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We show that the set of awesome homogeneous metrics on noncompact
manifolds is Ricci flow invariant and that if the universal cover of an awesome
homogeneous space is not contractible, the Ricci flow has finite extinction
time, confirming the dynamical Alekseevskii conjecture in this case. We also
analyze the long-time limits of awesome homogeneous Ricci flows.

1. Introduction

The Ricci flow is the geometric evolution equation given by

∂g(t)
∂t

= −2 ric(g(t)), g(0) = g0,

where ric(g) is the Ricci (2, 0)-tensor of the Riemannian manifold (M, g).
Hamilton [1982] introduced the Ricci flow and proved short-time existence and

uniqueness when M is compact. Then Chen and Zhu [2006] proved the unique-
ness of the flow within the class of complete and bounded curvature Riemannian
manifolds.

A maximal Ricci flow solution g(t), t ∈ [0, T ), is called immortal if T = +∞,
otherwise we say that the flow has finite extinction time.

A Riemannian manifold (M, g) is called homogeneous if its isometry group
acts transitively on it. From the uniqueness of a Ricci flow solution it follows
immediately that the isometries are preserved along the flow; thus a solution g(t)
from a homogeneous initial metric g0 would remain homogeneous for the same iso-
metric action. Hence, the Ricci flow equation given above becomes an autonomous
nonlinear ordinary differential equation.

In the homogeneous case, the scalar curvature is increasing along the flow (see
[Lafuente 2015]). Furthermore, if the scalar curvature is positive at some point along
the flow, then it must blow up in finite time, and hence, the solution is not immortal.
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Lafuente [2015] has shown that actually a homogeneous Ricci flow solution has
finite extinction time if and only if the scalar curvature blows up in finite time, or
equivalently, if and only if the scalar curvature ever becomes positive along the
flow. Bérard-Bergery [1978] has shown that a manifold admits a homogeneous
Riemannian metric of positive scalar curvature if and only if its universal cover is
not diffeomorphic to Euclidean space.

Böhm and Lafuente [2018] then proposed the problem of showing whether
the converse is also true, namely they asked whether the universal cover of an
immortal homogeneous Ricci flow solution is always diffeomorphic to Rn . This
got established later as the dynamical Alekseevskii conjecture [Naber et al. 2022].

Böhm [2015, Theorem 3.2] showed that the conjecture is true for the case of
compact homogeneous manifolds. However, in the noncompact case not much is
known in the direction of the dynamical Alekseevskii conjecture other than in low-
dimensions. Isenberg and Jackson [1992] thoroughly studied the 3-dimensional ho-
mogeneous Ricci flow, and in [Isenberg et al. 2006] the authors studied a large set of
metrics on dimension 4. Indeed, up to dimension 4 the conjecture is true (see [Araujo
2024]). In that article, it was shown that the conjecture is true if the isometry group
of the homogeneous Riemannian manifold is, up to a covering, a Lie group product
with a compact semisimple factor; which generalizes [Böhm 2015, Theorem 3.2].

We study the long-time behavior of the homogeneous Ricci flow solutions on
semisimple homogeneous spaces on a special family of Ricci flow invariant metrics,
called awesome metrics.

Let G be a semisimple Lie group and G/H a homogeneous Riemannian manifold.
Let g be the Lie algebra of G and h the Lie algebra of H . Let g= k⊕p be a Cartan de-
composition of g, K the integral subgroup corresponding to k, and m= l⊕p a reduc-
tive complement to h. Then a G-invariant metric g on G/H is awesome if g(l, p)=0.

The set of awesome homogeneous metrics was introduced by Nikonorov [2000],
where he proved that it contains no Einstein metric. Semisimple homogeneous
spaces with inequivalent irreducible summands in its isotropy representation supply
the simplest examples of homogeneous spaces G/H such that every G-invariant
metric is awesome.

Our first main result is a generalization of [Nikonorov 2000, Theorem 1] to the
dynamical setting, giving a partial positive answer to the conjecture.

Theorem A. Let (G/H, g0) be a homogeneous Riemannian manifold such that
the universal cover is not diffeomorphic to Rn and G is semisimple. If g0 is an
awesome G-invariant metric, then the Ricci flow solution starting at g0 has finite
extinction time.

Dotti and Leite [1982] have shown that SL(n, R) for n ≥ 3 admit left-invariant
Ricci negative metrics. Later, Dotti, Leite and Miatello [Dotti et al. 1984] were
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able to extend this result by showing that all but a finite collection of noncompact
simple Lie groups admit a Ricci negative left-invariant metric. All those metrics
are awesome. This shows that for these spaces such that the universal cover M̃ is
not contractible the confirmation of the dynamical Alekseevskii conjecture implies
a change of regime of the Ricci flow: from one in which the manifold expands in
all directions to one such that for some direction it shrinks in finite time. Böhm’s
proof [2015, Theorem 3.2] of the finite extinction time of the Ricci flow on nontoral
compact homogeneous manifolds works by showing an explicit preferred direction
in which the curvature is Ricci positive (the same approach is followed in [Araujo
2024]), but Dotti, Leite and Miatello’s results indicate that we cannot directly do
the same here.

Indeed, in order to prove Theorem A we need to first prove some scale-invariant
pinching estimates (Proposition 4.4) that will eventually lead to the existence of a
Ricci positive direction given by the nontoral compact fibers as in [Böhm 2015]. The
estimates obtained can be exploited further to prove the following two convergence
results.

Theorem B. Let M = G/H be a homogeneous manifold, such that the universal
cover is not diffeomorphic to Rn and G is semisimple. Let (M, g(t)), t ∈ [0, T ), be
an awesome Ricci flow adapted to the Cartan decomposition g= k⊕p. Let R(g) be
the scalar curvature of the metric g. For any sequence (ta)a∈N, ta → T , there exists
a subsequence such that (M, R(g(tâ)) · g(tâ)) converges in pointed C∞-topology to
the Riemannian product

E∞ × Ed ,

where E∞ is a compact homogeneous Einstein manifold with positive scalar curva-
ture and Ed is the d-dimensional (flat) Euclidean space with d ≥ dim p.

The geometry of E∞ just depends on the subsequence of Riemannian submani-
folds (K/H, R(g(tâ)) · g(tâ)).

Theorem C. Let M̃ = G/H be a homogeneous manifold diffeomorphic to Rn with
G semisimple. Let (M̃, g(t)), t ∈ [1, ∞), be an awesome Ricci flow adapted to
the Cartan decomposition g = k⊕ p. Then the parabolic rescaling (M̃, t−1g(t))
converges in pointed C∞-topology to the Riemannian product

6∞ × Edim l,

where 6∞ = (G/K , B|p×p) is the noncompact Einstein symmetric space defined by
the pair (g, k) and Edim l is the dim l-dimensional (flat) Euclidean space.

Theorem B shows that in order to understand the blow-up limits of the Ricci
flow on the awesome metrics we can reduce the investigation to the corresponding
blow-up of the compact homogeneous fibers given by the Cartan decomposition.
Such analysis was done, for example, in [Böhm 2015].
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Also since every left-invariant metric on
∼

SL(2, R) is awesome, Theorem C is a
generalization of the result by Lott [2007] which states that the parabolic blow-down
of any left-invariant metric in

∼

SL(2, R) converges to the Riemannian product H2
×R.

The structure of this article is the following: In Section 2, we give a quick
overview of the homogeneous Ricci flow and show that the space of awesome
metrics is Ricci flow invariant. In Section 3, we mainly establish a priori algebraic
bounds that exploit the compatibility of the Cartan decomposition and the metric
in the awesome case. In Section 4, we use these algebraic bounds to get control
quantities to our dynamics which allows us to prove Theorem A. Finally, in Section 5
we conclude with the analysis of the long-time limits. In particular, under the
hypothesis of Theorem A, we show in Theorem B a rigidity result for the possible
limit geometries as the solution approaches the singularity. We finish by showing
in Theorem C which is the limit geometry at infinity for the case when g(t) is
an immortal awesome Ricci flow. This generalizes the work on the Ricci flow of
left-invariant metrics on

∼

SL(2, R) done in [Lott 2007] to Rd -bundles over Hermitian
symmetric spaces.

2. Homogeneous Ricci flow of awesome metrics

A Riemannian manifold (Mn, g) is said to be homogeneous if its isometry group
I (M, g) acts transitively on M . If M is connected (which we will assume from
here onward unless otherwise stated), then each transitive closed Lie subgroup
G < I (M, g) gives rise to a presentation of (M, g) as a homogeneous space with a
G-invariant metric (G/H, g), where H is the isotropy subgroup of G fixing some
point p ∈ M .

Let us denote the Lie algebra of G by g. The G-action induces a Lie algebra
homomorphism g → X(M) assigning to each X ∈ g a Killing field on (M, g), also
denoted by X , and given by

X (q) :=

(
d
dt

exp(t X) · q
)∣∣∣∣

t=0
, q ∈ M.

If h is the Lie algebra of the isotropy subgroup H < G fixing p ∈ M , then it
can be characterized as those X ∈ g such that X (p) = 0. Given that, we can take a
complementary Ad(H)-module m to h in g and identify m ∼= Tp M via the above
infinitesimal correspondence.

A homogeneous space G/H is called reductive if there exists such a comple-
mentary vector space m such that for the respective Lie algebras of G and H

g = h⊕m, Ad(H)(m) ⊂ m.

This is always possible in the case of homogeneous Riemannian manifolds. This
is due to a classic result on Riemannian geometry [do Carmo 1992, Chapter VIII,
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Lemma 4.2], which states that an isometry is uniquely determined by the image of the
point p and its derivative at p; hence the isotropy subgroup H is a closed subgroup
of SO(Tp M), and in particular it is compact. Indeed, if Ad(H) is compact, then one
can average over an arbitrary inner product over g to make it Ad(H )-invariant and
hence take m := h⊥. Given that, one can identify m∼= TeH G/H once and for all and
with this identification there is a one-to-one correspondence between homogeneous
metrics in M := G/H , p ∼= eH , and Ad(H )-invariant inner products in m.

In full generality, the Ricci flow is a nonlinear partial differential equation. As
mentioned in the introduction, in the case where M is compact, Hamilton [1982]
proved short-time existence and uniqueness for the Ricci flow. Then Chen and
Zhu [2006] proved the uniqueness of the flow within the class of complete and
bounded curvature Riemannian manifolds, which includes the class of homogeneous
manifolds. From its uniqueness it follows immediately that the Ricci flow preserves
isometries. Thus a solution g(t) from a G-invariant initial metric g0 would remain
G-invariant, and hence it is quite natural to consider a homogeneous Ricci flow. We
then get an autonomous nonlinear ordinary differential equation,

dg(t)
dt

= −2 ric(g(t)), g(0) = g0,(2-1)

where the Ricci tensor can being seen as the smooth map

ric : (Sym2(m))
Ad(H)
+ → (Sym2(m))Ad(H).

Here (Sym2(m))Ad(H) is the nontrivial vector space of Ad(H)-invariant symmetric
bilinear forms in m and (Sym2(m))

Ad(H)
+ the open set of positive definite ones.

By classical ODE theory, given an initial G-invariant metric g0 corresponding to
an initial Ad(H)-invariant inner product, there is a unique Ad(H )-invariant inner
product solution corresponding to a unique family of G-invariant metrics g(t) in M .

The general formula for the Ricci curvature of a homogeneous Riemannian
manifold (G/H, g) [Besse 1987, Corollary 7.38] is given by

(2-2) ricg(X, X) = −
1
2

B(X, X) −
1
2

∑
i

∥[X, X i ]m∥
2
g +

1
4

∑
i, j

g([X i , X j ]m, X)2

− g([Hg, X ]m, X),

where B is the Killing form, {X i }
n
i=1 is a g-orthonormal basis of m and Hg is the

mean curvature vector defined by g(Hg, X) := Tr(adX ). Immediately it follows
that Hg = 0 if and only if g is unimodular.

Let us now consider g to be a noncompact semisimple Lie algebra. By classical
structure theory on semisimple Lie algebras [Hilgert and Neeb 2012, Chapter 13],
g can be described in terms of its Cartan decomposition

g = k⊕ p,
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where k is a compactly embedded Lie subalgebra of g and p is a k-submodule such
that [p, p] ⊂ k.

The Killing form B of g is such that

B(k, p) = 0, B|k×k < 0, B|p×p > 0,

and −B|k×k + B|p×p is an inner product on g such that ad(k) are skew-symmetric
maps and ad(p) are symmetric maps [Hilgert and Neeb 2012, Lemma 13.1.3].

Since the flow only depends on the Lie algebra g, we can take without loss of
generality any G connected with such Lie algebra. So for a M = G/H , with G a
semisimple noncompact Lie group, we can fix a background Cartan decomposition

g = k⊕ p

such that the integral subgroup K of k is a maximal connected compact subgroup of
G with H ⊂ K [Hilgert and Neeb 2012, Theorem 14.1.3]. We call a homogeneous
manifold G/H , with G semisimple and Ad(H) compact, a semisimple homogeneous
space.

Consider the orthogonal complement l := h⊥ of h in k with respect to the Killing
form B. And let us do the identification

(2-3) TeH G/H ∼= m = l⊕ p.

We will call then this reductive complement m = l ⊕ p adapted to the Cartan
decomposition g = k⊕ p.

Definition 2.1 (awesome metric). Let G/H be a homogeneous space with G
semisimple and Ad(H) compact. An Ad(H)-invariant inner product g on the
reductive complement m is called awesome if for some Cartan decomposition
g = k⊕ p for which m = l⊕ p is adapted, we have that g(l, p) = 0. In this case, we
say that the awesome metric g is adapted to the Cartan decomposition g = k⊕ p,
with k = h⊕ l.

As it was mentioned in the introduction, this nonempty set of metrics was
introduced by Nikonorov [2000], where he proved that the set contains no Einstein
metric. We will see that this set is actually Ricci flow invariant, proving to be a
good test ground concerning the dynamical Alekseevskii conjecture. Semisimple
homogeneous spaces G/H such that the isotropy representation of H on m have
inequivalent irreducible summands only admit awesome G-invariant metrics, and
as such this set of metrics has an obvious spotlight in the literature.

On the other hand, for example, in the case of a Lie group with dimension
larger than 3, the set of awesome metrics is a meager subset of the left-invariant
metrics, and its dynamical properties under the phase space of the Ricci flow are
largely unknown. Nikonorov [2000, Theorem 2] also gave a necessary and sufficient
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algebraic condition for a semisimple homogeneous space G/H to be such that
every G-invariant metric is awesome.

Via (2-3), we have a one-to-one correspondence between the set of awesome G-
invariant metrics on G/H and the open subset of positive definite Ad(H)-invariant
symmetric bilinear forms in m such that l ⊥ p, which in turn is a linear subspace of
(Sym2(m))Ad(H).

Manipulating the Ricci tensor formula (2-2) on the awesome case we can directly
prove the following lemma.

Lemma 2.2. Let G/H be a semisimple homogeneous space. Then the set of G-
invariant awesome metrics in G/H is Ricci flow invariant.

Proof. Let G/H be a semisimple homogeneous space. We need to show that the
Ricci operator ric : (Sym2(m))

Ad(H)
+ → (Sym2(m))Ad(H) takes an element g such

that g(l, p) = 0 to a symmetric bilinear form ricg such that ricg(l, p) = 0. By
polarizing the formula for the Ricci tensor (2-2) on a homogeneous manifold G/H
with G unimodular, we get

2 ricg(X, Y ) =

− B(X, Y )−

∑
i

g([X, X i ]m, [Y, X i ]m)+
1
2

∑
i, j

g([X i , X j ]m, X)g([X i , X j ]m, Y ).

In our case

{X1, . . . , Xn+m} = {X l
1, . . . , X l

n, Xp
1, . . . , Xp

m},

where {X l
i }

n
i=1 and {Xp

i }
m
i=1 are g-orthonormal bases for l and p, respectively. We

then get that for X l
∈ l and Xp

∈ p

2 ricg(X l, Xp) = − B(X l, Xp) −

∑
i

g([X l, X i ]m, [Xp, X i ]m)

+
1
2

∑
i, j

g([X i , X j ]m, X l)g([X i , X j ]m, Xp)

= −

∑
i

g([X l, X l
i ]m, [Xp, X l

i ]m) −

∑
i

g([X l, Xp
i ]m, [Xp, Xp

i ]m)

+
1
2

∑
i, j

g([X i , X j ]m, X l)g([X i , X j ]m, Xp)

=
1
2

∑
i, j

g([X i , X j ]m, X l)g([X i , X j ]m, Xp).

We used that B(l, p) = 0 in the second equality and in the third equality we used
both the Cartan decomposition relations [p, p] ⊂ k, [k, p] ⊂ p, [k, k] ⊂ k and that



194 ROBERTO ARAUJO

g(l, p) = 0. Moreover, by the same reason, we have that∑
i, j

g([X i , X j ]m, X l)g([X i , X j ]m, Xp) =

∑
i, j

g([X l
i , X l

j ]m, X l)g([X l
i , X l

j ]m, Xp)

+

∑
i, j

g([Xp
i , Xp

j ]m, X l)g([Xp
i , Xp

j ]m, Xp)

+ 2
∑
i, j

g([X l
i , Xp

j ]m, X l)g([X l
i , Xp

j ]m, Xp)

= 0.

This means that the set of awesome metrics {g ∈ (Sym2(m))
Ad(H)
+ | g(l, p) = 0}

is an invariant subset for the Ricci flow equation (2-1). □

Remark 2.3. Nikonorov [2000, Example 1] had already argued that ricg(l, p) = 0
for g awesome, in the particular case of the homogeneous space SO(n, 2)/ SO(n),
n ≥ 2. The isotropy representation of SO(n, 2)/ SO(n), n ≥ 2, has three summands
l1 ⊂ k, p1 ⊂ p, and p2 ⊂ p, and moreover l1 is not isomorphic to p1 or p2; thus any
SO(n, 2)-invariant metric is awesome. He works this example out in more detail
in order to show that SO(n, 2)/ SO(n) admits SO(n, 2)-invariant Ricci negative
metrics but no Einstein metric.

3. Algebraic bounds for the Ricci curvature

We want to understand the long-time behavior of an awesome metric under the
homogeneous Ricci flow. In order to do that we want to compare an arbitrary
awesome metric g to a highly symmetric background metric.

Let us fix Q := −B|l×l + B|p×p as a background metric. For a given Ad(H )-
invariant inner product g on m, by Schur’s lemma, we can decompose it on Q-
orthogonal irreducible h-modules m =

⊕N
i=1 mi such that

g = x1 · Q|m1×m1 ⊥ · · · ⊥ xN · Q|mN ×mN ,

for some positive numbers x1, . . . , xN ∈ R. Note that this decomposition is not
necessarily unique, except in the case where all irreducible modules are pairwise
inequivalent. Also by Schur’s lemma, in each irreducible summand mi the Ricci
tensor is given by ricg|mi ×mi = ri · g|mi ×mi , for r1, . . . , rN ∈ R. Observe that, in
general, the mixed terms ricg(mi ,m j ) for i ̸= j are not zero when mi is equivalent
to m j as h-modules.

Now let g be an awesome metric. Then there is a Cartan decomposition such
that g(l, p) = 0; hence we can adapt the above decomposition so that

(3-1) g = l1 · Q|l1×l1 ⊥ · · · ⊥ ln · Q|lv×lv ⊥ p1 · Q|p1×p1 ⊥ · · · ⊥ pm · Q|pm×pm ,
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where (l1, . . . , ln, p1, . . . , pm) = (m1, . . . ,mn+m) with

l =

n⊕
i=1

li and p =

m⊕
i=1

pi ,

and (l1, . . . , ln, p1, . . . , pm) = (x1, . . . , xn+m).
Let us establish the notation Il := {1, . . . , n} and Ip := {n + 1, . . . , n + m}, and

let di denote the dimension of mi for all i ∈ {1, . . . , n + m}. To simplify notation
we are going to write î := n + i . Finally, let us define

(3-2) r li · g|li ×li = ricg|li ×li for i = 1, . . . , n

and

(3-3) rpi · g|pi ×pi = ricg|pi ×pi for i = 1, . . . , m,

where (r l1, . . . , r ln, rp1 , . . . , rpm) = (r1, . . . , rn+m).
Let us take the following Q-orthonormal basis on g, {E0

α} for 1 ≤ α ≤ n on h,
and {E i

α} for 1 ≤ α ≤ di on each mi , i = 1, . . . , n + m. Then we can define the
brackets coefficients

[i jk] :=

∑
α,β,γ

Q([E i
α, E j

β], Ek
γ )2.

By the Cartan decomposition we get that ad(k) are skew-symmetric and ad(p) are
symmetric [Hilgert and Neeb 2012, Lemma 13.1.3]; therefore the coefficient [i jk]

is invariant under permutations of the symbols i , j , k.
By Schur’s lemma we have that the Casimir operator of the h action on the

irreducible module mi , Cmi ,h := −
∑

α ad(E0
α) ◦ ad(E0

α)|mi , is given by

(3-4) ci · Idmi = −

∑
α

ad(E0
α) ◦ ad(E0

α)|mi ,

with ci ≥ 0.
By [Wang and Ziller 1986, Lemma 1.5] (also [Nikonorov 2000, Lemma 1]), we

have that, for i = 1, . . . , n + m,

(3-5) 0 ≤

∑
j,k

[i jk] = di (1 − 2ci ) ≤ di .

Indeed, a direct computation yields∑
j,k

[i jk] =

∑
α,β,γ

1≤ j,k≤n+m

Q([E i
α, E j

β], Ek
γ )2

=

∑
α,β,γ

0≤ j,k≤n+m

Q([E i
α, E j

β], Ek
γ )2

− 2
∑
α,β,γ

Q([E i
α, E0

β], E i
γ )2
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=

∑
α,β

0≤ j≤n+m

Q([E i
α, E j

β], [E i
α, E j

β]) − 2
∑
α,β

Q([E0
β, E i

α], [E0
β, E i

α])

=

∑
α,β,γ

0≤ j≤n+m

∣∣Q
(
E j

β, [E i
α, [E i

α, E j
β]]

)∣∣ + 2
∑
α,β

Q
(
E i

α, [E0
β, [E0

β, E i
α]]

)
=

∑
α

|B(E i
α, E i

α)| − 2 Tr Cmi ,h = di − 2ci di ≤ di

Using the above orthonormal basis, we have, for the Ricci curvature ri on mi ,
i = 1, . . . , n + m, of an awesome metric on m (see [Nikonorov 2000, Lemma 2]),
the formula

(3-6) ri =
bi

2xi
+

1
4di

∑
j,k

[i jk]

(
xi

xk x j
−

xk

xi x j
−

x j

xk xi

)
,

where bi =1 if i ∈ Il, and bi =−1 if i ∈ Ip. Let us order {x1, . . . , xn}={l1, . . . , ln} as

0 < l1 ≤ · · · ≤ ln,

and {xn+1, . . . , xn+m} = {p1, . . . , pm} as

0 < p1 ≤ · · · ≤ pm .

In [Nikonorov 2000] there are the following estimates for rp1 and rpm . First, since
p1
p j

−
p j
p1

≤ 0 for 1 ≤ j ≤ m,

(3-7) rp1 = −
1

2p1
+

1
4d1̂

∑
j,k

[1̂ jk]

(
p1

xk x j
−

xk

p1x j
−

x j

xk p1

)

= −
1

2p1
+

1
2d1̂

∑
ĵ∈Ip
k∈Il

[1̂ ĵ k]

((
p1

p j
−

p j

p1

)
1
lk

−
lk

p j p1

)
≤ −

1
2p1

< 0,

and since pm
p j

−
p j
pm

≥ 0 for 1 ≤ j ≤ m,

(3-8) rpm = −
1

2pm
+

1
2dm̂

∑
ĵ∈Ip
k∈Il

[m̂ ĵk]

((
pm

p j
−

p j

pm

)
1
lk

−
lk

p j pm

)

≥ −
1

2pm
−

1
2dm̂

∑
ĵ∈Ip
k∈Il

[m̂ ĵk]
lk

p j pm
≥ −

1
2pm

−
ln

4p1 pm
,

where in the second inequality we used (3-5).
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We now observe that for an awesome metric g the Ricci tensor restricted to
the tangent space Tp K/H , which can be identified with l via (2-3), splits nicely
in terms of l and p. Namely, for any X ∈ l, the Ricci tensor formula (2-2) for an
awesome metric gives us

(3-9) ricg(X, X) = ricK/H (X, X) −
1
2

Tr(ad(X) ◦ ad(X)|p)

−
1
2

∑
i

∥[X, Xp
i ]m∥

2
g +

1
4

∑
i, j

g([Xp
i , Xp

j ]m, X)2,

where {Xp
i } is a g-orthonormal basis for p and ricK/H is the Ricci tensor on K/H =

K · p. In particular, we have the following lemma.

Lemma 3.1. Let (G/H, g) be a semisimple homogeneous space with an awesome
G-invariant metric g. Then the Ricci curvature r ln in the largest l-eigendirection of
g with respect to the background metric Q satisfies

(3-10) r ln ≥
1

4dn

∑
ĵ,k̂∈Ip

[n ĵ k̂]

(
2
ln

+
ln

p j pk
−

p j

ln pk
−

pk

p j ln

)
+

1
4dnln

∑
j,k∈Il

[njk].

Proof. Observe that as computed in [Nikonorov 2000, Theorem 1] and in [Böhm
2015, Theorem 3.1] for i > j ∈ Il

l2
j − 2li l j + l2

i = (l j − li )
2
≤ (ln − l j )(li − l j ) = lnli − li l j − lnl j + l2

j

≤ l2
n − li l j − lnl j + l j ln = l2

n − li l j .

Hence l2
n − l2

j − l2
i + l j li ≥ 0 and the formula for r ln with the Cartan decomposition

relations then yields

r ln =
1

2ln
+

1
4dn

∑
j,k

[njk]

(
ln

xk x j
−

x j

lnx j
−

x j

xkln

)

=
dn

2lndn
+

1
4dn

∑
ĵ,k̂∈Ip

[n ĵ k̂]

(
ln

pk p j
−

pi

ln p j
−

p j

pkln

)
+

1
4dn

∑
j,k∈Il

[njk]

(
ln

lkl j
−

lk

lnl j
−

l j

lkln

)

≥
1

4dn

∑
ĵ,k̂∈Ip

[n ĵ k̂]

(
2
ln

+
ln

pk p j
−

pk

ln p j
−

p j

pkln

)
+

1
4dn

∑
j,k∈Il

[njk]

(
2
ln

+
ln

lkl j
−

lk

lnl j
−

l j

lkln

)
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=
1

4dn

∑
ĵ,k̂∈Ip

[n ĵ k̂]

(
2
ln

+
ln

pk p j
−

pk

ln p j
−

p j

pkln

)

+
1

4dnln

∑
j,k∈Il

[njk]

(
1 +

l2
n − l2

j − l2
k + l j lk

lkl j

)

≥
1

4dn

∑
ĵ,k̂∈Ip

[n ĵ k̂]

(
2
ln

+
ln

pk p j
−

pk

ln p j
−

p j

pkln

)
+

1
4dnln

∑
j,k∈Il

[njk],

where in the first inequality we used (3-5). □

Remark 3.2. Observe that in general
∑

j,k∈Il[njk] may be equal to zero. But in
the case when K/H is not a torus, [l, l]m ̸= 0 and we can consider the largest
eigenvalue ln′ such that [ln′, l]m ̸= 0, for which

∑
j,k∈Il[n

′ jk] > 0.

We have also the following alternative for the values of r ln and rpm .

Lemma 3.3. Let (G/H, g) be a semisimple homogeneous space with an awesome
G-invariant metric g. We have the following dichotomy for the Ricci curvature of g
in the largest p-eigendirection (respectively l-eigendirection) of g with respect to Q:

(1) If pm − p1 ≥ ln , then

(3-11) rpm ≥ −
1

4pm
−

1
4p1

and r ln ≥
1

4ln

(
2 −

pm

p1
−

p1

pm

)
.

(2) If pm − p1 ≤ ln , then

(3-12) rpm ≥ −
1

2pm
−

ln

4p1 pm
and r ln ≥ 0.

Proof. In the first case, i.e., if pm − p1 ≥ ln , we have

rpm ≥ −
1

2pm
−

ln

4p1 pm

≥ −
1

2pm
+

p1 − pm

4p1 pm

= −
1

4pm
−

1
4p1

,

where in the first inequality we used (3-8). Moreover, by Lemma 3.1 we have that

r ln ≥
1

4dn

∑
ĵ,k̂∈Ip

[n ĵ k̂]

(
2
ln

+
ln

pk p j
−

pk

ln p j
−

p j

pkln

)
+

1
4dnln

∑
j,k∈l

[njk]

≥
1

4ln

(
2 −

pm

p1
−

p1

pm

)
,

and we get (3-11).
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In the second case, as in [Nikonorov 2000], observe that

pm − p1 ≤ ln ⇐⇒ |p j − pk | ≤ ln, ∀ j, k ∈ Ip

⇐⇒ (p2
j − 2p j pk + p2

k ) ≤ l2
n

⇐⇒

(
p j

pkln
−

2
ln

+
pk

p j ln

)
≤

ln

p j pk

⇐⇒ −
2
ln

≤
ln

p j pk
−

p j

pkln
−

pk

p j ln
,

and therefore, substituting this in the estimate for r ln in (3-10) we get that r ln ≥ 0.
Together with the estimate (3-8) for rpm , we get (3-12). □

We can combine the estimates above to get a first scale-invariant estimate that
will be essential for us in the dynamical analysis to come in Section 4.

Lemma 3.4. Let (G/H, g) be a semisimple homogeneous space with an awesome
G-invariant metric g. Let us consider the eigenvalues of g with respect to Q as
established in (3-1), (3-2), and (3-3). Then

(3-13) 2(pmrpm + lnr ln) ≥ −
pm + ln

p1
.

Proof. We know that if pm − p1 ≥ ln , then

2(pmrpm + lnr ln) ≥ −
1
2

−
pm

2p1
+

1
2

(
2 −

pm

p1
−

p1

pm

)
=

1
2

−
pm

p1
−

p1

2pm
= −

pm

p1
+

pm − p1

2pm

≥ −
pm

p1
≥ −

pm + ln

p1
,

where in the first inequality we used (3-11). And if pm − p1 ≤ ln , then

2(pmrpm + lnr ln) ≥ −1 −
ln

2p1
≥ −

2p1 + 2ln

2p1
≥ −

pm + ln

p1
,

where in the first inequality we used (3-12). □

We can observe in the above computations that the advantage of working with
awesome metrics is that the Ricci curvature in the eigenvectors of the metric tangent
to K/H ⊂ G/H splits nicely, since the algebraic and the metric decompositions are
compatible. Lemmas 3.3 and 3.4 give us our first estimates on the Ricci curvature
which we will be able to exploit in the next section in order to examine the long-time
behavior of the Ricci flow on awesome metrics.
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4. The dynamical Alekseevskii conjecture for awesome metrics

We will prove Theorem A. In order to do that, we must use the algebraic estimates
we got in the last section in order to get dynamical estimates for the eigenvalues of
the Ricci flow solution g(t) (which from here onward we will also denote by gt )
with respect to our background metric Q := −B|l×l + B|p×p.

The next lemma is equivalent to the one in [Chow et al. 2006, Lemma B.40], but
here we use for better convenience upper left-hand Dini derivatives.

Lemma 4.1 [Chow et al. 2006, Lemma B.40]. Let C be a compact metric space, I
an interval of R, and g : I × C → R a function such that g and ∂g

∂t are continuous.
Define φ : I → R by

φ(t) := sup
x∈C

g(t, x)

and its upper left-hand Dini derivative by

d−φ(t)
dt

:= lim sup
h→0+

φ(t) − φ(t − h)

h
.

Let Ct := {x ∈ C | φ(t) = g(t, x)}. We have that φ is continuous and that for any
t ∈ I

d−φ(t)
dt

= min
x∈Ct

∂g
∂t

(t, x).

At first, we will apply Lemma 4.1 to

−p1(t) = max{−gt(X, X) | X ∈ p, ∥X∥Q = 1},

pm(t) = max{gt(X, X) | X ∈ p, ∥X∥Q = 1},

ln(t) = max{gt(X, X) | X ∈ l, ∥X∥Q = 1},

and

log(pm + ln)(t)

= log max{(gt(X, X) + gt(Y, Y )) | X ∈ p, Y ∈ l, ∥X∥Q = 1, ∥Y∥Q = 1}

= max{log(gt(X, X) + gt(Y, Y )) | X ∈ p, Y ∈ l, ∥X∥Q = 1, ∥Y∥Q = 1}.

Lemma 4.1 will be fundamental to us when combined with the following ele-
mentary real analysis result.

Lemma 4.2. Let [a, b] be a closed interval of R and f : [a, b] → R a continuous
function such that d− f

dt ≤ 0 and f (a) = 0. Then f (t) ≤ 0.

With Lemmas 4.1 and 4.2 at hand, we can obtain our first main estimate for
analyzing the long-time behavior of the Ricci flow on an awesome metric. Indeed,
using the algebraic estimates in the previous section we get that:
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Lemma 4.3. Let (G/H, g(t)), t ∈ [0, T ), be an awesome Ricci flow adapted to the
Cartan decomposition g = k⊕ p. Then we have, for the growth of pm(t) and ln(t),
the upper bounds

(4-1) t + p1(0) ≤ p1(t) and (pm + ln)(t) ≤ (t + p1(0))
(pm + ln)(0)

p1(0)
.

Proof. Let us get first the estimate for p1(t). Using Lemma 4.1 and the estimate
(3-7) we get that

(4-2)
d−(−p1)

dt
≤ 2 rict(E 1̂, E 1̂) = 2rp1 p1 ≤ −1,

where in the second inequality we used (3-7). Hence by Lemma 4.2

(4-3) t + p1(0) ≤ p1(t)

Using Lemma 3.3 we get the estimate

d− log(pm + ln)

dt
≤

d
dt

log(gt(E m̂, E m̂) + gt(En, En))

=
g′

t(E m̂, E m̂) + g′
t(En, En)

gt(E m̂, E m̂) + gt(En, En)
=

−2rpm pm − 2r lnln

pm + ln

≤
1
p1

≤
1

t + p1(0)
,

where in the first, second, and third inequalities we used Lemma 4.1, (3-13), and
(4-3), respectively. Hence (pm + ln)(t) ≤ (t + p1(0))

(pm+ln)(0)

p1(0)
. □

We see then that the maximum eigenvalue of g(t) with respect to Q can grow at
most as O(t). In particular, pm(t) ≤ (1 + c0)(t + p1(0)) for some given positive
constant c0 > 0 that only depends on the initial metric g0.

Therefore, using (4-3) we get a pinching estimate along the flow for the metric
g(t)|p×p, namely

(4-4)
pm(t)
p1(t)

≤ 1 + c0.

We can then reuse this estimate to get the following proposition (for the sake of
simplicity, from now on we will mostly omit that we are using the Lemmas 4.1 and
4.2 above).

Proposition 4.4. Let (G/H, g(t)), t ∈ [0, T ), be an awesome Ricci flow adapted to
the Cartan decomposition g = k⊕ p. Let us consider the eigenvalues p1(t), pm(t),
and ln(t) of gt with respect to Q. Then for all t ≥ t0 in the maximal interval of the
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Ricci flow, there is an explicit constant c0 > 0, which only depends on the initial
conditions at t0, such that

(4-5) pm(t) ≤ t + (p1(t0) − t0) + c0
√

t + (p1(t0) − t0) ≤ p1(t) + c0
√

p1(t)

and

(4-6) ln(t) ≤ c0
√

(t − t0 + p1(t0)).

Proof. By rescaling the initial metric g(t0) we may assume without loss of generality
that p1(t0) = 1. Let t ≥ t0. We will show by induction that, for all N ∈ N,

pm(t) ≤

(
1 +

c0

2N

)
(t − t0 + 1) + c0

N−1∑
k=0

(log(t − t0 + 1))k

2kk!

and

ln(t) ≤
c0

2N (t − t0 + 1) + c0

N−1∑
k=0

(log(t − t0 + 1))k

2kk!
,

where c0 := pm(t0) + ln(t0) − 1.
By Lemma 4.3, we have already seen that pm(t) ≤ (1+c0)(t − t0 +1). Moreover,

by the discussion following Lemma 3.3 we get

d−ln(t)
dt

≤ −2rn(t)ln(t) ≤
1
2

(
pm(t)
p1(t)

+
p1(t)
pm(t)

− 2
)

≤
1
2

(
pm(t)
p1(t)

− 1
)

≤
c0

2
,

where in the last inequality we used (4-4). Hence, for t ≥ t0,

(4-7) ln(t) ≤
c0

2
(t − t0 + 1) −

c0

2
+ ln(t0) ≤

c0

2
(t − t0 + 1) + c0.

Moreover,

d− pm(t)
dt

≤ −2rm(t)pm(t) ≤ 1 +
ln(t)

2p1(t)

≤

(
1 +

c0

22

)
(t − t0 + 1)

p1(t)
+

c0

2p1(t)
≤

(
1 +

c0

22

)
+

c0

2(t − t0 + 1)
,

where in the second and third inequalities we used (3-8) and (4-7), respectively.
Hence, for t ≥ t0,

pm(t) ≤

(
1 +

c0

22

)
(t − t0 + 1) +

c0

2
log(t − t0 + 1) + c0.

This establishes the basis of induction. Suppose that, for N ≥ 2 and t ≥ t0,

pm(t) ≤

(
1 +

c0

2N

)
(t − t0 + 1) + c0

N−1∑
k=0

(log(t − t0 + 1))k

2kk!
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and

ln(t) ≤
c0

2N (t − t0 + 1) + c0

N−1∑
k=0

(log(t − t0 + 1))k

2kk!
.

Then we can reuse this to get better estimates for ln(t) and pm(t). We have that

d−ln(t)
dt

≤
1
2

(
pm(t)
p1(t)

−1
)

≤
1
2

(
pm(t)

(t−t0+1)
−1

)
≤

c0

2N+1 +c0

N−1∑
k=0

(log(t−t0+1))k

(t−t0+1)2k+1k!
;

hence

ln(t) ≤
c0

2N+1 (t − t0 + 1) + c0

N∑
k=0

(log(t − t0 + 1))k

2kk!
,

and

d− pm(t)
dt

≤ 1 +
ln(t)

2p1(t)
≤

(
1 +

c0

2N+1

)
+ c0

N−1∑
k=0

(log(t − t0 + 1))k

(t − t0 + 1)2k+1k!
.

Therefore,

pm(t) ≤

(
1 +

c0

2N+1

)
(t − t0 + 1) + c0

N∑
k=0

(log(t − t0 + 1))k

2kk!
.

Now this is valid for arbitrary t ≥ t0 in the maximal interval of the dynamics.
Hence, taking the limit at N → ∞ for the right-hand side, we get

pm(t) ≤ (t − t0 + 1) + c0
√

(t − t0 + 1) ≤ p1(t) + c0
√

p1(t)

and
ln(t) ≤ c0

√
(t − t0 + p1(t0)). □

The next corollary follows immediately from the estimate (4-5) obtained in
Proposition 4.4 above.

Corollary 4.5. Let (G/H, g(t)), t ∈ [t0, ∞), be an immortal awesome Ricci flow
adapted to the Cartan decomposition g = k⊕ p. Then

lim
t→∞

pm(t)
p1(t)

= 1.

Remark 4.6. Observe that the background metric Q given by −B|k×k+B|p×p corre-
sponds to a minimum for the moment map of the SL(g, R)-action of determinant-one
matrices in the space of Lie brackets on g [Lauret 2003, Proposition 8.1]. Thus,
Corollary 4.5 reinforces the relation between geometric invariant theory and the
geometry of G/H by telling us that in the noncompact part p the awesome metric
under the Ricci flow approximates −B|p×p up to scaling and G-equivariant isometry.
In Section 5 we will prove a convergence result in this direction (see Theorem 5.2).
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The next corollary of Proposition 4.4, about the asymptotic behavior of the metric
g(t) restricted to the tangent space of K/H , will also be important for the long-time
analysis of immortal awesome homogeneous Ricci flows in Section 5.

Corollary 4.7. Let (G/H, g(t)), t ∈ [t0, ∞), be an immortal awesome Ricci flow
adapted to the Cartan decomposition g = k⊕ p. Then the rescaled metric g̃t :=

t−1g(t) is such that
lim

t→∞
g̃t |l×l = 0.

Proof. This follows immediately from the estimate (4-6) for ln(t), which shows that
it may grow at most sublinearly. Hence, limt→∞

ln(t)
t = 0. □

We can now prove our first main result.

Theorem 4.8. Let (Md
= G/H, g0) be a semisimple homogeneous space such that

the universal cover is not diffeomorphic to Rd . If g0 is an awesome metric, then the
Ricci flow solution starting at g0 has finite extinction time.

Proof. Let g and h be the Lie algebras of G and H , respectively. Let us consider
the Cartan decomposition g= k⊕p with h⊂ k and let us fix as a background metric
Q := −B|l×l+ B|p×p, where B is the Killing form in g. We have then the canonical
reductive identification TeH G/H ∼=m= l⊕p, with l := h⊥Q ∩ k. First, observe that
by hypothesis the universal cover of M is not diffeomorphic to Rd , which implies
that K/H is not a torus; hence [k, k] ̸⊂ h. Moreover, since [k, k] ⊥Q z(k), where
z(k) is the center of k, the condition [k, k] ⊂ h is equivalent to l ⊂ z(k), which in
turn is equivalent to [l, l] ⊂ h and [h, l] = 0.

So in terms of the irreducible representations decomposition (3-1), [k, k] ̸⊂ h is
equivalent to say that for at least one i ∈ Il either [l, l] ̸⊂ h and∑

j,k∈Il

[i jk] > 0;

or [h, l] ̸= 0 and, using (3-5) in the equality,∑
j,k

[i jk] = di (1 − 2ci ) < di ,

since then the Casimir operator Cli ,h given in (3-4) is not zero.
Therefore, there is a constant λ > 0 such that for any of the irreducible h-modules

li with [li , k] ̸⊂ h, either∑
j,k∈Il

[i jk] ≥ 2λ > 0 or
∑
j,k

[i jk] ≤ di − λ < di .

Now let gt , t ∈ [0, T ), be the Ricci flow (2-1) solution starting at g0. By
Lemma 2.2 we know that gt is an awesome homogeneous Ricci flow adapted to
the Cartan decomposition g = k⊕ p, with k = h⊕ l.
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Let us consider the diagonalization of gt with regard to Q as in (3-1),

gt = l1(t) · Q|l1×l1 ⊥ · · · ⊥ ln(t) · Q|ln×ln ⊥ p1(t) · Q|p1×p1 ⊥ · · · ⊥ pm(t) · Q|pm×pm .

Let us define the Ricci curvatures, as in (3-2) and (3-3),

r li · g(t)|li ×li = ricg(t)|li ×li for i = 1, . . . , n

and

rpi · g(t)|pi ×pi = ricg(t)|pi ×pi for i = 1, . . . , m.

Define the h-submodules V ={X ∈ W ⊥Q | [l, X ]∈h} and W ={X ∈ l | [h, X ]=0},
and let

L(t) := max{gt(X, X) | X ∈ V ⊥Q ∪ W ⊥Q , ∥X∥Q = 1}.

Note that L(t) is the largest eigenvalue ln′(t) of gt such that the corresponding
irreducible h-module ln′ satisfies either [ln, l] ̸⊂ h or [h, ln] ̸= 0, which we already
know is a nonempty condition. Consider p1(t) :=min{gt(X, X) | X ∈p, ∥X∥Q = 1}

and pm(t) := max{gt(X, X) | X ∈ p, ∥X∥Q = 1}. Then using all the estimates we
got so far and the fact that for any j ∈ Il, if

∑
k∈Il[n

′ jk] ̸= 0, then ln′ ≥ l j , we get,
for r ln′ , the lower bound

r ln′ =
1

2ln′

+
1

4dn′

∑
j,k

[n′ jk]

(
ln′

xk x j
−

x j

ln′ x j
−

x j

xkln′

)

=
dn′

2ln′dn′

+
1

4dn′

∑
ĵ,k̂∈Ip

[n′ ĵ k̂]

(
ln′

pk p j
−

pi

ln′ p j
−

p j

pkln′

)

+
1

4dn′

∑
j,k∈Il

[n′ jk]

(
ln′

lkl j
−

lk

ln′l j
−

l j

lkln′

)

≥
dn′

2ln′dn′

+
1

4dn′

∑
ĵ,k̂∈Ip

[n′ ĵ k̂]

(
−

pi

ln′ p j
−

p j

pkln′

)

+
1

4dn′ln′

∑
j,k∈Il

[n′ jk]

( l2
n′ − l2

j − l2
k

lkl j

)

≥
dn′

2ln′dn′

−
1

2dn′ln′

∑
ĵ,k̂∈Ip

[n′ ĵ k̂]
pm

p1
−

1
4dn′ln′

∑
j,k∈Il

[n′ jk],

where in the first equality we used (3-6). Therefore,

d−ln′(t)
dt

≤ −2r ln′(t)ln′(t) ≤
1

dn′

(
−dn′ +

1
2

∑
j,k∈Il

[n′ jk] +

∑
ĵ,k̂∈Ip

[n′ ĵ k̂]
pm(t)
p1(t)

)
.



206 ROBERTO ARAUJO

Let us assume by contradiction that gt is immortal. Then by Corollary 4.5, given
ϵ > 0 we can assume that t is big enough such that

pm(t)
p1(t)

≤ 1 + ϵ.

Therefore we get that

d−ln′(t)
dt

≤
1

dn′

(
−dn′ +

1
2

∑
j,k∈Il

[n′ jk] +

∑
ĵ,k̂∈Ip

[n′ ĵ k̂] + ϵ
∑

ĵ,k̂∈Ip

[n′ ĵ k̂]

)

=
1

dn′

(
(1 + ϵ)

∑
j,k

[n′ jk] − dn′ −

(
1
2

+ ϵ
) ∑

j,k∈Il

[n′ jk]

)
,

and since either [h, ln′] ̸= 0 or [ln, l] ̸⊂ h, there exists a constant independent of
t , λ > 0, such that either

∑
j,k[n

′ jk] = dn′ − λ < dn′ or
∑

j,k∈Il[n
′ jk] ≥ 2λ > 0.

Therefore, if d = dim M , then either

d−ln′(t)
dt

=
1

dn′

(
(1 + ϵ)

∑
j,k

[n′ jk] − dn′ −

(
1
2

+ ϵ
) ∑

j,k∈Il

[n′ jk]

)

=
1

dn′

((1 + ϵ)(dn′ − λ) − dn′) ≤ −
λ

d
+ ϵ

or
d−ln′(t)

dt
=

1
dn′

(
(1 + ϵ)

∑
j,k

[n′ jk] − dn′ −

(
1
2

+ ϵ
) ∑

j,k∈Il

[n′ jk]

)

≤
1

dn′

((1 + ϵ)(dn′) − dn′) −
λ

d
≤ −

λ

d
+ ϵ.

Finally, choosing ϵ small enough we get that −
λ
d +ϵ < 0, and then for big enough

t we get that

ln′(t) ≤

(
−

λ

d
+ ϵ

)
t + ln′(0),

which means that ln′(t) converges to zero in finite time and the Ricci flow is not
immortal. □

5. Convergence results for awesome metrics

We will further our long-time behavior analysis of awesome Ricci flows by exam-
ining the long-time limit solitons we obtain by appropriately rescaling the Ricci
flow solution g(t). We first investigate the case where the universal cover of G/H
is not contractible, i.e., it is not diffeomorphic to Rn so that by Theorem 4.8 the
extinction time is finite and later in Section 5.2, the contractible case, when G/H
is diffeomorphic to Rn , where the flow is immortal.
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5.1. The noncontractible case. Let us consider the following formula for the
scalar curvature R(g) of an awesome metric g which easily follows from the Ricci
curvature formula (3-6):

(5-1) R(g) =

∑
i∈Il

di

2li
−

∑
ĵ∈Ip

d ĵ

2p j
−

∑
i, j,k

[i jk]
xi

x j xk
.

We immediately see from the equation above that

(5-2) R(g) ≤
dim l

2l1
,

which in turn means that if the scalar curvature blows-up, then the smallest eigen-
value in the l-direction goes to zero.

Böhm [2015, Theorem 2.1] showed that every homogeneous Ricci flow with finite
extinction time develops a type-I singularity, namely, that there is a constant C(g0)

that only depends on the initial metric g0 such that we have for the norm of the
Riemann tensor Rm(g) along the Ricci flow the upper bound

∥Rm(g(t))∥g(t) ≤
C(g0)

T − t
,

for t ∈ [0, T ), where T is the maximal time for the flow. Even more, if we assume
R(g0) is positive, he showed that along a finite extinction time homogeneous
Ricci flow the Riemann tensor is controlled by the scalar curvature [Böhm 2015,
Remark 2.2] and that there are constants c(g0) and C(g0) only depending on the
initial metric g0 such that

c(g0)

T − t
≤ R(g(t)) ≤

C(g0)

T − t
,

for t ∈ [0, T ).
This gives us a natural scaling parameter for a blow-up analysis of the Ricci

flow solution g(t). By [Enders et al. 2011], we can extract a nonflat limit shrinking
soliton from such a blow-up. In the following theorem, which is our second main
result, we show that these limits only depend on the induced geometry on the
compact fiber K/H .

Theorem 5.1. Let M = G/H be a semisimple homogeneous space such that the
universal cover is not contractible. Let (M, g(s)), s ∈ [0, T ), be an awesome Ricci
flow adapted to the Cartan decomposition g= k⊕p. Let R(g) be the scalar curvature
of the metric g. For any sequence (sa)a∈N, sa → T , there exists a subsequence such
that (M, R(g(sâ)) · g(sâ)) converges in pointed C∞-topology to the Riemannian
product

E∞ × Ed ,
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where E∞ is a compact homogeneous Einstein manifold with positive scalar curva-
ture and Ed is the d-dimensional (flat) Euclidean space with d ≥ dim p.

The geometry of E∞ just depends on the subsequence of Riemannian submani-
folds (K/H, R(g(sâ)) · g(sâ)).

Proof. By Theorem 4.8 we know that such a solution g(s) has finite extinction time;
hence by [Böhm 2015, Theorem 2.1] we know that it is a type-I flow. By [Lafuente
2015, Theorem 1.1] we can assume without loss of generality that R(g(0))>0, so let
us define the parabolic rescaled metric g̃s := R(g(s)) · g(s). By the work of Enders,
Müller, and Topping on type-I singularities of the Ricci flow [Enders et al. 2011,
Theorem 1.1], it follows via Hamilton’s compactness theorem [1982] that along
any sequence of times converging to the singularity time T , these scalar curvature
normalized parabolic rescalings will subconverge to a nonflat homogeneous gradient
shrinking soliton.

Moreover, by work of Petersen and Wylie [2009], we have that a homogeneous
gradient shrinking soliton is rigid, in the sense that it is a Riemannian product of an
Euclidean factor and a positive scalar curvature homogeneous Einstein manifold.

We have already seen in (3-7) that in the direction of the smallest eigenvalue of
g|p×p the Ricci curvature is negative, i.e., rp1 < 0. Since any limit gradient shrinking
soliton is Ricci nonnegative, this implies that

lim
s→T

(
1

R(g(s))
· rp1 (s)

)
= 0.

In particular, for any ĵ ∈ Ip and k ∈ Il,

lim
s→T

(
[1̂ ĵ k]s

(
p1(s)
p j (s)

−
p j (s)
p1(s)

)
1

R(g(s))lk(s)

)
= 0.

This in turn implies that, for the second largest eigenvalue in the p-direction p2,
lim rp2 (s) ≤ 0 as t approaches the singular time T . Hence, once again we can
conclude that, for any ĵ ∈ Ip and k ∈ Il,

lim
s→T

(
[2̂ ĵ k]s

(
p2(s)
p j (s)

−
p j (s)
p2(s)

)
1

R(g(s))lk(s)

)
= 0.

Arguing recursively, we can then conclude that, for any î, ĵ ∈ Ip and k ∈ Il,

(5-3) lim
s→T

(
[î ĵ k]s

(
pi (s)
p j (s)

−
p j (s)
pi (s)

)
1

R(g(s))lk(s)

)
= 0.

Therefore, in the limit geometry we find at least as many linear independent direc-
tions as dim p such that the Ricci curvature is 0. This can only be the case if the
Euclidean factor in the limit has dimension at least as large as dim p. Furthermore,
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by [Böhm 2015, Theorem 5.2] we know that this dimension does not depend on
the subsequence taken.

Observe that this in particular implies

(5-4)
∑
α,β,γ

(
g̃s(Ẽpi

α , [Ẽp j
β , Ẽ lk

γ ]) − Q(Epi
α , [Ep j

β , Ẽ lk
γ ])

)
→ 0,

where

Ẽp j
α =

Ep j
α√

R(g(s)) · p j (s)

(
respectively Ẽ lk

γ =
E lk

γ
√

R(g(s)) · li (s)

)
and {Ep j

α } (respectively {E li
γ }) is a g(s)-diagonalizing basis of p (respectively of l)

with respect to the Ad(K )-invariant background metric Q := −B|l×l + B|p×p.
Let X ∈ l and xs := ∥X∥

2
g̃s

. The rescaled Ricci curvature on the compact
Riemannian submanifold Ns = (K/H, g̃s) in the direction X̃s = X/

√
xs , as remarked

in (3-9), is given by

ricg̃s (X̃s, X̃s) = ricNs (X̃s, X̃s) −
1
2

Tr(ad(X̃s) ◦ ad(X̃s)|p)

−
1
2

∑
î∈Ip
α

∥[X̃s, Ẽpi
α ]∥

2
g̃s

+
1
4

∑
î, ĵ∈Ip
α,β

g̃s([Ẽpi
α , Ẽp j

β ], X̃s)
2.

This means that

|ricg̃s (X̃s, X̃s) − ricNs (X̃s, X̃s)|

≤
1
2

∣∣∣∣ ∑
î, ĵ∈Ip
α,β

Q(Epi
α , [Ep j

β , X̃s])
2
−

∑
î, ĵ∈Ip
α,β

g̃s(Ẽpi
α , [Ẽp j

β , X̃s])
2
∣∣∣∣

+
1
4

∑
ĵ,k̂∈Ip
α,β

g̃s([Ẽp j
β , Ẽpk

α ], X̃s)
2.

For the first term on the right-hand side we have that

g̃s(Ẽpi
α , [Ẽp j

β , X̃s])
2
=

( ∑
k∈Il
γ

g̃s(X̃s, Ẽ lk
γ )g̃s(Ẽpi

α , [Ẽp j
β , Ẽ lk

γ ])

)2

and by what we observed in (5-4) this can be approximated by(∑
k∈Il
γ

g̃s(X̃s, Ẽ lk
γ )g̃s(Ẽpi

α , [Ẽp j
β , Ẽ lk

γ ])

)2

=

(∑
k∈Il
γ

g̃s(X̃s, Ẽ lk
γ )Q(Epi

α , [Ep j
β , Ẽ lk

γ ])

)2

+ϵ(s),

where ϵ(s) → 0 as s → T .
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As for the second term on the right-hand side, observe that, by Lemma 4.3, ln(s)
grows at most linearly and p1(s) grows at least linearly, which implies that, for any
î, ĵ ∈ Ip and k ∈ Il,

lim
t→T

(
1

R(g(s))
·

lk(s)
pi (s)p j (s)

)
= 0.

Hence, by Cauchy–Schwarz we get that

g̃s([Ẽpi
α , Ẽp j

β ], X̃s)
2

≤ ∥[Ẽpi
α , Ẽp j

β ]∥
2
g̃s

=

∑
k∈Il
γ

Q([Epi
α , Ep j

β ], E lk
γ )2

·
1

R(g(s))
·

lk(s)
pi (s)p j (s)

→ 0.

Therefore |ricg̃s (X̃s, X̃s) − ricNs (X̃s, X̃s)| → 0 and we conclude that the Ricci
(1, 1)-tensor restricted to l approximates the Ricci tensor given by the induced
metric on (K/H, g̃s) as s approaches the singularity time T .

Let us now consider the rescaled Ricci flow solution

g̃s(t) := R(g(s)) · g
(

s +
t

R(g(s))

)
restricted to the submanifold K/H . The argument above could be carried out
by taking g̃s(t) instead of g̃s(0). So we have shown that the family of Ricci
flow solutions (K/H, g̃s(t)) is equivalent, as s approaches the singularity time T ,
to the Ricci flow solution (K/H, ĝs(t)), where ĝs(t) is the Ricci flow on K/H
with initial metric g̃s(0)|K/H . In particular, that means that the limit Einstein
factor E∞ only depends on a convergent subsequence of the submanifold geometry
of (K/H, g̃s(0)|K/H ). □

5.2. The contractible case. For the sake of completeness, we want now to under-
stand the limit geometry in the case when the universal cover of our semisimple
homogeneous space is contractible.

A homogeneous Riemannian manifold M̃ diffeomorphic to Rn must be a Rie-
mannian product of a noncompact symmetric space and an Rd-bundle over a
Hermitian symmetric space (see [Böhm and Lafuente 2022, Proposition 3.1]).
Hermitian symmetric spaces are a special class of noncompact symmetric spaces
which are also Hermitian manifolds. Irreducible ones correspond to irreducible
symmetric pairs (g, k) with dim z(k) = 1. In particular, if we write k = kss ⊕ z(k)

and consider the integral subgroup Kss ⊂ G with Lie algebra kss , then the homoge-
neous space G/Kss is a homogeneous line bundle over the irreducible Hermitian
symmetric space G/K (for more on Hermitian symmetric spaces, see [Helgason
1978, Chapter VIII, Theorem 6.1] and [Besse 1987, 7.104]).
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An example is the product
∼

(SL(2, R))k with left-invariant metrics, which is an
Rk-bundle over the product of hyperbolic planes (H2)k . It is worth mentioning
that semisimple homogeneous R-bundles over irreducible Hermitian symmetric
spaces only admit awesome homogeneous metrics (see [Böhm and Lafuente 2022,
Remark 3.2]), which is the case, for example, of

∼

SL(2, R).
Let g be semisimple of noncompact type with Cartan decomposition g = k⊕ p

and h a compactly embedded subalgebra of k. Let G, K and H be Lie groups for
the Lie algebras g, k, and h, respectively, such that G/H is simply connected. We
know that G/H = K/H × Rdim p is diffeomorphic to Rn if and only if [k, k] ⊂ h.
Given the reductive decomposition m= l⊕p, where g= h⊕m, this is equivalent to

[h, l] = 0 and [l, l] ⊂ h.

This implies that, for any G-invariant metric g on G/H , (K/H, g|K/H ) is isomet-
ric to a flat Euclidean space. If g is awesome, then by Remark 3.2 this implies that

r li =
1

4di

∑
ĵ,k̂∈Ip

[i ĵ k̂]

(
2
li

+
li

p j pk
−

p j

li pk
−

pk

li p j

)
.

We already know, by Corollary 4.5, that on an immortal awesome Ricci flow,
g(t)|p×p approximates t · B|p×p and, by Corollary 4.7, that the blow-down of g(t)
in the l-direction goes to 0. These estimates are enough to have the following
convergence result, which is our third main result.

Theorem 5.2. Let M̃ = G/H be a contractible semisimple homogeneous space. Let
(M̃, g(s)), s ∈ [1, ∞), be an immortal awesome Ricci flow adapted to the Cartan
decomposition g= k⊕p, with k= h⊕ l. Then the parabolic rescaling (M̃, s−1g(s))
converges in pointed C∞-topology to the Riemannian product

6∞ × Edim l,

where 6∞ is the noncompact Einstein symmetric space (G/K , B|p×p) and Edim l is
the dim l-dimensional (flat) Euclidean space.

Proof. Let us fix the background metric Q := −B|l×l + B|p×p and let g(s) =

Q(P(s) · , · ). Let us define g̃s := s−1g(s). Since [k, k] ⊂ h without loss of gen-
erality we can assume l ⊂ z(k) (just take l ⊥B h). By [Hilgert and Neeb 2012,
Theorem 13.1.7] we have the diffeomorphism

φ : p× K/H ∼
−→ G/H, (x, k H) 7→ exp(x) · k H.

Moreover, since K/H = Rdim l is an abelian group, K/H = exp(l)H .
Let us then define the 1-parameter family of diffeomorphisms

φs : p× l ∼
−→ G/H, (x, u) 7→ α(x) · βs(u)H,
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with α(x) = exp(x) and βs(u) = exp
(√

s(P l(s))−1u
)
, where P l(s) is the positive

definite matrix defined by g(s)|l×l = Q(P l(s) · , · ).
Let

∂φs

∂ E l
i
(x, u) =

d
dt

α(x) · βs(u + t E l
i )H |t=0

and notice that since K/H is abelian, we get that

(L(α(x)·βs(u))−1)∗
∂φs

∂ E l
i
(x, u) = (Lβs(−u))∗(Lα(−x))∗(Lα(x))∗

d
dt

βs(u + t E l
i )H |t=0

= (Lβs(−u))∗
d
dt

βs(u + t E l
i )H |t=0

=
d
dt

βs(t E l
i )H |t=0.

This implies

φ∗

s g̃s(E l
i , E l

j )(x,u) = g̃s

(
∂φ

β
s

∂i
(x, u),

∂φ
β
s

∂ j
(x, u)

)
φs(x,u)

= g̃s

(
d
dt

βs(t E l
i )|t=0,

d
dt

βs(t E l
i )|t=0

)
φs(0,0)

= s−1 Q
(
P l(s) ·

√
s(P l(s))−1 E l

i ,
√

s(P l(s))−1 E l
j
)

= Q(E l
i , E l

j ).

Let

∂φs

∂ Ep
i

(x, u)=
d
dt

α(x+t Ep
i )·βs(u)|t=0 and Ai

s(x, u) := (L(α(x)·βs(u))−1)∗
∂φs

∂ Ep
i

(x, u).

Observe that since K belongs to the normalizer of H in G, it acts on the right
on G/H . Hence, using that a−1 exp(x)a = exp(Ad(a)x) [Hilgert and Neeb 2012,
Proposition 9.2.10], we get that

Ai
s(x, u) = (Lβs(−u))∗(Lα(−x))∗(Rβs(u))∗

d
dt

α(x + t Ep
i )|t=0

= (Lβs(−u))∗(Rβs(u))∗(Lα(−x))∗
d
dt

α(x + t Ep
i )|t=0

= Ad(βs(u))(Lexp(−x))∗
d exp

dt
(x + t Ep

i )|t=0

and that Ai
s(x, 0) = Ai (x) does not depend on s.

Now observe that by [Hilgert and Neeb 2012, Theorem 13.1.5] Ad(K ) is compact.
Hence, there is a constant C , such that

∥Ad(βs(u))∥Q ≤ C,
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in the operator norm with respect to Q. By Corollary 4.7, we have that

|φ∗

s g̃s(Ep
i , E l

j )(x,u)| =

∣∣∣∣g̃s

(
∂φs

∂ Ep
i

(x, u),
∂φs

∂ E l
j
(x, u)

)∣∣∣∣
φs(x,u)

=

∣∣∣∣g̃s

(
Ai

s(x, u),
d
dt

βs(t E l
j )|t=0

)∣∣∣∣
φs(0,0)

= s−1∣∣Q
(
Ai

s(x, u), P l(s) ·

√
s(P l(s))−1 E l

j
)∣∣

=

√
s−1

∣∣Q
(
Ai

s(x, u),
√

P l(s)E l
j
)∣∣

≤ C

√
∥P l(s)∥Q

s
· ∥Ai (x)∥Q∥E l

j∥Q → 0,

uniformly on compact sets of p× l.
Finally, we have that

φ∗

s g̃s(Ep
i , Ep

j )(x,u) = g̃s

(
∂φs

∂ Ep
i

(x, u),
∂φs

∂ Ep
j

(x, u)

)
φs(x,u)

= g̃s(Ai
s(x, u),A j

s (x, u))φs(0,0)

= g̃s |l×l(Ai
s(x, u),A j

s (x, u)) + g̃s |p×p(Ai
s(x, u),A j

s (x, u)).

Again by the fact that Ad(K ) is compact and by Corollary 4.7, we have that

∣∣g̃s |l×l(Ai
s(x, u),A j

s (x, u))
∣∣ ≤ C2 ∥P l(s)∥Q

s
· ∥Ai (x)∥Q∥A j (x)∥Q → 0,

uniformly on compact subsets of p× l. Moreover, by Corollary 4.5 we know that
g̃s |p×p → B|p×p and since B is Ad(K )-invariant, we get that

g̃s |p×p(Ai
s(x, u),A j

s (x, u)) → Q|p×p(Ai (x),A j (x)),

uniformly on compact subsets of p× l. Indeed, assume the contrary, then there
exists ϵ > 0 and sequences sn → ∞ and (xn, un) → (x∞, u∞) such that

(5-5)
∣∣g̃sn |p×p(Ai

sn
(xn, un),A j

sn
(xn, un)) − Q|p×p(Ai (xn),A j (xn))

∣∣ ≥ ϵ.

By the compactness of Ad(K/H), we can extract a convergent subsequence,
Ad(βsn (un)) → Ad(exp(u′

∞
)), u′

∞
∈ k. Therefore, taking the limit on (5-5) as

n → ∞, we get that∣∣Q|p×p

(
Ad(exp(u′

∞
)) ·Ai (x∞), Ad(exp(u′

∞
)) ·A j (x∞)

)
− Q|p×p(Ai (x∞),A j (x∞))

∣∣ = 0,

since Q is Ad(K )-invariant.
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Observe that Q|p×p(Ai (x),A j (x)) is the pullback by the diffeomorphism

exp : p → G/K

of the Ricci negative Einstein symmetric metric of 6∞ := (G/K , B|p×p).
Hence, we have proven that φ∗

s g̃s converges in the C∞-topology to the Riemann-
ian product 6∞ × Edim l. □

Remark 5.3. Since every immortal homogeneous Ricci flow is of type III [Böhm
2015, Theorem 4.1], the proof above actually shows that the parabolic rescaled flow
g̃s(t) := s−1g(st), t ∈ (0, ∞), converges in Cheeger–Gromov sense to the expanding
Ricci soliton given by the Riemannian product of the Ricci negative Einstein metric
in 6∞ and the flat Euclidean factor Edim l. This generalizes the 3-dimensional case
∼

SL(2, R)→ H2
×R (see [Lott 2007, Case 3.3.5]) to every semisimple homogeneous

R-bundle over irreducible Hermitian symmetric spaces G/H , since for those every
G-invariant metric is awesome [Böhm and Lafuente 2022, Remark 3.2].
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