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SOBOLEV NORMS OF L2-SOLUTIONS
TO THE NONLINEAR SCHRÖDINGER EQUATION

ROMAN V. BESSONOV AND SERGEY A. DENISOV

We apply inverse spectral theory to study Sobolev norms of solutions to the
nonlinear Schrödinger equation. For initial datum q0 ∈ L2(R) and s ∈[−1, 0],
we prove that there exists a conserved quantity which is equivalent to H s(R)-
norm of the solution.

1. Introduction

In the last two decades, the theory of orthogonal polynomials on the unit circle
(OPUC) has been used to obtain some of the strongest results in the spectral theory
(see, e.g., [9; 17; 18]). Bessonov and Denisov [3] have applied OPUC techniques to
characterize existence and completeness of wave operators for the Dirac evolution on
the half-line. One area where scattering theory for Dirac systems finds applications
is the so-called inverse scattering approach to the nonlinear Schrödinger equation
(NLSE). Below, we develop a general framework that enables one to use the theory
of Krein systems (a continuous analog of OPUC [13]) in the context of NLSE.
To illustrate our approach, we study the Sobolev norms of solutions to NLSE adding
to the area which attracted much attention in recent years [5; 6; 7; 15; 19; 20; 21; 23].
Our Theorem 1.2 stated below is not new and can be deduced from the results
of Koch and Tataru [21] or by using an alternative method of Killip, Vis,an and
Zhang [19]. However, we have developed a new and promising approach to that
problem which adapts the technique from [3] to the setting of NLSE and shows,
in particular, that the sharp regularity class used to characterize scattering in the
Dirac system can be studied in the context of Sobolev spaces. Then, we employ our
analysis to obtain Theorem 1.2 which represents the first step in applying methods
of [3] to NLSE. In the current paper, we also develop a convenient language which
we hope can be used by the spectral theory community to further study NLSE
dynamics.

The work of Bessonov in Sections 2 and 3 is supported by the Russian Science Foundation grant 19-
71-30002. The work of Denisov in the rest of the paper is supported by the grant NSF DMS-2054465
and Van Vleck Professorship Research Award. Bessonov is a Young Russian Mathematics award
winner and would like to thank its sponsors and jury.
MSC2020: 35Q55.
Keywords: Dirac operators, NLSE, scattering, Sobolev norms.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC
BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org/pjm/
https://doi.org/10.2140/pjm.2024.331-2
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


218 ROMAN V. BESSONOV AND SERGEY A. DENISOV

Turning to the actual content of the paper, consider the classical defocusing
nonlinear Schrödinger equation [14; 26; 30] on the real line,

(1-1)

{
i ∂q

∂t = −
∂2q
∂ξ2 + 2|q|

2q,

q|t=0 = q0,
ξ ∈ R, t ∈ R.

It is known that for sufficiently regular initial datum q0 the unique classical solution
q =q(ξ, t) exists globally in time. For example, if q0 lies in the Schwartz class S(R),
then q( · , t) ∈ S(R) for all t ∈ R. The long-time asymptotics of q is known
[10; 11; 29]. For less regular initial datum q0, one can define the solution by an
approximation argument (see, e.g., [28]):

Theorem 1.1. Let q0 ∈ L2(R) and let q0,n ∈ S(R) converge to q0 in L2(R). Denote
by qn(ξ, t) the solution of (1-1) corresponding to q0,n . We have

lim
n→+∞

∥qn( · , t) − q( · , t)∥L2(R) = 0, t ∈ R

for some function q(ξ, t) : R2
→ R that does not depend on the choice of the

sequence q0,n .

The function q in Theorem 1.1 is called the L2-solution of (1-1) corresponding
to the initial datum q0 ∈ L2(R). It is clear that such a solution is unique. The total
energy of the solution is its L2(R)-norm and it is conserved in time:

∥q( · , t)∥L2(R) = ∥q0∥L2(R), t ∈ R.

By Plancherel’s formula, it is equal to ∥(Fq)( · , t)∥L2(R) where F stands for the
Fourier transform. In this paper, we work with Sobolev spaces H s(R), s ∈ R. The
H s(R)-norm of a function f ∈ S(R) is defined by

(1-2) ∥ f ∥H s(R) =

(∫
R

(1 + |η|
2)s

|(F f )(η)|2 dη

)1/2

.

The space H s(R) is the completion of S(R) with respect to this norm. Equivalently,
one can define it by

H s(R) = { f ∈ S ′(R) : (1 + |η|
2)s/2F f ∈ L2(R)},

where S ′(R) is the space of tempered distribution.
In contrast to the linear Schrödinger equation for which all Sobolev norms are

conserved, the solutions of NLSE can exhibit inflation of Sobolev norm H s(R)

for s ⩽ −
1
2 (see, e.g., [8; 20] for details). Specifically, given an arbitrarily small

positive ε and s ⩽ −
1
2 , there exists a solution q to (1-1) that satisfies

(1-3) q0 ∈ S(R), ∥q0∥H s(R) ⩽ ε, ∥q( · , ε)∥H s(R) ⩾ ε−1,
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see [8] for that construction. This result is related to the “high-to-low frequency
cascade”. It occurs when for initial datum q0 ∈ S(R), a part of L2(R)-norm of q,
when written on the Fourier side, moves from high to low frequencies as time
increases. The Sobolev norms with negative index s can be used to capture this
phenomenon. Indeed, since ∥q( · , t)∥L2(R) is time-invariant and the weight (1+η2)s

in (1-2) vanishes at infinity when s < 0, the transfer of L2-norm from high to low
values of frequency η makes the H s(R)-norm grow.

For NLSE, the inflation of H s(R)-norm cannot happen for s > −
1
2 . Koch and

Tataru [21] discovered the set of conserved quantities which agree with H s(R)-norm
up to a quadratic term for a small value of ∥q0∥H s(R) and s > −

1
2 . As a corollary,

they obtained the bounds on ∥q( · , t)∥H s(R) that are uniform in time:

(1-4) ∥q( · , t)∥H s(R) ⩽ C(s)
{
R+R1+2s, s > 0,

R+R
1+4s
1+2s , s ∈

(
−

1
2 , 0

)
,

R := ∥q0∥H s(R).

Killip, Vis,an, and Zhang [19] proved a similar estimate using a different method. The
estimates on the growth of H s(R)-norms are related to questions of well-posedness
and ill-posedness of NLSE in Sobolev classes which have been extensively studied
previously, see, e.g., [5; 6; 7; 15; 19; 20; 21; 23].

We use some recent results in the inverse spectral theory [1; 2; 3] to show that
there are conserved quantities of NLSE which agree with H s(R)-norm provided
that s ∈ [−1, 0] and the value of ∥q0∥L2(R) is under control. We apply our analysis
to prove the following theorem.

Theorem 1.2. Let q0 ∈ L2(R) and let q = q(ξ, t) be the solution of (1-1) corre-
sponding to q0. Then,

(1-5) C1(1 + ∥q0∥L2(R))
2s

∥q0∥H s(R) ⩽ ∥q( · , t)∥H s(R)

⩽ C2(1 + ∥q0∥L2(R))
−2s

∥q0∥H s(R),

where t ∈ R, s ∈ [−1, 0], and C1 and C2 are two positive absolute constants.

This result shows, in particular, that for a given function q0 : ∥q0∥L2(R) = 1 whose
L2(R)-norm is concentrated on high frequencies, we will never see a significant
part of L2(R)-norm of the solution q moving to the low frequencies. That limits
the “high-to-low frequency cascade” we discussed above. The close inspection
of construction used in [8] shows that the function q0 in (1-3) has H s(R)-norm
smaller than ε but its L2(R)-norm is large when ε is small. Hence, the bounds in
Theorem 1.2 do not contradict the estimates in (1-3) when s ∈

[
−1, − 1

2

]
. We do not

know whether Theorem 1.2 holds for s < −1.
The main idea of the proof of Theorem 1.2 is based on the analysis of the

conserved quantity a(z), Im z > 0, which is a coefficient in the transition matrix for
the Dirac equation with potential q = q( · , t). We take z = i and show that log|a(i)|
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is related to a certain quantity K̃Q (see Lemma 3.4 below) that characterizes both
size and oscillation of q . Use of K̃Q in the context of NLSE is the main novelty of
our work. We study K̃Q and show that it is equivalent to H−1(R) norm of q with
constants that depend on its L2(R)-norm. That gives the estimate (1-5) for s = −1
and the intermediate range of s ∈ (−1, 0) is handled by interpolation. Our analysis
relies heavily on the recent results [1; 2; 3] that characterize Krein–de Branges
canonical systems and the Dirac operators whose spectral measures belong to the
Szegő class on the real line. We also establish the framework that allows working
with NLSE in the context of well-studied Krein systems.

Notation.
• The symbol I stands for 2 × 2 identity matrix I =

( 1
0

0
1

)
and symbol J stands for

J =
( 0

1
−1

0

)
. Constant matrices σ3, σ±, σ are defined in (2-2).

• For a measurable set S ⊂ R, we say that f ∈ L1
loc(S) is f ∈ L1(K ) for every

compact K ⊂ S.
• The Fourier transform of a function f is defined by

(F f )(η) =
1

√
2π

∫
R

f (x) e−iηx dx .

• The symbol C , unless we specify explicitly, denotes the positive absolute constant
which can change its value in different formulas. If we write, e.g., C(α), this defines
a positive function of parameter α.
• For two nonnegative functions f1 and f2, we write f1 ≲ f2 if there is an absolute
constant C such that f1 ⩽ C f2 for all values of the arguments of f1 and f2. We
define ≳ similarly and say that f1 ∼ f2 if f1 ≲ f2 and f2 ≲ f1 simultaneously. If
| f3| ≲ f4, we will write f3 = O( f4).
• Symbols {e j } are reserved for the standard basis in C2: e1 =

(1
0

)
, e2 =

( 0
1

)
.

• For matrix A, the symbol ∥A∥HS denotes its Hilbert–Schmidt norm such that
∥A∥HS = (tr(A∗ A))1/2.

2. Preliminaries

Our proof of Theorem 1.1 uses complete integrability of (1-1). In that framework,
(1-1) can be solved by using the method of inverse scattering which we discuss
following [14].

2.1. The inverse scattering approach to NLSE. Given a complex-valued function
q ∈ S(R), define the differential operator

(2-1) Lq = iσ3
d

dξ
+ i(qσ− − q̄σ+),
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where we borrow notation for constant matrices σ3, σ± from [14]:

(2-2) σ3 =

(
1 0
0 −1

)
, σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
, σ =σ−+σ+ =

(
0 1
1 0

)
.

The expression Lq is one of the forms in which the Dirac operator can be written.
In Section 3, we will introduce another form and will show how the two are related.
Let us also define

E(ξ, λ) = e
λ
2i ξσ3 =

(
e

λ
2i ξ 0
0 e−

λ
2i ξ

)
,

as in [14]. In the free case when q = 0, the matrix-function E solves L0 E =
λ
2 E ,

E(0, λ) = I . Since q ∈ S(R), it decays at infinity fast and therefore one can find
two solutions T± = T±(ξ, λ) such that

(2-3) Lq T± =
λ

2
T±, T± = E(ξ, λ)+ o(1), ξ → ±∞

for every λ ∈ R. These solutions are called the Jost solutions for Lq . Since both T+

and T− solve the same ODE, they must satisfy

(2-4) T−(ξ, λ) = T+(ξ, λ)T (λ), ξ ∈ R, λ ∈ R,

where the matrix T = T (λ) does not depend on ξ ∈ R. One can show that it has
the form

(2-5) T (λ) =

(
a(λ) b(λ)

b(λ) a(λ)

)
, det T = |a|

2
− |b|

2
= 1.

The matrix T is called the reduced transition matrix for Lq , and the ratio rq = b/a
is called the reflection coefficient for Lq . One can obtain T in a different way: let
Zq = Zq(ξ, λ), ξ ∈ R, λ ∈ C be the fundamental matrix for Lq , that is,

(2-6) Lq Zq =
λ

2
Zq , Zq(0, λ) =

(
1 0
0 1

)
.

Then, we have Zq(ξ, λ) = T±(ξ, λ)T −1
± (0, λ) and the pointwise limits

(2-7) T −1
±

(0, λ) = lim
ξ→±∞

E−1(ξ, λ) Zq(ξ, λ)

exist for every λ ∈ R. Moreover, we have T (λ) = T −1
+ (0, λ)T−(0, λ) on R.

The coefficients a, b, and rq were defined for λ∈R and they satisfy |a|
2
=1+|b|

2,
1 − |rq |

2
= |a|

−2 for these λ. However, one can show that a(λ) is the boundary
value of the outer function defined in C+ = {z ∈ C : Im z > 0} by the formula (see
(6.22) in [14])

a(z) = exp
(

1
π i

∫
R

1
λ − z

log|a(λ)| dλ

)
, z ∈ C+,
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which, in view of identity 1 − |rq |
2
= |a|

−2 on R, can be written as

(2-8) a(z) = exp
(

−
1

2π i

∫
R

1
λ − z

log(1 − |rq(λ)|2) dλ

)
.

That shows, in particular, that b defines both a and rq , and rq defines a and b.
The map q 7→ rq is called the direct scattering transform and its inverse is called

the inverse scattering transform. These maps are well studied when q ∈ S(R). In
particular, we have the following result (see [14] for the proof).

Theorem 2.1. The map q 7→ rq is a bijection from S(R) onto the set of complex-
valued functions {r ∈ S(R), ∥r∥L∞(R) < 1}.

The scattering transform has some symmetries:

Lemma 2.2. If q ∈ S(R) and λ ∈ R, then

(dilation) rαq(αξ)(λ) = rq(ξ)(α
−1λ), α > 0,

(conjugation) rq̄(ξ)(λ) = rq(ξ)(−λ),

(translation) rq(ξ−ℓ)(λ) = rq(ξ)(λ) e−iλℓ, ℓ ∈ R,

(modulation) re−iβξ q(ξ)(λ) = rq(ξ)(λ + β), β ∈ R.

(rotation) rµq(ξ)(λ) = µrq(ξ)(λ), µ ∈ C, |µ| = 1.

Proof. Indeed, the direct substitution into (2-3) shows that if T±(ξ, λ) are Jost
solutions for q(ξ), then:

(a) T±(αξ, α−1λ) are the Jost solutions for αq(αξ).

(b) T ±(ξ, −λ) are the Jost solutions for q(ξ).

(c) T±(ξ − ℓ, λ) E(ℓ, λ) are the Jost solutions for q(ξ − ℓ).

(d) E(−ξ, β)T±(ξ, λ+ β) are the Jost solutions for e−iβξq(ξ).

(e)
( 1

0
0
µ

)
T±(ξ, λ)

( 1
0

0
µ̄

)
are the Jost solutions for µq(ξ), |µ| = 1.

Now, it is left to use the formula (2-4) which defines T . A computation using (2-5)
shows how a and b change under symmetries (a)–(e). For example, the translation
does not change a and it multiplies b by e−iλl . The modulation e−iβξq(ξ), however,
gives ae−iβξ q(ξ)(λ) = aq(ξ)(λ + β). Then, the claim follows from the definition of
the reflection coefficient rq = b/a. □

The next result (see formula (7.5) in [14]), along with the previous theorem,
shows how the inverse scattering transform can be used to solve (1-1).

Theorem 2.3. Let q0 ∈ S(R) and let rq0 = rq0(λ) be the reflection coefficient of Lq0 .
Define the family

(2-9) r(λ, t) = e−iλ2t rq0(λ), λ ∈ R, t ∈ R.
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For each t ∈ R, let q = q(ξ, t) be the potential in the previous theorem generated
by r(λ, t). Then, q = q(ξ, t) is the unique classical solution of (1-1) with the initial
datum q0. Moreover, for every t ∈ R, the function ξ 7→ q(ξ, t) lies in S(R).

The solutions to the NLSE

(2-10) i
∂q
∂t

= −
∂2q
∂ξ 2 + 2|q|

2q

behave in an explicit way under some transformations. Specifically, we have:

(a) Dilation: if q(ξ, t) solves (2-10), then αq(αξ, α2t) solves (2-10) for every
α ̸= 0.

(b) Time reversal: if q(ξ, t) solves (2-10), then q̄(ξ, −t) solves (2-10). In particu-
lar, if q0 is real-valued, then q(ξ, t) = q(ξ, −t).

(c) Translation: if q(ξ, t) solves (2-10), then q(ξ − ℓ, t) solves (2-10) for every
ℓ ∈ R.

(d) Modulation or Galilean symmetry: if q(ξ, t) solves equation (2-10), then
eivξ−iv2tq(ξ − 2vt, t) solves (2-10) for every v ∈ R.

(e) Rotation: if q(ξ, t) solves (2-10), then µq(ξ, t) solves (2-10) for every µ ∈ C,
|µ| = 1.

These properties can be checked by direct calculation (see, e.g., formula (1.19)
in [15] for (d)) and a simple inspection shows that the bound (1-5) is consistent
with all these transformations. The statements of Theorem 2.3 and Lemma 2.2 are
consistent with these symmetries as well.

Now, we can explain the idea behind the proof of Theorem 1.2.

The idea of the proof for Theorem 1.2. One can proceed as follows. First, we
assume that q0 ∈ S(R) and notice that conservation of |r(λ, t)|, λ ∈ R, guaranteed
by (2-9), yields that log|a(i, t)| is conserved, where a(z, t) is defined for z ∈ C+

by (2-8). Separately, for every Dirac operator Lq with q ∈ L2(R), we show that
log|a(i)| is equivalent to some explicit quantity K̃Q that involves q . That quantity
was introduced and studied in [1; 2; 3]: it resembles the matrix Muckenhoupt A2(R)

condition and it is equivalent to H−1(R) norm of q provided that ∥q∥L2(R) is under
control, e.g., ∥q∥L2(R) < C with some fixed C . Putting things together, we see that
Sobolev H−1(R) norm of q( · , t) does not change much in time provided that the
bound ∥q( · , t)∥L2(R) < C holds. Since ∥q( · , t)∥L2(R) =∥q0∥L2(R) is time-invariant,
we arrive at the statement of Theorem 1.2 for q0 ∈ S(R) and s = −1. For s = 0, the
claim of Theorem 1.2 is trivial. The intermediate range of s ∈ (−1, 0) is handled by
interpolation using Galilean invariance of NLSE. The general case when q0 ∈ L2(R)

follows by a density argument if one uses the stability of L2-solutions guaranteed
by Theorem 1.1.
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There are other methods that use conserved quantities that agree with negative
Sobolev norms. The paper [19] uses a representation of log|a(i)| through a pertur-
bation determinant. Then, the analysis of the perturbation series allows the authors
of [19] to obtain estimates similar to (1-4). It is conceivable that this approach can
provide results along the same lines as Theorem 1.2.

To focus on the Dirac operator with q ∈ L2(R), we first consider this operator
on half-line R+ in connection to Krein systems that were introduced in [22].

2.2. Operator Lq and Krein system. Let A : R+ → C be a function on the positive
half-line R+ = [0, +∞) such that∫ r

0
|A(ξ)| dξ < ∞

for every r ⩾ 0. Recall that we denote the set of such functions by L1
loc(R+). The

Krein system (see (4.52) in [13]) with coefficient A has the form

(2-11)
{

P ′(ξ, λ) = iλP(ξ, λ)− A(ξ)P∗(ξ, λ), P(0, λ) = 1,

P ′
∗
(ξ, λ) = −A(ξ)P(ξ, λ), P∗(0, λ) = 1,

where the derivative is taken with respect to ξ ∈ R+ and λ ∈ C. Let also

(2-12)
{

P̂ ′(ξ, λ) = iλP̂(ξ, λ)+ A(ξ)P̂∗(ξ, λ), P̂(0, λ) = 1,

P̂ ′
∗
(ξ, λ) = A(ξ)P̂(ξ, λ), P̂∗(0, λ) = 1,

denote the so-called dual Krein system (see Corollary 5.7 in [13]). Set

(2-13) Y (ξ, λ) = e−iλξ

(
P(2ξ, λ) i P̂(2ξ, λ)

P∗(2ξ, λ) −i P̂∗(2ξ, λ)

)
.

The matrix-function Zq , which was defined in (2-6) for q ∈ S(R), makes sense if
we assume that q ∈ L1

loc(R). In the next lemma, we relate Y to Zq .

Lemma 2.4. Let q ∈ L1
loc(R), A(2ξ)=−

1
2q(ξ) on R+, and Y be the corresponding

matrix-valued function defined by (2-13). Then, Zq(ξ, 2λ) = σY (ξ, λ)Y −1(0, λ)σ

for ξ ⩾ 0 and λ ∈ C.

Proof. The proof is a computation. We have

L q̄Y (ξ, λ)

= λσ3Y (ξ, λ)+ iσ3e−iλξ d
dξ

(
P(2ξ, λ) i P̂(2ξ, λ)

P∗(2ξ, λ) −i P̂∗(2ξ, λ)

)
+ i(q̄σ− − qσ+)Y (ξ, λ),

= 2iσ3e−iλξ

(
iλP(2ξ, λ)− A(2ξ)P∗(2ξ, λ) −λP̂(2ξ, λ)+ i A(2ξ)P̂∗(2ξ, λ)

−A(2ξ)P(2ξ, λ) −i A(2ξ)P̂(2ξ, λ)

)
+ i(q̄σ− − qσ+ − iλσ3)Y (ξ, λ).
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The second summand equals

ie−iλξ

(
−iλ −q

q̄ iλ

)(
P(2ξ, λ) i P̂(2ξ, λ)

P∗(2ξ, λ) −i P̂∗(2ξ, λ)

)
= ie−iλξ

(
−iλP(2ξ, λ)− q P∗(2ξ, λ) λP̂(2ξ, λ)+ iq P̂∗(2ξ, λ)

q̄ P(2ξ, λ)+ iλP∗(2ξ, λ) i q̄ P̂(2ξ, λ)+ λP̂∗(2ξ, λ)

)
.

Using relation 2A(2ξ) + q̄(ξ) = 0, we obtain

L q̄Y (ξ, λ) = ie−iλξ

(
iλP(2ξ, λ) −λP̂(2ξ, λ)

iλP∗(2ξ, λ) λP̂∗(2ξ, λ)

)
= −λY (ξ, λ).

Since σσ3σ = −σ3 and σσ±σ = σ∓, one has σ L q̄ σ = −Lq . Therefore,

Lq(σY (ξ, λ)σ ) = λ(σY (ξ, λ)σ ).

It follows that matrix-valued functions Zq(ξ, 2λ) and σY (ξ, λ)Y −1(0, λ)σ solve
the same Cauchy problem. Thus Zq(ξ, 2λ) = σY (ξ, λ)Y −1(0, λ)σ , as required. □

Lemma 2.5. Let q ∈ L1
loc(R), let A(2ξ) =

1
2q(−ξ) on R+, and let Y be the

corresponding matrix-valued function defined by (2-13). Then, we have that
Zq(−ξ, 2λ) = Y (ξ, λ)Y −1(0, λ) for ξ ⩾ 0 and λ ∈ C.

Proof. Recall that matrices σ3, σ±, σ are defined in formula (2-2). Using relations
σσ3 σ =−σ3 and σσ±σ =σ∓, we see that L q̃ Z̃q =

λ
2 Z̃q , where q̃(ξ)=−q(−ξ) and

Z̃q(ξ, λ) = σ Zq(−ξ, λ)σ . Then, Lemma 2.5 applies to q̃ , Z q̃(ξ, 2λ) = Z̃q(ξ, 2λ)

and A(2ξ) = −
1
2 q̃(ξ) =

1
2q(−ξ). It gives Z̃q(ξ, 2λ) = σY (ξ, λ)Y −1(0, λ)σ . Now

returning to Zq , we get Zq(−ξ, 2λ) = Y (ξ, λ)Y −1(0, λ). □

Given q ∈ L2(R), we define the continuous analogs of Wall polynomials (see [16]
and Section 7 in [13]) by

(2-14)
A±

=
1
2(P±

∗
+ P̂±

∗
), A±

∗
=

1
2(P±

+ P̂±),

B±
=

1
2(P±

∗
− P̂±

∗
), B±

∗
=

1
2(P±

− P̂±),

where P±, P±
∗

, P̂±, P̂±
∗

are the solutions of systems (2-11), (2-12) for the coefficient
A+(ξ) = −

1
2q(ξ/2) from Lemma 2.4 and the coefficient A−(ξ) =

1
2q(−ξ/2) from

Lemma 2.5, correspondingly. Functions P±, P±
∗

, P̂±, P̂±
∗

are continuous analogs
of polynomials orthogonal on the unit circle, they depend on two parameters: ξ ∈R+

and λ ∈ C and they satisfy identities (see (4.32) in [13]):

(2-15) P±

∗
(ξ, λ) = eiξλ P±(ξ, λ), P̂±

∗
(ξ, λ) = eiξλ P̂±(ξ, λ)

for real λ.
We will use the following result (see Lemma 2 in [12]) which contains a stronger

statement.
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Theorem 2.6. Let A ∈ L2(R+) and let P , P∗ be the solutions of system (2-11) for
the coefficient A. Then, the limit

(2-16) 5(λ) = lim
ξ→+∞

P∗(ξ, λ)

exists for every λ ∈ C+. That function 5 is outer in C+. If λ ∈ R, the conver-
gence in (2-16) holds in the Lebesgue measure on R where 5(λ) now denotes the
nontangential boundary value of 5.

The above theorem allows us to define

(2-17) a±(λ) = lim
ξ→+∞

A±(ξ, λ), b±(λ) = lim
ξ→+∞

B±(ξ, λ)

for every λ ∈ C+ and for almost every λ ∈ R. Also, Corollary 12.2 of [13] gives

(2-18) |a±(λ)|2 = 1 + |b±(λ)|2

for a.e. λ ∈ R. For every λ ∈ C+, we define

a(λ) = a+(λ) a−(λ) − b+(λ) b−(λ).

Proposition 2.7. The function a is outer in C+.

Proof. We can write

a = a+a−(1 − s+s−), s±
:= b±/a±.

It is known that a± are outer (see (12.9) and (12.29) in [13]) and that s± satisfy
|s±

| < 1 in C+. The function 1 − s+s− has a positive real part in C+ and so is an
outer function. That shows that a is a product of three outer functions and hence it
is outer itself. □

Proposition 2.8. Let q ∈ L2(R) and let Zq be defined by (2-6). Then, the limits
in (2-7) exist in the Lebesgue measure on R. The matrix T (λ) = T −1

+ (0, λ)T−(0, λ)

has the form (2-5) where

(2-19) a = a+a−
− b+b−, b = a− b+ − b− a+,

and a±, b± are defined Lebesgue almost everywhere on R by the convergence
in (2-17) in measure.

Proof. If q ∈ L2(R), the fundamental matrix Zq and the continuous Wall polynomi-
als (2-14) are related by

(2-20) Zq(ξ, 2λ) =


e−iλξ

(
A+(2ξ, λ) B+(2ξ, λ)

B+
∗
(2ξ, λ) A+

∗
(2ξ, λ)

)
, ξ ⩾ 0,

eiλξ

(
A−

∗
(−2ξ, λ) B−

∗
(−2ξ, λ)

B−(−2ξ, λ) A−(−2ξ, λ)

)
, ξ < 0.
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Indeed, it is enough to use Lemmas 2.4 and 2.5 and the fact that Y −1(0, λ)=
1
2

( 1
−i

1
i

)
.

Our next step is to prove that the limit

(2-21) T −1
+

(0, 2λ) = lim
ξ→+∞

E−1(ξ, 2λ) Zq(ξ, 2λ)

exists in Lebesgue measure when λ ∈ R. From (2-15), we obtain

E−1(ξ, 2λ) Zq(ξ, 2λ) =

(
1 0
0 e−2iλξ

)(
A+(2ξ, λ) B+(2ξ, λ)

B+
∗
(2ξ, λ) A+

∗
(2ξ, λ)

)
=

(
A+(2ξ, λ) B+(2ξ, λ)

B+(2ξ, λ) A+(2ξ, λ)

)
for every ξ ⩾ 0 and λ ∈ R. Similarly,

E−1(−ξ, 2λ) Zq(−ξ, 2λ) =

(
e−2iλξ 0

0 1

)(
A−

∗
(2ξ, λ) B−

∗
(2ξ, λ)

B−(2ξ, λ) A−(2ξ, λ)

)
=

(
A−(2ξ, λ) B−(2ξ, λ)

B−(2ξ, λ) A−(2ξ, λ)

)
.

Hence, the limits

(2-22) T −1
±

(0, 2λ) = lim
ξ→±∞

E−1(ξ, 2λ) Zq(ξ, 2λ)

exist in Lebesgue measure on R by Theorem 2.6. Moreover,

T (2λ) = T −1
+

(0, 2λ)T−(0, 2λ)

=

(
a+(λ) b+(λ)

b+(λ) a+(λ)

)(
a−(λ) b−(λ)

b−(λ) a−(λ)

)−1

(2-18)
=

(
a+(λ) b+(λ)

b+(λ) a+(λ)

)(
a−(λ) −b−(λ)

−b−(λ) a−(λ)

)
=

(
a(λ) b(λ)

b(λ) a(λ)

)
and the proposition follows. □

We end this section with a few remarks on reflection coefficients of potentials
in L2(R). We have |a|

2
− |b|

2
= 1 almost everywhere on R due to the fact that

det T±(0, λ) = 1 almost everywhere on R. That can also be established directly
using (2-18). Proposition 2.8 then allows to define the reflection coefficient rq =b/a
for every q ∈ L2(R). Lemma 2.2 holds for rq in that case as well. However, not all
results about the scattering transform can be generalized from the case q ∈ S(R)

to q ∈ L2(R). For example, the scattering transform is injective on S(R) by
Theorem 2.1, but it is no longer so when extended to L2(R) (see Example A.8).
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3. Another form of Dirac operator, q ∈ L2(R), and the entropy function

Suppose q ∈ L2(R). The alternative form of writing the Dirac operator Lq on the
line is given by

(3-1) DQ : X 7→ J X ′
+ Q X, Q :=

(
− Im q − Re q
− Re q Im q

)
,

where DQ is densely defined self-adjoint operator on the Hilbert space L2(R, C2) of
functions X : R → C2 such that ∥X∥

2
L2(R,C2)

=
∫

R
∥X (ξ)∥2

C2 dξ is finite. Operators
DQ and Lq defined in (2-1) are related by

DQ = 6Lq6−1, 6 :=
1

√
2

(
1 1

−i i

)
, 6−1

=
1

√
2

(
1 i
1 −i

)
.

One way to study DQ is to focus on Dirac operators on half-line R+ first. Given
q ∈ L2(R+), we define D+

Q on L2(R+, C2) by

(3-2) D+

Q : X 7→ J X ′
+ Q X, Q :=

(
− Im q − Re q
− Re q Im q

)
on the dense subset of absolutely continuous functions X ∈ L2(R+, C2) such that
D+

Q X ∈ L2(R+, C2), X (0) =
(

∗

0

)
. We will call D+

Q the Dirac operator defined
on the positive half-line with boundary conditions X (0) =

(
∗

0

)
or simply the half-

line Dirac operator. Set A(ξ) = −
1
2q(ξ/2) for ξ ∈ R+, and let P(ξ, λ), P∗(ξ, λ)

be the solutions of Krein system (2-11) generated by A. The Krein system with
coefficient A and Dirac equation (3-2) are related (see the proof of Lemma A.9
in Appendix) as follows: if NQ solves the Cauchy problem

JN ′

Q(ξ, λ)+ Q(ξ) NQ(ξ, λ) = λNQ(ξ, λ), NQ(0, λ) =

(
1 0
0 1

)
,

then
NQ(ξ, λ) =

e−iλξ

2

(
1 1
i −i

)(
A+

∗
(2ξ, λ) B+

∗
(2ξ, λ)

B+(2ξ, λ) A+(2ξ, λ)

)(
1 −i
1 i

)
,

where the continuous Wall polynomials A+,B+,A+
∗
,B+

∗
were defined in (2-14).

The Weyl function of the operator D+

Q coincides (see Lemma A.9) with

(3-3) m Q(z) := lim
ξ→+∞

i
P̂∗(ξ, z)
P∗(ξ, z)

, z ∈ C+.

It is known (see Theorem 7.3 in [13]) that the limit above exists for every z ∈ C+ and
defines an analytic function of Herglotz–Nevanlinna class in C+. The latter means
that m Q(C+) ⊂ C+. In Theorem 3.1 below, Im m Q(λ) denotes the nontangential
boundary value on R which exists Lebesgue almost everywhere. It is understood as
a nonnegative function g = Im m on R and it satisfies g/(1 + λ2) ∈ L1(R).
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Theorem 3.1. Let q ∈ L2(R+) and let Q, D+

Q , m Q be defined by (3-2) and (3-3).
Denote by NQ the solution of the Cauchy problem JN ′

Q(ξ) + Q(ξ) NQ(ξ) = 0,
NQ(0) =

( 1
0

0
1

)
, and set HQ = N ∗

Q NQ . Define also

K+

Q = log Im m Q(i) −
1
π

∫
R

log Im m Q(λ)
dλ

λ2 + 1
,(3-4)

K̃+

Q =

+∞∑
k=0

(
det

∫ k+2

k
HQ(ξ) dξ − 4

)
.(3-5)

Then, we have

(3-6) c1K+

Q ⩽ K̃+

Q ⩽ c2 ec2 K+

Q

for some positive absolute constants c1, c2.

Proof. Lemma A.9 shows that m Q coincides with the Weyl function for the canonical
system with Hamiltonian HQ . Then, the bounds in (3-6) follow from Theorem 1.2
in [2] (see also Corollary 1.4 in [2]). □

The quantity K+

Q will be called the entropy of the Dirac operator on R+. We
now turn to (3-1) to define the entropy for the Dirac operator on the whole line.
Take q ∈ L2(R) and let A+(ξ) = −

1
2q(ξ/2) and A−(ξ) =

1
2q(−ξ/2), ξ ∈ R+ be

the coefficients of Krein systems associated to restrictions of q to the half-lines R+

and R−. As in (3-3), the half-line Weyl functions m± are introduced by

(3-7) m±(z) = lim
ξ→+∞

i
P̂±

∗
(ξ, z)

P±
∗ (ξ, z)

, z ∈ C+.

These Weyl functions m± can be used to construct the spectral representation for
the Dirac operator. Let

(3-8) m(z) = −
1

m+(z) + m−(z)

(
−2m+(z)m−(z) m+(z) − m−(z)
m+(z) − m−(z) 2

)
, z ∈ C+.

Using Im m±(z) > 0, one can show that Im m(z) is a positive definite matrix for
z ∈ C+. In other words, m is the matrix-valued Herglotz function. Therefore,
there exists a unique matrix-valued measure ρ taking Borel subsets of R into 2 × 2
nonnegative matrices such that

m(z) = α + βz +
1
π

∫
R

(
1

λ − z
−

λ

λ2 + 1

)
dρ(λ), z ∈ C+,

where α, β are constant 2 × 2 real matrices, β ⩾ 0. The importance of ρ becomes
clear when we recall the spectral decomposition for DQ . Specifically, let NQ(ξ, z)
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be the solution of the Cauchy problem

(3-9) J
∂

∂ξ
NQ(ξ, z) + Q(ξ) NQ(ξ, z) = zNQ(ξ, z), NQ(0, z) =

(
1 0
0 1

)
,

where z ∈ C, ξ ∈ R. Then, the mapping

(3-10) FDQ : X 7→
1

√
π

∫
R

N ∗

Q(ξ, λ) X (ξ) dξ, λ ∈ R,

initially defined on the set of compactly supported smooth functions X : R → C2,
extends (see Appendix) to the unitary operator between the Hilbert spaces L2(R, C2)

and L2(ρ) where

L2(ρ) =

{
Y : R → C2

: ∥Y∥
2
L2(ρ)

=

∫
R

Y ∗(λ) dρ(λ) Y (λ) < ∞

}
.

Moreover, DQ is unitarily equivalent to the operator of multiplication by the inde-
pendent variable in L2(ρ) and the unitary equivalence is given by the operator FDQ .
In fact, these properties of ρ will not be used in the paper, we mention them only
to motivate the following definition. Let us define the entropy function KQ(z) by

(3-11) KQ(z) = −
1
π

∫
R

log(det ρac(λ))
Im z

|λ − z|2
dλ, z ∈ C+,

where ρac denotes the absolutely continuous part of the spectral measure ρ and it
satisfies ρac(λ) = limε→0,ε>0 Im m(λ + iε) for a.e. λ ∈ R. The quantity KQ will
play a crucial role in our considerations. We first relate it to the coefficient a of the
reduced transition matrix T which was introduced in Proposition 2.8.

Lemma 3.2. We have det ρac(λ) = |a(λ)|−2 for almost all λ ∈ R. In particular,
KQ(z) = 2 log|a(z)| for all z ∈ C+.

Proof. From the definition (or see page 59 in [24]), one has

(3-12) det Im m(z) = 4
Im m+(z) Im m−(z)
|m+(z) + m−(z)|2

, z ∈ C+.

Substituting expressions for

m±(z) = lim
ξ→+∞

i
P̂±

∗
(ξ, z)

P±(ξ, z)
= i

a±(z) − b±(z)
a±(z) + b±(z)

, z ∈ C+

into (3-12), we obtain

det ρac(λ) = lim
ε→+0

det Im m(λ+ iε)

= lim
ε→+0

(|a+(λ+ iε)|2 − |b+(λ+ iε)|2)(|a−(λ+ iε)|2 − |b−(λ+ iε)|2)
|a+(λ+ iε)a−(λ+ iε)− b+(λ+ iε) b−(λ+ iε)|2

=
1

|a(λ)|2
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for almost every λ ∈ R and the first claim of the lemma follows. The second claim
is immediate because a is an outer function as we showed in Proposition 2.7. □

Consider again the half-line entropy functions

K±

Q(z) = log Im m±(z) −
1
π

∫
R

log Im m±(λ)
Im z

|λ − z|2
dλ, z ∈ C+.

We see that K+

Q(i) coincides with the entropy (3-4) for the restriction of Q to R+ (that
explains why we use the same notation for the two objects), and K−

Q(z) = K+

Q−
(z)

for the potential

Q−(ξ) =

(
− Im q(−ξ) Re q(−ξ)

Re q(−ξ) Im q(−ξ)

)
, ξ ∈ R+.

Our plan now is to relate K±

Q(i) with KQ(i) and then use the fact that the full-line
entropy KQ(i) is conserved, see Lemma 3.2. That will eventually lead to the proof
of Theorem 1.2.

Lemma 3.3. Let q ∈ L2(R) and let qℓ(ξ)=q(ξ−ℓ), where ℓ∈ R and ξ ∈ R. Denote
by Qℓ the matrix-function in (3-1) corresponding to qℓ. Then, K+

Qℓ
(z) → KQ(z),

K−

Qℓ
(z) → 0 as ℓ → +∞ for every z ∈ C+.

Proof. Take z ∈ C+. Expression K+

Qℓ
(z) +K−

Qℓ
(z) equals

log
(
Im mℓ,+(z) Im mℓ,−(z)

)
−

1
π

∫
R

log
(
Im mℓ,+(λ) Im mℓ,−(λ)

) Im z
|λ − z|2

dλ

for the corresponding Weyl functions mℓ,±. We also have

log|mℓ,+(z) + mℓ,−(z)|2 =
1
π

∫
R

log |mℓ,+(λ) + mℓ,−(λ)|2
Im z

|λ − z|2
dλ

by the mean value theorem for harmonic functions. From (3-12), it follows that

K+

Qℓ
(z) +K−

Qℓ
(z) = log

(
4

Im mℓ,+(z) Im mℓ,−(z)
|mℓ,+(z) + mℓ,−(z)|2

)
+KQℓ

(z).

Notice that KQℓ
(z) does not depend on ℓ∈ R because the coefficient a in Lemma 3.2

for the potential Qℓ does not depend on ℓ. So, we only need to show that

K−

Qℓ
(z) → 0 and log

(
4

Im mℓ,+(z) Im mℓ,−(z)
|mℓ,+(z) + mℓ,−(z)|2

)
→ 0,

when ℓ → +∞ and z ∈ C+. The second relation follows from mℓ,+(z) → i ,
mℓ,−(z) → i , which hold because qℓ tends to zero weakly in L2(R) as ℓ → +∞

and ∥qℓ∥L2(R) = ∥q∥L2(R) (see Lemma A.10). Moreover, relation mℓ,−(z) → i
implies that K−

Qℓ
(z) → 0 if and only if

(3-13)
1
π

∫
R

log Im mℓ,−(λ)
Im z

|λ − z|2
dλ → 0.
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In the rest of the proof, we will show that (3-13) holds. Let a−

ℓ , b−

ℓ be the limits
of continuous Wall polynomials corresponding to Q−

ℓ . Consider s−

ℓ := b−

ℓ/a
−

ℓ .
Formula (12.57) in [13] gives

s−

ℓ (z) =
1 + imℓ,−(z)
1 − imℓ,−(z)

, mℓ,−(z) = i
a−

ℓ (z) − b−

ℓ (z)
a−

ℓ (z) + b−

ℓ (z)
.

It implies that Im mℓ,−(λ) = |a−

ℓ (λ) + b−

ℓ (λ)|−2 when λ ∈ R and that s−

ℓ (z) → 0
when ℓ → +∞ and z ∈ C+. Now, we can write

1
π

∫
R

log Im mℓ,−(λ)
Im z

|λ − z|2
dλ =

1
π

∫
R

log
(

1
|a−

ℓ (λ) + b−

ℓ (λ)|2

)
Im z

|λ − z|2
dλ

= log
1

|a−

ℓ (z) + b−

ℓ (z)|2

= log
1

|a−

ℓ (z)|2
+ log

1
|1 + s−

ℓ (z)|2
.

Therefore, it remains to show that |a−

ℓ (z)|2 → 1 as ℓ → +∞. That holds because
∥qℓ,−∥L2(R+) → 0 as ℓ → +∞ and

∥qℓ,−∥
2
L2(R+)

=
1
π

∫
R

log|a−

ℓ (λ)|2 dλ

⩾
Im z
π

∫
R

log|a−

ℓ (λ)|2
Im z

|λ − z|2
dλ = Im z · log|a−

ℓ (z)|2,

where the first equality follows from ∥qℓ,−∥
2
L2(R+)

= 2∥Aℓ,−∥
2
L2(R+)

and (12.2)

in [13]. Since log|a−

ℓ (z)|2 ⩾ 0, equation (3-13) holds and we are done. □

As an immediate corollary of Theorem 3.1 and Lemma 3.3, we get the following
estimate.

Lemma 3.4. Let q ∈ L2(R). Denote by NQ the solution of the Cauchy problem
JN ′

Q(ξ) + Q(ξ) NQ(ξ) = 0, NQ(0) =
( 1

0
0
1

)
, and set HQ = N ∗

Q NQ . Consider

(3-14) KQ := KQ(i), K̃Q :=

∑
k∈Z

(
det

∫ k+2

k
HQ(ξ) dξ − 4

)
.

Then, we have

(3-15) c1KQ ⩽ K̃Q ⩽ c2 KQ ec2 KQ

for some positive absolute constants c1, c2.

Proof. By Lemma 3.3, we have KQ = limℓ→+∞ K+

Qℓ
. It remains to substitute Qℓ

into the estimate (3-6) and take the limit as ℓ → +∞ for ℓ ∈ Z. □



SOBOLEV NORMS OF L2-SOLUTIONS TO THE NLSE 233

4. Proof of Theorem 1.2

The following result will play a crucial role in what follows. We postpone its proof
to the next section.

Theorem 4.1. Suppose q ∈ L2(R) and let NQ satisfy JN ′

Q + QNQ = 0, NQ(0) = I ,
where Q :=

(
− Im q
− Re q

− Re q
Im q

)
. Then,

(4-1) e−C1 R
∥q∥

2
H−1(R)

≲ K̃Q ≲ eC2 R
∥q∥

2
H−1(R)

,

where R := ∥q∥L2(R) and C1, C2 are two positive absolute constants.

Proof of Theorem 1.2 in the case s = −1. First, assume that q0 ∈ S(R) and let
q(ξ, t) be the solution of (1-1) with the initial datum q0. We want to prove that

(4-2) C1(1 + ∥q0∥L2(R))
−2

∥q0∥H−1(R) ⩽ ∥q( · , t)∥H−1(R)

⩽ C2(1 + ∥q0∥L2(R))
2
∥q0∥H−1(R).

We have ∥q( · , t)∥L2(R) = ∥q0∥L2(R) for all t , see (4.33) in [14]. Let a(z, t) denote
the coefficient in the matrix (2-5) given by q(ξ, t). For each t ∈ R, define Q by (3-2).
Let K̃Q(t) be as in Lemma 3.4 and KQ(z, t) be defined by (3-11). Formulas (2-8)
and (2-9) show that a(z, t) is constant in t and Lemma 3.2 says that KQ(z, t) is
constant in t as well. The bound (3-15) yields

(4-3) c1KQ(i, 0) ⩽ K̃Q(t) ⩽ c2 KQ(i, 0) ec2 KQ(i,0).

Assume first that R := ∥q0∥L2(R) ⩽ 1. Taking t = 0 in (4-3) and applying (4-1)
to q0, we get KQ(i, 0)≲ 1 since ∥q0∥H−1(R) ⩽ R ⩽ 1. Hence, in that case (4-3) can
be written as K̃Q(t) ∼ KQ(i, 0). By Theorem 4.1, ∥q( · , t)∥2

H−1(R)
∼ K̃Q(t), and

so ∥q( · , t)∥2
H−1(R)

∼ ∥q( · , 0)∥2
H−1(R)

.
If R := ∥q0∥L2(R) > 1, we use dilation. Consider qα(ξ, t) = αq(αξ, α2t) which

solves the same equation and notice that ∥qα∥L2(R) = α1/2 R.
Let α = αc = R−2 < 1 making ∥qαc∥L2(R) = 1. Then, for the Sobolev norm:

(4-4) ∥qα( · , t)∥H−1(R) = α1/2
(∫

R

1
1 + α2η2 |(Fq)(η, α2t)|2 dη

)1/2

.

Since

(4-5)
1

1 + η2 ⩽
1

1 + α2
cη

2 ⩽
1

α2
c (1 + η2)

,

one has

α1/2
c ∥q( · , α2

c t)∥H−1(R)⩽∥qαc( · , t)∥H−1(R)⩽α−1/2
c ∥q( · , α2

c t)∥H−1(R).

In particular, at t = 0 we get

α1/2
c ∥q( · , 0)∥H−1(R) ⩽ ∥qαc( · , 0)∥H−1(R) ⩽ α−1/2

c ∥q( · , 0)∥H−1(R).



234 ROMAN V. BESSONOV AND SERGEY A. DENISOV

Since ∥qαc( · , 0)∥L2(R) = 1, one can apply the previous bounds to obtain

∥qαc( · , t)∥H−1(R) ∼ ∥qαc( · , 0)∥H−1(R).

Then,

α1/2
c ∥q( · , α2

c t)∥H−1(R) ≲ ∥qαc( · , 0)∥H−1(R) ≲ α−1/2
c ∥q( · , 0)∥H−1(R),

α−1/2
c ∥q( · , α2

c t)∥H−1(R) ≳ ∥qαc( · , 0)∥H−1(R) ≳ α1/2
c ∥q( · , 0)∥H−1(R).

Recalling that αc = R−2, we obtain

R−2
∥q( · , 0)∥H−1(R)≲ ∥q( · , t)∥H−1(R)≲ R2

∥q( · , 0)∥H−1(R)

for all t ∈ R. Finally, having proved (4-2) for q0 ∈ S(R), it is enough to use
Theorem 1.1 to extend (4-2) to q0 ∈ L2(R). □

Our next goal is to prove the estimate

(4-6) C1(1 + ∥q0∥L2(R))
2s

∥q0∥H s(R) ⩽ ∥q( · , t)∥H s(R)

⩽ C2(1 + ∥q0∥L2(R))
−2s

∥q0∥H s(R),

where t ∈ R, s ∈ (−1, 0], and C1 and C2 are positive absolute constants. For s = 0,
this bound is trivial. To cover s ∈ (−1, 0), we will need some auxiliary results first.
One of the basic properties of NLSE which we discussed in the introduction has to
do with modulation: if q(ξ, t) solves (2-10), then q̃v(ξ, t) = eivξ−iv2tq(ξ − 2vt, t)
solves (2-10) for every v ∈ R.

Lemma 4.2. Let q0 ∈ L2(R), t ∈ R. Then,

∥q̃v( · , t)∥2
H−1(R)

=

∫
R

|(Fq)(η, t)|2

1 + (η + v)2 dη.

Proof. It is clear that ∥e−iv2t f ∥H−1(R) = ∥ f ∥H−1(R) for every f ∈ H−1(R) and
t ∈ R, because e−iv2t is a unimodular constant. We have

F(eivξq(ξ − 2vt, t))(η) = (Fq(ξ, t))(η − v) e−2ivt (η−v), η ∈ R.

Since |e−2ivt (η−v)
| = 1, it only remains to change the variable of integration in

∥q̃v∥H−1(R) =

∫
R

|(Fq(ξ, t))(η − v)|2

1 + η2 dη

to get the statement of the lemma. □

The next result is a standard property of convolutions.

Lemma 4.3. Let γ ∈
(
−

1
2 , 1

]
and set ak =

1
(1+k2)γ

for k ∈ Z. We have∑
k∈Z

ak

1 + (η − k)2 ∼ Cγ

1
(1 + η2)γ

, η ∈ R.
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Proof. After comparing the sum to an integral, it is enough to show that∫
R

du
(1 + u2)γ (1 + (η − u)2)

∼ Cγ

1
(1 + η2)γ

.

The function on the left-hand side is even and continuous in η and γ , so we can
assume that η > 1. Then,∫

|η−u|<0.5η

du
(1 + u2)γ (1 + (η − u)2)

∼
1

(1 + η2)γ
,

and ∫
|η−u|>0.5η

du
(1 + u2)γ (1 + (η − u)2)

≲ I1 + I2,

where

I1 :=

∫
u<−η/2, u>3η/2

du
(1 + u2)γ (1 + (η − u)2)

≲
∫

−η/2

−∞

du
u2+2γ

+

∫
3η/2

du
u2+2γ

⩽ Cγ η−1−2γ ,

I2 :=

∫
|u|<η/2

du
(1 + u2)γ (1 + (η − u)2)

≲ η−2
∫

|u|<η/2

du
(1 + u2)γ

≲ η−2γ .

Combining these bounds proves the lemma. □

Proof of Theorem 1.2 in the case s ∈ (−1, 0). We can again assume that q0 ∈ S(R).
Recall the estimate (1-5) for s = −1:

(4-7) C1(1 + ∥q0∥L2(R))
−2

∥q0∥H−1(R) ⩽ ∥q( · , t)∥H−1(R)

⩽ C2(1 + ∥q0∥L2(R))
2
∥q0∥H−1(R).

According to Lemma 4.2, we have

(4-8) ∥q̃v( · , t)∥2
H−1(R)

=

∫
R

|(Fq( · , t))(η)|2

1 + (v + η)2 dη

for q̃v(ξ, t) = eivξ−iv2tq(ξ − 2vt, t). Let ak , k ∈ Z, be the coefficients from
Lemma 4.3 with γ = −s. Then, (4-8) and Lemma 4.3 imply

(4-9)
∑
k∈Z

ak∥q̃k( · , t)∥2
H−1(R)

∼ Cs∥q( · , t)∥2
H s(R).

In particular, taking t = 0 gives

(4-10)
∑
k∈Z

ak∥q̃k( · , 0)∥2
H−1(R)

∼ Cs∥q0∥
2
H s(R).

We now apply (4-7) to q̃k and use (4-9) and (4-10) to get

(4-11) C1(s)(1 + ∥q0∥L2(R))
−2 ⩽

∥q( · , t)∥H s(R)

∥q0∥H s(R)

⩽ C2(s)(1 + ∥q0∥L2(R))
2.
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If R := ∥q0∥L2(R) ⩽ 1, we have the statement of our theorem. If R := ∥q0∥L2(R) > 1,
we use dilation transformation like in the previous proof for s = −1. Con-
sider qα(ξ, t) := αq(αξ, α2t) which solves the same equation and notice that
∥qα∥L2(R) = α1/2 R. Let α = αc = R−2 < 1 making ∥qαc∥L2(R) = 1. Then, for the
Sobolev norm, we have

∥qα( · , t)∥H s(R) = α1/2
(∫

R

1
(1 + α2η2)|s|

|(Fq)(η, α2t)|2 dη

)1/2

.

From (4-5), we have

1
(1 + η2)|s|

⩽
1

(1 + α2
cη

2)|s|
⩽

1

α
2|s|
c (1 + η2)|s|

.

Then, one has

α1/2
c ∥q( · , α2

c t)∥H s(R)⩽∥qαc( · , t)∥H s(R)⩽α(1/2)−|s|
c ∥q( · , α2

c t)∥H s(R).

In particular, taking t = 0 gives us

α1/2
c ∥q( · , 0)∥H s(R) ⩽ ∥qαc( · , 0)∥H s(R) ⩽ α(1/2)−|s|

c ∥q( · , 0)∥H s(R).

Now ∥qαc( · , 0)∥L2(R) = 1 and we can apply the previous bounds to get

∥qαc( · , t)∥H s(R) ∼ ∥qαc( · , 0)∥H s(R).

Then,

α1/2
c ∥q( · , α2

c t)∥H s(R) ≲ ∥qαc( · , 0)∥H s(R) ≲ α(1/2)−|s|
c ∥q( · , 0)∥H s(R),

α(1/2)−|s|
c ∥q( · , α2

c t)∥H s(R) ≳ ∥qαc( · , 0)∥H s(R) ≳ α1/2
c ∥q( · , 0)∥H s(R).

Recalling that αc = R−2
= ∥q0∥

−2
L2(R)

, we obtain

∥q0∥
−2|s|
L2(R)

∥q( · , 0)∥H s(R)≲ ∥q( · , t)∥H s(R)≲ ∥q0∥
2|s|
L2(R)

∥q( · , 0)∥H s(R)

for all t ∈ R. □

Our approach also provides the bounds for some positive Sobolev norms. The
following proposition slightly improves (1-4) when s ∈

[
0, 1

2

)
, ∥q0∥H s(R) is large,

and ∥q0∥L2(R) is much smaller than ∥q0∥H s(R).

Proposition 4.4. Let q0 ∈ S(R) and let q = q(ξ, t) be the solution of (1-1) corre-
sponding to q0. Then, for each s ∈

[
0, 1

2

)
, we get

(4-12) ∥q( · , t)∥H s(R) ∼ Cs∥q0∥H s(R)

if ∥q0∥L2(R) ⩽ 1 and

(4-13) ∥q( · , t)∥H s(R) ≲ Cs(∥q0∥
1+2s
L2(R)

+ ∥q0∥H s(R))

if ∥q0∥L2(R) > 1.
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Proof. In the case when ∥q∥L2(R) ⩽ 1, the proof of proposition repeats the arguments
given above to get (4-11) except that the constants in the inequalities depend on s
and can blow up when s →

1
2 . Suppose ∥q∥L2(R) ⩾ 1. Then, for the Sobolev norm,

we have

∥qα( · , t)∥H s(R) = α1/2
(∫

R

(1 + α2η2)s
|(Fq)(η, α2t)|2 dη

)1/2

.

Take α = αc and write the following estimate for the integral above:∫
R

(
1 +

η2

R4

)s

|(Fq)(η, α2
c t)|2 dη

∼

∫ R2

−R2
|(Fq)(η, α2

c t)|2 dη + R−4s
∫

|η|>R2
(1 + η2)s

|(Fq)(η, α2
c t)|2 dη

≲ R2
+ R−4s

∫
R

(1 + η2)s
|(Fq)(η, α2

c t)|2 dη.

We use ∥qαc( · , t)∥L2(R) =1 and (4-11) to get ∥qαc( · , t)∥H s(R) ∼Cs∥qαc( · , 0)∥H s(R).
The previous estimate for t = 0 yields ∥qαc( · , 0)∥H s(R)≲ 1+ R−1−2s

∥q( · , 0)∥H s(R).
Hence, ∥qαc( · , t)∥H s(R) ⩽Cs(1+ R−1−2s

∥q( · , 0)∥H s(R)). We write a lower bound

∥qαc( · , t)∥2
H s(R) = R−2

∫
R

(
1 +

η2

R4

)s

|(Fq)(η, α2
c t)|2 dη

≳ R−2−4s
∫

|η|>R2
(1 + η2)s

|(Fq)(η, α2
c t)|2 dη,

so we have∫
|η|>R2

(1 + η2)s
|(Fq)(η, α2

c t)|2 dη ⩽ Cs(R2+4s
+ ∥q( · , 0)∥2

H s(R)).

Write the integral in the left-hand side as a sum of two:∫
|η|>R2

(1 + η2)s
|(Fq)(η, α2

c t)|2 dη +

∫
|η|<R2

(1 + η2)s
|(Fq)(η, α2

c t)|2 dη.

Estimating each of them, we get a bound which holds for all t :∫
R

(1 + η2)s
|(Fq)(η, α2

c t)|2 dη ⩽ Cs(R2+4s
+ ∥q( · , 0)∥2

H s(R)),

which is the required upper bound (4-13). □

5. Oscillation and Sobolev space H−1(R)

In this part of the paper, our goal is to prove Theorem 4.1. Let us recall its statement.
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Theorem 4.1. Suppose q ∈ L2(R) and let NQ satisfy JN ′

Q + QNQ = 0, NQ(0) = I ,
where Q :=

(
− Im q
− Re q

− Re q
Im q

)
. Then,

(5-1) e−C1 R
∥q∥

2
H−1(R)

≲ K̃Q ≲ eC2 R
∥q∥

2
H−1(R)

,

where R := ∥q∥L2(R) and C1, C2 are two positive absolute constants.

Theorem 4.1 is of independent interest in the spectral theory of Dirac operators.
For example, Lemma 3.4 shows that ∥q∥L2(R) and ∥q∥H−1(R) control the size of KQ .

The strategy of the proof is the following. In the next subsection, we show that
H−1(R)-norm of any function can be characterized through BMO-like condition for
its “antiderivative”. In Section 5.2, we consider the solution to the Cauchy problem
JN ′

+ QN = 0, N (0) = I on the interval [0, 1] with zero-trace symmetric Q
and study the quantity det

∫ 1
0 N ∗N dx , which represents a single term in the sum

for K̃Q . The results in Section 5.3 show that small value of K̃Q guarantees that the
“local” H−1 norm of Q is also small. This rough estimate is used in the proof of
Theorem 4.1 which is contained in the proof of Theorem 4.1.

5.1. One property of Sobolev space H−1(R). Observe that a function f ∈ L2(R)

belongs to the Sobolev space H−1(R) if and only if

(5-2)
∫

R

∣∣∣∣∫
R

f (y)χR+
(x − y) e−(x−y) dy

∣∣∣∣2

dx < ∞.

Moreover, the last integral is equal to ∥ f ∥
2
H−1(R)

. Indeed, recall that F f stands for
the Fourier transform of f :

(F f )(η) =
1

√
2π

∫
R

f (x) e−iηx dx .

Then, from Plancherel’s identity and formula

1
√

2π

∫
R+

e−x e−i xη dx =
1

√
2π

1
1 + iη

,

we obtain

∥ f ∥
2
H−1(R)

= 2π∥(F f )F(χR+
e−x)∥2

L2(R)
=

∫
R

|(F f )(η)|2

1 + η2 dη

by properties of convolutions. We will need the following proposition.

Proposition 5.1. Suppose that f ∈ L1
loc(R) ∩ H−1(R). Let g be an absolutely

continuous function on R such that g′
= f almost everywhere on R. Then,

(5-3) c1∥ f ∥
2
H−1(R)

⩽
∑
k∈Z

∫
Ik

|g − ⟨g⟩Ik |
2 dx ⩽ c2∥ f ∥

2
H−1(R)

,

where Ik := [k, k + 2], ⟨g⟩I :=
1
|I |

∫
I g(x) dx , and the positive constants c1 and c2

are universal.
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Proof. Take a function f ∈ L1
loc(R)∩ H−1(R) and let g be an absolutely continuous

function on R such that g′
= f almost everywhere on R. Assume first that f has a

compact support. The integral under the sum does not change if we add a constant
to g, so we can suppose without loss of generality that

g(x) =

∫ x

−∞

f (s) ds, x ∈ R.

Upper bound. Given f , define o f by

o f (x) = e−x
∫ x

−∞

f (y) ey dy

and recall (see (5-2)) that

(5-4) ∥ f ∥H−1(R) = ∥o f ∥L2(R).

Moreover,

(5-5) o′

f + o f = f.

For each interval Ik , we use (5-5) for the corresponding term in the sum (5-3):∫
Ik

∣∣∣∣∫ x

k
f dx1 −

1
2

∫ k+2

k

(∫ x1

k
f (x2) dx2

)
dx1

∣∣∣∣2

dx

=

∫
Ik

∣∣∣∣∫ x

k
o(x1) dx1 + o(x) −

1
2

∫ k+2

k

(
o(x1) +

∫ x1

k
o(x2) dx2

)
dx1

∣∣∣∣2

dx ≲
∫

Ik

|o|
2 dx

after the Cauchy–Schwarz inequality is applied. Summing these estimates in k ∈ Z

and using (5-4), we get the upper bound in (5-3) for compactly supported f .

Lower bound. Integration by parts gives∫ x

−∞

f (y) e−(x−y) dy =

∫ x

−∞

f (s) ds −

∫ x

−∞

(∫ y

−∞

f (s) ds
)

e−(x−y) dy

= g(x) −

∫ x

−∞

g(y) e−(x−y) dy

=

∫ x

−∞

(g(x) − g(y)) e−(x−y) dy.

Therefore,∫
R

∣∣∣∣∫ x

−∞

f (y) e−(x−y) dy
∣∣∣∣2

dx ⩽
∑
k∈Z

∫ k+2

k

(∫ x

−∞

|g(x) − g(y)|2 e−(x−y) dy
)

dx

≲
∑
k∈Z

∑
j⩽k

e−(k− j)
∫ k+2

k

∫ j+2

j
|g(x) − g(y)|2 dx dy.
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Using the inequality (x + y + z)2 ⩽ 3(x2
+ y2

+ z2), we continue the estimate:

· · · ≲
∑
k∈Z

∑
j⩽k

e−(k− j)
(∫

Ik

|g − ⟨g⟩Ik |
2 dx + |⟨g⟩I j − ⟨g⟩Ik |

2
+

∫
I j

|g − ⟨g⟩I j |
2 dx

)
.

Since∑
k∈Z

∑
j⩽k

e−(k− j)
(∫

Ik

|g − ⟨g⟩Ik |
2 dx +

∫
I j

|g − ⟨g⟩I j |
2 dx

)
≲

∑
k∈Z

∫
Ik

|g − ⟨g⟩Ik |
2 dx,

we are left with estimating∑
k∈Z

∑
j⩽k

e−(k− j)
|⟨g⟩I j − ⟨g⟩Ik |

2.

Applying the Cauchy–Schwarz inequality for the telescoping sum

⟨g⟩Ik − ⟨g⟩I j =

k∑
s= j+1

(⟨g⟩Is − ⟨g⟩Is−1),

we get
|⟨g⟩I j − ⟨g⟩Ik |

2 ⩽ (k − j)
∑

j⩽s⩽k−1

|⟨g⟩Is − ⟨g⟩Is+1 |
2.

Then,∑
k∈Z

∑
j⩽k

e−(k− j)(k − j)
∑

j⩽s⩽k−1

|⟨g⟩Is − ⟨g⟩Is+1 |
2

=

∑
s∈Z

|⟨g⟩Is − ⟨g⟩Is+1 |
2

∑
k, j : j⩽s⩽k−1

(k − j) e−(k− j).

We have∑
k, j : j⩽s⩽k−1

(k − j) e−(k− j)
=

∑
j⩽s

∑
m⩾1

(s + m − j) e−(s+m− j)

=

∑
j⩽0

∑
m⩾1

(m − j) e−(m− j)
=

∑
j⩾0

∑
m⩾1

(m + j) e−(m+ j).

The last sum is finite and does not depend on index s. Now, the estimate

|⟨g⟩Is − ⟨g⟩Is+1 |
2
=

∫
Is∩Is+1

|⟨g⟩Is − g + g − ⟨g⟩Is+1 |
2 dx

⩽ 2
∫

Is

|g − ⟨g⟩Is |
2 dx + 2

∫
Is+1

|g − ⟨g⟩Is+1 |
2 dx

proves that ∑
k∈Z

∑
j⩽k

e−(k− j)
|⟨g⟩I j − ⟨g⟩Ik |

2 ≲
∑
s∈Z

∫
Is

|g − ⟨g⟩Is |
2 dx .

Hence, the lower bound in (5-3) holds for compactly supported f .
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Now, take any f ∈ L1
loc(R) ∩ H−1(R). The definition (1-2) of H−1(R) implies

that F f can be written as (1+iη)(Fo) for some function o ∈ L2(R). Moreover, this
map f 7→ o is a bijection between H−1(R) and L2(R) and ∥ f ∥H−1(R) = ∥o∥L2(R).
Taking the inverse Fourier transform of identity F f = (1 + iη)(Fo), one gets a
formula f =o+o′ where o′ is understood as a derivative in S ′(R). Since f ∈ L1

loc(R)

and o ∈ L2(R), we have o′
∈ L1

loc(R) and, therefore, o is absolutely continuous on R

with the derivative equal to f − o. Now, take on(x) = o(x)µn(x), where µn(x) is
even and

µn(x) =


1, 0 ⩽ x < n,

n + 1 − x, x ∈ [n, n + 1),

0, x ⩾ n + 1.

Define the corresponding fn = on +o′
n . Then, {on} → o in L2(R) and so { fn} → f

in H−1(R) because the mapping f 7→ o is unitary from H−1(R) onto L2(R). Also,
each fn is compactly supported and { fn} converges to f uniformly on every finite
interval. Define gn =

∫ x
0 fn ds, g =

∫ x
0 f ds, and write (5-3) for fn . The estimate on

the right gives ∑
|k|⩽N

∫
Ik

|gn − ⟨gn⟩Ik |
2 dx ⩽ c2∥ fn∥

2
H−1(R)

for each N ∈ N. Sending n → ∞, the bound∑
|k|⩽N

∫
Ik

|g − ⟨g⟩Ik |
2 dx ⩽ c2∥ f ∥

2
H−1(R)

appears. Taking N → ∞, one has the right estimate in (5-3). In particular, it shows
that the sum in (5-3) converges. By construction,∑

k∈Z

∫
Ik

|gn − ⟨gn⟩Ik |
2 dx =

∑
−n⩽k⩽n−2

∫
Ik

|g − ⟨g⟩Ik |
2 dx + ϵn,

where ϵn is a sum of integrals over I−n−2, I−n−1, In−1, In . Since o ∈ L2(R),

lim
n→∞

∫
Ik

|gn − ⟨gn⟩Ik |
2 dx = 0, k ∈ {−n − 2, −n − 1, n − 1, n}.

Hence, limn→∞ ϵn = 0 and, taking n → ∞ in inequality

c1∥ fn∥
2
H−1(R)

⩽
∑
k∈Z

∫
Ik

|gn − ⟨gn⟩Ik |
2 dx,

one gets the left bound in (5-3). Since all antiderivatives are different by at most
a constant and the integral in (5-3) does not change if we add a constant to g, the
proof is finished. □
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5.2. Auxiliary perturbative results for a single interval. Notice that for any real
symmetric 2 × 2 matrix Q with zero trace, we have that V = JQ is also real,
symmetric and has zero trace. The converse statement is true as well. Hence, the
equation JN ′

Q + QNQ = 0 in Theorem 4.1, which is equivalent to N ′

Q = JQNQ ,
can be written as N ′

Q = VNQ with V having the same properties as Q. Let U+(x, y)

denote the solution to

d
dx

U+(x, y) = V (x) U+(x, y), U+(y, y) = I

and U−(x, y) denote the solution to

d
dx

U−(x, y) = −V (x) U−(x, y), U−(y, y) = I.

Lemma 5.2. Suppose N ′
= VN , N (0) = I , where V is real-valued, V ∈ L1

[0, 1],
V = V ∗, and tr V = 0. Then, for H := N ∗N , we have

det
∫ 1

0
H(ξ) dξ =

1
2

∫ 1

0

∫ 1

0
tr(U∗

+
(x, y) U+(x, y)) dx dy(5-6)

=
1
2

∫ 1

0

∫ 1

0
∥U+(x, y)∥2

HS dx dy,

det
∫ 1

0
H(ξ) dξ − 1 =

1
2

∫ 1

0

∫ 1

0
∥(U+(x, y) − U−(x, y)) e1∥

2 dx dy.(5-7)

Proof. Notice that N , U+, U− ∈ SL(2, R) and that every matrix A ∈ SL(2, R)

satisfies

(5-8) JA∗
= A−1 J, AJ = J (A∗)−1.

Also, for any real 2 × 2 matrix B, we have

det B = ⟨JBe1, Be2⟩ = −⟨JBe2, Be1⟩.

Hence,

I := det
∫ 1

0
H(ξ) dξ =

∫ 1

0

∫ 1

0
⟨JN ∗(x) N (x) e1, N ∗(y) N (y) e2⟩ dx dy

= −

∫ 1

0

∫ 1

0
⟨JN ∗(x) N (x) e2, N ∗(y) N (y) e1⟩ dx dy.

For the second integrand, we have

⟨JN ∗(x) N (x) e1, N ∗(y) N (y) e2⟩ = ⟨N ∗(y) N (y) JN ∗(x) N (x) e1, e2⟩.
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Then, identities (5-8) imply

N ∗(y) N (y) JN ∗(x) N (x) = N ∗(y) J (N ∗(y))−1 N ∗(x) N (x)

= J (N (y))−1(N ∗(y))−1 N ∗(x) N (x)

and, since Je1 = e2 and J ∗
= −J ,

⟨JN ∗(x) N (x) e1, N ∗(y) N (y) e2⟩ = ⟨(N (y))−1(N ∗(y))−1 N ∗(x) N (x) e1, e1⟩.

Similarly,

⟨JN ∗(x) N (x) e2, N ∗(y) N (y) e1⟩ = −⟨(N (y))−1(N ∗(y))−1 N ∗(x) N (x) e2, e2⟩.

Hence,

I =
1
2

∫ 1

0

∫ 1

0

2∑
j=1

⟨(N (y))−1(N ∗(y))−1 N ∗(x) N (x) e j , e j ⟩ dx dy

=
1
2

∫ 1

0

∫ 1

0
tr
(
(N (y))−1(N ∗(y))−1 N ∗(x) N (x)

)
dx dy

=
1
2

∫ 1

0

∫ 1

0
tr
(
(N ∗(y))−1 N ∗(x) N (x)(N (y))−1) dx dy.

Now, using the formula N (x)(N (y))−1
=U+(x, y) we rewrite the last expression as

I =
1
2

∫ 1

0

∫ 1

0
tr(U∗

+
(x, y) U+(x, y)) dx dy.

Finally, (5-7) follows from U+(x, y) ∈ SL(2, R) by direct inspection after one
uses the identities JU+(x, y) J = −U−(x, y) and tr(A∗ A)−2 = ∥(A + JAJ ) e1∥

2,
which holds for every A ∈ SL(2, R). □

Remark. The integrand in (5-6) is symmetric in x , y because U+(x, y)=U−1
+ (y, x)

and U+(x, y) ∈ SL(2, R). Notice also that

tr(U∗

+
(x, y) U+(x, y)) = λ2

x,y + λ−2
x,y ⩾ 2,

where λx,y is an eigenvalue of U∗
+
(x, y) U+(x, y) which explains why the left-hand

side in (5-7) is nonnegative.

Lemma 5.3. Suppose real-valued matrix-function V =
(

v1
v2

v2
−v1

)
is defined on [0, 1]

and satisfies ∥V ∥L1[0,1] < ∞. Consider H := N ∗N , where N : N ′
= VN , N (0) = I .

Then,

(5-9) det
∫ 1

0
H dx − 1 ≲ ∥V ∥

2
L1[0,1]

exp(C∥V ∥L1[0,1]).
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Proof. The integral equation for N is

(5-10) N = I +

∫ x

0
VN ds.

By Gronwall’s inequality,

(5-11) ∥N (x)∥ ⩽ exp
(∫ x

0
∥V (s)∥ ds

)
⩽ exp(∥V ∥L1[0,1]).

Iteration of (5-10) gives

N = I +

∫ x

0
V dx1 +

∫ x

0
V (x1)

(∫ x1

0
V (x2) N (x2) dx2

)
dx1.

Then, ∫ 1

0
N ∗N dx = I + 2

∫ 1

0

(∫ x

0
V (x1) dx1

)
dx + R,

∥R∥ ≲ ∥V ∥
2
L1[0,1]

exp(C∥V ∥L1[0,1]).

Since tr V = 0, the identity det(I + A) = 1+ tr A +det A, which holds for all 2×2
matrices A, gives

det
∫ 1

0
Hdx − 1 ≲ ∥V ∥

2
L1[0,1]

exp(C∥V ∥L1[0,1]). □

Lemma 5.4. Suppose real-valued symmetric matrix-functions V and O are defined
on [0, 1] and satisfy

V =

(
v1 v2

v2 −v1

)
= O + O ′, O = O∗

=

(
o1 o2

o2 −o1

)
,(5-12)

δ := ∥O∥L2[0,1] < ∞,(5-13)

d := ∥O ′
∥L2[0,1] < ∞.(5-14)

Consider H := N ∗N where N ′
= VN , N (0) = I . Then, we have

(5-15) det
∫ 1

0
H dx −1 = 4

2∑
j=1

∫ 1

0
|g j −⟨g j ⟩|

2 dx +r, |r |≲ δ2.5 exp(C(d + δ)),

where

(5-16) g j :=

∫ x

0
v j dx

and C is an absolute positive constant. An analogous result holds if O and V are
related by V = O − O ′.



SOBOLEV NORMS OF L2-SOLUTIONS TO THE NLSE 245

Proof. We will use the formula (5-7) for our analysis. Fix y ∈ [0, 1] and take
U+(x, y) and U−(x, y) which solve d

dx U+(x, y) = V (x) U+(x, y), U+(y, y) = I
and d

dx U−(x, y) = −V (x) U−(x, y), U−(y, y) = I . Iterating the corresponding
integral equations, one gets

U+(x, y) = I +

∫ x

y
V dx1 +

∫ x

y
V
∫ x1

y
V dx2 dx1 +

∫ x

y
V
∫ x1

y
V
∫ x2

y
V dx3 dx2 dx1

+

∫ x

y
V
∫ x1

y
V
∫ x2

y
V
∫ x3

y
V dx4 dx3 dx2 dx1

+

∫ x

y
V
∫ x1

y
V
∫ x2

y
V
∫ x3

y
V f+ dx4 dx3 dx2 dx1,

f+(x4) =

∫ x4

y
V (s) U+(s, y) ds,

U−(x, y) = I −

∫ x

y
V dx1 +

∫ x

y
V
∫ x1

y
V dx2 dx1 −

∫ x

y
V
∫ x1

y
V
∫ x2

y
V dx3 dx2 dx1

+

∫ x

y
V
∫ x1

y
V
∫ x2

y
V
∫ x3

y
V dx4 dx3 dx2 dx1

−

∫ x

y
V
∫ x1

y
V
∫ x2

y
V
∫ x3

y
V f−dx4 dx3 dx2 dx1,

f−(x4) =

∫ x4

y
V (s) U−(s, y) ds.

Taking U+(x, y) − U−(x, y) as in (5-7) leaves us with

U+(x, y) − U−(x, y)

2
=

∫ x

y
V dx1 + I1 + I2,(5-17)

I1 =

∫ x

y
V
∫ x1

y
V
∫ x2

y
V dx3 dx2 dx1,(5-18)

I2 =

∫ x

y
V
∫ x1

y
V
∫ x2

y
V
∫ x3

y
V ( f+ + f−) dx4 dx3 dx2 dx1.(5-19)

Recall that V = O + O ′ where O satisfies (5-13) and (5-14). These assumptions
are to be used in the following proposition. On R2

+
, we define the partial order[

x1

x2

]
⩽

[
y1

y2

]
by requiring that x1 ⩽ y1 and x2 ⩽ y2.

Proposition 5.5. Suppose a matrix-function O is defined on [0, 1] and denote

(5-20) δ = ∥O∥L2[0,1], d = ∥O ′
∥L2[0,1].
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Let an operator G(y) be given by F 7→ (G(y)F)(x) =
∫ x

y(O + O ′) F ds where
y ∈ [0, 1] and a matrix-function F , defined on [0, 1], satisfies ∥F∥L∞[0,1] < ∞ and
∥F ′

∥L2[0,1] < ∞. Then,

(5-21)
[

∥G(y)F∥L∞[0,1]

∥(G(y)F)′∥L2[0,1]

]
⩽ CM

[
∥F∥L∞[0,1]

∥F ′
∥L2[0,1]

]
, M =

(
δ +

√
δd δ

δ + d 0

)
,

where C is an absolute positive constant, the norms and derivatives are computed
with respect to x.

Proof. Let b = ∥F∥L∞[0,1], c = ∥F ′
∥L2[0,1]. Write

(5-22) O∗(x)O(x) − O∗(y)O(y) =

∫ x

y
((O∗)′O + O∗O ′) ds.

Then,

∥O(x)∥2
= max

∥ξ∥
C2⩽1

⟨O∗(x)O(x) ξ, ξ ⟩
(5-22)
⩽ ∥O(y)∥2

+ 2
∫ 1

0
∥O ′(s)∥ · ∥O(s)∥ ds.

Applying Cauchy–Schwarz inequality to the integral, integrating in y from 0 to 1
and maximizing in x gives

(5-23) ∥O∥L∞[0,1] ≲ δ + (dδ)1/2.

Then,

(G(y)F)(x) =

∫ x

y
OF ds + O(x) F(x) − O(y) F(y) −

∫ x

y
OF ′ ds

and the estimate for the first coordinate in (5-21) follows from Cauchy–Schwarz
inequality and (5-23). Since (G(y)F)′ = (O + O ′) F, we get

∥(G(y)F)′∥L2[0,1] ⩽ (∥O∥L2[0,1] + ∥O ′
∥L2[0,1])∥F∥L∞[0,1]

and the bound for the second coordinate in (5-21) is obtained. □

Continuation of the proof of Lemma 5.4. We apply the proposition to I1 three
times with the initial choice of F : F = I . That gives rise to taking the third power
of matrix M: M3, applying it to (1, 0)t , and looking at the first coordinate. As the
result, one has ∥I1∥L∞[0,1] ≲ δ3/2(δ + d)3/2. Therefore,

(5-24) ∥I1 e1∥L∞([0,1]2) ≲ δ3/2 exp(δ + d).

Similarly, we consider I2 and use the previous proposition four times making the
first choice of F as F = f+ + f−. Applying the bound (5-11) to U+ and U−, we
get ∥ f+ + f−∥L∞[0,1] ≲ (δ +d) exp(δ +d), ∥ f ′

+
+ f ′

−
∥L2[0,1] ≲ (δ +d) exp(δ +d).
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This time, we compute the fourth power of matrix M : M4, apply it to vector
(δ + d) exp(δ + d)(1, 1)t , and look at the first coordinate. In the end, one has

(5-25) ∥I2 e1∥L∞([0,1]2)≲ δ2 exp(C(d + δ)).

The first term in (5-17) can be written as∫ x

y
V ds =

∫ x

y
O ds + O(x) − O(y)

and

(5-26)
∥∥∥∥∫ x

y
O ds + O(x) − O(y)

∥∥∥∥
L2([0,1]2)

≲ δ.

For any three vectors v1, v2 and v3 in R2, we have an estimate∣∣∥v1 + v2 + v3∥ −∥v1∥
∣∣ ⩽ ∥v2 + v3∥ ⩽ ∥v2∥ +∥v3∥,

which follows from the triangle inequality. Multiplying with

∥v1 + v2 + v3∥ +∥v1∥ ⩽ 2∥v1∥ +∥v2∥ +∥v3∥,

we get ∣∣∥v1 + v2 + v3∥
2
− ∥v1∥

2∣∣ ⩽ 2∥v1∥(∥v2∥ +∥v3∥) + (∥v2∥ +∥v3∥)
2.

Applying it to (5-17) gives∣∣∣∣ 1
4∥(U+(x, y) − U−(x, y)) e1∥

2
−

∥∥∥∥(∫ x

y
V ds

)
e1

∥∥∥∥2∣∣∣∣
≲

∥∥∥∥(∫ x

y
V ds

)
e1

∥∥∥∥ · (∥I1 e1∥ +∥I2 e1∥) + ∥I1 e1∥
2
+ ∥I2 e1∥

2.

Taking the L1([0, 1]
2) norm in the variables x and y of both sides and using (5-24),

(5-25), (5-26) and the Cauchy–Schwarz inequality gives

1
4

∫ 1

0

∫ 1

0
∥(U+(x, y) − U−(x, y)) e1∥

2 dx dy =

∫ 1

0

∫ 1

0

∥∥∥∥(∫ x

y
V ds

)
e1

∥∥∥∥2

dx dy + r,

with |r | ≲ δ2.5 exp(C(d + δ)). Recalling the definition (5-16), we get∥∥∥∥(∫ x

y
V ds

)
e1

∥∥∥∥2

=

2∑
j=1

(g j (x) − g j (y))2

so

1
2

∫ 1

0

∫ 1

0
∥(U+(x, y) − U−(x, y)) e1∥

2 dx dy = 4
2∑

j=1

∫ 1

0
|g j − ⟨g j ⟩|

2 dx + r,

where |r | ≲ δ2.5 exp(C(d + δ)). Lemma 5.4 is proved. □
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Remark. All statements in this subsection can be easily adjusted to any interval
but the constants in the inequalities will depend on the size of that interval.

5.3. Rough bound when K̃Q is small.

Lemma 5.6. Suppose an absolutely continuous function f is defined on [0, 1] and
satisfies

(5-27) f ∈ L2
[0, 1], f ′

= l1 + l2, l1 ∈ L1
[0, 1], l2 ∈ L2

[0, 1].

Then,
∥ f ∥L∞[0,1] ⩽

√
δ2 + 2(δτ + ϵ(τ + ϵ + δ)),

where δ := ∥ f ∥L2[0,1], ϵ := ∥l1∥L1[0,1], τ := ∥l2∥L2[0,1].

Proof. There is ξ ∈ [0, 1] such that | f (ξ)| ⩽ δ and

| f (x) − f (ξ)| ⩽

∣∣∣∣∫ x

ξ

f ′ ds
∣∣∣∣ ⩽ τ + ϵ.

Thus, ∥ f ∥L∞[0,1] ⩽ τ + ϵ + δ. Then, writing

f 2(x) − f 2(y) = 2
∫ x

y
f f ′ ds,

integrating in y and maximizing in x , we get

∥ f ∥
2
L∞[0,1]

⩽ δ2
+ 2(δτ + ϵ(τ + ϵ + δ)). □

Suppose Q is real-valued, symmetric matrix-function on R with zero trace and
∥Q∥L2(R) <∞. Define HQ = N ∗N , where N : N ′

= JQN , N (0)= I . Notice that we
have det

∫ n+2
n S∗HQ S dx = det

∫ n+2
n HQ dx for every constant matrix S ∈ SL(2, R).

So, we can apply Lemma 5.3 to each interval [n, n + 2] by choosing S = N−1(n)

and get an estimate which explains how ∥Q∥L2(R) controls K̃Q :

K̃Q =

∑
n∈Z

(
det

∫ n+2

n
HQdx − 4

)
≲

∑
n∈Z

∥Q∥
2
L2[n,n+2]

exp(C∥Q∥2)

≲ ∥Q∥
2
L2(R)

exp(C∥Q∥2).

The next lemma shows that K̃Q controls the convolution of Q with the exponential.

Lemma 5.7. Let Q be real-valued, symmetric 2 × 2 matrix-function on R with zero
trace and entries in L2(R). Define HQ = N ∗N where N : N ′

= JQN , N (0) = I
and assume that K̃Q < ∞. If O := ex

∫
∞

x e−s Q ds, then

∥O∥L∞(R)≲ exp(C(∥Q∥L2(R) + K̃Q)) K̃1/4
Q ,

where C is a positive absolute constant.
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Proof. Let R = ∥Q∥L2(R) and E = K̃Q . We split the proof into several steps.

Step 1 (bound for a single interval [0, 1]). The definitions (3-5) and (3-14) imply
that K̃+

Q ⩽ E . From Theorems 1.2 and 3.2 in [2], we know that HQ admits the
following factorization on R+: HQ = G∗WG where G and W satisfy conditions:

G ′
= J (v1 + v2) G, ∥v1∥L1(R+)≲ E, ∥v2∥L2(R+)≲ E1/2,(5-28)

det G = 1, v1 + v2 = (v1 + v2)
∗,(5-29)

and
W ⩾ 0, det W = 1, ∥tr W − 2∥L1(R+)≲ E .

Since ∥tr W − 2∥L1[0,1] ≲ E , we have ∥λ + λ−1
− 2∥L1[0,1] ≲ E , where λ is the

largest eigenvalue of W . If one denotes p = tr W − 2 = λ + λ−1
− 2, then

(5-30) λ =
2 + p +

√
4p + p2

2
, λ−1

=
2 + p −

√
4p + p2

2
.

In particular, that yields

(5-31)
∫ 1

0
∥W∥ dx ≲ 1 + E .

The given conditions on Q and (5-11) yield

∥N (x)∥, ∥N−1(x)∥ ≲ exp(CR), x ∈ [0, 1],

where the second estimate follows from the first since det N = 1. The Hamiltonian
HQ = N ∗N is absolutely continuous on R+ and

(5-32) 0 < exp(−CR) I ≲HQ(x) ≲ exp(CR) I

on [0, 1]. We claim that ∥G(0)∥≲ exp(C(R+E)) and ∥G−1(0)∥≲ exp(C(R+E)).
Indeed, if X satisfies X ′

= J (v1 +v2) X and X (0) = I , then G = XG(0). Moreover,
given conditions on v1 and v2 and det X = 1, we have

(5-33) ∥X (x)∥ ≲ exp(CE), ∥X−1(x)∥ ≲ exp(CE)

uniformly on [0, 1]. Identity HQ = G∗(0) X∗WXG(0) yields

(G∗(0))−1HQ(G(0))−1
= X∗WX.

Taking an arbitrary ξ ∈ C2 with ∥ξ∥C2 = 1, we get

∥G−1(0) ξ∥
2

(5-32)
≲ exp(CR)

∫ 1

0
⟨HQG−1(0) ξ, G−1(0) ξ⟩ dx

= exp(CR)

∫ 1

0
⟨WXξ, Xξ⟩ dx

(5-31)+(5-33)
≲ exp(C(R + E)),
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which implies ∥G−1(0)∥≲ exp(C(R+E)). We also have ∥G(0)∥≲ exp(C(R+E))

since det G = 1 and the claim is proved. Finally, we have

∥G(x)∥ ≲ exp(C(R + E)), ∥G−1(x)∥ ≲ exp(C(R + E))

for x ∈ [0, 1] since G = XG(0).
Next, let us study W and W ′. Since W = (G∗)−1 N ∗N G−1, one has the inequality

∥W∥ ≲ exp(C(R + E)) on x ∈ [0, 1]. Recall that W ⩾ 0 and det W = 1, so

exp(−C(R + E)) I ≲ W ≲ exp(C(R + E)) I, x ∈ [0, 1].

Since λ is the largest eigenvalue of W and λ ≲ exp(C(R + E)), then (5-30) yields
∥λ− 1∥L2[0,1] ≲ E1/2 exp(C(R + E)) and ∥λ−1

− 1∥L2[0,1] ≲ E1/2 exp(C(R + E)).
Introduce ϒ = W − I . The matrix ϒ is unitarily equivalent to

(
λ−1

0
0

1/(λ−1)

)
and

that gives

(5-34) ∥ϒ∥L2[0,1] ≲ E1/2 exp(C(R + E)).

We need to study ϒ ′, which is equal to W ′. To do so, notice that

(5-35) 2N ∗ JQN = H′

Q = G∗ J (v1 + v2)WG + G∗WJ (v1 + v2) G + G∗W ′G.

Hence,
ϒ ′

= W ′
= F1 + F2,

where

F1 = −J (v1 + v2)W − WJ (v1 + v2), F2 = 2(G∗)−1 N ∗ JQN G−1.

The previously obtained estimates give us

(5-36) ∥F1∥L1[0,1] ≲ E1/2 exp(C(R + E)), ∥F2∥L2[0,1] ≲ exp(C(R + E)).

Now, we use (5-34) and (5-36) to apply the previous lemma to each component
of ϒ to obtain

(5-37) ∥ϒ∥L∞[0,1] ≲ E1/4 exp(C(R + E)).

The formula (5-35) also gives an expression for Q:

Q = −J (H1 + H2),

where

H1 = 0.5(N ∗)−1(G∗ J (v1 + v2)WG + G∗WJ (v1 + v2) G) N−1,

H2 = 0.5(N ∗)−1(G∗ϒ ′G) N−1.

Since ∥H1∥L1[0,1] ≲ E1/2 exp(C(R + E)), we have∥∥∥∥ex
∫ 1

x
e−s H1 ds

∥∥∥∥
L∞[0,1]

≲ E1/2 exp(C(R + E)).
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For smooth matrix-functions u1, u2, u3, we have∫ 1

x
u1 u′

2 u3 ds = u1u2u3|
1
x −

∫ 1

x
u′

1 u2 u3 ds −

∫ 1

x
u1 u2 u′

3 ds.

Then,

2ex
∫ 1

x
e−s H2 ds

= ex(e−1(N ∗(1))−1G∗(1)ϒ(1) G(1)(N (1))−1

− e−x(N ∗(x))−1G∗(x)ϒ(x) G(x)(N (x))−1)
− ex

∫ 1

x
(e−s(N ∗(s))−1G∗)′ϒG N−1 ds − ex

∫ 1

x
e−s(N ∗(s))−1G∗ϒ(G N−1)′ ds.

Since ∥(N−1)′∥L2[0,1] ≲ exp(C(R+E)) and ∥G ′
∥L1[0,1] ≲ exp(C(R+E)), we have∥∥∥∥ex

∫ 1

x
e−s H2 ds

∥∥∥∥
L∞[0,1]

≲ ∥ϒ∥L∞[0,1] exp(C(R + E))
(5-37)
≲ E1/4 exp(C(R + E)).

Summing up, we get

(5-38)
∥∥∥∥ex

∫ 1

x
e−s Q ds

∥∥∥∥
L∞[0,1]

≲ E1/4 exp(C(R + E)).

Step 2 (handling all intervals [n, n+1] for n ∈ Z). Take any n ∈ Z. Our immediate
goal is to show the bound

(5-39)
∥∥∥∥ex

∫ n+1

x
e−s Q ds

∥∥∥∥
L∞[n,n+1]

≲ E1/4 exp(C(R + E))

analogous to (5-38) but written for interval [n, n + 1]. To this end, take the Hamil-
tonian H(n)(x) := HQ(x + n) defined on R+. For the corresponding K̃+

(n), we
get K̃+

(n) ⩽ E as follows from its definition. Since the K̃-characteristics of the
Hamiltonians H and S∗HS are equal for every constant matrix S ∈ SL(2, R), we
can instead consider Ĥ(n)

= N̂ ∗ N̂ where N̂ ′
= JQ(x + n)N̂ , N̂ (0) = I . Using the

arguments in Step 1 for Ĥ(n), we get (5-39).

Step 3 (summing up). Denote On(x) = ex
∫

∞

x e−s Q · χn<s<n+1 ds. Notice that
O =

∑
n∈Z On . Since On(x) = 0 for x > n +1 and ∥On(x)∥≲ ex−n

∥On∥L∞[n,n+1]

for x < n, we then get

∥O(x)∥ ⩽
∑
n∈Z

∥On(x)∥ ≲ E1/4 exp(C(R + E))
∑
n⩾0

e−n
∼ E1/4 exp(C(R + E))

as follows from (5-39). That finishes the proof of Lemma 5.7. □
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Proof of Theorem 4.1. Denote E = K̃Q and O = ex
∫

∞

x e−s Q ds, and recall that
∥O∥L2(R) ∼ ∥Q∥H−1(R) ⩽ ∥Q∥L2(R).

Step 1 (lower bound). Define δn = ∥O∥L2[n,n+1]. By Lemma 5.7, we know
that supn δn ≲ E1/4 exp(C(R + E)). Next, we apply Lemma 5.4 to each interval
[n, n + 2]. The remainder rn in that lemma allows the estimate

rn ≲ (δn + δn+1)
2.5 exp(C(δn + δn+1 + R)), n ∈ Z.

For each R > 0 and η > 0, we find a positive E0(R, η) such that E ∈ (0, E0(R, η))

implies that the remainder rn is smaller than η(δ2
n + δ2

n+1) uniformly in all n. For
example, one can take

(5-40) E0(R, η) ∼ e−Cη R,

where Cη is a sufficiently large positive number that depends on η. Therefore, for
such E and some positive constant c independent of η, we have∑

n∈Z

(c − η) δ2
n ≲

∑
n∈Z

(
det

∫ n+2

n
HQdx − 4

)
≲

∑
n∈Z

(c + η) δ2
n,

where the Proposition 5.1 has been applied to the terms
∫ n+2

n |g j −⟨g j ⟩|
2 dx in the

right-hand side of (5-15), adjusted to the interval [n, n + 2], to show that they are
comparable to δ2

n + δ2
n+1. Taking η =

c
2 , we see that

E =

∑
n∈Z

(
det

∫ n+2

n
HQdx − 4

)
∼

∑
n∈Z

δ2
n ∼ ∥O∥

2
L2(R)

,

for E ⩽ E0
(
R, c

2

)
. If E > E0(R, c

2), one uses inequality ∥O∥L2(R)≲ R to get

(5-41) e−CR
∥O∥

2
L2(R)

≲
E0

(
R, c

2

)
1 + R2 ∥O∥

2
L2(R)

≲ E,

which holds for some positive absolute constant C due to (5-40). That provides the
required lower bound.

Step 2 (upper bound). Let δn = ∥O∥L2[n,n+1]. For a given value of R, apply
Lemma 5.4 and Proposition 5.1 to each interval [n, n + 2]. That gives

E ≲
∑
n∈Z

δ2
n eC(R+δn),

with an absolute constant C . Since
∑

n∈Z δ2
n ∼ ∥q∥

2
H−1(R)

, ∥q∥H−1(R)≲ R, one has

E ≲ ∥q∥
2
H−1(R)

eC(R+∥q∥H−1(R)
)≲ ∥q∥

2
H−1(R)

eC2 R. □
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Appendix

Here we collect some auxiliary results used in the main text.

A.1. We start with an example that shows that the scattering transform is not
injective when defined on q ∈ L2(R). This is an analog of Lemma 17 in [27].

Example A.8. There exist potentials q1, q2 ∈ L2(R) such that q1 ̸= q2 in L2(R)

but we have rq1 = rq2 a.e. on R for their reflection coefficients. In other words, the
scattering transform q 7→ rq is not injective on L2(R).

Proof. Let us consider

a+

1 = 1, b+

1 = 0, a−

1 = a, b−

1 = b

and
a+

2 = a, b+

2 = b, a−

2 = 1, b−

2 = 0,

where a = 1 + i/x and b = i/x . Note that∫
R

log(1 − |s±

k (x)|2) dx > −∞, s±

k := b±/a±

k , k = 1, 2.

Theorem 12.11 in [13] says that for every contractive analytic function s on C+

whose boundary values on R satisfy log(1 − |s|2) ∈ L1(R) there exists a unique
coefficient A ∈ L2(R+) such that s = limξ→+∞

B(ξ,λ)
A(ξ,λ)

, λ ∈ C+ for the continuous
Wall polynomials generated by A. Moreover, we have

(A-1) 2π∥A∥
2
L2(R+)

= ∥log(1 − |s|2)∥L1(R+).

Applying this result, we see that there exist functions A±

1 , A±

2 ∈ L2(R+) such that
a±

1,2, b±

1,2 are the limits of their continuous Wall polynomials. Now define potentials
q1,2 ∈ L2(R) by relations

A+

1,2(ξ) = −
1
2q1,2(ξ/2), A−

1,2(ξ) =
1
2q1,2(−ξ/2), ξ ∈ R+.

From Proposition 2.8, we conclude that the coefficients a1,2, b1,2 for these potentials
satisfy

a1 = a = a2, b1 = −b = b = b2

on R\{0}. Hence, rq1 = rq2 on R\{0}. On the other hand, we have A+

1 =0 and A−

2 =0
by construction. It follows that supp q1 ⊂ (−∞, 0] and supp q2 ⊂ [0, +∞). Since
q1 and q2 are nonzero (they have a nonzero L2(R)-norm as follows from (A-1)),
that yields q1 ̸= q2 in L2(R). □
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A.2. Next, we outline how to prove that the spectral representation for the Dirac
operator DQ , defined by relation (3-1), is given by the Weyl–Titchmarsh trans-
form (3-10). To this end, we will use the corresponding result for canonical
Hamiltonian systems proved in [24].

At first, we note that if HQ = N ∗

Q NQ is the Hamiltonian from Theorem 3.1.
Then, detHQ = 1 on R and the operator V : X 7→ N−1

Q X is unitary from L2(R, C2)

onto the Hilbert space

L2(HQ) =

{
Y : R → C2

: ∥Y∥
2
L2(HQ ,R)

=

∫
R

⟨HQ(ξ)Y (ξ), Y (ξ)⟩C2 dξ < ∞

}
.

Moreover, VDQ V −1 coincides with the operator DHQ : Y 7→H−1 JY ′ of the canon-
ical Hamiltonian system generated by the Hamiltonian HQ . Thus, the operator DQ

on L2(R, C2) is unitarily equivalent to the operator DHQ on L2(HQ). Let M̃ be the
solution of Cauchy problem

(A-2) J M̃ ′(ξ, z) = zHQ(ξ) M̃(ξ, z), M̃(0, z) =

(
1 0
0 1

)
,

where z ∈ C, ξ ∈ R, and the differentiation is taken with respect to ξ ∈ R. The
Weyl–Titchmarsh transform for DHQ is defined by

FDHQ
: Y 7→

1
√

π

∫
R

M̃(ξ, λ)∗HQ(ξ)Y (ξ) dξ

on a dense subset of L2(HQ) of smooth compactly supported functions. This
operator is unitary from L2(HQ) onto the space L2(ρ) defined in the same way as
at the beginning of Section 3. Specifically, we let m± be the half-line Weyl functions
of HQ and define ρ as the representing measure for the matrix-valued Herglotz
function m in (3-8). It was proved in Theorem 3.21 in [24] that FDHQ

DHQ F−1
DHQ

coincides with the operator of multiplication by the independent variable in L2(ρ).
We also have

FDHQ
(V X) = FDQ X, X ∈ L2(R, C2).

Thus, we only need to check that the Weyl functions m± used in Section 3 coincide
with the half-line Weyl functions of the Hamiltonian HQ . For the R+-Weyl functions
this follows from Lemma A.9 below. Comparing the formulas for A+, A− in the
beginning of Section 3, we see that the Weyl function m− for DQ corresponds to
the Weyl function m+ for DQ̃ where Q̃(ξ) = σ3 Q(−ξ)σ3. Similarly, in the setting
of canonical Hamiltonian systems, the Weyl function m− for DHQ coincides with
the Weyl function m+ of DH̃Q

such that H̃Q(ξ) = σ3H(−ξ)σ3. Therefore, the
statement for A− follows from Lemma A.9 and from the relation

H̃Q = σ3HQ σ3 = (σ3 N ∗

Q σ3)(σ3 NQ σ3) = HQ̃ .
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Lemma A.9. Let q ∈ L2(R+). Define

Q(ξ) =

(
− Im q(ξ) − Re q(ξ)

− Re q(ξ) Im q(ξ)

)
, A(ξ) = −

1
2q(ξ/2), ξ ∈ R+.

Let NQ be defined by

JN ′

Q(ξ, λ)+ Q(ξ) NQ(ξ, λ) = λNQ(ξ, λ), NQ(0, λ) =

(
1 0
0 1

)
.

Consider the Hamiltonian HQ := N ∗

Q(ξ, 0) NQ(ξ, 0) on R+ and let M̃ =
( M̃11

M̃21

M̃12
M̃22

)
be defined by

JM̃ ′(ξ, z) = zHQ(ξ) M̃(ξ, z), M̃(0, z) =

(
1 0
0 1

)
.

Let, finally, P , P∗, P̂ , P̂∗ be the solutions to Krein systems (2-11) and (2-12) for
the coefficient A on R+. Then,

(A-3) lim
ξ→+∞

M̃22(ξ, z)
M̃21(ξ, z)

= lim
ξ→+∞

(NQ)22(ξ, z)
(NQ)21(ξ, z)

= lim
ξ→+∞

i
P̂∗(ξ, z)
P∗(ξ, z)

, z ∈ C+.

In other words, the function m+ in (3-7) is the half-line Weyl function for the
operators DHQ , DQ .

Proof. The formula

lim
ξ→+∞

M̃22(ξ, z)
M̃21(ξ, z)

= lim
ξ→+∞

(NQ)22(ξ, z)
(NQ)21(ξ, z)

for DQ and DHQ is well known and can be derived from the analysis of Weyl
circles by using identity NQ(ξ, λ) = NQ(ξ, 0) M̃(ξ, λ) and the invariance of Weyl
circles under transforms generated by J -unitary matrices (in our setting, the J -
unitary matrix is NQ(ξ, 0): we have N ∗

Q(ξ, 0) JNQ(ξ, 0) = J on R). See, e.g., [4]
or Section 8 in [25] for more details on Weyl circles for canonical Hamiltonian
systems. Thus, we focus on the second identity in (A-3) and define

X (ξ, z) = e−iξ z
( P(2ξ,z)+P∗(2ξ,z)

2
P̂(2ξ,z)−P̂∗(2ξ,z)

2i
P∗(2ξ,z)−P(2ξ,z)

2i
P̂(2ξ,z)+P̂∗(2ξ,z)

2

)
, ξ ∈ R, z ∈ C.

Differentiating, one obtains J X ′
+ Q X = zX , X (0, z) =

( 1
0

0
1

)
. It follows that

X (ξ, z) = NQ(ξ, z). In particular, we have

(NQ)22 = e−iξ z P̂(2ξ, z) + P̂∗(2ξ, z)
2

,

(NQ)21 = e−iξ z P∗(2ξ, z) − P(2ξ, z)
2i

.
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Since P(ξ, z) → 0, P∗(ξ, z) → 5(z) ̸= 0 as ξ → +∞ (see Theorem 12.1 in [13]),
and analogous relations hold for P̂ and P̂∗, we have

lim
ξ→+∞

(NQ)22(ξ, z)
(NQ)21(ξ, z)

= lim
ξ→+∞

i
P̂∗(ξ, z)
P∗(ξ, z)

, z ∈ C+. □

A.3. Lemma A.9 and some known results for canonical systems can be used to
show that weak convergence of potentials of the Dirac operator implies convergence
of the corresponding Weyl functions.

Lemma A.10. Suppose {qℓ}ℓ>0 is a bounded sequence in L2(R+) which converges
to zero weakly. Let Qℓ be the associated matrix-functions defined as in Lemma A.9.
Then, the sequence of corresponding Weyl functions {mℓ,+} converges to i locally
uniformly in C+ when ℓ → +∞.

Proof. For ℓ> 0, denote by HQℓ
the Hamiltonian generated by Qℓ as in Lemma A.9.

Then, mℓ,+ is the Weyl function for the half-line operators DHQℓ
and DQℓ

. Since
supℓ>0∥qℓ∥L2(R+) < ∞ and qℓ converge to zero weakly in L2(R+) as ℓ → +∞, the
Hamiltonians HQℓ

tend to the identity matrix H0 =
( 1

0
0
1

)
uniformly on compact

subsets on R+. Then, their Weyl functions m+,ℓ tend to the Weyl function m+ = i
of the Hamiltonian H0 locally uniformly in C+ by Theorem 5.7(b) in [24]. □
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