A, φ), (υ, ξ)), R((B, φ), (υ, ξ)).

The map R′((A, B, φ), (υ, ξ)) is a smooth map defined on some open set of X
such that R′ depends on A, B, υ, φ, and ξ and R′ is of order t2 in the sense that

R′(t (A, B, φ), t (υ, ξ))= t2 R′

1((A, B, φ), (υ, ξ), t),
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where t is a real number and R′

1((A, B, φ), (υ, ξ), t) is a smooth map defined on
some open set of X . We assume that the same property holds for R′((A, φ), (υ, ξ)),
R′((B, φ), (υ, ξ)), R′(υ, ξ) and R′(φ, ξ).

By (17), we only have to prove

(19) (A + B) ⋆8

= A+B+∂̄End(E)υ+ξ⌟FdK +[θ, υ]+{∂
End(E)
K , ξ⌟}θ+R((A, B, φ), (υ, ξ)).

First we prove

(20) A ⋆8= A + ∂̄End(E)υ + ξ⌟FdK + R((A, φ), (υ, ξ)).

Let U ′ and U be open sets of X such that U ′
⊂ U and fξ (U ′)⊂ U . We calculate

(A ⋆8− A)(z) for z ∈ U ′. Let {ek} be a holomorphic frame on U for Eη′ . Since
Eη′’s complex structure is induced by 8, 8 : Eη′ → Eη is a holomorphic bundle
isomorphism. Hence 8(ek) is a holomorphic section for Eη. Hence we have

∂̄E ek + {∂K , (φ ◦ fξ )⌟}ek + (A ⋆8)ek = 0,(21)

8−1
◦ (∂̄E + {∂k, φ⌟} + A) ◦8(ek)= 0.(22)

By (17), (21) is equivalent to

(23) ∂̄E ek + {∂K , φ⌟}ek + {∂K , ∂̄TXξ⌟}ek + (A ⋆8)ek + R′(φ, ξ)(ek)= 0.

Let P ′

ξ be the first order of Pξ . Since 8= Pξ ◦ exp(υ), we have an expansion for
8(ek) such that

8(ek)= Pξ ◦ exp(υ)(ek)= ek + P ′

ξ (ek)+ υ(ek)+ R′(υ, ξ)(ek).

Hence (22) is equivalent to

∂̄E ek + {∂K , φ⌟}ek + Aek + ∂̄E(P ′

ξek)− P ′

ξ ∂̄E ek

+ ∂̄Eυek − υ∂̄E(ek)+ R′((A, φ), (υ, ξ))(ek)= 0.

Since ∂̄E(υek)− υ∂̄E ek = (∂̄End(E)υ)ek , we have

(24) ∂̄E ek + {∂K , φ⌟}ek + Aek + ∂̄E(P ′

ξek)− P ′

ξ ∂̄E ek

+ (∂̄End(E)υ)ek + R′((A, φ), (υ, ξ))(ek)= 0.

Hence by (23), (24),

(25) (A ⋆8)ek − Aek + {∂K , ∂̄TXξ⌟}ek − ∂̄E(P ′

ξek)+ P ′

ξ ∂̄E ek

− (∂̄End(E)υ)ek + R′((A, φ), (υ, ξ))(ek)= 0.

We have to prove {∂K , ∂̄TXξ⌟} − ∂̄E ◦ P ′

ξ + P ′

ξ ◦ ∂̄E = −ξ⌟FdK . We prove this for
a holomorphic frame {e′

k} for E on U . Since Pξ is the parallel transport along fξ
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respect to the Chern connection, we have P ′

ξ (e
′

k)= −ξ⌟K −1∂K (e′

k). (See [Spivak
1999] for more details). Hence we have

{∂K , ∂̄TXξ⌟}e′

k − ∂̄E ◦ P ′

ξe
′

k + P ′

ξ ◦ ∂̄E e′

k

= −∂̄TXξ⌟∂K e′

k + ∂̄E(ξ⌟K −1∂K e′

k)

= −∂̄TXξ⌟∂K e′

k + ∂̄TXξ⌟K −1∂K e′

k − ξ⌟(∂̄End(E)(K −1∂K ))e′

k

= (−ξ⌟FdK )e
′

k .

Hence by (25), we have

(A ⋆8)ek = Aek + (∂̄End(E)υ)ek + ξ⌟FdK (ek)+ R′((A, φ), (υ, ξ))(ek).

Since {ek} is an arbitrary holomorphic frame on Eη′ and R′((A, φ), (υ, ξ))(ek) is a
local expression of A ⋆8− A − ∂̄End(E)υ − ξ⌟FdK we proved (20).

Next, we prove that

(26) B ⋆8= B + [θ, υ] + {∂
End(E)
K , ξ⌟}θ + R((B, φ), (υ, ξ)).

We recall that 8̂ : Eη′ → f ∗

ξ (Eη) is a holomorphic bundle isomorphism and θη′ =

8̂−1
◦ f ∗

ξ (θη) ◦ 8̂. Let θ1,0
η′ is the (1, 0)-part of θη′ respect to the original complex

structure, then we have B ⋆8= θ
1,0
η′ − θ . We calculate B ⋆8 locally.

Let (U, z) be a local coordinate and U ′
⊂ U . We assume fξ (U ′) ⊂ U and

ξ =
∑

i ξi (z)
(
∂
∂zi

)
. By the definition of fξ , for z ∈ U ′, we have

fξ (z)=
(
z1 + ξ1(z)+ O(|ξ |2), . . . , zn + ξn(z)+ O(|ξ |2)

)
.

Let {ek} be a holomorphic frame on U for E . Let gi , Bi ∈ A0(End(E)). Assume
that θ is locally expressed as

∑
i gi (z)dzi and B as

∑
i Bi (z)dzi respect to this

frame.
Let the bracket [ · , · ] be the canonical Lie bracket defined on A∗(End(E)). Since

θη = θ + B +φ⌟(θ + B)= (gi + Bi )dzi + (gi + Bi )φ
i
j dz̄ j and 8̂ is induced by 8,

we have

θη′(ek)= 8̂−1
◦ f ∗

ξ (θη)◦8̂(ek)

= 8̂−1
◦{(gi+Bi )( fξ (z))d fξ,i (z)+(gi+Bi )( fξ (z))φi

j ( fξ (z))d f̄ξ, j }◦8̂(ek)

= ((gi+Bi )( fξ (z))d fξ,i (z)+(gi+Bi )( fξ (z))φi
j ( fξ (z))d f̄ξ, j )(ek)

+[(gi+Bi )( fξ (z))d fξ,i (z)+(gi+Bi )( fξ (z))φi
j ( fξ (z))d f̄ξ, j , P ′

ξ ](ek)

+[(gi+Bi )( fξ (z))d fξ,i (z)+(gi+Bi )( fξ (z))φi
j ( fξ (z))d f̄ξ, j , υ](ek)

+R′((B, φ), (υ, ξ))(ek).
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Hence

(27) θ
1,0
η′ (ek)=

(
(gi+Bi )( fξ (z))dzi+(gi+Bi )( fξ (z))

∂ξi

∂z j
dz j

)
(ek)

+

[
((gi+Bi )( fξ (z))dzi+(gi+Bi )( fξ (z))

∂ξi

∂z j
dz j , P ′

ξ

]
(ek)

+

[
((gi+Bi )( fξ (z))dzi+(gi+Bi )( fξ (z))

∂ξi

∂z j
dz j , υ

]
(ek)

+R′((B, φ), (υ, ξ))(ek)

=

(
(gi+Bi )( fξ (z))dzi+gi ( fξ (z))

∂ξi

∂z j
dz j

)
(ek)

+
[
gi ( fξ (z))dzi , P ′

ξ

]
(ek)+

[
gi ( fξ (z))dzi , υ

]
(ek)

+R′((B, φ), (υ, ξ))(ek).

Since fξ (z)= c(z, ξ, 1), we have the Taylor expansion at t = 0 for gi ( fξ (z)) and
Bi ( fξ (z)):

gi ( fξ (z))= gi (z)+ ξ j (z)
∂gi

∂z j
(z)+ O(|ξ |2),

Bi ( fξ (z))= Bi (z)+ ξ j (z)
∂Bi

∂z j
(z)+ O(|ξ |2).

Hence by (27), θ1,0
η′ (ek) becomes

θ
1,0
η′ (ek)=

(
gi (z)dzi + ξ j

∂gi

∂z j
(z)dzi + Bi (z)dzi + gi (z)

∂ξi

∂z j
dz j

)
(ek)

+ [gi (z)dzi , P ′

ξ ](ek)+ [gi (z)dzi , υ](ek)+ R′((B, φ), (υ, ξ))(ek)

= (θ + B)(ek)+

(
ξ j
∂gi

∂z j
(z)dzi + gi (z)

∂ξi

∂z j
dz j

)
(ek)

+ [θ, P ′

ξ ](ek)+ [θ, υ](ek)+ R′((B, φ), (υ, ξ))(ek).

Hence

(28) B ⋆8(ek)= θ1,0
η (ek)− θ(ek)

= B(ek)+

(
ξ j
∂gi

∂z j
(z)dzi + gi (z)

∂ξi

∂z j
dz j

)
(ek)

+ [θ, P ′

ξ ](ek)+ [θ, υ](ek)+ R′((B, φ), (υ, ξ))(ek).

Hence the only thing we have to prove is(
ξ j
∂gi

∂z j
(z)dzi + gi (z)

∂ξi

∂z j
dz j

)
(ek)+ [θ, P ′

ξ ](ek)= ({∂
End(E)
K , ξ⌟}θ)(ek).
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Since {ek} is a local holomorphic frame for E , we have(
ξ j
∂gi

∂z j
(z)dzi +gi (z)

∂ξi

∂z j
dz j

)
(ek)+[θ, P ′

ξ ](ek)

=

(
ξ j
∂gi

∂z j
(z)dzi +gi (z)

∂ξi

∂z j
dz j

)
(ek)+θ(−ξ⌟K −1∂K )(ek)+ξ⌟K −1∂K (θ(ek))

=

(
ξ j
∂gi

∂z j
(z)dzi +gi (z)

∂ξi

∂z j
dz j

)
(ek)+[ξ⌟K −1∂K , θ](ek)

and

{∂K , ξ⌟}θ

= ∂K (ξ⌟θ)+ ξ⌟∂K (θ)

= ∂(ξi (z)gi )+ [K −1∂K , ξ⌟θ ] + ξ j (z)
∂gi

∂z j
dzi − ξi (z)

∂gi

∂z j
dz j + ξ⌟[K −1∂K , θ]

=
∂

∂z j
(ξi (z)gi (z))dz j + ξ j (z)

∂gi

∂z j
dzi − ξi (z)

∂gi

∂z j
dz j + [ξ⌟K −1∂K , θ]

=

(
ξ j
∂gi

∂z j
(z)dzi + gi (z)

∂ξi

∂z j
dz j

)
+ [ξ⌟K −1∂K , θ].

Hence we have the desired equality. Hence by (28) we have

B ⋆8(ek)= B(ek)+ [θ, υ](ek)+ ({∂
End(E)
K , ξ⌟}θ)(ek)+ R′((B, φ), (υ, ξ))(ek).

Since {ek} is an arbitrary local holomorphic frame on E and R′((B, φ), (υ, ξ))(ek)

is a local expression of B ⋆8− B − [θ, υ] − ({∂
End(E)
K , ξ⌟}θ), we proved (26).

Hence by (20) and (26) we proved (19). This completes the proof. □

Recall that H0
= ker(1L) ⊂ L0. Let F0 be the orthogonal complement of H0

w.r.t. the inner product ( · , · ). Note that ker(H)= F0. H is the harmonic projection.
Then, for γ ∈ F0,

η = G1Lγ + Hγ = G1Lγ.

Since d∗

L is zero on L0, d∗

L(γ )= 0. Hence

1Lγ = d∗

LdLγ.

This yields,

(29) γ = Gd∗

LdLγ.

From now on, we think of L1, F0 as normed by the k-th Sobolev norm and by
the (k−1)-th Sobolev norm. Let L1

k−1, L1
k, F0

k be the completion of L1, F0 with
respect to the corresponding norms.
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Proposition 4.6. Let η(γ ) := η+ dLγ + R(η, γ ). There are neighborhoods of the
origin U and V in L1 and F0 such that for any η ∈ U there is a γ ∈ V such that

(30) d∗

L(η(γ ))= 0.

Proof. Let γ := (υ, ξ) ∈ F0. By the definition of η(γ ), (30) is equivalent to

0 = d∗

L(η(γ ))= d∗

Lη+ d∗

LdLγ + d∗

L R(η, γ ).

By (29),
γ = Gd∗

LdLγ = −Gd∗

Lη− Gd∗

L R(η, γ ).

Thus (30) is equivalent to

γ + Gd∗

Lη+ Gd∗

L R(η, γ )= 0.

Let U1 and V1 are neighborhoods of the origin of L1
k and F0

k . By the local property of
R(η, γ ) which we observed in Proposition 4.5, we can define C1 map h :U1×V1 →

L1
k−1 by

h(η, γ )= γ + Gd∗

Lη+ Gd∗

L R(η, γ ).

By the order condition on the error term R, the identity map is the derivative of h
concerning γ at (0, 0). Hence by the implicit function theorem for Banach spaces,
there exists an open neighborhood U0 of 0 ∈ L1

k and a continuous map g : U0 → V1

such that g(0)= 0 and such that h(η, γ )= 0 if and only if γ = g(η) for all η ∈ U0

(see [Lang 1993] for details).
Let U :=U0∩L0 and V := g(U0)∩F0. Let η∈U and γ := g(η). By the previous

section, we have h(η, γ )= 0. If we take U0 small enough, 1L + d∗

L R(η, · )+ d∗

Lη

is a quasilinear elliptic operator. By elliptic regularity, γ is smooth. Hence γ ∈ V .
Hence this completes the proof. □

We can now give the proof of Theorem 4.2.

Proof of Theorem 4.2. Let η ∈ L1 be a Maurer–Cartan element and |η|k ≪ 1.
By Proposition 4.4, we only have to prove the theorem for d∗

T (E)η ̸= 0. By
Proposition 4.6, we have a γ = (υ, ξ) ∈ L0 such that

d∗

Lη+ d∗

LdLγ + d∗

L R(η, γ )= 0.

Let 8 := Pξ ◦ exp(υ). We can induce a structure of holomorphic-Higgs triple
on (X, E, θ) that is isomorphic to (Xη, Eη, θη) by 8 and fξ . We denote the
corresponding Maurer–Cartan element as ηγ . By Proposition 4.5, we have

ηγ = η+ dLγ + R(η, γ ).

We can easily see that d∗

Lηγ = 0. Hence by Proposition 4.4, we have some t ∈ S
such that (Xϵ(t), Eϵ(t), θϵ(t))∼= (Xη, Eη, θη). This completes the proof. □
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UNIFORM EXTENSION OF DEFINABLE Cm,ω-WHITNEY JETS

ADAM PARUSIŃSKI AND ARMIN RAINER

We show that definable Whitney jets of class Cm,ω, where m is a nonnegative
integer and ω is a modulus of continuity, are the restrictions of definable
Cm,ω-functions; “definable” refers to an arbitrary given o-minimal expansion
of the real field. This is true in a uniform way: any definable bounded family
of Whitney jets of class Cm,ω extends to a definable bounded family of Cm,ω-
functions. We also discuss a uniform Cm-version and how the extension
depends on the modulus of continuity.

1. Introduction

Let an o-minimal expansion of the real field be fixed. Throughout the paper, a set
X ⊆ Rn is called definable if it is definable in this fixed o-minimal structure. A
map ϕ : X → Rm is definable if its graph 0(ϕ) :=

{
(x, ϕ(x)) : x ∈ X

}
is a definable

subset of Rn
×Rm ∼= Rn+m (this natural identification is used throughout the paper).

We assume familiarity with the basics of o-minimal structures; see [5] and [4].
Due to Kurdyka and Pawłucki [9; 10] and Thamrongthanyalak [14] we have the

definable Cm Whitney extension theorem:

Theorem 1.1. Let 0 ≤ m ≤ p be integers. Let E ⊆ Rn be a definable closed set.
Any definable Whitney jet of class Cm on E extends to a definable Cm-function on
Rn which is of class C p outside E.

We prove a Cm,ω-version of this result.

Theorem 1.2. Let 0 ≤ m ≤ p be integers. Let ω be a modulus of continuity. Let
E ⊆ Rn be a definable closed set. Any definable Whitney jet of class Cm,ω on E
extends to a definable Cm,ω-function on Rn which is of class C p outside E.

By a modulus of continuity we always mean a positive, continuous, increasing,
and concave function ω : (0,∞)→ (0,∞) such that ω(t)→ 0 as t → 0. We say
that ω is a modulus of continuity for a function f : S → R, defined on a subset
S ⊆ Rn , if there exists a constant C > 0 such that

(1-1) | f (x)− f (y)| ≤ C ω(|x − y|) for all x, y ∈ S.
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The class Cm,ω consists of Cm-functions that are globally bounded together with
its partial derivatives up to order m and whose partial derivatives of order m satisfy
a global ω-Hölder condition of the type (1-1). See Section 3.

We use Theorem 1.2 in [11] to show that a definable function f : E → R on a
definable closed set E ⊆ Rn that has a C1,ω-extension to Rn also has a definable
C1,ω-extension. (In [11] we assume that ω is definable, but not in the present paper.)
In fact, this application was one of our main motivations for proving Theorem 1.2.

We will show that the definable extension of Whitney jets of class Cm,ω can be
done in a bounded way:

Theorem 1.3. Let 0 ≤ m ≤ p be integers. Let ω be a modulus of continuity. Let
(Ea)a∈A be a definable family of closed subsets of Rn . For any definable bounded
family (Fa)a∈A of Whitney jets of class Cm,ω on (Ea)a∈A there exists a definable
bounded family ( fa)a∈A of Cm,ω-extensions to Rn of (Fa)a∈A such that fa is of
class C p outside Ea for all a ∈ A.

Clearly, boundedness is understood with respect to the natural norms; see
Section 3 for precise definitions. Theorem 1.2 follows as a special case from
Theorem 1.3. And already the case that (Fa)a∈A is a definable bounded family of
Whitney jets of class Cm,ω on a fixed set E = Ea , for all a ∈ A, is very interesting.
However, the method of proof (by induction on dimension) necessitates to consider
the general case that the families of Whitney jets are defined on definable families
of sets (Ea)a∈A.

The construction of the extension in Theorem 1.3 depends on ω only in a weak
sense. We may, for instance, let the modulus of continuity ωa depend as well on
a ∈ A if we impose that there is a constant C > 0 such that C−1

≤ ωa(1)≤ C for
all a ∈ A. This will be discussed in detail in Section 5B in which we present a more
general version of Theorem 1.3. As a consequence, we deduce from Theorem 1.3 a
uniform version of the Cm-result Theorem 1.1 on compact sets:

Theorem 1.4. Let 0 ≤ m ≤ p be integers. Let (Ea)a∈A be a definable family of
compact subsets of Rn . For any definable bounded family (Fa)a∈A of Whitney
jets of class Cm on (Ea)a∈A there exists a definable bounded family ( fa)a∈A of
Cm-extensions to Rn of (Fa)a∈A such that fa is of class C p outside Ea for all a ∈ A.

Theorem 1.4 is proved in Section 5C. We deduce a local version of Theorem 1.3
in Section 5A and apply Theorem 1.3 in Section 5D to get a definable version of a
correspondence, due to Shvartsman [13], between Whitney jets of class Cm,ω and
certain Lipschitz maps.

The proof of Theorem 1.3 (which builds upon the one of Theorem 1.1 devised
in [9; 10; 14] and also Pawłucki [12] and is very different from Whitney’s classical
method [16]) rests on two main cornerstones:
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(1) Two versions of Gromov’s inequality [7]; one classical, the other incorporating
the modulus of continuity. These are inequalities for the derivatives of a definable
function. Since the constants that appear in them are universal, it is not difficult
to get them uniform for definable families of functions. See Corollary 2.18 and
Proposition 2.19.

(2) Uniform 3p-stratification of definable families of sets. Roughly speaking,
definable families of sets admit a stratification into a finite number of cells that
are defined by functions satisfying certain estimates (for their derivatives up to
order p). The constants in these estimates and the number of cells are independent
of the parameter of the family. See Theorem 2.16. This is essential for the uniform
extension Theorem 1.3. We think that it is also of independent interest.

It is a natural question if there exists even a continuous and/or linear extension
operator for definable Whitney jets of class Cm,ω (or Cm) on a definable closed set
E ⊆ Rn . This remains an open problem. The theorem of Bartle and Graves [2] (see
also [3, Theorem 1.6]) is not applicable since the normed spaces of definable jets
and functions (defined in Section 3) are not complete.

Azagra, Le Gruyer, and Mudarra [1] give an explicit formula for the extension of
Whitney jets of class C1,1 with an optimal control of the norms; for definable input
this explicit formula yields a definable C1,1-extension. See [11, Sections 4.2–4].

Let us point out that Pawłucki [12] presents a continuous linear extension operator
for (not necessarily definable) Whitney jets on definable closed sets which preserves
(up to a multiplicative constant) the modulus of continuity. This extension operator
is a finite composite of operators that preserve definability on the one hand or are
defined by integration with respect to a parameter (more precisely, convolution) on
the other hand; in general, the latter leads out of the original o-minimal structure.

While [12] was a important source of inspiration for handling the modulus of
continuity, the main difficulty (besides getting everything uniformly bounded) was
to replace the convolution operators by definable operations which at the same time
allow for preserving the modulus of continuity.

The paper is organized as follows. In Section 2 the main geometric tools are pre-
pared: Gromov’s inequality and uniform 3p-stratification. We present in Section 3
background on definable bounded families of Whitney jets of class Cm,ω, most
notably, how they behave under pullback along a definable family of 3p-regular
maps. The proof of Theorem 1.3 is carried out in Section 4. In the final Section 5 we
give the mentioned applications, discuss dependence on the modulus of continuity,
and prove Theorem 1.4.

Notation. Let N = {0, 1, 2, . . . } be the set of nonnegative integers. We denote by
d(x, S) := infy∈S |x − y| the Euclidean distance in Rn of a point x to a subset S
of Rn , with the convention d(x,∅) := +∞. The open Euclidean ball with center
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x ∈ Rn and radius r > 0 is denoted by B(x, r) := {y ∈ Rn
: |x − y|< r}. The closure

of a set S is denoted by S and the frontier of S by ∂S := S \ S. If S is a subset
of Rk , we write S × 0 for the set {(u, w) ∈ Rk

× Rℓ : u ∈ Rk, w = 0}. The graph of
a map ϕ is denoted by 0(ϕ). For real-valued nonnegative functions f, g we write
f ≲ g if f ≤ Cg for some universal constant C > 0. In particular, it should be
always understood that C is independent of a ∈ A, i.e., the parameter which we
consistently use in parameterized families of sets and maps. We write f ≈ g if
f ≲ g and g ≲ f . We use standard multi-index notation and in this context (i)∈ Nn

is the multi-index (0, . . . , 0, 1, 0, . . . , 0) with 1 in the i-th entry.

2. Uniform 3 p-stratifications

The existence of uniform 3p-stratifications (Theorem 2.16) is based on an inequal-
ity of Gromov [7], of which we need two versions, and on uniform L-regular
decomposition due to Kurdyka and Parusiński [8].

2A. Definable families of sets and maps. Let A be a definable subset of RN .
A family (Ea)a∈A of definable sets Ea ⊆ Rn is called a definable family if the
associated set

(2-1) E :=
⋃

a∈A
{a} × Ea

is a definable subset of RN
× Rn . Conversely, any definable subset E ⊆ RN

× Rn

defines a definable family (Ea)a∈A by setting A := {a ∈ RN
: ∃x ∈ Rn, (a, x) ∈ E}

and Ea := {x ∈ Rn
: (a, x) ∈ E}, where a ∈ A. If we allow Ea = ∅, we may just

take A = RN .
A family (E ′

a)a∈A of subsets E ′
a ⊆ Ea is said to be a definable subfamily of

(Ea)a∈A if the associated set E ′ (defined in analogy to (2-1)) is a definable subset
of E .

A family (ϕa)a∈A of definable maps ϕa : Ea → Rm is called a definable family if
the map ϕ : E → Rm , where E is the associated set (2-1) and

(2-2) ϕ(a, u) := ϕa(u), u ∈ Ea,

is definable. This is consistent with the first paragraph, since

0(ϕ)=
{
(a, u, ϕ(a, u)) ∈ RN

× Rn
× Rm

: (a, u) ∈ E
}

=
⋃

a∈A

{
(a, u, ϕa(u)) ∈ RN

× Rn
× Rm

: u ∈ Ea
}

=
⋃

a∈A
{a} ×

{
(u, ϕa(u)) ∈ Rn

× Rm
: u ∈ Ea

}
=

⋃
a∈A

{a} ×0(ϕa).

2B. Gromov’s inequality. We need two versions of an inequality due to Gromov [7].
We start with a Cm-version.
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Lemma 2.1 [9, Lemma 2]. Let m ≥ 1. Let f : I → R be a Cm+1-function, where
I = [t0 −r, t0 +r ] ⊆ R, r > 0, is an interval. Suppose that, for all j = 2, . . . ,m +1,
we have either f ( j)

≥ 0 on I or f ( j)
≤ 0 on I . Then

| f (m)(t0)| ≤ 2(
m+2

2 )−2 supt∈I | f (t)|
rm .

We combine Lemma 2.1 with the following lemma in order to get a Cm,ω-version
in Lemma 2.3.

Lemma 2.2. Let f : I → R be a C2-function, where I = [t0 − r, t0 + r ] ⊆ R, r > 0,
is an interval, and let ω be a modulus of continuity for f . Suppose that f ′′

≥ 0 on I
or f ′′

≤ 0 on I . Then

| f ′(t0)| ≤
ω(r)

r
.

Proof. We may assume that t0 = 0. Suppose that f ′′
≥ 0 on I . Then f is convex

and, for 0< s < r ,

f (s)− f (0)
s

≤
f (r)− f (0)

r
≤
ω(r)

r
.

Letting s → 0, we find that f ′(0)≤ ω(r)/r . The same reasoning applied to f (−t)
shows that also − f ′(0)≤ ω(r)/r so that the assertion is proved.

The case f ′′
≤ 0 follows from the previous one by considering − f . □

Lemma 2.3. Let m ≥ 1. Let f : I → R be a Cm+1-function, where I =[t0−r, t0+r ]

⊆ R, r > 0, is an interval, and let ω be a modulus of continuity for f . Suppose that,
for all j = 2, . . . ,m + 1, we have either f ( j)

≥ 0 on I or f ( j)
≤ 0 on I . Then

| f (m)(t0)| ≤ 2(
m+1

2 )+m−2 ω(r)
rm .

Proof. If m = 1, then the statement is immediate from Lemma 2.2. If m ≥ 2, then,
by Lemma 2.1 applied to f ′ and in turn Lemma 2.2, we have

| f (m)(t0)| ≤
2(

m+1
2 )−2( r

2

)m−1 sup
|t−t0|≤ r

2

| f ′(t)| ≤
2(

m+1
2 )−2( r

2

)m−1 ·
ω

( r
2

)
r
2

≤ 2(
m+1

2 )+m−2 ω(r)
rm

as claimed, since ω is increasing. □

2C. Uniform bounds for definable families of functions.

Proposition 2.4. Let (Ua)a∈A be a definable family of open sets Ua ⊆ Rk and let
U ⊆ RN

×Rk be the associated definable set (see (2-1)). Let (ϕa)a∈A be a definable
family of functions ϕa : Ua → R and let ϕ : U → R be the associated definable
function (see (2-2)). Let α ∈ Nk with |α| = p. There exists a definable subset Z ⊆ U
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such that, for all a ∈ A, Za is closed in Ua , dim Za < k, ϕa is C p on Ua \ Za , and,
for each open ball B = B(u, r), r > 0, contained in Ua \ Za , we have

(2-3) |∂αϕa(u)| ≤ C(k, p) sup
v∈B

|ϕa(v)| r−|α|.

Proof. Consider the definable set

X := {(b, v) ∈ U : (a, u) 7→ ϕ(a, u) is not C p+1 at (b, v) in u}

= {(b, v) ∈ U : ϕb is not C p+1 at v}

and note that
Xa = {u ∈ Ua : ϕa is not C p+1 at u}

is closed in Ua and, by o-minimality, dim Xa < k.
The operator ∂α is a linear combination of directional derivatives d p

v for a finite
collection V of suitably chosen unit directions v in Rk . Let ϕ1, . . . , ϕs be an
enumeration of all functions d j

vϕ : U \ X → R, j = 2, . . . , p + 1, v ∈ V (where d j
v

acts only in the u-variable: d j
vϕ(a, u)= ∂

j
t |t=0 ϕ(a, u + tv)). For i = 1, . . . , s, set

Yi := {(a, u) ∈ U \ X : ∃ϵ > 0 ∀v ∈ B(u, ϵ), ϕi (a, v)= 0},

Zi := {(a, u) ∈ U \ X : ϕi (a, u)= 0} \ Yi ,

Z := X ∪

s⋃
i=1

Zi .

Then Z is a definable subset of U and, for all a ∈ A, Za is closed in Ua and
dim Za < k.

Now (2-3) follows easily by applying Lemma 2.1 to t 7→ ϕ(a, u + tv). □

Corollary 2.5. Let (Ua)a∈A be a definable family of open sets Ua ⊆ Rk and let
(ϕa)a∈A be a definable family of C1-functions ϕa : Ua → R. Suppose that there is a
constant M > 0 such that

|∂ jϕa(u)| ≤ M, a ∈ A, u ∈ Ua, j = 1, . . . , k.

Let p be a positive integer. There exists a definable family (Za)a∈A of closed
definable sets Za ⊆ Ua of dimension dim Za < k such that, for all a ∈ A, ϕa is of
class C p on Ua \ Za and

|∂γϕa(u)| ≤ C(k, p)M d(u, Za ∪ ∂Ua)
1−|γ |, u ∈ Ua \ Za, 1 ≤ |γ | ≤ p.

Proof. Apply Proposition 2.4 to ∂ jϕa . □

Remark 2.6. We may assume that Za is not empty so that d(u, Za ∪∂Ua) is always
finite. We will tacitly make this assumption in all subsequent results of this type.
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Proposition 2.7. Let (Ua)a∈A be a definable family of open sets Ua ⊆ Rk and
(ϕa)a∈A a definable family of continuous functions ϕa : Ua → R. Let p be a positive
integer. Then there exists a definable family (Za)a∈A of closed subsets Za ⊆ Ua of
dimension dim Za < k such that, for all a ∈ A, ϕa is C p on Ua \ Za and

(2-4) |∂γϕa(x)| ≤ C(k, p)
ω(d(x, Za ∪ ∂Ua))

d(x, Za ∪ ∂Ua)|γ |
, x ∈ Ua \ Za, 1 ≤ |γ | ≤ p,

where ω is a modulus of continuity for ϕa .

Proof. Follow the proof of Proposition 2.4 and use Lemma 2.3. □

Remark 2.8. We want to emphasize that the construction of (Za)a∈A is independent
of ω.

2D. 3 p-regular mappings. Let U ⊆ Rk be an open set. Let p be a positive integer.
A C p-mapping ϕ : U → Rn is said to be 3p-regular if there exists a constant C > 0
such that

(2-5) |∂γϕ(u)| ≤ C d(u, ∂U )1−|γ |, u ∈ U, 1 ≤ |γ | ≤ p.

3p-regular maps behave nicely on quasiconvex sets. Let us first recall the
definition of quasiconvexity.

Definition 2.9 (quasiconvex sets). A set E ⊆ Rn is called quasiconvex if there is a
constant C > 0 such any two points x, y ∈ E can be joined in E by a rectifiable
path of length at most C |x − y|.

Let ϕ : U → Rn by 3p-regular. If E ⊆ U is a quasiconvex subset, then ϕ|E is
Lipschitz on E and extends continuously to a map ϕ on E .

2E. 3 p-cells. Let p be a positive integer. We define recursively 3p-cells in Rn:
A definable subset S ⊆ Rn is an open 3p-cell in Rn if,

• in the case n = 1, S is an open interval in R,

• in the case n > 1, S is of the form

S = (ψ1, ψ2, T ) := {(x ′, xn) : x ′
∈ T, ψ1(x ′) < xn <ψ2(x ′)},

where T is an open 3p-cell in Rn−1 and each ψi , i = 1, 2, is either a 3p-regular
definable function T → R or identically −∞ or +∞, and ψ1 < ψ2 on T . (Here
x ′

= (x1, . . . , xn−1).)

Note that S is quasiconvex. If ψi is finite, then it is Lipschitz on T and has a
continuous extension ψ i to T .

A definable subset S of Rn is a k-dimensional 3p-cell in Rn , where k =

0, . . . , n − 1, if
S = {(u, w) : u ∈ T, w = ϕ(u)} = 0(ϕ),
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where u = (x1, . . . , xk), w = (xk+1, . . . , xn), T is an open 3p-cell in Rk , and
ϕ : T → Rn−k is a 3p-regular definable map.

Definition 2.10 (3p-cell with constant C). A 3p-cell S in Rn is an open or a
k-dimensional 3p-cell in Rn . We say that S is a 3p-cell in Rn with constant C if
all the 3p-regular maps involved in the recursive definition of S satisfy (2-5) with
the same constant C .

2F. Associated functions. We associate with any open 3p-cell S in Rn a sequence
of 2n + 1 definable functions ρ j : S → [0,∞], for j = 0, 1, 2, . . . , 2n. We put
ρ0 ≡ 1 and define ρ j for j ≥ 1 as follows:

Case n = 1: If S = (a1, a2) we set

ρ1(x) :=

{
x − a1 if a1 ∈ R,

+∞ if a1 = −∞,

ρ2(x) :=

{
a2 − x if a2 ∈ R,

+∞ if a2 = +∞.

Case n > 1: If S = (ψ1, ψ2, T ) and σ j , j = 1, . . . , 2n − 2, are the functions
associated with T , we set ρ j (x)= σ j (x ′), for j = 1, . . . , 2n − 2, and

ρ2n−1(x) :=

{
xn −ψ1(x ′) if ψ1 is finite,
+∞ if ψ1 ≡ −∞,

ρ2n(x) :=

{
ψ2(x ′)− xn if ψ2 is finite,
+∞ if ψ2 ≡ +∞.

Remark 2.11. We add the function ρ0 (which is not present in [9; 10; 14]) in order
to handle the extension from unbounded 3p-cells (see the proof of Theorem 1.3).

Each of the functions ρ j , that is finite, is 3p-regular on S and Lipschitz on S;
see [9, Lemma 4]. There is a positive constant C > 0 such that

(2-6)
1
C

min
j≥1

ρ j (x)≤ d(x, ∂S)≤ min
j≥1

ρ j (x), x ∈ S,

where d(x,∅)= +∞ by convention; see [9, Lemma 3]. Consequently,

(2-7)
1
C

min
j≥0

ρ j (x)≤ min{1, d(x, ∂S)} ≤ min
j≥0

ρ j (x), x ∈ S.

If ρ j for j ≥ 1 is finite, then there exists a positive constant C > 0 such that

(2-8)
∣∣∣∣∂γ( 1

ρ j

)
(x)

∣∣∣∣ ≤ C d(x, ∂S)−|γ |−1, x ∈ S, |γ | ≤ p;
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see [9, Lemma 5] and (2-10). It follows that for all finite ρ j , j ≥ 0, we have

(2-9)
∣∣∣∣∂γ( 1

ρ j

)
(x)

∣∣∣∣ ≤ C min{1, d(x, ∂S)}−|γ |−1, x ∈ S, |γ | ≤ p.

Remark 2.12. The constants C in (2-6)–(2-9) only depend on the constants of the
3p-regular maps involved in the definition of S.

For later reference, we recall that for a nonvanishing C p-function r we have, for
1 ≤ |γ | ≤ p,

(2-10) ∂γ
(

1
r

)
=

|γ |∑
j=1

( ∑
δ1+···+δ j =γ

δ1 ̸=0,...,δ j ̸=0

aγδ1,...,δ j
∂δ1r · · · ∂δ j r

)
r− j−1,

where aγδ1,...,δ j
are integers that only depend on γ and δ1, . . . , δ j .

2G. 3 p-stratification of definable sets. Recall that a definable C p-stratification
of a definable set E ⊆ Rn is a finite decomposition S of E into definable C p-
submanifolds of Rn , called strata, such that, for each stratum S ∈ S , the frontier
(∂S)∩ E in E is the union of some strata of dimension < dim S. A stratification is
called compatible with a collection of finitely many definable subsets of E if each
subset is a union of strata.

A definable C p-stratification S of E is called a 3p-stratification if each stratum
S ∈ S is a 3p-cell in Rn in some linear coordinate system.

Theorem 2.13 [9, Proposition 4; 10, Theorem 3]. Let E ⊆ Rn be a definable set
and let E1, . . . , Eℓ be definable subsets of E. Then there exists a 3p-stratification
S of E that is compatible with E1, . . . , Eℓ.

2H. Uniform 3 p-stratifications of definable families of sets. We prove a uni-
form version of Theorem 2.13. Let us first recall a result on uniform L-regular
decompositions.

Theorem 2.14 [8, Proposition 1.4]. Let E i
⊆ RN

× Rn , where i ∈ I , be a finite
collection of definable sets. Then there exist finitely many disjoint definable sets
B j

⊆ RN
×Rn , where j ∈ J , and linear orthogonal mappings ϕ j

: Rn
→ Rn , where

j ∈ J , such that:

(1) For every a ∈ RN , each ϕ j (B j
a ) is a standard L-regular cell in Rn with constant

C = C(n).

(2) For every a ∈ RN , the family of B j
a , where j ∈ J , is a stratification of Rn .

(3) For any i ∈ I , there exists Ji ⊆ J such that E i
a =

⋃
j∈Ji

B j
a for every a ∈ RN .
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Here a standard L-regular cell in Rn with constant C = C(n) (which is ter-
minology used in [8]) is by definition nothing else than a 31-cell with constant
C = C(n).

Definition 2.15 (uniform 3p-stratification). Let (Ea)a∈A be a definable family of
sets Ea ⊆ Rn and let E ⊆ RN

× Rn be the associated definable set (see (2-1)). Let
p be a positive integer.

A finite collection S = {S j
} j∈J of disjoint definable sets S j

⊆ RN
×Rn is called

a uniform 3p-stratification of (Ea)a∈A if

(1) there exist linear orthogonal maps ϕ j
: Rn

→ Rn , j ∈ J , such that, for each
a ∈ A and each j ∈ J , ϕ j (S j

a ) is a 3p-cell in Rn with constant C independent
of a ∈ A,

(2) for each a ∈ A, the family S j
a , j ∈ J , is a stratification of Ea .

For all a ∈ A, let Sa := {S j
a } j∈J . Abusing notation, we will also say that (Sa)a∈A

is a uniform 3p-stratification of (Ea)a∈A.
Let I be a finite index set and, for each i ∈ I , let (E i

a)a∈A be a definable
subfamily of (Ea)a∈A. A uniform 3p-stratification (Sa)a∈A of (Ea)a∈A is said to
be compatible with (E i

a)a∈A, i ∈ I , if additionally

(3) for each i ∈ I , there exists a subset Ji ⊆ J such that E i
a =

⋃
j∈Ji

S j
a for each

a ∈ A.

By Theorem 2.14, there always exist uniform 31-stratifications. We shall see
that there exist uniform 3p-stratifications for all p ≥ 1.

Theorem 2.16. Let (Ea)a∈A be a definable family of sets Ea ⊆ Rn and let (E i
a)a∈A,

i ∈ I , be a finite collection of definable subfamilies of (Ea)a∈A. Let p be a pos-
itive integer. Then there exists a uniform 3p-stratification (Sa)a∈A of (Ea)a∈A

compatible with (E i
a)a∈A, i ∈ I .

Proof. Let k = maxa∈A dim Ea . We proceed by induction on k. If k = 0, then all Ea

are finite and the number of elements of Ea is bounded by a constant independent
of a. In that case, the assertion is trivially true.

Suppose that k > 0. We claim that there exist a finite collection of disjoint
definable sets T j

⊆ RN
× Rn , j ∈ J , and linear orthogonal maps ϕ j

: Rn
→ Rn ,

j ∈ J , such that, for each a ∈ A and each j ∈ J ,

• T j
a is either empty or open in Ea and compatible with E i

a , i ∈ I ,

• if T j
a ̸= ∅ then ϕ j (T j

a ) is a k-dimensional 3p-cell in Rn with constant C
independent of a ∈ A, and

• dim Ea \
⋃

j∈J T j
a < k.

We allow T j
a = ∅ to account for the case dim Ea < k.
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Then we can use the induction hypothesis for the definable family (E ′
a)a∈A,

where E ′
a := Ea \

⋃
j∈J T j

a , and the definable subfamilies (E i
a ∩ E ′

a)a∈A, i ∈ I , and
((∂T j

a )∩ E ′
a)a∈A, j ∈ J . The statement follows.

Let us prove the claim. Theorem 2.14 implies that the claim holds for p = 1:
let T j , j ∈ J , be the corresponding sets with all the properties as listed in the claim.
Now we apply Corollary 2.5 and induction on the dimension. In fact, for each fixed
j ∈ J , (T j

a )a∈A is a definable family of k-dimensional 31-cells T j
a in Rn that are

open in Ea . After the change of coordinates ϕ j , we may assume that T j
a is a31-cell

with constant C independent of a ∈ A. By Corollary 2.5, there is a definable family
(Z j

a )a∈A of closed definable sets Z j
a ⊆ T j

a , dim Z j
a < k, such that the functions

defining the cell T j
a are 3p-regular with uniform constants independent of a ∈ A

in the complement of Z j
a . Thus there exists a definable family (S j

a )a∈A of subsets
S j

a ⊆ T j
a such that, for all a ∈ A, S j

a is a finite disjoint union of k-dimensional
definable 3p-cells S j,ℓ

a that are open in Ea with constant C independent of a ∈ A
and dim T j

a \ S j
a < k. Thus the number of connected components S j,ℓ

a of S j
a is

uniformly bounded by a constant independent of a ∈ A. This implies the claim. □

2I. Consequences. We may use Theorem 2.16 in order to refine Proposition 2.4,
Corollary 2.5, and Proposition 2.7.

Corollary 2.17. Let (Ua)a∈A be a definable family of open sets Ua ⊆ Rk . Let
(ϕa)a∈A be a definable family of functions ϕa : Ua → R. Let p be a nonnegative
integer. There exists a uniform 3p-stratification (Sa)a∈A of (Ua)a∈A such that, for
all a ∈ A and each open stratum Sa ∈ Sa , ϕa is C p on Sa and

|∂γϕa(u)|≤C(k, p)
sup{|ϕa(v)| : v ∈ Sa, |v− u|< d(u, ∂Sa)}

d(u, ∂Sa)|γ |
, u ∈ Sa, |γ |≤ p.

Proof. This follows from Theorem 2.16 and Proposition 2.4. □

Corollary 2.18. Let (Ua)a∈A be a definable family of open sets Ua ⊆ Rk . Let
(ϕa)a∈A be a definable family of C1-functions ϕa : Ua → R. Suppose that there is a
constant M > 0 such that

|∂ jϕa(u)| ≤ M, a ∈ A, u ∈ Ua, j = 1, . . . , k.

Let p be a positive integer. There exists a uniform 3p-stratification (Sa)a∈A of
(Ua)a∈A such that, for all a ∈ A and each open stratum Sa ∈ Sa , ϕa is C p on Sa

and
|∂γϕa(u)| ≤ C(k, p)M d(u, ∂Sa)

1−|γ |, u ∈ Sa, 1 ≤ |γ | ≤ p.

Proof. This follows from Theorem 2.16 and Corollary 2.5. □

Proposition 2.19. Let (Ua)a∈A be a definable family of open sets Ua ⊆ Rk . Let
(ϕa)a∈A be a definable family of continuous functions ϕa : Ua → R. Let p be a
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positive integer. There exists a uniform 3p-stratification (Sa)a∈A of (Ua)a∈A such
that, for all a ∈ A and each open stratum Sa ∈ Sa , ϕa is C p on Sa and

|∂γϕa(u)| ≤ C(k, p)
ω(d(u, ∂Sa))

d(u, ∂Sa)|γ |
, u ∈ Sa, 1 ≤ |γ | ≤ p,

where ω is a modulus of continuity for ϕa .

Proof. This follows from Theorem 2.16 and Proposition 2.7. □

We will need another uniform fact:

Proposition 2.20. Let (Ua)a∈A be a definable family of open sets Ua ⊆ Rk . Let
(ϕa)a∈A be a definable family of functions ϕa : Ua → R. Let p be a positive integer.
There exists a uniform3p-stratification (Sa)a∈A of (Ua)a∈A such that, for all a ∈ A
and each open stratum Sa ∈ Sa , ϕa is C p on Sa and, for all j = 1, . . . , k, either

(2-11) |∂ jϕa| ≥ 1 on Sa or |∂ jϕa|< 1 on Sa.

Proof. Let U ⊆ RN
×Rn and ϕ : U → R be the associated definable set and function

(see (2-1) and (2-2)). Let X ⊆ U be the set defined in the proof of Proposition 2.4.
For j = 1, . . . , k, let ∂ jϕ(a, u) := ∂ jϕa(u) and set

Y j := {(a, u) ∈ U \ X : ∃ϵ > 0 ∀v ∈ B(u, ϵ), ∂ jϕ(a, v)= 1},

Z j := {(a, u) ∈ U \ X : ∂ jϕ(a, u)= 1} \ Y j ,

Z := X ∪

k⋃
j=1

Z j .

Then Z is a definable subset of U and, for all a ∈ A, Za is closed in Ua and
dim Za < k. Now the statement follows from Theorem 2.16. □

3. Bounded definable families of Whitney jets

Recall that a modulus of continuity ω is by definition a positive, continuous,
increasing, and concave function ω : (0,∞) → (0,∞) such that ω(t) → 0 as
t → 0.

3A. Cm,ω-functions. Let ω be a modulus of continuity. Let U ⊆ Rn be an open
set. Let C0,ω(U ) be the set of all continuous bounded functions f : U → R such
that

| f |C0,ω(U ) := inf
{
C > 0 : | f (x)− f (y)| ≤ C ω(|x − y|) for all x, y ∈ U

}
<∞.

For a nonnegative integer m, the set Cm,ω(U ) consists of all Cm-functions such
that ∂α f is globally bounded for all |α| ≤ m and ∂α f ∈ C0,ω(U ) for all |α| = m.
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Then Cm,ω(U ) is a Banach space with the norm

∥ f ∥Cm,ω(U ) := sup
x∈U

sup
|α|≤m

|∂α f (x)| + sup
|α|=m

|∂α f |C0,ω(U ).

We say that f ∈ Cm,ω(U ) is m-flat outside an open set V ⊆ U if all ∂α f , |α| ≤ m,
vanish on U \ V .

Assume that the open set U ⊆ Rn is definable. We denote by Cm,ω
def (U ) the

subspace of Cm,ω(U ) consisting of the definable functions in the latter space. Note
that the normed space Cm,ω

def (U ) is not complete.

Definition 3.1 (bounded families of Cm,ω-functions). Let m ∈ N and ω a modulus
of continuity. A family ( fa)a∈A of Cm,ω-functions fa : Ua → R, where Ua ⊆ Rn is
open, is said to be a bounded family of Cm,ω-functions if

sup
a∈A

∥ fa∥Cm,ω(Ua) <∞.

We say that ( fa)a∈A is a definable bounded family of Cm,ω-functions if it is a
bounded family of Cm,ω-functions and, additionally, the families (Ua)a∈A and
( fa)a∈A are definable. Moreover, ( fa)a∈A is called m-flat outside (Va)a∈A if, for
each a ∈ A, Va ⊆ Ua is open and fa is m-flat on Ua \Va . We will say that ( fa)a∈A is
C p outside (Ea)a∈A if, for each a ∈ A, Ea ⊆ Ua is closed and fa is C p on Ua \ Ea .

3B. Whitney jets of class Cm,ω. Let E be a locally closed subset of Rn . An m-jet
on E is a collection F = (Fα)|α|≤m of continuous functions Fα : E → R. An
m-jet F = (Fα)|α|≤m on E is said to be flat on a subset E ′

⊆ E if all functions Fα ,
|α| ≤ m, vanish on E ′.

For a ∈ E we denote by T m
a F the Taylor polynomial

T m
a F(x)=

∑
|α|≤m

1
α!

Fα(a)(x − a)α, x ∈ Rn,

and define the m-jet
Rm

a F := F − J m
E (T

m
a F),

where J m
E ( f ) := (∂α f |E)|α|≤m for f ∈ Cm(Rn).

A Cm,ω (or Cm) function f : Rn
→ R is an extension to Rn of F if J m

E ( f )= F .
A necessary and sufficient condition for an m-jet to have a Cm,ω-extension to Rn is
to be a Whitney jet of class Cm,ω [6; 16]: by definition, an m-jet F = (Fα)|α|≤m

on E is a Whitney jet of class Cm,ω on E if there exists C > 0 such that

(3-1) sup
x∈E

sup
|α|≤m

|Fα(x)| ≤ C

and, for all x, y ∈ E and |α| ≤ m,

(3-2) |(Rm
x F)α(y)| ≤ C ω(|x − y|)|x − y|

m−|α|.
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Remark 3.2. A condition equivalent to (3-2) is

|T m
x F(z)− T m

y F(z)| ≤ C ′ ω(|x − y|)(|z − x |
m

+ |z − y|
m)

for all x, y ∈ E and z ∈ Rn; see [15, Proposition IV.1.5]. Moreover, (3-2) holds if
and only if

|F0(x)− T m
y F(x)| ≤ C ω(|x − y|)|x − y|

m for all x, y ∈ E,

and, if m ≥ 1,

∂i F := (Fα+(i))|α|≤m−1 is a Whitney jet of class Cm−1,ω for all i = 1, . . . , n.

If E is quasiconvex with constant C ′ (see Definition 2.9), then (3-2) follows from

|Fα(x)− Fα(y)| ≤ C ′′ ω(|x − y|), x, y ∈ E, |α| = m;

see [15, IV (2.5.1)]; then the constant C in (3-2) depends only on n, m, C ′, and C ′′.

It is not hard to see that the set of all Whitney jets of class Cm,ω on E with the
natural addition and the multiplication FG := J m

E (T
m F · T mG) is an R-algebra.

Let F be an m-jet on E ⊆ Rn . Let G1, . . . ,Gn be m-jets on A ⊆ Rk such that
(G0

1, . . . ,G0
n)(A)⊆ E . The composite F ◦ G = F ◦ (G1, . . . ,Gn) of m-jets F and

G on A is defined by

(F ◦ G)(x) := J m
A (T

m
G0(x)F ◦ T m

x G)(x).

Note that
T m

y (F ◦ G)(x)= πm
(
T m

G0(y)F(T
m
y G(x))

)
,

where πm is the natural truncation operator (which truncates monomials of order
> m). One can show (using Remark 3.2) that, for m ≥ 1, the composite F ◦ G is
a Whitney jet of class Cm,ω if F and G are Whitney jets of class Cm,ω. We will
not use this fact, but the pullback of Whitney jets of class Cm,ω along a 3m-regular
map will be crucial; see Proposition 3.5.

Definition 3.3 (bounded families of Whitney jets of class Cm,ω). A family (Fa)a∈A

of Whitney jets Fa of class Cm,ω on Ea ⊆ Rn is said to be a bounded family of
Whitney jets of class Cm,ω if the constant C > 0 in (3-1) and (3-2) can be chosen
independent of a ∈ A, that is,

(3-3) sup
a∈A

sup
x∈Ea

sup
|γ |≤m

|Fγa (x)|<∞

and

(3-4) sup
a∈A

sup
x ̸=y∈Ea

sup
|γ |≤m

|(Rm
x Fa)

γ (y)|
ω(|x − y|)|x − y|m−|γ |

<∞.
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We say that (Fa)a∈A is a definable bounded family of Whitney jets of class Cm,ω if
it is a bounded family of Whitney jets of class Cm,ω and, additionally, the families
(Ea)a∈A and (Fγa )a∈A, |γ | ≤ m, are definable. We say that it is flat on a subfamily
(E ′

a)a∈A of (Ea)a∈A if Fa is flat on E ′
a for all a ∈ A.

A (definable bounded) family ( fa)a∈A of Cm,ω-functions fa : Rn
→ R is called

a (definable bounded) family of Cm,ω-extensions to Rn of (Fa)a∈A if fa is a Cm,ω-
extension of Fa to Rn , for each a ∈ A.

3C. Separation. Let X, Y, Z be subsets of Rn . Recall that X and Y are said to be
Z-separated if there exists C > 0 such that

(3-5) d(x, Y )≥ C d(x, Z), x ∈ X,

or equivalently, if there is C ′ > 0 such that

d(x, X)+ d(x, Y )≥ C ′ d(x, Z), x ∈ Rn.

If X and Y are X ∩Y -separated, then we will simply say that X and Y are separated.

Definition 3.4 (uniformly separated families of sets). Let (Xa)a∈A, (Ya)a∈A, and
(Za)a∈A be definable families of subsets of Rn . Then (Xa)a∈A and (Ya)a∈A are said
to be uniformly (Za)a∈A-separated if, for all a ∈ A, Xa and Ya are Za-separated
with a constant C > 0 (in (3-5)) independent of a ∈ A. We will say that (Xa)a∈A

and (Ya)a∈A are uniformly separated if they are uniformly (Xa ∩ Ya)a∈A-separated.

3D. Pullback along a definable family of 3 p-regular maps. Let ϕ : U → Rℓ be a
3m+1-regular map, where U ⊆ Rk is open and quasiconvex. Let ϕ : U → Rℓ be
the continuous extension of ϕ; see Section 2D. Consider

ϕ+ : U × Rℓ → U × Rℓ, (u, w) 7→ (u, w+ϕ(u)),

and
ϕ+ : U × Rℓ → U × Rℓ, (u, w) 7→ (u, w+ϕ(u)).

Let M be a closed subset of U ×Rℓ and F an m-jet on M . The pullback of F along
ϕ+ is the m-jet

ϕ∗

+
F := F ◦ J m

N (ϕ+)

on N := ϕ−1
+ (M)=

{
(u, w) ∈ U × Rℓ : (u, w+ϕ(u)) ∈ M

}
.

We shall need the following result on the pullback of a definable bounded family
of Whitney jets of class Cm,ω along a definable family (ϕa)a∈A of 3m+1-regular
maps. For each a ∈ A, let ϕa,+ and ϕa,+ be defined in analogy to ϕ+ and ϕ+.

Proposition 3.5 [12, Proposition 4.3]. Let (Ua)a∈A be a definable family of open
quasiconvex sets Ua ⊆ Rk with constant (in Definition 2.9) independent of a ∈ A. Let
(ϕa)a∈A be a definable family of 3m+1-regular maps ϕa : Ua → Rℓ with constant



332 ADAM PARUSIŃSKI AND ARMIN RAINER

(in (2-5)) independent of a ∈ A. Let (Ma)a∈A be a definable family of closed
quasiconvex subsets Ma of Ua × Rℓ such that (Ma)a∈A and (∂Ua × Rℓ)a∈A are
uniformly separated.

If (Fa)a∈A is a definable bounded family of Whitney jets of class Cm,ω on
(Ma)a∈A which is flat on (∂Ma)a∈A, then (Ga)a∈A is a definable bounded family of
Whitney jets of class Cm,ω on (Na)a∈A, where Ga :=ϕ∗

a,+Fa and Na :=ϕ−1
a,+(Ma). If ,

moreover, for each a ∈ A, ta :Ua → (0,∞) is a function satisfying ta(u)≤d(u, ∂Ua)

for every u ∈ Ua and

|Fκa (u, w)| ≲ ω(ta(u))ta(u)
m−|κ|, (u, w) ∈ Ma, |κ| ≤ m,

then, for each a ∈ A,

|Gκ
a(u, w)| ≲ ω(ta(u))ta(u)

m−|κ|, (u, w) ∈ Na, |κ| ≤ m.

Proof. Follows from the proof of [12, Proposition 4.3]. □

We will be interested in the case that Ma =0(ϕa), a ∈ A. Then (Ga)a∈A extends
to a definable bounded family of Whitney jets of class Cm,ω on (N a = U a × 0)a∈A

which is flat on (∂Na = ∂Ua × 0)a∈A. This follows from the following lemma and
Hestenes’ lemma (e.g., [14, Theorem 1.10]); see [12, Remark 4.2].

Lemma 3.6. Let (Ea)a∈A be a family of locally closed, quasiconvex sets Ea ⊆ Rn

with constant (in Definition 2.9) independent of a ∈ A. Suppose that (Fa)a∈A is a
bounded family of Whitney jets of class Cm,ω on (Ea)a∈A such that, for all a ∈ A
and |α| ≤ m, Fαa has a continuous extension Fαa to Ea . Then (Fa)a∈A is a bounded
family of Whitney jets of class Cm,ω on (Ea)a∈A.

Proof. Let x, y ∈ Ea . There exist sequences (xk), (yk)⊆ Ea such that xk → x and
yk → y. By assumption, there exist a constant C1 > 0, independent of a ∈ A and
of k, and a rectifiable path σk joining xk and yk in Ea such that for the length of σk

we have
ℓ(σk)≤ C1 |xk − yk |.

Let F = (Fα)|α|≤m be a Whitney jet of class Cm,ω on (Ea)a∈A. By [15, IV (2.5.1)],
for all |α| ≤ m,

|(Rm
xk

Fa)
α(yk)| ≤ n

m−|α|

2 Cm−|α|

1 |xk − yk |
m−|α| sup

ξ∈σk

sup
|β|=m

|Fβa (ξ)− Fβa (xk)|.

We may assume that σk is parameterized by t ∈[0, 1] with σk(0)= xk and σk(1)= yk .
By (3-4), for t ∈ [0, 1],

sup
|β|=m

|Fβ(σk(t))−Fβ(xk)| ≤ C2 ω(|σk(t)−xk |)≤ C2 ω(ℓ(σk |[0,t]))

≤ C2 ω(ℓ(σk))≤ C2 ω(C1|xk −yk |)≤ C3 ω(|xk −yk |),
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for constants Ci > 0 independent of a ∈ A. Thus

|(Rm
xk

Fa)
α(yk)| ≤ n

m−|α|

2 Cm−|α|

1 |xk − yk |
m−|α| C3 ω(|xk − yk |)

and letting k → ∞ shows that (3-4) is satisfied for (Fa)a∈A. It is clear that (3-3) is
satisfied. □

3E. Cutoff. We finish this section with a technical cutoff result which will be used
in the proof of Theorem 1.3.

Proposition 3.7 [12, Proposition 3.9]. Let (Ua)a∈A be a definable family of open
quasiconvex sets Ua ⊆ Rk with constant (in Definition 2.9) independent of a ∈ A.
Let (ha)a∈A be a definable family of Cm-functions ha : Ua ×Rℓ → R and (ρa)a∈A a
definable family of Cm+1-functions ρa :Ua → R. Let (ta)a∈A be a definable family of
positive Lipschitz functions ta : Ua → (0,∞) with Lipschitz constants independent
of a ∈ A such that ta(u)≤ d(u, ∂Ua) for all a ∈ A and u ∈ Ua . For ϵ > 0, consider
the definable family (1ϵa)a∈A, where

1ϵa := {(u, w) ∈ Ua × Rℓ : |w|< ϵ ta(u)}.

Assume that, for all a ∈ A,

(3-6)
∣∣∣∣∂α( 1

ρa

)
(u)

∣∣∣∣ ≲ ta(u)−|α|−1, u ∈ Ua, |α| ≤ m + 1.

Let ξ : R → R be a definable Cm-function with compact support, fix 1 ≤ i ≤ ℓ, and
set, for all a ∈ A,

fa(u, w) := ξ

(
wi

ρa(u)

)
ha(u, w), (u, w) ∈ Ua × Rℓ.

If (ha)a∈A is a definable bounded family of Cm,ω-functions on (1ϵa)a∈A such that,
for each a ∈ A,

|∂γ ha(u, w)| ≲ ω(ta(u))ta(u)m−|γ |, (u, w) ∈1ϵa, |γ | ≤ m,

then ( fa)a∈A is a definable bounded family of Cm,ω-functions on (1ϵa)a∈A such that,
for each a ∈ A,

|∂γ fa(u, w)| ≲ ω(ta(u))ta(u)m−|γ |, (u, w) ∈1ϵa, |γ | ≤ m.

Proof. It suffices to repeat the proof of Proposition 3.9 in [12] (as well as Lemma
3.5 and Proposition 3.6 which are used in the proof). □

Remark 3.8. Proposition 3.5 and Proposition 3.7 remain true if we remove every-
where the attribute “definable”.
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4. Bounded definable extension of Whitney jets

This section is devoted to the proof of Theorem 1.3. Let us recall the setup:
Let 0 ≤ m ≤ p be integers and ω a modulus of continuity. Let (Ea)a∈A be a
definable family of closed subsets of Rn . Let (Fa)a∈A be a definable bounded
family of Whitney jets of class Cm,ω on (Ea)a∈A. We will show that there exists a
definable bounded family ( fa)a∈A of Cm,ω-extensions to Rn of (Fa)a∈A that is C p

outside (Ea)a∈A.
For each a ∈ A, let supp Fa denote the closure of

⋃
|κ|≤m{x ∈ Ea : Fκa (x) ̸= 0}

and let (E ′
a)a∈A be a definable subfamily of (Ea)a∈A consisting of closed subsets

E ′
a of Ea such that supp Fa ⊆ E ′

a .
Let A′

:= {a ∈ A : supp Fa =∅}. The family (Fa)a∈A′ can be extended by (0)a∈A′

to Rn . So we may assume that, for all a ∈ A, supp Fa ̸= ∅ and thus E ′
a ̸= ∅.

We proceed by induction on k := maxa∈A dim E ′
a and show:

(Ik) Let (Ea)a∈A be a definable family of closed subsets Ea of Rn and (Fa)a∈A a
definable bounded family of Whitney jets of class Cm,ω on (Ea)a∈A. Let (E ′

a)a∈A be
a definable subfamily of (Ea)a∈A of closed subsets E ′

a of Ea such that supp Fa ⊆ E ′
a

and dim E ′
a ≤ k, for all a ∈ A. Then there exists a definable bounded family ( fa)a∈A

of Cm,ω-extensions to Rn of (Fa)a∈A that is C p outside (E ′
a)a∈A.

Let us fix an integer p ≥ m + 1. (We need that p ≥ m + 1 in the proof. The case
p = m in Theorem 1.3 is evidently a trivial consequence.)

Overview of the proof. Before we actually start the proof of (Ik), let us give a brief
general overview. Besides the induction on the dimension k, we use, for fixed k, an
induction on the number of the k-dimensional strata of E ′

a . This is possible since
this number is uniformly bounded independently of a ∈ A, thanks to Theorem 2.16.
In this way, we can reduce the proof to the case that E ′

a has dimension k and is the
closure of a single stratum Sa that is the graph of a 3p-regular map ϕa . We can
assume that the Whitney jet Fa is flat on ∂Sa; see Proposition 4.2. This case is then
checked in three gradually more general steps:

(1) In the first step, we assume that ϕa ≡ 0 and E ′
a = Ea .

(2) In the second step, we still suppose that ϕa ≡ 0 but allow that E ′
a is a proper

subset of Ea .

(3) The general case in the final third step is reduced to the previous steps by
means of Proposition 3.5.

Induction basis (I0). If k = 0, then each E ′
a is a finite set (but Ea might be

infinite) and there is a constant which bounds the number |E ′
a| of elements of E ′

a
independently of a ∈ A, by uniform finiteness; see [5, 4.4].
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Let us make induction on s := maxa∈A |E ′
a|. The base case s = 1 is treated in

the following lemma.

Lemma 4.1. Let (Ea)a∈A be a definable family of closed subsets Ea of Rn and
(E ′

a)a∈A a definable subfamily of (Ea)a∈A such that, for each a ∈ A, E ′
a = {xa}. Let

(Fa)a∈A be a definable bounded family of Whitney jets of class Cm,ω on (Ea)a∈A

such that supp Fa ⊆ {xa}, for all a ∈ A. Then there exists a definable bounded family
( fa)a∈A of Cm,ω-extensions to Rn of (Fa)a∈A that is C p outside (E ′

a)a∈A.

Proof. Note that, for each a ∈ A, xa is an isolated point of Ea , by continuity of Fa .
Let χ : Rn

→ R be a definable C p-function that equals 1 in a neighborhood of 0
and has support contained in the unit ball. For each a ∈ A, set

da :=

{
min

{
1, d(xa, Ea \ {xa})

}
if Ea \ {xa} ̸= ∅,

1 otherwise.

Define, for each a ∈ A,

fa(x) := χ

(
x − xa

da

)
· T m

xa
Fa(x), x ∈ Rn.

Then ( fa)a∈A is a definable family of C p-functions fa : Rn
→ R such that each

fa has support contained in the ball Ba := B(xa, da) with radius da around xa and
extends the jet Fa . We will prove that the family ( fa)a∈A is bounded in Cm,ω(Rn).

Let γ ∈ Nn , where |γ | ≤ m. Then

∂γ fa(x)=

∑
α+β=γ

(
γ

α

)
d−|α|

a ∂αχ

(
x − xa

da

)
∂βT m

xa
Fa(x).

By (3-4) (for y ∈ Ea \ {xa} with da = |xa − y| if da < 1) and (3-3) (if da = 1),

|Fβa (xa)| ≤ C ω(da)dm−|β|

a , |β| ≤ m,

for a constant C > 0 independent of a ∈ A. For the rest of the proof, C will denote
a constant independent of a ∈ A; its actual value may change. Thus, for x ∈ Ba ,

|∂βT m
xa

Fa(x)| =

∣∣∣∣ ∑
|κ|≤m−|β|

1
κ!

Fκ+βa (xa)(x − xa)
κ

∣∣∣∣ ≤ C ω(da)dm−|β|

a , |β| ≤ m.

It follows that, for all x ∈ Rn ,

|∂γ fa(x)| ≤ C ω(da)dm−|γ |

a ≤ C ω(1), |γ | ≤ m.(4-1)

Now assume that |γ | = m. To see that |∂γ fa|C0,ω(Rn) is bounded by a constant
independent of a ∈ A, it suffices to estimate, for α+β = γ ,

D(x, y) :=

∣∣∣∣d−|α|

a ∂αχ

(
x − xa

da

)
∂βT m

xa
Fa(x)− d−|α|

a ∂αχ

(
y − xa

da

)
∂βT m

xa
Fa(y)

∣∣∣∣.
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Let us first assume that x, y ∈ Ba . Then

d−|α|

a

∣∣∣∣∂αχ(
x − xa

da

)
− ∂αχ

(
y − xa

da

)∣∣∣∣|∂βT m
xa

Fa(x)|

≤ C
ω(da)

da
|x − y| ≤ 2C ω(|x − y|),

since ω is concave and |x − y| ≤ 2da . On the other hand,

d−|α|

a

∣∣∣∣∂αχ(
y − xa

da

)∣∣∣∣|∂βT m
xa

Fa(x)− ∂βT m
xa

Fa(y)|

≤ C d−|α|

a

∑
|κ|≤m−|β|

1
κ!

|Fκ+βa (xa)||(x − xa)
κ
− (y − xa)

κ
|

≤ C ′
ω(da)

da
|x − y| ≤ 2C ′ ω(|x − y|).

So D(x, y)≤ C ω(|x − y|) for a constant C > 0 independent of a ∈ A.
If x and y lie outside of Ba , then D(x, y) = 0. If x ∈ Ba and y ̸∈ Ba and z is

the point, where the line segment [x, y] meets ∂Ba , then

D(x, y)= D(x, z)≤ C ω(|x − z|)≤ C ω(|x − y|).

This ends the proof. □

Assume that s > 1. For each a ∈ A, choose a numbering of the elements of E ′
a =

{xa,1, . . . , xa,sa }, where sa ≤ s. By the induction hypothesis, (Fa|Ea\{xa,2,...,xa,sa })a∈A

admits a definable bounded family ( f 1
a )a∈A of Cm,ω-extensions to Rn that is C p out-

side ({xa,1})a∈A. Then (Fa − J m
Ea
( f 1

a ))a∈A is a definable bounded family of Whitney
jets of class Cm,ω on (Ea)a∈A which is flat on (Ea \ {xa,2, . . . , xa,sa })a∈A and has
a definable bounded family ( f 2

a )a∈A of Cm,ω-extensions to Rn that is C p outside
({xa,2, . . . , xa,sa })a∈A, again by the induction hypothesis. Thus, ( f 1

a + f 2
a )a∈A is

the desired definable bounded family of Cm,ω-extensions to Rn of (Fa)a∈A.
This ends the induction on s and the base case (I0) of the induction on k.

Setup for the induction step. Let k > 0 and suppose that (Ik−1) holds. We will
prove (Ik). This will be accomplished by showing Proposition 4.2 below, but first
we make a few preparatory reductions.

By Theorem 2.16, there is a uniform 3p-stratification (Sa)a∈A of (Ea)a∈A

compatible with (E ′
a)a∈A such that, for each a ∈ A and each |κ| ≤ m, Fκa is of

class C p on the strata in Sa .
By (Ik−1), we may assume that dim E ′

a = k for all a ∈ A and there is a definable
bounded Cm,ω-extension ( f 0

a )a∈A to Rn of the restriction of (Fa)a∈A to (Ea\Pa)a∈A,
where

Pa =

⋃
{Sa ∈ Sa : Sa ⊆ E ′

a, dim Sa = k}.
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Replacing Fa by Fa − J m
Ea
( f 0

a ), for each a ∈ A, we may assume that Fa is flat on
all strata Sa ∈ Sa , Sa ⊆ E ′

a , with dim Sa < k and also on Ea \ E ′
a .

Let us now see that we may furthermore reduce to the case that, for each a ∈ A,
E ′

a is the closure of just one k-dimensional stratum Sa and that Fa is flat on its
frontier. Indeed, the number sa of k-dimensional strata of E ′

a is uniformly bounded
by a constant not depending on a ∈ A. We may use induction on s := maxa∈A sa of
which the above statement is the base case that we take for granted for the moment.
The induction step works just as for finite sets E ′

a: for each a ∈ A, let Sa,1, . . . , Sa,sa

be a numbering of the k-dimensional strata of E ′
a . By the induction hypothesis,

(Fa|Ea\Ra )a∈A, where Ra :=
⋃

i≥2 Sa,i , admits a definable bounded family ( f 1
a )a∈A

of Cm,ω-extensions to Rn that is C p outside (E ′
a \ Ra)a∈A. Then (Fa − J m

Ea
( f 1

a ))a∈A

is a definable bounded family of Whitney jets of class Cm,ω on (Ea)a∈A which
is flat on (Ea \ Ra)a∈A and has a definable bounded family ( f 2

a )a∈A of Cm,ω-
extensions to Rn that is C p outside (Ra)a∈A, again by the induction hypothesis.
Thus, ( f 1

a + f 2
a )a∈A is the desired definable bounded family of Cm,ω-extensions to

Rn of (Fa)a∈A.
In the case that k = n, Sa is open in Rn and extending Fa by 0 outside Sa , for all

a ∈ A, yields a definable bounded family (Fa)a∈A of Whitney jets of class Cm,ω

on (Rn)a∈A so that (F0
a )a∈A is the desired family of Cm,ω-extensions. This follows

from Hestenes’ lemma (e.g., [14, Theorem 1.10]); indeed, if x ∈ Sa and y ̸∈ Sa

and z is the point, where the line segment [x, y] meets ∂Sa , then, by (3-4) and
Remark 3.2, for any u ∈ Rn ,

|T m
x Fa(u)− T m

y Fa(u)| = |T m
x Fa(u)| = |T m

x Fa(u)− T m
z Fa(u)|

≤ C ω(|x − z|)(|u − x |
m

+ |u − z|m)

≤ 2C ω(|x − y|)(|u − x |
m

+ |u − y|
m),

for a constant C > 0 independent of a ∈ A, since |u − z| ≤ max{|u − x |, |u − y|}.
Consequently, we may assume that ℓ := n − k > 0.
We reduced the proof to showing the following. (We may assume that Sa is a

3p-cell in a fixed orthogonal system of coordinates of Rn , which is independent of
a ∈ A, thanks to Theorem 2.16.)

Proposition 4.2. Let (Ea)a∈A be a definable family of closed sets Ea in Rn . Let
(E ′

a)a∈A be a definable subfamily of (Ea)a∈A of closed subsets E ′
a of Ea with

dim E ′
a = k such that E ′

a = Sa , where

Sa =
{
(u, ϕa(u)) ∈ Rk

× Rℓ : u ∈ Ta
}

= 0(ϕa),

and (ϕa)a∈A is a definable family of 3p-regular maps ϕa : Ta → Rℓ, Ta an open
3p-cell in Rk , and all constants in the definition of Ta and ϕa are independent of
a ∈ A. Then any definable bounded family (Fa)a∈A of Whitney jets of class Cm,ω on
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(Ea)a∈A such that, for all a ∈ A, supp Fa ⊆ E ′
a , Fa is flat on ∂Sa , and Fκa , |κ| ≤ m,

is C p on Sa , admits a definable bounded family ( fa)a∈A of Cm,ω-extensions to Rn

that is C p outside (E ′
a)a∈A.

The proposition is proved in three gradually more general steps:

Step 1: ϕa ≡ 0 and E ′
a = Ea for all a ∈ A.

Step 2: ϕa ≡ 0 for all a ∈ A.

Step 3: The general case.

Step 1. For all a ∈ A, Ea = E ′
a = Ta × 0, where Ta ⊆ Rk is an open 3p-cell with

constant C independent of a ∈ A. We will prove Proposition 4.2 in this special case
with the additional property that ( fa)a∈A is m-flat outside (1(Ta × 0))a∈A, where

(4-2) 1(Ta × 0) :=
{
(u, w) ∈ Ta × Rℓ : |w|<min{1, d(u, ∂Ta)}

}
.

For each a ∈ A, we write

Fa = (F (α,β)a )(α,β)∈Nk×Nℓ,|α|+|β|≤m .

Fix β ∈ Nℓ with |β| ≤ m. Let Fa,β be the m-jet which results from Fa by setting
all F (α,β

′)
a equal to 0 whenever β ′

̸= β. Then (Fa,β)a∈A is a definable bounded
family of Whitney jets of class Cm,ω on (Ta × 0)a∈A. Indeed, for each a ∈ A,
the definable Whitney jet Fa of class Cm,ω on Ta × 0 can be identified with a
collection F̃a,β , |β| ≤ m, where F̃a,β is a definable Cm−|β|,ω-function on Ta such
that ∂α F̃a,β(u)= F (α,β)a (u, 0) for all u ∈ Ta and α ∈ Nk , |α| ≤ m − |β|; see [10,
Remark 5] and [6, pp. 87–88]. It suffices to prove that, for each β, (Fa,β)a∈A

admits a definable bounded family of Cm,ω-extensions to Rn that is m-flat outside
(1(Ta × 0))a∈A and C p outside (Ta × 0)a∈A. Thus, we may suppose that, for each
a ∈ A, F (α,β

′)
a = 0 whenever β ′

̸= β. By assumption, F (α,β)a is C p on Ta × 0.
By Theorem 2.16, Corollary 2.17, and Proposition 2.19, there is a uniform 3p-

stratification (Da)a∈A of (Ta)a∈A such that, for all a ∈ A, each open k-dimensional
Da ∈ Da , and all α, β, F (α,β)a is C p on Da ×0, and, for all u ∈ Da and γ ∈ Nk with
|γ | ≤ p, we have

(4-3) |∂γ F (α,β)a (u, 0)| ≤ L
sup{|F (α,β)a (v, 0)| : v ∈ Da, |v− u|< d(u, ∂Da)}

d(u, ∂Da)|γ |
,

and, if 1 ≤ |γ | ≤ p,

(4-4) |∂γ F (α,β)a (u, 0)| ≤ L
ω(d(u, ∂Da))

d(u, ∂Da)|γ |
,

where L > 0 is a constant independent of a ∈ A.
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For each a ∈ A, let Za :=
⋃

{Da ∈ Da : dim Da < k}. Setting

Ga(x) :=

{
Fa(x) if x ∈ Za × 0,
0 if x ∈ Rn

\1(Ta × 0),

defines a definable bounded family (Ga)a∈A of Whitney jets of class Cm,ω on(
(Za × 0)∪ (Rn

\1(Ta × 0))
)

a∈A. This follows from Hestenes’ lemma (e.g., [14,
Theorem 1.10]) and the following reasoning. Clearly, (Ga)a∈A satisfies (3-3). To
see (3-4) it suffices to consider the case that x ∈ Za × 0 and y ∈ Rn

\1(Ta × 0)
and to show that

(4-5) |Fκa (x)| ≤ C ω(|x − y|)|x − y|
m−|κ|, |κ| ≤ m,

for a constant C > 0 independent of a ∈ A. We have

|Fκa (x)| ≤ C ω(d(u, ∂Ta))d(u, ∂Ta)
m−|κ|, |κ| ≤ m,

by (3-4), since (Fa)a∈A is flat on (∂Ta × 0)a∈A, and

(4-6) |Fκa (x)| ≤ C =
C
ω(1)

·ω(1)1m−|κ|, |κ| ≤ m,

by (3-3). Then (4-5) follows, since we have |x − y| ≥ c min{1, d(u, ∂Ta)} for a
universal constant c > 0, by (4-2).

By (Ik−1), there exists a definable bounded family (ga)a∈A of Cm,ω-extensions to
Rn of (Ga)a∈A that is C p outside (Za ×0)a∈A. So, instead of (Fa)a∈A, it is enough
to consider (Fa − J m

Ea
(ga))a∈A.

If Da and D′
a are distinct open k-dimensional strata in Da , then 1(Da × 0) ⊆

1(Ta ×0) and1(Da × 0)∩1(D′
a × 0)⊆ Za ×0. Thus it suffices to find, separately

for each (Da)a∈A, a definable bounded family ( fa)a∈A of Cm,ω-extensions to Rn of(
(Fa − J m

Ea
(ga))|Da×0

)
a∈A that is m-flat outside (1(Da × 0))a∈A and C p outside

(Da × 0)a∈A.
For each a ∈ A, set

ha(u, w) :=
1
β!

F (0,β)a (u, 0)wβ − ga(u, w),

and define fa : Rn
→ R by

fa(u, w) :=

{
ra(u, w)ha(u, w) if u ∈ Da,

0 otherwise,
where

(4-7) ra(u, w) :=

ℓ∏
i=1

2k∏
j=0

ξ

(
C

√
ℓ

wi

ρa, j (u)

)
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with ξ : R → R a semialgebraic C p-function which is 1 near 0 and vanishes outside
(−1, 1), ρa,0, ρa,1, . . . , ρa,2k the functions associated with the open 3p-cell Da

(see Section 2F), and C is the constant from (2-7) which may be taken independent
from a ∈ A, since it is determined by the constants in the definition of the 3p-cells
Da , a ∈ A; see Remark 2.12. Note that the m-jet of ha at (u, 0) coincides with
(Fa − J m

Ea
(ga))(u, 0) for all u ∈ Da .

By construction, ( fa)a∈A is a definable family. We will see that it is a bounded
family of Cm,ω-extensions to Rn of

(
(Fa − J m

Ea
(ga))|Da×0

)
a∈A. It is m-flat outside

(1(Da × 0))a∈A, thanks to the properties of ra , and it is C p outside (Da × 0)a∈A.
Indeed, if (u, w) ∈ (Da × Rℓ) \1(Da × 0), then, by (2-7),

√
ℓ max

1≤i≤ℓ
|wi | ≥ |w| ≥ min{1, d(u, ∂Da} ≥

1
C

min
0≤ j≤2k

ρa, j (u)

so that ra is identically zero on (Da × Rℓ) \1(Da × 0). It remains to check that
the family ( fa)a∈A is contained and bounded in Cm,ω(Rn). To this end, we need
two lemmas.

Lemma 4.3. For each a ∈ A, ha is of class Cm,ω on1(Da ×0) and the Cm,ω-norm
of ha on 1(Da × 0) is bounded by a constant independent of a ∈ A.

Proof. By construction, each ha is of class Cm . Since (ga)a∈A is a bounded family of
Cm,ω-functions on Rn , it suffices to consider (u, w) 7→ F (0,β)a (u, 0)wβ . We have to
check that there is a constant C > 0 such that, for all a ∈ A, all κ = (σ, τ )∈ Nk

×Nℓ,
|κ| ≤ m, and all (u, w) ∈1(Da × 0),

(4-8)
∣∣∂κ(F (0,β)a (u, 0)wβ)

∣∣ ≤ C,

and, if |κ| = m, for all xi = (ui , wi ) ∈1(Da × 0), i = 1, 2,

(4-9)
∣∣∂κ(F (0,β)a (u1, 0)wβ1 )− ∂

κ(F (0,β)a (u2, 0)wβ2 )
∣∣ ≤ C ω(|x1 − x2|).

Fix κ = (σ, τ ) with |κ| ≤ m. We may assume that τ ≤ β. Let us decompose σ as
σ = α+ γ , where α, γ ∈ Nk , |α| ≤ m − |β|, and α is maximal with this property.
Thus, if |γ |> 0 then |α| + |β| = m. To see (4-8), observe that, by (4-3), (3-3), and
|w|<min{1, d(u, ∂Da)},

|∂γ F (α,β)a (u, 0)wβ−τ
| ≤ L

sup
{
|F (α,β)a (v, 0)| : v ∈ Da, |v− u|< d(u, ∂Da)

}
d(u, ∂Da)|γ |

|w|
|β−τ |

≤ CL |w|
|β−τ |−|γ |

≤ CL ,

where C > 0 is the supremum in (3-3); indeed, if γ ̸= 0 then |α| + |β| = m and
thus |β − τ | ≥ |γ |.
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Let us prove (4-9). Now |κ| = m and |α|+ |β| = m, whence |β− τ | = |γ |. Then
it is enough to show

(4-10) |∂γ F (α,β)a (u1, 0)wβ−τ

1 − ∂γ F (α,β)a (u2, 0)wβ−τ

2 | ≤ C ω(|x1 − x2|).

If γ = 0, this follows from (3-4). So let us assume that |γ | ≥ 1.
Set ta(u) :=

1
2 d(u, ∂Da). Then

(4-11) |ta(u1)− ta(u2)| ≤
1
2 |u1 − u2|.

Note that, for i = 1, 2,

(4-12) |wi |< d(ui , ∂Da)= 2ta(ui ).

We consider two cases.

Case 1. Suppose that ta(ui )≤ |x1 − x2| for i = 1, 2. Then, by (4-4) and (4-12),

|∂γ F (α,β)a (ui , 0)wβ−τ

i | ≤ L ω(2ta(ui ))≤ 2L ω(|x1 − x2|),

since ω is concave and increasing.

Case 2. Assume (without loss of generality) that ta(u1)> |x1−x2|. Then |u1−u2|≤

|x1 − x2|< ta(u1)=
1
2 d(u1, ∂Da) so that the line segment [x1, x2] is contained in

Da × Rℓ. Furthermore, if u ∈ [u1, u2] then, by (4-11),

|ta(u1)− ta(u)| ≤
1
2 |u1 − u| ≤

1
2 |x1 − x2|<

1
2 ta(u1),

whence
1
2 ta(u1) < ta(u) < 3

2 ta(u1), u ∈ [u1, u2].

The left-hand side of (4-10) is bounded by

|∂γ F (α,β)a (u1, 0)− ∂γ F (α,β)a (u2, 0)||w1|
|β−τ |

+ |∂γ F (α,β)a (u2, 0)||wβ−τ

1 −w
β−τ

2 |.

By (4-4) and (4-12),

|∂γ F (α,β)a (u1, 0)− ∂γ F (α,β)a (u2, 0)||w1|
|β−τ |

≲ sup
u∈[u1,u2]

k∑
j=1

|∂γ+( j)F (α,β)a (u, 0)||u1 − u2| ta(u1)
|γ |

≲ sup
u∈[u1,u2]

ω(2ta(u))
ta(u)|γ |+1 |u1 − u2| ta(u1)

|γ |

≲
ω(ta(u1))

ta(u1)
|x1 − x2|

≤ ω(|x1 − x2|),
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since ω is concave. Again, by (4-4) and (4-12),

|∂γ F (α,β)a (u2, 0)||wβ−τ

1 −w
β−τ

2 |

≲
ω(2ta(u2))

ta(u2)|γ |
|w1 −w2| ta(u1)

|γ |−1 ≲
ω(ta(u1))

ta(u1)
|x1 − x2| ≤ ω(|x1 − x2|).

The proof is complete. □

The proof shows that (4-9) actually holds on the larger set {(u, w) ∈ Da × Rℓ :

|w|< d(u, ∂Da)}.

Lemma 4.4. For each a ∈ A,

(4-13) |∂κha(u, w)| ≤ C ω(d(u, ∂Da))d(u, ∂Da)
m−|κ|,

for all (u, w) ∈1(Da × 0), all κ ∈ Nn , |κ| ≤ m, and a constant C > 0 independent
of a ∈ A.

Proof. Fix x = (u, w)∈1(Da ×0). If d(u, ∂Da) < d(u, ∂Ta), then let u′
∈ ∂Da be

such that |u − u′
| = d(u, ∂Da) and set x ′

= (u′, 0). The open line segment (x, x ′)

is contained in 1(Da × 0). Since u′
∈ Ta , where F (0,β)a is of class C p, and ha is of

class Cm,ω on 1(Da × 0) with Cm,ω-norm bounded by a constant independent of
a ∈ A, by Lemma 4.3, we may conclude the assertion from Taylor’s theorem.

So we assume that d(u, ∂Da) = d(u, ∂Ta). Let u′
∈ ∂Ta such that |u − u′

| =

d(u, ∂Ta). Let us first assume that κ = (σ, τ ) ∈ Nk
× Nℓ with |κ| = m. By

construction, ∂κga(u′, 0)= 0 so that

|∂κga(u, w)| = |∂κga(u, w)− ∂κga(u′, 0)| ≲ ω(|u − u′
|)= ω(d(u, ∂Da)),

where we used that |w| < d(u, ∂Da) = |u − u′
|. Hence it suffices to consider

∂κ(F (0,β)a (u, 0)wβ) or equivalently ∂γ F (α,β)a (u, 0)wβ−τ , where α, γ ∈ Nk are such
that α+γ =σ , |α|+|β|=m, and τ ≤β. Thus |β−τ |= |γ |. If |γ |≥ 1, (4-4) implies

|∂γ F (α,β)a (u, 0)wβ−τ
| ≤ L

ω(d(u, ∂Da))

d(u, ∂Da)|γ |
|w|

|γ |
≤ L ω(d(u, ∂Da)),

and, if γ = 0, (3-4) gives

|∂γ F (α,β)a (u, 0)wβ−τ
| = |F (α,β)a (u, 0)| ≲ ω(d(u, ∂Ta))= ω(d(u, ∂Da)),

since (Fa)a∈A is flat on (∂Ta × 0)a∈A.
To prove the statement for |κ|<m, we proceed by induction on m −|κ|. Suppose

that the assertion is already shown for every λ ∈ Nn with |κ|< |λ| ≤ m. Since the
open line segment (x, x ′) connecting x = (u, w) and x ′

= (u′, 0) is contained in
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1(Da × 0), we have, by induction hypothesis, where x ′′
= (u′′, w′′),

|∂κha(u, w)| ≤ sup
x ′′∈(x,x ′)

n∑
j=1

|∂κ+( j)ha(u′′, w′′)||x − x ′
|

≲ sup
x ′′∈(x,x ′)

ω(d(u′′, ∂Da))d(u′′, ∂Da)
m−|κ|−1 d(u, ∂Da)

≲ ω(d(u, ∂Da))d(u, ∂Da)
m−|κ|,

since d(u′′, ∂Da)≤ d(u, ∂Da). □

It follows from Lemmas 4.3 and 4.4 that, for each a ∈ A,

(4-14) |∂κha(u, w)| ≤ C ω
(
min{1, d(u, ∂Da)}

)
min{1, d(u, ∂Da)}

m−|κ|,

for all (u, w) ∈1(Da × 0), all κ ∈ Nn , |κ| ≤ m, and a constant C > 0 independent
of a ∈ A. Indeed, by Lemma 4.3,

|∂κha(u, w)| ≤ C =
C
ω(1)

·ω(1)1m−|κ|, |κ| ≤ m,

for all (u, w) ∈1(Da × 0), which, together with (4-13), gives (4-14).
Now Proposition 3.7 (see also Remark 3.8) implies that the family ( fa)a∈A is

bounded in Cm,ω(Rn). Indeed, Lemmas 4.3 and 4.4 and (4-14) guarantee that
the assumptions of Proposition 3.7 are satisfied, where ta(u)= min{1, d(u, ∂Da)}.
Condition (3-6) holds thanks to (2-9) and Remark 2.12. We also get

(4-15) |∂κ fa(u, w)| ≤ C ω(d(u, ∂Da))d(u, ∂Da)
m−|κ|,

for all (u, w) ∈1(Da × 0), all κ ∈ Nn , |κ| ≤ m, and a constant C > 0 independent
of a ∈ A.

Step 2. For all a ∈ A, E ′
a = Sa = Ta ×0, but possibly E ′

a is a proper subset of Ea for
some a ∈ A. Consider the definable family (ra)a∈A of functions ra : Ta → (0,∞)

given by

ra(u) :=

{
inf{|w| : (u, w) ∈ Ea \ Sa} if {w : (u, w) ∈ Ea \ Sa} ̸= ∅,

1 otherwise.

Since Fa is flat on Ea \ Sa we have (by (3-3) and (3-4))

(4-16) |Fκa (u, 0)| ≤ C ω(ra(u))ra(u)m−|κ|

for all u ∈ Ta , all κ ∈ Nn , |κ| ≤ m, and a constant C > 0 independent of a ∈ A.
(In the case that {w : (u, w) ∈ Ea \ Sa} = ∅, it follows from (3-3) and we have to
replace C by C/ω(1).)

By Theorem 2.16 and Proposition 2.20, there is a uniform 3p-stratification of
(Ta)a∈A such that

Ta = Qa,1 ∪ · · · ∪ Qa,s ∪ Za,
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where, for each a ∈ A and each i = 1, . . . , s, Za is closed with dim Za < k, each
Qa,i is an open k-dimensional 3p-cell with constant independent of a ∈ A, ra is
C p on Qa,i , and either

(i) |∂ jra| ≤ 1, for each j = 1, . . . , k, on Qa,i , in which case we may assume
that |∂αra(u)|d(u, ∂Qa,i )

|α|−1, 1 ≤ |α| ≤ p, is bounded on Qa,i by a constant
independent of a ∈ A, by Corollary 2.18, or

(ii) |∂ jra(u)|> 1 for some j on Qa,i .

By (Ik−1), we may assume that (Fa)a∈A is flat on (Za × 0)a∈A and hence on
(∂Qa,i × 0)a∈A for each i = 1, . . . , s.

Now it is enough to show that, for every i = 1, . . . , s, (Fa|Ea∩(Qa,i ×Rℓ))a∈A

admits a definable bounded family ( fa,i )a∈A of Cm,ω-extensions to Rn that is m-flat
outside (1(Qa,i × 0))a∈A and C p outside (Qa,i × 0)a∈A. To this end, we fix i and
drop it from the notation.

Step 1 gives a definable bounded family (ga)a∈A of Cm,ω-extensions to Rn of
(Fa|Qa×0)a∈A that is m-flat outside (1(Qa × 0)a∈A and C p outside (Qa × 0)a∈A.
By Taylor’s formula and (4-16), for each a ∈ A,

(4-17) |∂κga(u, w)| ≤ C ω(ra(u)) ra(u)m−|κ|

for all (u, w) ∈ Qa ×Rℓ, |w|< C ′ ra(u), and all κ ∈ Nn , |κ| ≤ m, where C,C ′ > 0
are independent of a ∈ A. Similarly, we have

(4-18) |∂κga(u, w)| ≤ C ω(d(u, ∂Qa)) d(u, ∂Qa)
m−|κ|

for all (u, w) ∈ Qa × Rℓ, |w| < C ′ d(u, ∂Qa), and all κ ∈ Nn , |κ| ≤ m, where
C,C ′ > 0 are independent of a ∈ A.

In Case (ii), one can easily see (see [10, p. 94]) that, for each a ∈ A, ra(u) ≥

d(u, ∂Qa) for u ∈ Qa , so that Ea \ Sa ⊆ Rn
\1(Qa × 0). That means that ga is a

Cm,ω-extension to Rn of Fa|Ea∩(Qa×0), and we are done.
In Case (i), a modification is necessary: we define, for each a ∈ A,

fa(u, w) :=


ℓ∏

i=1

ξ

(
√
ℓ
wi

ra(u)

)
· ga(u, w) if u ∈ Qa,

0 otherwise,

where ξ : R → R is a semialgebraic C p-function that is 1 near 0 and vanishes
outside (−1, 1). Note that ( fa)a∈A is a definable family of functions fa : Rn

→ R.
Moreover, we set

1′(Qa × 0) := {(u, w) ∈ Qa × Rℓ : |w|< ta(u)}

with
ta(u) := min{ra(u), d(u, ∂Qa)},
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and claim that, for each a ∈ A, fa is of class Cm,ω on 1′(Qa × 0) with Cm,ω-norm
bounded by a constant independent of a ∈ A, and

(4-19) |∂κ fa(u, w)| ≤ C ω(ta(u)) ta(u)m−|κ|

for (u, w) ∈1′(Qa × 0) and all κ ∈ Nn , |κ| ≤ m, where C > 0 is independent of
a ∈ A.

To see this, let us first assume that ra(u) < d(u, ∂Qa) so that ta(u) = ra(u).
Since we are in Case (i), we find that, thanks to (2-10),∣∣∣∣∂α( 1

ra

)
(u)

∣∣∣∣ ≤ C ra(u)−|α|−1, u ∈ Qa, |α| ≤ p,

for a constant C > 0 independent of a ∈ A. Thus, the claim follows from (4-17)
and Proposition 3.7.

If ra(u)≥ d(u, ∂Qa) (that is, ta(u)= d(u, ∂Qa)), then similarly∣∣∣∣∂α( 1
ra

)
(u)

∣∣∣∣ ≤ C d(u, ∂Qa)
−|α|−1, u ∈ Qa, |α| ≤ p,

Then we infer the claim from (4-18) and Proposition 3.7.
We conclude that ( fa)a∈A is the required family of definable bounded Cm,ω-

extensions to Rn of (Fa|Ea∩(Qa×Rℓ))a∈A that is m-flat outside (1(Qa × 0))a∈A and
C p outside (Qa × 0)a∈A. This ends Step 2.

Step 3. The general case of Proposition 4.2: for all a ∈ A, Sa =0(ϕa), E ′
a = Sa ⊆ Ea ,

where ϕa : Ta → Rℓ is not necessarily identically 0. Consider the definable family
(sa)a∈A of functions sa : Sa → (0,∞) given by

sa(x) := min{d(x, Ea \ Sa), d(x, ∂Sa)}, x ∈ Sa.

For each a ∈ A, let ϕa :Ta →Rℓ be the continuous extension of ϕa; see Section 2D.
Furthermore, we consider the maps

ϕa,± : Ta × Rℓ → Ta × Rℓ, (u, w) 7→ (u, w±ϕa(u))

and
ϕa,± : Ta × Rℓ → Ta × Rℓ, (u, w) 7→ (u, w±ϕa(u)).

Note that ϕa,+ is a bi-Lipschitz homeomorphism with inverse ϕa,− and Lipschitz
constants independent of a ∈ A.

Since Fa is flat on Ea \ Sa and on ∂Sa , we have (by (3-4))

(4-20) |Fκa (x)| ≤ C ω(sa(x))sa(x)m−|κ|

for all x ∈ Sa , all κ ∈Nn , |κ|≤m, and a constant C>0 independent of a ∈ A. Setting

ta(u) := sa(u, ϕa(u)), u ∈ Ta,
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we have

(4-21)
∣∣Fκa (u, ϕa(u))

∣∣ ≤ C ω(ta(u))ta(u)m−|κ|, u ∈ Ta, |κ| ≤ m.

The uniformity of the constants in the definition of Ta and ϕa implies that (Sa)a∈A

and (∂Ta × Rℓ)a∈A are uniformly separated. Observe that (by the definition of sa)
ta(u)≤ C ′ d(u, ∂Ta) for C ′ > 0 independent of a ∈ A, since ϕa,+ is a bi-Lipschitz
homeomorphism with Lipschitz constants independent of a ∈ A.

Thus Proposition 3.5 (and Lemma 3.6) implies that (Ga)a∈A, where Ga :=

ϕ∗
a,+(Fa|Sa ), is a definable bounded family of Whitney jets of class Cm,ω on
(Ta ×0)a∈A and extends to a definable bounded family of Whitney jets of class Cm,ω

on (Ta × 0)a∈A which is flat on (∂Ta × 0)a∈A and such that

(4-22) |Gκ
a(u, 0)| ≤ C ω(ta(u))ta(u)m−|κ|

for all u ∈ Ta , all κ ∈ Nn , |κ| ≤ m, and a constant C > 0 independent of a ∈ A.
For each a ∈ A, set Ẽa := ϕa,−(Ea ∩ (Ta × Rℓ)). Since ϕa,+ is a bi-Lipschitz
homeomorphism with constants independent of a ∈ A, we may conclude

(4-23) |Gκ
a(u, 0)| ≤ C ω

(
d((u, 0), Ẽa \ (Ta × 0))

)
d((u, 0), Ẽa \ (Ta × 0))m−|κ|

for all u ∈ Ta , all κ ∈ Nn , |κ| ≤ m, and a constant C > 0 independent of a ∈ A.
Thus (G̃a)a∈A, where

G̃a(u, w) :=

{
Ga(u, 0) if (u, w) ∈ Ta × 0,
0 if (u, w) ∈ Ẽa \ (Ta × 0),

is a definable bounded family of Whitney jets of class Cm,ω on (Ẽa)a∈E that is flat
on (Ẽa \ (Ta × 0))a∈A.

By Step 2, there exists a definable bounded family (g̃a)a∈A of Cm,ω-extensions to
Rn of (G̃a)a∈A that is m-flat on (Ẽa \ (Ta × 0))a∈A as well as outside (Ta × Rℓ)a∈A

and C p outside (Ta × 0)a∈A.
For each a ∈ A, define fa : Rn

→ R by

fa(u, w) :=

{
(g̃a ◦ϕa,−)(u, w) if (u, w) ∈ Ta × Rℓ,

0 otherwise.

Then ( fa)a∈A is a definable bounded family of Cm,ω-extensions to Rn of (Fa)a∈A

that is C p outside (Sa)a∈A, which follows again from Proposition 3.5 (with Ma =

Ta × Rℓ and Ua = Ta).
This completes the proof of Proposition 4.2, hence of (Ik), and thus the proof of

Theorem 1.3.
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5. Further applications

We present a local version of Theorem 1.3, we discuss the dependence of the bounded
extension on the modulus of continuity which leads to the proof of Theorem 1.4, and
finally we obtain a definable version of a correspondence between Whitney jets of
class Cm,ω and certain Lipschitz maps, which was first observed by Shvartsman [13].

5A. Definable Cm,ω
loc -extensions. Let U ⊆ Rn be open. We denote by Cm,ω

loc (U ) the
space of functions f : U → R such that f |V ∈ Cm,ω(V ), for all relatively compact
open subsets V ⊆ U .

Let E ⊆ Rn be a closed set. An m-jet F on E is called a (definable) Whitney
jet of class Cm,ω

loc on E if F |K is a (definable) Whitney jet of class Cm,ω on K ,
for all (definable) compact subsets K ⊆ E . A Cm,ω

loc -function f : Rn
→ R is a

Cm,ω
loc -extension to Rn of F if J m

E ( f )= F .
Let (Ea)a∈A be a family of closed sets Ea ⊆ Rn . A family (Fa)a∈A of Whitney

jets of class Cm,ω
loc on Ea is called a (definable) bounded family of Whitney jets of

class Cm,ω
loc if (Fa|Ka )a∈A is a (definable) bounded family of Whitney jets of class

Cm,ω for each (definable) subfamily (Ka)a∈A of (Ea)a∈A consisting of (definable)
compact sets Ka ⊆ Ea .

A family ( fa)a∈A of Cm,ω
loc -functions fa : Rn

→ R is called a (definable) bounded
family of Cm,ω

loc -extensions to Rn of (Fa)a∈A if fa is a Cm,ω
loc -extension to Rn of

Fa , for each a ∈ A, and, for each (definable) relatively compact subset V ⊆ Rn ,
( fa|V )a∈A is a (definable) bounded family of Cm,ω-functions.

Corollary 5.1. Let 0 ≤ m ≤ p be integers. Let ω be a modulus of continuity.
Let (Ea)a∈A be a definable family of closed subsets Ea of Rn . For any definable
bounded family (Fa)a∈A of Whitney jets of class Cm,ω

loc on (Ea)a∈A there exists a
definable bounded family ( fa)a∈A of Cm,ω

loc -extensions to Rn of (Fa)a∈A that is C p

outside (Ea)a∈A.

Proof. For integers k ≥ 1, consider the definable sets Uk := {x ∈ Rn
: k−2< |x |< k};

note that U1 is the unit ball, U2 is a punctured ball, and Uk , for k ≥ 3, are annuli
centered at the origin. The sets Uk , for k ≥ 1, form an open cover of Rn with the
property that Uk ∩Uℓ ̸=∅ if and only if |k −ℓ| ≤ 1. Fix an integer p ≥ m +1. There
exists a partition of unity {ϕk}k≥1 of class C p subordinated to the cover {Uk}k≥1,
where each ϕk is definable: ϕk ∈ C p(Rn), ϕk ≥ 0, suppϕk ⊆ Uk , for all k ≥ 1, the
family {suppϕk}k≥1 is locally finite, and

∑
k≥1 ϕk = 1. For instance, let h : R → R

be a nonnegative definable function of class C p such that supp h =
[
−

3
4 ,

3
4

]
and set

ψ1(x) := h(|x |
2) and ψk(x) := h(|x | − (k − 1)), for k ≥ 2. Then ψ :=

∑
k≥1 ψk is

of class C p and everywhere positive (locally it is a finite sum). Thus ϕk := ψk/ψ

is as required; it is definable, since in a neighborhood of suppϕk = suppψk the
denominator ψ is represented by a finite sum of definable functions.
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Let (Fa)a∈A be a definable bounded family of Whitney jets of class Cm,ω
loc on

(Ea)a∈A. For each k ≥ 1, (Fa|U k
)a∈A is a definable bounded family of Whitney jets

of class Cm,ω on (Ea ∩ U k)a∈A. By Theorem 1.3, there exists a definable bounded
family ( f k

a )a∈A of Cm,ω-extensions to Rn of (Fa|U k
)a∈A such that f k

a is of class C p

outside Ea ∩U k for all a ∈ A; if Ea ∩U k =∅ we set f k
a := 0. Let fa :=

∑
∞

k=1 ϕk f k
a ,

for a ∈ A. The function fa is of class Cm,ω
loc on Rn and C p outside Ea , since the

defining sum is finite on every compact set and p ≥ m + 1. Let x ∈ Ea . There
exist a neighborhood U of x and k ≥ 1 such that U ⊆ Uk ∪ Uk+1 ∪ Uk+2 and
U ∩

⋃
ℓ̸∈{k,k+1,k+2}

Uℓ = ∅. So, for each κ ∈ Nn with |κ| ≤ m,

∂κ fa(x)=

2∑
i=0

∑
σ≤κ

(
κ

σ

)
∂σϕk+i (x)∂κ−σ f k+i

a (x)

=

2∑
i=0

∑
σ≤κ

(
κ

σ

)
∂σϕk+i (x)Fκ−σa (x)

=

∑
σ≤κ

(
κ

σ

)
∂σ

( 2∑
i=0

ϕk+i (x)
)

Fκ−σa (x)

=

∑
σ≤κ

(
κ

σ

)
∂σ (1)Fκ−σa (x)

= Fκa (x).

Thus, fa is a Cm,ω
loc -extension to Rn of Fa .

Fix a definable relatively compact subset V ⊆ Rn . There exists K ∈ N such that
V ∩Uk = ∅ for all k > K . In particular, fa(x) :=

∑K
k=1 ϕk(x) f k

a (x), for all x ∈ V
and a ∈ A. Hence, ( fa|V )a∈A is a definable bounded family of Cm,ω-functions. □

Remark 5.2. We do not say that fa is definable as a global function fa : Rn
→ R, be-

cause the gluing argument (based on the partition of unity) involves an infinite sum.

5B. Dependence on the modulus of continuity. The main result, Theorem 1.3,
only depends in a weak sense on the modulus of continuity ω, namely, the uniform
constant C occasionally must be multiplied by ω(1) or by ω(1)−1; see (4-1), (4-6),
(4-14), and (4-16).

Thus, we can allow in Theorem 1.3 that, for each a ∈ A, Fa is a Whitney jet
of class Cm,ωa on Ea , where ωa is a modulus of continuity and there is a constant
C > 0 independent of a ∈ A such that

(5-1) C−1
≤ ωa(1)≤ C, a ∈ A.

Then the statement is the following:
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Theorem 5.3. Let 0 ≤ m ≤ p be integers. Let (ωa)a∈A be a family of moduli of
continuity satisfying (5-1). Let (Ea)a∈A be a definable family of closed subsets Ea

of Rn . For any definable family (Fa)a∈A of Whitney jets Fa of class Cm,ωa on Ea

such that

(5-2) sup
a∈A

sup
x∈Ea

sup
|γ |≤m

|Fγa (x)|<∞,

and

(5-3) sup
a∈A

sup
x ̸=y∈Ea

sup
|γ |≤m

|(Rm
x Fa)

γ (y)|
ωa(|x − y|)|x − y|m−|γ |

<∞,

there exists a definable family ( fa)a∈A of Cm,ωa -extensions fa to Rn of Fa such that
fa is of class C p outside Ea , for all a ∈ A, and

(5-4) sup
a∈A

∥ fa∥Cm,ωa (Rn) <∞.

5C. Proof of Theorem 1.4. Let (Fa)a∈A be a definable family of Whitney jets of
class Cm on (Ea)a∈A, where Ea ⊆ Rn is compact. We say that the family (Fa)a∈A

is bounded if

(5-5) sup
a∈A

sup
x∈Ea

sup
|γ |≤m

|Fγa (x)|<∞

and

(5-6) sup
a∈A

sup
x ̸=y∈Ea

sup
|γ |≤m

|(Rm
x Fa)

γ (y)|
|x − y|m−|γ |

<∞.

Proof of Theorem 1.4. We modify slightly an argument used in Proposition IV.1.5
of [15]. For each a ∈ A, consider

σa(t) := sup
x ̸=y∈Ea
|x−y|≤t

sup
|γ |≤m

|(Rm
x Fa)

γ (y)|
|x − y|m−|γ |

, t > 0, σa(0) := 0.

Then σa : [0,∞)→ [0,∞) is an increasing function that is continuous at 0 and

σa(t)= σa(diam Ea), t ≥ diam Ea.

Thus also τa : [0,∞)→ [0,∞), defined by

τa(t) :=

{
σa(t) if t < 1,
max{1, σa(t)} if t ≥ 1,

is increasing and continuous at 0 with

(5-7) τa(t)≤ max{1, σa(diam Ea)}, t ≥ 0.
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Let ωa be the least concave majorant of τa which is finite, thanks to (5-7). Then ωa

is a modulus of continuity and

sup
a∈A

sup
x ̸=y∈Ea

sup
|γ |≤m

|(Rm
x Fa)

γ (y)|
ωa(|x − y|)|x − y|m−|γ |

≤ 1.

Moreover, ωa(1)≥ 1 and, by (5-7),

ωa(t)≤ max{1, σa(diam Ea)} ≤ C, t ≥ 0,

for a constant C > 0 independent of a ∈ A, thanks to (5-6). In particular, (5-1) is
satisfied.

Thus Theorem 5.3 implies that there is a definable family ( fa)a∈A such that, for
each a ∈ A, fa is a Cm,ωa -extension to Rn of Fa , C p outside Ea , and

sup
a∈A

∥ fa∥Cm,ωa (Rn) <∞.

In particular, ( fa)a∈A is a bounded family of Cm-functions. □

5D. Definable Whitney jets as Lipschitz maps. We end with a few observations on
a definable version of a correspondence, due to Shvartsman [13], between Whitney
jets of class Cm,ω and certain Lipschitz maps. Here the notation follows closely the
one of [13].

Let ω be a modulus of continuity and m a positive integer. For α ∈ Nn with
|α|< m let ψα be the inverse of the (strictly increasing) function s 7→ sm−|α|ω(s)
and put ϕα := ω ◦ψα. For |α| = m, set ϕα(t) := t .

Let Pm denote the space of real polynomials of degree at most m in n variables.
For Ti = (Pi , xi ) ∈ Pm × Rn , i = 1, 2, define

δω(T1, T2) := max
{
ω(|x1 − x2|), max

|α|≤m
i=1,2

ϕα
(
|∂α(P1 − P2)(xi )|

)}
.

Then we get a metric dω on Pm × Rn by setting

dω(T, T ′) := inf
k−1∑
j=0

δω(T j , T j+1),

where the infimum is taken over all finite sequences T = T1, T2, . . . , Tk = T ′ in
Pm × Rn . It turns out (see [13, Theorem 2.1]) that

dω((P, x), (P ′, x ′))≤ δω((P, x), (P ′, x ′))≤ dω((en P, x), (en P ′, x ′)).

Let Tm,n be the metric space (Pm × Rn, dω). For a nonempty subset X ⊆ Rn , we
denote by Xω the metric space (X, (x, y) 7→ω(|x − y|)). Let Lip(Xω, Tm,n) be the



UNIFORM EXTENSION OF DEFINABLE Cm,ω -WHITNEY JETS 351

space of Lipschitz maps T : x 7→ (Px , zx) such that max|α|≤m supx∈X |∂αPx(x)|<∞,
equipped with the norm

∥T ∥
∗

LO(X) := max
|α|≤m

sup
x∈X

|∂αPx(x)|

+ inf
{
λ > 0 : dω(λ−1T (x), λ−1T (y))≤ ω(|x − y|) for all x, y ∈ X

}
,

where λ−1T (x) := (λ−1 Px , zx). Let T m
x f be the Taylor polynomial of order m at

x of a Cm-function f .
Now let us recall a result of [13].

Proposition 5.4 [13, Propositions 1.9 and 2.8]. Let X ⊆ Rn be a closed set. Given
a family of polynomials {Px ∈ Pm : x ∈ X}, there exists f ∈ Cm,ω(Rn) such that
T m

x f = Px for all x ∈ X if and only if the map T : x 7→ (Px , x) belongs to
Lip(Xω, Tm,n). We have

inf{∥ f ∥Cm,ω(Rn) : T m
x f = Px for all x ∈ X} ≈ ∥T ∥

∗

LO(X)

in the sense that either side is bounded by a constant C(m, n) times the other side.
If , moreover, T : x 7→ (Px , x) belongs to Lip(Xω, Tm,n), then T has an extension
T̃ : x 7→ (P̃x , x) in Lip(Rn

ω, Tm,n) satisfying

∥T̃ ∥
∗

LO(Rn) ≤ C(m, n) ∥T ∥
∗

LO(X).

These results are based on the classical extension theorem for Whitney jets of
class Cm,ω. As a consequence of Theorem 1.2, we may conclude the following
definable version, where, provided that X is definable, Lipdef(Xω, Tm,n) is the
subspace of definable maps T : x 7→ (Px , zx) in Lip(Xω, Tm,n), which means that
zx and the coefficients of Px are definable maps in x . Recall that Cm,ω

def (R
n) is the

subspace of Cm,ω(Rn) consisting of all definable functions in Cm,ω(Rn).

Proposition 5.5. Let X ⊆ Rn be a definable closed set. Given a definable family of
polynomials {Px ∈ Pm : x ∈ X}, there exists f ∈ Cm,ω

def (R
n) such that T m

x f = Px for
all x ∈ X if and only if the map T : x 7→ (Px , x) belongs to Lipdef(Xω, Tm,n). If ,
moreover, T : x 7→ (Px , x) belongs to Lipdef(Xω, Tm,n), then T has an extension
T̃ : x 7→ (P̃x , x) in Lipdef(R

n
ω, Tm,n).

Concerning the existence of uniform bounds for the norms, remarks similar to the
ones in [11, Section 4.4] apply. But Theorem 1.3 implies the following supplement.

Proposition 5.6. Suppose that in the setting of Proposition 5.5, the family of
polynomials depends definably on additional parameters a ∈ A, i.e., a definable
family of polynomials {Pa

x ∈ Pm : x ∈ X, a ∈ A} is given. Then there exists a
bounded family ( f a)a∈A of definable Cm,ω-functions f a

: Rn
→ R such that

T m
x f a

= Pa
x for all x ∈ X and a ∈ A
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if and only if (T a
: x 7→ (Pa

x , x))a∈A forms a bounded subset of Lipdef(Xω, Tm,n).
If , moreover, (T a

: x 7→ (Pa
x , x))a∈A forms a bounded subset of Lipdef(Xω, Tm,n),

then there is a family (T̃ a
: x 7→ (P̃a

x , x))a∈A of extensions T̃ a of T a which forms a
bounded subset of Lipdef(R

n
ω, Tm,n).
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NONCOMMUTATIVE TENSOR TRIANGULAR GEOMETRY:
CLASSIFICATION VIA NOETHERIAN SPECTRA

JAMES ROWE

Given a monoidal triangulated category T with Noetherian spectrum, we
show that there is an order-preserving bijection between the collection of all
Thomason subsets of the noncommutative spectrum of T and the collection
of all thick two-sided semiprime ideals of T and that it is universal among all
such spaces classifying the ideals in question.

1. Introduction

One application of tensor triangular geometry (tt-geometry) is the classification
of various types of subcategories via topological spaces. Following specific clas-
sification results in fields such as algebraic geometry (for example, [Thomason
1997]) and topology [Hopkins and Smith 1998], Balmer [2005] proved generic
classification theorems within the framework of tt-geometry. Since then, the theory
of classification within tt-geometry has expanded to include techniques such as the
use of residue functors [Balmer and Favi 2011] and categorical actions [Stevenson
2013], further increasing the range of subcategories for which classification is
possible.

This article is concerned with the theory of monoidal triangulated categories, or
mt-categories. Within these categories, the tensor product functor ⊗ is no longer
required to be symmetric. The general theory of these categories has been of
significant interest in recent times, with foundational results established by Nakano,
Vashaw, and Yakimov [Nakano et al. 2022a]. These general results include a
classification theorem applicable to a wide collection of weak support data [Nakano
et al. 2022a, 6.2.1], as well as characterisations of those categories in which the
tensor product functor interacts well with support data [Nakano et al. 2022b, 3.1.1].

The classification theorems in both the symmetric and monoidal settings use
the connections between a mt-category T and its collection of prime ideals Spc(T)

considered as a topological space. Many of the classifications of subcategories
rely on controlling the properties of this space or the prime ideals from which it is
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formed. For example, in the recent work of Mallick and Ray [2023], radical thick
tensor ideals of mt-categories are classified using a point-free approach, under the
assumption that every prime ideal is completely prime: given a prime ideal P , if
there are objects a, b such that a ⊗ b ∈ P , then a ∈ P or b ∈ P .

At the level of topological spaces, classification theorems often assume that
the spaces used to classify subcategories are Noetherian topological spaces. Such
spaces are commonly encountered in algebraic geometry: given a commutative
Noetherian ring R, the spectrum Spec(R) is a Noetherian topological space. This
is the case in results from both the monoidal setting [Nakano et al. 2022a, 6.2.1],
and the symmetric setting (via classifying support data [Balmer 2005, 5.2]), as well
as in the formulation of visible points [Balmer and Favi 2011, 7.14].

We follow the original work of Balmer [2005] in the symmetric case and prove
analogous statements in the monoidal setting for those mt-categories with Noetherian
spectrum, Within this framework we obtain the following classification:

Theorem (Theorem 4.6). Let T be a monoidal triangulated category such that
the Balmer spectrum Spc(T) is a Noetherian topological space. Then there is an
order-preserving bijection between the collection of all Thomason subsets of the
spectrum Spc(T) and the collection of all thick two-sided semiprime ideals of T.

We also show that if we are given a classification via some other well-behaved
support datum (X, σ ) then the universal map becomes a homeomorphism.

Theorem (Theorem 5.7). Suppose (X, σ ) is a support datum which classifies all
thick two-sided semiprime tensor ideals of T and the space X is Noetherian and T0.
Then the universal map fσ : X → Spc(T) is a homeomorphism.

In proving these results, we also show that under the Noetherian assumption, the
noncommutative spectrum Spc(T) is a spectral space (Theorem 3.7). These results
are all obtained in the small setting; we only use thick subcategories and do not
require the use of larger structure such as localising subcategories.

2. Preliminaries on mt-categories

Let T be a triangulated category. Many examples in the literature, such as derived
categories of commutative rings and the stable homotopy category of spectra, can
be equipped with a tensor product functor that interacts well with the triangulated
structure of the category. In the case where the tensor product functor is symmetric,
these categories are referred to as tensor triangulated categories (or tt-categories),
while in the general setting where the tensor product need not be symmetric such
categories are referred to as monoidal triangulated categories (or mt-categories).
We will review several of the key definitions and main results from [Nakano et al.
2022a] that will be used throughout this paper.
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Definition 2.1. An essentially small monoidal triangulated category is a triple of
the form (T, ⊗, 1), where T is an essentially small triangulated category and (⊗, 1)

is a monoidal structure on T such that ⊗ is an exact functor in each variable.

In other words, it is a tensor triangulated category, but the tensor product operation
need not be symmetric.

Investigations into both tt-categories and mt-categories often include some speci-
fication of the size of the categories to be studied. We may consider a category to
be essentially small, and focus only on types of thick subcategories, as in [Balmer
2005]. Alternatively, we may consider categories that have a greater level of
structure, namely those categories that are rigidly-compactly generated in which
the collection of compact objects are also carry the structure of a tt-category or
mt-category. This approach via big tt-categories is used in work such as [Balmer
and Favi 2011] and [Stevenson 2013], and can be used to investigate a variety of
different types of subcategory. This is also the approach used in the classification
of [Nakano et al. 2022a] in the monoidal setting. We have chosen to use only the
essentially small approach, obtaining our results without appealing to this greater
level of structure. Although we only obtain a full classification for those cases in
which the spectrum is Noetherian, this aligns with the original result of Balmer
[2005] that thick subcategories should be controlled by the smaller data of the
original category without any higher structure.

With our notion of an mt-category in place, we can now fix the types of subcate-
gory we would like to classify. Aligning with the monoidal classification of [Nakano
et al. 2022a] previously discussed, we are aiming to classify certain semiprime
ideals via the collection of prime ideals. Just as when moving from the study of
commutative rings to noncommutative rings, the definition of a prime ideal must
change as we move from tt-geometry to mt-geometry. We make this precise below:

Definition 2.2 [Nakano et al. 2022a, 1.2]. Let T be an essentially small mt-category.

(1) A thick two-sided ideal of T is a thick subcategory closed under left and right
tensoring with arbitrary objects of T.

(2) A prime ideal of T is a proper thick ideal P such that I ⊗ J ⊆ P implies
I ⊆ P or J ⊆ P for all thick two-sided ideals I and J or T.

(3) A semiprime ideal of T is an intersection of prime ideals of T.

(4) A completely prime ideal of T is a proper thick ideal P such that A ⊗ B ∈ P
implies A ∈ P or B ∈ P for all objects A, B ∈ T.

In other words, when we talk about prime and semiprime ideals in this setting
of mt-geometry, the notion aligns with the usual definitions from noncommutative
algebra. While Balmer [2005] classified radical thick tensor ideals (necessarily
two-sided) in the symmetric case, we will classify all two-sided thick semiprime
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ideals. In both cases, the classification is with respect to the collection of prime
ideals, considered as a topological space.

Definition 2.3 [Nakano et al. 2022a]. The noncommutative Balmer spectrum of
an essentially small mt-category T is the set of prime ideals of T. We denote
the noncommutative spectrum by Spc(T). The spectrum can be equipped with a
topology generated by the collection of closed subsets

V (S) = {P ∈ Spc(T) | P ∩S = ∅}

for all subsets S of T.

In the symmetric case the Balmer spectrum is indeed a spectral space (see
Definition 3.1) in the sense of Hochster [1969] (see for instance [Balmer 2005] for
a direct proof and [Buan et al. 2007, 6.7] for a proof via lattices). The connection
to algebraic geometry can be concretely realised via classifications such as the
celebrated result of Thomason [1997], which in the framework of tt-geometry
results in a homeomorphism

X ∼
−→ Spc(Dperf(X)),

where X is a topologically Noetherian scheme and Dperf(X) is the derived category
of perfect complexes over X , equipped with the usual tensor product ⊗ = ⊗

L
OX

[Balmer 2005, 5.4, 5.6].
The other key element of the classifications in both the symmetric and monoidal

settings is the notion of a support datum. There is a natural support datum associated
to the noncommutative Balmer spectrum:

Definition 2.4 [Nakano et al. 2022a]. For an essentially small mt-category T, the
small noncommutative support of an object t is given by

supp(t) = {P ∈ Spc(T) | t ̸∈ P}.

Note that this is just the restriction to objects of the map V of Definition 2.3.

This noncommutative support carries many desirable properties, interacting with
distinguished triangles and sums in the same way as the commutative version of the
support. The key distinguishing difference from the symmetric case occurs when
taking the intersection of supports, which is investigated further in [Nakano et al.
2022b]. We formally set out the properties below:

Lemma 2.5 [Nakano et al. 2022a, 4.1.2]. The small noncommutative support
satisfies the following properties:

(1) supp(0) = ∅ and supp(1) = Spc(T).

(2) supp(t ⊕ s) = supp(t) ∪ supp(s) for all t, s ∈ T.

(3) supp(6t) = supp(t).
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(4) If t → s → r → 6t is a distinguished triangle, then supp(t) ⊆ supp(s) ∪

supp(r).

(5)
⋃

r∈T supp(t ⊗ r ⊗ s) = supp(t) ∩ supp(s) for all t, s ∈ T.

(6) For all t ∈ T the subset supp(t) is closed.

When working with examples, it is not always the case that one can immediately
compute a classification directly via the Balmer spectrum. One of the key features
of the results in both the symmetric setting [Balmer 2005, 5.2] and the monoidal
setting [Nakano et al. 2022a, 6.2.1] is that if a classification can be obtained with a
Noetherian topological space equipped with a function that behaves like the Balmer
support (with potentially some additional hypotheses), then this space must have
been homeomorphic to the Balmer spectrum all along. To that end, the general
notion of a support datum is introduced:

Definition 2.6 [Nakano et al. 2022a, 4.1.1]. A support datum on a mt-category T is
a pair (X, σ ), where X is a topological space and σ is an assignment σ : T → X ,
where X is the collection of all closed subsets of X , such that σ satisfies the
following additional properties:

(1) σ(0) = ∅ and σ(1) = X .

(2) σ(a ⊕ b) = σ(a) ∪ σ(b) for all a, b ∈ T.

(3) σ(6a) = σ(a) for all a ∈ T.

(4) If a → b → c → 6a is a distinguished triangle in T, then σ(a) ⊆ σ(b)∪σ(c).

(5)
⋃

c∈T σ(a ⊗ c ⊗ b) = σ(a) ∩ σ(b).

Note that in [Nakano et al. 2022a] it is not required that support data take values
in closed subsets.

The property on the intersection of pairs of supports can be extended to finite
intersections via a simple inductive argument:

Lemma 2.7. Given a support datum (X, σ ) and a finite collection of objects
r1, r2, . . . , rn , we have

n⋂
i=1

σ(ri ) =

⋃
c1,c2,...,cn−1∈T

σ(r1 ⊗ c1 ⊗ r2 ⊗ c2 ⊗ · · · ⊗ cn−1 ⊗ rn).

Proof. We proceed by induction, where the base case σ(r1)∩ σ(r2) is satisfied by
Definition 2.6. Suppose the result holds for the n − 1 case. Then

n⋂
i=1

σ(ri ) =

( n−1⋂
i=1

σ(ri )

)
∩ σ(rn)
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=

( ⋃
c1,c2,...,cn−2∈T

σ(r1 ⊗ c1 ⊗ · · · ⊗ cn−2 ⊗ rn−1)

)
∩ σ(rn)

=

⋃
c1,c2,...,cn−2∈T

(
σ(r1 ⊗ c1 ⊗ · · · ⊗ cn−2 ⊗ rn−1) ∩ σ(rn)

)
=

⋃
c1,c2,...,cn−2∈T

⋃
cn−1∈T

σ(r1 ⊗ c1 ⊗ r2 ⊗ c2 ⊗ · · · ⊗ cn−1 ⊗ rn)

=

⋃
c1,c2,...,cn−1∈T

σ(r1 ⊗ c1 ⊗ r2 ⊗ c2 ⊗ · · · ⊗ cn−1 ⊗ rn). □

The homeomorphism alluded to between the spectrum and other spaces that
classify ideals is realised by the fact that amongst all support data, the natural
support associated to the Balmer spectrum is universal.

Theorem 2.8 [Nakano et al. 2022a, 4.2.2]. Let (X, σ ) be a support datum on T

such that σ(t) is closed for every object t ∈ T. Then there is a unique continuous
map fσ : X → Spc(T) satisfying σ(t) = f −1

σ (supp(t)) for all t ∈ T. In other words,
(Spc(T), supp) is the final support datum among all such support data. The map fσ
is given by

fσ (x) = {t ∈ T | x ̸∈ σ(t)}.

The definitions and results presented so far contain a mixture of properties defined
idealwise (such as prime ideals) and properties that are defined objectwise (such as
the properties of support data). Just as in the case of noncommutative rings, prime
and semiprime ideals can also be characterised objectwise, allowing convenient
translation between the two concepts.

Theorem 2.9 [Nakano et al. 2022a, 1.2.1]. Let T be an essentially small mt-category.
Then the following hold:

(1) A proper thick ideal P of T is prime if and only if , given objects A, B ∈ T, we
have A ⊗ C ⊗ B ∈ P for all C ∈ T implies A ∈ P or B ∈ P .

(2) A proper thick ideal P of T is semiprime if and only if , given A ∈ T, we have
A ⊗ C ⊗ A ∈ P for all C ∈ T implies A ∈ P .

(3) The noncommutative Balmer spectrum Spc(T) is always nonempty.

All of the results reviewed so far hold for all mt-categories, irrespective of
the properties of their noncommutative Balmer spectrum. Our objective for the
remainder of the paper is to demonstrate that for those mt-categories T with Noe-
therian spectrum Spc(T), the noncommutative Balmer spectrum is a spectral space
classifying all two-sided thick semiprime ideals, and that any Noetherian and T0

space classifying these ideals via support data is homeomorphic to the Balmer
spectrum.
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3. Noetherian noncommutative spectra are spectral

Given a commutative ring R, the topological properties of the spectrum Spec(R)

have been the subject of considerable study, particularly in the work of Hochster
[1967; 1969], in which the topological spaces that share various properties with ring
spectra are classified. To this end, the definition of a spectral space is introduced:

Definition 3.1 [Hochster 1969]. Let X be a topological space and let K (X) denote
the set of all quasicompact open subsets of X . The topological space X is spectral
if it satisfies all of the following conditions:

(1) X is quasicompact and T0. By T0 we mean that given any two points x, y ∈ X
there is an open subset of X containing one of these points, but not the other.

(2) K (X) is a basis of open subsets for X .

(3) K (X) is closed under finite intersections.

(4) X is a sober space. That is, every irreducible closed subset of X has a neces-
sarily unique generic point.

Given a commutative ring R, the usual spectrum Spec(R) is spectral. Moreover,
Hochster [1967] proved in his original thesis that given any spectral space X ,
there exists a commutative ring R such that X is homeomorphic to Spec(R). The
topological properties possessed by spectral spaces are essential to various elements
of foundational classification results [Balmer 2005, 5.1, 5.2; Nakano et al. 2022a,
6.2.1].

Although when using general classifying support data we still need to assume the
presence of a Noetherian spectral space, in the specific case of the noncommutative
Balmer spectrum, we will show that the Noetherian assumption is sufficient. Specif-
ically, we will show that if an mt-category T has Noetherian spectrum Spc(T), then
the spectrum Spc(T) is a spectral space.

We begin by translating some of the topological properties of the Balmer spectrum
investigated in [Balmer 2005] into the monoidal setting.

Let T be an essentially small monoidal triangulated category with spectrum
Spc(T). We aim to show that Spc(T) is a spectral topological space. As seen in
Definition 2.3, a basis of closed sets is given by {V (S) | S ⊆ T}, where

V (S) = {P ∈ Spc(T) | P ∩S = ∅}.

The corresponding basis of open sets is {U (S) | S ⊆ T}, where

U (S) = {P ∈ Spc(T) | P ∩S ̸= ∅}.

Given an object s ∈ T, we will simplify the above notation and write V (s) for the
basic closed set V ({s}) and write U (s) for the basic open set U ({s}).
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Immediately we have V (S) =
⋂

s∈S V (s) and U (S) =
⋃

s∈S U (s). Therefore
the sets of the form V (s) = supp(s) form a basis of closed sets for the topology by
Lemma 2.5, while the sets of the form U (s) form a basis of open sets for the topology.

For a collection of objects E define supp(E) =
⋃

s∈E supp(s).

Lemma 3.2. Let Y ⊆ Spc(T). Then the closure of Y is given by

Y =

⋂
Y⊆supp(t)

supp(t).

Proof. This follows immediately from the fact that the sets of the form supp(s) are
a basis of closed sets for the topology on Spc(T). □

Proposition 3.3. For any point P ∈ Spc(T), the closure of P is given by

{P} = {Q ∈ Spc(T) | Q ⊆ P}.

In particular, if {P1} = {P2} then P1 = P2. That is, the space Spc(T) is T0.

Proof. The proof is identical to [Balmer 2005, 2.9]. Fix a prime ideal P . Consider
the set S0 =T\P and the associated basic closed subset V (S0) = {Q |Q∩S0 =∅}.
Clearly P ∈ V (S0). If there is a subset S ⊆ T such that P ∈ V (S), then S ⊆ S0 and
so V (S0) ⊆ V (S). Therefore V (S0) is the smallest closed subset containing P and
is the closure of P . We have

{P} = V (S0) = {Q ∈ Spc(T) | Q ⊆ P}.

The fact that Spc(T) is T0 follows immediately. □

We will make use of the following theorem from [Nakano et al. 2022a], which
is the nonsymmetric version of [Balmer 2005, 2.2].

Theorem 3.4 [Nakano et al. 2022a, 3.2.3]. Suppose that M is a multiplicative
subset of T and suppose I is a proper thick two-sided tensor ideal of T such that
I ∩M = ∅. The set

X (M, I) = {J a thick two-sided tensor ideal of T | I ⊆ J and J ∩M = ∅}

has a maximal element, and moreover this maximal element is prime.

Proposition 3.5. Nonempty irreducible subsets of Spc(T) have unique generic
points. That is, the noncommutative Balmer spectrum is always a sober space.
Indeed for a nonempty closed subset Z ⊆ Spc(T) the following are equivalent:

(1) Z is irreducible.

(2) For all t, s ∈ T, if U (t ⊕ s) ∩ Z = ∅, then U (t) ∩ Z = ∅ or U (s) ∩ Z = ∅.

(3) The collection P = {t ∈ T | U (t) ∩ Z ̸= ∅} is a thick prime ⊗-ideal.

Moreover, when these conditions hold, Z = {P}.
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Proof. The proof is very similar to [Balmer 2005, 2.18], although some extra care
is needed when proving certain ideals are prime. We have already seen that Spc(T)

is T0 and so uniqueness of generic points is immediate.

(1) =⇒ (2): Z irreducible means that for any open subsets U1, U2 ∈ Spc(T), if
Z ∩U1 ∩U2 =∅ then Z ∩U1 =∅ or Z ∩U2 =∅. This gives (2), since U (t ⊕ s) =

U (t) ∩ U (s).

(2) =⇒ (3): This will be slightly more involved than the proof in [Balmer 2005].
Condition (2) gives t, s ∈ P implies t ⊕ s ∈ P . Using this, we see that if t, s ∈ P
and t → s → r → 6t is a distinguished triangle, then r ∈ thick⊗(t ⊕ s), hence
U (t ⊕ s) ⊆ U (r) and since U (t ⊕ s)∩ Z ̸= ∅, we get U (r)∩ Z ̸= ∅, and so r ∈ P .

The fact that P is closed under summands is immediate as U (t ⊕ s) ∩ Z ̸= ∅
implies (U (t) ∩ U (s)) ∩ Z ̸= ∅ and therefore U (t) ∩ Z ̸= ∅ and U (s) ∩ Z ̸= ∅.
Therefore, both t and s are objects in P .

It remains to show that P is a two-sided ideal, and that it is prime. Fix t ∈ P and
x ∈ T. We have

∅ ̸= Z ∩ U (t)

⊆ Z ∩ (U (t) ∪ U (x))

= Z ∩

( ⋂
s∈T

U (t ⊗ s ⊗ x)

)
(by Lemma 2.5)

⊆ Z ∩ U (t ⊗ x).

Therefore, t ⊗ x ∈ P . An almost identical argument shows that x ⊗ t ∈ P and so
P is indeed a two-sided ideal. Now we deal with primeness. Let I,J be thick
⊗-ideals such that I ⊗ J ⊆ P . In particular, for all i ∈ I and j ∈ J we have
U (i ⊗ j) ∩ Z ̸= ∅. Now,⋃

i∈I, j∈J

supp(i ⊗ j) =

⋃
i∈I

supp(i) ∩

⋃
j∈J

supp( j);

see for example [Nakano et al. 2022a, 4.4.2]. Therefore,⋂
i∈I, j∈J

U (i ⊗ j) =

⋂
i∈I

U (i) ∪

⋂
j∈J

U ( j).

As we assumed I ⊗J ⊆ P we must have P ∈ U (i ⊗ j) for all i and j . Therefore
P ∈ U (i) for all i or P ∈ U ( j) for all j , which is equivalent to asking that I ⊆ P
or J ⊆ P , and so we conclude that P is indeed prime.

(3) =⇒ (1): We prove that Z = {P}, which proves (1) and the final statement of the
proposition. Let Q ∈ Z . For a ∈ Q, we have Q ∈ U (a) ∩ Z ̸= ∅, and hence a ∈ P .
We have proved Q ⊆ P , that is, Q ∈ {P} by Proposition 3.3 for any Q ∈ Z , and
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so Z ⊆{P}. Conversely, it suffices to prove P ∈ Z . To see this, let s ∈T be an object
such that Z ⊆ supp(s). Such objects exist by Lemma 3.2. Then U (s) ∩ Z = ∅,
which means s ̸∈ P or, equivalently, P ∈ supp(s). Therefore, by Lemma 3.2,

P ∈

⋂
Z⊆supp(s)

supp(s) = Z = Z . □

So far, all of the topological properties proved hold for the spectrum Spc(T) of
any mt-category T. We will now introduce the Noetherian condition.

Definition 3.6. A topological space X is Noetherian if any of the following equiva-
lent conditions hold:

(1) X satisfies the descending chain condition for closed subsets. That is, for any
sequence

Y1 ⊇ Y2 ⊇ · · ·

of closed subsets Yi of X , there exists an integer m such that for all integers
n ≥ m we have Ym = Yn .

(2) Every subspace of X is quasicompact.

(3) Every open subset of X is quasicompact.

By assuming that Spc(T) is Noetherian, it immediately follows that Spc(T) is
quasicompact, as are all of the basic open subsets U (S), including those of the
form U (t) for all objects t ∈ T.

Theorem 3.7. If Spc(T) is a Noetherian topological space, then it is a spectral
space.

Proof. We verify the conditions required to be spectral.

(1) As Spc(T) is Noetherian, it is quasicompact. The space is T0 by Proposition 3.3.

(2) Under the Noetherian assumption, every open subset is quasicompact and so it
is immediate that the collection K (Spc(T)) of all quasicompact open subsets is a
basis for Spc(T).

(3) Given quasicompact basic open sets of the form U (t) and U (s) we have that
U (s) ∩ U (t) = U (s ⊕ t). For a quasicompact basic open set of the form U (S) =⋃

s∈S U (s), by quasicompactness there exists a finite subset S ′
⊆S such that U (S)=

U (S ′) =
⋃

s∈S ′ U (s). Given another such quasicompact basic open set U (T ), with
finite refinement T ′, we obtain

U (S)∩U (T ) =

⋃
s∈S ′

U (s)∩
⋃
t∈T ′

U (t)=
⋃
s∈S ′

⋃
t∈T ′

(U (s)∩U (t)) =

⋃
s∈S ′

⋃
t∈T ′

U (s ⊕ t).

As S ′ is a finite set, and T ′ is a finite refinement, both unions are finite. As U (S)

and U (T ) are quasicompact, it follows that the intersection is quasicompact.



NONCOMMUTATIVE TENSOR TRIANGULAR GEOMETRY 365

(4) By Proposition 3.5, the spectrum Spc(T) is always a sober space, irrespective
of Noetherianity and therefore every nonempty irreducible subset of Spc(T) has a
unique generic point.

Since all of the conditions are satisfied, the spectrum Spc(T) is a spectral space. □

There are other conditions on the mt-category T which can lead to Spc(T) being
spectral. For example, [Buan et al. 2007, 6.7] proves that the spectrum is spectral
under the assumption that the tensor product is symmetric, or that the mt-category T

has a generator.

4. Classifying thick two-sided ideals

The objective of this section is to classify all semiprime thick tensor ideals of a
mt-category T in terms of Thomason subsets of the spectrum Spc(T), under the
assumption that the Balmer spectrum is a Noetherian topological space. If the mt-
category T is rigid, then the classification actually covers all thick two-sided tensor
ideals, providing a monoidal Noetherian analogue to Balmer’s original classification
[2005, 4.10] in the symmetric case.

As with the previous section, we will first obtain results on tensor ideals in
general mt-categories, without assuming that the Balmer spectrum is Noetherian.

Lemma 4.1. Given a collection of objects E ⊆ T there is an equality

supp(E) = {P ∈ Spc(T) | E ̸⊆ P}.

Proof. The proof is identical to [Balmer 2005, 4.6]. We have P ∈ supp(E) if and
only if there exists an object a ∈ E such that P ∈ supp(a) which means a ̸∈ P , by
definition of the support. □

Definition 4.2. Let J be a thick tensor ideal of T. We denote by
√
J the semiprime

ideal
√
J =

⋂
J⊆P∈Spc(T)

P.

Definition 4.3. Let Y ⊆ Spc(T) be a subset. Define the full subcategory TY by

TY = {t ∈ T | supp(t) ⊆ Y }.

Lemma 4.4. (1) The subcategory TY is a thick two-sided tensor ideal.

(2) There is an equality

TY =

⋂
P ̸∈Y

P where P ∈ Spc(T).

Proof. (1) The statement is similar to [Nakano et al. 2022a, 6.1.1]. The fact that TY

is a thick subcategory follows immediately from the usual properties of support.
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Now let s ∈ TY and t ∈ T. Then

supp(s ⊗ t) = supp(s ⊗ 1 ⊗ t)⊆
⋃
c∈T

supp(s ⊗ c ⊗ t) = supp(s) ∩ supp(t)⊆ Y.

Therefore, supp(s ⊗ t) ⊆ Y and s ⊗ t ∈ TY . That is, TY is a right ideal. A similar
argument shows that TY is a left ideal.

(2) The proof is identical to [Balmer 2005, 4.8]. For an object t ∈ T, we have
t ∈ TY if and only if supp(t) ⊆ Y . Therefore, for all P ∈ Spc(T) \ Y , t ∈ TY if and
only if P ̸∈ supp(t) and t ̸∈ P . Hence, t ∈

⋂
P ̸∈Y P and the conclusion holds. □

Note that if (X, σ ) is a support datum on T then the above lemma can be adjusted
to show that the full subcategory {t ∈ T | σ(t) ⊆ Y } is a thick two-sided ideal.

Proposition 4.5. Let J be a thick tensor ideal of T. Then

Tsupp(J ) =
√
J .

Proof. The proof is identical to [Balmer 2005, 4.9]. By Lemma 4.4, we have

Tsupp(J ) =

⋂
P ̸∈supp(J )

P.

Applying Lemma 4.1, gives supp(J ) = {Q ∈ Spc(T) | J ̸⊆ Q} and so

Tsupp(J ) =

⋂
P ̸∈{Q∈Spc(T)|J ̸⊆Q}

P.

The result then immediately follows from the definition of
√
J . □

We denote by T the collection of all Thomason subsets of Spc(T). Recall that a
subset Y ⊆ Spc(T) is Thomason if Y =

⋃
Yi such that each Yi is closed and the

open complement Spc(T) \ Yi is quasicompact. We denote by S the collection of
all semiprime ideals of T.

With the general results in position, we now consider the case in which the
Balmer spectrum is Noetherian and obtain the classification result.

Theorem 4.6. Let T be a monoidal triangulated category such that the Balmer
spectrum Spc(T) is a Noetherian topological space. Let T denote the collection of
all Thomason subsets of Spc(T) and let S denote the collection of all semiprime
ideals of T. Then there is an order-preserving bijection T ∼

−→ S given by

Y → TY

whose inverse is
J → supp(J ).
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Proof. The first map is well defined because TY is semiprime by Lemma 4.4. The
second map is well defined as the complement of an object’s support is quasicompact
under the Noetherian assumption. Both maps are clearly inclusion preserving. It
remains to show the maps are mutually inverse.

Given a semiprime ideal J the composite Tsupp(J ) is equal to
√
J by Proposition

4.5. By assumption, J is semiprime and so J =
√
J , and so the composite

J → supp(J ) → Tsupp(J )

is the identity. Now let Y be a Thomason subset of Spc(T). It remains to show that
the composition

Y → TY → supp(TY )

is the identity. For an object t ∈ T we have by definition t ∈ TY if and only if
supp(t) ⊆ Y . Therefore,

supp(TY ) =

⋃
t∈TY

supp(t) ⊆ Y.

Now we need to show that Y ⊆ supp(TY ). That is, for each prime ideal P ∈ Y we
must find a compact object x such that P ∈ supp(x) and supp(x) ⊆ Y . As Y is a
Thomason subset of Spc(T), there exist closed subsets Yi such that Y =

⋃
Yi and

the complement of each Yi is a quasicompact open subset Ui . Fix a prime P ∈ Y .
Then there exists an index i such that

P ∈ Yi = Spc(T) \ Ui .

By assumption, Spc(T) is Noetherian, so there exists a finite collection of objects
{r1, . . . , rn} such that Ui =

⋃n
j=1 U (r j ). Therefore

Yi = Spc(T) \ Ui= Spc(T) \

( n⋃
j=1

U (r j )

)
=

n⋂
j=1

(Spc(T) \ U (r j ))=

n⋂
j=1

supp(r j ).

By Lemma 2.7, there exists compact objects c1, . . . , cn−1 such that for

x = r1 ⊗ c1 ⊗ · · · ⊗ cn−1 ⊗ rn,

we have P ∈ supp(x). Moreover,

supp(x) ⊆

n⋂
j=1

supp(r j ) = Yi ⊆ Y

and so x ∈ TY , thus completing the proof. □

Proposition 4.7 [Nakano et al. 2022b, 4.1.1]. Suppose T is rigid, so that every
object is either left or right dualisable. Then every thick two-sided tensor ideal is
semiprime.
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Corollary 4.8. Let T be a rigid mt-category with Noetherian spectrum Spc(T).
Then the order-preserving bijection of Theorem 4.6 classifies all thick two-sided
tensor ideals of T.

5. Classifying support data and the universal map

We can now investigate the universality of the spectrum with respect to classifying
support data. This section provides the monoidal analogue of [Balmer 2005, 5.2],
and recovers the general classification result of [Nakano et al. 2022a, 6.2.1]. Note
that although the statements of the results are for mt-categories, the majority of
the proofs are identical to the arguments in the symmetric setting of Balmer, with
only the proofs of Proposition 5.6 and Theorem 5.7 requiring alterations for the
monoidal setting.

Definition 5.1. A subset Y ⊆ X of a topological space X is specialisation closed
if it is the union of closed sets, or equivalently if y ∈ Y implies {y} ⊆ Y . Given a
topological space X we denote by Xsp the collection of all specialisation closed
subsets of X .

Recall that we denote the collection of all thick semiprime ideals of T by S.

Definition 5.2. Let (X, σ ) be a support datum on T. We say that (X, σ ) is a
classifying support datum if the following two conditions hold:

(1) The space X is Noetherian and spectral.

(2) We have a bijection 2 : Xsp → S defined by

2(Y ) = {t ∈ T | σ(t) ⊆ Y }

with inverse
2−1(J ) = σ(J ) =

⋃
j∈J

σ( j).

Lemma 5.3. Suppose (X, σ ) is a classifying support datum on T. Then every
closed subset Z ⊆ X is of the form Z = σ(t) for some object t ∈ T.

Proof. This is the first claim of [Balmer 2005, 5.2]. The proof is identical and
included for completeness. Because X is Noetherian, every closed subset has
a finite number of irreducible components. Since σ(t1) ∪ σ(t2) ∪ · · · ∪ σ(tn) =

σ(t1 ⊕ t2 ⊕ · · ·⊕ tn) for any finite collection of objects in T, it therefore suffices to
prove the lemma for closed sets of the form Z = {x} for some x ∈ X .

As (X, σ ) is classifying, we have

{x} = Z = 2−12(Z) =

⋃
t∈2(Z)

σ(t).
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Therefore there exists t ∈ T such that x ∈ σ(t) ⊆ Z . Hence

{x} ⊆ σ(t) ⊆ Z = {x},

proving the lemma. □

Corollary 5.4. Suppose Spc(T) is a Noetherian topological space. Then every open
subset of Spc(T) is of the form U (t) for some object t ∈ T.

Proof. For Spc(T) Noetherian, Theorem 4.6 tells us (Spc(T), supp) is a classifying
support datum on T. Thus, given an open subset U ⊆ Spc(T), Lemma 5.3 tells us
that Spc(T)\U = supp(t) for some object t ∈T. Then U = Spc(T)\supp(t)=U (t).
Under the Noetherian assumption, U (t) is quasicompact. □

Proposition 5.5. If (X, σ ) is a classifying support datum on T, then the universal
map fσ : X → Spc(T) is injective.

Proof. This is the same as the proof of injectivity in [Balmer 2005, 5.2] and is
included for completeness. For x ∈ X define Y (x) = {y ∈ X | x ̸∈ {y}}. Clearly
Y (x) is specialisation closed. Fix an object t ∈ T. We will show that σ(t) ⊆ Y (x)

if and only if x ̸∈ σ(t). Since x ̸∈ Y (x), if σ(t) ⊆ Y (x) then x ̸∈ σ(t). Conversely,
as σ(t) is specialisation closed, if x ̸∈ σ(t) we have x ̸∈ {y} for all y ∈ σ(t) and so
by definition σ(t) ⊆ Y (x). Therefore

2(Y (x)) = {t ∈ T | σ(t) ⊆ Y (x)} = {t ∈ T | x ̸∈ σ(t)} = fσ (x).

As (X, σ ) is classifying, if fσ (x1) = fσ (x2) then Y (x1) = Y (x2) and {x1} = {x2}.
The space X must be T0 as (X, σ ) is classifying, so {x1} = {x2} implies x1 = x2

and the map fσ is injective. □

Proposition 5.6. If (X, σ ) is a classifying support datum on T, then the universal
map fσ : X → Spc(T) is surjective.

Proof. Fix a prime P ∈ Spc(T). As (X, σ ) is classifying, there exists a specialisation
closed subset Y ⊆ X such that P = 2(Y ). As P is proper, the set X \Y is nonempty.
Let x, y ∈ X \ Y . By Lemma 5.3, there exist objects s, t ∈ T such that {x} = σ(s)
and {y} = σ(t). Let I and J denote the thick two-sided ideals generated by s and t ,
respectively. By [Nakano et al. 2022a, 4.3.2],

{x} = σ(s) = σ(I) and {y} = σ(t) = σ(J ),

and so neither I nor J are contained in P . As P is prime, I ⊗ J ̸⊆ P and so
σ(I ⊗J ) ̸⊆ Y . Therefore, there exists a point z ∈ X \ Y such that

z ∈ σ(I ⊗J ) = {x} ∩ {y}

and hence
{z} ⊆ {x} ∩ {y}.
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As in [Balmer 2005, 5.2], as the space X is Noetherian, the nonempty family of sets

{{x} | x ∈ X \ Y }

admits a minimal element which must be the lower bound for inclusion. That is,
there exists x ∈ X \ Y such that, for all y ∈ X \ Y , we have x ∈ {y}. Hence,

X \ Y ⊆ {y ∈ X | x ∈ {y}}.

The reverse inclusion holds because x ̸∈ Y , and Y is specialisation closed. Thus,

X \ Y = {y ∈ X | x ∈ {y}}

and so
Y = {y ∈ X | x ̸∈ {y}} = Y (x).

Hence,
P = 2(Y ) = 2(Y (x)) = fσ (x),

where the final equality is demonstrated in the proof of Proposition 5.5. We conclude
that fσ is surjective. □

Theorem 5.7. Let (X, σ ) be a classifying support datum on T. Then the universal
map fσ : X → Spc(T) is a homeomorphism.

Proof. By Proposition 5.5 the universal continuous map fσ is injective, and by
Proposition 5.6 the map is surjective. Therefore, fσ is bijective. By Theorem 2.8
we have σ(t) = f −1

σ (supp(t)) for all t ∈ T. Consequently, fσ (σ (t)) = supp(t) and
so fσ is a closed map as by Lemma 5.3 every closed subset of X is of the form σ(t)
for some t ∈ T. We conclude that fσ is a homeomorphism. □

The requirement that the topological space component of a classifying support
datum be Noetherian is satisfied by many examples of interest in both symmetric
and monoidal cases. These include the cases of the derived category of perfect
complexes over a topologically Noetherian scheme [Thomason 1997] and the stable
module category of a finite group scheme [Friedlander and Pevtsova 2007] in the
symmetric case and the stable module categories of various quantum groups and
Hopf algebras in the monoidal case [Nakano et al. 2022a]. It should be noted that
proving that the Noetherian condition is satisfied is often an extensive process (as
is the case in all of the stable module category examples mentioned). Moreover,
not every mt-category possesses a Noetherian spectrum, including examples in the
symmetric case of tt-categories. For example, while the stable homotopy category
of finite spectra admits a classification theorem, it has a non-Noetherian spectrum
(see [Hopkins and Smith 1998] for the original classification and [Balmer 2010,
Section 9] for the tt-geometric context).

However, if the Noetherian condition on the given topological space is satisfied,
Theorem 5.7 will guarantee that the space is homeomorphic to the Balmer spectrum.
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REGULARITY OF MANIFOLDS WITH INTEGRAL SCALAR
CURVATURE BOUND AND ENTROPY LOWER BOUND

SHANGZHI ZOU

We generalize the work of Lee, Naber and Neumayer on regularity of man-
ifolds with lower-bounded scalar curvature and almost Euclidean entropy.
We show the same result in the case of integral bounded scalar curvature.

In addition, we also obtain a compactness theorem and an a prior L p

scalar curvature bound estimate for p < 1.

1. Introduction

Local regularity is important in the study of manifolds under curvature restrictions.
Cheeger [1970] demonstrated that the injectivity radius is uniformly bounded below
by a positive constant for compact manifolds with bounded sectional curvature,
noncollapsing volume, and bounded diameter. Gromov [1981] further showed
a C1,α harmonic radius estimate on such manifolds. These results play a crucial
role in the proof of compactness and finiteness theorems (see also [Greene and Wu
1988; Kasue 1989; Peters 1987]). Anderson [1990] extended the C1,α regularity to
manifolds with bounded Ricci curvature and bounded injectivity. In the case that
the manifold admits only a lower bound on Ricci curvature, Anderson and Cheeger
[1992] have given a Cα harmonic radius estimate under an additional assumption
on the injectivity radius. Moreover, Cheeger and Colding [Colding 1997; Cheeger
and Colding 1997] further proved that for manifolds with almost nonnegative Ricci
curvature, the unit geodesic ball is Gromov–Hausdorff close to the Euclidean ball
if and only if they are close in volume. This is also true for manifolds with integral
Ricci curvature lower bound, which is proved by Tian and Zhang [2016].

Regularity of manifolds with bounded scalar curvature would be much more
difficult. Recently, Lee, Naber, and Neumayer [Lee et al. 2023] showed that the
unit ball of a complete manifold is close to the Euclidean ball in the dp-distance
whenever the scalar curvature, as well as the Perelman ν-functional, is almost
nonnegative. This gives a weaker regularity than the usual Gromov–Hausdorff
closeness. This paper aims to generalize their result to the integral scalar curvature
bound case.
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Recall the Perelman W-functional (see [Perelman 2002] or [Chow et al. 2010]).
For a complete manifold (M, g), τ > 0, and f ∈ C∞(M),

W(g, f, τ ) =

∫
M

(
τ(R + |∇ f |

2) + f − n
)
(4πτ)−n/2e− f dvolg.

Letting u = (4πτ)−n/4e− f/2, the Perelman W-function can be reformulated as

(1.1) W(g, u, τ )=

∫
M

(
τ(Ru2

+4|∇u|
2)−u2 log u2

−nu2) dvolg −
1
2 n log(4πτ).

The Perelman entropy µ(g, τ ) is given by

µ(g, τ ) = inf
{
W(g, u, τ )

∣∣∣ ∫
M

u2 dvolg = 1
}
.

Finally, the Perelman ν-functional is given by

ν(g, τ ) = inf{µ(g, τ ′) : τ ′
∈ (0, τ )},

which satisfies the rescaling invariance ν(αg, ατ) = ν(g, τ ) for all α > 0. For
any complete Riemannian manifold (M, g) with bounded geometry, the Perelman
ν-functional is nonpositive. Furthermore, a rigidity result asserts that for such a
manifold, if there exists τ > 0 such that ν(g, τ ) = 0, then (M, g) must be Euclidean
space; see [Perelman 2002; Chau et al. 2011; Lee et al. 2023]. When the complete
manifold admits only nonnegative scalar curvature, Cheng Liang [Cheng 2022]
showed that the manifold must be isometric to Euclidean space whenever the
Euclidean isoperimetric inequality holds.

To investigate the stability of the above rigidity result of manifolds with almost
nonnegative scalar curvature, Lee, Naber and Neumayer consider the Gromov–
Hausdorff convergence under the dp-distance.

Definition 1.2 (dp-distance). Given a Riemannian manifold (Mn, g) and a real
number p ∈ (n, ∞], we define the dp-distance between any x, y ∈ M by

dp(x, y) = sup
{
| f (x) − f (y)| :

∫
M

|∇ f |
p dvolg ≤ 1, f ∈ W 1,p

loc (M) ∩ C0
loc(M)

}
.

Note that this distance makes sense for any space equipped with a W 1,p structure,
ensuring the integrability and differentiability of functions. Let Bp,g(x, r) denote
the ball centered at x of radius r with respect to dp, i.e.,

Bp,g(x, r) = {y ∈ M : dp(x, y) < r}.

Then the rescaled metric g̃ = r−2g satisfies Bp,g̃(x, ρ) = Bp,g(x, ρr1−n/p) for any
ρ > 0.
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For a complete Riemannian manifold (M, g), let Br (x) be the geodesic ball
centered at x ∈ M of radius r , let R− = max{−R, 0}, and let

∥R−∥g,q,r := sup
x∈M

{
r2−n/q

( ∫
Br (x)

|R−|
q
)1/q}

.

We defined the upper bound of capacity as follows.

Definition 1.3 (capacity). Let (Mn, g) be a Riemannian manifold. For fixed r > 0
and N ∈ N+, if for any x ∈ M , there exists {xi }

N
i=1 ⊂ B2r (x) such that {Br (xi )}

N
i=1

forms a covering of B2r (x), then we denote the upper bound of capacity by

Cap(M,g)(r) ≤ N .

The main result of this paper is:

Theorem 1.4 (regularity). Let (Mn, g) be a complete n-manifold with bounded
curvature and fix ε, r, N > 0, p > n and q > n/2. There exists δ = δ(n, ε, N , p, q)

such that if

ν(g, 2r2) ≥ −δ, ∥R−∥g,q,r ≤ δ, Cap(M,g)(r) ≤ N ,

then for all x ∈ M and 0n
∈ Rn , we have

dG H
(
(Bp,g(x, r1−n/p), dp,g), (Bp,geuc(0

n, r1−n/p), dp,geuc)
)
≤ εr1−n/p,

and for any 0 < s ≤ r1−n/p,

1 − ε ≤
volg(Bp,g(x, s))

volgeuc(Bp,geuc(0n, s))
≤ 1 + ε.

Remark 1.5. Note that all the statements exhibit scaling invariance, allowing us to
assume r = 1 in our proofs.

As in the proof of the regularity theorem for manifolds with a pointwise lower
bound on scalar curvature [Lee et al. 2023, Theorem 1.7], the main step in our
argument is to establish an integral estimate for the Ricci curvature along the Ricci
flow; see Lemma 4.1. Once the estimate holds, the proof of Theorem 1.4 is identical
with that in [Lee et al. 2023, Sections 5–7] and thus omitted.

Furthermore, we can immediately obtain results analogous to those presented in
[Lee et al. 2023].

Theorem 1.6 (compactness). Fix ε, r, N > 0, p > n and q > n/2. There exists δ =

δ(n, ε, N , p, q) such that if a sequence of complete pointed Riemannian manifolds
{(Mi , gi , xi )} with bounded curvature satisfies

ν(gi , 2r2) ≥ −δ, ∥(Ri )−∥gi ,q,r ≤ δ, Cap(Mi ,gi )
(r) ≤ N ,

then there is a subsequence of {(Mi , gi , xi )} that converges in the pointed dp sense
to (X, g, x), where X is a pointed rectifiable Riemannian space.
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See [Lee et al. 2023] for definitions of pointed dp convergence and pointed
rectifiable Riemannian spaces.

For closed manifolds, we establish a prior L p(p < 1) bounds for scalar curvature:

Theorem 1.7. Fix n ≥ 2, ε > 0, p ∈ (0, 1) and q > max(n/2, 2p). Let (Mn, g) be
a closed Riemannian n-manifold. There exists δ = δ(n, ε, p, q) > 0 such that if

vol(M)2/n
·

(
/

∫
M

|R−|
q
)1/q

≤ δ and ν(g, 2 vol(M)2/n) ≥ −δ,

then

vol(M)2/n
·

(
/

∫
M

|R|
p
)1/p

≤ ε.

2. Preliminaries

In this paper, unless specified differently, (Mn, g) will always denote a complete
Riemannian manifold of dimension n with bounded curvature.

A Ricci flow (Mn, g(t))t∈[0,T ] is a family of smooth metrics g(t) on a smooth
manifold Mn satisfying the evolution equation

∂t g(t) = −2 Ricg(t) .

Along the Ricci flow, the scalar curvature and the volume form evolve by

(2.1) ∂t R = 1g(t) R + 2|Ricg(t)|
2, ∂t dvolg(t) = −Rg(t) dvolg(t).

Consider the heat operator ∂t −1g(t) coupled to the Ricci flow. Correspondingly,
the operator −∂t − 1g(t) + Rg(t) is called the conjugate heat operator. In particular,
for u, v ∈ C2

0(M × [0, T ]), we have∫
M

v(∂t−1g(t))u dvolg(t)−

∫
M

u(−∂t−1g(t)+Rg(t))v dvolg(t) =
d
dt

∫
M

uv dvolg(t).

Let K ( · , · ; y, s) denote the heat kernel based at (y, s), i.e.,

(∂t − 1x,g(t))K (x, t; y, s) = 0, lim
t→s+

K ( · , t; y, s) = δy .

The heat kernel exists and is positive; see [Guenther 2002]. For fixed (x, t), the
function K (x, t; · , · ) is also the conjugate heat kernel, i.e.,

(−∂s − 1y,g(s) + Rg(s)(y))K (x, t; y, s) = 0, lim
s→t−

K (x, t; · , s) = δx .

For any 0 ≤ s < t < T we have

(2.2)
∫

M
K (x, t; · , s) dvolg(s) = 1.

Set τ(t) = T − t , and let u = u(x, t) be a solution of the conjugate heat equation
along the flow. Chau, Tam and Yu [Chau et al. 2011, Theorem 7.1] show that
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if u( · , T )∈ C∞

0 (M), then the Perelman W-functional, defined in (1.1), is monotone
along the Ricci flow:

W(g(s), u(s), τ (s)) ≤ W(g(t), u(t), τ (t)) for all 0 ≤ s ≤ t ≤ T .

By taking a compactly supported minimizing sequence for µ(g(t), τ (t)), we see
that µ(τ) is also monotone:

(2.3) µ(g(s), τ (s)) ≤ µ(g(t), τ (t)) for all 0 ≤ s ≤ t ≤ T .

In particular, for Ricci flow (M, g(t))t∈(0,2) and s ∈ (0, 1], we have ν(g(s), 1) ≥

ν(g(0), 2).
We restate some basic results of Ricci flow. For the proofs, see [Lee et al. 2023,

Section 3].

Proposition 2.4. Fix n ≥ 2 and λ > 0. There exists δ = δ(n, λ) > 0 such that if
(M, g) satisfies ν(g, 2) ≥ −δ, then the Ricci flow (M, g(t)) with g(0) = g exists for
t ∈ (0, 1] and has the scale-invariant estimate

(2.5) sup
x∈M

|Rmg(t)(x)| ≤
λ

t
for all t ∈ (0, 1].

Moreover, for any x0 ∈ M and t ∈ (0, 1], there is a diffeomorphism

φ : Bg(t)(x0, 16t
1
2 ) → � ⊂ Rn

such that φ(x0) = 0 and

1
2φ∗geuc(φ(x)) ≤ g(t)(x) ≤

3
2φ∗geuc(φ(x)) for all x ∈ Bg(t)(x0, 16t

1
2 ).

In particular, there exists C = C(n) such that

C−1rn
≤ volg(t)(Bg(t)(x, r)) ≤ Crn for all r ∈ (0, 16t

1
2 ).

Combine (2.5) with Shi’s estimate [1989], there exists C = C(k) such that
|∇

k Rmg(t)| are uniformly bounded by C/t1+k/2 for all k. Thus, all Ricci flows are
assumed to have bounded curvature throughout the entire paper.

Let R̂−(t) = supx∈M R−(x, t). It is important to note that the L1 norm of
K ( · , t; y, s) has an upper bound:

(2.6)
∫

M
K ( · , t; y, s) dvolg(s) ≤ exp

( ∫ t

s
R̂−

)
.

In the compact case, this result can be derived from the following computation:

d
dt

∫
M

K ( · , t; y, s) dvolg(t) =

∫
M

△K − RK dvolg(t)

≤ R̂−(t)
∫

M
K ( · , t; y, s) dvolg(t).
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If M is noncompact, consider an exhaustion of M by smooth domains with compact
closure: �1 ⋐ �2 ⋐ · · · ⋐ M . Let K�i (x, t; y, s) be the corresponding Dirichlet
heat kernel on �i . Since �i is compact, we have∫

�i

K�i ( · , t; y, s) dvolg(s) ≤ e
∫ t

s R̂− .

By maximum principle, K�i is an increasing sequence, and K is the limit of K�i

as i tend to infinity. By the monotone convergence theorem, we can ascertain that
the L1 norm of K ( · , t; y, s) also satisfies (2.6).

3. Heat kernel estimates for Ricci flow

In this section, we establish the heat kernel’s upper and lower bounds. The Gaussian
upper bounds for the heat kernel are primarily derived from the heat kernel estimates
by Bamler, Cabezas-Rivas, and Wilking in [Bamler et al. 2019, Proposition 3.1].
Incorporating this result with the log Sobolev inequality (see also [Cao and Zhang
2011; Zhang 2011, Theorem 4.2.1]), we achieve a more precise estimation of the
heat kernel, specifically about integral scalar curvature, as detailed in the following
lemma.

Lemma 3.1. Fix n ≥ 2. There exist δ = δ(n) > 0 and C = C(n) > 0 such that if
(Mn, g(t))t∈[0,1] satisfies ν(g(0), 2) ≥ −δ, then

K (x, t; y, s) ≤
C

(t − s)n/2 exp
(

−
d2

g(s)(x, y)

C(t − s)
+

∫ t

s
R̂−

)
for all 0 ≤ s < t ≤ 1.

Proof. Up to scaling, we only need to show that if ν(g(0), 2) ≥ −δ, then

(3.2) K (x, 1; y, 0) ≤ C exp
(

−C−1d2
g(0)(x, y) +

∫ 1

0
R̂−

)
.

Let p(s) = 1/(1 − s) for s ∈ [0, 1), and let u = u(x, t) be a positive solution of
the heat equation with Dirichlet boundary condition

(∂t − 1)u = 0 in �i × (0, 1), u = 0 on ∂�i × [0, 1].

Let τ = s(1 − s) and v(x, s) = u p(s)/2/∥u p(s)/2
∥2. By (2.3), we compute

d
ds

log∥u∥p(s) =
p′

p2

∫
M

(v2 log v2) −
p − 1

p2

∫
M

(Rv2
+ 4|∇v|

2) −
1
p2

∫
M

Rv2

≤ −s(1 − s)
∫

M
(Rv2

+ 4|∇v|
2) +

∫
M

v2 log v2
+ R̂−(s)

= −
(
W(g(s), v(s), τ )+

1
2 n log(4πτ) + n

)
+ R̂−(s)

≤ δ −
1
2 n log τ + R̂−(s).
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Integrating from s = 0 to s = 1, we find

∥u( · , 1)∥∞ ≤ exp
(

δ + n +

∫ 1

0
R̂−

)
∥u( · , 0)∥1.

Since

sup
x,y

K�i (x, 1; y, 0) = sup
u ̸=0

∥u( · , 1)∥∞

∥u( · , 0)∥1
,

letting i tend to infinity, it follows that

(3.3) K (x, 1; y, 0) ≤ exp
(

δ + n +

∫ 1

0
R̂−

)
.

This implies the desired bound (3.2) if dg(0)(x, y) is controlled. Therefore, our task
reduces to estimating K (x, 1; · , 0) when dg(0)(x, y) is large. The proof closely
parallels that of [Bamler et al. 2019, Proposition 3.1]. The main deviation lies in the
application of formula (2.6) to transform [Bamler et al. 2019, (3.11)] into the form

(3.4) I[Bk] ≤

∫
M/Bg(0)(x,rk)

K (x, 1; · , tk)K ( · , tk; y, tk+1) dvolg(tk)

≤ ak exp
( ∫ tk

tk+1

R̂−

)
.

Thus, further details of the proof are omitted here. □

In preparation for the lower bound estimate, we need the following.

Proposition 3.5. Let (M, g(t))t∈(0,T ] be a Ricci flow. Then the following properties
hold.

(1) (interpolation inequality [Zhang 2011, Theorom 6.5.1]) Let u be a positive
solution to the heat equation (∂t −1)u = 0. Then, for x, y ∈ M and 0 < t ≤ T ,
letting U = supM×[0,T ] u, we have

u(y, t) ≤ u(x, t)
1
2 U

1
2 exp

(d2
g(t)(x, y)

t

)
.

(2) (Perelman’s differential Harnack inequality [Perelman 2002, Corollary 9.4])
Let γ (s) be any smooth curve and suppose w(y, s) = (4π(T − s))−n/2e−h(y,s)

satisfies the conjugate heat equation (∂s + 1 − R)w = 0. Then

−
d
ds

h(γ (s), s) ≤
1
2
(R(γ (s), s) + |γ̇ (s)|2) −

1
2(T −s)

h(γ (s), s).

Then, we establish the lower bound estimate on the heat kernel by using the
same argument as in the proof of [Zhang 2012, Theorem 1.1].
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Lemma 3.6. Fix n ≥ 2 and λ > 0. There exist δ = δ(n, λ) > 0 and C = C(n) > 0
such that if (M, g(t))t∈(0,1] satisfies ν(g(0), 2) ≥ −δ, then for any 0 < s < t ≤ 1,

K (x, t; y, s) ≥
C

(t − s)n/2

(
s
t

)2λ

exp
(

−4d2
g(t)(x, y)

t − s

)
.

Proof. By Proposition 2.4, for any λ > 0, we may choose δ small enough that the
Ricci flow enjoys the scale invariant curvature bounds |Rm| ≤ λ/t . Combining this
with Lemma 3.1,

(3.7) K (x, t; y, s) ≤
C

(t − s)n/2

(
t
s

)λ

for all 0 < s < t ≤ 1.

Let K (x, t; y, l) = (4π(t − l))−n/2e−h(y,l) for l ∈ [s, t], and let γ (l) be the fixed
point x . By Proposition 3.5,

−
d
dl

h(x, l) ≤
1
2

R(x, l) −
1

2(t−l)
h(x, l).

Integrating from s to t , we have h(x, s) ≤
1
2λ log(t/s). Consequently,

(3.8) K (x, t; x, s) ≥ (4π(t − s))−n/2
(

s
t

)λ/2

.

Note that the function K (y′, t ′
; x, s) for (y′, t ′) ∈ M ×[(t + s)/2, t] is a positive

solution to the heat equation. Then Proposition 3.5 implies

K (y, t; y, s)

≤ K (x, t; y, s)
1
2 ·

(
sup(x ′,t ′)∈M×[(t+s)/2,t] K (x ′, t ′

; y, s)
)1

2 exp
(2d2

g(t)(x, y)

t − s

)
.

Combining this with (3.7) and (3.8), we get the lower bound of K (x, t; y, s). □

For 0 < t ≤ 1 and x0 ∈ M , let ϕ : M ×{t} → [0, 1] be a cutoff function such that
ϕ(y)≡ 1 for y ∈ Bg(t)(x0, 8t

1
2 ) and supp ϕ ⊂ Bg(t)(x0, 16t

1
2 ). Let ϕ : M×[0, t]→ R

be the solution of the conjugate heat equation (∂s + 1 − R)ϕ = 0 with terminal
data ϕ(y).

Applying Lemma 3.6, we can derive the following estimates. For the proof, see
[Lee et al. 2023, Proposition 4.4].

Proposition 3.9. Fix n ≥ 2 and λ > 0. There exist δ = δ(n, λ) > 0 and C =

C(n) > 0 such that if (M, g(t))t∈(0,1] satisfies ν(g(0), 2) ≥ −δ, then for all (y, s) ∈

Bg(t)(x0, 4t
1
2 ) × (0, t),

(3.10) ϕ(y, s) ≥ C
(

s
t

)2λ

.
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In addition, if the manifold mentioned above also has almost nonnegative integral
scalar curvature and an upper capacity bound, we can refine the heat kernel estimates
in Lemma 3.1 to obtain lower bounds on scalar curvature along the Ricci flow.
Moreover, the lower scalar curvature bounds ensure that the volume of a given set
does not expend too much along the Ricci flow.

Lemma 3.11. Fix r, N > 0 n > 2 and q > n/2. There exist δ = δ(n, N , q) and
C = C(n, N , q) such that if (Mn, g(t))t∈(0,1/r2] satisfies

ν(g(0), 2r2) ≥ −δ, ∥R−∥g(0),q,r ≤ δ, Cap(M,g(0))(r) ≤ N ,

then for 0 < t ≤ 1/r2,

R(x, t) ≥ −Cδr−(2q−n)/q t−n/(2q) and dvolg(t) ≤ eCδ dvolg(s).

Proof of Lemma 3.11. Up to rescaling, we may assume r = 1. We will use the
upper bound of capacity to prove that for each k ∈ N+ there exists a finite subset
{xi }

N k

i=1 ⊂ Bg(0)(x, k + 1) such that

(3.12) Bg(0)(x, k + 1) ⊆

N k⋃
i=1

Bg(0)(xi , 1).

We argue by induction. For k = 1 and y ∈ M , by the definition of the capacity,
there exists {y j }

N
j=1 such that Bg(0)(y, 2) ⊂

⋃N
j=1 Bg(y j , 1). For k > 1, if there

exists {xi }
N k−1

i=1 such that Bg(0)(x, k) can be covered by {Bg(0)(xi , 1)}N k−1

i=1 , then by
the triangle inequality we have Bg(0)(x, k +1) ⊂

⋃N k−1

i=1 Bg(0)(xi , 2). Since for each
Bg(0)(xi , 2) there is a finite cover {Bg(0)(yi, j , 1)}N

j=1, {Bg(0)(yi, j , 1)}i, j form a cover
for Bg(0)(x, k + 1). Thus (3.12) follows.

Let w be the solution to the heat equation with the initial data w(y, 0)= R−(y, 0).
By maximum principle, −R(x, t) ≤ w(x, t) pointwise. Let S(t) =

∫ t
0 R̂− and

Ax(k, k + 1) = Bg(0)(x, k + 1) \ Bg(0)(x, k) for k ∈ N+. By Hölder’s inequality,
(3.12), (2.2) and Lemma 3.1,

w(x, t) =

∫
M

K (x, t; y, 0)R−(y, 0) dvolg(0)(y)

≤

∞∑
k=0

∥R−∥Lq (Bg(x,k+1))

( ∫
Ax (k,k+1)

K q/(q−1)

)(q−1)/q

≤

∞∑
k=0

sup
Ax (k,k+1)

K 1/q
( ∫

M
K

)(q−1)/q( N k∑
i=1

∥R−∥
q
Lq (Bg(xk

i ,1))

)1/q

≤

∞∑
k=0

C1/q
0 δt−n/(2q) exp

(
−

k2

C0qt
+

S(t)
q

)
N k/q

≤ Cδt−n/(2q)eS(t)/q ,
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where C0 = C0(n) and C = C(n, N , q). In particular, we obtain

(3.13) R̂−(t) ≤ max
x∈M

(w(x, t)) ≤ Cδt−n/(2q)eS(t)/q .

Thus d
dt q · e−S(t)/q

= −e−S(t)/q R̂−(t) ≥ −Cδt−n/(2q). Integrating from 0 to t ,

S(t) ≤ −q log
(

1 −
2Cδ

2q−n

)
for all 0 < t ≤ 1.

If δ ≤ (2q − n)/(4C), then S(t) ≤ q. Substituting this in (3.13), R−( · , t) ≤

R̂−(t) ≤ 2Cδt−n/(2q). By the evolved equation of volume form (2.1), we have
∂τ dvolg(τ ) ≤2Cδτ−n/(2q) dvolg(τ ). Integrating τ from s to t completes the proof. □

4. Integral estimate for Ricci curvature under Ricci flow

In this section, we prove an integral estimate for the Ricci curvature, which is scale
invariant. The proof of Lemma 4.1 is analogous to [Lee et al. 2023, Theorem 4.1].
In our case, we replace the use of pointed lower bound of initial scalar curvature by
the lower bound of w(x, t) along the Ricci flow, as shown in (3.13). For the sake
of completeness, we include the proof.

Lemma 4.1 (integral Ricci estimate). Fix n >2, ε, r, N >0, q >n/2 and θ ∈
[
0, 1

2

)
.

If (Mn, g(t))t∈(0,1/r2] satisfies

ν(g(0), 2r2) ≥ −δ, ∥R−∥g(0),q,r ≤ δ, Cap(M,g(0))(r) ≤ N ,

then for any (x, s) ∈ M × (0, 1/r2
],∫ s

0

(
τ

s

)−θ
/

∫
Bg(s)(x,4s1/2)

|Ricg(τ )| dvolg(τ ) dτ ≤ ε2.

As the evolution equation of the scalar curvature contains the term of |Ric|2, we
can combine the scalar curvature estimate and the heat kernel estimate along the
Ricci flow to estimate |Ric|2ϕ. Combining this estimate with Hölder’s inequality,
we prove Lemma 4.1:

Proof of Lemma 4.1. Up to rescaling the flow, we may assume that t = 1. By
Proposition 2.4 and the volume comparison in Lemma 3.11, there exists a constant
C0 = C0(n, q, N ) such that for any (x, s) ∈ M × [0, 1],

(4.2) volg(s)(Bg(1)(x, 4)) ≥ e−C0δ volg(1)(Bg(1)(x, 4)) ≥ C0.

For fixed 0 < λ ≤
1
4 −

1
2θ , let θ0 = θ + λ, and then we have 1 − 2θ0 ≥

1
2 − θ > 0.

Choose δ small enough that Proposition 3.9 holds for this choice of λ. By Hölder’s
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inequality and (4.2) we get

(4.3)
∫ 1

0
s−θ /

∫
Bg(1)(x,4)

|Ricg(s)| dvolg(s) ds

≤ C−1
0 (1 − 2θ0)

−
1
2

( ∫ 1

0
s2λ

∫
Bg(1)(x,4)

|Ricg(s)|
2 dvolg(s) ds

)1
2

.

Let ϕ be the cutoff function that evolves by the conjugate heat equation as in
Proposition 3.9. Then there exists C1 = C1(n) such that∫ 1

0
s2λ

∫
Bg(1)(x,4)

|Ricg(s)|
2 dvolg(s) ds

≤ C1

∫ 1

0

∫
M

|Ricg(s)|
2ϕ

=
1
2

C1

∫ 1

0

∫
M

(∂s − △)Rg(s)ϕ

=
1
2

C1

( ∫
M

Rg(1)ϕ( · , 1) dvolg(1) −

∫
M

Rg(0)ϕ( · , 0) dvolg(0)

)
.

By Proposition 2.4, we find that
∫

M Rg(1)ϕ( · , 1) dvolg(1) ≤λ volg(1)(Bg(1)(x, 16))≤

C1λ. By (3.13), there exists a constant C2 = C2(n, q, N ) such that

−

∫
M

Rg(0)ϕ( · , 0) dvolg(0)

=

∫
M

R−(x, 0)

∫
M

K (y, 1; x, 0)ϕ(y, 1) dvolg(1)(y) dvolg(0)(x)

=

∫
M

ϕ(y, 1)

∫
M

K (y, 1; x, 0)R−(x, 0) dvolg(0)(x) dvolg(1)(y) ≤ C2δ.

By choosing λ and δ appropriately small, we conclude the proof. □

5. L p bound for the scalar curvature

For closed manifold, we derive an a prior L p (p < 1) bound of scalar curvature,
Theorem 1.7, which we restate below for convenience. The proof of this theorem
closely parallels that of [Lee et al. 2023, Theorem 4.7]. The main difference is that,
since the curvature here is only bounded below in an integral sense, we need to
estimate the L p norm of R + w along the Ricci flow, where w evolves by the heat
equation with initial data R−.

Theorem 1.7. Fix n ≥ 2, ε > 0, p ∈ (0, 1) and q > max(n/2, 2p). Let (Mn, g) be
a closed Riemannian n-manifold. There exists δ = δ(n, ε, p, q) > 0 such that if

vol(M)2/n
·

(
/

∫
M

|R−|
q
)1/q

≤ δ and ν(g, 2 vol(M)2/n) ≥ −δ,



384 SHANGZHI ZOU

then

vol(M)2/n
·

(
/

∫
M

|R|
p
)1/p

≤ ε.

Proof. Up to rescaling, we may assume that vol(M) = 1. Choosing δ ≤ ε/2, by
Hölder’s inequality we have

(∫
M |R−|

p
)1/p

≤
(∫

M |R−|
q
)1/q

≤ ε/2, and it is suffices
to show that

∫
M |R+|

p dvolg ≤ (ε/2)p, where R+ = max(R, 0). By Proposition 2.4
and Lemma 3.1, for any fixed λ > 0, we may choose δ small enough that the
Ricci flow (M, g(t)) with g(0) = g exists for t ∈ (0, 1] and there exists a constant
C0 = C0(n) such that

|Rm|≤λ/t, sup
x,y∈M

{K (x, t; y, 0)}≤C0t−n/2 exp
( ∫ t

0
R̂−

)
for all 0< t ≤ 1.

Let w(x, t) be the solution of the heat equation with initial data w(x, 0) =

R−(x, 0) and f (x, t) = R(x, t) + w(x, t), the evolve equation of scalar curvature
in (2.1) implies that (∂t −△) f = 2|Ric|2 ≥ 0. By the maximum principle, we have
f (x, t) ≥ R+(x, t). Thus, we only need to show

∫
M f p dvolg(0) ≤ (ε/2)p.

For any p ∈ (0, 1), we see that f p is a supersolution of the heat equation:

(∂t − △) f p
= p f p−1(∂t − △) f − p(p − 1) f p−1

|∇ f |
2
≥ 2p f p−1

|Ric|2 ≥ 0.

Combining this with Young’s inequality, we have

(5.1)
∫

M
f p dvolg(0)

=

∫
M

f p dvolg(1) −

∫ 1

0

∫
M

(
(∂t − △) f p

− R f p) dvolg(t) dt

≤

∫
M

f p dvolg(1) +

∫ 1

0

∫
M

R f p dvolg(t) dt

≤

∫
M

f p dvolg(1) +

∫ 1

0

∫
M

(R p+1
+ Rw p) dvolg(t) dt

≤

∫
M

f p dvolg(1) +
p
q

∫ 1

0

∫
M

wq dvolg(t) dt

+

∫ 1

0

∫
M

(
R p+1

+
q − p

q
Rq/(q−p)

)
dvolg(t) dt.

To bound the right-hand side of (5.1), let S(t) =
∫ t

0 R̂−. Then Lemma 3.1 implies

w(x, t) =

∫
M

K (x, t; y, 0)R−(y, 0) dvolg(0)(y)

≤

(∫
M

|R−( · , 0)|q dvolg(0)

)1/q( ∫
M

K (x, t; · , 0)q/(q−1) dvolg(0)

)(q−1)/q

≤ δ max
y∈M

K (x, t; y, 0)1/q
≤ C1/q

0 δt−n/(2q)eS(t)/q .
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Similar to the argument in Lemma 3.11, there exists C1 = C1(n, q) such that for
x ∈ M and 0 < t ≤ 1, we have

(5.2) R−(x, t) ≤ w(x, t) ≤ C1δt−n/(2q), dvolg(t) ≤ eC1δ dvolg(0).

By (2.6), we find C2 = C2(n, q) such that for any 0 ≤ s < t ≤ 1 we have∫
M

K ( · , t; y, s) dvolg(t) ≤ exp
( ∫ t

s
R−

)
≤ exp

( ∫ t

s
C1δτ

−n/(2q)

)
dτ ≤ C2.

Then we bound each term on the right-hand side of (5.1) separately. For the first
term, by (5.2) we see that∫

M
f p dvolg(1) =

∫
M

(R+w)p dvolg(1) ≤

∫
M

(λ+C1δ)
p dvolg(1) ≤ (λ+C1δ)

peC1δ.

For the second term, by Hölder’s inequality, we have∫
M

wq( · , t) dvolg(t)

=

∫
M

( ∫
M

R−(y, 0)K (x, t; y, 0) dvolg(0)(y)

)q

dvolg(t)(x)

≤

∫
M

( ∫
M

Rq
−(y, 0)K (x, t; y, 0) dvolg(0)(y)

)
·

( ∫
M

K (x, t; y, 0) dvolg(0)(y)

)
dvolg(t)(x)

=

∫
M

Rq
−(y, 0)

∫
M

K (x, t; y, 0) dvolg(t)(x) dvolg(0)(y)

≤ C2

∫
M

Rq
−(y, 0) dvolg(0)(y) ≤ C2δ

q .

For the third term, let ϕ : M × (0, 1) → R be the solution to the conjugate heat
equation with terminal data ϕ(x, 1) = 1 on M × {1}. Using the same proof as
[Lee et al. 2023, Proposition 4.4], there exists a constant C3 = C3(n) such that for
all y ∈ M and t ∈ (0, 1] we have ϕ(y, t) ≥ C3t2λ. Moreover, by using the same
argument as in the proof of Lemma 4.1, (5.2) implies that there exists a constant
C4 = C4(n, q) such that

(5.3)
∫ 1

0
t2λ

∫
M

|R|
2 dvolg(t) dt ≤ C−1

3

∫ 1

0

∫
M

|R|
2ϕ(y, t) dvolg(t) dt ≤ C4(λ+δ).

For any 0 < α < 2 and 0 < λ < (2 −α)/(4α), let θ = 2λα/(2 −α). Then, by (5.3),∫ 1

0

∫
M

|R|
α dvolg(t) dt ≤

( ∫ 1

0

∫
M

t−θ dvols ds
)λα/θ( ∫ 1

0
s2λ

∫
M

|R|
2 dvols ds

)α/2

≤ 2eC1δCα/2
4 (λ + δ)α/2.
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In particular, there exists a constant C5 = C5(n, p, q) such that∫ 1

0

∫
M

R p+1
+

q − p
q

Rq/(q−p) volg(t) dt ≤ C5(λ+ δ)(p+1)/2
+ C5(λ+ δ)q/(2q−2p).

Finally, by choosing λ and δ sufficiently small, we conclude the proof. □
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CORRECTION TO THE ARTICLE
A HECKE ALGEBRA ISOMORPHISM

OVER CLOSE LOCAL FIELDS

RADHIKA GANAPATHY

Volume 319:2 (2022), 307–332

The proof of Lemma 2.5 of the author’s article “A Hecke algebra isomor-
phism over close local fields” (Pacific J. Math. 319:2 (2022), 307–332) is
incorrect. We use a slight variant of the original approach to correct the
proof. This leads to some modifications to some parts of Section 3 of the
original article, and these are given in Section 2 of this note. With these
modifications, Theorem 4.1 of the original article holds.

We retain the notation in [Ganapathy 2022, Section 2]. Let T be a torus over F .
Then T is determined by the 0F -module X∗(T ). Let T ft be the Néron–Raynaud
model of T and T its identity component. Let m ≥ 1 be such that T splits over an
at most m-ramified Galois extension of F . Then the action of 0F on X∗(T ) factors
through 0F/I m

F . For any field F ′ that is at least m-close to F , we obtain a torus T ′

over F ′ via the action of 0F ′ → 0F ′/I m
F ′

Del−1
m

∼=
−−−→ 0F/I m

F on X∗(T ). This torus splits
over an at most m-ramified extension of F ′. Let T ′ft be the Néron–Raynaud model
of T ′ and T ′ its identity component.

Theorem 0.1 [Chai and Yu 2001, Section 9 ]. Let m ≥ 1 and let h be as in [Chai and
Yu 2001, Section 8]. Assume e≥m+3h. Then for any nonarchimedean local field F ′

that is e-close to F , the group schemes T ft
×OF OF/pm

F and T ′ft
×OF ′ OF ′/pm

F ′ are
isomorphic. In particular,

T ft(OF/pm
F ) ∼= T ′ft(OF ′/pm

F ′)

as groups. This isomorphism continues to hold when we replace T ft by T .

In [Ganapathy 2022, Section 2C], we had constructed a group-theoretic section
of the Kottwitz homomorphism κT,F : T (F) → X∗(T )σIF

and had used Theorem 0.1
for the neutral component T to give a proof of Lemma 2.5 in the same article. If T
splits over an unramified extension of F or is an induced torus over F , the results in
[Ganapathy 2022, Section 2] go through. However, the Kottwitz homomorphism for
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a general torus need not admit a group-theoretic section, as the following example
illustrates.

Example 0.2. Let F̆ be the completion of the maximal unramified subextension
of Q2. Let L = F̆

(√
−1

)
. Then L is a wildly ramified quadratic extension of F̆ .

Let T = Nm1
L/F̆

Gm denote the norm-1 torus. Let γ be the nontrivial element of
Gal(L/F̆). Then X∗(T )IF

∼= Z/2Z. Note that κT,F̆ has a group-theoretic section if
and only if −1 ∈ T (F̆) does not lie in T (F̆)1. Note that

T (F̆)1 = {y ∈ L×
| xγ (x)−1

= y for some x ∈ L×
}.

Since −1 =
(√

−1
)
γ
(√

−1
)−1, −1 indeed lies in T (F̆)1. We conclude that κT,F̆

does not admit a group-theoretic section.

The error in [Ganapathy 2022, Section 2] is that Lemma 2.3 is false in general
(the nλ̃ defined in the line above Lemma 2.3 may not be well-defined). Consequently,
Lemma 2.4 cannot be salvaged to yield a well-defined set of representatives for the
torsion elements of X∗(T )IF that forms a group and is σ -stable.

1. Proof of [Ganapathy 2022, Lemma 2.5]

Let T be a torus over F and let F̃ be the splitting extension of TF̆ in the completion
of Fs . Fix a uniformizer ϖF̃ of F̃ . Consider the Kottwitz homomorphism κT,F̆ :

T (F̆) → X∗(T )IF . Let X∗(T )IF /tor denote the quotient of X∗(T )IF by its torsion
subgroup. Note that X∗(T )IF /tor is isomorphic to HomZ(X∗(T )IF , Z). This leads
to the valuation homomorphism ωT,F̆ : T (F̆) → HomZ(X∗(T )IF , Z). Note that
Ker(ωT,F̆ ) = T (F̆)b = T ft(OF̆ ) is the maximal bounded subgroup of T (F̆) and
it contains T (F̆)1. We will construct a group-theoretic section of the valuation
homomorphism. We will then use Theorem 0.1 for T ft to prove [Ganapathy 2022,
Lemma 2.5] over F̆ . We will show that this isomorphism over F̆ is σ -equivariant
to obtain the required isomorphism over F (see Lemmas 1.2 and 1.3).

1A. A group-theoretic section of the valuation homomorphism and its conse-
quences. Let λ̆1, . . . , λ̆n ∈ X∗(T )IF be such that their images λ̆t

1, . . . , λ̆
t
n form

a basis of X∗(T )IF /tor. Fix λ̃1, . . . , λ̃n ∈ X∗(T ) such that pr(λ̃i ) = λ̆i , where
pr : X∗(T ) → X∗(T )IF is the natural surjection. Define nλ̃i

= λ̃i (ϖF̃ ). Define
nλ̆t

i
= nλ̆i

= NmF̃/F̆ nλ̃i
. For λ̆t

∈ X∗(T )IF /tor, write λ̆t
=

∑
i ci λ̆

t
i and define

nλ̆t =
∏

i nci

λ̆t
i
. Note that n0 = 1 by construction.

Lemma 1.1. The set S := {nλ̆t | λ̆t
∈ X∗(T )IF /tor} is a subgroup of T (F̆). The

map ∇T,F̆ : X∗(T )IF /tor → S , λ̆t
7→ nλ̆t , is a group isomorphism.

Proof. It is clear that S is a subgroup of T (F̆). It is also clear that ∇T,F̆ is a surjective
group homomorphism. We just need to see that it is injective. Suppose nλ̆t = 1.
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We need to show that λ̆t
= 0. Write λ̆t

=
∑

i ci λ̆
t
i . The natural pairing between

X∗(T ) and X∗(T ) induces a perfect pairing ⟨ · , · ⟩ : X∗(T )IF /tor × X∗(T )IF → Z.
Let χ̆1, . . . , χ̆n ∈ X∗(T )IF be such that ⟨λ̃ j , χ̆k⟩ = δ j,k , 1 ≤ j, k ≤ n. Now
nλ̆t =

∏
i NmF̃/F̆ nci

λ̃i
= 1. This implies that 1 = χ̆ j (nλ̆t ) = NmF̃/F̆ χ̆ j (nλ̃ j

)c j =

(NmF̃/F̆ ϖ
c j

F̃
). This forces c j = 0. Since j was arbitrary, this shows that λ̆t

= 0. □

Lemma 1.2. Let T be a torus over F. Let T ft be as above and for m ≥ 1, let
T̆m = Ker(T ft(OF̆ ) → T ft(OF̆/pm

F̆
)). Let e ≥ m + 4h. If F̆ and F̆ ′ are e-close, we

have an isomorphism

T̆m : T (F̆)/T̆m → T ′(F̆ ′)/T̆ ′

m .

Proof. Since T ft(OF̆ ) = T (F̆)b, we have by Theorem 0.1 (which also holds over F̆ ;
see [Chai and Yu 2001]) an isomorphism

T (F̆)b/T̆m → T ′(F̆ ′)b/T̆ ′

m .(1-1)

Since T splits over an at most m-ramified extension of F , the action of 0F on
X∗(T ) factors through 0F/I m

F . Since the action of 0F/I m
F on X∗(T ) is Delm-

equivariant, we have X∗(T )IF
∼= X∗(T )IF ′ and X∗(T )IF /tor ∼= X∗(T )IF ′ /tor via

Delm . We identify these groups via these isomorphisms. Let ϖF̃ ′ be a uniformizer
of F̃ ′ such that ϖF̃ mod prm

F̃
7→ ϖF̃ ′ mod p′rm

F̃
where r = [F̃ : F̆]. For 1 ≤ i ≤ n,

define n′

λ̃i
= λ̃i (ϖF̃ ′), n′

λ̆t
i
= NmF̃ ′/F̆ ′ nλ̃i

. Form the subgroup S ′
⊂ T (F̆ ′) as before.

Since ∇T,F̆ , ∇T ′,F̆ ′ are group isomorphisms, we get

T (F̆)/T̆m ∼= X∗(T )IF /tor × T (F̆)b/T̆m,

and similarly over F̆ ′. These observations, combined with (1-1), finish the proof of
the lemma. □

Lemma 1.3. The isomorphism T̆m : T (F̆)/T̆m → T ′(F̆ ′)/T̆ ′
m of Lemma 1.2 is

σ -equivariant. It induces a group isomorphism Tm : T (F)/Tm → T ′(F ′)/T ′
m .

Proof. We know that the isomorphism in (1-1) is σ -equivariant. We need to see
that for λ̆t

∈ S , σ(nλ̆) mod T̆m 7→ σ ′(n′

λ̆
) mod T̆ ′

m . It suffices to see this for λ̆t
i ,

1 ≤ i ≤ n. Fix i and let λ̆t
= λ̆t

i . Write

(1-2) σ(λ̆t) =

∑
j

c j λ̆
t
j .

Let σ̃ be any lift of σ to 0F/I m
F and we denote its action on X∗(T ) as σ̃ . We know

σ(nλ̆t ) = NmF̃/F̆ σ̃ (nλ̃) = NmF̃/F̆ σ̃ (λ̃)(σ̃ (ϖF̃ ))

and
nσ(λ̆t ) =

∏
j

NmF̃/F̆ nc j

λ̃ j
=

∏
j

NmF̃/F̆ λ̃ j (ϖF̃ )c j .
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Equation (1-2) implies that σ̃ (λ̃) −
∑

j c j λ̃ j ∈ X∗(T )(IF ), so

σ̃ (λ̃) −

∑
j

c j λ̃ j =

∑
k

dk(γk(µ̃k) − µ̃k),

for suitable γk ∈ IF/I m
F and µ̃k ∈ X∗(T ). Now,

σ̃ (λ̃)(σ̃ (ϖF̃ )) =

∏
j

λ̃ j (σ̃ (ϖF̃ )c j ) ·

∏
k

(γk(µk) − µk)(σ̃ (ϖF̃ )dk )

Define

uλ̃,σ̃ =

∏
j

λ̃ j ((σ̃ (ϖF̃ )ϖ−1
F̃

)c j )
∏

k

µk
(
γ −1

k (σ̃ (ϖF̃ ))(σ̃ (ϖF̃ )−1)dk
)

and define uλ̆,σ = NmF̃/F̆ uλ̃,σ̃ . Then we have σ(nλ̆t ) = uλ̆,σ · nσ(λ̆t ).
By construction of T̆m , we have nσ(λ̆t ) mod T̆m 7→ n′

σ(λ̆t )
mod T̆ ′

m . Further uλ̃,σ̃ ∈

T (F̃)1. Recall that r =[F̃ : F̆]. With ϖF̃ and ϖF̃ ′ as above, the map X∗(T )→T (F̃),
λ̃ 7→ λ̃(ϖF̃ ), is a group-theoretic section of the Kottwitz homomorphism over F̃ ,
and using the Chai–Yu isomorphism T (F̃)1/T̃rm ∼= T ′(F̃ ′)1/T̃ ′

rm we obtain that

T̃rm : T (F̃)/T̃rm ∼= T (F̃ ′)/T̃ ′

rm

as groups. Since under the isomorphism OF̃/prm
F̃

∼= OF̃ ′/prm
F̃ ′

, we have

σ̃ (ϖF̃ )ϖ−1
F̃

mod prm
F̃ 7→ σ̃ ′(ϖ ′

F̃ )ϖ ′−1
F̃

mod prm
F̃ ′

,

γ −1
k (σ̃ (ϖF̃ ))(σ̃ (ϖF̃ ))−1 mod prm

F̃ 7→ γ ′−1
k (σ̃ ′(ϖ ′

F̃ ))(σ̃ ′(ϖ ′

F̃ ))−1 mod prm
F̃ ′

we have that uλ̃,σ̃ mod T̃rm 7→ uλ̃′,σ̃ ′ mod T̃ ′
rm via T̃rm . By the functoriality of the

Chai–Yu isomorphism [2001, Section 9.2], we have the commutative diagram

T (F̃)1/T̃rm T (F̆)1/T̆m

T ′(F̃ ′)1/T̃ ′
rm T ′(F̆ ′)1/T̆ ′

m

Nm

∼= ∼=

Nm

It follows that uλ̆,σ mod T̆m 7→u′

λ̆,σ ′
mod T̆ ′

m . We have proved that σ(nλ̆t ) mod T̆m 7→

σ ′(n′

λ̆t ) mod T̆ ′
m for all λ̆t

= λ̆t
i , 1 ≤ i ≤ n. Hence this same claim holds for all

λ̆t
∈ X∗(T )IF /tor. This implies that T̆m is σ -equivariant. The claim that T̆m

restricts to an isomorphism Tm : T (F)/Tm → T ′(F ′)/T ′
m follows from the fact that

H 1(σ, T̆m) = 1 (see [Serre 1979, Chapter XII, §3, Lemma 3]). □

1B. Some remarks. Assume e ≥ m+4h. We have σ -equivariant isomorphisms T̆m

and T̆m+h constructed above (we also have T̃rm and T̃r(m+h)). Let t ∈ T (F̆)b with
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κT,F̆ (t) = µ̆. Write t = NmF̃/F̆ t̃ , with t̃ ∈ T (F̃). By functoriality of the Chai–Yu
isomorphism (for TF̆ ↪→ RF̆ = ResF̃/F̆ TF̃ ), we have the commutative diagram

T (F̆)b/T̆m+h T (F̃)b/T̃r(m+h)

T ′(F̆ ′)b/T̆ ′

m+h T ′(F̃ ′)b/T̃ ′

r(m+h)

i

T̆m+h T̃r(m+h)

i ′

As explained in [Aubert and Varma 2024, Theorem 2.5.3], it follows from the
arguments in [Chai and Yu 2001, Section 8] that T (F̆)b ∩ T̃r(m+h) ⊂ T̆m . Let
t̃ ′

∈ T (F̃ ′) be such that T̃r(m+h)(t̃ mod T̃r(m+h)) = t̃ ′ mod T̃ ′

r(m+h). Using the Galois
equivariance of T̃r(m+h) and the commutativity of the above diagram, we have
T̆m+h(t mod T (F̆)b ∩ T̃r(m+h)) = t ′ mod T ′(F̆ ′)b ∩ T̃ ′

r(m+h) where t ′
= NmF̃ ′/F̆ ′ t̃ ′.

Hence T̆m(t mod T̆m) = T̆m+h(t mod T̆m) = t ′ mod T̆ ′
m . By Diagram (7.3.1) in

[Kottwitz 1997], κT ′,F̆ ′(t ′) = µ̆.
Now, let t ∈ T (F̆). Write t = t1nµ̆t for suitable t1 ∈ T (F̆)b and µ̆t

∈ X∗(T )IF /tor.
Then κT,F̆ (t) = κT,F̆ (t1) + µ̆. Also t mod T̆m 7→ (t ′

1 mod T̆ ′
m)(n′

µ̆t mod T̆ ′
m) for a

suitable t ′

1 ∈ T ′(F̆ ′)b. Then κT ′,F̆ ′(t ′

1n′

µ̆t ) = κT ′,F̆ ′(t ′

1) + µ̆. By the preceding
paragraph, we see that κT,F̆ (t1) = κT ′,F̆ ′(t ′

1). Hence T̆m is compatible with the
Kottwitz homomorphism κT,F̆ . Also Tm is compatible with κT,F .

2. Modifications to [Ganapathy 2022, Section 3]

2A. Modifications to [Ganapathy 2022, Section 3A]. The correction given in
Section 1 leads to some corrections in [Ganapathy 2022, Section 3]. One important
modification is that we need to replace the set of representatives {nλ̆ | λ̆ ∈ X∗(T )IF }

and {nλ̆ad
| λ̆ ∈ X∗(Tad)IF } used in the proofs in [Ganapathy 2022, Section 3A] with

the set of representatives given in Lemma 2.1. Let M , M∗, A, S, T , B and σ be as
in [Ganapathy 2022, Section 3]. So M∗ is an inner form of a quasisplit connected,
reductive group M with Mad ∼= ResL/F PGLn for a finite separable extension L/F .
Let F̃ ⊃ L F̆ be the splitting extension of TF̆ . Let e =[L : L∩ F̆] and f =[L∩ F̆ : F].
Fix a uniformizer ϖF̃ of F̃ .

Lemma 2.1. Let ωT,F̆ : T (F̆) → X∗(T )IF /tor and ωTad,F̆ = κTad,F̆ : Tad(F̆) →

X∗(Tad)IF be the valuation homomorphisms on T and Tad, respectively. There exist
group-theoretic sections ∇T,F̆ : X∗(T )IF /tor → T (F̆) and ∇Tad,F̆ : X∗(Tad)IF →

Tad(F̆) of ωT,F̆ and ωTad,F̆ , respectively, such that ∇T,F̆ and ∇Tad,F̆ agree on the
subset X∗(Tsc)IF .

Proof. Let us begin by noting that X∗(Tad) has a Z-basis permuted by 0F and
X∗(Tad)IF is torsion-free and admits a Z-basis permuted by σ . Note that Mad,F̃ =∏

1≤i≤e,1≤ j≤ f M (i, j)
ad,F̃

where each M (i, j)
ad,F̃

∼= PGLn /F̃ . Following the notation of
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[Bourbaki 2002], for 1 ≤ i ≤ e, 1 ≤ j ≤ f , let

λ̃
(i, j)
ad,n−1 = ϵ

(i, j)
1 −

1
n
(ϵ

(i, j)
1 + ϵ

(i, j)
2 + · · · + ϵ(i, j)

n ),

and, for 1 ≤ k ≤ n − 2,
λ̃

(i, j)
ad,k = ϵ

(i, j)
k − ϵ

(i, j)
k+1 .

The set
{λ̃

(i, j)
ad,k | 1 ≤ k ≤ n − 1, 1 ≤ i ≤ e, 1 ≤ j ≤ f }

yields a Z-basis of X∗(Tad). Let pr : X∗(Tad) → X∗(Tad)IF be the natural projection.
For 1 ≤ k ≤ n − 1 and 1 ≤ j ≤ f , let λ̆

( j)
ad,k = pr(λ̃(1, j)

ad,k ). Then the set

{λ̆
( j)
ad,k | 1 ≤ k ≤ n − 1, 1 ≤ j ≤ f }

yields a Z-basis of X∗(Tad)IF . Let

n
λ̆

( j)
ad,k

= NmF̃/F̆ λ̃
(1, j)
ad,k (ϖF̃ ), 1 ≤ k ≤ n−2, and n

λ̆
( j)
ad,n−1

= NmF̃/F̆ λ̃
(1, j)
ad,n−1(ϖF̃ ).

The elements n
λ̆

( j)
ad,k

, 1≤k ≤n−1, 1≤ j ≤ f , are used to obtain a set of representatives

{nλ̆ad
| λ̆ad ∈ X∗(Tad)IF }

that form a group; see Lemma 1.1. Let ∇Tad,F̆ : X∗(Tad)IF → Tad(F̆), λ̆ad 7→ nλ̆ad
,

denote this group-theoretic section of ωTad,F̆ .

Next note that X∗(Tsc)IF ⊂ X∗(T )IF /tor. Hence the elements λ̆
( j)
ad,k , 1 ≤ k ≤ n−2,

1 ≤ j ≤ f , lie in X∗(T )IF /tor. Also, j (X∗(T )IF /tor) is of finite index in X∗(Tad)IF ,
so there exists a nonnegative integer r , which we may choose as small as possible,
such that for each 1 ≤ j ≤ f , r · λ̆

( j)
ad,n−1 = j (λ̆( j)

n−1) for a λ̆
( j)
n−1 ∈ X∗(T )IF /tor.

For the same r , there exists λ̃
(1, j)
n−1 ∈ X∗(T ) such that j (λ̃(1, j)

n−1 ) = r · λ̃
(1, j)
ad,n−1 and

pr(λ̃(1, j)
n−1 ) = λ̆

( j)
n−1. For 1 ≤ k ≤ n − 2,

λ̃
(1,1)
ad,k ∈ X∗(T ), pr(λ̃(1,1)

ad,k ) = λ̆
(1)
ad,k and j (λ̆(1)

ad,k) = λ̆
(1)
ad,k .

Set

n
λ̆

( j)
ad,k

= NmF̃/F̆ λ̃
(1, j)
ad,k (ϖF̃ ), 1 ≤ k ≤ n − 2, and n

λ̆
( j)
n−1

= NmF̃/F̆ λ̃
(1, j)
n−1 (ϖF̃ ).

Now, the set {λ̆
( j)
ad,k | 1 ≤ k ≤ n − 2, 1 ≤ j ≤ f } ∪ {λ̆

( j)
n−1 | 1 ≤ j ≤ f } is Z-

linearly independent. Further, it may be extended to a basis of X∗(T )IF /tor. For
the remaining basis elements of X∗(T )IF /tor, we choose representatives as in
Section 1A. This then yields a set of representatives {nλ̆ | λ̆ ∈ X∗(T )IF /tor} that
forms a group. Let ∇T,F̆ : X∗(T )IF /tor→ T (F̆), λ̆→nλ̆ denote this group-theoretic
section of ωT,F̆ . By construction, we have ∇T,F̆ and ∇Tad,F̆ agree on X∗(Tsc)IF .
This finishes the proof of the lemma. □
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Lemmas 3.1 and 3.2 in [Ganapathy 2022] are not affected.
Let �M̆ and �M̆,ad be as in [Ganapathy 2022, Section 3A]. We fix a σ -stable

alcove ă in A (S, F̆) and identify �M̆ with �ă and �M̆ad
with �ă,ad. Let ν̆ad = tη̆ad z̆

be as in [Ganapathy 2022, Section 3A]. With notation as in Lemma 2.1, η̆ad = λ̆
(1)
ad,n−1.

Let z̆ = z̆(1)
= s(1)

1 · · · s(1)
n−1. Let n

λ̆
(1)
ad,n−1

∈ Tad(F̆) be as in Lemma 2.1. We fix a system
of pinnings {xă | ă ∈ 8̆(M, S)} that is σ -stable as in [Ganapathy 2022, Section 3A].
Let n z̆(1) = ns(1)

1
· · · ns(1)

n−1
. Let σ ∗

= Ad(nν̆ad) ◦ σ where nν̆ad = n
λ̆

(1)
ad,n−1

n z̆(1) , and let
M∗

= Mσ ∗

F̆
. Let �M =�σ

M̆
and �M∗ =�σ ∗

M̆
. Similarly define �M,ad and �M∗,ad. By

[Ganapathy 2022, Lemma 3.2] we have �M = �M∗ and �M,ad = �M∗,ad ∼= Z/nZ.
The group j (�M) ⊂ �M,ad is cyclic. Assume [�M,ad : j (�M)] = r and that
j (�M) ̸= 0. Let τ̆0 ∈ �M ⊂ �σ

M̆
be such that j (τ̆0) is a generator of j (�M).

Then j (τ̆0) = ν̆r
adσ(ν̆ad)

r
· · · σ k−1(ν̆ad)

r . Write τ̆0 = tλ̆0
y̆0, where λ̆0 ∈ X∗(T )σIF

and y̆0 ∈ W (M, S). Note that y̆0 = (z̆(1))rσ(z̆(1))r
· · · σ f −1(z̆(1))r . We may and do

assume that λ̆0 ∈ (X∗(T )IF /tor)σ . Let nλ̆0
∈ T (F̆) be as in Lemma 2.1. Note that

nλ̆0
may not be fixed by σ . Let n y̆0 := nr

z̆(1)σ(nr
z̆(1)) · · · σ f −1(nr

z̆(1)).

Lemma 2.2. Let τ̆0 be as in the preceding paragraph. There exists v ∈ T (F̆)1 such
that nτ̆0 = vnλ̆0

n y̆0 ∈ M∗(F) and κM∗,F (nτ̆0) = τ̆0.

Proof. Recall that we have fixed representatives {nλ̆ | λ̆ ∈ X∗(T )IF /tor} that forms a
group. Note that σ(λ̆0)= λ̆0 and σ(y̆0)= y̆0. Let us compute σ ∗(nλ̆0

n y̆0). Using the
definition of n y̆0 , we have σ(n y̆0) = n y̆0 . Using [Ganapathy 2022, Lemma 3.1(b)],
we have

σ ∗(nλ̆0
n y̆0) = σ ∗(nλ̆0

)n
λ̆

(1)
ad,n−1−y̆0(λ̆

(1)
ad,n−1)

n y̆0 .

Now,
u = σ ∗(nλ̆0

)n−1
σ ∗(λ̆0)

∈ T (F̆)1

since its image under κT,F̆ is 0. Since H 1(σ ∗, T (F̆)1) = 1, there exists v ∈ T (F̆)1

such that σ ∗(v)v−1
= u−1. Now σ ∗(vnλ̆0

) = vu−1σ ∗(nλ̆0
) = vnσ ∗(λ̆0)

. Then

σ ∗(vnλ̆0
n y̆0) = vnσ ∗(λ̆0)

n
λ̆

(1)
ad,n−1−y̆0(λ̆

(1)
ad,n−1)

n y̆0 = vn
σ ∗(λ̆0)+λ̆

(1)
ad,n−1−y̆0(λ̆

(1)
ad,n−1)

n y̆0 = vnλ̆0
n y̆0 .

The second equality follows from Lemma 2.1 and that λ̆
(1)
ad,n−1 − y̆0(λ̆

(1)
ad,n−1) ∈

X∗(Tsc)IF ⊂ X∗(T )IF /tor. To get the third equality, note that from the proof of
[Ganapathy 2022, Lemma 3.2], σ ∗(λ̆0)−σ(λ̆0) = λ̆

(1)
ad,n−1−(Ad(z(1))(y̆0))(λ̆

(1)
ad,n−1)

but σ(λ̆0) = λ̆0 and Ad(z(1))(y̆0) = y̆0. This finishes the proof of the lemma. □

Now, given τ̆ = tλ̆w̆ ∈ �M with tλ̆ ∈ X∗(T )IF and w̆ ∈ W (M, S), we have
j (τ̆ ) = s j (τ̆0) for a unique nonnegative integer s with 0 ≤ s < n/r . Let µ̆ = τ̆ −sτ̆0.
Write µ̆ = tµ̆0 · w̆0 ∈ �M . Then j (τ̆ ) = s j (τ̆0) implies that w̆ = y̆s

0, so w̆0 = 1
and the element µ̆ is just given by the translation tµ̆0 ∈ X∗(T )IF . We identify µ̆

and µ̆0. Since σ fixes τ̆ and τ̆0, we have σ(µ̆) = µ̆. We claim that σ ∗(µ̆) = µ̆. To
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see this, note that since j (µ̆) = 0, we have that j (Ad(z̆(1))(µ̆)− µ̆) = 0, but since
Ad(z̆(1))(µ̆) − µ̆ ∈ X∗(Tsc)IF , and since j acts as identity on X∗(Tsc)IF , it follows
that Ad(z̆(1))(µ̆) − µ̆ = 0. This then implies that σ ∗(µ̆) = Ad(z̆(1))(µ̆) = µ̆. So
µ̆ ∈ X∗(T )σ

∗

IF
. Set nτ̆ = nµ̆ns

τ̆0
with nµ̆ ∈ T ∗(F) satisfies κT ∗,F (nµ̆) = µ̆.

Proposition 2.3. Let τ̆ ∈�M∗ =�M . Then σ ∗(nτ̆ )= nτ̆ . In particular, nτ̆ ∈ M∗(F)

and p̃ : �M∗ → M∗(F), τ̆ 7→ nτ̆ , is a (set-theoretic) section of κM∗,F .

Proof. It suffices to prove that σ ∗(nτ̆0) = nτ̆0 , but this is Lemma 2.2. □

2B. Modifications to [Ganapathy 2022, Section 3B]. Via Delm , we have isomor-
phisms X∗(T ) ∼= X∗(T ′) and X∗(Tad) ∼= X∗(T ′

ad) that are 0F/I m
F -equivariant, and

�M̆
∼= �M̆ ′ and �M̆ad

∼= �M̆ ′

ad
. We identify these groups via these isomorphisms.

We construct ∇T ′,F̆ ′ : X∗(T )IF /tor → T ′(F̆ ′), λ̆ 7→ n′

λ̆
, and ∇T ′

ad,F̆ ′ : X∗(Tad)IF →

T ′

ad(F̆ ′), λ̆ 7→ nλ̆, exactly as in Lemma 2.1, but with ϖF̃ replaced with ϖF̃ ′ where
ϖF̃ mod prm

F̃
7→ ϖF̃ ′ mod p′rm

F̃
as in Lemma 1.2. Let τ̆0 be as in Lemma 2.2. Let

n′

λ̆0
, n′

σ ∗(λ̆0)
∈ T ′(F̆ ′) be such that under T̆m , nλ̆0

mod T̆m 7→ n′

λ̆0
mod T̆ ′

m , and simi-
larly for n′

σ ∗(λ̆0)
. Then, since T̆m is σ ∗-equivariant, we have u mod T̆m 7→ u′ mod T̆ ′

m ,
where u′

= σ ′∗(n′

λ̆0
)n′−1

σ ′∗(λ̆0)
. By the proof of the fact that H 1(σ ∗, T (F̆)1) = 1 [Serre

1979, Chapter XII, §3, Lemma 3], it follows that we may choose v′
∈ T (F̆)1

such that σ ∗(v′)v′−1
= u′−1 and such that v mod T̆m 7→ v′ mod T̆ ′

m . Let n′

y̆0
=

n′r
z̆(1)σ

′(n′

z̆(1))
r
· · · σ f −1(n′

z̆(1))
r . Set n′

τ̆0
= v′n′

λ̆0
n′

y̆0
. Given τ̆ ∈ �M , we may write

τ̆ = µ̆+ sτ̆0 for a unique 0 ≤ s < n/r as in the paragraph preceding Proposition 2.3.
Set n′

τ̆
= n′

µ̆
n′s

τ̆0
where n′

µ̆
∈ T ′∗(F ′) with T ∗

m (nµ̆ mod T ∗
m) 7→ n′

µ̆
mod T ′∗

m . Note
that κT ′∗,F ′(n′

µ̆
) = µ̆ by Section 1B. By Proposition 2.3, n′

τ̆
∈ M ′∗(F ′).

Proposition 2.4 [Ganapathy 2022, Proposition 3.4]. Let m ≥ 1 and let e ≥ m + 4h.
If the fields F and F ′ are e-close, then we have an isomorphism M∗(F)/M∗

m
∼=

M ′∗(F ′)/M ′∗
m .

Proof. The proof given in [Ganapathy 2022, Proposition 3.4] works with straight-
forward modifications.

Consider the set theoretic section p̃ : �M∗ → M∗(F) in Proposition 2.3 and let
p be its composition with the natural projection M∗(F) → M∗(F)/M∗

m . Similarly,
we get p̃′

: �M∗
p̃

−→ M ′∗(F ′) and p′.
It suffices to prove that the sections p and p′ satisfy (a) and (b) of [Ganapathy

2022, Proposition 3.4].
To see (a), it suffices to prove that

M∗(F)1/M∗
m M ′∗(F ′)1/M ′∗

m

M∗(F)1/M∗
m M ′∗(F ′)1/M ′∗

m

∼=

Inn(nτ̆ ) Inn(n′

τ̆
)

∼=
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is commutative for τ̆ ∈ �M∗ . Let P̆ be the Iwahori subgroup of M(F̆) (= M∗(F̆))
attached to the σ -stable alcove ă and let P̆ ′ be the corresponding Iwahori subgroup
of M ′(F̆ ′). Then by [Ganapathy 2019, Theorem 4.5], we have that P̆/P̆m ∼= P̆ ′/P̆ ′

m .
Since ν̆ad ∈ �ă,ad, the alcove ă is also σ ∗-stable. By Propositions 4.10 and 6.2
in [Ganapathy 2019], the isomorphism P̆/P̆m ∼= P̆ ′/P̆ ′

m is σ - and σ ∗-equivariant.
This implies that P̆ ∩ M∗(F) = M∗(F)1, P̆m ∩ M∗(F) = M∗

m and similarly that
P̆ ′

∩ M ′∗(F ′) = M ′∗(F ′)1, P̆ ′
m ∩ M ′∗(F ′) = M ′∗

m . Since τ̆ ∈ �M∗ = �σ ∗

ă ⊂ �ă , we
see that nτ̆ normalizes P̆ and P̆m . To finish the proof of (a), it suffices to observe
that the following diagram is commutative:

P̆/P̆m P̆ ′/P̆ ′
m

P̆/P̆m P̆ ′/P̆ ′
m

∼=

Inn(nτ̆ ) Inn(n′

τ̆
)

∼=

This follows by arguing as in the proof of [Ganapathy 2019, Proposition 6.2].
Let us prove (b). The element nn/r

y̆0
equals ă∨(−1) ∈ M∗(F)1 for a suitable

ă ∈ 8̆(M, S).
Let τ̆1, τ̆2 ∈ �M∗ . As in the proof of Proposition 2.3, write τ̆i = µ̆i + si τ̆0, and

τ̆1 + τ̆2 = µ̆ + sτ̆0. Note that s mod (n/r) ≡ s1 + s2 mod (n/r).
Recall that nµ̆, nµ̆1, nµ̆2 ∈ T ∗(F) and nµ̆ mod T ∗

m 7→ n′

µ̆
mod T ′∗

m and for i = 1, 2,
nµ̆i mod T ∗

m 7→ n′

µ̆i
mod T ′∗

m . Write ns
τ̆0

= tsns
y̆0

where ts ∈ T (F̆). Similarly write
n′s

τ̆0
= t ′

sn′s
y̆0

. Then it is straightforward to see that ts mod T̆m 7→ t ′
s mod T̆ ′

m via T̆m .
The same claim holds for tsi , i = 1, 2. Also, ă∨(−1) mod T̆m → ă′∨(−1) mod T̆m .
Finally, we note that nτ̆1+τ̆2n−1

τ̆1
n−1

τ̆2
∈ M∗(F)1∩T (F̆) and by [Ganapathy 2019, Proof

of Proposition 6.2 and Corollary 6.3], we see that on the subgroup M∗(F)1 ∩ T (F̆)

the isomorphism of [Ganapathy 2019, Corollary 6.3] restricts to T ∗
m . Hence the

sections p, p′ satisfy (b). □
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