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EQUIVARIANT MIN-MAX HYPERSURFACE IN G-MANIFOLDS
WITH POSITIVE RICCI CURVATURE

TONGRUI WANG

We consider a connected orientable closed Riemannian manifold Mn+1

with positive Ricci curvature. Suppose G is a compact Lie group acting
by isometries on M with 3 ≤ codim(G · p) ≤ 7 for all p ∈ M. Then we
show the equivariant min-max G-hypersurface 6 corresponding to one-
parameter G-sweepouts (of boundary-type) is a multiplicity one minimal
G-hypersurface with a G-invariant unit normal and G-equivariant index one.
As an application, we are able to establish a genus bound for 6, a control on
the singular points of 6/G, and an upper bound for the (first) G-width of M
provided n + 1 = 3 and the actions of G are orientation preserving.

1. Introduction

Given a connected orientable closed Riemannian manifold (Mn+1, gM ), minimizing
the area within a nontrivial homology class is a natural way to construct mini-
mal hypersurfaces (see [12; 36]). However, if M has positive Ricci curvature,
it follows from the stability inequality that this minimization method cannot be
applied. In the 1960s, Almgren [1; 2] proposed the min-max theory to find minimal
submanifolds in the most general situation. Subsequently, the regularity for min-
max hypersurfaces was improved by Pitts [30] (n ≤ 5) and Schoen and Simon [34]
(n = 6). Indeed, for n ≥ 7, they showed the min-max minimal hypersurface is
smooth embedded except for a singular set of codimension 7.

Due to the generality and abstractness of Almgren–Pitts min-max theory, many
of the geometric properties of min-max hypersurfaces have not been understood
until recently. For instance, in a closed manifold with positive Ricci curvature, a
series of studies were set out to characterize the min-max hypersurfaces generated
from one-parameter families. Specifically, using the Heegaard splitting, Marques
and Neves [20] studied the index and genus of the min-max surface in certain 3-
manifolds. They also obtained sharp estimates for the width and rigidity results. In a
higher-dimensional manifold Mn+1 with positive Ricci curvature, Zhou determined
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the Morse index and multiplicity of the min-max hypersurface for 3 ≤ n + 1 ≤ 7
in [43] and for n ≥ 7 in [44]. Subsequently, Ketover, Marques, and Neves [17]
refined Zhou’s results in dimension 3 ≤ n + 1 ≤ 7 by showing the orientability of
the min-max hypersurface using the catenoid estimates. In particular, the min-max
hypersurface is an orientable closed minimal hypersurface of Morse index one and
has the least area among all orientable closed minimal hypersurfaces. Furthermore,
without any curvature assumption, the constructions in [20; 43] were also employed
by Mazet and Rosenberg [25] to show the least area minimal hypersurface is either
stable or a min-max hypersurface of Morse index one.

Given a 3-manifold M with a finite group G acting by isometries, Pitts and Rubin-
stein [31; 32] first asserted the existence of a G-invariant minimal surface with esti-
mates on its index and genus. The existence and regularity of minimal G-invariant
surfaces (abbreviated as G-surfaces) were recently confirmed by Ketover [15] (for
finite G of orientation preserving isometries) using the equivariant min-max under
the smooth setting. More generally, suppose Mn+1 is a closed Riemannian manifold
with a compact Lie group G acting by isometries so that 3 ≤ codim(G · p)≤ 7 for all
p ∈ M . The equivariant min-max theory was also extended to this general scenario
by Liu [19] (for connected G with minp∈M codim(G ·p) ̸=0, 2) in the smooth setting
and by Wang [39; 40] in the Almgren–Pitts setting. In particular, Wang [39, Theo-
rem 9] showed an isomorphism between Hn+1(M; Z2) and π1(ZG

n (M; Z2)), where
ZG

n (M; Z2) is the space of G-invariant n-cycles (of boundary-type, see geometric
measure theory). Then it is similar to the constructions of Almgren–Pitts (see [30])
that the fundamental class [M] ∈ Hn+1(M; Z2) corresponds to the (first) equivariant
min-max width W G(M) > 0 of M defined with one-parameter G-sweepouts (see
Definition 2.7 and [30, Corollary 4.7]), which can be realized by the area of some
minimal G-invariant hypersurfaces (abbreviated as G-hypersurfaces) with multiplic-
ities. Therefore, it now seems reasonable to investigate the geometric features of the
equivariant min-max hypersurface, such as its area, multiplicity, index, and topology.

In this paper, our main result generalizes the characterization of the min-max
hypersurface into an equivariant version (see Theorem 5.1).

Theorem 1.1. Let (Mn+1, gM ) be a connected orientable closed Riemannian mani-
fold with positive Ricci curvature, and G be a compact Lie group acting by isome-
tries on M so that 3≤codim(G·p)≤7 for all p ∈ M. Then the equivariant min-max
hypersurface 6 corresponding to the fundamental class [M] ∈ Hn+1(M; Z2) is a
multiplicity one minimal G-hypersurface so that:

(i) 6 has a G-invariant unit normal vector field.

(ii) The equivariant Morse index of 6 (Definition 4.1) is one.

(iii) 6 has the least area among all closed embedded minimal G-hypersurfaces
with G-invariant unit normal vector fields.
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Remark 1.2. We make some remarks about the above theorem:

(i) If M has connected components {Mi }
m
i=1, then we can take a component Mi

and the Lie subgroup Gi := {g ∈ G : g · Mi = Mi }. By applying the above theorem
to Mi and Gi , we obtain a minimal Gi -invariant hypersurface6i of multiplicity one.
Additionally, one easily verifies that G ·6i ⊂ G · Mi is a minimal G-hypersurface
satisfying (i)–(iii) in Theorem 1.1 with G · Mi in place of M .

(ii) Without the positive Ricci curvature assumption, we can combine the proof
of Theorem 1.1 and the constructions in [25] to show the existence of a minimal
G-hypersurface of the least area (counted with multiplicity) among all minimal
G-hypersurfaces. The details will be discussed in an upcoming paper.

Equivariant vs nonequivariant. Note that Theorem 1.1 is an equivariant generaliza-
tion of the results in [17; 43] where G = {id}. Nevertheless, due to the equivariant
constraints, the equivariant min-max hypersurface exhibits slightly stronger proper-
ties (e.g., the unit normal not only exists but also it is G-invariant). Additionally, it
should be noted that the equivariant constraints generally have a significant impact
on the min-max outcomes. Indeed, if we denote by W (M) = W {id}(M) (resp.
W G(M)) and 6 (resp. 6G) the first (resp. equivariant) min-max width and the
corresponding first (resp. equivariant) min-max hypersurface, then we generally
have W (M)≤ W G(M) without the equality. Moreover, even if6 is G-invariant and
W (M)= W G(M), 6 may not necessarily be the equivariant min-max hypersurface
corresponding to W G(M). One can easily observe these phenomena from the
following examples.

Example 1.3 (W (M)≤ W G(M) without equality). Let M = S3 be the unit sphere
with the standard round metric. Then W (S3) = 4π is realized by the area of the
equator 6 = S2 [29]. Next, take G = Z2 acting on S3 by the antipodal map so that
π : M = S3

→ M/G = RP3 is a (locally isometric) double cover. Hence, π(6G)

is the first min-max hypersurface in RP3 corresponding to W (RP3). Therefore,
although 6 is G-invariant, it can not be 6G , because π(6) = RP2 is 1-sided,
while π(6G) ⊂ RP3 must be 2-sided [17; 43]. Indeed, it follows from [3] that
W Z2(S3)= 2W (RP3)= 2π2 is realized by the area of the Clifford torus.

Example 1.4 (6 ̸= 6G even if W = W G). Let M = S3
= {x ∈ R4

: |x | = 1},
and G = Z2 act by the reflection (x1, x2, x3, x4) 7→ (−x1, x2, x3, x4). Then we
have M/G = S3

+
= {x ∈ S3

: x1 ≥ 0}. Note the Z2-equivariant minimal hy-
persurfaces and Z2-sweepouts in S3 correspond one-to-one to the free boundary
minimal hypersurfaces and (relative) sweepouts in S3

+
. Thus, 6G/G is the first

min-max free boundary minimal hypersurface in S3
+

corresponding to W (S3
+
).

Therefore, W Z2(S3) = 2W (S3
+
) = 4π = W (S3) realized by the area of a great

2-sphere 6G = S2 perpendicular to {x1 = 0}. (As an example, take the Z2-sweepout
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{S3
∩{x2 = t}}t∈[−1,1].) Meanwhile, we notice 6= S3

∩{x1 = 0} is G-invariant and
is also a min-max hypersurface corresponding to W (S3). However, since6/G = S2

is not the free boundary min-max hypersurface corresponding to W (S3
+
), we have

6 ̸=6G in this case.

One should also notice that in the above examples, 6G admits a G-invariant unit
normal, while the unit normal of6 is not G-invariant. Intuitively, this is because our
equivariant sweepouts are formed by the boundaries of G-invariant (Caccioppoli)
sets admitting a (measure-theoretic) inward G-invariant unit normal. Hence, if
a G-invariant min-max hypersurface 6 does not have a G-invariant unit normal,
then 6 cannot be a boundary of a G-invariant (Caccioppoli) set, and the min-max
sequence |∂�ti | must converge to 6 with even multiplicities (Theorem 3.8) so that
the constructions in [17; 43] can be generalized to derive Theorem 1.1.

Remark 1.5. To ensure W G(M) is well defined for any M and G, we only use the
boundaries of G-invariant (Caccioppoli) sets in the equivariant min-max construc-
tions in this paper. Note, for some specific choices of M,G, one may construct
the equivariant min-max using “G-hypersurfaces without G-invariant unit normal”,
and Theorem 1.1(i) may fail in this case (see, e.g., [16]). Similarly, the results
in [43] may not be applicable for nonboundary-type min-max constructions (without
equivariance).

Further discussions and applications. We will now delve deeper into some inspi-
rations and potential applications of Theorem 1.1.

Firstly, one notices that the existence of a G-invariant unit normal can help to
distinguish the min-max G-hypersurface 6 and the fixed points set under certain
Z2 actions. For instance, consider a positive Ricci curvature 3-ellipsoid M with
its major axis (on x1) sufficiently long and the other principal axes bounded by 2.
Then the classical min-max theory shall provide the equator 0 = {x1 = 0} ∩ M on
the major axis as the min-max hypersurface. Although 0 is also invariant under
the Z2-reflections (x1, x ′) 7→ (−x1, x ′), it cannot be the min-max Z2-hypersurface
since its unit normal is not Z2-invariant. An interesting question is what exactly is
the min-max Z2-hypersurface in this case, and how does it relate to the 2-min-max
minimal hypersurfaces?

In addition, we see that the characterizations of the Morse index and multiplicity
for min-max hypersurfaces are crucial in the study of min-max theory. For instance,
a key part in the proof of the Willmore conjecture by Marques and Neves [21] is to
show the minimal surface in S3 constructed by the five-parameter families of min-
max has Morse index 5. Additionally, by specifying generically the multiplicity [45]
and index [22; 24] of min-max hypersurfaces, the multiparameter min-max theory
was used to establish the Morse theory for the area functional. In the equivariant
case, Wang [41] also proved general upper bounds for the G-index (Definition 4.1)
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of equivariant min-max hypersurfaces generated from multiparameter families.
Therefore, in light of Theorem 1.1 and Zhou [45], we conjecture that for a generic
G-invariant Riemannian metric, the minimal G-hypersurface constructed from
k-parameter families of equivariant min-max shall have multiplicity one, G-index k,
and a G-invariant unit normal.

Moreover, it has been discovered in numerous studies that the Morse index of
a minimal surface is related to its topology. For instance, in a closed 3-manifold
with positive Ricci curvature, Choi and Schoen [8] proved the area of a closed
minimal surface can be bounded by its genus. Therefore, by Ejiri and Micallef [11,
Theorem 4.3], the index of a such minimal surface is also bounded by its genus.
Additionally, using the conformal volume, Yau (see [35, Chapter VIII, Section 4])
obtained a genus bound for index one minimal surfaces in positive Ricci curvature
manifolds. More generally, in an orientable 3-manifold with nonnegative Ricci
curvature, it follows from the sharp estimate of Ros [33, Theorem 15] that a closed
orientable minimal surface of index one must have genus ≤ 3. Recently, Song [37]
showed that the total Betti number of a closed minimal hypersurface in Mn+1,
3 ≤ n +1 ≤ 7, can be bounded by its index and a constant depending only on n, gM ,
and its area, which further indicates a quantified relation [37, Corollary 3] between
the genus and index of a minimal surface in M3. For a complete two-sided minimal
surface in R3, Chodosh and Maximo [6] showed that its genus and the number of
ends give a lower bound on its index. We refer to [7; 26] for more related research.

Hence, as an application, we use the conformal volume initiated by Li and
Yau [18] in the orbit space to show a general genus bound of the equivariant min-
max surface in a 3-manifold with positive Ricci curvature, which further indicates
an upper bound of the G-width and a bound for the singular points of 6/G (see
Theorem 5.2).

Theorem 1.6. Let (M3, gM ) be a closed connected oriented Riemannian 3-manifold
with positive Ricci curvature, and G be a finite group acting on M by orientation
preserving isometries. Then the equivariant min-max hypersurface6 corresponding
to the fundamental class [M] is a connected minimal G-hypersurface of multiplic-
ity one with

genus(6)≤ 4K , W G(M)= Area(6)≤
8πK
cM

,

where K := maxp∈M #G · p ≤ #G is the number of points in a principal orbit of M ,
and RicM ≥ cM > 0. Additionally, the quotient space π(6)=6/G is an orientable
surface with finite cone singular points of order {ni }

k
i=1 so that

k∑
i=1

(
1 −

1
ni

)
< 4 and genus(π(6))≤ 3.

In particular, if 6/G has no singularity, then genus(6)≤ 1 + 2K .
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Remark 1.7. To generalize Li–Yau’s [18] theory to the orbit spaces, G-actions in
Theorem 1.6 are assumed to be orientation preserving isometries so that M/G and
6/G induce orientable orbifolds without boundary.

The conformal method has been employed in many studies for the volume
spectrum, i.e., the multiparameter version of width. For the first width W (M) in the
volume spectrum, Glynn-Adey and Liokumovich [13] gave an upper bound using the
min-conformal volume of the ambient manifold. In particular, if M is a closed sur-
face, they showed the first width W (M) can be bounded by the genus and area of M .
Also, the conformal upper bounds for the volume spectrum were proved in [38].

Main ideas and outline. The main idea for Theorem 1.1 is as follows. For the closed
manifold M and the Lie group G in Theorem 1.1, we can take any closed embedded
minimal G-hypersurface 6 in M and use the variation of its first eigenvector field
to foliate a G-neighborhood of 6. Using a half-space version of the equivariant
min-max theory (Theorem 3.11), we argue by contradiction to show this local
G-equivariant foliation can be extended to a continuous G-sweepout of M with
mass no more than Area(6) (if 6 has a G-invariant unit normal) or 2 Area(6).
Therefore, it follows from the equivariant min-max theory [39, Theorem 8] (see
also [40, Theorem 4.20]) that the equivariant min-max hypersurface is the minimal
G-hypersurface of least area in the sense of (5-1). Additionally, if the equivariant
min-max hypersurface does not admit a G-invariant unit normal, it must have even
multiplicity by the constructions of equivariant min-max (Theorem 3.8). However,
in this case, we can further use the catenoid estimates of Ketover et al. [17] to
add small G-invariant cylinders in the G-sweepouts (Proposition 4.7), which will
strictly decrease the mass and give a contradiction.

The above idea shares the same spirit as in [43]. However, since the equivariant
min-max theory was already established in a continuous version [39, Theorem 8],
we do not need to invoke the smooth setting of min-max (see [10]) as in [43,
Section 2], but give a more self-contained equivariant min-max construction in half
spaces (Theorem 3.11). Meanwhile, instead of using the discretization theorem
as in [43, Theorem 5.8], we can more easily determine that the extension of the
G-equivariant foliation is a G-sweepout.

The article is organized as follows. In Section 2, we collect some notations and
definitions of Lie group actions and geometric measure theory. In particular, we intro-
duce the G-equivariant sweepouts and G-width of M in a continuous version using
the isomorphic map between π1(ZG

n (M; Z2)) and Hn+1(M; Z2). Then we introduce
in Section 3 the equivariant min-max theory developed by Wang [39; 40] under the
Almgren–Pitts setting with some modifications. In Section 4, we will generate a
continuous G-sweepout with good properties from a given minimal G-hypersurface.
The proof of the main theorem and its applications are given in Section 5.
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2. Preliminary

Let (Mn+1, gM ) be an orientable connected compact Riemannian (n + 1)-manifold
and G be a compact Lie group acting isometrically on M . Denote by µ a biinvariant
Haar measure on G normalized to µ(G)= 1. For the case that ∂M ̸= ∅, it follows
from [40, Lemma A.1] that M can be equivariantly and isometrically extended to a
closed Riemannian manifold (N , gN ) with G acting on N by isometries. Therefore,
we can assume M is a compact domain of a closed Riemannian G-manifold N .

Note that although our main results only involve closed minimal G-hypersurfaces
in closed G-manifolds, we also need a half-space version of equivariant min-max to
insert any closed embedded minimal G-hypersurface into a good G-sweepout (see
main ideas and outline). Hence, we also include some terminologies and results
in this paper concerning G-equivariant min-max in compact G-manifolds with
nonempty boundary.

Lie group actions. To begin with, we gather some definitions of Lie group actions,
most of which are referred from [4; 5].

It follows from [28] that there is an orthogonal representation ρ : G → O(L)
and an isometric embedding i : M ↪→ RL for some L ∈ N so that i is equivariant,
i.e., i ◦ g = ρ(g) ◦ i . For simplicity, we regard M as a subset of RL and denote
the orthogonal action of g ∈ G on x ∈ RL as g · x . We say a subset (hypersurface)
A ⊂ M is a G-subset (G-hypersurface) if g · A = A for all g ∈ G.

For any p ∈ M , let G · p := {g · p : g ∈ G} be the orbit containing p and
G p := {g ∈ G : g · p = p} be the isotropy group of p. Note G · p is a closed
submanifold of M and G p is a Lie subgroup of G. We then say p has (G p) orbit-
type, where (G p) is the conjugacy class of G p in G. By [4, Proposition 2.2.4],
there is a (unique) minimal conjugacy class (P) of isotropy groups so that Mprin

=

M(P) := {p ∈ M : (G p) = (P)} is an open dense G-subset of M . We call any
G · p ⊂ Mprin a principal orbit of M and denote by Cohom(G) the codimension of
a principal orbit, which is known as the cohomogeneity of the actions of G.

Let M/G be the quotient space, i.e., the orbit space, and π be the projection
π : M → M/G, p 7→ [p]. It is well known that M/G is a Hausdorff metric space
with induced metric distM/G([p], [q]) := distM(G · p,G · q).

Denote by Br (p), Br ([p]), and Bk
r (p) the geodesic ball in M (or in N if ∂M ̸=∅),

the metric ball in M/G, and the Euclidean ball in Rk respectively. Then we use the
following notations:

• X(M),X(U ): the space of smooth vector fields compact supported in M or
U ⊂ M .

• XG(M),XG(U ): the space of G-vector fields X in M or U , (g∗ X = X for all
g ∈ G).
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• BG
ρ (p): the open geodesic tube with radius ρ around the orbit G · p in M (or

in N if ∂M ̸= ∅).

• AnG(p, s, t): the open tube BG
t (p) \ BG

s (p).

For any closed G-hypersurface 6 ⊂ M , denote by N6 its normal bundle with G
acting on it by g · v := g∗v for all g ∈ G, v ∈ N6. Let exp⊥

6 : N6 → M be the
normal exponential map of 6. Note exp⊥

6 is a G-equivariant diffeomorphism in a
neighborhood of 6.

Geometric measure theory. We refer to [12; 30; 36] for the following definitions:
• Ik(M; Z2): the space of k-dimensional mod 2 flat chains in RL with support

contained in M .

• Zn(M; Z2): the space of T ∈ In(M; Z2) with T = ∂U for U ∈ In+1(M; Z2),
i.e., the boundary-type mod 2 n-cycles.

• Vk(M): the weak topological closure of the space of k-dimensional rectifiable
varifolds in RL with support contained in M .

Let F and M be the flat (semi)norm and the mass norm in Ik(M; Z2) [12, 4.2.26].
Define the F-metric on Vk(M) as in [30, p. 66]. Then F induces the weak topology
on any mass bounded subset {V ∈ Vk(M) : ∥V ∥(M)≤ C}, where C > 0 and ∥V ∥

is the Radon measure on M induced by V .
For any T ∈ Ik(M; Z2), we denote |T | and ∥T ∥ as the integral varifold and the

Radon measure induced by T . Then we define the F-metric on Ik(M; Z2) by

F(S, T ) := F(S − T )+ F(|S|, |T |) for all S, T ∈ Ik(M; Z2).

It follows from [30, p. 68] that for any T, {Ti }i∈N ⊂ Zn(M; Z2),

(2-1) lim
i→∞

F(Ti , T )= 0 ⇔ lim
i→∞

F(Ti , T )= 0 and lim
i→∞

M(Ti )= M(T ).

For v ∈ {M , F, F}, let Ik(M; v; Z2) and Zn(M; v; Z2) be the spaces with topology
induced by v. Additionally, we denote by [[0]] the element in Ik(M; Z2) induced
by a k-submanifold 0 ⊂ M .

We say T ∈ Ik(M; Z2) (or V ∈ Vk(M)) is G-invariant if g#T = T (g#V = V )
for all g ∈ G. Then we have the following subspaces of G-invariant elements:

• I G
k (M; Z2) := {T ∈ Ik(M; Z2) : g#T = T for all g ∈ G}.

• ZG
n (M; Z2) := {T ∈ Zn(M; Z2) : T = ∂U for some U ∈ I G

n+1(M; Z2)}.

• VG
k (M) := {V ∈ Vk(M) : g#V = V for all g ∈ G}.

Remark 2.1. Note ZG
n (M; Z2) ⊊ {T ∈ Zn(M; Z2) : g#T = T for all g ∈ G} in

general, and intuitively, T ∈ ZG
n (M; Z2) is not only a boundary that is G-invariant

but also “bounds a G-invariant region”. This is essential to derive Theorem 1.1(i)
as explained in Remark 1.5.
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Since G acts by isometries, I G
k (M; Z2), ZG

n (M; Z2), and VG
k (M) are closed

subspaces with induced metrics M,F, F. Moreover, we have the following isoperi-
metric lemma (see [39, Lemma 5]), which is also valid when ∂M ̸= ∅.

Lemma 2.2. There are ϵM > 0, CM > 1 such that for any T1, T2 ∈ I G
n (M; Z2) with

∂T1 = ∂T2 = 0, and
F(T1 − T2) < ϵM ,

there is a unique Q ∈ I G
n+1(M; Z2), called the isoperimetric choice of T1, T2,

satisfying

(i) ∂Q = T1 − T2,

(ii) M(Q)≤ CM ·F(T1 − T2).

For any V ∈ Vn(M) and X ∈ X(M), the first variation of V along X is given by

δV (X) :=
d
dt

∣∣∣
t=0

∥(Ft)#V ∥(M)=

∫
Gn(M)

divS(X)(p) dV (p, S),

where {Ft } are the diffeomorphisms generated by X , and Gn(M) is the Grassman-
nian bundle of unoriented n-planes over M . Suppose V ∈ VG

n (M) is G-invariant
and U ⊂ M is an open G-subset, then we say:

• V is stationary in U if δV (X)= 0 for all X ∈ X(U ).

• V is G-stationary in U if δV (X)= 0 for all X ∈ XG(U ).

Clearly, a stationary G-varifold must be G-stationary. Meanwhile, let

(2-2) XG :=

∫
G
(g−1)∗ X dµ(g) for all X ∈ X(U ).

A direct computation shows XG ∈XG(U ) and δV (X)=δV (XG) for any V ∈VG
n (M)

(see [19, Lemma 2.2]). Hence, we have:

(2-3) V ∈ VG
n (M) is stationary in U if and only if it is G-stationary in U .

G-Sweepouts and G-width. To define the equivariant sweepouts and width, we
need to introduce a technical assumption:

Definition 2.3. For any F-continuous map 8 : [0, 1] → ZG
n (M; Z2), define

mG(8, r) := sup{∥8(x)∥(BG
r (p)) : x ∈ [0, 1], p ∈ M},

where BG
r (p) is the geodesic r -neighborhood of G · p in M (or in N if M ⊂ N has

nonempty boundary). Then we say 8 has no concentration of mass on orbits if
limr→0 mG(8, r)= 0.

By (2-1) and a continuous argument, we have the following lemma (see [39,
Lemma 8]), which is quite useful in Section 3.
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Lemma 2.4. If 8 : [0, 1] → ZG
n (M; Z2) is F-continuous, then 8 has no concen-

tration of mass on orbits and supx∈[0,1] M(8(x)) <∞.

Closed G-manifolds. In this case, ∂M =∅. Then for any F-continuous closed curve
8 : [0, 1] → ZG

n (M; Z2), 8(0)=8(1), we can take a j = j/3k , j = 0, 1, . . . , 3k

with k ∈ N large enough so that

(2-4) F(8(x)−8(y))≤ ϵM for all x, y ∈ [a j , a j+1],

where ϵM > 0 is given by Lemma 2.2. By Lemma 2.2, there is Q j ∈ I G
n+1(M; Z2)

with ∂Q j = 8(a j+1) − 8(a j ) and M(Q j ) ≤ CM F(8(a j+1) − 8(a j )), where
j = 0, 1, . . . , 3k

− 1. Therefore, Q :=
∑3k

−1
j=0 Q j ∈ I G

n+1(M; Z2) satisfies ∂Q = 0,
which indicates Q = [[M]] or 0 by the constancy theorem [36, 26.27]. Hence, we
can correspond 8 to a homology class:

(2-5) FM(8) := [Q] ∈ Hn+1(Mn+1
; Z2).

By the constancy theorem, FM(8) does not depend on the choice of k. Moreover,
by [39, Remark 2] and the arguments in [1], we have FM(8) = FM(8

′) for any
closed curve 8′ that is homotopic to 8 in ZG

n (M;F; Z2), and FM induces an
isomorphism [39, Theorem 9]:

FM : π1(ZG
n (M; Z2))→ Hn+1(M; Z2).

In the above, we do not need to specify the base point of π1(ZG
n (M; Z2)). This is

because ZG
n (M; Z2) is the F-path connected component of I G

n (M;Z2)∩Zn(M;Z2)

containing 0 (by Lemma 2.2 and the contraction approach in [24, Claim 5.3]).

Definition 2.5 (G-sweepout). A closed F-continuous curve 8 : S1
→ ZG

n (M; Z2)

is said to be a G-sweepout of M if FM(8)= [M] ̸= 0.

Remark 2.6. Since ZG
n (M; Z2) is F-path connected, every two G-sweepouts are

homotopic to each other in ZG
n (M;F; Z2). Hence, the set of G-sweepouts of M is

exactly the nontrivial homotopy class of closed curves in ZG
n (M; Z2).

Next, we introduce the min-max G-width of M , which can be regarded as a
critical value for the area functional with respect to all variations by (2-3).

Definition 2.7 (G-width). Let PG(M) be the set of G-sweepouts of M with no
concentration of mass on orbits. Then we define the G-width of M by

W G(M) := inf
8∈PG(M)

sup
x∈S1

M(8(x)).
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Compact G-manifolds with boundary. Now we consider the case that ∂M ̸= ∅,
and regard M as a compact domain of a closed Riemannian G-manifold N . Let FN

be given by (2-5), and ν∂M be the unit normal of ∂M pointing inward M . Then
for η > 0 small enough, define

(2-6) Mη := M \ exp⊥

∂M([0, η) · ν∂M)= {p ∈ M : distM(p, ∂M)≥ η}.

Let 8i : [0, 1] → ZG
n (M; Z2), i = 1, 2, be two F-continuous curve so that

8i (0)= [[∂M]] and 8i (1)= 0. As the constructions in (2-4), we can associate 8i

to Qi ∈ I G
n+1(M; Z2) with ∂Qi = [[∂M]]. Then the constancy theorem implies

Qi = [[M]]. Therefore, the curves product, i.e., joint curve, 8−1
2 · 81 satisfies

FN (8
−1
2 ·81)= 0, and thus 8−1

2 ·81 is homotopic to 0 in ZG
n (N ;F; Z2). Since

spt(8i (x)) ⊂ M for all x ∈ [0, 1] and i = 1, 2, we can apply the double cover
argument in [24, Theorem 5.1] with Lemma 2.2 in place of [1, Corollary 1.14],
and see the homotopy map between 8−1

2 ·81 and 0 can be taken in ZG
n (M;F; Z2).

Thus, 81 and 82 are homotopic to each other in ZG
n (M;F; Z2).

Next, we introduce the following definition for G-manifold with boundary, which
is generalized from the smooth min-max setting [43, Definitions 2.1, 2.5].

Definition 2.8. Suppose M is a compact Riemannian G-manifold with boundary
∂M ̸=∅. Then we call a F-continuous curve8 : [0, 1]→ZG

n (M; Z2) a G-sweepout
of (M, ∂M), if:

(i) 8(0)= [[∂M]], 8(1)= 0.

(ii) There exist ϵ > 0 and a smooth G-invariant function w : [0, ϵ]×∂M → [0,∞)

with w(0, · ) ≡ 0 and ∂
∂xw(0, · ) > 0, so that 8(x), x ∈ [0, ϵ], is induced by

the smooth G-hypersurface exp⊥

∂M(w(x, · ) ν∂M).

(iii) For any x0 ∈ (0, 1], there exists η> 0 so that spt(8(x))⋐ Mη for all x ∈ [x0, 1].

Denote by PG(M, ∂M) the set of G-sweepouts of (M, ∂M) with no concentration
of mass on orbits. Then we define the G-width of (M, ∂M) by

W G(M, ∂M) := inf
8∈PG(M,∂M)

sup
x∈[0,1]

M(8(x)).

Remark 2.9. As we mentioned before, any two G-sweepouts 81,82 of (M, ∂M)
are homotopic to each other in ZG

n (M;F; Z2). Moreover, by reparametrization,
the foliation parts of 8i , i = 1, 2, are homotopic through vt := (1 − t)w1 + tw2,
where t ∈ [0, 1] and w1, w2 :

[
0, 1

3

]
× ∂M → [0,∞) are given by Definition 2.8(ii).

The nonfoliation parts 8i⌞
[ 1

3 , 1
]

and exp⊥

∂M

(
vt

( 1
3 , ·

)
ν∂M

)
are all in Mη for some

η > 0, and thus the homotopy between these parts can be taken in ZG
n (Mη;F; Z2)

(see the constructions in [24, Theorem 5.1] with Lemma 2.2). Therefore, we can
take a homotopy map H : [0, 1] × [0, 1] → ZG

n (M;F; Z2) so that H(0, · ) =81,
H(1, · )=82, and for every t ∈ [0, 1], H(t, · ) is a G-sweepout of (M, ∂M).
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3. Equivariant min-max theory

In this section, we introduce the equivariant min-max constructions in [39] (see
[40; 41] for modified versions). Then main purpose is to find an integral G-varifold
V ∈ VG

n (M) induced by a smooth embedded minimal G-hypersurface so that
∥V ∥(M) = W G(M) (or W G(M, ∂M) if ∂M ̸= ∅). Since our definitions differ
slightly from those in [40; 41], we shall outline the essential steps for the sake of
completeness.

Throughout this section, let PG
= PG(M) or PG(M, ∂M), W G

= W G(M) or
W G(M, ∂M) depending on whether ∂M is empty. By reparametrization, we always
assume the domain of 8 ∈ PG is I = [0, 1], and if ∂M ̸= ∅, then 8⌞

[
0, 1

3

]
are

smooth G-hypersurfaces as in Definition 2.8(ii).
For any sequence {8i }i∈N ⊂ PG , define the width of {8i }i∈N by

L({8i }i∈N) := lim sup
i→∞

sup
x∈I

M(8i (x)).

Then we say {8i }i∈N is a min-max sequence if

L({8i }i∈N)= W G .

The image set of {8i }i∈N is defined by

3({8i }i∈N) :=

{
V ∈ VG

n (M) : V = lim
j→∞

|8i j (xi j )| for some i j → ∞, xi j ∈ I
}
.

Moreover, we define the critical set of {8i }i∈N by

C({8i }i∈N) := {V ∈ 3({8i }i∈N) : ∥V ∥(M)= L({8i }i∈N)}.

Discrete min-max settings. To apply the equivariant min-max constructions in
[39; 40], we need the following discrete notations. Since we only consider curves
in ZG

n (M; Z2), we will restrict the notations to the 1-parameter case.
Denote by I := [0, 1]. For any j ∈ N, let I (1, j) be the cube complex on I with

1-cells and 0-cells (vertices) given by

I (1, j)1 := {[0, 3− j
], [3− j , 2 · 3− j

], . . . , [1 − 3− j , 1]},

I (1, j)0 := {[0], [3− j
], . . . , [1]}.

The boundary homeomorphism ∂ is defined by ∂[a, b] = [b] − [a]. Then we
denote by I (2, j) = I (1, j)⊗ I (1, j) the cell complex on I 2

= I × I . For any
α=α1⊗α2 ∈ I (2, j) and p ∈{0,1,2}, we say α is a p-cell, if dim(α1)+dim(α2)= p.
Then the set of p-cells of I (2, j) is denoted by I (2, j)p, and the set of p-cells in
α ∈ I (i, j)q is denoted by αp.
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Let J :=
[1

3 , 1
]
. Then we denote by J (1, j) the cubical subcomplex containing

all the cells of I (1, j) supported in J . Similarly, the set of p-cells of J (1, j) is
denoted by J (1, j)p for p ∈ {0, 1, 2}.

Let m ∈{1, 2} and two vertices x, y ∈ I (m, j)0, define d(x, y) :=3 j ∑m
i=1|xi−yi |.

For any map φ : I (1, j)0 → ZG
n (M; Z2), the M-fineness of φ is defined by

fM(φ) := sup{M(φ(x)−φ(y)) : d(x, y)= 1, x, y ∈ I (1, j)0}.

Suppose S = {ϕi }i∈N is a sequence of maps ϕi : I (1, ki )0 → ZG
n (M; Z2) such that

ki → ∞ and fM(ϕi )→ 0 as i → ∞. Then we use the following notations:

L(S) := lim sup
i→∞

max
x∈I (1,ki )0

M(ϕi (x)),

3(S) :=

{
V ∈ VG

n (M) : V = lim
j→∞

|ϕi j (xi j )| for some i j → ∞, xi j ∈ I (1, ki )0

}
,

C(S) := {V ∈ 3(S) : ∥V ∥(M)= L(S)}.

For any i, j ∈ N, let n(i, j) : I (1, i)0 → I (1, j)0 be the nearest projection, i.e.,

d(x, n(i, j)(x))= inf{d(x, y) : y ∈ I (m, j)0}.

Then we define the discrete homotopy:

Definition 3.1. Given φi : I (1, ki )0 → ZG
n (M; Z2), i = 1, 2, we say φ1 and φ2 are

1-homotopic in ZG
n (M; Z2) with M-fineness δ if there exists a map

ψ : I (1, k)0 × I (1, k)0 → ZG
n (M; Z2)

for some k ≥ max{k1, k2} such that fM(ψ) < δ and ψ([i −1], x)= φi (n(k, ki )(x))
for i ∈ {1, 2} and x ∈ I (1, k)0.

Definition 3.2. A sequence of mappings S = {φi }i∈N, φi : I (1, ki )0 →ZG
n (M; Z2),

is said to be a

(1, M)-homotopy sequence of mappings into ZG
n (M; Z2)

if φi and φi+1 are 1-homotopic in ZG
n (M; Z2) with M-fineness δi such that

(i) limi→∞ δi = 0,

(ii) sup{M(φi (x)) : x ∈ I (1, ki )0, i ∈ N}<+∞.

Definition 3.3. Let S j
= {φ

j
i }i∈N, j = 1, 2, be two (1, M)-homotopy sequences of

mappings into ZG
n (M; Z2). Then S1 and S2 are homotopic in ZG

n (M; Z2) if there
exists a sequence {δi }i∈N such that

(i) φ1
i is 1-homotopic to φ2

i in ZG
n (M; Z2) with M-fineness δi ,

(ii) limi→∞ δi = 0.
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By the following discretization theorem from [39, Theorem 2], we can generate
a (1, M)-homotopy sequence of mappings into ZG

n (M; Z2) from any 8 ∈ PG .

Theorem 3.4 (discretization theorem). Let 8 : I → ZG
n (M; Z2) be a continuous

map in the flat topology so that supx∈I M(8(x)) <∞ and 8 has no concentration
of mass on orbits. Then there exists a sequence of maps

φi : I (1, ji )0 → ZG
n (M; Z2),

with ji < ji+1, and a sequence {δi > 0}i∈N converging to zero such that:

(i) S = {φi }i∈N is a (1, M)-homotopy sequence of mappings into ZG
n (M; Z2) with

M-fineness fM(φi ) < δi .

(ii) There exists some sequence ki → +∞ such that for all x ∈ I (1, ji )0,

M(φi (x))≤ sup{M(8(y)) : α ∈ I (1, ki )1, x, y ∈ α} + δi ,

which implies L(S)≤ supx∈I M(8(x)).

(iii) sup{F(φi (x)−8(x)) : x ∈ I (1, ji )0} ≤ δi .

(iv) 8(0) = φi ([0]) = ψi ( · , [0]) and 8(1) = φi ([1]) = ψ( · , [1]), where ψi

is the discrete homotopy map of φi and φi+1 with ψi ([0], n( · )) = φi and
ψi ([1], n( · ))= φi+1.

Moreover, let K ⊂ M be a compact G-invariant domain with smooth boundary.
Then for any j ∈ N and α ∈ I (1, j)1, if spt(8(x))⊂ K for all x ∈ α, then we can
further make spt(φi (x))⊂ K for all x ∈ α ∩ I (1, ji )0.

Proof. The statements in (i)–(iii) follow directly from [39, Theorem 2]. Note
that the proof of [39, Theorem 2] is basically the combinatorial approach in [21,
Theorem 13.1] with Lemma 2.2 in place of [1, Corollary 1.14] and dist(G · p, · ) in
place of dist(p, · ). Meanwhile, since the maps are defined on the 1-dimensional
cubical complex, statement (iv) follows from [21, Proposition 13.5(ii)] and the
combinatorial constructions of [21, Theorem 13.1(iv)]. Moreover, these cut-and-
paste and combinatorial arguments would also carry over in the case ∂M ̸= ∅ by
restricting in the compact domain M ⊂ N , and thus (i)–(iv) are still valid when M
has boundary. Finally, if K and α ∈ I (1, j) are given as in the last statement. Then
we can apply the above discretization result to 8⌞α in K and 8⌞(I \ int(α)) in M
respectively. Note the boundary values are unchanged by (iv). Hence, the discrete
maps defined in α and I \ int(α) can be connected together, which gives the last
statement. □

The following interpolation theorem (see [39, Theorem 3]) indicates that a M-
continuous map into ZG

n (M; Z2) can be generated from a discrete map with small
M-fineness.
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Theorem 3.5 (interpolation theorem). For m = 1, 2, there exists a positive constant
C0 = C0(M,G,m) so that if φ : I (m, k)0 → ZG

n (M; Z2) has fM(φ) < ϵM with
ϵM > 0 given in Lemma 2.2, then there exists a map

8 : I m
→ ZG

n (M; Z2)

continuous in the M-topology satisfying:

(i) 8(x)= φ(x) for all x ∈ I (m, k)0.

(ii) If α is some j-cell in I (m, k), then8 restricted to α depends only on the values
of φ assumed on the vertices of α.

(iii) sup{M(8(x)−8(y)) : x, y lie in a common cell of I (m, k)} ≤ C0 fM(φ).

(iv) For any α ∈ I (m, k) j , if φ⌞α0 ≡ T ∈ ZG
n (M; Z2) is a constant, then 8⌞α ≡ T .

We call the map 8 in Theorem 3.5 the Almgren G-extension of φ.

Proof. The statements in (i)–(iii) follow directly from [39, Theorem 3]. If ∂M ̸= ∅,
then the constructions in [40, Theorem 4.13] would carry over with ZG

n (M; Z2)

and Lemma 2.2 in place of ZG
n (M, ∂M; Z2) and [40, Lemma 3.10]. If φ⌞α0 ≡ T ∈

ZG
n (M; Z2) is a constant for some j-cell α, then for any 1-cell γ1 = [a, b] ∈ α1,

the isoperimetric choice Q(γ1) of φ(a) and φ(b) (Lemma 2.2) must be 0. Hence,
for any cell β ⊂ α, the map hβ constructed in [40, Theorem 4.13] is 0 implying
8⌞α ≡ T [1, 4.5]. □

Using the discretization/interpolation Theorems 3.4 and 3.5, we have the follow-
ing corollary (see [39, Corollary 1]):

Corollary 3.6. Let 8 : I → ZG
n (M; Z2) be a F-continuous map with no concen-

tration of mass on orbits and supx∈I M(8(x)) <∞. Suppose S = {φi }i∈N is given
by Theorem 3.4 applied to 8, and 8i is the Almgren G-extension of φi given by
Theorem 3.5 for every i sufficiently large. Then:

(i) For each i large enough, a relative homotopy map Hi : I 2
→ ZG

n (M;F; Z2)

exists with Hi (0, · ) = 8, Hi (1, · ) = 8i , Hi ( · , 0) ≡ 8(0) = 8i (0), and
Hi ( · , 1)≡8(1)=8i (1).

(ii) L({8i }i∈N)= L(S)≤ supx∈I M(8(x)).

Proof. Using Theorem 3.5 and the arguments in [1], we see that [1, Theorem 8.2] is
valid in our G-invariant settings (even if ∂M may be nonempty). Hence, the proof
of [23, Corollary 3.9] would carry over with Theorems 3.4 and 3.5 in place of [23,
Theorem 3.6]. Thus, 8i is homotopic to 8 in ZG

n (M;F; Z2) for i-large, and (ii) is
valid. Also, by (iv) in Theorems 3.4 and 3.5, we have 8(0)= φi ([0])=8i (0) and
8(1)= φi ([1])=8i (1) for all i-large. So, combining (iv) in Theorems 3.4 and 3.5
with the homotopy constructions in [23, Propositions 3.3, 3.8], one easily verifies
that the homotopy map Hi of 8 and 8i is relative to the boundary values. □
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Let {8i }i∈N ⊂ PG be any min-max sequence. If ∂M = ∅, then we can apply
Corollary 3.6 to each 8i and obtain a sequence of M-continuous curves {8i

j } j∈N

relative homotopic to 8i in ZG
n (M;F; Z2) and L({8i

j } j∈N) ≤ supx∈I M(8i (x)).
Choose j (i) sufficiently large so that supx∈I M(8i

j (i)(x))≤ supx∈I M(8i (x))+ 1
i .

Hence, we have {8i
j (i)}i∈N ⊂ PG(M) is a min-max sequence continuous in the

M-topology and so in the F-topology.
For the case ∂M ̸= ∅, we can apply the above arguments to each 8i⌞J , where

J :=
[ 1

3 , 1
]
, in a G-submanifold Mηi given by Definition 2.8(iii) with x0 =

1
3 , and

get 8i
j (i) : J → ZG

n (Mηi ; M; Z2) satisfying

• 8i
j (i) is relative homotopic to 8i⌞J in ZG

n (Mηi ;F; Z2),

• supx∈J M(8i
j (i)(x))≤ supx∈J M(8i (x))+ 1

i .

Since the homotopy map of 8i
j (i) and 8i⌞J is relative to the boundary values, we

can define 8i
j (i)⌞

[
0, 1

3

]
=8i⌞

[
0, 1

3

]
, and see that {8i

j (i)}i∈N ⊂ PG(M, ∂M) is an
F-continuous min-max sequence.

Therefore, the above arguments give the following corollary, which implies we
only need to consider the F-continuous G-sweepouts.

Corollary 3.7. The G-width defined in Definitions 2.7 and 2.8 satisfies

W G
= inf

{
sup
x∈I

M(8(x)) :8 ∈ PG is F-continuous
}
.

Min-max theorems. We now use the min-max method to construct a minimal
G-hypersurface (with multiplicity) so that the width W G is realized by its area.

Closed G-manifolds. For the case that M is closed, it follows from Remark 2.6
and Corollary 3.7 that 5 := {8 ∈ PG(M) is F-continuous} is a continuous G-
homotopy class in the sense of [39, Definition 5], and W G(M) = L(5) in the
sense of [39, Definition 6]. Hence, we have the following min-max theorem by [39,
Theorem 8]. (Note that the assumptions on M \ Mprin in [39, Theorem 8] can be
removed by the modifications in [40], and the dimension assumption is modified in
[41, Theorem 5.1].)

Theorem 3.8. Suppose M is closed, i.e., ∂M = ∅, and 3 ≤ codim(G · p)≤ 7 for
all p ∈ M. Then there exists an integral G-varifold V ∈ VG

n (M) so that

∥V ∥(M)= W G(M) and V =

m∑
i=1

ni |6i |,

where m, ni ∈ N, {6i }
m
i=1 are disjoint G-connected (Definition 4.4) smooth embed-

ded closed minimal G-hypersurfaces. Moreover, if 6i does not admit a G-invariant
unit normal vector field, then ni is an even number.
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Proof. We only need to show the last statement since the existence and regularity
of V are given by [39, Theorem 8] (see also [41, Theorem 5.1]). Note that the
min-max varifold V is (G,Z2)-almost minimizing in annuli of boundary-type in the
sense of [39, Definitions 10, 11]. Hence, for each 6i , we can take a small G-tube
BG

2r (p) with center G · p ⊂6i and r ∈
(
0, 1

2 inj(G · p)
)

so that:

• V is (G,Z2)-almost minimizing of boundary-type in BG
2r (p).

• BG
t (p) has mean convex boundary for all t ∈ (0, 2r).

• BG
2r (p)∩ spt(∥V ∥)⊂6i , and ∂BG

r (p) is transversal to 6i .

Then by the constructions [39, Proposition 2, 3] and the consistency [41, Proposition
4.19] of G-replacements, there exists a sequence {T j } j∈N ⊂ ZG

n (M; Z2) so that:

(1) T j = ∂Q j is locally mass minimizing in BG
r (p) with Q j ∈ I G

n+1(M; Z2).

(2) |T j | → V in the sense of varifolds.

By compactness, let T j → T = ∂Q in the flat topology with Q ∈ I G
n+1(M; Z2).

Thus, we have spt(T )⊂ spt(∥V ∥)= ∪
m
i=16i , which implies T =

∑m
i=1 n′

i [[6i ]] for
some n′

i ∈ Z2 by the Constancy Theorem. By regarding Q ∈ I G
n+1(M; Z2) as a

G-invariant Caccioppoli set whose boundary is induced by smooth G-hypersurfaces
{6i : 1 ≤ i ≤ m, n′

i = 1}, we see ∂Q admits an inward unit normal that is also
G-invariant. Hence, n′

i = 0 provided that 6i does not admit a G-invariant unit
normal. Now we can use the slicing theory [36, 28.5] to take s ∈

( r
2 , r

)
so that

M
(
∂(T j⌞BG

s (p))
)

are uniformly bounded, and thus T j⌞BG
s (p) converges up to a

subsequence. Finally, by (1) we know [42, Theorem 1.1] indicates that ni ≡ n′

i
mod 2, and thus the multiplicity ni must be even for 6i without a G-invariant unit
normal. □

Compact G-manifolds with boundary. Now we consider the case that ∂M ̸= ∅. In
this case, we make the assumption that

(3-1) H∂M > 0 and W G(M, ∂M) > Area(∂M),

where H∂M is the mean curvature of ∂M with respect to the inward unit normal ν∂M .
By Corollary 3.7, we can take a min-max sequence {8∗

i }i∈N ⊂ PG(M, ∂M) that
are continuous in the F-topology. The strategy is to use the following proposition
to deform {8∗

i }i∈N into a new F-continuous min-max sequence so that every
V ∈ C({8∗

i }i∈N) is supported in a G-invariant subdomain Ma ⋐ M . With this
benefit, the min-max constructions can be restricted in the interior of M to build a
closed minimal G-hypersurface realizing the width W G(M, ∂M). This deformation
approach is based on the idea of [20, Lemma 2.2] and we list the details here for
the sake of completeness.
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Proposition 3.9. Let ∂M ̸= ∅ satisfy (3-1). Then there exist a constant a > 0 and
a min-max sequence {8∗

i }i∈N ⊂ PG(M, ∂M) continuous in the F-topology so that

spt(8∗

i (x))⋐ Ma := {p ∈ M : distM(p, ∂M)≥ a} for any x ∈ I ,

with M(8∗

i (x))≥ W G(M, ∂M)− δ and δ =
1
4(W

G(M, ∂M)− Area(∂M)).

Proof. Let a> 0 be small enough so that d := distM(∂M, · ) is a G-invariant smooth
function in a 4a-neighborhood of ∂M . By (3-1), we can set a > 0 even smaller
so that for any r ∈ [0, 3a], ∂Mr = d−1(r) has positive mean curvature Hr with
respect to the inner unit normal ∇d. Denote by Ar the second fundamental form
of ∂Mr , and c = supr∈[0,3a],p∈∂Mr

|Ar |(p). Then we take the function φ ≥ 0 as in
[20, Lemma 2.2] so that

φ′
+ cφ ≤ 0, φ(r) > 0 for r < 2a, φ(r)= 0 for r ≥ 2a.

For any p ∈ int(M) \ M3a and n-subspace S ⊂ Tp M , let {ei }
n
i=1 be an orthonormal

basis of S, and P : Tp M → Tp ∂Md(p) be the projection. Since we have that
dim(S∩Tp ∂Md(p))≥n−1, we can assume {ei }

n−1
i=1 ∪{e∗

} gives an orthonormal basis
of Tp ∂Md(p), where e∗ satisfies ⟨e∗, P(en)⟩ = |P(en)|. Noting ∇d ⊥ Tp ∂Md(p)

and ∇∇d∇d = 0, we have

(3-2) divS(φ∇d)= φ′(d(p)) · ⟨en,∇d⟩
2
+φ(d(p)) ·

n∑
i=1

⟨∇ei ∇d, ei ⟩

= φ′
⟨en,∇d⟩

2
−φ

n∑
i=1

Ad(p)(P(ei ), P(ei ))

= (φ′
+φAd(p)(e∗, e∗))⟨en,∇d⟩

2
−φHd(p)

≤ (φ′
+ cφ)⟨en,∇d⟩

2
−φHd(p)

≤ 0.

We can take any F-continuous min-max sequence {8i }i∈N ⊂ PG(M, ∂M) by
Corollary 3.7. Then for each 8i , there exist ϵi > 0 and ηi ∈

(
0, a

8

)
so that:

(1) 8i⌞[0, 4ϵi ] are smooth G-hypersurfaces with M(8i (x)) ≤ Area(∂M) + δ

for all x ∈ [0, 4ϵi ].

(2) spt(8i (x))⋐ M2ηi for all x ∈ [ϵi , 1].

Let κi be a cut-off function so that κi (r)= 0 for r ≤ ηi and κi (r)= 1 for r ≥ 2ηi .
Then the G-vector field X i := κi (d) φ(d)∇d generates G-equivariant diffeomor-
phisms {F i

t }. By (2) and (3-2), for any x ∈ [ϵi , 1] and t0 ≥ 0, we have

d
dt

∣∣∣
t=t0

M((F i
t )#8i (x))=

d
dt

∣∣∣
t=0

∥(F i
t )#(F

i
t0)#8i (x)∥(M)

=

∫
divS(X i ) dVt0,x =

∫
divS(φ∇d) dVt0,x ≤ 0,
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where Vt0,x := |(F i
t0)#8i (x)| ∈ VG

n (M2ηi ). Therefore,

(3-3) M((F i
t )#8i (x))≤ M(8i (x)) for all x ∈ [ϵi , 1], t ≥ 0.

Since M2ηi \ M2a ⊂ spt(X i ) ⊂ Mηi \ int(M2a), we see limt→∞ F i
t (p) ∈ ∂M2a

for any p ∈ M2ηi \ M2a , and thus F i
Ti
(M2ηi ) ⊂ Ma for some Ti > 0. Choose a

smooth function hi : [0, 1] → [0, Ti ] with hi⌞[0, ϵi ] = 0, hi⌞[2ϵi , 1] = Ti . Then
8∗

i (x) := (F i
hi (x))#8i (x) satisfies:

(a) 8∗

i (x)=8i (x) for x ∈ [0, ϵi ] (since hi = 0).

(b) M(8∗

i (x))≤ M(8i (x)) for all x ∈ [ϵi , 1] (by (3-3)).

(c) spt(8∗

i (x))⋐ Ma for all x ∈ [2ϵi , 1] (by (2) and the definitions of Ti , hi ).

Clearly, {8∗

i }i∈N ⊂ PG(M, ∂M) is also an F-continuous min-max sequence. Ad-
ditionally, if M(8∗

i (x))≥ W G(M, ∂M)− δ ≥ Area(∂M)+ δ, then x ∈ (4ϵi , 1] by
(1), (a) and (b), and thus spt(8∗

i (x))⋐ Ma by (c). □

Next, we use the pull-tight argument to make every V ∈ C({8∗

i }i∈N) stationary
in M . By Proposition 3.9, the pull-tight procedure can be restricted in int(Ma).

Proposition 3.10. Suppose that ∂M ̸= ∅ satisfies the inequalities (3-1) and that
δ :=

1
4(W

G(M, ∂M)− Area(∂M)). Suppose a > 0 and {8∗

i }i∈N ⊂ PG(M, ∂M)
are given by Proposition 3.9. Then there is an F-continuous min-max sequence
{8i }i∈N ⊂ PG(M, ∂M) with:

(i) C({8i }i∈N)⊂ C({8∗

i }i∈N)∩VG
n (Ma).

(ii) Every G-varifold V ∈ C({8i }i∈N) is stationary in M.

(iii) If M(8i (x))≥ W G(M, ∂M)− δ, then spt(8i (x))⋐ Ma/2.

Proof. Let C := supi∈N supx∈I M(8∗

i (x)) < ∞ and M̊a/2 := int(Ma/2) be a G-
invariant open set of M . Define then A := {V ∈ VG

n (M) : ∥V ∥(M)≤ C} and

A0 := {V ∈ A : V is stationary in M̊a/2}.

Since G acts by isometries, A and A0 are compact subset of VG
n (M). Additionally,

for any V ∈ A, it follows from (2-2) that V ∈ A0 if and only if δV (X)= 0 for all
X ∈XG(M̊a/2). Hence, we can follow [21, p. 765] (or [30, p. 153]) with XG(M̊a/2)

in place of X(M) to define a continuous map X : A → XG(M̊a/2) and a continuous
function η : A → [0, 1] satisfying:

• X (V )= 0 and η(V )= 0 if V ∈ A0.

• δV (X (V )) < 0 and η(V ) > 0 if V ∈ A \ A0.

• ∥( f X (V )
t )#V ∥(M) < ∥( f X (V )

s )#V ∥(M) for all V ∈ A and 0 ≤ s < t ≤ η(V ),
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where { f X (V )
t } are the equivariant diffeomorphisms generated by X (V ). Define

H : I × {T ∈ ZG
n (M; F; Z2) : M(T )≤ C} → {T ∈ ZG

n (M; F; Z2) : M(T )≤ C},

H(t, T ) := ( f X (|T |)

η(|T |)t )# T .

One easily verifies H(0, T )= T for all T ∈ ZG
n (M; Z2) with M(T )≤ C , and that:

• If |T | is stationary in M̊a/2, then H(t, T )= T for all t ∈ [0, 1].

• If |T | is not stationary in M̊a/2, then M(H(1, T )) < M(T ).

Let 8i := H(1,8∗

i ). Note X (V ) is supported in M̊a/2 and f X (V )
t ⌞(M \ M̊a/2)= id .

Hence, 8i is also a G-sweepout of (M, ∂M). Additionally, by the above con-
structions, one easily verifies that {8i }i∈N ⊂ PG(M; ∂M) is a min-max sequence
continuous in the F-topology, and C({8i }i∈N) ⊂ C({8∗

i }i∈N) ∩ A0. Moreover,
it follows from Proposition 3.9 that C({8i }i∈N) ⊂ VG

n (Ma)∩ A0, which implies
every V ∈ C({8i }i∈N) is stationary in M . Finally, since the deformations f X (V )

t
are restricted in M̊a/2, the last bullet follows directly from Proposition 3.9 and the
above constructions. □

Finally, we can now show the equivariant min-max theorem for compact G-
manifold M with boundary ∂M satisfying (3-1). The proof is generally the approach
in [22, Theorem 3.8], and we list some necessary modifications.

Theorem 3.11. Suppose ∂M ̸=∅ satisfies inequality (3-1), and 3≤codim(G ·p)≤7
for all p ∈ M. Then there exists an integral G-varifold V ∈ VG

n (M) so that
∥V ∥(M) = W G(M, ∂M) and V =

∑m
i=1ni |6i |, where m, ni ∈ N, {6i }

m
i=1 are

disjoint smooth embedded closed minimal G-hypersurfaces in the interior of M.

Proof. Let a > 0 and {8i }i∈N ⊂ PG(M, ∂M) be given by Proposition 3.10 so that
every V ∈ C({8i }i∈N) is stationary in M and compactly supported in int(Ma0) for
a0 =

a
2 . Let δ =

1
4(W

G(M, ∂M)− Area(∂M)) > 0. Then by reparametrization, we
assume 8i⌞

[
0, 1

3

]
foliates a neighborhood of ∂M so that

(3-4) M(8i (x))≤ Area(∂M)+ δ = W G(M, ∂M)− 3δ for all x ∈
[
0, 1

3

]
.

Recall that J =
[ 1

3 , 1
]
. Denote by

8′

i :=8i⌞J.

By Definition 2.8, there exists ηi ∈ (0, a0) satisfying spt(8′

i (x)) ⋐ Mηi for all
x ∈ J . Additionally, since the map x 7→ M(8′

i (x)) is continuous (by (2-1)), we
can take ki ∈ N large enough so that |M(8′

i (x))− M(8′

i (y))| ≤
δ
4 for all x, y in a

common 1-cell of J (1, ki ). Denote by Ui the union of 1-cells α ∈ J (1, ki )1 with
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M(8′

i (x)) ≤ W G(M, ∂M)−
3δ
4 for all x ∈ α, and Vi := J \ Ui . Therefore, by

Proposition 3.10(iii), we have

M(8′

i (x))≥ W G(M, ∂M)− δ and spt(8′

i (x))⊂ Ma0 for all x ∈ Vi .

By Lemma 2.4, we can apply Theorem 3.4 to each 8′

i in the G-submanifold Mηi

and obtain a sequence of maps φi
j : J (1, ki

j )0 → ZG
n (Mηi ; Z2) with ki

j < ki
j+1,

j ∈ N. The last statement in Theorem 3.4 indicates {φi
j } j∈N can be chosen to satisfy

spt(φi
j (x))⊂ Ma0 for all x ∈ Vi ∩ J (1, ki

j )0. Moreover, we claim that:

Claim 1. For j large enough, spt(φi
j (x))⊂ Ma0 if M(φi

j (x))≥ W G(M, ∂M)− δ
2 .

Proof of Claim 1. By the continuity of x 7→ M(8′

i (x)) and Theorem 3.4(ii), if
M(φi

j (x)) ≥ W G(M, ∂M)− δ
2 , then we have M(8′

i (x)) > W G(M, ∂M)− 3δ
4 for

j large enough. Thus, such vertex x must be in Vi , so spt(φi
j (x))⊂ Ma0 . □

Additionally, we also have the following equality due to the lower semicontinuity
of mass, the continuity of x 7→ M(8′

i (x)) and Theorem 3.4(ii)-(iii):

(3-5) lim
j→∞

sup{F(φi
j (x),8

′

i (x)) : x ∈ J (1, ki
j )0} = 0.

Let 8i
j : J → ZG

n (Mηi ; M; Z2) be the Almgren G-extension of φi
j given by

Theorem 3.5 for j-large. By Corollary 3.6, 8i
j and 8′

i are relative homotopic
in ZG

n (Mηi ;F; Z2). Therefore,

8̃
j
i (x) :=

{
8i (x), x ∈

[
0, 1

3

]
,

8
j
i (x), x ∈ J =

[ 1
3 , 1

]
is a well-defined F-continuous G-sweepout of (M, ∂M) for each i ∈ N and j -large,
and thus

(3-6) W G(M, ∂M)≤ L({8̃i
j } j∈N)= L({8i

j } j∈N)

= L({φi
j } j∈N)

≤ sup{M(8i (x)) : x ∈ I } → W G(M, ∂M)

by (3-4) and Corollary 3.6.
Now, we take a subsequence j (i) → ∞ and define 8̃i = 8̃i

j (i), S = {ϕi }i∈N,
ϕi := φi

j (i) so that fM(ϕi )→ 0 and that:

(1) Ci fM(ϕi )→ 0 as i → ∞, where Ci = C0(Mηi ,G, 1) is given by Theorem 3.5.

(2) If M(ϕi (x))≥ W G(M, ∂M)− δ
2 then spt(ϕi (x))⊂ Ma0 (by Claim 1).

(3) W G(M, ∂M)= L({ϕi }i∈N) (by (3-6)).

(4) limi→∞ sup{F(ϕi (x),8i (x)) : x ∈ J (1, ki
j (i))0} = 0 (by (3-5)).

(5) limi→∞ sup{F(8i (x),8i (y)) : x, y ∈ α, α ∈ I (1, ki
j (i))} = 0 (by the F-

continuity).
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Combining (3), (4), and (5) with (3-4), we have C(S)= C({8i }i∈N)⊂ VG
n (M2a0)

and every V ∈ C(S) is stationary in M .

Claim 2. There exists V ∈ C(S) that is (G,Z2)-almost minimizing in annuli (of
boundary-type) in the sense of [39, Definition 11].

Proof of Claim 2. Suppose none of V ∈ C(S) is (G,Z2)-almost minimizing in annuli
in the sense of [39, Definition 11]. Then there is a new sequence S∗

= {ϕ∗

i }i∈N of
mappings ϕ∗

i : J (1, li )0 → ZG
n (Mηi ; Z2) for some li ≥ ki

j (i) → ∞ as i → ∞, such
that:

(i) L(S∗) < L(S)= W G(M, ∂M).

(ii) ϕi and ϕ∗

i are 1-homotopic in ZG
n (Mηi ; Z2) with M-fineness tending to zero,

(Specifically, there is a map ψi : I (1, li )0 × J (1, li )0 → ZG
n (Mηi ; Z2) so that

fM(ψi ) → 0 as i → ∞, ψi ([0], · ) = ϕi ◦ ni , and ψi ([1], · ) = ϕ∗

i , where ni =

n(li , ki
j (i))).

(iii) spt(ψi (t, x)−ϕi ◦ ni (x))⋐ Ma0 for any t ∈ I (1, li )0 and x ∈ J (1, li )0.

(iv) For any x ∈ J (1, li )0, if M(ϕi ◦ ni (x)) <W G(M, ∂M)− δ
4 , then we have that

ψi ( · , x)≡ ϕi ◦ ni (x) is a constant discrete homotopy at x .

Indeed, since each V ∈ C(S) is supported in M2a0 , we can take G-annuli

{AnG(p(V ), ri − si , ri + si )}
27
i=1

in Ma0 as in [30, Theorem 4.10, Part 1], which implies all the deformations will be
restricted in Ma0 . Using [40, Theorem 3.14] and distM(G · p, · ), we can make the
constructions in [30, Theorem 4.10, Parts 2–9] with G-invariant objects. Then the
rest parts in [30, Theorem 4.10] are purely combinatorial, which would carry over
with Ma0 in place of M . This gives (i)–(iii). Moreover, by taking the constant ϵ2

in [30, Theorem 4.10, Part 3] smaller than δ
8 , we have ψi ( ·, x)≡ϕi ◦ni (x) provided

M(ϕi ◦ni (x))<W G(M, ∂M)− δ
4 (see Parts 10(c), 14 and 18 in [30, Theorem 4.10]).

Next, we can extend ϕ∗

i (for i-large) to an F-continuous map 8̃∗

i ∈ PG(M, ∂M)
so that 8̃∗

i ⌞
[
0, 1

3

]
= 8̃i⌞

[
0, 1

3

]
=8i⌞

[
0, 1

3

]
. Take any 1-cell α=[x0, x1] ∈ J (1, li )1,

we will construct the extension 8̃∗

i ⌞α separately in two cases.

Case 1: max{M(ϕi ◦ ni (x0)), M(ϕi ◦ ni (x1))}< W G(M, ∂M)− δ
4 .

By (ii)–(iv), we can define 8̃∗

i ⌞α := 8̃i ◦ fα as the extension of ϕ∗

i ⌞α0, where
fα : α = [x0, x1] → [ni (x0), ni (x1)] is an affine transformation. Hence, in this case,

we have

(3-7) 8̃∗

i ⌞α⊂ZG
n (Mηi ; Z2) and 8̃∗

i (x)= 8̃i (ni (x)) for all x ∈ α0 = {x0, x1}.

In particular, 8̃∗

i (1) = 8̃i (1) = 0 provided fM(ψi ) < W G(M, ∂M)−
δ
4 , which

holds for i-large. Additionally, it follows from (1), Theorem 3.5(i)–(iii), and the
choice of α that
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(3-8) sup{M(8̃∗

i (x)) : x ∈ α} = sup{M(8̃i (x)) : x ∈ fα(α)}

≤ sup{M(ϕi (x)) : x ∈ ∂ fα(α)} + Ci fM(ϕi )

< W G(M, ∂M)− δ
4 + Ci fM(ϕi )

≤ W G(M, ∂M)− δ
5

for i-large, where Ci = C0(Mηi ,G, 1) is given by Theorem 3.5.

Case 2: max{M(ϕi ◦ ni (x0)), M(ϕi ◦ ni (x1))} ≥ W G(M, ∂M)− δ
4 .

Let Ai ⊂ J =
[ 1

3 , 1
]

be union of all 1-cells of this case in J (1, li )1. Take i suffi-
ciently large so that fM(ψi )<

δ
4 (by (ii)). Then M(ϕi ◦ni (x))≥W G(M, ∂M)− δ

2 for
all x ∈ J (1, li )0 ∩ Ai . By (2) and (iii), we have that ϕ∗

i (x)=ψ
∗

i ([1], x) is supported
in Ma0 for all x ∈ J (1, li )0 ∩ Ai . Applying Theorem 3.5 to ϕ∗

i ⌞[J (1, li )0 ∩ Ai ]

in Ma0 (for i-large) will give an M-continuous extension 8̃∗

i : Ai → ZG
n (Ma0; Z2)

so that

(3-9) sup{M(8̃∗

i (x)) : x ∈ Ai }≤ sup{M(ϕ∗

i (x)) : x ∈ J (1, li )0∩ Ai }+C0 fM(ψi ),

where C0 = C0(Ma0,G, 1) ≥ 1 is a uniform constant. Note for any x ∈ ∂Ai , we
must have M(ϕi ◦ ni (x)) < W G(M, ∂M)− δ

4 . Hence, by (iv) and Theorem 3.5(i),

(3-10) 8̃∗

i (x)= ϕ∗

i (x)= ϕi ◦ ni (x)= 8̃i (ni (x)) for all x ∈ ∂Ai .

It now follows from (3-7)–(3-10) that 8̃∗

i : I → ZG
n (M; Z2) is a well defined

F-continuous map so that 8̃∗

i ⌞
[
0, 1

3

]
= 8̃i⌞

[
0, 1

3

]
= 8i⌞

[
0, 1

3

]
, 8̃∗

i (1) = 0, and
8̃∗

i ⌞J ⊂ ZG
n (Mηi ; Z2), which implies 8̃∗

i ∈ PG(M, ∂M). Therefore, by equations
(3-4), (3-8), (3-9), and statements (i)-(ii),

W G(M,∂M)≤ L({8̃∗

i }i∈N)≤max
{
W G(M,∂M)− δ

5 , L({ϕ∗

i }i∈N)
}
<W G(M,∂M),

which is a contradiction. □

Thus, there must exist V ∈ C(S) that is (G,Z2)-almost minimizing in annuli
(of boundary-type) in the sense of [39, Definition 11]. Since C(S) ⊂ VG

n (M2a0),
the interior regularity result [39, Theorem 7] (modified in [41, Theorem 4.18])
indicates that V is an integral G-varifold induced by closed smooth embedded
minimal G-hypersurfaces. □

4. G-sweepouts in positive Ricci curvature G-manifolds

Throughout this section we assume that (Mn+1, gM ) is a closed connected orientable
Riemannian manifold with positive Ricci curvature RicM > 0, and G is a compact
Lie group acting on M isometrically so that 3 ≤ codim(G · p) ≤ 7 for all p ∈ M .
Our goal is to associate an F-continuous G-sweepout to each closed minimal
G-hypersurface in M .
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To begin with, we collect some notations and classical results for minimal
hypersurfaces. Let 6 ⊂ M be a closed smooth embedded minimal hypersurface.
Recall the second variation of 6 for the area functional is given by

(4-1) δ26(X) :=
d2

d2t

∣∣∣
t=0

Area(Ft(6))= −

∫
6

⟨L6(X⊥), X⊥
⟩,

where L6 : X⊥(6)→ X⊥(6) is the Jacobi operator of 6, and {Ft } are diffeomor-
phisms generated by X ∈ X(M). Then we denote:

• Index(6): the Morse index of 6, i.e., the number of the negative eigenvalues
(counted with multiplicities) of L6 .

• µ1(6): the first eigenvalue of L6 .

If Index(6)= 0 or equivalently µ1(6)≥ 0, then we say 6 is stable.
For 6 ⊂ M as a G-invariant minimal hypersurface, we have L6(X) ∈ X⊥,G(6)

for all X ∈ X⊥,G(6), where X⊥,G(6) is the space of normal G-vector fields on 6.
By restricting L6 to X⊥,G(6), we make the following definition.

Definition 4.1. Let 6 ⊂ M be a closed smooth embedded minimal G-hypersurface.
The equivariant Morse index (or G-index for simplicity) IndexG(6) is defined by the
number of the negative eigenvalues (counted with multiplicities) of L6⌞X⊥,G(6).
Additionally, we denote µG

1 (6) as the first eigenvalue of L6⌞X⊥,G(6).

Suppose 6 is a closed minimal G-hypersurface with a G-invariant unit normal ν,
and u1 is the first eigenfunction of L6 . Then for any g ∈ G, the G-invariance of 6
and ν indicates u1 ◦ g is also the first eigenfunction of L6 . It is well-known that
µ1(6) has multiplicity one and the first eigenfunction u1 does not change sign.
Hence, u1 ◦ g = u1 for all g ∈ G, which implies that u1ν ∈ X⊥,G(6) and that:

Lemma 4.2 [39, Lemma 7]. If 6 is a closed minimal G-hypersurface with a G-
invariant unit normal ν, then the first eigenfunction u1 > 0 of L6 is G-invariant
and µ1(6)= µG

1 (6).

Since we mainly consider the ambient manifolds with positive Ricci curvature,
we collect the following useful results, which are well known to experts (see [44,
Section 2]).

Lemma 4.3. Suppose (Mn+1, gM ) is a closed connected orientable Riemannian
manifold. Let 6,61, 62 ⊂ M be closed embedded hypersurfaces. Then we have:

(i) If 6 is connected, then 6 is orientable if and only if it is 2-sided (i.e., 6 has a
unit normal vector field).

(ii) If 6 is connected and separates M , i.e., M \6 has two connected components,
then 6 is orientable.

Moreover, suppose M has positive Ricci curvature, then we have:
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(iii) If 6 is connected and orientable, then 6 separates M.

(iv) If 6 is minimal and 2-sided, then it cannot be stable, i.e., µ1(6) < 0.

(v) If 61, 62 are minimal hypersurfaces, then 61 ∩62 ̸= ∅.

After involving the actions of G, a connected component of some G-hypersurface
6 may not be G-invariant. Hence, we introduce the following notions of equivariant
connectivity.

Definition 4.4. Let U ⊂ M be a G-invariant subset with connected components
{Ui }

m
i=1. Then we say U is G-connected if for any i, j ∈ {1, · · · ,m}, there exists

gi j ∈ G so that gi j · U j = Ui . Additionally, we say U ′
⊂ U is a G-connected

component (or G-component for simplicity) of U , if U ′ has the form of ∪
l
j=1Ui( j)

and is G-connected.

Note that any G-subset U of M can be separated into some G-components.
Additionally, by the above lemma, it is easy to show the following result.

Lemma 4.5. Suppose (Mn+1, gM ) is a closed connected orientable Riemannian
manifold with positive Ricci curvature, and G is a compact Lie group acting on M
isometrically. Let 6 ⊂ M be a closed embedded minimal G-hypersurface. Then 6
is connected, and:

• If 6 has a G-invariant unit normal, then 6 separates M into two G-components.

• If 6 does not admit a G-invariant unit normal, then M \6 is G-connected.

Proof. It follows from Lemma 4.3(v) that 6 is connected. If 6 has a G-invariant
unit normal ν, then by Lemma 4.3(i)–(iii), M \6 has two connected components
M1,M2, with ν pointing inward M1. Since ν and M1 ∪ M2 are G-invariant, we
have g∗ν = ν and g · Mi = Mi for all g ∈ G and i ∈ {1, 2}, which indicates each Mi

is G-connected. If the unit normal ν exists but is not G-invariant, then there exists
g ∈ G so that g∗ν = −ν pointing inward M2, which implies g · M1 = M2, and thus
M1 ∪ M2 is G-connected. If 6 does not admit a unit normal, then M \6 has only
one component, which is also G-connected. □

Recall that, Zhou [43] constructed sweepouts of M by separating orientable
and nonorientable minimal hypersurfaces. It follows from Lemma 4.3 that the
orientability of a connected closed hypersurface is equivalent to the nonconnectivity
of its unit normal bundle. Hence, after involving the actions of G, we shall separate
the constructions by the G-connectivity (Definition 4.4) of the unit normal bundle
for minimal G-hypersurfaces.

Therefore, we denote

(4-2) SG(M) :=

{
6n

⊂ Mn+1
∣∣∣ 6 is a closed smooth embedded

minimal G-hypersurface in (M, gM )

}
.
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By Theorem 3.8, SG(M) ̸=∅ provided 3 ≤ codim(G · p)≤ 7 for all p ∈ M . Define

SG
+
(M) := {6 ∈ SG(M) :6 has a G-invariant unit normal}

and SG
−
(M) := SG(M) \SG

+
(M). It follows directly from Lemma 4.5 that

6 ∈ SG
−
(M) ⇔ S6 is G-connected ⇔ M \6 is G-connected,

where S6 = {v ∈ N6 : |v| = 1} is the unit normal bundle of 6.
Moreover, for any6∈SG

−
(M), we can cut M along6 to obtain a new manifold M̃

so that M̃ is locally isometric to M , G acts on M̃ by isometries, and ∂ M̃ ∈ SG
+
(M̃)

is a G-invariant double cover of 6. Specifically, let r > 0 be small enough so that
the normal exponential map exp⊥

6 : N6 → M is a G-equivariant diffeomorphism
on B2r (6) := {p ∈ M : distM(6, p) < 2r}. Hence, we have

(4-3) E : S6× (−2r, 2r)→ B2r (6), E(v, t) := exp⊥

6(t · v)

which is a double cover of B2r (6). Define the action of G on S6 × (−2r, 2r)
by g · (v, t) := (g∗v, t) for any v ∈ S6 and t ∈ (−2r, 2r), which indicates E is
G-equivariant and
(4-4) 6̃ = S6× {0}

is a G-equivariant double cover of6. Let Er := E⌞(S6×(r, 2r)) be a G-equivariant
diffeomorphism on B2r (6) \ Clos(Br (6)). Then by gluing M \ Clos(Br (6)) and
S6× [0, 2r) on B2r (6) \ Clos(Br (6)) with Er , we can define

(4-5) M̃ :=
(
M \ Clos(Br (6))

)
∪Er

(
S6× [0, 2r)

)
as a compact manifold with boundary ∂ M̃ = 6̃. Then we have

(4-6) F : M̃ → M, F :=

{
id in M \ Clos(Br (6)),

E in S6× [0, 2r)

is a G-equivariant smooth map so that F⌞(M̃ \6̃) gives a diffeomorphism to M \6,
and F⌞6̃ gives a double cover of 6. Using F , we can pull back the metric gM

from M to M̃ so that F is a local isometry and G acts on M̃ by isometries. Thus, 6̃
is a minimal G-hypersurface in M̃ with an inward pointing G-invariant unit normal.
In particular, 6 ∈ SG

−
(M) implies S6 and M \6 are both G-connected, and thus

M̃ is G-connected.

G-sweepouts correspond to 6 ∈ SG(M).

Proposition 4.6. Given any 6 ∈ SG
+
(M), there exists an F-continuous G-sweepout

8 : [−1, 1] → ZG
n (M; Z2) of M so that:

(i) 8(0)= [[6]], 8(−1)=8(1)= 0.

(ii) M(8(x))≤ Area(6) with equality only if x = 0.
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Proof. By Lemma 4.5, M \6 has two G-components M1 and M2 so that the unit
normal ν of 6 pointing inward M1. Additionally, it follows from Lemmas 4.2
and 4.3 that the first eigenfunction u1 > 0 of L6 is a G-invariant function satisfying
L6 u1 = −µ1(6) u1 > 0.

Denote by d± the signed distance function to 6 so that d± = distM(6, · ) in M1,
and d± = − distM(6, · ) in M2. Suppose X ∈ XG(M) is a G-vector field with
X = (u1 ◦ n6) · ∇d± in a neighborhood of 6, where n6 is the nearest projection
(in M) to 6. Then we consider the G-equivariant variation {6t := Ft(6)}t∈[−r,r ]

of 6, where {Ft } are the G-equivariant diffeomorphisms generated by X . By the
second variation formula (4-1), we have

δ26(X)=
d2

dt2

∣∣∣
t=0

Area(6t)=−

∫
6

u1L6 u1<0,
d
dt

∣∣∣
t=0

⟨H⃗6t ,∇d±⟩= L6 u1>0,

where H⃗6t is the mean curvature vector field of 6t . Thus, for r > 0 small enough,

Area(6t) < Area(6), ⟨H⃗6t ,∇ distM(6, · )⟩> 0 for all t ∈ [−r, 0)∪ (0, r ].

Define 8(x) := [[6x ]] = (Fx)# [[6]] ∈ ZG
n (M; Z2) for x ∈ [−r, r ], which is F-

continuous.
Since u1 > 0, {6t }t∈[−r,r ] is a smooth foliation of a G-neighborhood of 6, and

6t ⊂ M1 for t > 0 and 6t ⊂ M2 for t < 0. We now consider the compact manifolds
M ′

1 := M1 \ {6t }t∈[0,r) and M ′

2 := M2 \ {6t }t∈(−r,0], whose boundary ∂M ′

i = 6ri

(i ∈ {1, 2}, r1 = r , r2 = −r), is a G-hypersurface with positive mean curvature
pointing inward M ′

i .
Suppose W G(M ′

i , ∂M ′

i ) >Area(6ri ) for i ∈ {1, 2}. Then by Theorem 3.11, there
exists a closed minimal G-hypersurface6′ in the interior of M ′

i . Noting6∩6′
=∅,

we get a contradiction from Lemma 4.3(v). Therefore, W G(M ′

i , ∂M ′

i )≤ Area(6ri ).
By Definition 2.8 and Corollary 3.7, there exist ϵ > 0 small enough and an F-
continuous G-sweepout8i : [0, 1]→ZG

n (Mi ; Z2) so that8i (0)=[[6ri ]], 8i (1)=0,
and

sup{M(8i (x)) : x ∈ [0, 1]} ≤ W G(M ′

i , ∂M ′

i )+ ϵ ≤ Area(6ri )+ ϵ < Area(6).

Now, by reparametrization, we have a well-defined map 8 : [−1, 1] →ZG
n (M; Z2),

8(x) :=


82

(
−

3
2 x −

1
2

)
, x ∈

[
−1,−1

3

]
,

(F3r x)# [[6]], x ∈
[
−

1
3 ,

1
3

]
,

81
( 3

2 x −
1
2

)
, x ∈

[ 1
3 , 1

]
continuous in the F-topology satisfying (i) and (ii). Additionally, the arguments
before Definitions 2.5 and 2.8 indicate FM(8)= [[M2]]+ [[M1]] = [[M]], where FM

is given by (2-5). Hence, we have 8 ∈ PG(M). □
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Proposition 4.7. Given any 6 ∈ SG
−
(M), there exists an F-continuous G-sweepout

8 : [0, 1] → ZG
n (M; Z2) of M with no concentration of mass on orbits so that:

(i) 8(0)=8(1)= 0.

(ii) sup{M(8(x)) : x ∈ [0, 1]}< 2 Area(6).

Proof. Let 6̃ = S6 × {0} and M̃ be given by (4-4) and (4-5). Then M̃ is G-
connected, Area(6̃)= 2 Area(6), and 6̃ has a G-invariant unit normal ν̃ pointing
inward M̃ . Let τ : 6̃ → 6̃ be the isometric involution, i.e., τ(v, 0)= (−v, 0) for
v ∈ S6.

Using the constructions in Proposition 4.6 with M̃ in place of M1, we get an
F-continuous G-sweepout 8̃ : [0, 1] →ZG

n (M̃; Z2) so that 8̃(0)= [[6̃]], 8̃(1)= 0,
and M(8̃(x))≤2 Area(6) for all x ∈[0, 1] with equality only at x =0. Additionally,
for t ∈

[
0, 1

3

]
, 8̃(t) = 6̃t := [[exp⊥

6̃
(t ũν̃)]], where ũ = 3tr ũ1 and ũ1 : 6̃ → R+ is

the G-invariant first eigenfunction of L6̃ with eigenvalue µ1(6̃)= µG
1 (6̃) < 0.

Now, by the second variation formula (4-1), there are δ0 ∈
(
0, 1

3

)
, C0 > 0 so that

(4-7) M(8̃(t))=Hn(6̃t)=Hn(6̃)−
t2

2

∫
6̃

⟨L6̃ ũν̃, ũν̃⟩+ O(t3)≤Hn(6̃)−C0 t2

for all t ∈ (0, δ0). For any δ ∈ (0, δ0) (will be specified later), the F-continuity of 8̃
and Proposition 4.6(ii) imply the existence of ϵ > 0 with

(4-8) M(8̃(t))≤ Hn(6̃)− ϵ for all t ∈ [δ, 1].

Now, we will open up 6̃t , t ∈ [0, δ], at some orbit to decrease the area.
Specifically, let G · p̃ ⊂ 6̃prin be any principal orbit of 6̃. Then by the G-

invariance of ν̃ and [4, Corollary 2.2.2], G · p̃ ⊂ M̃prin is also a principal orbit
in M̃ . Note either G · p̃ = G · τ( p̃) or G · p̃ ∩ G · τ( p̃)= ∅. Thus, we can define
P := G · p̃ ∪ G · τ( p̃) as a G-invariant submanifold in 6̃ with dimension n − l. By
assumptions, 3 ≤ codim(G · p̃)= l + 1 ≤ 7.

Case 1: 3 ≤ l ≤ 6.
For any r > 0, t ∈ [0, δ], define the following G-invariant sets:

B̃r (P) := {q̃ ∈ 6̃ : dist6̃(q̃, P) < r} ⊂ 6̃,

B̃r,t(P) := {exp⊥

6̃
((t ũν̃)(q̃)) : q̃ ∈ B̃r (P)} ⊂ 6̃t ,

C̃r,t(P) := {exp⊥

6̃
((sũν̃)(q̃)) : q̃ ∈ ∂ B̃r (P), s ∈ [0, t]}.

For R, δ > 0 small enough, it follows from the integral formula in [40, (C.4)] that

(4-9) ctr l−1
≤ Hn(C̃r,t(P))≤ Ctr l−1 and cr l

≤ Hn(B̃r,t(P))≤ Cr l

for all r ∈ [0, R], t ∈ [0, δ], where c,C > 0 are constants depending on 6̃, M̃, P .
Define

6̃r,t := (6̃t \ B̃r,t(P))∪ C̃r,t(P)∪ B̃r (P), r ∈ [0, R], t ∈ [0, δ].
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By (4-7)–(4-9), ∥6̃r,t∥(M̃ \ 6̃)≤ Hn(6̃)− C0 t2
− cr l

+ Ctr l−1.
Note, in this case, that

Ctr l−1
≤

C0

2
t2

+
C2

2C0
r2l−2, l ≥ 3.

We can take R > 0 small enough so that C2

2C0
Rl−2 < c

2 . Hence,

∥6̃r,t∥(M̃ \ 6̃)≤ Hn(6̃)−
C0

2
t2

−
c
2

r l

for all t ∈ [0, δ], r ∈ [0, R], and thus

6̃′

t :=

{
6̃R,2t , t ∈

[
0, δ2

]
,

6̃2R(1−
t
δ ),δ
, t ∈

[
δ
2 , δ

]
satisfies

∥6̃′

t∥(M̃ \ 6̃)≤

{Hn(6̃)− c
2 Rl, t ∈

[
0, δ2

]
,

Hn(6̃)− C0
2 δ

2, t ∈
[
δ
2 , δ

]
.

Set ϵ′
:= min

{
ϵ, cRl

2 ,
C0 δ

2

2

}
and define 8̃′(t) := [[6̃′

t ]] for t ∈ [0, δ] in this case.

Case 2: l = 2.
For R > r > 0 small enough, let ηr,R : 6̃→ [0, 1] be the G-invariant logarithmic

cut-off function defined by

ηr,R(q̃) :=


1, q̃ /∈ B̃R(P),
log r−log(dist6̃(q̃,P))

log r−log R , q̃ ∈ B̃R(P) \ B̃r (P),
0, q̃ ∈ B̃r (P),

which is also τ -invariant. Consider

6̃r,R,t := exp⊥

6̃
(tηr,R ũν̃).

By [17, Proposition 2.5] and [40, (C.4)], we can take R, δ > 0 small enough so that

∥6̃r,R,t∥(M̃\6̃)≤ Hn(6̃\ B̃r (P))+
t2

2

∫
6̃

|∇(ηr,R ũ)|2−(Ric(ν̃, ν̃)+|A|
2)(ηr,R ũ)2

+Ct3
∫
6̃

1+|∇(ηr,R ũ)|2

≤Hn(6̃\B̃r (P))−C1t2
+C2 t2

∫
6̃

|∇ηr,R|
2
+t2

∫
B̃R(P)

ũηr,R∇ũ∇ηr,R

+Ct3
∫
6̃

1+2η2
r,R|∇ũ|

2
+2ũ2

|∇ηr,R|
2

≤ Hn(6̃)−cr2
−C1t2

+
C3

log
( R

r

) t2
+C4 R2t2

+C5 t3
+

C6

log
( R

r

) t3

for all r ∈ (0, R), t ∈ [0, δ], where c,C,Ci > 0 are uniform constants depending on
6̃, M̃, P . Set R, δ > 0 even smaller so that C4 R2 < C1

4 , C5δ <
C1
4 , and C6 δ < C3.
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Then choose r > 0 small enough with 2C3
log(R/r) <

C1
4 . Thus,

∥6̃r,R,t∥(M̃ \ 6̃)≤ Hn(6̃)− cr2
−

C1

2
t2

+
2C3

log(R/r)
t2

≤ Hn(6̃)− cr2
−

C1

4
t2

for all t ∈ [0, δ], and

6̃′

t :=

{
6̃r,R,2t , t ∈

[
0, δ2

]
,

6̃2r(1−
t
δ ),2R(1−

t
δ ),δ
, t ∈

[
δ
2 , δ

]
,

satisfies

∥6̃′

t∥(M̃ \ 6̃)≤

{
Hn(6̃)− cr2, t ∈

[
0, δ2

]
,

Hn(6̃)− C1
4 δ

2, t ∈
[
δ
2 , δ

]
.

In this case, set ϵ′
:= min

{
ϵ, cr2, C1δ

2

4

}
and define 8̃′(t) := [[6̃′

t ]] for t ∈ [0, δ].
In both cases, we define 8̃′⌞[δ, 1] = 8̃⌞[δ, 1] and see

(4-10) sup{∥8̃′(t)∥(M̃ \ 6̃) : t ∈ [0, 1]} ≤ Hn(6̃)− ϵ′.

Additionally, by (2-1), 8̃′ is still an F-continuous map with 8̃′
= [[6̃]], 8̃′(1)= 0.

Finally, we define 8(x) := F# 8̃
′(x) for all x ∈ [0, 1], where F : M̃ → M

is the equivariant local isometry given by (4-6). Because F : M̃ \ 6̃ → M \6

is an equivariant isometry, the arguments before Definitions 2.5 and 2.8 indicate
FM(8)= F#([[M̃]])= M , where FM is given by (2-5). Additionally, note F : 6̃→6

is a double cover and 6̃′
t ∩ 6̃ is τ -invariant in both cases. Hence, by Z2-coefficients

and (4-10), we have 8(0)= F# [[6̃]] = 0 and

M(8(x))= ∥8̃′(t)∥(M̃ \ 6̃)≤ Hn(6̃)− ϵ′
= 2 Area(6)− ϵ′.

At last, noting that ∥8(x)∥(BG
r (p)) ≤ ∥8̃′(x)∥

(
F−1(BG

r (p))
)

≤ 2mG(8′, r) for
all x ∈ [0, 1] and p ∈ M by the definition of mG (Definition 2.3), we see that
mG(8, r)≤ 2mG(8̃′, r) and 8 has no concentration of mass on orbits. □

5. Proof of the main theorems

Let SG(M) be given in (4-2). Then we define

(5-1) AG(M) := inf
6∈SG(M)

{
Area(6) if 6 ∈ SG

+
(M),

2 Area(6) if 6 ∈ SG
−
(M).

Theorem 5.1. Let (Mn+1, gM ) be a closed connected orientable Riemannian man-
ifold with positive Ricci curvature, and G be a compact Lie group acting on M
isometrically so that 3 ≤ codim(G · p) ≤ 7 for all p ∈ M. Then the equivariant
min-max hypersurface6 corresponding to the fundamental class [M] is a connected
minimal G-hypersurface of multiplicity one with a G-invariant unit normal vector
field so that

IndexG(6)= 1 and Area(6)= W G(M)= AG(M).



EQUIVARIANT MIN-MAX HYPERSURFACE IN G-MANIFOLDS 179

Proof. By Theorem 3.8, which is a min-max theorem, there exists an integral G-
varifold V ∈VG

n (M) induced by a smooth embedded closed minimal G-hypersurface
6 ∈ SG(M) so that ∥V ∥(M) = W G(M). Since M has positive Ricci curva-
ture, Lemma 4.3(v) indicates that 6 is connected, and thus V = m|6| for some
m ∈ {1, 2, . . . }. Suppose 6 ∈ SG

−
(M), then it follows from the last statement

in Theorem 3.8 that m must be even, so m ≥ 2. However, we have a contradic-
tion W G(M) < 2 Area(6) ≤ ∥V ∥(M) = W G(M) by Proposition 4.7. Therefore,
6 ∈SG

+
(M). By Proposition 4.6, we see W G(M)≤Area(6)≤∥V ∥(M)= W G(M),

and thus m = 1. Additionally, by the definition of AG(M) and Propositions 4.6, 4.7,

AG(M)≤ Area(6)= ∥V ∥(M)= W G(M)≤ AG(M).

Now, it is sufficient to show IndexG(6)= 1. Suppose IndexG(6)≥ 2, and u1, u2

are the first two L2-orthonormal G-invariant eigenfunctions of L6⌞X⊥,G(6) with
negative eigenvalues. Let u2ν be a G-invariant normal vector field on 6, which ex-
tends to a smooth vector field X ∈X(M). Then X2 :=

∫
G(g

−1)∗ X dµ(g)∈XG(M)
gives an equivariant extension of u2ν. Consider the equivariant diffeomorphisms
{F2

s } generated by XG , and define 8s(t) := (F2
s )#8(t) for t ∈ [−1, 1], where

8 ∈ PG(M) is the F-continuous sweepout given by Proposition 4.6. Recall that in
the proof of Proposition 4.6, 8(t)= [[6t ]] = [[F1

t (6)]] for t ∈
[
−

1
3 ,

1
3

]
, where {F1

t }

are the equivariant diffeomorphism generated by X1 ∈XG(M) with X1⌞6 = 3ru1ν

for some r > 0. Hence, for the smooth family {F2
s (6t)}s∈[−σ,σ ],t∈[−1/3,1/3], the area

function A(s, t) := Area(F2
s (6t))= M(8s(t)) satisfies that:

• ∇ A(0, 0)= 0 since 6 is minimal.

•
∂2

∂t2 A(0, 0)= −9r2
∫
6

u1L6 u1 < 0 and ∂2

∂s2 A(0, 0)= −
∫
6

u2L6 u2 < 0.

•
∂2

∂s ∂t A(0, 0)= −3r
∫
6

u2L6 u1 = 3rµ1(6)
∫
6

u1u2 = 0.

Therefore, we can set σ, δ > 0 sufficiently small so that

M(8s(t))= Area(F2
s (6t)) < Area(6) for all t ∈ [−δ, δ], s ∈ (0, σ ].

Moreover, there exists ϵ > 0 so that by Proposition 4.6(ii), M(8(t))≤ Area(6)−ϵ
for all t ∈ [−1,−δ] ∪ [δ, 1]. Hence, by setting σ > 0 even smaller, we have
M(8σ (t)) = M((F2

σ )#8(t)) < Area(6) for all t ∈ [−1, 1]. Note 8σ is an F-
continuous curve homotopic to 8 in ZG

n (M; Z2). Thus,

W G(M)≤ sup{M(8σ (t)) : t ∈ [−1, 1]}< Area(6)= W G(M),

which is a contradiction. □

As an application, we use the conformal volume to show a genus bound for
the equivariant min-max minimal G-hypersurface 6 in Theorem 5.1 provided that
dim(M)= 3 and the actions of G are orientation preserving.
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Theorem 5.2. Let (M3, gM ) be a closed connected oriented Riemannian 3-manifold
with positive Ricci curvature, and G be a finite group acting on M by orientation
preserving isometries. Then the equivariant min-max hypersurface6 corresponding
to the fundamental class [M] is a connected closed minimal G-surface of multiplicity
one satisfying

genus(6)≤ 4K and W G(M)= Area(6)≤
8πK

inf|v|=1 RicM(v, v)
,

where K := maxp∈M #G · p ≤ #G is the number of points in a principal orbit of M.
Additionally, π(6)=6/G is an orientable surface with finite cone singular points
of order {ni }

k
i=1 (i.e., locally modeled by B2

1(0) quotient a cyclic rotation group Zni ),
so that k∑

i=1

(
1 −

1
ni

)
< 4 and genus(π(6))≤ 3.

In particular, if 6 ⊂ Mprin, i.e., k = 0, then genus(6)≤ 1 + 2K .

Proof. By Theorem 5.1, 6 is a closed embedded connected minimal G-surface
with a G-invariant unit normal ν so that Area(6)= W G(M) and IndexG(6)= 1.
By Lemma 4.3, 6 has an induced orientation. Additionally, since the unit normal ν
is G-invariant, the actions of G on 6 are also orientation preserving. Therefore, the
orbifold 6 induced by (6,G) is an orientable closed 2-orbifold whose underlying
space is the quotient distance space (π(6), dist6/G).

Let 6prin be the union of principal orbits for the G-action on 6, and 6prin be the
orbifold induced by (6prin,G). Denote by N6

p G · p and Np G · p the normal vector
spaces of G · p at p in 6 and M respectively. Note an orbit G · p is principal in 6
(resp. M) if and only if the slice representation of G p on N6

p G · p (resp. Np G · p) is
trivial (see [4, Corollary 2.2.2]). Additionally, we also notice that G p acts trivially
on span(ν(p)) for any p ∈ 6 by the G-invariance of ν. Hence, combining these
with the fact that N6

p G · p ⊕ span(ν(p)) = Np G · p, we see 6prin
⊂ Mprin, and

thus K = #G · p = #G · q for all p ∈6prin and q ∈ Mprin. Next, it follows from [5,
Chapter IV, Theorem 3.3] that there is an induced Riemannian metric g

6
on 6prin

so that π : 6prin
→ 6prin is an Riemannian submersion. Moreover, since G acts

on 6 by orientation preserving isometries, the singular points 6 \6prin are a finite
number of cone points {[pi ]}

k
i=1 of orders n1, . . . , nk . By the orbifold version of

Gauss–Bonnet theorem (see [9, Proposition 2.17]), we have

(5-2)
∫
π(6)

K6 d Ag
6

= 2π(χ(6))= 2π
(
2 − 2 genus(π(6))−

k∑
i=1

(
1 −

1
ni

))
,

where K6 is the Gauss curvature of (6prin, g
6
), and the integral is taken over 6prin.

For any r > 0 small enough, let6r :=6\∪
k
i=1 BG

r (pi ), and ηr be the G-invariant
logarithmic cut-off function on 6 given by
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ηr (p) :=


0, d(p) ∈ [0, r ],

2 −
2 log d(p)

log r , d(p) ∈ (r,
√

r ],

1, d(p) ∈ (
√

r ,∞),

where
d(p) := dist6(p, 6 \6prin)= dist6(p,∪k

i=1G · pi ).

Define then 6r := 6 \ ∪
k
i=1 Br ([pi ]). Note (6r , g

6
) is a smooth Riemannian

manifold (with boundary). We can take any conformal immersion φ : 6r → Sm ,
m ≥ 2, and define P : Conf(Sm)→ Bm+1

1 (0) by

P(h) :=
1∫

6
ηr u1

(∫
6
(ηr u1)(h1 ◦φ ◦π), . . . ,

∫
6
(ηr u1)(hm+1 ◦φ ◦π)

)
,

where h = (h1, · · · , hm+1) ∈ Conf(Sm) is any conformal diffeomorphism of Sm

(under the standard metric), and u1 :6→ R+ is the first (G-invariant) eigenfunction
of L6 . Since u1 > 0 and

∑m+1
j=1 h2

j = 1, one easily verifies that P is well defined.
Meanwhile, for each x ∈ Bm+1, define hx ∈ Conf(Sm) as in [27, (1.1)] by

hx(y) :=
y + (µ⟨x, y⟩ + λ) x
λ(⟨x, y⟩ + 1)

, with λ := (1 − |x |
2)−1/2, µ := (λ− 1)|x |

−2.

Then we have a continuous map f : Bm+1
1 (0)→ Bm+1

1 (0) given by f (x)= P(hx),
which can be continuously extended to ∂Bm+1

1 (0)= Sm by the identity map. Note
Clos(Bm+1

1 (0)) is homotopic to f
(
Clos(Bm+1

1 (0))
)
, and Clos(Bm+1

1 (0)) \ {x} is
homotopic to Sm for any x ∈ Bm+1

1 (0). Hence, f must be surjective. In particular,
there exists h = (h1, . . . , hm+1) ∈ Conf(Sm) so that P(h)= 0. Thus, we have that
{h̃ j := h j ◦φ ◦π}

m+1
j=1 are G-invariant smooth functions on 6r so that

m+1∑
j=1

h̃2
j = 1 and

∫
6

u1 · (ηr h̃ j )= 0 for all j = 1, . . . ,m + 1.

Since IndexG(6)= 1, we see δ26(ηr h̃ jν)≥ 0 for all j = 1, . . . ,m + 1, and∫
6√

r

RicM(ν, ν)+ |A|
2
≤

∫
6
(RicM(ν, ν)+ |A|

2)η2
r

=

∫
6
(RicM(ν, ν)+ |A|

2)
m+1∑
j=1
(ηr h̃ j )

2

≤

∫
6

m+1∑
j=1

|∇(ηr h̃ j )|
2

≤

∫
6

m+1∑
j=1

[
(1 + ϵ)|∇ h̃ j |

2η2
r +

(
1 +

1
ϵ

)
|∇ηr |

2h̃2
j

]
≤ (1 + ϵ)K ·

∫
6r

m+1∑
j=1

|∇h j ◦φ|
2
+

(
1 +

1
ϵ

)∫
6
|∇ηr |

2

= 2(1+ϵ)K ·Area(6r ; (h ◦φ)∗g
Sm+1 )+

(
1+

1
ϵ

)∫
6
|∇ηr |

2,
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where ϵ > 0 is any constant, Area(6r ; (h ◦φ)∗g
Sm+1 ) is the area of 6r under the

conformal metric (h ◦φ)∗g
Sm+1 , and the coarea formula is used in the last inequality.

Let Ac(m, 6r ) be the m-conformal area of 6r defined as in [18]:

Ac(m, 6r ) := inf
φ

sup
h∈Conf(Sm)

Area(6r ; (h ◦φ)∗g
Sm ),

where the infimum is taken over all nondegenerated conformal map φ of6r into Sm .
Since φ :6r → Sm is arbitrary conformal immersion in the above computation, we
have ∫

6√
r

RicM(ν, ν)+ |A|
2
≤ 2(1 + ϵ)K · Ac(m, 6r )+

(
1 +

1
ϵ

)∫
6

|∇ηr |
2.

By [14, Chapter IV, Remark 5.5.1], every closed orientable surface can be con-
formally branched over S2 with degree

⌊genus +3
2

⌋
, where ⌊a⌋ is the integer part of

a ∈ R+. It then follows from [18, Facts 1, 5] that Ac(m, 6r )≤ 4π
⌊genus(π(6))+3

2

⌋
,

and thus∫
6√

r

RicM(ν, ν)+ |A|
2
≤ 4π(1 + ϵ)K · 2

⌊
genus(π(6))+ 3

2

⌋
+

(
1 +

1
ϵ

)∫
6

|∇ηr |
2.

Since
∫
6
|∇ηr |

2
→ 0 as r → 0, we first take r → 0 and then let ϵ → 0, which gives∫
6

RicM(ν, ν)+ |A|
2
≤ 4πK · 2

⌊
genus(π(6))+ 3

2

⌋
.

Denote by {ei }
2
i=1 a local orthonormal basis on 6. Since RicM > 0, we have

RicM(ν, ν)+ |A|
2
=

2∑
i=1

RicM(ei , ei )− 2K6 >−2K6

on 6prin, where K6 is the Gauss curvature of 6. Therefore, by the coarea formula,

−2K
∫
6

K6 = −2
∫
6

K6 <

∫
6

RicM(ν, ν)+ |A|
2
≤ 4πK · 2

⌊
genus(π(6))+ 3

2

⌋
.

Then, it follows from the above strict inequality and the Gauss–Bonnet formula (5-2)
that genus(π(6))+

∑k
i=1

(
1 −

1
ni

)
< 5 and

genus(6)= 1 + K
[
genus(π(6))− 1 +

k∑
i=1

(
1 −

1
ni

)]
< 1 + 4K .

Moreover, one notices that 2
⌊genus(π(6))+3

2

⌋
= genus(π(6))+3 if genus(π(6))≥ 1

is odd, and 2
⌊genus(π(6))+3

2

⌋
= genus(π(6))+2 if genus(π(6))≥ 0 is even. Hence,

the above computation actually shows

• genus(π(6))+
∑k

i=1
(
1 −

1
ni

)
< 5 if genus(π(6))≥ 1 is odd, and

• genus(π(6))+
∑k

i=1
(
1 −

1
ni

)
< 4 if genus(π(6))≥ 0 is even,
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which further implies that genus(π(6))≤ 3 and
∑k

i=1(1−
1
ni
) < 4. In particular, if

6 ⊂ Mprin, then
∑k

i=1
(
1 −

1
ni

)
= 0 and

genus(6)= 1 + K (genus(π(6))− 1)≤ 1 + 2K .

Finally, we see that

2cM W G(M)≤

∫
6

2∑
i=1

RicM(ei , ei )

≤ 4πK ·2
⌊

genus(π(6))+3
2

⌋
+2K

∫
6

K6

= 4πK ·

(
2−2 genus(π(6))−

k∑
i=1

(
1−

1
ni

)
+2

⌊
genus(π(6))+3

2

⌋)
≤ 16πK ,

where RicM ≥ cM > 0. □
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