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DANIEL KELIHER

We investigate the rank growth of elliptic curves from Q to S4- and A4-
quartic extensions K/Q. In particular, we are interested in the quantity
rk(E/K ) − rk(E/Q) for fixed E and varying K . When rk(E/Q) ≤ 1, with
E subject to some other conditions, we prove there are infinitely many S4-
quartic extensions K/Q over which E does not gain rank, i.e., such that
rk(E/K ) − rk(E/Q) = 0. To do so, we show how to control the 2-Selmer
rank of E in certain quadratic extensions, which in turn contributes to
controlling the rank in families of S4- and A4-quartic extensions of Q.

1. Introduction

1A. Rank growth. For a number field L and an elliptic curve E defined over L ,
let E(L) be the group of L-rational points of E . The Mordell–Weil theorem says
E(L) is a finitely generated abelian group. The rank of E(L), denoted rk(E/L),
has been the subject of much study. Of particular interest here is the behavior of
the rank upon base change, i.e., for an extension of number fields K/L , what is
rk(E/K )− rk(E/L)? We call this difference the rank growth of E in K/L .

Suppose L = Q and K/Q denotes a quadratic extension. Given an elliptic curve
E/Q, a conjecture of Goldfeld predicts that 50% of quadratic twists, E K , of E have
analytic rank zero and 50% have analytic rank one. See Section 3B for a definition
and discussion of quadratic twists. Recent work of Smith [2017; 2023a; 2023b]
studies the distribution of ℓ∞-Selmer groups and proves a version of Goldfeld’s
conjecture for 2∞-Selmer coranks.

We are interested in studying rank growth in higher degree and nonabelian
extensions. In this setting, ranks of quadratic twists, E K , measure the rank growth
of E from Q to K , which will be essential for rank growth in some larger degree
extensions. Previously, and in higher degrees, David, Fearnley, and Kisilevsky
[David et al. 2007] have given conjectures for how frequently the rank of an elliptic
curve grows in cyclic prime degree extensions. Lemke Oliver and Thorne [2021]
gave asymptotic lower bounds for the number of Sd -extensions for which an elliptic
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curve E gains rank. Further, Shnidman and Weiss [2023] study rank growth of
elliptic curves from a number field L up to an extension L

( 2n
√

d
)
.

1B. Results for S4- and A4-quartic extensions. We investigate the rank growth of
elliptic curves in S4- and A4-quartic extensions of the rationals. In what follows,
unless stated otherwise, we will always assume E is an elliptic curve defined over Q.
Further, K/Q will always be an S4- or A4-quartic extension. That is, one for which
the normal closure of K over Q is an S4- or A4-Galois extension. For an elliptic
curve E/Q with discriminant 1E , we’ll consider rk(E/K )− rk(E/Q) for many
such K . It will often be convenient to use the rank of a Selmer group of an elliptic
curve E/K (here we only need the 2-Selmer group) in place of the rank, rk(E/K ).
See Definition 3.1 for the definition of the 2-Selmer group, Sel2(E/K ), of an elliptic
curve E/K and Section 3A for a discussion of their utility in our context.

In particular, for an elliptic curve E with Selmer rank zero over the rationals,
subject to some mild constraints, we prove there are infinitely many S4- or A4-
quartic extensions over which E does not gain rank. Further, we give a lower bound
on the number of such extensions with bounded discriminant with some fixed cubic
resolvent field.

Theorem 1.1. Let E be an elliptic curve over Q such that Gal(Q(E[2])/Q)≃ S3,
and Sel2(E/Q)= 0. Let K3 be an S3-cubic (resp., C3-cubic) extension of Q such
that K̃3 and Q(E[2]) are linearly disjoint. Suppose also that there is a place v0

of K3, unramified in K̃3, such that either v0 is real and 1E < 0, or v0 ∤2∞, E
has multiplicative reduction at v0 and ordv0(1E) is odd. Then there are infinitely
many S4-quartic (resp., A4-quartic) extensions K over Q with cubic resolvent K3

such that

• if dimF2 Sel2(E/K3)≡ 0 (mod 2), then rk(E/K )= 0;

• if dimF2 Sel2(E/K3) ≡ 1 (mod 2), and also assuming the parity condition
dimF2 Sel2(E/K3)≡ rk(E/K3) (mod 2), then rk(E/K )= 1.

To prove the theorem above, we utilize two tools. First, we reduce the problem of
studying rank growth in our quartic extensions, K/Q, to one of studying rank growth
in certain quadratic subextensions of the Galois closure of K , and thus to studying
the rank of certain quadratic twists. Second, we use and further develop some
Selmer group machinery of Mazur and Rubin. Indeed, in [Mazur and Rubin 2010],
they show that under suitable assumptions, an elliptic curve has infinitely many
twists of a prescribed Selmer rank. In subsequent work, Klasgbrun, Mazur, and
Rubin [Klagsbrun et al. 2014] study the distribution of 2-Selmer ranks of quadratic
twists of an elliptic curve. The quadratic twists we study here, see Definition 1.2
below, are thin in the full family of quadratic twists, so we require a different
approach. Nonetheless, we use similar ideas to show one can reduce the 2-Selmer
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ranks of the appropriate quadratic twists either to one or zero. Translating from the
language of Selmer groups to ranks yields Theorem 1.1.

To emphasize the extra properties imposed on the quadratic twists we consider
here, we make the following definition.

Definition 1.2 (square norm twists). Let E be an elliptic curve defined over a
number field L , and let F/L be a quadratic extension. We call a quadratic twist E F

over L a square norm twist if F = L
(√
α

)
where α ∈ L×/(L×)2 and NL/Q(α) is a

square.

Such twists will be key to keeping track of an associated S4-quartic extension
when working over a suitable cubic field (see Lemma 2.2).

Likewise, to streamline the discussion and highlight the properties required of
the cubic resolvents of our S4- or A4-quartic extensions, which are S3- or C3-cubic
extensions of the rationals, respectively, always denoted K3, we make the next
definition.

Definition 1.3 (admissible cubic resolvent). Let K3 be a cubic extension of the ra-
tionals and fix an elliptic curve E/Q with discriminant 1E . Suppose E(K3)[2] = 0,
K̃3 (the Galois closure of K3 over Q) and Q(E[2]) are linearly disjoint, and there is a
place v0 of K3, unramified in K̃3, such that either v0 is real and (1E)v0<0 or v0 ∤2∞,
E has multiplicative reduction at v0 and ordv0(1E) is odd. For such an extension,

• if K3 is an S3-cubic extensions, we call K3 an admissible S3-cubic resolvent
for E ;

• if K3 is a C3-cubic extension, we call K3 an admissible C3-cubic resolvent
for E .

In the event we do not need to specify one of the two Galois group cases above,
we will call a K3 as in one of the two cases above an admissible cubic resolvent for
some E .

The restrictions placed on K3 to make it admissible for some elliptic curve are not
overly burdensome. The conditions on the distinguished place should be compared
to the assumptions of [Mazur and Rubin 2010, Theorem 1.6].

Theorem 1.1 is a consequence of the following result.

Theorem 1.4. Let E be an elliptic curve over Q such that Gal(Q(E[2])/Q)≃ S3,
and Sel2(E/Q)= 0, and let K3 be an admissible cubic resolvent for E. Then there
are infinitely many square norm twists, E F/K3, such that

• if dimF2 Sel2(E/K3)≡ 0 (mod 2), then dimF2 Sel2(E F/K3)= 0;

• if dimF2 Sel2(E/K3)≡ 1 (mod 2), then dimF2 Sel2(E F/K3)= 1.

Remark 1.5. In Theorems 1.1 and 1.4, and in what follows, when we say “infinitely
many” we mean the number of such things with the norm of their discriminant
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bounded above by X is ≫ X1/2/ log Xα for some α > 0. Further, α depends on E
and the two-torsion field K3(E[2]). The sizes of these lower bounds, particularly
the values of α depending on K3 and E , are elucidated in Proposition 4.1.

Remark 1.6. In the case that one obtains infinitely many A4-quartic extensions for
which the Mordell or 2-Selmer rank has some prescribed behavior, the “infinitely
many” given by the two theorems above differs from the predicted number of A4-
quartic extensions only by some factors of log X . In particular, Malle’s conjecture
[2004] predicts that the number of A4-quartic extensions of a number field L with
absolute value of the norm of the relative discriminant bounded by X is asymptotic
to cL X1/2 log XbL for constants bL and cL depending on L .

The number of S4-quartic extensions of L with absolute value of the norm of
the relative discriminant bounded by X is asymptotic to dL X for a constant dL

depending on L [Bhargava et al. 2015]. In this case the “infinitely many” given by
the two theorems above differs from S4-quartic asymptotic by both a logarithmic
factor and a factor of X1/2.

1C. Layout. In Section 2 we outline the connection between rank growth in S4

and A4-quartic extensions with rank growth in certain quadratic extensions. In
Section 3, we recall some facts about Selmer groups and record some related results
of Mazur and Rubin [Mazur and Rubin 2010] on quadratic twists. In Sections 4
and 5, we interface the tools of Section 3 with the notion of square norm twists to
show we can decrease the 2-Selmer rank of an elliptic curve with a suitable square
norm twist and can indeed find many such twists. Finally, in Section 6, we prove
the main theorems stated above.

2. Rank growth in S4-quartics

2A. Preliminaries. For an extension of number fields L/Q, we write L̃ for the
Galois closure of L in some choice of algebraic closure Q̄.

Consider an S4- or A4- extension K/Q with Galois closure K̃ . We are principally
concerned with the change (or lack of change) in rank in the group of K -rational
points vs. the group of Q-rational points of E . We will show this rank change is
governed by the rank growth in a quadratic extension of fields between Q and K̃ .
K3 will always denote a cubic resolvent for our quartic extension(s). Of particular
interest will be fixing an admissible cubic resolvent K3 and considering many
quartic S4- or A4-extensions K with cubic resolvent K3.

2B. S4- and A4-quartic extensions. Before we turn to the question of rank growth,
we record a few facts about S4- and A4-quartic extensions with cubic resolvent
field K3.
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Lemma 2.1. Let K3/Q be a cubic extension and F be a quadratic extension of K3.
There is always an embedding Gal(F̃/Q) ↪→ S2 ≀ S3.

Quadratic extensions of S3-cubics generically have Galois group S2 ≀ S3 over Q.
We are interested in the case where the Galois group is instead S4< S2 ≀S3. Likewise
for C3-cubics, we wish to consider the case where quadratic extensions of K3 have
Galois group A4.

Lemma 2.2. Fix an S3- or C3-cubic extension K3/Q, and let F denote a quadratic
extension of the form K3

(√
α

)
, where α ∈ K3 and NK3/Q(α) is a square.

• If K3/Q is an S3-cubic, then Gal(F̃/Q) ≃ S4. Further, there is a one-to-
one correspondence between such quadratic extensions F/K3 and S4-quartic
extensions of Q with cubic resolvent K3.

• If K3/Q is a C3-cubic, then Gal(F̃/Q) ≃ A4. Further, there is a three-to-
one correspondence between such quadratic extensions F/K3 and A4-quartic
extensions of Q with cubic resolvent K3.

This correspondence is described in detail in, for example, Section 2 of [Cohen
and Thorne 2016].

Remark 2.3. Fix a cubic field, K3. For each L = K3
(√
α

)
where α ∈ K ×

3 /(K
×

3 )
2

and NK3/Q(α) is a square, there is an S4- or A4-quartic extension K/Q with cubic
resolvent K3. Use Lemma 2.2 and observe that L̃ = K̃ . For our purposes, we will
fix K3 and range over quadratic extensions of K3 as in Lemma 2.2 to range over
S4-quartic extensions of Q with cubic resolvent K3. We will then consider a fixed
elliptic curve E over these extensions, and consider various differences in rank.

2C. Measuring rank growth in S4- and A4-quartic extensions. Our aim now
is to show that measuring rank growth of an elliptic curve E from Q to S4- or
A4-quartic extensions K/Q with cubic resolvent K3/Q is a matter of measuring
the rank growth of E from K3 to a quadratic extension F/K3, namely the quadratic
extension of Lemma 2.2.

Lemma 2.4. Let E be an elliptic curve defined over Q, K be an S4- or A4-quartic
extension of Q with cubic resolvent K3, and F/K3 be the quadratic extension of
Lemma 2.2. Then

(2-1) rk(E/K )− rk(E/Q)= rk(E/F)− rk(E/K3).

The rank relation of Lemma 2.4 is a manifestation of the following more general
fact [Dokchitser and Dokchitser 2010, page 572]. Suppose L/k is a Galois extension
of number fields with G = Gal(L/k), and E/k is an elliptic curve. For H ≤ G,
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write 1H for the trivial character on H . If there are subextensions Ki/k and K ′

j/k
of L , cut out by subgroups Hi and H ′

j of G, such that

(2-2)
⊕

i

IndG
Hi

1Hi ≃

⊕
j

IndG
H ′

j
1H ′

j

as complex representations of G, then

(2-3)
∑

i

rk(E/K j )=

∑
j

rk(E/K ′

j ).

The see this relation on the ranks, let χL be the character of the representation of
the complex representation of the Mordell–Weil group, E(L)⊗ C, and note that

(2-4) rk(E/Ki )= ⟨IndG
H j

1Hi , χL⟩.

The same statement can be made for the rank of E over each K ′

j as well. Using
(2-4) together with (2-2) yields (2-3).

Proof of Lemma 2.4. Consider the following subgroups of G = Gal(K̃/Q) ≃ S4

which fix the subfields K , K3, and F of K̃ . Let HK ≃ S3 be the subgroup fixing K ,
HK3 ≃ D8 be the subgroup fixing K3, and HF ≃ V4, the Klein four group, be the
subgroup fixing F . Then one can verify

(2-5) IndG
HK

1HK ⊕ IndG
HK3

1HK3
≃ 1 ⊕ IndG

HF
1HF .

The lemma now follows from (2-3). Note that relations like that of (2-5) are an
example of those provided in [Bartel and Dokchitser 2015]. □

3. The 2-Selmer groups and quadratic twists

In the previous section, we established that the rank growth from Q to K is the
same as the rank growth from K3 to a quadratic extension of K3 determined by K .
So we may restrict ourselves to the study of rank growth in quadratic extensions.
This is governed by the theory of quadratic twists.

3A. The 2-Selmer group. We now recall the definition of the 2-Selmer group for
an elliptic curve E over a number field L . The multiplication-by-2 map on E gives
rise to a short exact sequence of Galois modules:

0 → E[2] → E(Q̄) ×2
−−→ E(Q̄)→ 0.

This in turn yields a long exact sequence of Galois cohomology groups, which,
after quotienting appropriately, gives rise to the diagram

0 E(L)/2E(L) H 1(L , E[2]) H 1(L , E)[2] 0

0
∏
v E(Lv)/2E(Lv)

∏
v H 1(Lv, E[2])

∏
v H 1(Lv, E)[2] 0
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Now, define subgroups H 1
f (Lv, E[2]) of each local cohomology H 1(Lv, E[2]) as

H 1
f (Lv, E[2]) := Image

(
E(Lv)/2E(Kv)→ H 1(Lv, E[2])

)
.

Definition 3.1. The 2-Selmer group of E/L , denoted Sel2(E/L), is the F2-vector
space defined by the exactness of the sequence

0 → Sel2(E/L)→ H 1(L , E[2])→

⊕
v

H 1(Lv, E[2])/H 1
f (Lv, E[2]).

We may think of the elements of the 2-Selmer group as being the classes in
H 1(L , E[2]) which, for every place v of L , land in the image of E(Lv)/2E(Lv);
that is, elements of H 1(L , E[2]) which everywhere locally satisfy the local condi-
tions determined by H 1

f (Lv, E[2]).
Further, the 2-Selmer group fits into a short exact sequence

0 → E(L)/2E(L)→ Sel2(E/L)→ X(E/L)[2] → 0,

where X(E/L)[2] are the elements of the Shafarevich–Tate group of E/L with
order dividing 2. We have

(3-1) dimF2 Sel2(E/L)= (rk(E/L)+ dimF2 E(L)[2])+ dimF2 X(E/L)[2]

and further that rk(E/L)≤ dimF2 Sel2(E/L). It is by this relation that we’ll access
the ranks of the various elliptic curves and twists discussed later in the paper.

3B. Quadratic twists. Suppose our elliptic curve E/L is given in short Weierstrass
form:

E : y2
= x3

+ Ax + B

with A, B ∈ L . A quadratic twist, E F/L , of E/L is an elliptic curve of the form

(3-2) E F
: δy2

= x3
+ Ax + B,

where δ ∈ L×/(L×)2 and F = L
(√
δ
)
. With a change of variables, one can put

(3-2) in short Weierstrass form:

E F
: y3

= x3
+ aδ2x + bδ3.

An elliptic curve E/L and a quadratic twist E F/L are not, in general, isomorphic
as elliptic curves over L but are isomorphic as elliptic curves over F . In particular,
quadratic twists will be the main tool for measuring growth in quadratic extensions
as we have

rk(E F/L)= rk(E/F)− rk(E/L).
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3C. The 2-Selmer of quadratic twists. Mazur and Rubin [2010] gave results in
which understanding the behavior of an elliptic curve E/L and its 2-Selmer group,
Sel2(E/L), locally at only a few places of L is sufficient to, under some mild con-
ditions, understand the relation between dimF2 Sel2(E/L) and dimF2 Sel2(E F/L)
for some quadratic twists, E F , of E .

One defines the 2-Selmer group of a twist E F/L following the definition laid
out in Section 3A, just with E F in place of E . It is important to note that E F

[2]

and E[2] are isomorphic as Galois modules, so we may view both Selmer groups
inside H 1(L , E[2]).

Lemma 2.4 shows that understanding the rank growth in quadratic extensions
will be sufficient for understanding rank growth in the quartic extensions of interest.
In the reminder of this section we will record some results from [Mazur and Rubin
2010] on how local information about E relates the 2-Selmer rank of E to the
2-Selmer rank of quadratic twists of E .

Lemma 3.2 [Mazur and Rubin 2010, Lemma 2.2]. With the notation as above:

• If v ∤2∞, then dimF2 H 1
f (Lv, E[2])= dimF2 E(Lv)[2].

• If v ∤2∞ and E has good reduction at v, then

H 1
f (Lv, E[2])∼= E[2]/(Frobv − 1)E[2].

Definition 3.3. Suppose T is a finite set of places of L . Let locT be the sum of the
localization maps for each place of T ,

locT : H 1(L , E[2])→

⊕
v∈T

H 1(Lv, E[2]).

Also set

VT = locT (Sel2(E/L))⊂

⊕
v∈T

H 1
f (Lv, E[2]).

We finish the section be recalling two results from [Mazur and Rubin 2010] that
we’ll later use to control the rank of the 2-Selmer groups in the quadratic extension
of Lemma 2.4.

Lemma 3.4 [Mazur and Rubin 2010, Proposition 3.3]. Let E/L be an elliptic curve,
and let F/L be a quadratic extension in which the following places of L split:

• all primes where E has additive reduction;

• all places v where E has multiplicative reduction such that ordv(1E) is even;

• all primes above 2;

• all real places v with (1E)v > 0.
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Further, suppose that all v where E has multiplicative reduction and ordv(1E) is
odd are unramified in F/L.

Let T be the set of finite primes p of L such that F/L is ramified at p and
E(Lp)[2] ̸= 0. Then,

(3-3) dimF2 Sel2(E F/L)= dimF2 Sel2(E/L)− dimF2(VT )+ d

for some d such that

0 ≤ d ≤ dimF2

( ⊕
p∈T

H 1
f (Lp, E[2])/VT

)
and

d ≡ dimF2

( ⊕
p∈T

H 1
f (Lp, E[2])/VT

)
(mod 2).

An immediate consequence of the above is the following lemma.

Lemma 3.5 [Mazur and Rubin 2010, Corollary 3.4]. For an elliptic curve E/L and
for F/L and T as defined in Lemma 3.4, we have:

(1) If dimF2

(⊕
p∈T H 1

f (Lp, E[2])/VT
)
≤ 1, then

dimF2 Sel2(E F/L)= dimF2 Sel2(E/L)− 2 dimF2 VT +

∑
p∈T

dimF2 H 1
f (Lp, E[2]).

(2) If T is empty, then dimF2 Sel2(E F/L)= dimF2 Sel2(E/L).

We will use Lemma 3.5, setting L to be some admissible cubic resolvent,
say K3, to understand the 2-Selmer rank of some square norm twists by controlling
dimF2 locT (Sel2(E/K3) and dimF2 H 1

f ((K3)p, E[2]) for each p ∈ T .

4. Twisting by square norm extensions

We will consider elliptic curves E/Q together with some K3 which will always be
assumed to be an admissible cubic resolvent for E as in Definition 1.3. Recall that
among other conditions, we require E(K3)[2] = 0 and K3 to Q(E[2]) be linearly
disjoint.

We are concerned with quadratic twists E F over K3 where we impose conditions
on F . In Section 1 we introduced Definition 1.2 defining square norm twists to keep
track of conditions on the twists. Recall that for an elliptic curve defined over a
number field L , E/L , these are quadratic twists E F/L of E/L where F = L

(√
α

)
,

α ∈ L×/(L×)2, and NL/Q(α) is a square.
We will be interested in the application of the definition above where L = K3,

which, as above, will be the cubic resolvent for some quartic S4-extensions of Q.
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Further, define N□
r (E, X) as follows to count quadratic extensions F/K3 with

bounded conductor, f(F/K3), that give square norm twists E F of E with 2-Selmer
group of dimension r :

N□
r (E, X)= #

{
F = K3

(√
α

)
| α ∈ K ×

3 /(K
×

3 )
2, NK3/Q(α) a square,

dimF2 Sel2(E F/K3)= r, NK3/Q f(F/K3) < X
}
.

With that in mind, we prove the following.

Proposition 4.1. Fix an S3- or C3-cubic field K3/Q, an elliptic curve E/Q, and a
nonnegative even integer r . Suppose there exists a square norm twist, E L/K3, of
E/K3, with dimF2 Sel(E L/K3)= r . Then we have:

• If Gal(K3/Q)≃ S3 and Gal(K3(E[2])/K3)≃ S3, then

N□
r (E, X)≫ X1/2/ log(X)5/6.

• If Gal(K3/Q)≃ S3 and Gal(K3(E[2])/K3)≃ C3, then

N□
r (E, X)≫ X1/2/ log(X)2/3.

• If Gal(K3/Q)≃ C3 and Gal(K3(E[2])/K3)≃ S3, then

N□
r (E, X)≫ X1/2/ log(X)8/9.

• If Gal(K3/Q)≃ C3 and Gal(K3(E[2])/K3)≃ C3, then

N□
r (E, X)≫ X1/2/ log(X)7/9.

Remark 4.2. In Section 5, we will prove the existence of the quadratic extension
L/K3 from the hypotheses of Proposition 4.1. With this, we will use the relationship
between the rank growth from Q to K and the rank growth K3 to a quadratic
extensions F/K3 to prove Theorem 1.1.

The rest of this section will be devoted to proving Proposition 4.1. Before
proceeding, we first need to enumerate ideals in K3 that allow us to get quadratic
extensions for square norm twists. We will then show for each such ideal, there is a
square norm twist of E corresponding to that ideal.

Lemma 4.3. Suppose E/Q is an elliptic curve where K3 is an admissible S3-cubic
resolvent for E and Gal(K3(E[2]/K3) is C3 or S3. Let S be the set of the elements
of order 3 in Gal(K3(E[2])/K3), and N be a ray class field of K3. Then the number
of ideals b of K3 such that

• Nb< X and [b, N/K3] = 1, and

• for every prime ideal p dividing b, Np is a square and Frobp(K3(E[2])/K3)⊂ S
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is asymptotic to

(C + o(1))
X1/2

log(X)1−(1/2)(|S|/[K3(E[2]):K3])

as X → ∞, where C is some positive constant, [−, N/K3] is the global Artin
symbol and N is the ideal norm.

Proof. An unramified, noninert rational prime p can split as a product of primes in
two ways in the ring of integers, OK3 , of the cubic field K3. Either pOK3 = p1p2p3

where each factor has degree one, or pOK3 = p1p2 where one factor has degree one
and one factor has degree two. Primes of degree two only appear as factors in the
latter splitting type.

First we will count rational primes p such that pOK3 = pq where the residue
degrees of the prime factors are f (p| p)= 1 and f (q| p)= 2. For each such p< X
we get one prime q of K3 of square norm such that Nq< X2. Let S(1,2) be the set
of such rational primes, i.e.,

(4-1) S(1,2) := {p ∈ N prime | pOK3 = pq, f (p| p)= 1, f (q| p)= 2}

Also set

P(1) := {p⊂OK3 prime ideal | (p∩Z)OK3 = pq, f (p|p∩Z)= 1, f (q|p∩Z)= 2}

and

(4-2) Q(2) := {q ⊂ OK3 prime ideal | f (q|q∩ Z)= 2}.

Likewise, define

• S(1,2)(X) := {p ∈ S(1,2) | p < X};

• P(1)(X) := {p ∈ P(1) | Np< X};

• Q(2)(X) := {q ∈ Q(2) | Nq< X}.

With this notation, the discussion above amounts to

(4-3) #S(1,2)(X)= #P(1)(X)= #Q(2)(X2).

A rational prime p belongs to S(1,2) if and only if Frobp(K̃3/Q) acts on the three
cosets of Gal(K̃3/Q)/Gal(K̃3/K3) like a transposition. Via the Chebotarev density
theorem, this happens with probability #{transpositions in S3}/#S3 =

1
2 . That is,

the density of S(1,2) in the set of all rational primes is 1
2 .

We can conclude the Dirichlet density, δdir, of the set of primes p in K3 corre-
sponding to each p ∈ S(1,2) is also 1

2 , i.e.,

(4-4) δdir
(
{p | f (p|p∩Z)=1, (p∩Z)OK3 =pq, f (q|p∩Z)=2}

)
= δdir(P(1))= 1

2 .
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Now define some notation. Set M = K3(E[2]) and recall that S is the set of all
elements of order 3 in Gal(M/K3) and note that S is a union of conjugacy classes
when Gal(M/K3)= C3 and is a conjugacy class when Gal(M/K3)= S3. Now, set

• P = {p ∈ P(1) | p unramified in NM/K3, Frobp(M/K3)⊂ S};

• Q = {q ∈ Q(2) | p unramified in NM/K3, Frobq(M/K3)⊂ S};

• N = {a | squarefree product of ideals from P};

• N1 = {a | squarefree product of ideals from P, [a, N/K3] = 1};

• R1 = {b | squarefree product of ideals from Q, [b, N/K3] = 1}.

Our goal is now to access the number of ideals in N1(X) via the Dirichlet series∑
a∈N1

Na−1 and a Tauberian theorem of Wintner. Indeed, we’ll see knowing
N1(X) suffices to understand R1(X2).

To that end, for an irreducible character χ : Gal(N/K3)→ C× where we will
write χ(a) for χ([a, N/K3]), set

(4-5) fχ (s) :=

∑
a∈N

χ(a)Na−s
=

∏
p∈P

(1 +χ(p)Np−s).

Note that p ∈ P can’t be above a rational prime p which splits completely in K̃3;
if it split completely in K̃3, then it splits completely in K3, too. Thus, Frobp(K̃3/K3)

isn’t trivial.
Let τ be the nontrivial element of Gal(K̃3/K3) and set

(4-6) S′
= {τ } × S ⊂ Gal(K̃3 M/K3)= Gal(K̃3/K3)× Gal(M/K3)

and

δ(S, χ)=

{
0 if χ nontrivial,
1
2

|S|

[M : K3]
if χ trivial,

noting that, in the χ trivial case,

1
2

|S|

[M : K3]
= #S′/#Gal(K̃3 M/K3).

We write g1(s)∼ g2(s) for two complex functions g1, g2 on the half plane ℜs > 1
if g1(s)− g2(s) extends to a holomorphic function on the half plane ℜs ≥ 1. Now,
starting from the logarithm of (4-5) and using the Chebotarev density theorem,

log fχ (s)∼

∑
p∈P

χ(p)Np−s
∼ δ(S, χ)

∑
p prime

χ(p)Np−s
∼ δ(S, χ) log

1
s − 1

.
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Using character orthogonality, observe

(4-7)
1

[N : K3]

∑
χ

fχ (s)=
1

[N : K3]

∑
a∈N

Na−s
∑
χ

χ(a)

=

∑
a∈N1

Na−s
= (s − 1)−(1/2)(|S|/[M :K3])h(s),

where the first two sums range over irreducible characters χ of Gal(N/K3), and
where h(s) is a nonzero, holomorphic function for ℜs ≥ 1.

Applying a Tauberian theorem of Wintner [1942] to (4-7), we obtain

(4-8) #N1(X)= (C + o(1))
X

log(X)1−(1/2)(|S|/[M :K3])
.

Now, if a ∈N1 we have, for some positive integer m, a=
∏m

i=1 pi , where pi ∈P .
For each rational prime pi below pi , we have piOK3 = piqi where qi ∈ Q. Set
b =

∏m
i=1 qi .

First, we’ll show Frobqi(M/K3) ⊂ S. If E : y2
= f (T ), consider the cubic

extension L = K3(T )/( f (T )), where f (T ) ∈ Q[x] is some cubic polynomial,
between M and K3. If Gal(M/K3)= C3, then M = L . We can look at how f (T )
factors modulo pi and qi . The only way for f (T ) to be irreducible modulo qi (i.e.,
over Fp2

i
) is for f (T ) to be irreducible modulo pi ; this happens precisely when

Frobpi (M/K3) ⊂ S. If f (T ) (mod qi ) is irreducible, Frobqi (M/K3) has order 3.
That is, demanding Frobpi (M/K3)⊂ S forces Frobqi (M/K3)⊂ S.

Second, since each piqi is principle, knowing [a, N/K3] = 1 suffices to show
[b, N/K3] = 1, too. Thus, b ∈ R1.

Finally, since Nb = (Na)2, we have established a bijection between N1(X) and
R1(X1/2) by mapping a 7→ b.

This and (4-8) give us

#R1(X)∼ (C + o(1))
X1/2

log(X)1−(1/2)(|S|/[M :K3])

for some positive constant C , as needed. □

We now state and prove the analogue of Lemma 4.3 in the case that K3 is an
admissible C3-cubic resolvent.

Lemma 4.4. Suppose E/Q is an elliptic curve where K3 is an admissible C3-cubic
resolvent for E and Gal(K3(E[2]/K3) is C3 or S3. Let S be the set of the elements
of order 3 in Gal(Q(E[2])/Q), and N be an abelian extension of K3. Then, the
number of ideals b of K3 such that

• Nb< X , Nb is a square, and [b, N/K3] = 1; and

• for every prime ideal p dividing b, Frobp(K3(E[2])/K3)⊂ S
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is asymptotic to

(D + o(1))
X1/2

log(X)1−(1/2)(|S|/[K3(E[2]):Q])

for some real, positive constant D, and where [−, N/K3] is the global Artin symbol
and N is the ideal norm.

Proof. Since K3 is an admissible C3-cubic resolvent, we have that K3 and Q(E[2])

are linearly disjoint. Setting M = K3(E[2]), we have Gal(M/Q)= C3 × S3. First,
some notation. Define the following sets:

• PQ =
{

p ∈ N prime | Frobp(M/Q)⊂{1}×S, p unramified in Ñ K3Q(E[2])
}
;

• A = {a | a a squarefree product of p ∈ PQ};

• A1 =
{
a ∈ A | [(a), Ñ/Q] = 1

}
where [−, Ñ/Q] is the global Artin symbol.

Let Ñ be the normal closure of N over Q. We will use the triviality of the Artin
symbol [−, Ñ/Q] to obtain the triviality of the Artin symbol [−, N/Q] as in the
statement of the lemma. Now, for a character ψ : Gal(Ñ/Q)→ C×, and writing
ψ(a) for ψ([(a), Ñ/Q]), let

fψ(s) :=

∑
a∈A

ψ(a)a−s .

For two functions g1 and g2 defined on the complex half plane ℜs > 1, write
g1(s)∼ g2(s) to mean g1(s) and g2(s) differ by a function which is holomorphic
on ℜs ≥ 1. Taking log of the fψ(s), substituting the Taylor series for log(1 − x)
and truncating the Taylor series after one term, one arrives at

(4-9) log fψ(s)=

∑
p∈PQ

log(1 +ψ(p)p−s)∼

∑
p∈PQ

ψ(p)p−s
∼ δψ log

1
s − 1

,

where, using the Chebotarev density theorem,

δψ =

{
0 if ψ is nontrivial,

|S|

[M : Q]
if ψ is trivial.

Now, using character orthogonality and summing over irreducible characters ψ
of Gal(Ñ/Q), we have

(4-10)
1

[Ñ : Q]

∑
ψ

fψ(s)=
1

[Ñ : Q]

∑
a∈A

a−s
∑
ψ

ψ(a)=

∑
a∈A1

a−s .

But also, using (4-9), we have

(4-11)
1

[Ñ : Q]

∑
ψ

fψ(s)= g(s)(s − 1)−|S|/[M :Q],
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where g(s) is holomorphic and nonzero on ℜs ≥ 1. Thus, via (4-10) and (4-11),∑
a∈A1

a−s
= g(s)(s − 1)−|S|/[M :Q].

Applying a Tauberian theorem of Wintner [1942] yields

#{a ∈ A1 | a < X} = (C + o(1))
X

(log X)1−|S|/[M :Q]

for some positive, real C .
Now, suppose a ∈ A1 and a =

∏r
i=1 pi , where the pi are distinct primes and

pi ∈ PQ and each pi splits completely in OK3 . Set a = aOK3 . Then a decomposes
into prime ideals as a =

∏r
i=1 pip

′

ip
′′

i where pi , p′

i , and p′′

i are the three primes
above pi . For each pi above a prime pi , pick another prime p′

i of K3 above pi

(there are two choices), and set b =
∏r

i=1 pip
′

i . Note NK3/Qb = a2.
In this way, counting a ∈ A1 with a < X gives a way of counting ideals b in

K3 such that NK3/Qb< X1/2 such that NK3/Qb is a square and, for each prime p

dividing b, Frobp(M/K3)⊂ S and [b, N/K3] = 1. The lemma follows. □

For an elliptic curve E and each of the ideals enumerated in Lemma 4.3, there is
a twist of E in which the 2-Selmer rank remains the same.

Lemma 4.5. Keeping the notation of Lemma 4.3, if b is an ideal of K3 such that

• Nb< X ,

• if a prime ideal p divides b, then Np is a square,

• Frobp(K3(E[2])/K3)⊂ S, and

• [b, N/K3] = 1,

then there is a quadratic extension F/K3 of conductor b such that

dimF2 Sel2(E F/K3)= dimF2 Sel2(E/K3).

Proof. This is Proposition 4.2 of [Mazur and Rubin 2010], with N = K3(81E∞),
the ray class field of K3 modulo 81E and all archimedean places of K3, applied to
the relevant ideals, which are a subset of the ideals discussed in that result. □

For an elliptic curve E and each of the ideals enumerated in Lemma 4.4, there is
a twist of E in which the 2-Selmer rank remains the same.

Lemma 4.6. Keeping the notation of Lemma 4.4, if b is an ideal of K3 such that

• Nb< X ,

• if a prime ideal p divides b, then Np is a square,

• Frobp(K3(E[2])/K3)⊂ S, and

• [b, N/K3] = 1,
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then there is a quadratic extension F/K3 of conductor b such that

dimF2 Sel2(E F/K3)= dimF2 Sel2(E/K3).

Proof. The proof is the same as that of Lemma 4.5. □

We are now ready to prove the main result of the section. We follow exactly the
strategy of the proof of [Mazur and Rubin 2010, Theorem 1.4] with the additional
step of keeping track of the square norm condition of the involved quadratic twists.

Proof of Proposition 4.1. As in Lemmas 4.3 and 4.4, let S be the set of order-3
elements in Gal(K3(E[2])/K3). Then if Gal(K3(E[2])/K3)≃ S3,

|S|

[K3(E[2]) : K3]
=

1
3
,

and if Gal(K3(E[2])/K3)≃ Z/3Z,

|S|

[K3(E[2]) : K3]
=

2
3
.

We’ll consider the case that K3 is an admissible S3-cubic resolvent; there are two
subcases to consider:

(1) Suppose dimF2 Sel2(E/K3)= r . By Lemmas 4.3 and 4.5, the number of square
norm twists E F/K3 such that dimF2 Sel2(E F/K3)= r is

≫
X1/2

log X1−(1/2)(|S|/[K3(E[2]):K3])
.

(2) Suppose dimF2 Sel2(E/K3) ̸= r . We have assumed there is a square norm
twist E L/K3 such that dimF2 Sel2(E L/K3)= r . Note that a square norm twist of a
square norm twist results in the square norm twist. That is, a square norm twist
(E L)F ′

of E L is itself a square norm twist E F of E . Now the result follows from
Case (1) applied to E L .

If instead K3 is an admissible C3-cubic resolvent for E , the proof is the same as
above, but with Lemmas 4.4 and 4.6 in place of Lemmas 4.3 and 4.5, respectively. □

5. Decreasing the 2-Selmer rank

Our strategy will be to use Lemma 3.5(2) to understand the 2-Selmer rank of square
norm twists. We’ll then use Proposition 4.1 to show there are many square norm
twist with prescribed 2-Selmer rank assuming we have already a square norm
twist of that prescribed 2-Selmer rank. We’ll show a square norm twist with that
prescribed 2-Selmer rank must exist by showing we can take square norm twists
that reduce the 2-Selmer rank by two; this is the content of Proposition 5.1.
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Proposition 5.1 below can be viewed as analogous to Proposition 5.1(iii) of
[Mazur and Rubin 2010]. Except, instead of decreasing the 2-Selmer rank by
1 via a quadratic twist obtained by controlling one local condition, we decrease
the 2-Selmer rank by 2 via a square norm twist obtained by controlling two local
conditions. Those two local conditions are obtained from two primes in the cubic
resolvent above the same rational prime.

Proposition 5.1. Let E be an elliptic curve defined over Q and let K3 be an
admissible cubic resolvent for E. Suppose further that

dimF2 Sel2(E/Q)= 0 and dimF2 Sel2(E/K3)≥ 2.

Then there exists a square norm twist E F/K3 such that

dimF2 Sel2(E F/K3)= dimF2 Sel2(E/K3)− 2.

Proof. Let1E be the discriminant of (a minimal model of) E . For the admissible cu-
bic resolvent, K3, of E , set M = K3(E[2]). Note that M/K3 is a Galois S3-extension,
since K3 is as in Definition 1.3, and K3

(√
1E

)
/K3 is an intermediate quadratic

extension. Let v0 be the distinguished place of K3 guaranteed by Definition 1.3.
Let 6 be a finite set that contains the following places of K3: all infinite places

of K3, places of bad reduction for E , and all primes above 2. Now set d =∏
v∈6\{v0}

v. Let K3(8d) be the ray class field of K3 with modulus 8d and let K3[8d]
be the maximal extension between K3(8d) and K3 whose degree is a power of 2.

Let K̃3 be the Galois closure of K3 over Q and D=
∏

V |v,v|d V be the product of
places of K̃3 above the places of K3 dividing d. Let L be the maximal extension1 of
K̃3 between K̃3 and the ray class field of K̃3 with modulus 8D. Note L ⊇ K3[8d],
[L : K3] is a power of 2, and L is Galois over Q.

By assumption, K̃3 and Q(E[2]) are linearly disjoint over Q. K3[8d] and M
are linearly disjoint as extensions of K3 since v0 is ramified in K3

(√
1E

)
but not

in K3[8d]. By the conditions on v0 of Definition 1.3, v0 does not ramify from
K3 to K̃3, and hence is unramified in L . So likewise, the same consideration of
K3

(√
1E

)
shows M and L are linearly disjoint over K3.

Let σ be an element of the absolute Galois group of K3 such that σ |M is a
transposition in Gal(M/K3) ≃ Aut(E[2]) and σ |L = 1. The former condition
implies E[2]/(σ − 1)E[2] ≃ F2. The latter condition implies σ |K3[8d] = 1.

For the rest of the proof, fix a nonzero map φ : Sel2(E/K3)→ E[2]/(σ−1)E[2].
By [Mazur and Rubin 2010, Lemma 3.5], there is an element γ ∈ G K3 for which
γ = σ when restricted to M K3[8d] and c(γ )= φ(c) for all c ∈ Sel2(E/K3).

Let N be a Galois extension of Q containing M and L for which the restriction
of Sel2(E/K3) to N is zero. For instance, take N to be the Galois closure (over Q)

1Note that if K3 is C3-cubic, then L = K3[8d] since K̃3 = K3.
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of the compositum of M , L , and the fixed field of the kernel of the restriction to
Hom(G M , E[2]) of every c ∈ Sel2(E/K3).

Let Pγ be the set of primes p of K3 for which p /∈6 and Frobp(N/K3)= γ |N .
By the Cebotarev density theorem, the natural density of Pγ among the primes of
K3 is positive, i.e.,

δγ := lim
X→∞

#{primes p of K3 | Frobp(N/K3)= γ |N , p /∈6, Np< X}

#{primes p of K3 | Np< X}
> 0.

Now, let Psp be the set of primes of K3 with inertia degree one over Q, that is,
the primes p for which the rational prime ideal p∩Z splits completely in K3. Recall
that Psp has natural density one among the primes of K3. In particular, this means
we can pick a prime p1 ∈ Pγ ∩Psp. If we could not, then Pγ (which has positive
density) would be contained in the complement of Psp (which has density zero).
Let p be the rational prime below p1, and let p2 and p3 be the other two primes of
K3 above p, in other words, pOK3 = p1p2p3.

Our goal is now to construct a suitable square norm twist from two of p1, p2, p3.
We can understand the 2-Selmer group of this twist using Lemma 3.5(1), which
requires us to compute both H 1

f ((K3)pi , E[2]) and locpi Sel2(E/K3).
First, consider the localization at p1. Since Frobp1 = γ when restricted to N (and

σ = γ when restricted to M K3[8d]) we have both that

(5-1) H 1
f ((K3)p1, E[2])≃ E[2]/(σ − 1)E[2] ≃ F2

and φ(c)= c(γ ) for all c ∈ Sel2(E/K3). The localization map

locp1 : Sel2(E/K3)→ H 1
f ((K3)p1, E[2])≃ E[2]/(Frobp1 − 1)E[2]

≃ E[2]/(σ − 1)E[2] ≃ F2

is given by evaluation of cocycles at Frobp1 , so we can identify

locp1(Sel2(E/K3))= φ(Sel2(E/K3))

as subspaces of F2. Since φ is nonzero,

(5-2) dimF2 locp1(Sel2(E/K3))= 1.

It remains to understand the localizations at p2 and p3. Since p splits completely
in K3, there is an equality of local fields

(K3)p1 = (K3)p2 = (K3)p3 = Qp

and so, together with (5-1), we have

(5-3) H 1
f ((K3)p1, E[2])= H 1

f ((K3)p2, E[2])

= H 1
f ((K3)p3, E[2])= H 1

f (Qp, E[2])≃ F2.
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Beginning from the following commutative diagram, we will consider the local-
ization of Sel2(E/K3) at primes of K3 above p and localization at p:

H 1(K3, E[2])
⊕3

i=1 H 1((K3)pi , E[2])

H 1(Q, E[2]) H 1(Qp, E[2])

coresK3/Q

⊕3
i=1 locpi

⊕3
i=1 cores(K3)pi /Qp

loc{p}

where the vertical map on the left side,

coresK3/Q : H 1(K3, E[2])→ H 1(Q, E[2]),

is determined by corestriction on Galois cohomology induced by the norm map
NK3/Q : K3 → Q (see [Milne 2020, Example 1.29] or [Serre 1997]). The vertical
map on the right side is the sum of corestriction maps:

3⊕
i=1

cores(K3)pi /Qp :

3⊕
i=1

H 1((K3)pi , E[2])→ H 1(Qp, E[2]),

(c1, c2, c3) 7→

3∑
i=1

cores(K3)pi /Qp(ci ).

Restricting the left column to the 2-Selmer groups of E over K3 and Q and to
restricted cohomology on the right column, together with (5-3), we have

Sel2(E/K3) Sel2(E/Q)= 0

⊕3
i=1 H 1

f ((K3)pi , E[2]) H 1
f (Qp, E[2])≃ F2

H 1
f (Qp, E[2])⊕3

≃ F3
2

⊕3
i=1 locpi

coresK3/Q

locp⊕3
i=1 cores(K3)pi /Qp

≃
v1+v2+v3

where the diagonal map F3
2 →F2 is coordinatewise addition of vectors in F3

2 modulo 2.
For c ∈ Sel2(E/K3) we have locpcores(c)= 0 since Sel2(E/Q)= 0. Hence,

(5-4) locp1(c)+ locp2(c)+ locp3(c)= 0 in F2.

By (5-2) there is an element c ∈ Sel2(E/K3) for which locp1(c) = 1 viewed
in F2. Combining this with (5-4), there is exactly one prime pi ∈ {p2, p3} for which
locpi (c)= 1; suppose, without loss of generality, it is p2. Whence,

(5-5) dimF2 locp2Sel2(E/K3)= 1.

Finally, we will twist E/K3 by a quadratic extension F/K3 ramified only at p1

and p2 to get our desired result.
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Let P be a prime of L above p1. Since L/Q is Galois, we have

FrobP(L/Q) f (p1/p)
= FrobP(L/Q)= FrobP(L/K3)= 1,

i.e., p splits completely in L , and so p splits completely in K3[8d].
Since our choice of Frobenius class for p is trivial when restricted just to K3[8d],

Frobp1(K3[8d]/K3)= Frobp2(K3[8d]/K3)= 1, and since [K3(8d) : K3[8d]] is odd,
there will be an odd integer, say h, such that (p1p2)

h is principal with generator α
such that α ≡ 1 (mod 8d) and α positive at all real embeddings except possibly v0.

We are now in a position to construct the quadratic extension F/K3 by which we
will twist E : Define F = K3

(√
α

)
. Only the primes p1 and p2 of K3 ramify in F .

Set p(x)= x2
−α and note p′(1)2 = 4. For any q ∈6 \{v0}, since α ≡ 1 (mod 8d),

we also have p(1)= 1−α≡ 0 (mod 4q). From Hensel’s lemma (see, e.g., [Eisenbud
1995, Theorem 7.3] for an applicable statement), it follows p(x) has a root in (K3)q.
So (K3)q ⊗ F = (K3)

2
q, that is, q splits in F . Thus all primes in 6 \ {v0} split in F .

Also, N(α)= N(p1)N(p2)= p2h , so the quadratic twist E F/K3 of E/K3 is a
square norm twist.

Finally, apply Lemma 3.5(1) with T = {p1, p2}, F = K3
(√
α

)
as above, (5-2)

and (5-5), we get

dimF2 Sel2(E F/K3)

= dimF2 Sel2(E/K3)−2 dimF2 VT +

∑
r∈T

dimF2 H 1
f ((K3)r, E[2])

= dimF2 Sel2(E/K3)−2 dimF2 loc{p1}(Sel2(E/K3))−2 dimF2 loc{p2}(Sel2(E/K3))

+dimF2 H 1
f ((K3)p1, E[2])+dimF2 H 1

f ((K3)p2, E[2])

= dimF2 Sel2(E/K3)−2

Noting again the twist by F above is a square norm twist, we have the desired
result. □

6. Proofs of the main theorems

We are now ready to prove Theorem 1.4. We’ll then show how it implies Theorem 1.1.
Again, the “infinitely many” of both theorems is quantified by Proposition 4.1.

Proof of Theorem 1.4. Let E and K3 be as in Theorem 1.4. If dimF2 Sel2(E/K3)≡

0 (mod 2), repeated application of Proposition 5.1 gives a square norm twist L such
that dimF2 Sel2(E L/K3)= 0. Once we have L , Proposition 4.1 provides infinitely
many more square norm twists F with dimF2 Sel2(E F/K3)= 0.

Likewise, if dimF2 Sel2(E/K3)≡ 1 (mod 2), the argument above provides infin-
itely many more square norm twists F with dimF2 Sel2(E F/K3)= 1. □

Now we can prove Theorem 1.1 as a consequence of Theorem 1.4.
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Proof of Theorem 1.1. Let E and K3 be as in the statement of the theorem.
Theorem 1.1 is essentially an immediate consequence of Theorem 1.4 coupled
with the upper bound the dimension of the 2-Selmer group provides for the rank.

As in Theorem 1.4, there are two cases. In the first case, dimF2 Sel2(E/K3) is
even. In this case, Theorem 1.4 provides infinitely many square norm twists E F/K3

for which dimF2 Sel2(E F/K3)= 0.
From (3-1), we have rk(E/K3)≤ dimF2 Sel2(E/K3). Thus, our infinitely many

square norm twists E F of 2-Selmer rank zero give us

0 = dimF2 Sel2(E F/K3)≥ rk(E F/K3)= rk(E/F)− rk(E/K3).

If K/Q is the S4-quartic corresponding to quadratic extension F/K3 corresponding
to each square norm twist, then having no rank growth from K3 to F means we
have no rank growth from Q to K for infinitely many K .

In the second case, dimF2 Sel2(E/K3) is even. Then, in the same way as above,
there are infinitely many square norm twists E F of 2-Selmer rank one. The result
follows if we assume the parity of the rank and 2-Selmer dimension are the same. □
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