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EXTRINSIC POLYHARMONIC MAPS INTO THE SPHERE

ALI FARDOUN, STEFANO MONTALDO, CEZAR ONICIUC AND ANDREA RATTO

In the first part we shall prove that the inverse of the stereographic projection
π−1 : Rn → Sn (n ≥ 2) is extrinsically k-harmonic if and only if n = 2k.
In the second part we shall study minimizing properties and stability of its
restriction to the closed ball Bn(R). In this context we shall prove that there
exists a small enough positive upper bound R∗

k such that π−1 : Bn(R) → Sn

is a minimizer provided that 0 < R ≤ R∗

k . By contrast, we shall show that
π−1 : Bn(R) → Sn is not energy minimizing when R > 1. Finally, in some
cases we shall obtain stability with respect to rotationally symmetric varia-
tions (equivariant stability) for values of R which are greater than 1.

1. Introduction and statement of the results

In order to set our work in an appropriate setting, let us first briefly recall some
basic facts about some well-known intrinsic energy functionals.

The classical energy functional, whose critical points are called harmonic maps,
is defined by

(1-1) E(u)=
1
2

∫
M
|du|

2 dvg,

where u : M → N is a smooth map between two Riemannian manifolds (M, g)
and (N , h) of dimension m and n respectively (we refer to [6; 7] for background
on harmonic maps). In analytic terms, the condition of harmonicity is equivalent to
the fact that the map u is a solution of the Euler–Lagrange equation associated to
the energy functional (1-1), i.e.,

(1-2) τ(u)= −d∗ du = trace ∇ du = 0.

The left member τ(u) of (1-2) is a vector field along the map u or, equivalently, a
section of the pull-back bundle u−1(TN): it is called tension field.
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Let i : Sn ↪→ Rn+1 denote the canonical inclusion. In the special case that N = Sn

the harmonicity equation (1-2) takes the following form, where, with a slight abuse
of notation, we write u for i ◦ u:

(1-3) 1u + λ1u = 0,

with

(1-4) λ1 = −⟨u,1u⟩ = |∇u|
2

and the sign convention for the Laplacian 1 is such that, for a function f : M → R,

(1-5) 1 f =
1

√
|g|

∂

∂xi

(√
|g| gi j ∂ f

∂x j

)
.

A related topic of growing interest deals with the study of the so-called biharmonic
maps. These maps, which provide a natural generalization of harmonic maps, are
the critical points of the bienergy functional (as suggested in [6; 8]):

(1-6) E2(u)=
1
2

∫
M
|τ(u)|2 dvg.

There have been extensive studies on biharmonic maps (see [5; 15; 21; 22] for an
introduction to this topic). For future comparison we point out that, when the target
manifold N is the Euclidean sphere Sn , the bienergy functional (1-6) takes the form

(1-7) E2(u)=
1
2

∫
M
|(1u)T |

2 dvg =
1
2

∫
M
(|1u|

2
− |∇u|

4) dvg,

where, again, we have written u for i ◦ u, i : Sn ↪→ Rn+1, and ( · )T denotes the
tangential component to Sn .

The inclusion i : Sn ↪→ Rn+1 enables us to consider the Sobolev space

W 2,2(Mm,Sn)=
{
u ∈ W 2,2(Mm,Rn+1) : u(x)= (u1(x), . . . , un+1(x)) ∈ Sn a.e.

}
and so we say that u is a weak critical point if it verifies the Euler–Lagrange equation
in the sense of distributions.

Since any harmonic map is trivially biharmonic we say that a (weakly) biharmonic
map is proper if it is not (weakly) harmonic.

In general, it is very difficult to apply variational methods and, particularly, direct
minimization, to deduce the existence of proper biharmonic maps. The main reason
for this is the fact that harmonic maps provide absolute minima for the bienergy.
To overcome this difficulty, an interesting variant of (1-7), called extrinsic bienergy
or Hessian energy, has been introduced to study maps into Sn . This new functional
(see, for instance, [1; 4; 11; 13; 14; 16; 23]) is defined by

(1-8) Eext
2 (u)=

∫
M
|1u|

2 dvg
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and its Euler–Lagrange equation is

(1-9) 12u + λ2 u = 0,

where
λ2 =1(|∇u|

2)+ |1u|
2
+ 2∇1u.∇u.

Here and below,

(1-10) ∇u = (∇u1, . . . ,∇un+1) and 1u = (1u1, . . . ,1un+1),

where ∇ is the gradient on (Mm, g) (note that each entry of ∇u is an m-dimensional
vector field tangent to M) and we denote by . a scalar product in the sense that

(1-11) ∇u.∇1u =

n+1∑
j=1

⟨∇u j ,∇1u j
⟩g,

where ⟨ , ⟩g is the scalar product associated to the Riemannian metric g.
Next, let us introduce in detail a conformal map which will play a central role

in this paper. The inverse of the stereographic projection, denoted by π−1, can be
described as

(1-12) π−1
: Rn

→ Sn
⊂ Rn

× R, x 7→

(
2

1 + r2 x,
1 − r2

1 + r2

)
,

where r = |x |. In some instances, we shall also denote by π−1 the restriction of π−1

to the n-dimensional ball Bn(R) of radius R.
We point out that, in general, u harmonic does not imply that u is extrinsically

biharmonic. For instance, the map π−1 is conformal and when n = 2 is harmonic,
but not extrinsically biharmonic.

When n = 4, π−1 is not harmonic, but it is a critical point for both (1-7)
and (1-8), that is, it is both intrinsically and extrinsically biharmonic. Therefore,
it is reasonable to think that, when n = 6, π−1 could be a critical point of a suitable
third-order energy functional.

There are two natural energy functionals of order 3. The first is the intrinsic
3-energy:

(1-13) E3(u)=
1
2

∫
M
|dτ |2 dvg.

Critical points of (1-13) are called triharmonic maps. These maps have received
plenty of attention in the literature: their study was proposed in [6; 8] and important
progresses were made in a series of papers by Maeta (see [17; 18; 19; 20]) who
obtained the Euler–Lagrange equations and several general results. Particularly,
the study of triharmonic immersions into Sn provided significant examples. By
contrast, as a part of a more general result, we recently proved in [3] that there exists
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no proper triharmonic rotationally symmetric conformal diffeomorphism from Rn

to Sn
\Pole (n ≥ 2). In particular, the map (1-12) is not triharmonic for all n ≥ 3.

This fact, together with the hope to use more effectively variational methods,
suggested to us to turn our attention to a suitable class of extrinsic k-energy func-
tionals, a context in which we expect that conformal maps may play a significant
role when n = 2k.

More specifically, let (Mm, g) denote a compact Riemannian manifold. Again,
we consider the canonical embedding of the unit Euclidean sphere i : Sn ↪→ Rn+1

and, if u is a map from M into Sn , we shall write u = (u1, . . . , un+1) for i ◦ u.
Assuming that k is a positive integer, we shall work in the Sobolev spaces

W k,2(Mm,Sn)=
{
u ∈ W k,2(Mm,Rn+1) : u(x)= (u1(x), . . . , un+1(x))∈ Sn a.e.

}
.

The extrinsic k-energy functional Eext
k (u) is defined on W k,2(Mm,Sn) as

Eext
k (u)=

∫
M
|1su|

2 dvg, when k = 2s,(1-14)

Eext
k (u)=

∫
M
|∇1su|

2 dvg, when k = 2s + 1.(1-15)

Of course, if k = 1, the extrinsic 1-energy coincides (up to the constant 1
2 ) with the

classical energy. Therefore, our interest is mainly on the case k ≥ 2.
We say that u ∈ W k,2(Mm,Sn) is an extrinsic (weakly) k-harmonic map if

d
dt

Eext
k (ut)

∣∣∣
t=0

= 0

for all variations
ut =

u + tφ
|u + tφ|

,

where φ ∈ C∞

0 (M
m,Rn+1).

A very important class of critical points are the so-called minimizers. Specifically,
a minimizer, or minimizing extrinsic k-harmonic map, is a map u ∈ W k,2(Mm,Sn)

such that
Eext

k (u)≤ Eext
k (v)

for all v ∈ W k,2(Mm,Sn) such that u − v ∈ W k,2
0 (Mm,Rn+1).

If u is an extrinsic k-harmonic map, we say that u is stable if

d2

dt2 Eext
k (ut)

∣∣∣
t=0

≥ 0.

We point out that if u is an unstable critical point, then it cannot be a minimizer.
The following proposition provides the explicit expression of the Euler–Lagrange

equation associated to the extrinsic energy functionals Eext
k (u).
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Proposition 1.1 (see [10]). Let (Mm, g) denote a compact Riemannian manifold.
Assume that k ≥ 2 and let u ∈ W k,2(Mm,Sn). Then u is an extrinsic (weakly)
k-harmonic map if and only if

(1-16) 1ku + λk u = 0

in the sense of distributions. Moreover, if (1-16) holds, then

(1-17) λk =1k−1(|∇u|
2)+

k−2∑
j=0

1 j (⟨1k−1− j u,1u⟩)+ 2
k−2∑
j=0

1 j (∇u.∇1k−1− j u)

(note that 10u = u and ⟨ , ⟩ is the scalar product in Rn+1).

Remark 1.2. As we shall detail below, it will be important for us to consider the
case that u is defined on a Riemannian manifold M which is not compact (for
instance, we shall study the inverse of the stereographic projection π−1

: Rn
→ Sn).

Of course, in this context we shall say that u is extrinsically k-harmonic on M if
it is such on each bounded domain �⊂ M and Proposition 1.1 still applies.

Our first theorem confirms that extrinsic energies are suitable to study analytic
and geometric features of π−1. Indeed, we shall prove:

Theorem 1.3. Assume n ≥ 2 and k ≥ 1. Then the inverse of the stereographic
projection π−1

: Rn
→ Sn is an extrinsic k-harmonic map if and only if n = 2k.

This result makes it natural to ask whether π−1
: B2k(R) → S2k is energy

minimizing for the k-energy. It was proved in [9] that, when k = 2, the answer is
affirmative if and only if 0< R ≤ 1.

In this context we obtain:

Theorem 1.4. Let 0< R ≤ R∗

3 , where the constant R∗

3 ≈ 0.82 is defined in (3-14).
Then π−1

: B6(R)→ S6 is energy minimizing for the extrinsic 3-energy.

As for higher-order energies, we do not have such an explicit upper estimate
for R, but we can prove:

Theorem 1.5. Assume n = 2k with k ≥ 4. Then there exists 0< R∗

k ≤ 1 such that
π−1

: Bn(R)→ Sn is energy minimizing for the extrinsic k-energy provided that
0< R ≤ R∗

k .

Proposition 1.6. Assume n = 2k and R > 1. Then π−1
: Bn(R)→ Sn is not energy

minimizing for the extrinsic k-energy.

As a consequence of these results, a very natural topic for further investigation
is to study when π−1

: B2k(R) → S2k is a stable critical point for the extrinsic
k-energy. The study of this problem is not present in the literature, not even in the
case of the bienergy. In general, it seems to be a difficult task to obtain a complete
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answer depending on R and k. A starting point is to restrict attention to rotationally
symmetric variations, i.e., to the so-called equivariant variations. In this context,
our main result is:

Theorem 1.7. (i) The extrinsically biharmonic map π−1
: B4(R)→ S4 is stable

with respect to equivariant variations provided that 0< R ≤ Rstab
2 ≈ 1.81.

(ii) The extrinsically triharmonic map π−1
: B6(R)→ S6 is stable with respect to

equivariant variations provided that 0< R ≤ Rstab
3 ≈ 1.43.

In our opinion, an interesting feature of Theorem 1.7 is the stability for values
of R > 1. In these cases, the image of the map is not contained in the closed upper
hemisphere.

Our paper is organized as follows. The proof of Theorem 1.3 requires to overcome
several technical difficulties and will be carried out in Section 2. In Section 3 we
prove Theorems 1.4, 1.5 and Proposition 1.6. The study of the second variation
will be carried out in Section 4, where we shall prove Theorem 1.7.

2. Proof of Theorem 1.3

We carry out some preliminary work. Let r = |x | and u : Rn
\{O} → Sn

⊂ Rn+1 be
a map of the form

(2-1) x = (x1, . . . , xn) 7→ (p(r) x, q(r))= (p(r) x1, . . . , p(r) xn, q(r)),

where p(r) and q(r) are smooth functions for r >0. We shall need to compute terms
involving 1ku and ∇1ku. To this purpose, it is convenient to define recursively the
following functions:

(2-2)

P0(r)= p(r),

Pk(r)= P ′′

k−1(r)+
(n + 1)

r
P ′

k−1(r), k ≥ 1,

Q0(r)= q(r),

Qk(r)= Q′′

k−1(r)+
(n − 1)

r
Q′

k−1(r), k ≥ 1.

We observe that the above functions depend on n. However, since this dependence
will always be clear from the context, we have simplified the notation avoiding to
write Pk,n(r) etc. Next, we have:

Lemma 2.1. Let u : Rn
\{O} → Sn

⊂ Rn+1 be a map as in (2-1). Then, in the
notation of (2-2) for all i, k ≥ 0 we have:

(i) 1ku = (Pk(r) x, Qk(r)).

(ii) ⟨1i u,1ku⟩ = r2 Pi (r)Pk(r)+ Qi (r) Qk(r).
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(iii) ∇1ku =

P ′

k x1

r


x1

x2
...

xn

 +


Pk

0
...

0

 , P ′

k x2

r


x1

x2
...

xn

 +


0
Pk
...

0



, . . . ,
P ′

k xn

r


x1

x2
...

xn

 +


0
0
...

Pk

 , Q′

k

r


x1

x2
...

xn


.

(iv) ∇1i u.∇1ku = r2 P ′

i P ′

k + n Pi Pk + r P ′

i Pk + r Pi P ′

k + Q′

i Q′

k .

(note that 10u = u and the scalar product . was defined in (1-11)).

Proof. The proof is a straightforward computation which can be carried out using

∇ p(r)= p′(r) x
r
, 1p(r)= p′′(r)+ (n−1)

r
p′(r),

1( f g)= f1g + g1 f + 2⟨∇ f,∇g⟩. □

Proof of Theorem 1.3. Observe that the smooth map π−1 is of the type (2-1) with

(2-3) p(r)=
2

1 + r2 and q(r)=
1 − r2

1 + r2 .

We need to compute the explicit expression of the functions introduced in (2-2).
To this purpose, it is convenient to define the following sets of constants:

(2-4) Bk = (−1)k 2k+1 k! (k ≥ 1)

and

(2-5) ak[ j, n] =

(
k
j

)k−1∏
ℓ= j

(n+2ℓ+2)
j−1∏
ℓ=0

(n+2ℓ−2k) (n ≥ 2, k ≥ 1, 0 ≤ j ≤ k).

Note that we make use of the convention

q ′∏
ℓ=q

Cℓ = 1, whenever q ′ < q.

The following lemma is technically difficult, but crucial for our proof.

Lemma 2.2. Assume that n ≥ 2. In the case of π−1
: Rn

→ Sn , the explicit
expression of the functions Pk(r), Qk(r) introduced in (2-2) is
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Pk(r)=
Bk

(1 + r2)2k+1

k∑
j=0

ak[ j, n] r2 j (k ≥ 0),(2-6)

Qk(r)=
Bk

(1 + r2)2k+1

k∑
j=0

ak[ j, n − 2] r2 j (k ≥ 1),

Q0(r)= q(r) (= −1 + P0(r)).

(2-7)

In order to preserve the flow of the exposition, the rather tedious proof of the
previous lemma will be given at the end of the proof of the theorem.

Now, using Lemma 2.1(i), we easily see that the Euler–Lagrange equation (1-16)
is equivalent to the system

(2-8)
{

Pk(r)+ λk p(r)= 0,
Qk(r)+ λk q(r)= 0.

Next, let us assume that π−1
: Rn

→ Sn is extrinsically k-harmonic. Then, taking
into account that q(r)= −1 + p(r), equation (2-8) implies

(2-9) (−1 + p(r))Pk(r)− p(r)Qk(r)= 0.

Using Lemma 2.2, we see immediately that (2-9) has the form

(2-10)
1

(1 + r2)2k+2

k+1∑
j=0

ck[ j, n] r2 j
= 0

for some real coefficients ck[ j, n]. Next, we observe that

ck[0, n] = Bk(ak[0, n] − 2ak[0, n − 2])

= Bk

(k−1∏
ℓ=0

(n + 2ℓ+ 2)− 2
k−1∏
ℓ=0

(n + 2ℓ)
)

= Bk

(
(n + 2k)

k−1∏
ℓ=1

(n + 2ℓ)− 2n
k−1∏
ℓ=1

(n + 2ℓ)
)

= Bk

(
(2k − n)

k−1∏
ℓ=1

(n + 2ℓ)
)
.

Of course, if ck[0, n] ̸= 0, then (2-10) can hold only at isolated points. Therefore, a
necessary condition for the validity of (2-10) is ck[0, n] = 0, i.e., n = 2k. By way of
summary, we have proved that n = 2k is necessary for the extrinsic k-harmonicity
of π−1

: Rn
→ Sn .
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Conversely, let us now assume that n = 2k. If we use this assumption in the
definition of ak[ j, n] it is easy to check that

ak[ j, 2k] = 0 ( j ≥ 1), ak[0, 2k] =

k−1∏
ℓ=0

(2k + 2ℓ+ 2).

From this, it follows easily that

(2-11) −
Pk(r)
p(r)

=
Ak

(1 + r2)2k ,

where

(2-12) Ak = −
1
2 Bk

k−1∏
ℓ=0

(2k + 2ℓ+ 2)= (−1)k+1 22k (2k)!.

In a similar fashion we find

ak[ j, 2k − 2] = 0 ( j ≥ 2), ak[0, 2k − 2] =

k−1∏
ℓ=0

(2k + 2ℓ),

ak[1, 2k − 2] =

(
k
1

) k−1∏
ℓ=1

(2k + 2ℓ)
0∏
ℓ=0

(2ℓ− 2)= −

k−1∏
ℓ=0

(2k + 2ℓ).

From this, using again Lemma 2.2, it is easy to conclude that

−
Qk(r)
q(r)

= −Bk

k−1∏
ℓ=0

(2k + 2ℓ)
1

(1 + r2)2k

= −
1
2 Bk

k−1∏
ℓ=0

(2k + 2ℓ+ 2)
1

(1 + r2)2k =
Ak

(1 + r2)2k .

The conclusion is that, if n = 2k, then π−1
: Rn

→ Sn is extrinsically k-harmonic
because it verifies the Euler–Lagrange equation (1-16) with

(2-13) λk =
Ak

(1 + r2)2k ,

where Ak was defined in (2-12). So, it only remains to prove Lemma 2.2.

Proof of Lemma 2.2. First, we prove (2-6). We observe that n ≥ 2 is a fixed integer
and so we proceed by induction on k. It is immediate to check that, independently
of n, P0(r) = p(r). Thus, our proof amounts to check that the functions Pk(r)
defined in (2-6) verify the recursive law

(2-14) Pk+1(r)= P ′′

k (r)+
(n + 1)

r
P ′

k(r).



268 ALI FARDOUN, STEFANO MONTALDO, CEZAR ONICIUC AND ANDREA RATTO

A straightforward direct computation, taking into account the expression (2-6)
for Pk(r), shows that the right-hand side of (2-14) is given by

(2-15)
Tk(r)

(1 + r2)3+2k ,

where

(2-16) Tk(r)= 2Bk

{k−1∑
j=0

( j + 1)(n + 2 j + 2) ak[ j + 1, n] r2 j

− (2k + 1)(n + 2)
k∑

j=0

ak[ j, n] r2 j

+

k∑
j=1

2 j (−4k + n + 2 j − 2) ak[ j, n] r2 j

+ (2k + 1)(4k − n + 2)
k+1∑
j=1

ak[ j − 1, n] r2 j

+

k+1∑
j=1

( j − 1)(−8k + n + 2 j − 6) ak[ j − 1, n] r2 j
}

= 2Bk

k+1∑
j=0

d j r2 j

for some real coefficients d j , j = 0, . . . , k + 1.
For later use we note that, applying directly the definition of ak[ j, n] given

in (2-5), we have the following relations which hold for 1 ≤ j ≤ k:

(2-17) ak[ j−1,n]=

(
k

j−1

) k−1∏
ℓ= j−1

(n+2+2ℓ)
j−2∏
ℓ=0

(n−2k+2ℓ)

=

[( k
j−1

)(k
j

) ](
k
j

)
(n+2 j)

(n−2k+2 j−2)

k−1∏
ℓ= j

(n+2+2ℓ)
j−1∏
ℓ=0

(n−2k+2ℓ)

=
j

(k− j+1)
(n+2 j)

(n−2k+2 j−2)
ak[ j,n],

and, in a similar way, for 1 ≤ j ≤ k − 1:

(2-18) ak[ j + 1, n] =
(k − j)
( j + 1)

(n + 2 j − 2k)
(n + 2 j + 2)

ak[ j, n].

Moreover, we shall also need to use

(2-19) ak+1[ j, n] =
(k + 1)(n − 2k − 2)(2k + n + 2)
(− j + k + 1)(n + 2 j − 2k − 2)

ak[ j, n] (0 ≤ j ≤ k).
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This last formula can be proved using again the definition (2-5) and the methods
which we employed in (2-17). Indeed,

ak+1[ j, n]

=

(
k + 1

j

) k∏
ℓ= j

(n + 2ℓ+ 2)
j−1∏
ℓ=0

(n + 2ℓ− 2k − 2)

=

[(k+1
j

)(k
j

) ](
k
j

)
(n +2k +2)

(k−1∏
ℓ= j

(n +2+2ℓ)
)

(n − 2k − 2)
(n − 2k + 2 j − 2)

j−1∏
ℓ=0

(n −2k +2ℓ)

=
(k + 1)(n − 2k − 2)(2k + n + 2)
(− j + k + 1)(n + 2 j − 2k − 2)

ak[ j, n].

Next, since Bk+1 = −2(k + 1) Bk and taking into account the expression (2-6)
for Pk+1(r), the proof of (2-14) will be completed if we show that the coefficients d j

introduced in (2-16) verify

(2-20) d j = −(k + 1) ak+1[ j, n] for all 0 ≤ j ≤ k + 1.

Now, from (2-16), we find

d0 = (n + 2)
[
ak[1, n] − (1 + 2k) ak[0, n]

]
= (n + 2)

[
k(n − 2k)

k−1∏
ℓ=1

(n + 2ℓ+ 2)− (1 + 2k) ak[0, n]

]
= (n + 2)

[
k(n − 2k)

ak[0, n]

(n + 2)
− (1 + 2k) ak[0, n]

]
= −(k + 1) (n + 2k + 2) ak[0, n]

= −(k + 1) ak+1[0, n]

and so (2-20) is proved when j = 0.
Next, computing and using (2-17)–(2-19), we obtain

dk = (2 + k)(4 + 2k − n) ak[k − 1, n] − (2 + 8k + 4k2
+ n) ak[k, n]

= −(k + 1)
(k + 1) n2

− 4(k + 1)3

(n − 2)
ak[k, n] = −(k + 1) ak+1[k, n],

dk+1 = [(2k + 1)(4k − n + 2)+ k(−8k + n + 2k − 4)] ak[k, n]

= −(k + 1)(n − 2 − 2k) ak[k, n] = −(k + 1) ak+1[k + 1, n].

Thus, we have verified that (2-20) is true also when j = k and j = k + 1.
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As for the other coefficients, again, from (2-16) we find

(2-21) d j = [(2k + 1)(4k − n + 2)+ ( j − 1)(−8k + n + 2 j − 6)] ak[ j − 1, n]

+ [2 j (−4k + n + 2 j − 2)− (2k + 1)(n + 2)] ak[ j, n]

+ ( j + 1)(n + 2 j + 2) ak[ j + 1, n].

for 1 ≤ j ≤ k − 1.
Next, substituting (2-17) and (2-18) into (2-21), after a routine simplification

and using again (2-19), we obtain

(2-22) d j = −
(k + 1)2(n − 2k − 2)(2k + n + 2)
(− j + k + 1)(n + 2 j − 2k − 2)

ak[ j, n] = −(k + 1) ak+1[ j, n].

Therefore, the verification of (2-20) is completed and so the proof of (2-6) is ended.
As for (2-7), we observe that the recursive definition (2-2) of Qk(r) is as that

of Pk(r), with the only difference that n is replaced by n − 2. Moreover, the
difference between q(r) and p(r)= P0(r) is just the additive constant −1, which
is irrelevant for k ≥ 1. Therefore, the explicit expression of Qk(r) can be obtained
replacing n by n − 2 in the expression of Pk(r) and so the conclusion of the lemma
follows immediately. □

In conclusion, the proof of Theorem 1.3 is now ended. □

Remark 2.3. Let n = 2k. The extrinsic k-energy of π−1
: Rn

→ Sn is finite. For
instance, explicit integration provides the exact value of the extrinsic 3-energy of
π−1

: R6
→ S6:

Eext
3 (π−1)= Vol(S5)

∫
+∞

0
[r2 P ′2

1 + 6P2
1 + 2r P ′

1 P1 + Q′2
1 ] r5 dr

= π3
∫

+∞

0

512r5(7r4
+ 24r2

+ 12)
(r2 + 1)6

dr

= −π3 256(7r8
+ 26r6

+ 30r4
+ 15r2

+ 3)
(r2 + 1)5

∣∣∣∣+∞

0
= 768π3.

Note that E(π−1)= 4π and Eext
2 (π−1)= 64π2.

3. Proofs of Theorems 1.4, 1.5 and Proposition 1.6

Proof of Theorem 1.4. Step 1. Lemma 3.1 below is a version of Lemma 2.3 of [10]
in this context. The proof is similar, but we include it for the sake of completeness
(to shorten the notation, when the meaning is clear, we shall use “.” instead of ⟨ , ⟩).

Lemma 3.1. (i) Let n = 2k and k = 2s. If

(3-1)
∫

Bn(R)
[|1sφ|

2
− (12sπ−1.π−1) |φ|

2
] dx ≥ 0
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for all φ ∈ W k,2
0 (Bn(R),Rn+1), then π−1 is energy minimizing for the extrinsic

k-energy.

(ii) Let n = 2k and k = 2s + 1. If

(3-2)
∫

Bn(R)
[|∇1sφ|

2
+ (12s+1π−1.π−1) |φ|

2
] dx ≥ 0

for all φ ∈ W k,2
0 (Bn(R),Rn+1), then π−1 is energy minimizing for the extrinsic

k-energy.

Proof. (i) We must show that

(3-3) Eext
k (π−1)≤ Eext

k (v)

for all v ∈ W k,2(Bn(R),Sn) such that π−1
− v ∈ W k,2

0 (Bn(R),Rn+1).
On the ball Bn(R) the map π−1 satisfies

(3-4) 12sπ−1
= (12sπ−1.π−1) π−1

strongly. Thus we can multiply both sides of (3-4) by φ ∈ W k,2
0 (Bn(R),Rn+1) and

we obtain ∫
Bn(R)

1sπ−1.1sφ dx =

∫
Bn(R)

(12sπ−1.π−1) π−1.φ dx .

Choosing φ = π−1
− v we deduce that∫

Bn(R)
1sπ−1.1sπ−1 dx −

∫
Bn(R)

1sπ−1.1sv dx

=

∫
Bn(R)

(12sπ−1.π−1) dx −

∫
Bn(R)

(12sπ−1.π−1) π−1.v dx,

which for convenience we rewrite as

(3-5) −2
∫

Bn(R)
|1sπ−1

|
2 dx + 2

∫
Bn(R)

1sπ−1.1sv dx

= −2
∫

Bn(R)
(12sπ−1.π−1) dx + 2

∫
Bn(R)

(12sπ−1.π−1) π−1.v dx .

Next, we apply the hypothesis (3-1) with φ = π−1
− v. Since π−1, v have values

in Sn we have
|φ|

2
= |π−1

− v|2 = 2 − 2π−1.v

and so we easily find

(3-6)
∫

Bn(R)
|1sv|2 dx +

∫
Bn(R)

|1sπ−1
|
2 dx − 2

∫
Bn(R)

1sπ−1.1sv dx

− 2
∫

Bn(R)
(12sπ−1.π−1) dx + 2

∫
Bn(R)

(12sπ−1.π−1) π−1.v dx ≥ 0.
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Finally, inserting (3-5) into the second line of (3-6), we obtain∫
Bn(R)

|1sv|2 dx −

∫
Bn(R)

|1sπ−1
|
2 dx ≥ 0,

which is precisely (3-3). The proof of part (ii) is analogous and so we omit the
details. □

Step 2. Case n = 2k, k = 2s. Taking into account (2-12) and (2-13) it is easy to
deduce that the inequality (3-1) is equivalent to

(3-7)
∫

Bn(R)

[
|1sφ|

2
−

24s(4s)!
(1 + r2)4s |φ|

2
]

dx ≥ 0.

Similarly, when n = 2k and k = 2s + 1, equation (3-2) can be written as

(3-8)
∫

Bn(R)

[
|∇1sφ|

2
−

24s+2(4s + 2)!
(1 + r2)4s+2 |φ|

2
]

dx ≥ 0.

We also point out that in (3-1), (3-2), (3-7) and (3-8) the test function φ is a
vector function φ = (φ1, . . . , φn+1). But, since

|1sφ|
2
=

n+1∑
i=1

|1sφi
|
2, |∇1sφ|

2
=

n+1∑
i=1

|∇1sφi
|
2 and |φ|

2
=

n+1∑
i=1

|φi
|
2,

we easily deduce that it suffices to prove that these inequalities hold for all scalar
test functions φ ∈ W k,2

0 (Bn(R),R).
By way of summary, the validity of (3-7) (case k = 2s) or (3-8) (case k = 2s +1)

for all φ ∈ W k,2
0 (Bn(R),R) is sufficient to insure that π−1

: B2k(R) → S2k is a
minimizer for the extrinsic k-energy.

As a special case, the proof of Theorem 1.4 will be complete if we show that the
inequality (3-8), with s = 1, holds provided that 0< R ≤ R∗

3 .
To this purpose, we recall that in [12, Theorem 3, p. 2159] the authors proved

a general third-order Hardy inequality for bounded domains � ⊂ Rn , n ≥ 6. It
is convenient for us to state their result in the special case n = 6 and �= B6(R).
We set

(3-9) c1 = 573(2), c2 = 63(2)2 + 43(4)2, c3 =3(2)3(4)2,

where

3(n)= inf
{∫ 1

0 |v′(r)|2 rn−1 dr∫ 1
0 |v(r)|2 rn−1 dr

: v ∈ X
}
,

with
X =

{
v ∈ C1([0, 1]) : v′(0)= v(1)= 0, v ̸≡ 0

}
.
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In other words, 3(n) is the first positive eigenvalue associate to the Dirichlet
problem for 1 on Bn , i.e.,

3(n)= λ1 = inf
{∫

Bn|∇φ|
2∫

Bnφ2 : φ ∈ W 1,2
0 (Bn), φ ̸≡ 0

}
.

It is also known (see [12]) that

3(n)2 = inf
{∫

Bn (1φ)
2∫

Bnφ2 : φ ∈ W 2,2
∩ W 1,2

0 (Bn), φ ̸≡ 0
}

= λ2
1.

The value of λ1, which depends on n, is related to the first positive zero for a class
of Bessel functions.

More precisely (see [2]), let ν =
n
2 − 1. Then λ1 = j2

ν , where jν denotes the first
positive zero of the Bessel function Jν(r). In particular,

(3-10) 3(2)= j2
0 ≈ (2.4)2, 3(4)= j2

1 ≈ (3.8)2.

Then we have:

Theorem 3.2 [12]. Let φ ∈ W 3,2
∩ W 1,2

0 (B6(R)) with 1φ = 0 on ∂B6(R), i.e.,
1φ ∈ W 1,2

0 (B6(R)). Then

(3-11)
∫

B6(R)
|∇1φ|

2 dx ≥
c1

R2

∫
B6(R)

φ2

|x |4
dx+

c2

R4

∫
B6(R)

φ2

|x |2
dx+

c3

R6

∫
B6(R)

φ2 dx,

where the constants ci , i = 1, 2, 3, are defined in (3-9).

Now, we are in the position to conclude the proof of Theorem 1.4.
Indeed, since in our context φ ∈ W 3,2

0 (B6(R)), we can apply (3-11) and we
deduce (r = |x |):

(3-12)
∫

B6(R)
|∇1φ|

2 dx ≥

∫
B6(R)

[
c1

R2r4 +
c2

R4r2 +
c3

R6

]
φ2 dx

=

∫
B6(R)

ψR(r) φ2 dx,

where we have set

ψR(r)=
c1

R2r4 +
c2

R4r2 +
c3

R6 , 0< r ≤ R.

Now, taking into account (3-8), we deduce that (3-12) implies that (3-2) with s = 1
holds provided that

(3-13) ψR(r)−
46080
(1 + r2)6

≥ 0 on (0, R].
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0.6 0.7 0.8 0.9 1

ψ0.9(r)
ψ0.82(r)

ψ0.7(r)

ψ0.6(r)

ϑ(r)

r

Figure 1. Analysis of condition (3-13). Here ϑ(r)=
46080
(1+r2)6

.

Therefore, it is natural to define

(3-14) R∗

3 = Max{R > 0 : (3-13) holds}.

Now, using (3-9) and (3-10), a routine analysis shows that R∗

3 is well defined
and (3-13) holds for all 0 < R ≤ R∗

3 . Finally, a straightforward analysis carried
out with Mathematica shows that R∗

3 ≈ 0.82 and so the proof of Theorem 1.4 is
completed. We have inserted the output of this study in Figure 1. □

Proof of Theorem 1.5. We follow the method of proof of Theorem 1.4. Then,
when k = 2s ≥ 4, it suffices to prove the existence of 0 < R∗

k ≤ 1 such that the
inequality (3-7) holds for 0< R ≤ R∗

k . This can be achieved using another result
of [12]. Indeed, let us fix k = 2s. Then Corollary 2 of [12] enables us to say that
there exist positive constants c1, . . . , ck such that∫

Bn(R)
|1sφ|

2 dx ≥

k∑
ℓ=1

cℓ
R2ℓ

∫
Bn(R)

φ2

|x |2k−2ℓ dx

for all φ ∈ W k,2
0 (Bn(R),R). From this we easily deduce that

(3-15)
∫

Bn(R)
|1sφ|

2 dx ≥

(∑k
ℓ=1 cℓ

)
R4s

∫
Bn(R)

φ2

(1 + |x |2)4s dx .

Therefore, setting

R∗

k = 2
4s

√(∑k
ℓ=1 cℓ

)
(2s)!

,

it is easy to conclude that (3-7) holds for all 0< R ≤ R∗

k . Moreover, as a consequence
of Proposition 1.6, we observe that necessarily R∗

k ≤ 1 and so the proof of the case
k = 2s is ended.
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Similarly, using again Corollary 2 of [12], we obtain the existence of 0< R∗

k ≤ 1
such that, when k = 2s + 1 ≥ 5, (3-8) holds and so the proof is completed. □

Remark 3.3. In order to obtain a numerical value for R∗

k , k ≥ 4, it would be
useful to know the exact optimal values of the positive constants c1, . . . , ck , but
this datum is not available (see [12]). Therefore, in this case, we have preferred to
limit technicalities and we do not have introduced a function which could play the
role of ψR(r) in the proof of Theorem 1.4. Moreover, we point out that a better
estimate for R∗

k could be achieved if Conjecture 1 of [12, p. 2164] were true.

Proof of Proposition 1.6. Following an idea of [9], we compare π−1
: Bn(R)→ Sn

with the map π̃−1
: Bn(R)→ Sn defined as follows: π̃−1(x)= π−1

N (x/R2), where
π−1

N is the map obtained from π−1 by changing the sign of the last component.
In order to clarify the geometric construction, we point out that π represents
the stereographic projection from the south pole, while πN is the stereographic
projection from the north pole. More explicitly, we have

(3-16) π̃−1
: Bn(R)→ Sn

⊂ Rn
× R, x 7→

(
2R2

R4 + r2 x,−
R4

− r2

R4 + r2

)
,

where, as usual, r = |x |. It is easy to check that π−1 and π̃−1 coincide on ∂Bn(R).
Next, we first observe that

(1π̃−1)(x)=
1
R4 (1π

−1
N )

(
x
R2

)
and so

(1sπ̃−1)(x)=
1

R4s (1
sπ−1

N )

(
x
R2

)
.

Now, when n = 2k, k = 2s, we have:∫
Bn(R)

|(1sπ̃−1)(x)|2 dx =
1

R8s

∫
Bn(R)

∣∣∣∣(1sπ−1
N )

(
x
R2

)∣∣∣∣2

dx

(using y =
x
R2 ) =

1
R8s

∫
Bn(1/R)

|(1sπ−1
N )(y)|2 R2n dy

(using 8s = 2n) =

∫
Bn(1/R)

|(1sπ−1
N )(y)|2 dy.

Therefore, we can write∫
Bn(R)

|1sπ̃−1
|
2 dx =

∫
Bn(1/R)

|1sπ−1
N |

2 dx

=

∫
Bn(1/R)

|1sπ−1
|
2 dx <

∫
Bn(R)

|1sπ−1
|
2 dx,

which proves Proposition 1.6 in the case k =2s. The case k =2s+1 is analogous. □
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Remark 3.4. We point out that the map π̃−1 defined in (3-16), although it coincides
with π−1 on the boundary ∂Bn(R), belongs to a different homotopy class.

4. Second variation and equivariant stability

For convenience we rewrite π−1
: Bn(R)→ Sn as

(4-1) π−1
: Bn(R)→ Sn

⊂ Rn
× R, x 7→

(
sinα(r) x

r
, cosα(r)

)
,

where r = |x | and α(r) = 2 tan−1 r . We consider equivariant variations, i.e.,
rotationally symmetric variations as

(4-2) ut(x)=

(
sin[α(r)+ t φ(r)] x

r
, cos[α(r)+ tφ(r)]

)
,

where φ = φ(r) is any smooth real valued function on [0, R] such that ut is smooth
and preserves the boundary data. In particular, we now have φ(2 j)(0)= 0, j ≥ 0,
φ( j)(R)= 0, j ≥ 0.

Therefore, we shall say that π−1
: B2k(R) → S2k is stable with respect to

equivariant variations (shortly, equivariantly stable) if

(4-3)
d2

dt2 (E
ext
k (ut))|t=0 ≥ 0

for all ut as in (4-2).
Next, we define a map π−1

∂/∂α : Bn(R) → Sn which represents the unit vector
field ∂/∂α along π−1:

(4-4) π−1
∂/∂α : Bn(R)→ Sn

⊂ Rn
× R, x 7→

(
cosα(r) x

r
,− sinα(r)

)
,

where again r = |x | and α(r)= 2 tan−1 r . Then a simple computation shows

(4-5)
dut(x)

dt

∣∣∣
t=0

= π−1
∂/∂α(x) φ and

d2ut(x)
dt2

∣∣∣
t=0

= −π−1(x) φ2.

Now, we prove a general, preliminary lemma.

Lemma 4.1. (i) Let n = 2k, k = 2s. Then π−1
: Bn(R) → Sn is equivariantly

stable for the extrinsic k-energy if and only if

(4-6)
∫

Bn(R)
[|1s(π−1

∂/∂α φ)|
2
− (12sπ−1.π−1) φ2

]dx ≥ 0 for all φ as in (4-2).

(ii) Let n = 2k, k = 2s + 1. Then π−1
: Bn(R)→ Sn is equivariantly stable for

the extrinsic k-energy if and only if

(4-7)
∫

Bn(R)
[|∇1s(π–1

∂/∂αφ)|
2
− (12s+1π–1.π–1)φ2

]dx ≥ 0 for all φ as in (4-2).
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Proof. (i) We consider variations of the type (4-2) and we use (4-5). Then on Bn(R)
we have

(4-8)
d
dt
(1sut)

∣∣∣∣
t=0

=1s
(

dut

dt

)∣∣∣∣
t=0

=1s
((

dut

dt

)∣∣∣∣
t=0

)
=1s(π−1

∂/∂α φ)

and

(4-9)
d2

dt2 (1
sut)

∣∣∣∣
t=0

=1s
(

d2ut

dt2

)∣∣∣∣
t=0

=1s
((

d2ut

dt2

)∣∣∣∣
t=0

)
= −1s(π−1 φ2).

Now,

(4-10)
d2

dt2 (E
ext
k (ut))

∣∣∣∣
t=0

= 2
∫

Bn(R)

d2

dt2 (1
s(ut))

∣∣∣∣
t=0
.(1sut)|t=0 dx

+ 2
∫

Bn(R)

∣∣∣∣ d
dt
(1s(ut))|t=0

∣∣∣∣2

dx .

Substituting (4-8) and (4-9) into (4-10) we get

d2

dt2 (E
ext
k (ut))

∣∣∣∣
t=0

=−2
∫

Bn(R)
1s(π−1φ2).1s(π−1) dx +2

∫
Bn(R)

|1s(π−1
∂/∂αφ)|

2 dx .

Then, using the second Green identity, we deduce that the stability condition (4-3)
is equivalent to ∫

Bn(R)
[|1s(π−1

∂/∂α φ)|
2
− (12sπ−1.π−1) φ2

] dx ≥ 0

for any arbitrary smooth function φ as in (4-2), as required.
The proof of the inequality (4-7) of part (ii) is analogous and so we omit it. □

The stability inequalities provided by Lemma 4.1 are rather general, but difficult
to deal with because of the terms 1s(π−1

∂/∂α φ) and ∇1s(π−1
∂/∂α φ).

Therefore, a natural first step is to investigate these inequalities under the as-
sumptions that k is small. In this order of ideas, a straightforward computation
using Lemma 2.1 and some integration by parts leads us to the following:

Proposition 4.2. (i) The map π−1
: B4(R) → S4 is equivariantly stable for the

extrinsic bienergy if and only if

(4-11)
∫ R

0

[
r3φ′′2(r)+ 9rφ′2(r)+

(
9
r

−
384 r3

(1 + r2)4

)
φ2(r)

]
dr ≥ 0

for all φ = φ(r) as in (4-2).
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(ii) The map π−1
: B6(R)→ S6 is equivariantly stable for the extrinsic trienergy if

and only if

(4-12)
∫ R

0

[
r5φ′′′2(r)+30r3φ′′2(r)+225rφ′2(r)+

(
225
r

−
46080 r5

(1 + r2)6

)
φ2(r)

]
dr

≥ 0

for all φ = φ(r) as in (4-2).

Remark 4.3. (i) As an alternative to (4-2), we could use

ut(x)= π−1(x)+ tφπ−1
∂/∂α(x).

Then we would have again (4-5) and so we would reobtain the conclusion of
Lemma 4.1.

(ii) In the case that φ = φ(r) is radial, the inequality (3-8) (s = 1) on B6(R) turns
out to be equivalent to∫ R

0

[
r5φ′′′2(r)+ 15r3φ′′2(r)+ 45rφ′2(r)−

46080r5

(1 + r2)6
φ2(r)

]
dr ≥ 0.

We observe that this condition is stronger than (4-12).

Now we can proceed to the proof of our main result in this context.

Proof of Theorem 1.7. (i) According to Proposition 4.2 it suffices to show that
(4-11) holds provided that 0< R ≤ Rstab

2 ≈ 1.81.
First, a simple computation using integration by parts leads us to

(4-13)
∫ R

0
[r3φ′′2(r)+ 9rφ′2(r)] dr

=
1

Vol(S3)

∫
B4(R)

|1φ|
2 dx +

6
Vol(S3)

∫
B4(R)

|∇φ|
2

r2 dx .

Next, Theorem 4 of [12] gives

(4-14)
∫

B4(R)
|1φ|

2 dx ≥
3((−1)2, 4)

R4

∫
B4(R)

φ2 dx,

where, keeping the notation of [12], we have

3((−1)2, 4)≥ j2
1 j2

2 ≈ 387.23.

Using (8) of [12], we also have

(4-15)
∫

B4(R)

|∇φ|
2

r2 dx ≥
1
R2

∫
B4(R)

[
1
r2 +

3(2)
R2

]
φ2 dx .



EXTRINSIC POLYHARMONIC MAPS INTO THE SPHERE 279

Inserting (4-14) and (4-15) into (4-13) we deduce

(4-16)
∫ R

0
[r3φ′′2(r)+9rφ′2(r)] dr ≥

∫ R

0

[
(3(−1)2, 4)

R4 +
6

R2r2 +
63(2)

R4

]
φ2 dr.

Next, we set

ψR,2(r)=
(3(−1)2, 4)+ 63(2)

R4 +
6

R2r2 +
9
r4 , 0< r ≤ R.

Then it is immediate to conclude that (4-11) holds provided that

(4-17) ψR,2(r)−
384

(1 + r2)4
≥ 0 on (0, R].

Now, an analysis similar to the study of (3-13) (see the proof of Theorem 1.4) shows
that (4-17) holds provided that 0< R ≤ Rstab

2 ≈ 1.81, so ending (i).

(ii) According to Proposition 4.2 it suffices to show that (4-12) holds provided that
0< R ≤ Rstab

3 ≈ 1.43.
We shall use the following Hardy-type inequalities which again can be deduced

from Theorem 4 and inequality (8) of [12], respectively:∫
B6(R)

|1φ|
2 dx ≥ 9

∫
B6(R)

φ2

r4 dx +
63(2)

R2

∫
B6(R)

φ2

r2 dx(4-18)

+
(3(−1)2, 4)

R4

∫
B6(R)

φ2 dx,∫
B6(R)

|∇φ|
2 dx ≥ 4

∫
B6(R)

φ2

r2 dx +
3(2)

R2

∫
B6(R)

φ2 dx .(4-19)

Next, a computation similar to (4-13) enables us to write

(4-20)

∫ R

0
|∇1φ|

2 r5 dr =

∫ R

0
[r5φ′′′2(r)+ 15r3φ′′2(r)+ 45rφ′2(r)] dr,∫ R

0
|1φ|

2 r5 dr =

∫ R

0
[r5φ′′2(r)+ 5r3φ′2(r)] dr,∫ R

0
|∇φ|

2 r5 dr =

∫ R

0
φ′2(r) r5 dr.

Now, using (4-20), we deduce

(4-21)
∫ R

0
[r5φ′′′2

+ 30r3φ′′2
+ 225rφ′2

] dr

=

∫ R

0

[
|∇1φ|

2
+ 15

|1φ|
2

r2 + 105
|∇φ|

2

r4

]
r5 dr.



280 ALI FARDOUN, STEFANO MONTALDO, CEZAR ONICIUC AND ANDREA RATTO

Next, using (3-11), (4-18), (4-19) and (4-21) into (4-12), we obtain that (4-12) holds
provided that

(4-22) ψR,3(r)−
46080
(1 + r2)6

≥ 0 on (0, R],

where we have defined

ψR,3(r)=
c1

R2r4 +
c2

R4r2 +
c3

R6 +
15
R2

(
9
r4 +

63(2)
R2r2 +

(3(−1)2, 4)
R4

)
+

105
R4

(
4
r2 +

3(2)
R2

)
+

225
r6 .

Now, an analysis similar to the study of (3-13) shows that (4-22) holds provided
that 0< R ≤ Rstab

3 ≈ 1.43, so ending the proof of Theorem 1.7. □
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