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WITH POSITIVE RICCI CURVATURE

TONGRUI WANG

We consider a connected orientable closed Riemannian manifold M"+!
with positive Ricci curvature. Suppose G is a compact Lie group acting
by isometries on M with 3 < codim(G - p) <7 for all p € M. Then we
show the equivariant min-max G-hypersurface X corresponding to one-
parameter G-sweepouts (of boundary-type) is a multiplicity one minimal
G-hypersurface with a G-invariant unit normal and G-equivariant index one.
As an application, we are able to establish a genus bound for X, a control on
the singular points of X /G, and an upper bound for the (first) G-width of M
provided n + 1 = 3 and the actions of G are orientation preserving.

1. Introduction

Given a connected orientable closed Riemannian manifold (M"*!, g, ), minimizing
the area within a nontrivial homology class is a natural way to construct mini-
mal hypersurfaces (see [12; 36]). However, if M has positive Ricci curvature,
it follows from the stability inequality that this minimization method cannot be
applied. In the 1960s, Almgren [1; 2] proposed the min-max theory to find minimal
submanifolds in the most general situation. Subsequently, the regularity for min-
max hypersurfaces was improved by Pitts [30] (n < 5) and Schoen and Simon [34]
(n = 6). Indeed, for n > 7, they showed the min-max minimal hypersurface is
smooth embedded except for a singular set of codimension 7.

Due to the generality and abstractness of Almgren—Pitts min-max theory, many
of the geometric properties of min-max hypersurfaces have not been understood
until recently. For instance, in a closed manifold with positive Ricci curvature, a
series of studies were set out to characterize the min-max hypersurfaces generated
from one-parameter families. Specifically, using the Heegaard splitting, Marques
and Neves [20] studied the index and genus of the min-max surface in certain 3-
manifolds. They also obtained sharp estimates for the width and rigidity results. In a
higher-dimensional manifold M"+! with positive Ricci curvature, Zhou determined
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the Morse index and multiplicity of the min-max hypersurface for 3 <n+1 <7
in [43] and for n > 7 in [44]. Subsequently, Ketover, Marques, and Neves [17]
refined Zhou’s results in dimension 3 < n + 1 <7 by showing the orientability of
the min-max hypersurface using the catenoid estimates. In particular, the min-max
hypersurface is an orientable closed minimal hypersurface of Morse index one and
has the least area among all orientable closed minimal hypersurfaces. Furthermore,
without any curvature assumption, the constructions in [20; 43] were also employed
by Mazet and Rosenberg [25] to show the least area minimal hypersurface is either
stable or a min-max hypersurface of Morse index one.

Given a 3-manifold M with a finite group G acting by isometries, Pitts and Rubin-
stein [31; 32] first asserted the existence of a G-invariant minimal surface with esti-
mates on its index and genus. The existence and regularity of minimal G-invariant
surfaces (abbreviated as G-surfaces) were recently confirmed by Ketover [15] (for
finite G of orientation preserving isometries) using the equivariant min-max under
the smooth setting. More generally, suppose M"*! is a closed Riemannian manifold
with a compact Lie group G acting by isometries so that 3 < codim(G - p) <7 for all
p € M. The equivariant min-max theory was also extended to this general scenario
by Liu [19] (for connected G with min ¢y codim(G - p) #0, 2) in the smooth setting
and by Wang [39; 40] in the Almgren—Pitts setting. In particular, Wang [39, Theo-
rem 9] showed an isomorphism between H,,1(M; Z,) and 1 (Z,? (M; 73)), where
ZnG (M; Z,) is the space of G-invariant n-cycles (of boundary-type, see geometric
measure theory). Then it is similar to the constructions of Almgren—Pitts (see [30])
that the fundamental class [M] € H,+1(M; Z;) corresponds to the (first) equivariant
min-max width WY (M) > 0 of M defined with one-parameter G-sweepouts (see
Definition 2.7 and [30, Corollary 4.7]), which can be realized by the area of some
minimal G-invariant hypersurfaces (abbreviated as G-hypersurfaces) with multiplic-
ities. Therefore, it now seems reasonable to investigate the geometric features of the
equivariant min-max hypersurface, such as its area, multiplicity, index, and topology.

In this paper, our main result generalizes the characterization of the min-max
hypersurface into an equivariant version (see Theorem 5.1).

Theorem 1.1. Let (M"*!, g ) be a connected orientable closed Riemannian mani-
fold with positive Ricci curvature, and G be a compact Lie group acting by isome-
tries on M so that 3 <codim(G-p) <7 forall p € M. Then the equivariant min-max
hypersurface ¥ corresponding to the fundamental class [M] € H,+1(M; Z>) is a
multiplicity one minimal G-hypersurface so that:

(1) X has a G-invariant unit normal vector field.
(ii) The equivariant Morse index of ¥ (Definition 4.1) is one.

(ii1)) X has the least area among all closed embedded minimal G-hypersurfaces
with G-invariant unit normal vector fields.



EQUIVARIANT MIN-MAX HYPERSURFACE IN G-MANIFOLDS 151

Remark 1.2. We make some remarks about the above theorem:

(i) If M has connected components {M;}!" ,, then we can take a component M;
and the Lie subgroup G; :={g € G : g- M; = M;}. By applying the above theorem
to M; and G,;, we obtain a minimal G;-invariant hypersurface X; of multiplicity one.
Additionally, one easily verifies that G - ¥; C G - M; is a minimal G-hypersurface
satisfying (i)—(iii) in Theorem 1.1 with G - M; in place of M.

(i1) Without the positive Ricci curvature assumption, we can combine the proof
of Theorem 1.1 and the constructions in [25] to show the existence of a minimal
G-hypersurface of the least area (counted with multiplicity) among all minimal
G-hypersurfaces. The details will be discussed in an upcoming paper.

Equivariant vs nonequivariant. Note that Theorem 1.1 is an equivariant generaliza-
tion of the results in [17; 43] where G = {id}. Nevertheless, due to the equivariant
constraints, the equivariant min-max hypersurface exhibits slightly stronger proper-
ties (e.g., the unit normal not only exists but also it is G-invariant). Additionally, it
should be noted that the equivariant constraints generally have a significant impact
on the min-max outcomes. Indeed, if we denote by W(M) = wlidl (pr) (resp.
WS (M)) and X (resp. X) the first (resp. equivariant) min-max width and the
corresponding first (resp. equivariant) min-max hypersurface, then we generally
have W (M) < W% (M) without the equality. Moreover, even if ¥ is G-invariant and
W(M)= WY (M), X may not necessarily be the equivariant min-max hypersurface
corresponding to WY (M). One can easily observe these phenomena from the
following examples.

Example 1.3 (W (M) < WS (M) without equality). Let M = S3 be the unit sphere
with the standard round metric. Then W (S?) = 4 is realized by the area of the
equator ¥ = S? [29]. Next, take G = Z» acting on S* by the antipodal map so that
n:M=S>— M/G =RP? is a (locally isometric) double cover. Hence, 7(Z¢)
is the first min-max hypersurface in RP? corresponding to W (RP?). Therefore,
although ¥ is G-invariant, it can not be ¥, because 7 (X) = RP? is 1-sided,
while 7 (Zg) C RP3 must be 2-sided [17; 43]. Indeed, it follows from [3] that
W2 (S3) = 2W(RP?) = 272 is realized by the area of the Clifford torus.

Example 1.4 (X # g evenif W = WO). Let M = S* = {x e R* : x| = 1},
and G = Z; act by the reflection (x, x2, x3, x4) — (—x1, X2, x3, X4). Then we
have M/G = Si = {x € S : x; > 0}. Note the Z,-equivariant minimal hy-
persurfaces and Z,-sweepouts in S correspond one-to-one to the free boundary
minimal hypersurfaces and (relative) sweepouts in Si. Thus, X6 /G is the first
min-max free boundary minimal hypersurface in Si corresponding to W(Si).
Therefore, W22(S?) = 2W(§§r) = 41 = W(S?) realized by the area of a great
2-sphere X = S? perpendicular to {x; = 0}. (As an example, take the Z,-sweepout
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(S*N{x, = t}}te1-1,11-) Meanwhile, we notice X = S*N{x; =0} is G-invariant and
is also a min-max hypersurface corresponding to W (S?). However, since X /G = S?
is not the free boundary min-max hypersurface corresponding to W(Si), we have
Y. # Y in this case.

One should also notice that in the above examples, X admits a G-invariant unit
normal, while the unit normal of X is not G-invariant. Intuitively, this is because our
equivariant sweepouts are formed by the boundaries of G-invariant (Caccioppoli)
sets admitting a (measure-theoretic) inward G-invariant unit normal. Hence, if
a G-invariant min-max hypersurface ¥ does not have a G-invariant unit normal,
then X cannot be a boundary of a G-invariant (Caccioppoli) set, and the min-max
sequence |02, | must converge to X with even multiplicities (Theorem 3.8) so that
the constructions in [17; 43] can be generalized to derive Theorem 1.1.

Remark 1.5. To ensure W (M) is well defined for any M and G, we only use the
boundaries of G-invariant (Caccioppoli) sets in the equivariant min-max construc-
tions in this paper. Note, for some specific choices of M, G, one may construct
the equivariant min-max using “G-hypersurfaces without G-invariant unit normal”,
and Theorem 1.1(i) may fail in this case (see, e.g., [16]). Similarly, the results
in [43] may not be applicable for nonboundary-type min-max constructions (without
equivariance).

Further discussions and applications. We will now delve deeper into some inspi-
rations and potential applications of Theorem 1.1.

Firstly, one notices that the existence of a G-invariant unit normal can help to
distinguish the min-max G-hypersurface ¥ and the fixed points set under certain
Z, actions. For instance, consider a positive Ricci curvature 3-ellipsoid M with
its major axis (on x;) sufficiently long and the other principal axes bounded by 2.
Then the classical min-max theory shall provide the equator I' = {x; =0} N M on
the major axis as the min-max hypersurface. Although I' is also invariant under
the Z,-reflections (x1, x") = (—x1, x’), it cannot be the min-max Z,-hypersurface
since its unit normal is not Z,-invariant. An interesting question is what exactly is
the min-max Z,-hypersurface in this case, and how does it relate to the 2-min-max
minimal hypersurfaces?

In addition, we see that the characterizations of the Morse index and multiplicity
for min-max hypersurfaces are crucial in the study of min-max theory. For instance,
a key part in the proof of the Willmore conjecture by Marques and Neves [21] is to
show the minimal surface in S3 constructed by the five-parameter families of min-
max has Morse index 5. Additionally, by specifying generically the multiplicity [45]
and index [22; 24] of min-max hypersurfaces, the multiparameter min-max theory
was used to establish the Morse theory for the area functional. In the equivariant
case, Wang [41] also proved general upper bounds for the G-index (Definition 4.1)
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of equivariant min-max hypersurfaces generated from multiparameter families.
Therefore, in light of Theorem 1.1 and Zhou [45], we conjecture that for a generic
G-invariant Riemannian metric, the minimal G-hypersurface constructed from
k-parameter families of equivariant min-max shall have multiplicity one, G-index k,
and a G-invariant unit normal.

Moreover, it has been discovered in numerous studies that the Morse index of
a minimal surface is related to its topology. For instance, in a closed 3-manifold
with positive Ricci curvature, Choi and Schoen [8] proved the area of a closed
minimal surface can be bounded by its genus. Therefore, by Ejiri and Micallef [11,
Theorem 4.3], the index of a such minimal surface is also bounded by its genus.
Additionally, using the conformal volume, Yau (see [35, Chapter VIII, Section 4])
obtained a genus bound for index one minimal surfaces in positive Ricci curvature
manifolds. More generally, in an orientable 3-manifold with nonnegative Ricci
curvature, it follows from the sharp estimate of Ros [33, Theorem 15] that a closed
orientable minimal surface of index one must have genus < 3. Recently, Song [37]
showed that the total Betti number of a closed minimal hypersurface in M"*!,
3 <n+1 <7, can be bounded by its index and a constant depending only on n, g,,,
and its area, which further indicates a quantified relation [37, Corollary 3] between
the genus and index of a minimal surface in M>. For a complete two-sided minimal
surface in R3, Chodosh and Maximo [6] showed that its genus and the number of
ends give a lower bound on its index. We refer to [7; 26] for more related research.

Hence, as an application, we use the conformal volume initiated by Li and
Yau [18] in the orbit space to show a general genus bound of the equivariant min-
max surface in a 3-manifold with positive Ricci curvature, which further indicates
an upper bound of the G-width and a bound for the singular points of X /G (see
Theorem 5.2).

Theorem 1.6. Let (M?, g,,) be a closed connected oriented Riemannian 3-manifold
with positive Ricci curvature, and G be a finite group acting on M by orientation
preserving isometries. Then the equivariant min-max hypersurface ¥ corresponding
to the fundamental class [M] is a connected minimal G-hypersurface of multiplic-
ity one with

genus() <4K, WO(M) = Area(s) < 37K

Cm

where K :=max ,cy #G - p < #G is the number of points in a principal orbit of M,
and Ricy > cpr > 0. Additionally, the quotient space m(X) = X /G is an orientable
surface with finite cone singular points of order {ni}le so that

k

)3 (1 - i) <4 and genus(n (X)) < 3.

i=1 n;

In particular, if ¥ /G has no singularity, then genus(¥) < 14 2K.
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Remark 1.7. To generalize Li—Yau’s [18] theory to the orbit spaces, G-actions in
Theorem 1.6 are assumed to be orientation preserving isometries so that M/G and
¥ /G induce orientable orbifolds without boundary.

The conformal method has been employed in many studies for the volume
spectrum, i.e., the multiparameter version of width. For the first width W (M) in the
volume spectrum, Glynn-Adey and Liokumovich [13] gave an upper bound using the
min-conformal volume of the ambient manifold. In particular, if M is a closed sur-
face, they showed the first width W (M) can be bounded by the genus and area of M.
Also, the conformal upper bounds for the volume spectrum were proved in [38].

Main ideas and outline. The main idea for Theorem 1.1 is as follows. For the closed
manifold M and the Lie group G in Theorem 1.1, we can take any closed embedded
minimal G-hypersurface ¥ in M and use the variation of its first eigenvector field
to foliate a G-neighborhood of X. Using a half-space version of the equivariant
min-max theory (Theorem 3.11), we argue by contradiction to show this local
G-equivariant foliation can be extended to a continuous G-sweepout of M with
mass no more than Area(X) (if ¥ has a G-invariant unit normal) or 2 Area(X).
Therefore, it follows from the equivariant min-max theory [39, Theorem 8] (see
also [40, Theorem 4.20]) that the equivariant min-max hypersurface is the minimal
G-hypersurface of least area in the sense of (5-1). Additionally, if the equivariant
min-max hypersurface does not admit a G-invariant unit normal, it must have even
multiplicity by the constructions of equivariant min-max (Theorem 3.8). However,
in this case, we can further use the catenoid estimates of Ketover et al. [17] to
add small G-invariant cylinders in the G-sweepouts (Proposition 4.7), which will
strictly decrease the mass and give a contradiction.

The above idea shares the same spirit as in [43]. However, since the equivariant
min-max theory was already established in a continuous version [39, Theorem 8],
we do not need to invoke the smooth setting of min-max (see [10]) as in [43,
Section 2], but give a more self-contained equivariant min-max construction in half
spaces (Theorem 3.11). Meanwhile, instead of using the discretization theorem
as in [43, Theorem 5.8], we can more easily determine that the extension of the
G-equivariant foliation is a G-sweepout.

The article is organized as follows. In Section 2, we collect some notations and
definitions of Lie group actions and geometric measure theory. In particular, we intro-
duce the G-equivariant sweepouts and G-width of M in a continuous version using
the isomorphic map between 7} (Zf (M; Z»)) and H,,+1(M; Z»). Then we introduce
in Section 3 the equivariant min-max theory developed by Wang [39; 40] under the
Almgren—Pitts setting with some modifications. In Section 4, we will generate a
continuous G-sweepout with good properties from a given minimal G-hypersurface.
The proof of the main theorem and its applications are given in Section 5.
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2. Preliminary

Let (Mt g ,) be an orientable connected compact Riemannian (n + 1)-manifold
and G be a compact Lie group acting isometrically on M. Denote by u a biinvariant
Haar measure on G normalized to ;«(G) = 1. For the case that 0 M # @, it follows
from [40, Lemma A.1] that M can be equivariantly and isometrically extended to a
closed Riemannian manifold (N, g, ) with G acting on N by isometries. Therefore,
we can assume M is a compact domain of a closed Riemannian G-manifold N.

Note that although our main results only involve closed minimal G-hypersurfaces
in closed G-manifolds, we also need a half-space version of equivariant min-max to
insert any closed embedded minimal G-hypersurface into a good G-sweepout (see
main ideas and outline). Hence, we also include some terminologies and results
in this paper concerning G-equivariant min-max in compact G-manifolds with
nonempty boundary.

Lie group actions. To begin with, we gather some definitions of Lie group actions,
most of which are referred from [4; 5].

It follows from [28] that there is an orthogonal representation p : G — O(L)
and an isometric embedding i : M < R’ for some L € N so that i is equivariant,
i.e., i o g = p(g) oi. For simplicity, we regard M as a subset of RY and denote
the orthogonal action of g € G on x € R as g - x. We say a subset (hypersurface)
A C M is a G-subset (G-hypersurface) if g- A=A forall g € G.

Forany p e M, let G- p :={g- p : g € G} be the orbit containing p and
G, :={g € G: g-p = p} be the isotropy group of p. Note G - p is a closed
submanifold of M and G, is a Lie subgroup of G. We then say p has (G ) orbit-
type, where (G ) is the conjugacy class of G, in G. By [4, Proposition 2.2.4],
there is a (unique) minimal conjugacy class (P) of isotropy groups so that MP'" =
Mpy :={p € M : (G,) = (P)} is an open dense G-subset of M. We call any
G - p C MP"™ a principal orbit of M and denote by Cohom(G) the codimension of
a principal orbit, which is known as the cohomogeneity of the actions of G.

Let M/G be the quotient space, i.e., the orbit space, and 7 be the projection
m:M— M/G, p+ [p]. Itis well known that M/G is a Hausdorff metric space
with induced metric disty/6 ([p], [¢]) :=disty (G - p, G - q).

Denote by B, (p), B, ([p]), and [B’r‘(p) the geodesic ball in M (orin N if IM # ),
the metric ball in M/G, and the Euclidean ball in R* respectively. Then we use the
following notations:

e X(M), X(U): the space of smooth vector fields compact supported in M or
UcCM.

o X9(M), X6(U): the space of G-vector fields X in M or U, (g X = X for all
g€G).
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. B/? (p): the open geodesic tube with radius p around the orbit G - p in M (or
in N if oM # 9).
. AnG(p, s, t): the open tube B,G(p) \ ESG(p).
For any closed G-hypersurface ¥ C M, denote by N X its normal bundle with G
actingonitby g-v:=gsv forall ge G,ve NX. Let expé :NX — M be the
normal exponential map of X. Note expé is a G-equivariant diffeomorphism in a
neighborhood of X.

Geometric measure theory. We refer to [12; 30; 36] for the following definitions:

o I (M; Z,): the space of k-dimensional mod 2 flat chains in RL with support
contained in M.
o Z,(M; Z5): the space of T € I,(M; Z;) with T =0U for U € I,1(M; Z,),
i.e., the boundary-type mod 2 n-cycles.
* Vi (M): the weak topological closure of the space of k-dimensional rectifiable
varifolds in RY with support contained in M.
Let F and M be the flat (semi)norm and the mass norm in I (M; Z;) [12, 4.2.26].
Define the F-metric on Vi (M) as in [30, p. 66]. Then F induces the weak topology
on any mass bounded subset {V € Vi, (M) : ||V ||(M) < C}, where C > 0 and || V||
is the Radon measure on M induced by V.
Forany T € I.(M; Z,), we denote |T'| and || T'|| as the integral varifold and the
Radon measure induced by T'. Then we define the F-metric on I (M; Z,) by

F( S, T)=FS—-T)+F(S|,|T|) forall S,T € I.,(M; Z,).
It follows from [30, p. 68] that for any T, {T;};en C 2, (M; Z5),
(2-1) lim F(T;, T)=0 <« lim F(7;,T)=0 and lim M(T;) = M(T).
=00 1 —>0

1 —> 0

Forve{M, F, F},let It,(M; v; Z,) and Z,(M; v; Z,) be the spaces with topology
induced by v. Additionally, we denote by [I'] the element in I} (M; Z,) induced
by a k-submanifold I' C M.

Wesay T € It.(M; Z,) (or V € Vi (M)) is G-invariant if guT =T (gaV =V)
for all g € G. Then we have the following subspaces of G-invariant elements:

o IE(M;Z5) :={T € It(M; Z5) : g4T =T for all g € G}.

« Z8(M; Zy) :={T € Z,(M; Z) : T = 3U for some U € I?, |

¢ VE(M) :={V e V(M) :gzV =V forall geG).
Remark 2.1. Note Z,?(M; Zy) CAT € 2,(M; Zy) : g4T =T forall g € G} in
general, and intuitively, T € Z9(M; Z») is not only a boundary that is G-invariant

but also “bounds a G-invariant region”. This is essential to derive Theorem 1.1(1)
as explained in Remark 1.5.

(M Z,)}.
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Since G acts by isometries, IkG(M; 75), ZnG (M; Z5), and VkG(M) are closed
subspaces with induced metrics M, F, F. Moreover, we have the following isoperi-
metric lemma (see [39, Lemma 5]), which is also valid when 0 M # @.

Lemma 2.2. There are €py > 0, Cypy > 1 such that for any Ty, T, € InG (M; Z,) with

3T1 = 3T2 = 0, and
F(Ih —T) <epy,

there is a unique Q € InGH(M s Z3), called the isoperimetric choice of Ty, T5,
satisfying
) 900 =T -1,

(i) M(Q) = Cy - F(Th — T).

For any V € V,,(M) and X € X(M), the first variation of V along X is given by

d .
V(X) = m I (F)#V II(M) :/ divs(X)(p)dV(p, S),
rh=0 Gu(M)

where {F;} are the diffeomorphisms generated by X, and G, (M) is the Grassman-
nian bundle of unoriented n-planes over M. Suppose V € V,? (M) is G-invariant
and U C M is an open G-subset, then we say:

o V is stationary in U if §V (X) =0 for all X € X(U).
e V is G-stationary in U if 8V (X) =0 for all X € X9 (U).

Clearly, a stationary G-varifold must be G-stationary. Meanwhile, let
(2-2) Xg = /(g_l)*Xdu(g) for all X € X(U).
G
A direct computation shows X € XC(U)and 8V (X)=8V (X) for any V € Vf (M)
(see [19, Lemma 2.2]). Hence, we have:
(2-3) V € V9(M) is stationary in U if and only if it is G-stationary in U.

G-Sweepouts and G-width. To define the equivariant sweepouts and width, we
need to introduce a technical assumption:

Definition 2.3. For any F-continuous map & : [0, 1] — Zf (M; Z5), define
m%(®, r) := sup{[|® )| (B (p)) : x € [0, 1], p € M},

where BrG (p) is the geodesic r-neighborhood of G- pin M (orin N if M C N has
nonempty boundary). Then we say ® has no concentration of mass on orbits if
lim,_om©(®, r) = 0.

By (2-1) and a continuous argument, we have the following lemma (see [39,
Lemma 8]), which is quite useful in Section 3.
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Lemma 2.4. If ®:[0,1] —> ZnG (M; 75) is F-continuous, then ® has no concen-
tration of mass on orbits and sup, o 11 M (P (x)) < oo.

Closed G-manifolds. Inthis case, d M = @. Then for any F-continuous closed curve
®:[0,1] > Z85(M; Z»), ®(0) = ®(1), we can take a; = j/3F, j=0,1,...,3*
with k € N large enough so that

2-4) F(P(x)—D(y) <ey forall x,yela;,aj1],

where €); > 0 is given by Lemma 2.2. By Lemma 2.2, there is Q; € InGH(M; Z3)
with 0Q; = ®(a;41) — ®(a;) and M(le’) < Cy F(®(ajy1) — ®(aj)), where
j=0,1,....3*— 1. Therefore, Q := Y"3_3' Q; € IC. | (M: Z,) satisfies 8Q =0,
which indicates Q = [[M] or O by the constancy theorem [36, 26.27]. Hence, we
can correspond ® to a homology class:

(2-5) Fp(®) :=[Q] € Hy (M™; 7).

By the constancy theorem, F;(®) does not depend on the choice of k. Moreover,
by [39, Remark 2] and the arguments in [1], we have Fj;(®) = Fy (®’) for any
closed curve @’ that is homotopic to ® in Zf (M; F; Z5), and Fj induces an
isomorphism [39, Theorem 9]:

Fuy i1 (28 (M; 7)) — Huy (M 7).

In the above, we do not need to specify the base point of (Z,? (M; Z5)). This is
because Z¢(M; Z,) is the F-path connected component of I8 (M; Z2) N Z,(M; Z,)
containing 0 (by Lemma 2.2 and the contraction approach in [24, Claim 5.3]).

Definition 2.5 (G-sweepout). A closed F-continuous curve ® : S! — ZnG (M; Z5)
is said to be a G-sweepout of M if Fy(®) =[M] #0O.

Remark 2.6. Since Z¢(M; Z,) is F-path connected, every two G-sweepouts are
homotopic to each other in Z,? (M; F; Z3). Hence, the set of G-sweepouts of M is
exactly the nontrivial homotopy class of closed curves in Zf (M; 7).

Next, we introduce the min-max G-width of M, which can be regarded as a
critical value for the area functional with respect to all variations by (2-3).

Definition 2.7 (G-width). Let P¢ (M) be the set of G-sweepouts of M with no
concentration of mass on orbits. Then we define the G-width of M by

WO (M):= inf supM(P(x)).
PePC(M) yes!
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Compact G-manifolds with boundary. Now we consider the case that IM # &,
and regard M as a compact domain of a closed Riemannian G-manifold N. Let Fi
be given by (2-5), and vy be the unit normal of d M pointing inward M. Then
for n > 0 small enough, define

(2-6) M, == M \ expy ([0, n) - vour) = {p € M : disty (p, IM) > 1},

Let ®; : [0, 1] — ZnG (M; Z3), i = 1,2, be two F-continuous curve so that
®;(0) =[0M] and ®;(1) = 0. As the constructions in (2-4), we can associate ;
to Q; € If+1(M ; Z7) with 0Q; = [[0M]. Then the constancy theorem implies
Q; = [M]. Therefore, the curves product, i.e., joint curve, ®, Lo 1 satisfies
FN(CIDZ’1 - ®1) =0, and thus Cbgl - @ is homotopic to 0 in Zf(N; F; Z5). Since
spt(P;(x)) € M for all x € [0, 1] and i = 1, 2, we can apply the double cover
argument in [24, Theorem 5.1] with Lemma 2.2 in place of [1, Corollary 1.14],
and see the homotopy map between @, L. @, and O can be taken in Z,? (M; F; 7).
Thus, @ and &, are homotopic to each other in ZnG (M; F; Zy).

Next, we introduce the following definition for G-manifold with boundary, which
is generalized from the smooth min-max setting [43, Definitions 2.1, 2.5].

Definition 2.8. Suppose M is a compact Riemannian G-manifold with boundary
oM # &. Then we call a F-continuous curve @ : [0, 1] — ZnG (M; Z5) a G-sweepout
of (M, dM), if:

1 ®0)=[oM], ®(1)=0.

(i1) There exist € > 0 and a smooth G-invariant function w : [0, €] x dM — [0, 00)
with w(0, -) =0 and %w(O, ) > 0, so that ®(x), x € [0, €], is induced by
the smooth G-hypersurface expaLM(w(x, ) Vam).

(iii) For any xq € (0, 1], there exists n > 0 so that spt(®(x)) € M,, for all x € [xo, 1].

Denote by PY(M, IM) the set of G-sweepouts of (M, d M) with no concentration
of mass on orbits. Then we define the G-width of (M, dM) by
WEM,dM):=  inf sup M(P(x)).
DePCE(M,0M) xe[0,1]

Remark 2.9. As we mentioned before, any two G-sweepouts @1, &, of (M, IM)
are homotopic to each other in Zf (M; F; Z). Moreover, by reparametrization,
the foliation parts of ®;, i =1, 2, are homotopic through v, := (1 —t) w; + fwo,
where ¢ € [0, 1] and wq, wy : [0, %] X dM — [0, oo) are given by Definition 2.8(ii).
The nonfoliation parts CID,-L[%, 1] and expaLM (v, (%, ) vy M) are all in M,, for some
n > 0, and thus the homotopy between these parts can be taken in Z¢ (My; F; Z>)
(see the constructions in [24, Theorem 5.1] with Lemma 2.2). Therefore, we can
take a homotopy map H : [0, 1] x [0, 1] — Z,?(M; F; Z5) so that H(O, -) = &,
H(l,.) = ®,, and for every t € [0, 1], H(z, -) is a G-sweepout of (M, dIM).
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3. Equivariant min-max theory

In this section, we introduce the equivariant min-max constructions in [39] (see
[40; 41] for modified versions). Then main purpose is to find an integral G-varifold
V € VS(M) induced by a smooth embedded minimal G-hypersurface so that
IVI[(M) = WO (M) (or WO(M,dM) if IM # @). Since our definitions differ
slightly from those in [40; 41], we shall outline the essential steps for the sake of
completeness.

Throughout this section, let P¢ = PS¢ (M) or P¢ (M, dM), W¢ = WG (M) or
WY (M, dM) depending on whether d M is empty. By reparametrization, we always
assume the domain of ® € PY is I = [0, 1], and if dM # &, then CI>|_[O, %] are
smooth G-hypersurfaces as in Definition 2.8(ii).

For any sequence {®;};en C PC, define the width of {®;};en by

L({®i}ien) :=lim sup supM(D;(x)).

i—oo xel

Then we say {®;};cn is a min-max sequence if
L({®i}ien) = WO,
The image set of {®;};cn is defined by

A({D;}icn) = {V € VHG(M) 1V = lim [®;,(x;;)| for some i; — o0, x;; € I}.
Jj—o0o

Moreover, we define the critical set of {®;};cn by
C{Di}ien) :={V € A({Di}ien) : IVII(M) = L{D;}ien)}-

Discrete min-max settings. To apply the equivariant min-max constructions in
[39; 40], we need the following discrete notations. Since we only consider curves
in ZnG (M; Z,), we will restrict the notations to the 1-parameter case.

Denote by I := [0, 1]. For any j € N, let /(1, j) be the cube complex on / with
1-cells and O-cells (vertices) given by

I(1, ) :={[0,3771,[37/,2-377], ..., [1 =377, 1]},
1(1, j)o:={[01,[37/1, ..., [11}.

The boundary homeomorphism 9 is defined by d[a, b] = [b] — [a]. Then we
denote by 1(2, j) = 1(1, j) ® I(1, j) the cell complex on I>=1x1I. For any
a=01QRua el (2,j)and pe{0,1,2}, wesay « is a p-cell, if dim(a;)+dim(cz) = p.
Then the set of p-cells of (2, j) is denoted by (2, j),, and the set of p-cells in
a € 1(i, j)g is denoted by o).
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Let J := [%, 1]. Then we denote by J (1, j) the cubical subcomplex containing
all the cells of I(1, j) supported in J. Similarly, the set of p-cells of J(1, j) is
denoted by J (1, j), for p € {0, 1, 2}.

Letm € {1, 2} and two vertices x, y € I (m, j)o, defined (x, y):=3/ 37" |x; —yil.
For any map ¢ : I (1, j)o — ZnG(M; Z3), the M -fineness of ¢ is defined by

fmu(@) :=sup{M(¢(x) —¢(y)) :d(x,y) =1, x,y € I(1, j)o}.

Suppose S = {¢;}ien 1S a sequence of maps ¢; : (1, k;)g — ZnG(M; Z») such that
k; — oo and fy(¢;) — 0 as i — oco. Then we use the following notations:

L(S) :=limsup max M (p;(x)),

i—soo X€l(l,ki)o
A(S) := {V eVE(M): V = lim |g;, (x;,)| for some i; — 00, x;, € I(1, k,-)o},
j—o00
C(S):={VeAS):IVI(M)=L(S)}
Forany i, j e N,letn(i, j): I(1,i)o — I(1, j)o be the nearest projection, i.e.,
d(x,n(, j)(x)) =inf{d(x, y) : y € [ (m, j)o}.
Then we define the discrete homotopy:

Definition 3.1. Given ¢; : I (1, k;)o — Z8(M; Z,), i = 1,2, we say ¢, and ¢, are
1-homotopic in Z,? (M; Z,) with M-fineness & if there exists a map

W I (1, k) x I(1,k)g — Z5(M; Z5)

for some k > max{ky, k»} such that fy; () <6 and ¥ ([i — 1], x) = ¢; (n(k, k;)(x))
fori € {1,2} and x € I(1, k).

Definition 3.2. A sequence of mappings S = {¢; }ien, @i : I (1, ki)o — Zf (M; Z,),
is said to be a
(1, M)-homotopy sequence of mappings into Z8(M; Z,)
if ¢; and ¢; 1 are 1-homotopic in ZnG (M; Z,) with M-fineness §; such that
(1) lim;_, & 8; =0,
(i1) sup{M (¢;(x)) : x € I (1, k;)o, i € N} < +o00.

Definition 3.3. Let S/ = {¢ij tiens j =1, 2, be two (1, M)-homotopy sequences of
mappings into Z9(M; Z). Then S' and S? are homotopic in Z8 (M; Z,) if there
exists a sequence {J; };en such that

(1) ¢l.1 is 1-homotopic to ¢l.2 in Z,? (M; Z,) with M -fineness §;,

(1) lim; 0 8; =0.
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By the following discretization theorem from [39, Theorem 2], we can generate
a (1, M)-homotopy sequence of mappings into Z%(M; Z,) from any ® € PC.

Theorem 3.4 (discretization theorem). Let & : [ — ZnG (M; Z5) be a continuous
map in the flat topology so that sup,.; M (P (x)) < oo and ® has no concentration
of mass on orbits. Then there exists a sequence of maps

i 1(1, ji)o = 27 (M; Z5),
with j; < jit+1, and a sequence {§; > 0};cn converging to zero such that:

(1) S={o;}ien is a (1, M)-homotopy sequence of mappings into Zf (M; Z7) with

M -fineness far(¢;) < 6.

(i1) There exists some sequence k; — —+00 such that for all x € I (1, j;)o,

M(¢i(x)) < sup{M(P(y)):a € I(l,k)1,x,y €a}+3,

which implies L(S) < sup, ;M (P (x)).

(iii) sup{F(¢h;i(x) — @ (x)) :x € I(1, ji)o} < ;.

(iv) ®(0) = ¢i([0D) = ¥ (-,[0]) and ®(1) = ¢:i([1]) = ¥ (-, [1]), where V;
is the discrete homotopy map of ¢; and ¢;+1 with ¥;([0], n(-)) = ¢; and
Vi([1], n(-)) = dit1-

Moreover, let K C M be a compact G-invariant domain with smooth boundary.
Then forany j e Nand a € I (1, j)1, if spt(®(x)) C K for all x € a, then we can
Sfurther make spt(¢; (x)) C K forallx eaNI(1, ji)o.

Proof. The statements in (i)—(iii) follow directly from [39, Theorem 2]. Note
that the proof of [39, Theorem 2] is basically the combinatorial approach in [21,
Theorem 13.1] with Lemma 2.2 in place of [1, Corollary 1.14] and dist(G - p, -) in
place of dist(p, - ). Meanwhile, since the maps are defined on the 1-dimensional
cubical complex, statement (iv) follows from [21, Proposition 13.5(ii)] and the
combinatorial constructions of [21, Theorem 13.1(iv)]. Moreover, these cut-and-
paste and combinatorial arguments would also carry over in the case dM # & by
restricting in the compact domain M C N, and thus (i)—(iv) are still valid when M
has boundary. Finally, if K and o € I(1, j) are given as in the last statement. Then
we can apply the above discretization result to ®L« in K and & (1 \ int(«)) in M
respectively. Note the boundary values are unchanged by (iv). Hence, the discrete
maps defined in & and 7 \ int(«) can be connected together, which gives the last
statement. ([

The following interpolation theorem (see [39, Theorem 3]) indicates that a M-
continuous map into Z9(M; Z,) can be generated from a discrete map with small
M -fineness.
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Theorem 3.5 (interpolation theorem). For m = 1, 2, there exists a positive constant
Co=Co(M, G,m) so thatif ¢ : [(m,k)g — ZnG(M; Z) has fy(p) < ey with
€y > 0 given in Lemma 2.2, then there exists a map

oI — 26(M; 7,)
continuous in the M -topology satisfying:
(1) ©(x)=¢(x) forall x € I (m, k)o.

(1) If o is some j-cell in I (m, k), then ® restricted to a depends only on the values
of ¢ assumed on the vertices of a.

(iii) sup{M (D (x) — ®(¥)) : x, y lie in a common cell of I (m, k)} < Co far(P).
(iv) Foranya € I(m,k);,if prag=T € ZnG (M; Z3) is a constant, then Lo =T.
We call the map & in Theorem 3.5 the Almgren G-extension of ¢.

Proof. The statements in (i)—(iii) follow directly from [39, Theorem 3]. If M # &,
then the constructions in [40, Theorem 4.13] would carry over with ZnG (M; Z7)
and Lemma 2.2 in place of Z8(M, dM; Z,) and [40, Lemma 3.10]. If pLap =T €
28 (M; Z,) is a constant for some j-cell &, then for any 1-cell y; = [a, b] € ay,
the isoperimetric choice Q(y;) of ¢ (a) and ¢ (b) (Lemma 2.2) must be 0. Hence,
for any cell B C «, the map hg constructed in [40, Theorem 4.13] is 0 implying
dLa=T [1,4.5]. O

Using the discretization/interpolation Theorems 3.4 and 3.5, we have the follow-
ing corollary (see [39, Corollary 1]):

Corollary 3.6. Let ® : I — Z9(M; Z») be a F-continuous map with no concen-
tration of mass on orbits and sup, .; M(P(x)) < o0o. Suppose S = {¢;}ieN is given
by Theorem 3.4 applied to ®, and ®; is the Almgren G-extension of ¢; given by
Theorem 3.5 for every i sufficiently large. Then:

(i) For each i large enough, a relative homotopy map H; : 1> — ZnG (M; F; Z,)
exists with H;(0,-) = ®, H;(1,-) = &;, H;(-,0) = ®(0) = P,;(0), and
Hi(-,1)=o() = (D).

(i) L({P;}ien) = L(S) < sup,c; M(P(x)).

Proof. Using Theorem 3.5 and the arguments in [1], we see that [1, Theorem 8.2] is
valid in our G-invariant settings (even if 9 M may be nonempty). Hence, the proof
of [23, Corollary 3.9] would carry over with Theorems 3.4 and 3.5 in place of [23,
Theorem 3.6]. Thus, ®; is homotopic to ® in Zf (M; F; Zy) for i-large, and (ii) is
valid. Also, by (iv) in Theorems 3.4 and 3.5, we have ®(0) = ¢; ([0]) = ®,(0) and
O (1) =¢; ([1]) = D; (1) for all i-large. So, combining (iv) in Theorems 3.4 and 3.5
with the homotopy constructions in [23, Propositions 3.3, 3.8], one easily verifies
that the homotopy map H; of ® and ®; is relative to the boundary values. (]
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Let {®;};en C PY be any min-max sequence. If M = @, then we can apply
Corollary 3.6 to each ®; and obtain a sequence of M-continuous curves {dD }jeN
relative homotopic to ®; in Z (M; F; Z) and L({d>’ JjeN) < sup,¢; M(dD (x))
Choose j (i) sufficiently large so that sup, ., M (P j(l)(x)) <sup,c; M(P;(x)) ~|— -
Hence, we have {® J(z)}teN C PY(M) is a min-max sequence continuous in the
M -topology and so in the F-topology.

For the case 0 M # &, we can apply the above arguments to each &;.J, where
J = [ 1] in a G-submanifold M,, given by Definition 2.8(iii) with xo = 3, and

get CDJ(l) J— 20 (M,;; M; 75) satlsfymg

. cI>’j(l.) is relative homotopic to ®;J in Z9(M,,; F; Z»),
* sUpyes M(®f) () < sup,cy M(®;(x) + 7.

Since the homotopy map of CIJ;(I.) and ®;.J is relative to the boundary values, we
can define <I>’j(l.)|_[0, %] = <I>,-|_[O, %], and see that {q)lj(i)}iEN Cc PS(M,dM) is an
F -continuous min-max sequence.

Therefore, the above arguments give the following corollary, which implies we
only need to consider the F-continuous G-sweepouts.

Corollary 3.7. The G-width defined in Definitions 2.7 and 2.8 satisfies

WO = inf{sup M(d(x)): ®ePCis F-continuous}.
xel

Min-max theorems. We now use the min-max method to construct a minimal

G-hypersurface (with multiplicity) so that the width WY is realized by its area.

Closed G-manifolds. For the case that M is closed, it follows from Remark 2.6
and Corollary 3.7 that IT := {® € PY (M) is F-continuous} is a continuous G-
homotopy class in the sense of [39, Definition 5], and W% (M) = L(II) in the
sense of [39, Definition 6]. Hence, we have the following min-max theorem by [39,
Theorem 8]. (Note that the assumptions on M \ MP" in [39, Theorem 8] can be
removed by the modifications in [40], and the dimension assumption is modified in
[41, Theorem 5.1].)

Theorem 3.8. Suppose M is closed, i.e., 0M = &, and 3 < codim(G - p) <7 for
all p € M. Then there exists an integral G-varifold V € Vf (M) so that

m
IVIM) =WE M) and V=) nl%i,
i=1
where m, n; € N, {Z;}L | are disjoint G-connected (Definition 4.4) smooth embed-

ded closed minimal G-hypersurfaces. Moreover, if ¥; does not admit a G-invariant
unit normal vector field, then n; is an even number.
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Proof. We only need to show the last statement since the existence and regularity
of V are given by [39, Theorem 8] (see also [41, Theorem 5.1]). Note that the
min-max varifold V is (G, Z;)-almost minimizing in annuli of boundary-type in the
sense of [39, Definitions 10, 11]. Hence, for each X;, we can take a small G-tube
B (p) with center G- p C %; and r € (0, 1inj(G - p)) so that:

e Vis (G, Z,)-almost minimizing of boundary-type in BZGr (p).
. BtG (p) has mean convex boundary for all ¢ € (0, 2r).

« BY(p)Nspt(| V) C X, and dBC (p) is transversal to %;.

Then by the constructions [39, Proposition 2, 3] and the consistency [41, Proposition
4.19] of G-replacements, there exists a sequence {7} jen C Z,ZG (M; Z5) so that:

(1) T; =dQj is locally mass minimizing in BrG (p) with Q; € I¢

G (M; Z).

(2) |T;j| — V in the sense of varifolds.

By compactness, let T; — T = 00 in the flat topology with Q € IHGH(M; 7).
Thus, we have spt(T) C spt(||V[[) = U, ;, which implies T = Y7 | n/[ ;] for
some 7, € Z, by the Constancy Theorem. By regarding Q € InGH(M; Z3) as a
G-invariant Caccioppoli set whose boundary is induced by smooth G-hypersurfaces
{(%;:1<i<m, n; = 1}, we see dQ admits an inward unit normal that is also
G-invariant. Hence, n; = 0 provided that X; does not admit a G-invariant unit
normal. Now we can use the slicing theory [36, 28.5] to take s € (%, r) so that
M (B(TJLBSG ( p))) are uniformly bounded, and thus le_BSG (p) converges up to a
subsequence. Finally, by (1) we know [42, Theorem 1.1] indicates that n; = n]
mod 2, and thus the multiplicity n; must be even for ¥; without a G-invariant unit
normal. ([

Compact G-manifolds with boundary. Now we consider the case that oM # . In
this case, we make the assumption that

(3-1) Hyy >0 and WY(M, M) > Area(dM),

where Hjyy is the mean curvature of d M with respect to the inward unit normal vy ;.
By Corollary 3.7, we can take a min-max sequence {®7};en C PY (M, dM) that
are continuous in the F-topology. The strategy is to use the following proposition
to deform {®}};cy into a new F-continuous min-max sequence so that every
V e C({®]}ien) is supported in a G-invariant subdomain M, € M. With this
benefit, the min-max constructions can be restricted in the interior of M to build a
closed minimal G-hypersurface realizing the width W (M, dM). This deformation
approach is based on the idea of [20, Lemma 2.2] and we list the details here for
the sake of completeness.
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Proposition 3.9. Let 0M # & satisfy (3-1). Then there exist a constant a > 0 and
a min-max sequence {7 }ien C PY(M, dM) continuous in the F-topology so that

spt(®F(x)) € M, :={p e M :disty(p,dM) >a} forany x €l,
with M(®}(x)) = WO (M, M) — 8§ and § = L(WC (M, dM) — Area(d M)).

Proof. Let a > 0 be small enough so that d :=disty (dM, - ) is a G-invariant smooth
function in a 4a-neighborhood of M. By (3-1), we can set a > 0 even smaller
so that for any r € [0, 3a], oM, = d~'(r) has positive mean curvature H, with
respect to the inner unit normal Vd. Denote by A, the second fundamental form
of dM,, and ¢ = sup,¢(9 34), peam, |Ar|(p). Then we take the function ¢ > 0 as in
[20, Lemma 2.2] so that

¢ +cop <0, ¢(r) >0 for r <2a, ¢(r)=0 for r > 2a.

For any p € int(M) \ M3, and n-subspace S C T, M, let {e;}!_, be an orthonormal
basis of S, and P : T,M — T,9My(,) be the projection. Since we have that
dim(SNT,0Myp)) =n—1, we can assume {e; };’;11 U{e*} gives an orthonormal basis
of T,dMy(p), where e* satisfies (e*, P(e,)) = |P(e,)|. Noting Vd L T,0M(p)
and Vy,;Vd =0, we have

(3-2)  divs(@Vd) =¢'d(p)) - (en, V) +¢d(P)) - Y (Ve Vd, €)
n i=1
=¢'(en, VA) — ¢ > Augp)(P(ei), P(e))
i=l1
= (@' +PAup (e, €)){en, Vd)* — pHy(p)
< (¢ +cp)len, Vd): — dHu(p)
<0.

We can take any F-continuous min-max sequence {®;};cn C PC(M, dM) by
Corollary 3.7. Then for each ®;, there exist ¢; > 0 and n; € (0, §) so that:

(1) @;[0, 4¢;] are smooth G-hypersurfaces with M (P;(x)) < Area(dM) + §
for all x € [0, 4¢;].

(2) spt(P;(x)) € M, for all x € [¢;, 1].

Let «; be a cut-off function so that x; (#r) =0 for r < n; and «; (r) = 1 for r > 2n;.

Then the G-vector field X; := «;(d) ¢ (d)Vd generates G-equivariant diffeomor-
phisms {Fti}. By (2) and (3-2), for any x € [¢;, 1] and fy > 0, we have

d :
—| M(F)y®i(x) =

dt =1, I(F)#(Ff )4 @i (x) | (M)

|
dt lt=0
_ / divs(X;) d Vi, = / divs($Vd) dVi, . <0,
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where V;,  := |(F;l;))# ®o;(x)| € VnG (M»y,). Therefore,
(3-3) M((F})y @;(x)) < M(®;(x)) forall x €[e;, 1], 1>0.

Since My, \ My, C spt(X;) C M,, \ int(M>,), we see lim;_, Fti(p) € IMy,
for any p € M»,, \ M>,, and thus F;l, (M>y,) C M, for some T; > 0. Choose a
smooth function #; : [0, 1] — [0, T;] with A;_[0, €;] =0, h;_[2¢;, 1] = T;. Then
D (x) := (F) ) Pi(x) satisfies:

(@) @7 (x) = ;(x) for x € [0, €] (since h; =0).

(b) M(®}(x)) < M(®;(x)) for all x € [¢;, 1] (by (3-3)).

(c) spt(®7(x)) € M, for all x € [2¢;, 1] (by (2) and the definitions of T;, h;).
Clearly, {®]};en C PY (M, dM) is also an F-continuous min-max sequence. Ad-

ditionally, if M (P} (x)) > WG (M, dM) — 8 > Area(9M) + 8, then x € (4¢;, 1] by
(1), (a) and (b), and thus spt(®}(x)) € M, by (c). O

Next, we use the pull-tight argument to make every V € C({®}};cn) stationary
in M. By Proposition 3.9, the pull-tight procedure can be restricted in int(M,).

Proposition 3.10. Suppose that 0 M # & satisfies the inequalities (3-1) and that
§ 1= J(WO(M, IM) — Area(dM)). Suppose a > 0 and {®}}iey C PE(M, IM)
are given by Proposition 3.9. Then there is an F-continuous min-max sequence
{®@;}ien CPC(M, IM) with:

(i) C({Pi}ien) C CUPien) NVE (M)

(1) Every G-varifold V € C({®;}ieN) is stationary in M.
(i) If M(®;(x)) > WO (M, dM) — 8, then spt(D; (x)) € My».
Proof. Let C := sup, .y sup, ;M (P} (x)) < oo and Ma/z = int(M,») be a G-
invariant open set of M. Define then A :={V € Vf(M) V(M) < C} and

Ag:={V € A:V is stationary in Ma/z}.

Since G acts by isometries, A and A are compact subset of V¢ (M). Additionally,
for any V € A, it follows from (2-2) that V € Ay if and only if 6V (X) = 0 for all
X € X6 (M, ). Hence, we can follow [21, p. 765] (or [30, p. 153]) with X% (M,2)
in place of X(M) to define a continuous map X : A — x¢ (1\04“ ,2) and a continuous
function 1 : A — [0, 1] satisfying:

e X(V)=0and n(V)=0if V € Ay.

e V(X(V))<Oand n(V)>0if V € A\ Ay.

I VI < I )sVII(M) forall Ve Aand 0 < s <1 <n(V),
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where { ftX(V)} are the equivariant diffeomorphisms generated by X (V). Define

H:Ix{TeZ8M;F;Zy)): M(T)<C}— {T € Z2°(M; F;7,): M(T) < C},

H(t, T) = (fyrp)s T

One easily verifies H(0, T) =T forall T € ZnG (M; Z,) with M(T) < C, and that:

o If |T| is stationary in Ma/z, then H(t, T)=T forall t € [0, 1].
o If |T| is not stationary in A;Ia/z, then M(H(1,T)) < M(T).

Let ®; := H(1, ®¥). Note X (V) is supported in M, 5 and £V (M \ M, 2) =id.
Hence, ®; is also a G-sweepout of (M, dM). Additionally, by the above con-
structions, one easily verifies that {®;};en C PC(M; dM) is a min-max sequence
continuous in the F-topology, and C({®;};en) C C({®]}ien) N Ag. Moreover,
it follows from Proposition 3.9 that C({®;};cn) C Vf (M) N Ay, which implies
every V € C({®;};cn) is stationary in M. Finally, since the deformations f,X(V)
are restricted in M, /2, the last bullet follows directly from Proposition 3.9 and the

above constructions. |

Finally, we can now show the equivariant min-max theorem for compact G-
manifold M with boundary d M satisfying (3-1). The proof is generally the approach
in [22, Theorem 3.8], and we list some necessary modifications.

Theorem 3.11. Suppose 0 M # & satisfies inequality (3-1), and 3 <codim(G-p) <7
for all p € M. Then there exists an integral G-varifold V € VS (M) so that
IVII(M) = WEM,dM) and V = YoiLni|Zil, where m,n; € N, {Zi}jL, are
disjoint smooth embedded closed minimal G-hypersurfaces in the interior of M.

Proof. Leta > 0 and {®;};en C PC(M, M) be given by Proposition 3.10 so that
every V € C({®,};en) is stationary in M and compactly supported in int(M,,) for
ap = % Let 6 = }‘(WG(M, M) — Area(dM)) > 0. Then by reparametrization, we
assume (Dil_[o, %] foliates a neighborhood of d M so that

(3-4)  M(®;(x)) <Area(@M)+5=W9(M,dM)—38 forall x €0, 1]
Recall that J = [, 1]. Denote by
d); = (I)l'l_.].

By Definition 2.8, there exists 7; € (0, ag) satisfying spt(®’(x)) € M,, for all
x € J. Additionally, since the map x — M (®;(x)) is continuous (by (2-1)), we
can take k; € N large enough so that |[M (P (x)) — M (P} (y))| < % forall x, yina
common 1-cell of J(1, k;). Denote by U; the union of 1-cells @ € J(1, k;); with
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M(Cbg(x)) <WSM,dM) — % for all x € o, and V; := J \ U;. Therefore, by
Proposition 3.10(iii), we have

M(®j(x)) = WO(M, M) =6 and  spt(®[(x)) C My,  forall x € V;.

By Lemma 2.4, we can apply Theorem 3.4 to each ®; in the G-submanifold M,,
and obtain a sequence of maps qb’ J(1, k’ )o —> ZG(Mm Z,) with k < kj+1,
Jj € N. The last statement in Theorem 34 1ndlcates {¢ }jen can be chosen to satisfy
spt(d)’ x))C My forallx e ViNJ(1, k )o Moreover we claim that:

Claim 1. For j large enough, spt(qﬁ; (x)) C M, ifM(¢§. X)) > WeM,oM) — %

Proof of Claim 1. By the continuity of x> M (<I>§ (x)) and Theorem 3.4(i1), if
M(¢'(x)) = WG (M, M) — 5, then we have M (®;(x)) > WO (M, dM) — 3} for
j large enough. Thus, such Vertex x must be in V;, so spt(¢)’ (x)) C Myg,. O

Additionally, we also have the following equality due to the lower semicontinuity

of mass, the continuity of x > M (®!(x)) and Theorem 3.4(ii)-(iii):

(3-5) .lim sup{F(qj;l(x), ®;(x)) :x € J(1, ko) =

Let CD’ :J - 29 (M,,;; M; Z>) be the Almgren G-extension of ¢’ given by
Theorem 3.5 for j-large. By Corollary 3.6, CD’ and @] are relative homotop1c
1nZ (M,;; F; Z2). Therefore,

N q)l ) S 09 l )
P/ (x) :={ .(x) el 3]1
CD{(x), xelJ= [3, 1]
is a well-defined F-continuous G-sweepout of (M, dM) for each i € N and j-large,
and thus
(3-6) WOM,dM) < LU®"}jen) = LUP'}jen)
= L({$}}jen)
<sup{M(®;(x)):xel}— WM, M)
by (3-4) and Corollary 3.6.

Now, we take a subsequence j(i) — oo and define o, = Cbz.(i), S = {pi}ien,
;= d)J(l) so that fyr(¢;) — 0 and that:

(1) Ci fmu(¢;) — 0as i — oo, where C; = Co(M,,, G, 1) is given by Theorem 3.5.
(2) If M(g;(x)) > WO (M, dM) — 5 then spt(¢; (x)) C Mg, (by Claim 1).

(3) WE(M, 3M) = L{g;}ien) (by (3-6)).

(@) Tim; o0 sup{F (; (x), ®;(x)) : x € J(1, k', ;))o} = 0 (by (3-5)).

(5) lim;_ oo sup{ F(®; (x), ®;(¥)) : x,y € a,x € I(1, ki ))} = 0 (by the F-
continuity).

Ja
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Combining (3), (4), and (5) with (3-4), we have C(S) = C({®;}ien) C VnG (M24,)
and every V € C(S) is stationary in M.

Claim 2. There exists V € C(S) that is (G, Z,)-almost minimizing in annuli (of
boundary-type) in the sense of [39, Definition 11].

Proof of Claim 2. Suppose none of V € C(S) is (G, Z)-almost minimizing in annuli
in the sense of [39, Definition 11]. Then there is a new sequence S* = {¢;};cn of
mappings ¢ : J (1, ;)0 — Z,?(M,,[; Z,) for some [; > k;(i) — 00 as i — 00, such
that:

() L(S*) < L(S)=WS%M, aM).

(ii) ¢; and ¢ are 1-homotopic in ZnG (M,,;; Z») with M-fineness tending to zero,
(Specifically, there is a map ¥; : I(1,l;)o x J(1,[;)0 — ZnG(M,],.; Z5) so that
SuWi) = 0asi — oo, ¥i([0],-) = ¢i on, and ¥;([1], -) = ¢}, where n; =
n(liv k}([)))-

(iii) spt(y;(t, x) —@ion;(x)) @ M, forany t € I(1,l;)o and x € J(1, [;)o.

(iv) Forany x € J(1,1;)o, if M(¢; on;(x)) < WO (M, dM) — %, then we have that
¥ (-, x) = @; on;(x) is a constant discrete homotopy at x.

Indeed, since each V e C(S) is supported in M,,, we can take G-annuli
(A (p(V), ri —si.ri + )L,

in My, as in [30, Theorem 4.10, Part 1], which implies all the deformations will be
restricted in M,,. Using [40, Theorem 3.14] and disty (G - p, - ), we can make the
constructions in [30, Theorem 4.10, Parts 2-9] with G-invariant objects. Then the
rest parts in [30, Theorem 4.10] are purely combinatorial, which would carry over
with M, in place of M. This gives (i)—(iii). Moreover, by taking the constant €,
in [30, Theorem 4.10, Part 3] smaller than %, we have ; (-, x) = ¢; on; (x) provided
M (p;on;(x)) <W%(M, 8M)—% (see Parts 10(c), 14 and 18 in [30, Theorem 4.10]).

Next, we can extend ¢ (for i-large) to an F-continuous map &D;" e PS(M, M)
so that ®¥[0, 1]=®;[0, 1]=®;.[0, 1] Take any l-cell & = [xo, x11€ J (1, 1)1,

we will construct the extension @« separately in two cases.
Case 1:  max{M(g; on;(xo)), M(g; on;(x1))} < WO (M, M) — 3.
By (ii)—(iv), we can define &Dj‘l_a = d~>,- o fu as the extension of ¢’Lag, where

fo i =[x0, x1] = [n;(x0), n;(x1)] is an affine transformation. Hence, in this case,
we have

(3-7) d~>;-“|_a C ZnG(Mm; Z,) and Ci>:‘(x) = ®;(n; (x)) for all x € ag = {xo, x1}.

In particular, ®¥(1) = ®;(1) = 0 provided fu(¥;) < WO (M, dM) — %, which
holds for i-large. Additionally, it follows from (1), Theorem 3.5(i)—(iii), and the
choice of « that
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(3-8)  sup{M(®;(x)):x € a} =sup{M(P;(x)): x € fo(e)}
<sup{M(g;(x)) : x € dfa ()} + Ci fu(g:)
< WO(M, M) —§ +Ci fu(p)
<WoM,oM) -1

for i-large, where C; = Co(M,,, G, 1) is given by Theorem 3.5.

Case 2:  max{M(g; on;(x0)), M(¢; on;(x1)} = WO (M, dM) — 3.

Let A, CJ = [%, 1] be union of all 1-cells of this case in J (1, /;);. Take i suffi-
ciently large so that fas (1) < § (by (ii)). Then M (g;on; (x)) = W (M, M)~ for
all x € J(1,[;)oN A;. By (2) and (iii), we have that ¢ (x) = ¥ ([1], x) is supported
in M,, for all x € J(1,[;)o N A;. Applying Theorem 3.5 to ¢ L[J(1,[;)o N A;]

in My, (for i-large) will give an M-continuous extension &Df tA—> Zf (Mg,; Z2)
so that

(3-9) sup{M (¥} (x)):x € A;} <sup{M (¢ (x)):x € J(1,)oNAi}+Co fur (Vi)

where Co = Co(M,,, G, 1) > 1 is a uniform constant. Note for any x € 0A;, we
must have M (¢; on;(x)) < WO (M, M) — %. Hence, by (iv) and Theorem 3.5(i),

(3-10) ¥ (x) = ¢f (x) = gy on;(x) = D;(n; (x)) forall x € IA;.

It now follows from (3-7)—(3-10) that &Jj‘ 1 — Zf (M; Z5) is a well defined
F-continuous map so that CIDE"L[O, %] = CiJ,w_[O, %] = &;.[0, %] ®*(1) =0, and
®*LJ C 29(M,,; Z), which implies ®* € P¢ (M, dM). Therefore, by equations
(3-4), (3-8), (3-9), and statements (i)-(ii),

WO M, 0M) < L({®}}ien) <max{WC(M,aM)—%, L({g}}ien) } < WE(M,IM),
which is a contradiction. O

Thus, there must exist V € C(S) that is (G, Z,)-almost minimizing in annuli
(of boundary-type) in the sense of [39, Definition 11]. Since C(S) C V,? (M24,),
the interior regularity result [39, Theorem 7] (modified in [41, Theorem 4.18])
indicates that V is an integral G-varifold induced by closed smooth embedded
minimal G-hypersurfaces. ([l

4. G-sweepouts in positive Ricci curvature G-manifolds

Throughout this section we assume that (M ntl g,,) is a closed connected orientable
Riemannian manifold with positive Ricci curvature Ricy, > 0, and G is a compact
Lie group acting on M isometrically so that 3 < codim(G - p) <7 forall p € M.
Our goal is to associate an F-continuous G-sweepout to each closed minimal
G-hypersurface in M.
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To begin with, we collect some notations and classical results for minimal
hypersurfaces. Let ¥ C M be a closed smooth embedded minimal hypersurface.
Recall the second variation of ¥ for the area functional is given by

d2
4-1) T(X) = -5 | Area(Fi(2)) = — f (Lz(XT), X*),

dzt t=0 )
where Ly, : ¥1(Z) — X1 () is the Jacobi operator of X, and {F;} are diffeomor-
phisms generated by X € X(M). Then we denote:

o Index(X): the Morse index of %, i.e., the number of the negative eigenvalues
(counted with multiplicities) of Ly.

e 11(X): the first eigenvalue of Ly.

If Index(X) = 0 or equivalently 1 (X) > 0, then we say X is stable.

For ¥ C M as a G-invariant minimal hypersurface, we have Ly (X) € X9 (%)
for all X € X9(X), where X9 (X) is the space of normal G-vector fields on X.
By restricting Ly to X9(X), we make the following definition.

Definition 4.1. Let ¥ C M be a closed smooth embedded minimal G-hypersurface.
The equivariant Morse index (or G-index for simplicity) Index (¥) is defined by the
number of the negative eigenvalues (counted with multiplicities) of Ly X0 (D).
Additionally, we denote /LIG(E) as the first eigenvalue of Ly XH9(3).

Suppose X is a closed minimal G-hypersurface with a G-invariant unit normal v,
and u; is the first eigenfunction of Ly. Then for any g € G, the G-invariance of X
and v indicates u| o g is also the first eigenfunction of Ly. It is well-known that
©1(2) has multiplicity one and the first eigenfunction u#; does not change sign.
Hence, u; o g = u; for all g € G, which implies that u v € X+9(X) and that:

Lemma 4.2 [39, Lemma 7]. If X is a closed minimal G-hypersurface with a G-
invariant unit normal v, then the first eigenfunction u; > 0 of Ly is G-invariant
and pi(2) = 1§ ().

Since we mainly consider the ambient manifolds with positive Ricci curvature,
we collect the following useful results, which are well known to experts (see [44,
Section 2]).

Lemma 4.3. Suppose (M"*', g,,) is a closed connected orientable Riemannian
manifold. Let ¥, X1, ¥p C M be closed embedded hypersurfaces. Then we have:

(1) If X is connected, then X is orientable if and only if it is 2-sided (i.e., ¥ has a
unit normal vector field).

(ii) If X is connected and separates M, i.e., M \ X has two connected components,
then X is orientable.

Moreover, suppose M has positive Ricci curvature, then we have:
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(iii) If X is connected and orientable, then X separates M.
(iv) If X is minimal and 2-sided, then it cannot be stable, i.e., 11 () < 0.
) If X1, 2o are minimal hypersurfaces, then X1 N Xy # &.

After involving the actions of G, a connected component of some G-hypersurface
¥ may not be G-invariant. Hence, we introduce the following notions of equivariant
connectivity.

Definition 4.4. Let U C M be a G-invariant subset with connected components
{U;}{",. Then we say U is G-connected if for any i, j € {1, --- , m}, there exists
gij € G so that g;; - U; = U;. Additionally, we say U' C U is a G-connected
component (or G-component for simplicity) of U, if U’ has the form of Ulj:l Ui(jy
and is G-connected.

Note that any G-subset U of M can be separated into some G-components.
Additionally, by the above lemma, it is easy to show the following result.

Lemma 4.5. Suppose (M"+!, 8y 1s a closed connected orientable Riemannian
manifold with positive Ricci curvature, and G is a compact Lie group acting on M
isometrically. Let ¥ C M be a closed embedded minimal G-hypersurface. Then ¥
is connected, and:

e If ¥ has a G-invariant unit normal, then ¥ separates M into two G-components.

o If ¥ does not admit a G-invariant unit normal, then M \ X is G-connected.

Proof. 1t follows from Lemma 4.3(v) that ¥ is connected. If ¥ has a G-invariant
unit normal v, then by Lemma 4.3(i)—(iii), M \ ¥ has two connected components
M1, M5, with v pointing inward M;. Since v and M; U M, are G-invariant, we
have g,v=vand g-M; = M, for all g € G and i € {1, 2}, which indicates each M;
is G-connected. If the unit normal v exists but is not G-invariant, then there exists
g € G so that g,v = —v pointing inward M, which implies g - M| = M>, and thus
MU M, is G-connected. If ¥ does not admit a unit normal, then M \ ¥ has only
one component, which is also G-connected. U

Recall that, Zhou [43] constructed sweepouts of M by separating orientable
and nonorientable minimal hypersurfaces. It follows from Lemma 4.3 that the
orientability of a connected closed hypersurface is equivalent to the nonconnectivity
of its unit normal bundle. Hence, after involving the actions of G, we shall separate
the constructions by the G-connectivity (Definition 4.4) of the unit normal bundle
for minimal G-hypersurfaces.

Therefore, we denote

(4-2) SO (M) := {En c M ¥ is a closed smooth embedded }

minimal G-hypersurface in (M, g,,)
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By Theorem 3.8, S¢ (M) # @ provided 3 < codim(G - p) <7 for all p € M. Define
Sf M) :={X e 8¢ (M) : ¥ has a G-invariant unit normal}
and S¢ (M) := S9(M) \Sf (M). 1t follows directly from Lemma 4.5 that
»eSS(M) <& ST isG-connected < M \ X is G-connected,

where S¥ = {v € NX : |v| = 1} is the unit normal bundle of X.

Moreover, for any ¥ € S (M), we can cut M along X to obtain a new manifold M
so that M is locally isometric to M, G acts on M by isometries, and M € Sf (M)
is a G-invariant double cover of X. Specifically, let > 0 be small enough so that
the normal exponential map expé :NX — M is a G-equivariant diffeomorphism
on By, (X) :={p e M : disty; (2, p) < 2r}. Hence, we have

(4-3) E:SX x (=2r,2r) —» By (%), E(v,t):= expé(r -v)
which is a double cover of B,,(X). Define the action of G on SX x (—2r, 2r)

by g (v,1) := (gsv, t) for any v € SX and t € (—2r, 2r), which indicates E is
G-equivariant and

(4-4) T =5% x {0}
is a G-equivariant double cover of X. Let E, := EL(SX x (r, 2r)) be a G-equivariant

diffeomorphism on B;,(X) \ Clos(B,(X)). Then by gluing M \ Clos(B,(X)) and
S¥ x [0, 2r) on By, (%) \ Clos(B, (X)) with E,, we can define

(4-5) M := (M \ Clos(B,(%))) Ug, (ST x [0, 2r))
as a compact manifold with boundary 9M = 3. Then we have

id in M\ Clos(B,(%)),

(4-6) F:M— M, F:= ,
E in S x[0,2r)

isa G- equivariant smooth map so that F L(M\X) gives a diffeomorphism to M\ X,
and FLS glves a double cover of X. Using F, we can pull back the metric 8u
from M to M so that F is a local 1sometry and G acts on M by isometries. Thus, 3
is a minimal G-hypersurface in M with an inward pointing G-invariant unit normal.
In particular, ¥ € SY(M) implies S and M \ ¥ are both G-connected, and thus
M is G-connected.

G-sweepouts correspond to X € S¢(M).

Proposition 4.6. Given any ¥ € Sf (M), there exists an F -continuous G-sweepout
®:[—1,1] = Z8(M; Zy) of M so that:

1) ®0) =[%], &(-1)=()=0.
(1)) M(D(x)) < Area(X) with equality only if x = 0.
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Proof. By Lemma 4.5, M \ ¥ has two G-components M and M, so that the unit
normal v of ¥ pointing inward M. Additionally, it follows from Lemmas 4.2
and 4.3 that the first eigenfunction #; > 0 of Ly is a G-invariant function satisfying
Lyuj=—pui(X)u >0.

Denote by d. the signed distance function to X so that dy = disty/ (X, -) in M,
and dy = —disty (X, -) in M. Suppose X € X%(M) is a G-vector field with
X = (u; ony) - Vdy in a neighborhood of X, where ny is the nearest projection
(in M) to . Then we consider the G-equivariant variation {X; := F;(2)}se[—r.r]
of X, where {F;} are the G-equivariant diffeomorphisms generated by X. By the
second variation formula (4-1), we have

2

d d -
522(X):d—2 Area(E,):—/u1L2u1<0, —| (Hs,, Vdi)=Lzu; >0,
14 11=0 5 dt =0

where flg, is the mean curvature vector field of ¥,. Thus, for » > 0 small enough,
Area(X;) < Area(X), (I?Ig[, Vdisty(2,-)) >0 forall r € [—r,0) U (O, r].

Define ®(x) := [Z,]] = (F«[[XZ] € Zf(M; Z5) for x € [—r, r], which is F-
continuous.

Since u; > 0, {X;}te[—r ] is @ smooth foliation of a G-neighborhood of X, and
¥ C M, fort >0 and ¥, C M, for t < 0. We now consider the compact manifolds
M| = M\ {Z;}iep0,r and M), := M5 \ {Z;}ie(~r,01, whose boundary dM; = X,
(i e{l,2}, r1 =r, rn =—r),is a G-hypersurface with positive mean curvature
pointing inward M.

Suppose WG(Mi’, dM) > Area(X,,) fori € {1, 2}. Then by Theorem 3.11, there
exists a closed minimal G-hypersurface X’ in the interior of M. Noting XNX' =&,
we get a contradiction from Lemma 4.3(v). Therefore, WG(MI./ , OM) < Area(X,,).
By Definition 2.8 and Corollary 3.7, there exist € > 0 small enough and an F-
continuous G-sweepout ®; : [0, 1] — Zf (M;; Z) sothat @; (0) =[X%, 1, ®;(1)=0,
and

sup{M (®;(x)): x €[0, 1]} < WG(MZ.’, IM]) + € < Area(X,,) + € < Area(XL).
Now, by reparametrization, we have a well-defined map & : [—1, 1] — Z,? (M; Z,),

@r(-Jr-1). xe[-L
O() = (Fy0#[Z1, xe[-11],
o(3r-2).  ve[h1]
continuous in the F-topology satisfying (i) and (ii). Additionally, the arguments

before Definitions 2.5 and 2.8 indicate Fy; (®) = [Mr]1+ [ M1 = [M], where Fy,
is given by (2-5). Hence, we have ® € PO(M). O
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Proposition 4.7. Given any ¥ € S¢ (M), there exists an F-continuous G-sweepout
®:[0,1] —> ZnG (M; Z3) of M with no concentration of mass on orbits so that:

1) ©0)=d(1)=0.

(i1) sup{M (P (x)) : x € [0, 1]} < 2 Area(X).
Proof. Let £ = ST x {0} and M be given by (4-4) and (4-5). Then M is G-
connected, Area(E) =2 Area(E) and £ has a G-invariant unit normal ? pointing
inward M. Let 7 : £ — ¥ be the isometric involution, i.e., (v, 0) = (—v, 0) for
veSx.

Using the constructions in Proposition 4.6 with M in place of M), we get an
F-continuous G-sweepout ®:[0,1]— ZE(M; Z,) so that (0) =[], ®(1) =0,
and M (&)(x)) <2 Area(E) for all x €[0, 1] with equality only at x =0. Additionally,
fort e [0 ] CD(t) = Et = [[exp (tuv)]], where u = 3tru; and iy : Y — Rt is
the G-invariant first eigenfunction of L, with eigenvalue (E) = U] (Z) < 0.

Now, by the second variation forrnula (4-1), there are §y € (O, ), Co > 0 so that

4-7) M(Cb(t))—’H”(E,)—’H"(E)——/ SUV, UV Y+ 0@ <H'(E)—Cor?

for all t € (0, §). For any § € (0, 8p) (will be specified later), the F-continuity of )
and Proposition 4.6(ii) imply the existence of € > 0 with

(4-8) M(®@1) <H'(Z)—e€ forall rels,1].

Now, we will open up it, t € [0, 8], at some orbit to decrease the area.
Specifically, let G - p C £PU" be any principal orbit of . Then by the G-
invariance of ¥ and [4, Corollary 2.2.2], G - p C MP™ is also a principal orbit
in M. Note either G- p =G -7(p)or G- pN G - 1(p) = &. Thus, we can define
P:=G-pUG -1(p) as a G-invariant submanifold in 3 with dimension n — I. By
assumptions, 3 < codim(G-p)=1+1<7.
Casel: 3</[<6.
For any r > 0, t € [0, §], define the following G-invariant sets:
B,(P):={G € X :distg(§, P) <r} C %,
B, (P) :={expL ((td0)(§)) : § € B.(P)} C %,
Cri(P) = {expg (579)(9) : G € 9B (P). s €[0,1]).
For R, § > 0 small enough, it follows from the integral formula in [40, (C.4)] that
(4-9) ctr’=V <1 (C,.,(P)) < Ctr'™' and  cr! < H"(B,,(P)) < Cr!
for all » € [0, R], t € [0, 8], where ¢, C > 0 are constants depending on >, M, P.
Define
%= (E\ By (P)HUC, (PYUBL(P), rel0,R] te[0,3].
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By (4-7)—(4-9), ||,/ |(M\ £) < H"(£) — Co 1> —cr! + Ctr'~,
Note, in this case, that

2 .
We can take R > 0 small enough so that ZCTORI_Z < 5. Hence,

~ ~ o~ ~ C
IS0\ $) < 7"(£) = S - grl

for all t € [0, 8], r € [0, R], and thus

(B el
Sor(i-tyss 1€[5.9]

tisfi < .
satisfies () — %Rl, [ e [0’ %]’

SN\ S S

Set ¢’ := min{e, %, COZ‘SZ} and define ®'(7) := [[f)t/]] for ¢ € [0, 8] in this case.

Case2: [ =2.
For R > r > 0 small enough, let 1, g : PIES [0, 1] be the G-invariant logarithmic
cut-off function defined by

1, G ¢ Br(P),
~ log r—log(dist (§, P - = ~
Mr(§) = | EEC D) g€ Br(P)\ Bo(P),
0, q € B.(P),

which is also t-invariant. Consider
S R 1= EXPE (11 R D).

By [17, Proposition 2.5] and [40, (C.4)], we can take R, § > 0 small enough so that
~ ~ = - = t? - e -
15 R I(M\E) < H'(S\Br(P)+ 5 / IV (R @) * — Ric(D, ) +| A1*) (0, g 1)
5
+Cz3/~1+|V(nr,R in)|?

b

s%"(i\érw))—clz%czﬂ[ |Vnr,R|2+z2/~ iy R ViV %

> Br(P)
+Ct3/:1+2niR|Vﬁ|2+2ﬁ2|vnr,R|2
>
. C C
< H'(E)—er?—C1i 4 — P+ Cy R} P+ Cs1P 4 — 1
log(+) log ()

forall r € (0, R), t €[0, 8], where ¢, C, C; > 0 are uniform constants depending on
>, M, P. Set R, 8 > 0 even smaller so that C4R? < %, Cs56 < %, and C¢é < C3.
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Then choose r > 0 small enough with bgz(% < %. Thus,

ISR\ S) < 1 (D) — e T logz(%tz <H(E) e’ - L
for all r € [0, 6], and
i/ — {E:DI’,R,ZN re [Oa g]»
! Yor(1-1)2R(1-1).8» T € [5.4].

satisfies B ) [ 5]
~ ~ ~ Hn(z)_cr ) te 07_ ’
||2;||<M\E)s{ ST .
HY(Z)— G2 re[5.6]
In this case, set €’ := min{e, cr?, CIT‘SZ} and define ®'(r) := [[f];]] for t € [0, 8].
In both cases, we define &)/\_[8, 1]1= &)L[(S, 1] and see

(4-10) sup{[|®" () [(M\ ) : 1 € [0, 1]} < H"(Z) — €.

Additionally, by (2-1), ' is still an F-continuous map with ® = [£], ®'(1) = 0.

Finally, we define ®(x) := Fy ®'(x) for all x € [0, 1], where F : M- M
is the equivariant local isometry given by (4-6). Because F : M \X > M\ =
is an equivariant isometry, the arguments before Definitions 2.5 and 2.8 indicate
Fy(®d)= F#([[M]]) = M, where F); is given by (2-5). Additionally, note F : IRy
is a double cover and f]; N ¥ is t-invariant in both cases. Hence, by Z»-coefficients
and (4-10), we have ®(0) = F¢ [£] =0 and

M(®(x)) = |®'(1)|(M\ Z) <H"(Z) — € =2 Area(T) — €.

At last, noting that [|®(x)[[(BE (p)) < |®'()II(F~ (B (p))) < 2m% (@', r) for
all x € [0, 1] and p € M by the definition of m® (Definition 2.3), we see that
m%(®d,r) < 2mG(d~>’ ,r) and ® has no concentration of mass on orbits. O

5. Proof of the main theorems

Let SU(M) be given in (4-2). Then we define

Area(L) if ©eSYM),

5-1 AS (M) :=
5-1) () zeé%w){zArea(z) if ©eS%M).

Theorem 5.1. Let (M"+!, g,) be a closed connected orientable Riemannian man-
ifold with positive Ricci curvature, and G be a compact Lie group acting on M
isometrically so that 3 < codim(G - p) <7 for all p € M. Then the equivariant
min-max hypersurface ¥ corresponding to the fundamental class [M] is a connected
minimal G-hypersurface of multiplicity one with a G-invariant unit normal vector
field so that

Indexg(Z)=1 and Area(X)= WS¢ M) =A%M).
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Proof. By Theorem 3.8, which is a min-max theorem, there exists an integral G-
varifold V € V¥ (M) induced by a smooth embedded closed minimal G-hypersurface
¥ € S9(M) so that |V|(M) = WC(M). Since M has positive Ricci curva-
ture, Lemma 4.3(v) indicates that ¥ is connected, and thus V = m|XZ| for some
m e {1,2,...}. Suppose ¥ € S¢(M), then it follows from the last statement
in Theorem 3.8 that m must be even, so m > 2. However, we have a contradic-
tion WO (M) < 2 Area(X) < |V ||[(M) = WY (M) by Proposition 4.7. Therefore,
T € S$(M). By Proposition 4.6, we see W (M) < Area(Z) < ||V (M) =W (M),
and thus m = 1. Additionally, by the definition of .A% (M) and Propositions 4.6, 4.7,

A% (M) < Area(Z) = ||V|[(M) = WE (M) < A% (M).

Now, it is sufficient to show Index; (X) = 1. Suppose Indexs (X) > 2, and uy, un
are the first two L2-orthonormal G-invariant eigenfunctions of Ly ¥ (%) with
negative eigenvalues. Let uyv be a G-invariant normal vector field on X, which ex-
tends to a smooth vector field X € X(M). Then X, := fG (gD Xdu(g) € X6 (M)
gives an equivariant extension of u,v. Consider the equivariant diffeomorphisms
{Ff} generated by X, and define @(¢) := (FSQ)# ®(¢) for t € [—1, 1], where
® € PG (M) is the F-continuous sweepout given by Proposition 4.6. Recall that in
the proof of Proposition 4.6, ® (1) = [Z] = [F} ()] for t € [—1, %], where {F}'}
are the equivariant diffeomorphism generated by X; € X% (M) with XX = 3ru v
for some r > 0. Hence, for the smooth family {Fsz(Zt)}se[_g,o],,e[_l/&1/3], the area
function A(s, t) := Area(Fsz(E,)) = M (D, (1)) satisfies that:

e VA(0,0) =0 since X is minimal.

o« LA0,0)=—9r%[gurLyu; <0and 25A(0,0) = — [yusLyus <O0.

o I A(0,0) = =3r [y usLsuy =3rpi(2) [y ujuz =0.

Therefore, we can set o, § > 0 sufficiently small so that
M (D (1)) = Area(Fsz(Et)) < Area(X) forall r € [-6,6], s € (0,0].

Moreover, there exists € > 0 so that by Proposition 4.6(ii), M (®(¢)) < Area(X) —e
for all t € [—1, —8] U [§, 1]. Hence, by setting 0 > 0 even smaller, we have
M (D, (1)) = M((F(f)# ®(t)) < Area(X) for all t € [—1, 1]. Note &, is an F-
continuous curve homotopic to ® in Zf (M; 7). Thus,

WG(M) <sup{M (D, () :t €[—1, 1]} < Area(X) = WG(M),
which is a contradiction. O

As an application, we use the conformal volume to show a genus bound for
the equivariant min-max minimal G-hypersurface ¥ in Theorem 5.1 provided that
dim(M) = 3 and the actions of G are orientation preserving.
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Theorem 5.2. Let (M3, g,) be a closed connected oriented Riemannian 3-manifold
with positive Ricci curvature, and G be a finite group acting on M by orientation
preserving isometries. Then the equivariant min-max hypersurface ¥ corresponding
to the fundamental class [M] is a connected closed minimal G-surface of multiplicity
one satisfying

8 K

genus(X) <4K and WY (M) = Area(T) < - - ,
1nf‘v|:] RICM(U, U)

where K := max ey #G - p < #G is the number of points in a principal orbit of M.
Additionally, m(X) = X /G is an orientable surface with finite cone singular points
of order {n; }f'{:l (i.e., locally modeled by B? (0) quotient a cyclic rotation group Z,,),
so that X

> <1 — nl> <4 and genus(w(X)) <3.

i=1 i

In particular, if ¥ C MPT e k=0, then genus(X) <14 2K.

Proof. By Theorem 5.1, ¥ is a closed embedded connected minimal G-surface
with a G-invariant unit normal v so that Area(X) = WY (M) and Indexg(X) = 1.
By Lemma 4.3, ¥ has an induced orientation. Additionally, since the unit normal v
is G-invariant, the actions of G on X are also orientation preserving. Therefore, the
orbifold ¥ induced by (X, G) is an orientable closed 2-orbifold whose underlying
space is the quotient distance space (7 (%), distsG).

Let P"" be the union of principal orbits for the G-action on X, and X" be the
orbifold induced by (XP", G). Denote by N pz G- p and N, G - p the normal vector
spaces of G - p at p in X and M respectively. Note an orbit G - p is principal in X
(resp. M) if and only if the slice representation of G, on N pz G-p (resp. N, G- p)is
trivial (see [4, Corollary 2.2.2]). Additionally, we also notice that G, acts trivially
on span(v(p)) for any p € ¥ by the G-invariance of v. Hence, combining these
with the fact that NG - p @ span(v(p)) = N, G - p, we see »prin — pgprin - and
thus K =#G - p =#G - g for all p € ZP™ and g € MP"", Next, it follows from [5,
Chapter IV, Theorem 3.3] that there is an induced Riemannian metric g, on XPi"
so that 77 : ¥Pin — FPin jg ap Riemannian submersion. Moreover, since G acts
on ¥ by orientation preserving isometries, the singular points £ \ P are a finite
number of cone points {[ pi]}f.‘: , of orders ny, ..., ng. By the orbifold version of
Gauss—Bonnet theorem (see [9, Proposition 2.17]), we have

k
(5-2) Kz dA, =2m(x(%)=2r (2 —2genus(r(X)) — 3 (1 — l))
) T CF i=1 ni
where Ky, is the Gauss curvature of (xprin, gy), and the integral is taken over Yprin,
For any r > 0 small enough, let &, :=% \Uf“:l BrG (pi), and n, be the G-invariant
logarithmic cut-off function on ¥ given by
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0’ d(p) e [07 r]7
ne(p)i= 42— 2ELD - d(p) e (r, V7],
1, d(p) € (VF, 00),

where ) '
d(p) :=distg(p, X\ ZP") =dists (p, U;_, G - p)).

Define then X, := X\ Uf.‘ler([p,-]). Note (%,, g5) is a smooth Riemannian
manifold (with boundary). We can take any conformal immersion ¢ : X, — S,
m > 2, and define P : Conf(S™) — [EBerl (0) by

P(h) =

= ([ mantogom..... [ opuinsiopom)
L

where h = (hy, - -+ , hyyy1) € Conf(S™) is any conformal diffeomorphism of S
(under the standard metric), and u; : ¥ — Ry is the first (G-invariant) eigenfunction
of Ly. Since u; > 0 and Zm+1h2 = 1, one easily verifies that P is well defined.
Meanwhile, for each x € Bm“ define &, € Conf(S™) as in [27, (1.1)] by

y+ (uix, y) +21)x , - _
hy(y) = ,owith A= (1= )72 = (o= DIx| 2
Al{x, y)+1)

Then we have a continuous map f : B’{’H 0) — B'{’H (0) given by f(x) = P(hy),
which can be continuously extended to B[E’B’f“rl (0) = S™ by the identity map. Note
Clos(B}""'(0)) is homotopic to f(Clos(B}'"'(0))), and Clos(B]"""(0)) \ {x} is
homotopic to S™ for any x € [B%'I”H(O). Hence, f must be surjective. In particular,
there exists h = (hy, ..., hyp+1) € Conf(§™) so that P(h) = 0. Thus, we have that
{h;: ji=hjo¢o 77}"“rl are G-invariant smooth functions on X, so that

m+1
ZhZ_l and /u1 h;)=0  forall j=1,....m+1.

Since Indexg (X) =1, we see SZE(n,ﬁjv) >0forall j=1,...,m+1, and
[ Ricu(.v)+1AP / (Ricy (v, v) + [AP)n]
NG

= [ Ricy (v, v) +]A] )Z(nrh )?

j=1
m+l

< /. P> V(i)

m—H - ~
) [(1 + o) Vi, [P + (1 n 1) |vnr|2h§]
j=1

m—+1

<(+0K- [ Y |Vh;o9) +(1+ )/EW”"Z

r] 1
—2(1+)K -Area(Z,; (hod)*g,,,,)+ (1 + l)/ Vi, 2,
€ X
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where € > 0 is any constant, Area(X,; (ho¢)* 8ns1) 18 the area of X, under the
conformal metric (ho@)*g,, ., and the coarea formula is used in the last inequality.
Let A.(m, X,) be the m-conformal area of X, defined as in [18]:

Ac(m, X,):=inf sup Area(Z,; (hod)*gen).

¢ heConf(S™)
where the infimum is taken over all nondegenerated conformal map ¢ of X, into S™.
Since ¢ : ¥, — §™ is arbitrary conformal immersion in the above computation, we
have
. 1
/ Ricy (v, v) + AP <2(1+€) K - Ac(m, Bp) + (1 + —)fwmz.
Dy €/Jz

By [14, Chapter IV, Remark 5.5.1], every closed orientable surface can be con-
formally branched over S? with degree L%J, where |a] is the integer part of
a € Ry. It then follows from [18, Facts 1, 5] that A.(m, E,) < dr | ERCODE |
and thus

/ Ricy (v, ) + AP < dx(1 4+ K - Z{ge‘“‘s(”(z)) + 3J + (1 + 1>/|Vnr|2.
Eﬁ 2 € 5

Since f): |V, |> — 0asr — 0, we first take » — 0 and then let € — 0, which gives

genus( (X)) + 3J

/RicM(v, V) + A2 5471[(-2\\ 5
)

Denote by {e,-}izz1 a local orthonormal basis on X. Since Ricy; > 0, we have
2
Ricy (v, v) +|A]> =) " Ricy(e;, i) —2Ks > —2Kx
i=1
on XP" where Ky is the Gauss curvature of X. Therefore, by the coarea formula,

genus( (X)) + 3J
5 )

—21{sz:— /Kg </RicM(v, u)+|A|2§4nK-2L
= = >

Then, it follows from the above strict inequality and the Gauss—Bonnet formula (5-2)
that genus(7 (X)) + Zle(l — ni) < 5 and

k
1
genus(X) =14+ K |:genus(7r(2)) —1+ Z(l — —)} <1+4K.
i=1 i
Moreover, one notices that 2 LWJ = genus(7 (X)) + 3 if genus( (X)) > 1
is odd, and 2L%2(E))+3J = genus(w (X)) +2 if genus(;r (X)) > 0 is even. Hence,
the above computation actually shows
e genus(mw (X)) + Zle (1 — ni) < 5 if genus( (X)) > 1 is odd, and

e genus(w (X)) + Zle(l — ni) < 4 if genus(r (X)) > 0 is even,
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which further implies that genus(r (X)) <3 and Zf: (1= %) < 4. In particular, if
¥ C MP", then Zle(l —1)=0and
genus(X) =1+ K (genus(w (X)) — 1) <14 2K.
Finally, we see that

2
2eu WO (M) < / > Ricy(ei, e)
X

i=1

2))+3
54nK.2Lgenus(”( ks J+2K/Kg
2 = -
k
1 2)+3
=47TK.<2—2genus(n(2))—2(l——)+2\‘genus(n( N+ J)
iz N 2
<167 K,
where Ricy > ¢y > 0. O
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