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OBSTRUCTION COMPLEXES IN GRID HOMOLOGY

YAN TAO

Recently, Manolescu–Sarkar constructed a stable homotopy-type for link
Floer homology, which uses grid homology and accounts for all domains
that do not pass through a specific square. In doing so, they produced an
obstruction chain complex of the grid diagram with that square removed.
We define the obstruction chain complex of the full grid, without the square
removed, and compute its homology. Though this homology is too compli-
cated to immediately extend the Manolescu–Sarkar construction, we give
results about the existence of sign assignments in grid homology.

1. Introduction

Link Floer homology, developed by Ozsváth and Szabó [2004a; 2008], and Ras-
mussen [2003] is an invariant of oriented links in three-manifolds which comes from
Heegaard Floer homology, from [Ozsváth and Szabó 2004c; 2004b]. Manolescu
et al. [2007; 2009a] and Ozsváth et al. [2015] gave a combinatorial description of
the link Floer chain complex for a link in S3 using grid diagrams, known as grid
homology. A toroidal grid diagram is a n ×n grid of squares, with the left and right
edges identified and the top and bottom edges identified, together with markings X
and O , such that each row and column contains exactly one X and one O . Given a
grid diagram G, drawing vertical segments from the X to the O in each column and
horizontal segments — going under the vertical segments whenever they cross —
from the O to the X in each row gives the diagram of an oriented link L; we say
that G is a grid diagram for L . Figure 1 shows a 5 × 5 grid diagram for the trefoil.
The grid chain complex is generated by unordered n-tuples of intersection points
between the horizontal and vertical circles — Figure 1 shows an example of such a
generator.

Grid diagrams have been useful in a variety of applications in Heegaard Floer
homology. Manolescu et al. [2009b] and Manolescu and Ozsváth [2010] obtain
the Heegaard Floer invariants of 3- and 4-manifolds using grid diagrams, which
give algorithmically computable descriptions. Sarkar [2011] uses grid homol-
ogy to give another proof of Milnor’s conjecture on the slice genus of torus
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Figure 1. A 5×5 grid diagram for the trefoil, along with the gener-
ator [51243] drawn with •. Note that the generator is independent
of the X and O markings.

knots. Ozsváth et al. [2008], Ng et al. [2008], Chongchitmate and Ng [2013],
and Khandhawit and Ng [2010] use a version of grid homology to prove results
about Legendrian knots.

Manolescu and Sarkar [2021] constructed a stable homotopy refinement of knot
Floer homology from the grid chain complex, using framed flow categories in
the sense of [Cohen et al. 1995]. The Manolescu–Sarkar construction uses only
those domains that do not pass through a particular square on the grid, and uses
obstruction theory. Their obstruction chain complexes CD∗ and CDP∗, which we
will henceforth denote ĈD∗ and ĈDP∗, respectively, have simple enough homology
to construct a stable homotopy-type. We will extend them to complexes CD∗

and CDP∗ which contain all domains in the grid, first with Z/2 coefficients, which
can be extended to Z coefficients using obstruction theory. We take the first step
towards extending the Manolescu–Sarkar construction, by computing the homology
of CD∗ and partially computing the homology of CDP∗.

To state our main results, we fix the following convention throughout the paper.
For a ring R, R2n

will denote the chain complex given by R(n
k) in grading k with

no differentials, and R[U ] the chain complex given by R in every nonnegative even
grading and 0 in every odd grading (which by definition has no differentials). We
begin by showing that:

Proposition 1.1. H∗(CD∗; Z/2) is isomorphic to Z/2[U ].

In order to frame the moduli spaces in the Manolescu–Sarkar construction, we
will need a sign assignment for the grid diagram. A sign assignment is a particular
way of orienting the index 1 domains in Heegaard Floer homology; equivalently,
it is a particular assignment of 0 or 1 to each rectangle in the grid. The existence
and uniqueness (up to gauge equivalence) of sign assignments for toroidal grid
diagrams was constructed in [Manolescu et al. 2007]; see also [Gallais 2008] for
an explicit construction. In the course of our later computations, we will provide a
different proof of this fact via obstruction theory:
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Theorem 1.2. Sign assignments for CD∗ exist and are unique up to gauge equiva-
lence (equivalently, up to 1-coboundaries of CD∗ with Z/2 coefficients).

Given a sign assignment for CD∗, we obtain a definition of CD∗ in Z coefficients.
Perhaps unsurprisingly, we then obtain the following analogue of Proposition 1.1.

Proposition 1.3. H∗(CD∗; Z) is isomorphic to Z[U ].

In the end, our eventual goal is to extend the Manolescu–Sarkar construction over
the full grid. Since the moduli spaces presented in [Manolescu and Sarkar 2021]
exhibit some bubbling, we will compute the first few homology groups of CDP∗.
Unfortunately, CDP∗ has too much homology to immediately construct a stable
homotopy-type. So instead, we will work towards constructing a framed 1-flow
category, which is a formulation by Lobb et al. [2020] that still contains all the
information needed to define invariants such as the second Steenrod square. This
requires only a sign assignment and a frame assignment, whose obstructions lie in
the following lower homologies.

Theorem 1.4. We have that:

(0) H0(CDP∗; Z/2) is isomorphic to Z/2.

(1) H1(CDP∗; Z/2) is isomorphic to (Z/2)n .

(2) H2(CDP∗; Z/2) is isomorphic to (Z/2)(
n
2)+1.

(3) H3(CDP∗; Z/2) is isomorphic to (Z/2)(
n
3)+n .

In this paper, we’ll show existence and uniqueness of sign assignments for CDP∗.

Theorem 1.5. A sign assignment s on CDP∗ exists, and is unique up to gauge
transformations and the values of

s j := s(cx Id, e⃗ j , (1)).

(The elements (cx Id, e⃗ j , (1)) ∈ CDP∗ will be defined later in Section 4.)
Just like for CD∗, we can use Theorem 1.5 to define CDP∗ with Z coefficients.

We have the following analogue of Theorem 1.4.
It remains to find a frame assignment for CDP∗ using the above homology

computation, and to complete the construction of the 1-flow category for the full
grid, which we will carry out in a future paper. This present paper may be treated
as a prelude thereof.

2. The obstruction complex

Definitions related to grid diagrams are summarized below. For details, see
[Manolescu et al. 2007; 2009a; Ozsváth et al. 2015].
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• An index n grid diagram G is a torus together with n α-circles (drawn horizontally)
and n β-circles (drawn vertically). The complements of the α (respectively, β)
circles are called the horizontal (respectively, vertical) annuli — the complements
of the α and β circles are called the square regions.

• Each vertical and horizontal annulus contains exactly one X and O marking,
which are arbitrarily labeled X1, . . . , Xn and O1, . . . , On .

• The horizontal (respectively, vertical) annuli can be labeled by which O-marking
they pass through — write Hi (respectively, Vi ) for the horizontal (respectively,
vertical) annulus passing through Oi .

• Given a fixed planar drawing of the grid, we can also label the α circles α1, . . . , αn

from bottom to top, and the β circles β1, . . . , βn from left to right. The annuli
can also be labeled by which sets of α or β circles they lie between — write H(i)

(respectively, V(i)) for the horizontal annulus between αi and αi+1 (respectively,
vertical annulus between βi and βi+1). Note that H(n) and V(n) lie between αn and
α1, and βn and β1, respectively.

• A generator is an unordered n-tuple of points such that each α and β circle contains
exactly one. Generators can equivalently be viewed a Z-linear combination of n
points, or alternatively as permutations — for a permutation σ ∈ Sn the generator xσ

is the unique generator with a point at each ασ(i) ∩ βi . In this paper we will use
the convention that [a1a2 . . . an] denotes the permutation σ ∈ Sn where σ( j) = a j

for each j . For instance, Figure 1 shows the generator x [51243], which we will
interchangeably denote as [51243].

• A domain is a Z-linear combination of square regions with the property that
∂(∂ D ∩ α) = y − x for some generators x, y. We say that D is a domain from x
to y, and write D ∈ D(x, y). D is said to be positive if none of its coefficients are
negative, in which case we would write D ∈ D+(x, y).

• Given D ∈ D(x, y), E ∈ D(y, z), we get a domain D ∗ E ∈ D(x, z) by adding D
and E as 2-chains.

• The constant domain from a generator x to itself is the domain cx ∈ D(x, x)

whose coefficients are zero in every square region.

• For every domain D, there is an associated integer µ(D) called its Maslov index,
which satisfies:

– µ(D ∗ E) = µ(D) + µ(E).

– For a positive domain D, µ(D) ≥ 0, with equality if and only if D is some
constant domain.

– For D ∈ D+(x, y), µ(D) = 1 if and only if D is a rectangle: that is, its bottom
left and top right corners are coordinates of x , its bottom right and top left
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corners are coordinates of y, and the other n − 2 coordinates of x and y agree
and do not lie in D.

– µ(D) = k if and only if D can be decomposed (not necessarily uniquely) into
k rectangles D = R1 ∗ · · · ∗ Rk .

It will be particularly helpful to classify positive index 2 domains, which are
exactly those that can be decomposed as two rectangles. Thus every positive index 2
domain D ∈ D+(x, y) is a horizontal or vertical annulus

. . . . . . or

...

...

or two rectangles (overlapping or disjoint)

or

or a hexagon of the following shape

or or or

(Here the generator x is shown with • while y is shown with ◦.) Note that while a
horizontal or vertical annulus admits exactly one decomposition into rectangles, all
the other positive index 2 domains admit exactly two.

Given a grid diagram G, we define the complex of positive domains, on which
our desired sign assignment can be constructed as a cochain.

Definition 2.1. The complex of positive domains CD∗ = CD∗(G; Z/2) is freely
generated over Z/2 by the positive domains, with the homological grading being
the Maslov index

CDk = Z/2⟨{(x, y, D) | D ∈ D+(x, y), µ(D) = k}⟩.

Sometimes the generators x, y will be omitted. The differential ∂ : CDk → CDk−1

of D ∈ D+(x, y) is given by

∂(D) =
∑

R∗E=D
E +

∑
E∗R=D

E,

where R is a rectangle, and E is a positive domain.
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Note that CD∗ is independent of the placement of the X ’s and O’s.

Lemma 2.2. (CD∗, ∂) is a chain complex, that is, ∂2
= 0.

Proof. Let R and S denote rectangles, then

∂2(D) =
∑

R∗S∗E=D
E +

∑
R∗E∗S=D

E +
∑

S∗E∗R=D
E +

∑
E∗S∗R=D

E .

The second and third terms cancel (modulo 2). If R ∗ S is a hexagon or two
rectangles, then it has exactly one other decomposition R ∗ S = R′

∗ S′, so R ∗ S ∗ E
and R′

∗ S′
∗ E cancel in the first term. Similarly, E ∗ R ∗ S and E ∗ R′

∗ S′ cancel
in the last term. Finally, if R ∗ S is not a hexagon or two rectangles, it must be a
horizontal or vertical annulus, and then the terms E ∗ R ∗ S and R ∗ S ∗ E in the
first and last term cancel, and so ∂2(D) = 0. □

We now compute the homology CD∗ by constructing filtrations, for which we
need the following fact. Given two generators x and y, we say that x ≤ y if there
exists a positive domain from y to x that does not intersect the topmost row H(n) or
rightmost column V(n) of the grid. It is clear that the set of generators with ≤ is
a partially ordered set (which actually coincides with the opposite of the Bruhat
ordering on the symmetric group Sn , see [Manolescu and Sarkar 2021, Section 3.2]).

Proof of Proposition 1.1. The proof is nearly identical to the proof of [Manolescu and
Sarkar 2021, Proposition 3.4], so we present the most relevant parts. To D ∈ CD∗

associate A(D) ∈ Nn by its coefficients in the rightmost vertical annulus. Note that
here, unlike in [Manolescu and Sarkar 2021], A(D) is an n-tuple, since there is no
assumption that domains do not pass through the top right corner. By definition,
the differential only preserves or lowers A(D), so it is a filtration on CD∗. Now let
CDa

∗
be the associated graded complex in filtration grading A(D) = a.

Let M(D) = min{coordinates of A(D)} — by definition, a positive domain D
contains exactly M(D) copies of the rightmost vertical annulus V(n), so write
D = D′

∗ M(D)V(n). A(D′) contains a 0, so without loss of generality (since the
differential of CDa

∗
does not change A(D) and thus does not change where the 0

is located) D′ does not contain the top right corner. Now let B(D) ∈ Nn−1 be the
coordinates of D′ in the top row (except the top right corner). Similarly, B(D) is
a filtration on the associated graded complex CDa

∗
, so let CDa,b

∗
be the associated

graded complex in grading A(D) = a, B(D) = b.
Now fix (a, b) and consider the differential ∂ on CDa,b

∗
. Consider the following

new filtration. For any domain D ∈ D+(x, y) with A(D) = a, B(D) = b, let the
generator y be its filtration grading. With respect to the aforementioned partial
ordering of the generators, ∂ preserves or decreases y since we only consider
removing domains that do not pass through the topmost row and rightmost column.
Therefore y is a filtration grading, so let CDa,b,y

∗ be the associated graded complex
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with respect to this filtration. Unless a = (l, l, . . . , l), b =0, and y = x Id, the proof in
[Manolescu and Sarkar 2021] shows that CDa,b,y

∗ is acyclic. When a = (l, l, . . . , l),
b = 0, and y = x Id, the complex CDa,b,y

∗ has one generator (since x Id is maximal),
which is represented by the domain lV(n), lying in grading 2l.

Finally, because the associated graded complex has homology only in even
gradings, CD∗ must have the same homology. □

In order to later remove obstructions in grading 2, we now explicitly find the
generator U of H2(CD∗). We define the following index 2 domains (see Figure 2):

• A1, . . . , An−1 where Ai is the vertical annulus in the (n − i)-th column from the
left from the generator [n23 . . . (n − i) 1(n − i + 1) . . . (n − 1)] to itself, and A0 is
the rightmost vertical annulus from the identity generator x Id to itself.

• B1, . . . , Bn−1 where Bi is the horizontal annulus in the (n − i)-th row from the
bottom from the generator [(n − i +1) 23 . . . (n − i)(n − i +2) . . . n1] to itself, and
B0 is the topmost horizontal annulus from the identity generator x Id to itself.

• C1, . . . , Cn−2 where Ci is a hexagon from the generator

[n23 . . . (n − i) 1(n − i + 1) . . . (n − 1)]

to the generator [12 . . . (n − i − 1) n(n − i) . . . (n − 1)].

...
...

...
...

...

A0

A1

A2

B0

B1

B2

C1

C2

C3

D1

D2

D3

E1

E2

E3

F1,1

F1,2

F1,3

F2,1

F2,2

F3,1 G1,1

G1,2

G1,3

G2,1

G2,2

G3,1

Figure 2. The domains Ai , Bi , Ci , Di , Ei , Fi, j , and Gi, j in the
special case of a 6 × 6 grid, where each domain is drawn from a
generator x (drawn with •) to a generator y (drawn with ◦).
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• D1, . . . , Dn−2 where Di is a hexagon from the generator

[(n − i + 1) 23 . . . (n − i)(n − i + 2) . . . n1]

to the generator [12 . . . (n − i − 1)(n − i + 1) . . . n(n − i)].
• E1, . . . , En−2 where Ei is a hexagon from the generator

[12 . . . (n − i − 1) n(n − i + 1) . . . (n − 1)(n − i)]

to the generator [12 . . . (n − i − 2) n(n − i) . . . (n − 1)(n − i − 1)].
• Fi,1, . . . , Fi,n−i−2 for each i = 1, . . . n − 3, where Fi, j is a hexagon from the
generator

[12 . . . (n − i − j − 2)(n − i − j)(n − i)(n − i − j + 1)

. . . (n − i − 1)(n − i + 1) . . . n(n − i − j − 1)]

to the generator

[12 . . . (n − i − j − 2)(n − i + 1)(n − i − j)(n − i − j + 1)

. . . (n − i)(n − i + 2) . . . n(n − i − j − 1)].

• Gi,1, . . . , Gi,n−i−2 for each i = 1, . . . n − 3, where Gi, j is a hexagon from the
generator

[12 . . . (n − i − j − 2) n(n − i − j − 1)(n − i − j + 1)

. . . (n − i − 1)(n − i − j)(n − i) . . . (n − 1)]

to the generator

[12 . . . (n − i − j −2) n(n − i − j) . . . (n − i)(n − i − j −1)(n − i +1) . . . (n −1)].

Let

U :=

n−1∑
i=0

(Ai + Bi ) +

n−2∑
i=1

(Ci + Di ) +

n−2∑
i=1

Ei +

n−3∑
i=i

n−i−2∑
j=1

(Fi, j + Gi, j )

Proposition 2.3. U is the generator of H2(CD∗)

Proposition 2.3 will follow from the following computational lemmas.

Lemma 2.4. U is a cycle in CD2 (that is, ∂U = 0).

Proof. We consider the possible rectangles that appear in ∂U , starting with the
following rectangles that will be useful to name for the purposes of giving signs
later.
• R1,2, . . . , R1,n−1 where R1,i is the 1 × i rectangle from

[n23 . . . (n − i + 1) 1(n − i + 2) . . . (n − 1)]

to [n23 . . . (n − i) 1(n − i + 1) . . . (n − 1)], and R1,1 is the 1 × 1 rectangle from x Id

to [n23 . . . (n − 1)1].
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• R2,2, . . . , R2,n−1 where R2,i is the 1 × i rectangle from

[12 . . . (n − i) n(n − i + 1) . . . (n − 1)]

to [12 . . . (n − i − 1) n(n − i) . . . (n − 1)], and R2,1 is the 1 × 1 rectangle from x Id

to [12 . . . (n − 2) n(n − 1)]

• R3,2, . . . , R3,n−1 where R3,i is the i × 1 rectangle from

[(n − i + 1) 23 . . . (n − i)(n − i + 2) . . . n1]

to [(n − i) 23 . . . (n − i − 1)(n − i + 1) . . . n1], and R3,1 = R1,1.

• R4,2, . . . , R4,n−1 where R4,i is the i × 1 rectangle from

[12 . . . (n − i)(n − i + 2) . . . n(n − i + 1)]

to [12 . . . (n − i − 1)(n − i + 1) . . . n(n − i)], and R4,1 = R2,1.

• R5,1, . . . , R5,n−2, where R5,i is the 1 × i rectangle from

[12 . . . (n − i − 2)(n − i) n(n − i + 1) . . . (n − 1)(n − i − 1)]

to [12 . . . (n − i − 2) n(n − i) . . . (n − 1)(n − i − 1)].

• R6,1, . . . , R6,n−2, where R6,i is the i × 1 rectangle from

[12 . . . (n − i − 2) n(n − i − 1)(n − i + 1) . . . (n − 1)(n − i)]

to [12 . . . (n − i − 2) n(n − i) . . . (n − 1)(n − i − 1)].

We cancel each of these rectangles in the boundary as follows (see Figure 3):

• R1,1 occurs in ∂U twice, from ∂ A0 and ∂ B0, so it cancels in ∂U . R1,i occurs in
∂ Ai−1 and ∂Ci−1 for i = 2, . . . n − 1, so they also cancel in ∂U .

...
...

...
...

...
...

R1,1

R1,2

R1,3

R2,1

R2,2

R2,3

R3,2

R3,3

R4,2

R4,3

R5,1

R5,2

R5,3

R6,1

R6,2

R6,3

Figure 3. The rectangles R1,i , R2,i , R3,i , R4,i , R5,i , R6,i , where
each rectangle is drawn from a generator x (drawn with •) to a
generator y (drawn with ◦).
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• R2,1 occurs in ∂U twice, from ∂C1 and ∂ D1, so it cancels in ∂U , R2,n−1 occurs
in ∂ An−1 and ∂ En−2, and for i = 2, . . . n − 2, R2,i occurs in ∂Ci and ∂ Ei , so they
also cancel in ∂U .
• For i = 2, . . . n − 1, R3,i occurs in ∂ Bi−1 and ∂ Di−1.
• For i = 2, . . . n − 2, R4,i occurs in ∂ Di and ∂ Ei−1.
• R5,1 occurs in ∂ E1 and ∂ F1,1; for i = 2, . . . n−2, R5,i occurs in ∂ Ei and ∂ F1,i−1.
• R6,1 occurs in ∂ E1 and ∂G1,1; for i = 2, . . . n−2, R6,i occurs in ∂ Ei and ∂G1,i−1.

Next, we consider the following rectangles:

• Pi,1 . . . Pi,n−i−1 for each i = 2 . . . n − 2, where Pi, j is the 1 × j rectangle from

[12 . . . (n − i − j − 1)(n − i − j + 1)(n − i + 1)(n − i − j + 2)

. . . (n − i)(n − i + 2) . . . n(n − i − j)]

to [12 . . . (n−i − j −1)(n−i +1)(n−i − j +1) . . . (n−i)(n−i +2) . . . n(n−i − j)],
and P1, j = R5, j for each j = 1, . . . n − 2.
• Qi,1 . . . Qi,n−i−1 for each i = 2 . . . n − 2, where Qi, j is the j × 1 rectangle from

[12 . . . (n − i − j − 1) n(n − i − j)(n − i − j + 2)

. . . (n − i)(n − i − j + 1)(n − i + 1) . . . (n − 1)]

to [12 . . . (n− i − j −1) n(n− i − j +1) . . . (n− i)(n− i − j)(n− i +1) . . . (n−1)],
and Q1, j = R6, j for each j = 1, . . . n − 2.

We cancel each of these rectangles in the boundary as follows (see Figure 4):

• Pn−2,1 occurs in ∂ Fn−3,1 and ∂ Bn−2. For i = 2, . . . n − 3, Pi, j occurs in ∂ Fi−1, j

and either ∂ Fi, j−1 if j ≥ 2 or ∂ Fi,1 if j = 1.
• Qn−2,1 occurs in ∂Gn−3,1 and ∂ An−2. For i = 2, . . . n−3, Qi, j occurs in ∂Gi−1, j

and either ∂Gi, j−1 if j ≥ 2 or ∂Gi,1 if j = 1.

P2,1

P2,2

P2,3

P3,1

P3,2

P4,1 Q2,1

Q2,2

Q2,3

Q3,1

Q3,2

Q4,1

Figure 4. The rectangles Pi, j and Qi, j in the special case of a
6×6 grid, where each domain is drawn from a generator x (drawn
with •) to a generator y (drawn with ◦).
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Finally, the remaining rectangles have the following form:

• R′

1,1 . . . R′

1,n−1, where R′

1,i is the (n − i) × 1 rectangle from

[n23 . . . (n − i) 1(n − i + 1) . . . (n − 1)]

to [12 . . . (n − i) n(n − i + 1) . . . (n − 1)].

• R′

2,1 . . . R′

2,n−1, where R′

2,i is the 1 × (n − i) rectangle from

[(n − i + 1) 23 . . . (n − i)(n − i + 2) . . . n1]

to [12 . . . (n − i)(n − i + 2) . . . n(n − i + 1)].

• P ′

i,2 . . . P ′

i,n−i−1 for i = 1 . . . n − 3, where P ′

i, j is the j × 1 rectangle from
[12 . . . (n−i − j −1)(n−i)(n−i − j +1) . . . (n−i −1)(n−i +1) . . . n(n−i − j)] to
[12 . . . (n− i − j −1)(n− i +1)(n− i − j +1) . . . (n− i)(n− i +2) . . . n(n− i − j)],
and P ′

i,1 = Pi,1.

• Q′

i,2 . . . Q′

i,n−i−1 for i = 1 . . . n − 3, where Q′

i, j is the 1 × j rectangle from
[12 . . . (n − i − j −1) n(n − i − j +1) . . . (n − i −1)(n − i − j)(n − i) . . . (n −1)] to
[12 . . . (n − i − j −1) n(n − i − j +1) . . . (n − i)(n − i − j)(n − i +1) . . . (n −1)],
and Q′

i,1 = Qi,1.

We cancel each of these rectangles in the boundary as follows (see Figure 5):

R′
1,1

R′
1,2

R′
1,3

R′
1,4

R′
1,5

R′
2,1

R′
2,2

R′
2,3

R′
2,4

R′
2,5

P ′
1,2

P ′
1,3

P ′
1,4

P ′
2,2

P ′
2,3

P ′
3,2

Q′
1,2

Q′
1,3

Q′
1,4

Q′
2,2

Q′
2,3

Q′
3,2

Figure 5. The rectangles R′

1,i , R′

2,i , P ′

i, j , Q′

i, j in the special case
of a 6 × 6 grid, where each domain is drawn from a generator x
(drawn with •) to a generator y (drawn with ◦).
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• R′

1,1 occurs in ∂ B0 and ∂C1, R′

1,n−1 occurs in ∂ An−1 and ∂Cn−2. R′

1,i occurs in
∂Ci−1 and ∂Ci for i = 2, . . . , n − 2.

• R′

2,1 occurs in ∂ A0 and ∂ D1, R′

2,n−1 occurs in ∂ Bn−1 and ∂ Dn−2. R′

2,i occurs in
∂ Di−1 and ∂ Di for i = 2, . . . , n − 2.

• P ′

i,n−i−1 occurs in ∂ Fi,n−i−2 and ∂ Bi . For 2 ≤ j ≤ n − i − 2, P ′

i, j occurs in
∂ Fi, j−1 and ∂ Fi, j .

• Q′

i,n−i−1 occurs in ∂Gi,n−i−2 and ∂ Ai . For 2 ≤ j ≤ n − i − 2, Q′

i, j occurs in
∂Gi, j−1 and ∂Gi, j .

Since these are the only rectangles produced by ∂ Ai , ∂ Bi , ∂Ci , ∂ Di , ∂ Ei , ∂ Fi, j ,
∂Gi, j , we conclude that indeed ∂U = 0. □

Lemma 2.5. U is not homologous to zero in CD∗.

Proof. Let r be the 2-cochain which is 1 on the rightmost vertical annulus from
any generator to itself, and zero on all other domains; we will first show that r is
a cocycle, at which point it suffices to show that r(U ) ̸= 0. Let E be an index 3
domain. If E does not contain the rightmost vertical annulus, then clearly δr(E)= 0.
If E does contain the rightmost vertical annulus, then E can be written exactly two
ways as the product of the rightmost vertical annulus V(n) with an index 1 domain:
E = D ∗ V(n) = V(n) ∗ D. So δr(E) = 0 and therefore r is a cocycle, and r(U ) = 1
since U contains exactly one copy of the rightmost vertical annulus. □

Proof of Proposition 2.3. This immediately follows from Lemmas 2.4 and 2.5
and Proposition 1.1. □

3. Sign assignments

In order to extend CD∗ over Z coefficients (and to frame some of the 0-dimensional
moduli spaces in the Manolescu–Sarkar construction), we need a sign assignment
for CD∗, which is a particular Z/2-valued 1-cochain on CD∗. The following
conditions for a sign assignment ensures that 1-dimensional moduli spaces are
frameable, since their boundaries must have opposite signs; see [Manolescu and
Sarkar 2021] for more details, and note also that this agrees with the sign assignments
defined in [Manolescu et al. 2007; Gallais 2008], though we are giving a new proof
of their existence.

Definition 3.1. A sign assignment for G is a Z/2-valued 1-cochain s on CD∗

such that:

(1) (square rule) If D1,D2,D3,D4 are distinct rectangles and D1∗D2 = D3∗D4 = E
which is not an annulus, then s(D1) + s(D2) = s(D3) + s(D4) + 1.
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(2) (annuli) If D1, D2 are rectangles and D1 ∗ D2 is a vertical annulus, then
s(D1) = s(D2)+ 1. If D1, D2 are rectangles such that D1 ∗ D2 is a horizontal
annulus, then s(D1) = s(D2).

In order to prove that such a sign assignment exists, we will show that the
2-cocycle that we hypothesize to be δs is indeed a 2-coboundary.

Lemma 3.2. Let T be the 2-cochain with the following values:

(1) (square rule) For any index 2 domain D that is not an annulus, T (D) = 1.

(2) (annuli) T (V ) = 1 for all vertical annuli V , and T (H) = 0 for all horizontal
annuli H.

Then T is a 2-coboundary.

Proof. First, we show that T is a cocycle. Let E be any index 3 domain; we must
show that ⟨T, ∂ E⟩ = 0. For every decomposition E = D ∗ A, where A is a vertical
or horizontal annulus, there is a corresponding decomposition E = A ∗ D, so that
A occurs an even number of times in ∂ E . It now suffices to show that ∂ E contains
an even number of every other type of index 2 domain.

To every index 3 domain E from a generator x to a generator y, consider a graph
with vertices x at level 3, y at level 0, and edges down 1 level corresponding to
each way to break off an index 1 domain (see Figure 6 for an example of such a
graph). Then each level 2 vertex has an index 2 domain to y, which decomposes
into rectangles exactly two ways, so each level 2 vertex has downward degree 2,
and each level 1 vertex has an index 2 domain from x , which decomposes into
rectangles exactly two ways, so each level 1 vertex has upward degree 2. Therefore
there are the same number of level 2 and level 1 vertices, so since each index 2
domain that shows up in ∂ E corresponds to a level 2 or 1 vertex, there are an
even number of index 2 domains. Since an even number of these are annuli, we
must therefore have an even number of hexagons. This shows that ⟨T, ∂ E⟩ = 0, as
desired.

By Propositions 1.1 and 2.3 it now suffices to show that T (U ) = 0 where U is
the generator of H2(CD∗). By definition, U consists of n annuli Ai , n annuli Bi ,
n − 2 hexagons Ci , n − 2 hexagons Di , n − 2 hexagons Ei ,

(n−2
2

)
hexagons Fi, j ,

and
(n−2

2

)
hexagons Gi, j , so for any T satisfying the conditions of Lemma 3.2,

T (U ) ≡ n + 3(n − 2) + 2
(n−2

2

)
≡ 0 (mod 2)

so that T is indeed a coboundary. □

Lemma 3.3. Let T be the 2-coboundary from Lemma 3.2. Then T = δs if and only
if s is a sign assignment.

Proof. This is clear from the definitions. □
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◦
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•

x

z1 z2 z3

w1 w2 w3

y

Figure 6. An example of a positive index 3 domain from a gener-
ator x (drawn with •) to a generator y (drawn with ◦), along with
the graph defined in the proof of Proposition 1.3. The generators zi

are given by ◦ on the i-th rectangle from the left and • on the other
two, while the generators wi are given by • on the i-th rectangle
from the left and ◦ on the other two.

Proof of Theorem 1.2. Existence immediately follows from Lemmas 3.2 and 3.3.
For uniqueness, suppose T = δs = δs ′. Then δ(s − s ′) = 0, so s − s ′ is a 1-cocycle,
which is cohomologous to zero by Proposition 1.1, so there is a 0-cochain g such
that s = s ′

+ δg. □

Given a sign assignment s, we can use it to redefine CD∗ in Z coefficients:

Definition 3.4. CD∗(G; Z) is freely generated over G by the positive domains, with
the homological grading being the Maslov index. The differential ∂ : CDk → CDk−1

of D ∈ D+(x, y) is given by

∂(D) =
∑

R∗E=D
(−1)s(R)E + (−1)k ∑

E∗R=D
(−1)s(R)E,

where R is a domain of index 1 from x to some generator z and E is a positive
domain from z to y.

We now have analogues of Lemma 2.2 and Proposition 1.1 in Z coefficients, in
the following lemma and Proposition 1.3, respectively.

Lemma 3.5. (CD∗, ∂) is a chain complex.

Proof. The proof is similar to the proof of Lemma 2.2, except we must keep track
of signs. □

Proof of Proposition 1.3. The proof is similar to the proof of Proposition 1.1.
Specifically, our proof of Proposition 1.1 over Z/2 adapts the proof of [Manolescu
and Sarkar 2021, Proposition 3.4]. This proof is over Z, and a similar adaptation
will prove Proposition 1.3. □
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4. The obstruction complex with partitions

The moduli spaces in the construction of the 1-flow category require more than
just positive domains. Since periodic domains (annuli) can bubble, Manolescu and
Sarkar [2021] introduces a new complex to keep track of the bubbles — since there
are n different types of bubbles (corresponding to bubbling of the j-th horizontal
or vertical annulus) which can be at the same or different heights, these correspond
to n-tuples of ordered partitions.

It is convenient to use both of the following equivalent definitions of an ordered
partition of a positive integer N (and when N = 0, a partition of N is the empty set).

• An ordered partition λ is a tuple of nonnegative integers λ = (λ1, . . . , λm) such
that N =

∑
λi (m is called the length of the partition, and is denoted l(λ)).

• An ordered partition λ is a tuple ϵ(λ) = (ϵ1(λ), . . . , ϵN−1(λ)) ∈ {0, 1}
N−1, where

an ϵi equaling 1 indicates a split at that point. For instance, the ordered partitions
(1, 1, 1), (1, 2), (2, 1), and (3) of 3 are written (1, 1), (1, 0), (0, 1), and (0, 0).

Besides annuli bubbling off (the second type of terms that will be in the differen-
tial — the first being terms in the differential of CD∗), there are two other boundary
degenerations that occur with existing bubbles. Bubbles of the same type may come
to the same height (the third type of term), and bubbles may go to height ±∞ (the
fourth and final type of term). The corresponding changes to the partitions are
described below.

Definition 4.1. The following changes to an ordered partition will describe the
differential terms (see [Manolescu and Sarkar 2021, Definitions 4.1, 4.2, 4.3] for
more details):

• A unit enlargement (at position k) increases N by 1 and adds a 1 to the tuple λ

(at position k). The set of unit enlargements of λ is denoted UE(λ).

• An elementary coarsening (at position k) replaces both terms λk and λk+1 with
one term λk + λk+1. The set of elementary coarsenings of λ is denoted EC(λ).

• An initial reduction removes λ1 (and decreases N by λ1), and a final reduction
removes λm (and decreases N by λm). The set of initial reductions (respectively,
final reductions) of λ is denoted IR(λ) (respectively, FR(λ)), where we consider
both sets empty if N = 0.

We are now ready to define the complex of domains with partitions, CDP∗.

Definition 4.2. The complex of positive domains with CDP∗ = CDP∗(G; Z/2) is
freely generated by triples of the form D, N⃗ , λ⃗, where:

• D ∈ D+(x, y) is a positive domain.

• N⃗ ∈ Nn is an n-tuple of nonnegative integers, N⃗ = (N1, . . . , Nn).



368 YAN TAO

• λ⃗ = (λ1, . . . , λn) is an n-tuple of ordered partitions for λ j = (λ j,1, . . . , λ j,m j ),
an ordered partition of N j .

We denote |N⃗ | :=
∑n

j=1 N j , and define |l(λ⃗)| :=
∑n

j=1 l(λ j ) be the total length
of λ⃗. The grading of (D, N⃗ , λ⃗) is given by the Maslov index of D plus |l(λ⃗)|. The
differential is given by the sum of the following four terms.

• Type I terms, given by taking out a rectangle from D, just like in the differential
of CD∗.

• Type II terms, given by taking out a vertical or horizontal annulus passing
through O j from D and performing a unit enlargement to λ j .

• Type III terms, given by an elementary coarsening of one of the partitions λ j .

• Type IV terms, given by taking the initial or final reduction of one of the
partitions λ j .

Precisely, we can write ∂ = ∂1 + ∂2 + ∂3 + ∂4 where

∂1(D, N⃗ , λ⃗) =
∑

R∗E=D
(E, N⃗ , λ⃗)+

∑
E∗R=D

(E, N⃗ , λ⃗),

∂2(D, N⃗ , λ⃗) =

n∑
j=1

∑
D=E∗H j or E∗V j

∑
λ′

j ∈UE(λ j )

(E, N⃗ + e⃗ j , λ⃗
′),

∂3(D, N⃗ , λ⃗) =

n∑
j=1

∑
λ′

j ∈EC(λ j )

(D, N⃗ , λ⃗′),

∂4(D, N⃗ , λ⃗) =

n∑
j=1

∑
λ′

j ∈IR(λ j )

(D, N⃗ −λ j,1 e⃗ j , λ⃗
′)+

n∑
j=1

∑
λ′

j ∈FR(λ j )

(D, N⃗ −λ j,m j e⃗ j , λ⃗
′).

As in Definition 2.1, R is a rectangle, and the annuli H j , V j are the ones passing
through the j-th O marking. We also use λ⃗′

:= (λ1, . . . , λ j−1, λ
′

j , λ j+1, . . . , λn),
and e⃗ j := (0, . . . , 0, 1, 0, . . . , 0) with the 1 in the j-th position.

It will help us to classify the lower grading generators, that is, generators of CDP0,
CDP1, CDP2, CDP3 (see [Manolescu and Sarkar 2021, Section 4.2] for details).

(0) CDP0 is generated by the constant domains with no partitions (cx , 0, 0) for
some generator x .

(1) CDP1 is generated by rectangles with no partitions (R, 0, 0) as well as triples
of the form (cx , Ne⃗ j , (N )) for a constraint domain cx .

(2) CDP2 is generated by Maslov index 2 domains with no partition (D, 0, 0) (for
a classification of the kinds of domains D, see above or [Ozsváth et al. 2015]),
triples of the form (R, Ne⃗ j , (N )) for a rectangle R, or a constant domain
with partitions of total length 2. Specifically, we can have triples of the form(
cx , Ne⃗ j + Me⃗k, ((N ), (M))

)
(where j ̸= k), or (cx , (N + M) e⃗ j , (N , M)).



OBSTRUCTION COMPLEXES IN GRID HOMOLOGY 369

(3) Finally, CDP3 is generated by Maslov index 3 domains with no partition,
Maslov index 2 domains with a partition of the form (D, Ne⃗ j , (N )), rectangles
with a partition of total length 2, and constant domains with partitions of total
length 3, which has the following cases:

• (cx , N j e⃗ j + Nk e⃗k + Nl e⃗l, ((N j ), (Nk), (Nl)) for j, k, l distinct.
• (cx , (N j + M j ) e⃗ j + Nk e⃗k, ((N j , M j ), (Nk)) for j, k distinct.
• (cx , (N j + M j + Pj ) e⃗ j , (N j , M j , Pj )).

Lemma 4.3. (CDP∗, ∂) is a chain complex.

Proof. The proof follows a similar case analysis to [Manolescu and Sarkar 2021,
Lemma 4.4]. Write ∂ = ∂1 + ∂2 + ∂3 + ∂4, where ∂k is the type k term in the
differential. Since ∂1 is just the differential from CD∗, we have by Lemma 2.2
that ∂2

1 = 0. Now for ∂2
2 , the terms will correspond to removing two annuli (and

doing two unit enlargements). If the annuli pass through two different Oi and O j ,
then the corresponding term shows up twice, once in each order. If the annuli pass
through the same O j , then the corresponding term also shows up twice — once for
each order in doing the unit enlargements. So, ∂2

2 = 0. We can similarly show that

∂2
3 = 0, ∂1∂2 +∂2∂1 = 0, ∂1∂3 +∂3∂1 = 0, ∂2∂3 +∂3∂2 = 0, ∂1∂4 +∂4∂1 = 0

by doing the respective operations in two different orders.
Now consider ∂2∂4 + ∂4∂2, the terms of which correspond to a unit enlargement

and an initial or final reduction, in either order. If one is done to λi and another
to λ j where i ̸= j , then the two commute and cancel just like before. If both are
done to λi , then all terms follow one of these cases:

• A unit enlargement not at the beginning, followed by an initial reduction. This can-
cels with the initial reduction followed by doing the enlargement one place earlier.

• A unit enlargement not at the end, followed by a final reduction. This cancels
with the final reduction followed by the same enlargement.

• A unit enlargement at the beginning, followed by an initial reduction; or a unit
enlargement at the end, followed by a final reduction. These cancel with each other.

Finally, consider the last terms of ∂2, ∂2
4 + ∂3∂4 + ∂4∂3. Again there are some

special types of terms:

• The elementary coarsening of λi by combining the first two parts, followed by a
initial reduction of λi , cancels with two initial reductions of λi .

• The elementary coarsening of λi by combining the last two parts, followed by a
final reduction of λi , cancels with two final reductions of λi .

where all the other terms cancel by doing the operations in two different orders. □
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We would like to compute the homology of CDP∗ using successive filtrations,
as in the proof of Proposition 1.1.

Proposition 4.4. There is a filtration on CDP∗ such that the associated graded has
homology (Z/2)2n

⊗ (Z/2)[U ].

Proof. We again follow the proof of [Manolescu and Sarkar 2021, Proposition 4.6].
We can filter the complex CDP′

∗
in several steps. First we filter CDP∗ by the quantity

A(D) ∈ Nn which are the coefficients of D in the rightmost column. As in the proof
of Proposition 1.1, we can assume without loss of generality that the minimum
of A(D) occurs in the top right corner, and then filter the associated graded CDPa

∗
by

B(D) ∈ Nn−1 which are the coefficients of D in the topmost row. In the associated
graded CDPa,b

∗
, there are no type II terms in the differential, since such terms must

decrease either A or B. Since |N⃗ | is kept constant by type I and type III terms and
decreased by type IV terms, it is a filtration on CDPa,b

∗
, so filtering by |N⃗ | and (as

in the proof of Proposition 1.1) the end generator y gives a direct sum of complexes
CDPa,b,y,N⃗

∗ .
When a ̸= (l, l, . . . , l) or b ̸= 0 or y ̸= x Id, filtering by the total length of λ⃗

removes all type III terms and keeps all type I terms, so CDPa,b,y,N⃗
∗ is a direct sum

of complexes CDa,b,y
∗ which were all shown to be acyclic in the proof of [Manolescu

and Sarkar 2021, Proposition 3.4]. Additionally, when a = (l, l, . . . , l), b = 0,
y = x Id, and at least one N j > 1, every generator of CDPa,b,y,N⃗

∗ is represented by
some (D, N⃗ , λ⃗) where D = kVn , so we only have type III terms. The partitions
of N j are given by (ϵ1, . . . , ϵN j −1), where the elementary coarsenings just change
a 1 to a 0. This gives a hypercube complex, which is acyclic. Therefore, we are
only left with the associated graded complexes CDPa,b,y,N⃗ where a = (l, l, . . . , l),
b = 0, y = x Id, and every N j is 0 or 1. □

Corollary. Hk(CDP∗; Z/2) has rank at most

⌊k/2⌋∑
l=0

(
n

k − 2l

)
.

In the proof of Proposition 2.3, we found a cocycle that detects the generator
of H2(CD∗). We will use a similar procedure to compute H0(CDP∗) through
H3(CDP∗).

Proof of Theorem 1.4. (k = 0). This case is clear.

(k = 1). The n generators of H1(AssGr(CDP∗)) are the triples

g j := (cx Id, e⃗ j , (1)),

which are still cycles in CDP1 (because their initial and final reductions cancel). It
will suffice to show that there exist n 1-cocycles r j such that r j (gk) = 1 if and only



OBSTRUCTION COMPLEXES IN GRID HOMOLOGY 371

if j = k. Let f j be the 1-cochain in CD∗ such that δ f j (D) = 1 if and only if D is the
vertical annulus V j or the horizontal annulus H j where f j exists by Proposition 2.3
because the 2-cocycle which is 1 on V j and H j and zero on every other index 2
domain is a coboundary, since it is zero on the generator U of H2(CD∗). We can
extend f j to CDP∗ by setting it equal to zero on all triples (cx , Ne⃗ j , (N )). Let N j

be the 1-cocycle that is the value of N j in the triple (D, N⃗ , λ⃗), and

r j := N j + f j .

To show that r j is a cocycle, we consider all possible triples (D, N⃗ , λ⃗) in grading 2.
If N j = 0 and D is not the annulus V j or H j , then by definition δr j (D, N⃗ , λ⃗) = 0.
If N j = 0 and D = V j or H j , then N⃗ = 0 and

δr j (D, 0, 0) = N j (cx , e⃗ j , (1)) + ( f j (R1) + f j (R2)) = 1 + 1 = 0 (mod 2),

where D = R1 ∗ R2 is the decomposition into rectangles. Finally, if N j = M > 0,
there are three cases:

• D is a rectangle. In this case N⃗ = Me⃗ j and λi = (M), so the initial and final
reduction of λi cancel, and the only other differential terms are removing D. If D
is a rectangle from x to y, then

δri (D, Me⃗ j , (M)) = N j (cx , Me⃗ j , (M)) + N j (cy, Me⃗ j , (M))

= M + M = 0 (mod 2).

• Some Nk > 0, where k ̸= j . Then D must be a constant domain, and both λ j

and λk are length 1 partitions, so their initial and final reductions all cancel.

• D is a constant domain and λ j = (M1, M2) is a length 2 partition. In this case
we have all of the type III and type IV differentials, which gives

δr j (cx , (M + N ) e⃗ j , (M, N ))

= N j (cx , Me⃗ j , (M)) + N j (cx , Ne⃗ j , (N )) + N j (cx , (M + N ) e⃗ j , (M + N ))

= M + N + (M + N ) = 0 (mod 2).

Therefore r j is a cocycle for each j , and by definition r j (g j ) = 1 if and only if
j = k, so the g j are in fact the generators of H1(CDP∗).

(k =2). Now consider 2-cocycles. (Z/2)(
n
2) of the generators of H2(AssGr(CDP∗))

are the triples
g j,k :=

(
cx Id, e⃗ j + e⃗k, ((1), (1))

)
,

which are similarly still cycles in CDP2. The final generator will be given by a
slight modification U ′ of (U, 0, 0), where U is the generator of H2(CD∗). The
boundary of U in CDP∗ contains only pairs of triples of the form

(cx j , e⃗ j , (1)) and (cy j , e⃗ j , (1))
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corresponding to type II differentials on the annuli A j and B j . Here we have that
x j and y j are, respectively, the generators [n23 . . . (n − j) 1(n − i + 1) . . . (n − 1)]

and [(n − j + 1) 23 . . . (n − j)(n − j + 2) . . . n1], as depicted in Figure 2. For
each j , the generators x j and y j each have a planar domain (that is, a domain that
does not intersect the topmost row or rightmost column of the grid), D j,1 and D j,2

respectively, from the identity generator x Id. From Figure 2, we see that D j,2 is the
reflection of D j,1 about the diagonal from the bottom left to the top right of the grid,
so that (−D j,1) ∗ D j,2 is an even index planar domain from x j to y j . This domain
decomposes into an even number of planar rectangles ±R jk (where each R jk is
positive), so that adding each (R jk, e⃗ j , (1)) to (U, 0, 0) will cancel the rest of its
boundary, making a cycle U ′.

In the proof of Proposition 2.3, we used the 2-cocycle r which is 1 on the
rightmost vertical annulus and zero on every other 2-chain. Extending r to CDP∗

by setting it equal to zero on every 2-chain with |N⃗ | > 0 still gives a cocycle, since
CDP∗ has no new ways to create an annulus in the boundary, and we still have
that r(U ′) = 1, while all of the r(g j,k) = 0. Now it suffices to find r j,k such that
r j,k(U ′) = 0 for all j, k, and r j,k(gl,m) = 1 if and only if {l, m} = { j, k}. Let f j be
the 1-cocycles defined in the proof of (1), and let

f k
j (R, N⃗ , λ⃗) = Nk f j (R),

where R is a rectangle and λ⃗ has total length 1 (and f k
j = 0 on all other 2-chains).

Now let N j Nk be the 2-cocycle that is the product of the values of N j and Nk for a
triple (D, N⃗ , λ⃗), and let

r j,k := N j Nk + f k
j + f j

k .

To show that r j,k is a cocycle, we consider all possible triples (D, N⃗ , λ⃗) in grading 3.
If N j = 0 (respectively, Nk = 0) and D does not contain the annulus V j or H j

(respectively, Vk or Hk), then by definition δr j,k(D, N⃗ , λ⃗) = 0. If N j = 0, Nk > 0
(or vice versa), and D contains V j or H j , then D = V j or H j and all Nl = 0 for l ̸= k,
so that δr j,k(D, N⃗ , λ⃗) = 0 similarly to the proof of (1). Finally, if N j = M j > 0
and Nk = Mk > 0, there are three cases:

• D is a rectangle. In this case N⃗ = M j e⃗ j + Mk e⃗k , λ j = (M j ), and λk = (Mk), so
the initial and final reductions of λ j and λk cancel, and the only other differential
terms are removing D. If D is a rectangle from x to y, then

δr j,k(D, N⃗ , λ⃗)

=N j Nk
(
cx , M j e⃗ j+Mk e⃗k, ((M j ), (Mk))

)
+Ni N j

(
cy, M j e⃗ j+Mk e⃗k, ((M j ), (Mk))

)
=Mi M j+Mi M j =0 (mod 2).

• Some Nl > 0, where l ̸= j, k. Then D must be a constant domain, and all of λ j ,
λk , and λl are length 1 partitions, so their initial and final reductions all cancel.
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• D is a constant domain and λ j = (M j,1, M j,2) is a length 2 partition (or symmet-
rically, λk = (Mk,1, Mk,2)). In this case the initial and final reductions of λk cancel,
but we have all of the type III and type IV differentials of λ j , which give

δr j,k
(
cx , (M j,1 + M j,2) e⃗ j + Mk e⃗k, ((M j,1, M j,2), (Mk))

)
= N j Nk

(
cx , M j,1 e⃗ j + Mk e⃗k, ((M j,1), (Mk))

)
+ N j Nk

(
cx , M j,2e⃗ j + Mk e⃗k, ((M j,2), (Mk))

)
+ N j Nk

(
cx , (M j,1 + M j,2) e⃗ j + Mk e⃗k, ((M j,1 + M j,2), (Mk))

)
= Mk(M j,1 + M j,2 + (M j,1 + M j,2)) = 0 (mod 2).

Therefore r j,k is a cocycle for all j, k, and by definition r j,k(U ) = 0. U ′ only
adds an even number of planar rectangles with partitions that can contribute to f k

j
or f j

k , no two of which can ever form an annulus, so r j,k(U ′) = 0. Finally, by
definition r j,k(gl,m) = 1 if and only if {l, m} = { j, k}, so these (along with U ′) are
in fact the generators of H2(CDP∗).

(k = 3).
(n

3

)
of the generators of H3(AssGr(CDP∗)) are the triples

g j,k,l :=
(
cx Id, e⃗ j + e⃗k + e⃗l, ((1), (1), (1))

)
,

which are similarly still cycles in CDP3. The other n generators are the triples U ′

j
obtained from U ′ by performing unit enlargements on N j and adding the triples
(R jk, 2e⃗ j , (2)) defined previously (for this fixed j). Let V(n) be the rightmost
vertical annulus and define the cochain

rr j (D, N⃗ , λ⃗) :=

{
0, D does not contain V(n),

r j (D ∗ −V(n), N⃗ , λ⃗), D contains V(n),

where r j is the 1-cocycle from the proof of (1). To show that rr j are cocycles, we
consider all δrr j (D, N⃗ , λ⃗) for triples (D, N⃗ , λ⃗)∈ CDP4. If D does not contain V(n),
then this quantity is zero by definition. If D contains V(n), then its Maslov index is
at least 2, so that we have the following cases:

• D is an index 4 domain. In this case, N⃗ = 0, so let E = D ∗ (−V(n)). If E is also
an annulus Vk , then

δrr j (D, N⃗ , λ⃗)

= rr j (A1 ∗ V(n), 0, 0)+rr j (A2 ∗ V(n), 0, 0)+rr j (E ∗ B1, 0, 0)+rr j (E ∗ B2, 0, 0)

+rr j (V(n), e⃗k, (1))+rr j (E, e⃗n, (1)) (where A1 ∗ A2 = E , B1 ∗ B2 = V(n))

= r j (A1, 0, 0)+r j (A2, 0, 0)+r j (cx , e⃗k, (1))

+
(
r j (B1, 0, 0)+r j (B2, 0, 0)+r j (cx , e⃗n, (1))

)
(added if and only if k = n)

= 0
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by definition of r j (since this is just δr j (Vk) with possibly δr j (V(n)) added if k = n).
If E is not an annulus, we similarly have

δrr j (D, N⃗ , λ⃗)

= rr j (A1 ∗ V(n), 0, 0) + rr j (A2 ∗ V(n), 0, 0) + rr j (E ∗ B1, 0, 0)

+ rr j (E ∗ B2, 0, 0) + rr j (E, e⃗n, (1)) (where A1 ∗ A2 = E , B1 ∗ B2 = V(n))

= r j (A1, 0, 0) + r j (A2, 0, 0) + r j (cx , e⃗k, (1)) = 0.

• D = R ∗ V(n) is an index 3 domain, where R is a rectangle from a generator x
to a generator y. In this case, N⃗ = Ne⃗k and λ⃗ = λk = (N ). Suppose that in the
domain D, V(n) = A ∗ B, and R = B (or symmetrically, R = A). In this case,

δrr j (D, N⃗ , λ⃗)

= rr j (R ∗ A, Ne⃗k, (N )) + rr j (A ∗ R, Ne⃗k, (N )) + rr j
(
R, Ne⃗k + en, ((N ), (1))

)
= r j (cx , Ne⃗k, (N )) + r j (cy, Ne⃗k, (N )) = 0.

by definition of r j . If R is not A or B, we similarly have

δrr j (D, N⃗ , λ⃗) = rr j (R ∗ A, Ne⃗k, (N )) + rr j (R ∗ B, Ne⃗k, (N ))

+ rr j (V(n), Ne⃗k, (N )) (at the generator x)

+ rr j (V(n), Ne⃗k, (N )) (at y)

+ rr j
(
R, Ne⃗k + e⃗n, ((N ), (1))

)
= r j (cx , Ne⃗k, (N )) + r j (cy, Ne⃗k, (N )) = 0.

• D is an index 2 domain. In this case, we have that D = V(n), |λ⃗| = 2, and
δrr j (D, N⃗ , λ⃗) = δr j (cx , N⃗ , λ⃗) since the type I and type II terms cannot possibly
have an annulus; note that we previously showed this expression to be zero in
showing that r j is a cocycle.

Therefore rr j is a cocycle, and by construction rr j (U ′

k) = 1 if and only if k = j , and
all of the rr j (gk,l,m) = 0. It remains to find cocycles r j,k,l such that r j,k,l(U ′

m) = 0
for all j, k, l, m, and r j,k,l(gm,p,q) = 1 if and only if {m, p, q} = { j, k, l}. Let f j

be the 1-cocycles defined in the proof of (1), and let

f k,l
j (R, N⃗ , λ⃗) = Nk Nl f j (R),

where R is a rectangle and λk, λl are both length 1 partitions (and f k,l
j = 0 on all

other 3-chains). Now let N j Nk Nl be the 3-cocycle that is the product of the values
of N j , Nk , and Nl for a triple (D, N⃗ , λ⃗), and let

r j,k,l = N j Nk Nl + f k,l
j + f j,l

k + f j,k
l .

To show that r j,k,l is a cocycle, we consider all possible triples (D, N⃗ , λ⃗) in grading 4.
If N j = 0 (respectively, Nk = 0 or Nl = 0) and D does not contain the annulus V j
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or H j (respectively, Vk or Hk , or Vl or Hl), then by definition δr j,k,l(D, N⃗ , λ⃗) = 0.
If N j = 0, Nk > 0, and Nl > 0 (or symmetrically, any other case where exactly
one is zero), and D contains V j or H j , then D = V j or H j and all Nm = 0 for
m ̸= k, l, so that δr j,k,l(D, N⃗ , λ⃗) = 0 similarly to the proof of (1). Finally, if
N j = M j > 0, Nk = Mk > 0, and Nl = Ml > 0, there are three cases:

• D is a rectangle. In this case N⃗ = M j e⃗ j + Mk e⃗k + Ml e⃗l , λ j = (M j ), λk = (Mk),
and λl = (Ml), so the initial and final reductions of λ j , λk and λl cancel, and the
only other differential terms are removing D. If D is a rectangle from x to y, then

δr j,k,l(D, N⃗ , λ⃗) = N j Nk Nl
(
cx , M j e⃗ j + Mk e⃗k + Ml e⃗l, ((M j ), (Mk), (Ml))

)
+ N j Nk Nl

(
cy, M j e⃗ j + Mk e⃗k + Ml e⃗l, ((M j ), (Mk), (Ml))

)
= M j Mk Ml + M j Mk Ml = 0 (mod 2).

• Some Nm > 0, where m ̸= j, k, l. Then D must be a constant domain, and all
of λ j , λk , λl , and λm are length 1 partitions, so their initial and final reductions all
cancel.
• D is a constant domain and λ j = (M j,1, M j,2) is a length 2 partition (or sym-
metrically, λk = (Mk,1, Mk,2) or λl = (Ml,1, Ml,2)). In this case the initial and
final reductions of λk and λl cancel, but we have all of the type III and type IV
differentials of λ j , which give

δr j,k,l
(
cx , (M j,1 + M j,2) e⃗ j + Mk e⃗k + Ml e⃗l, ((M j,1, M j,2), (Mk), (Ml))

)
= N j Nk Nl

(
cx , M j,1 e⃗ j + Mk e⃗k + Ml e⃗l, ((M j,1), (Mk), (Ml))

)
+ N j Nk Nl

(
cx , M j,2e⃗ j + Mk e⃗k + Ml e⃗l, ((M j,2), (Mk), (Ml))

)
+ N j Nk Nl

(
cx , (M j,1 + M j,2) e⃗ j + Mk e⃗k + Ml e⃗l, ((M j,1 + M j,2), (Mk), (Ml))

)
= Mk Ml(M j,1 + M j,2 + (M j,1 + M j,2)) = 0 (mod 2)

Therefore r j,k,l are cocycles, satisfying r j,k,l(F ′′
m) = 0 for all j, k, l, m, and

r j,k,l
(
cx Id, e⃗m + e⃗p + e⃗q , ((1), (1))

)
= 1 if and only if {m, p, q} = { j, k, l}. □

5. Sign assignments for domains with partitions

Similarly to Section 3, we find the criteria that the coboundary of a sign assignment
for CDP∗ must satisfy:

Definition 5.1. A sign assignment for CDP∗ is a 1-cochain s on CDP∗ such that:

(1) δs(D, 0, 0) = 1 for any index 2 domain D that is not an annulus.

(2) δs(V, 0, 0) = 1 for any vertical annulus V , and δs(H, 0, 0) = 0 for any hori-
zontal annulus H .

(3) δs(R, (0, Ne⃗ j , (N )) = 0 for any rectangle R, any N > 0, and any j .
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(4) δs
(
cx , Ne⃗ j +Me⃗k, ((N ), (M))

)
=0 for any constant domain cx , any N , M >0,

and any j, k.

(5) δs
(
cx , (N + M) e⃗ j , ((N , M))

)
= 0 for any constant domain cx , any N , M > 0,

and any j .

Proof of Theorem 1.5. Let T be the 2-cochain with values given by (1)–(5) of
Definition 5.1. To see that T is a cocycle, we evaluate δT on all triples (D, N⃗ , λ⃗)

in grading 3. These are given by:

• (D, 0, 0) where D is an index 3 domain. The proof of Lemma 3.3 shows that the
contributions to δT by Type I differential terms all cancel. If D does not contain an
annulus, these are all the differential terms. If D does contain an annulus A = H j

or V j , we can write D = R ∗ A for a rectangle R, so that the type II differential
term gives (R, (0, e⃗ j , (1)), which does not contribute to δT by (3).
• (D, Ne⃗ j , (N )) where D is an index 2 domain. Here the initial and final reduc-
tion of the partition both give (D, 0, 0) so their contributions to δT cancel. The
decompositions of D into rectangles do not contribute to δT by condition (3), and
again if D is not an annulus, then these are the only other boundary terms. If D
is an annulus, then either D = H j , D = V j , or D is some other annulus Hk or
Vk . In the latter case, the type II differential term gives

(
cx , Ne⃗ j + e⃗k, ((N ), (1))

)
which does not contribute to δT by (4). In the former case, the type II differential
gives two terms, (cx , (N + 1) e⃗ j ), (1, N )) and (cx , (N + 1) e⃗ j , (N , 1)), which do
not contribute to δT by (5).
• (R, N⃗ , λ⃗) where R ∈ D+(x, y) is a rectangle and λ⃗ has total length 2. Here the
type I differential removes R two ways, leaving either

(
cx , Me⃗ j +Ne⃗k, ((M), (N ))

)
(and the corresponding term for cy , which do not contribute to δT by (4)), or
(cx , (M + N ) e⃗ j ), (M, N )) (and the corresponding term for cy , which do not con-
tribute by (5)). All type III and type IV terms do not contribute by (3). Since R
cannot possibly contain an annulus, there are no further terms so δT (R, N⃗ , λ⃗) = 0.
• (cx , N⃗ , λ⃗) where cx is a constant domain and λ⃗ has total length 3. None of these
terms contribute to δT by (4) and (5).

Hence T is a cocycle, so it remains to show T is zero on every generator of
H2(CDP∗) listed in the proof of Theorem 1.4. By definition, we have that every
T

(
cx , e⃗ j + e⃗k, ((1), (1))

)
= 0. Also, T (U, 0, 0)= 0 by Lemma 3.2, so T (U ′)= 0 by

condition (3), since these are the only types of triples added to (U, 0, 0). Therefore
T must be the zero cocycle by Theorem 1.4, so T = δs for some s. The values s j

uniquely determine the H 1(CDP∗) class of s by Theorem 1.4, so at that point s is
unique up to gauge equivalence (like sign assignments for CD∗). □

There are two types of triples in grading 1 — rectangles with no partitions and
constant domains with a length 1 partition. By uniqueness, the sign of a rectangle
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with no partition in CDP∗ agrees with the sign of that rectangle in CD∗, so it remains
to compute the signs of constant domains with a length 1 partition.

Proposition 5.2. For any constant domain cx and any N > 0,

s(cx , Ne⃗ j , (N )) = Ns j (mod 2).

Proof. We first show that the sign is independent of the generator x . Let R ∈D+(x, y)

be a rectangle. By (3) of Definition 5.1, we have

0 = δs(R, Ne⃗ j , (N ))= s(cx , Ne⃗ j , (N ))+s(R, 0, 0)+s(R, 0, 0)+s(cy, Ne⃗ j , (N ))

so that s(cx , Ne⃗ j , (N )) = s(cy, Ne⃗ j , (N )), and given any domain from x to y, we
find a decomposition into rectangles and repeatedly apply this equation. Therefore
we can now assume without loss of generality that x = x Id. We will use the
uniqueness of s up to the values s j to proceed by induction on N . The base case is
clear, and by (5) of Definition 5.1 we must have that

0 = δs(cx , Ne⃗ j , (1, N − 1))

= s(cx , e⃗ j , (1)) + s(cx , (N − 1) e⃗ j ), (N − 1)) + s(cx , Ne⃗ j , (N ))

= s j + (N − 1) s j (mod 2)

by the inductive hypothesis, so that s(cx , Ne⃗ j , (N )) = Ns j (mod 2), which com-
pletes the induction. □

Remark 5.3. It would suffice by uniqueness to define a sign assignment on CDP∗

by defining a sign assignment on CD∗ and extending it by Proposition 5.2. Doing
so would give another proof of Theorem 1.5.

Again, now that we have a sign assignment s, we can extend CDP∗ to Z coeffi-
cients. As in CD∗, the sign associated to breaking off a rectangle is the sign of the
rectangle s(R) given by the sign assignment. We now describe the sign of the other
differential terms.

Definition 5.4. Let s be a sign assignment for CDP∗.

• Given an ordered partition λ and the unit enlargement

λ′
= (λ1, . . . , λk−1, 1, λk, . . . , λm),

the sign of the unit enlargement is

s(λ, λ′) = k + 1 (mod 2).

• Given an ordered partition λ and the elementary coarsening

λ′
= (λ1, . . . , λk−1, λk + λk+1, λk+2, . . . , λm),
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the sign of the elementary coarsening is

s(λ, λ′) = k (mod 2).

• Given an ordered partition λ = (λ1, . . . , λm) and its initial reduction λ′, the sign
of the reduction is given by

s(λ, λ′) = λ1 s j (mod 2).

The sign of its final reduction is given by the same expression, with λm replacing λ1.

Definition 5.5. The complex of positive domains that have the partitions CDP∗ =

CDP∗(G; Z) is freely generated by triples of the form D, N⃗ , λ⃗, where:

• D ∈ D+(x, y) is a positive domain.
• N⃗ ∈ Nn is an n-tuple of nonnegative integers, N⃗ = (N1, . . . , Nn).
• λ⃗ = (λ1, . . . , λn) is an n-tuple of ordered partitions, where λ j = (λ j,1, . . . , λ j,m j )

is an ordered partition of N j .

The grading of (D, N⃗ , λ⃗) is given by the Maslov index of D plus the sum of the
lengths of the λ j (which is referred to as the total length of λ⃗). The differential is
given by four terms, ∂ = ∂1 + ∂2 + ∂3 + ∂4, where

∂1(D, N⃗ , λ⃗) =
∑

R∗E=D
(−1)s(R)(E, N⃗ , λ⃗) + (−1)µ(D)

∑
E∗R=D

(−1)s(R)(E, N⃗ , λ⃗),

∂2(D, N⃗ , λ⃗) = (−1)µ(D)
n∑

j=1
(−1)l(λ1)+···+l(λ j−1)

∑
D=E∗H j (horizontal)

(−1)
1+s(λ j ,λ

′

j )∑
λ′

j ∈UE(λ j )

(E, N⃗ + e⃗ j , λ⃗
′)

+ (−1)µ(D)
n∑

j=1
(−1)l(λ1)+···+l(λ j−1)

∑
D=E∗V j (vertical)

(−1)
s(λ j ,λ

′

j )∑
λ′

j ∈UE(λ j )

(E, N⃗ + e⃗ j , λ⃗
′),

∂3(D, N⃗ , λ⃗) = (−1)µ(D)
n∑

j=1
(−1)l(λ1)+···+l(λ j−1)

∑
λ′

j ∈EC(λ j )

(−1)
s(λ j ,λ

′

j )(D, N⃗ , λ⃗′),

∂4(D, N⃗ , λ⃗) = (−1)µ(D)
n∑

j=1
(−1)l(λ1)+···+l(λ j−1)∑

λ′

j ∈IR(λ j )

(−1)
s(λ j ,λ

′

j )(D, N⃗ − λ j,1 e⃗ j , λ⃗
′)

+ (−1)µ(D)
n∑

j=1
(−1)l(λ1)+···+l(λ j )∑

λ′

j ∈FR(λ j )

(−1)
s(λ j ,λ

′

j )(D, N⃗ − λ j,m j e⃗ j , λ⃗
′).

Remark 5.6. In the case that all s j = 0, these signs agree with the signs of
[Manolescu and Sarkar 2021, Definitions 4.1–4.3], with the exception of the type II
differential.
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Lemma 5.7. (CDP∗, ∂) is a chain complex.

Proof. The proof is similar to that of [Manolescu and Sarkar 2021, Lemma 4.4],
which is the same case analysis of Lemma 4.3, except where we keep track of signs.
In the case of

(∂4)
2
+ ∂3∂4 + ∂4∂3 = 0,

we still have all but two cases canceling in pairs by reversing the order of the two
operations. These two cases are:

• Two initial reductions and an elementary coarsening at the beginning, followed
by an initial reduction. The former has sign

λ1 s j + λ2s j (mod 2)

and the latter has sign
1 + (λ1 + λ2) s j (mod 2),

which is the opposite sign.

• Two final reductions and an elementary coarsening at the end, followed by a final
reduction. Note that final reductions have an extra sign of l(λ j ) compared to initial
reductions, so that including this extra sign, the former has sign

l(λ j ) + (l(λ j ) − 1) + λms j + λm−1 s j (mod 2)

and the latter has sign

(l(λ j ) − 1) + (l(λ j ) − 1) + (λm−1 + λm) s j (mod 2),

which is the opposite sign.

Finally, although we still have ∂2∂4 + ∂4∂2 = 0, the change to the sign of the
type II differential gives a new set of cancellations

∂2
1 + ∂2∂4 + ∂4∂2 = 0.

For this case, suppose D = A ∗ E = E ∗ A is the domain where A = R ∗ S is an
annulus.

• If A is a vertical annulus V j , then s(R)+s(S)=1, so that removing R then S from
the front has sign 1, while the type II differential that produces a unit enlargement at
the front of λ j followed by the initial reduction of λ j has sign 0. Also, removing S
then R from the back has sign 0 (since the Maslov index of the domain decreases
once), while the type II differential that produces a unit enlargement at the end
of λ j followed by the final reduction of λ j has sign l(λ j ) + 1 + l(λ j ) = 1 (mod 2).

• If A is a horizontal annulus H j , then s(R) + s(S) = 0, so that removing R
then S from the front has sign 0, while the type II differential that produces a
unit enlargement at the front of λ j followed by the initial reduction of λ j has
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sign 1. Also, removing S then R from the back has sign 1 (since the Maslov
index of the domain decreases once), while the type II differential that produces
a unit enlargement at the end of λ j followed by the final reduction of λ j has sign
l(λ j ) + l(λ j ) = 0 (mod 2). □

The analogue of Proposition 4.4 also holds over Z.

Proposition 5.8. There is a filtration on CDP∗ such that the associated graded has
homology Z2n

⊗ Z[U ]. In particular, Hk(CDP∗) has rank at most

⌊k/2⌋∑
l=0

(
n

k − 2l

)
.

Proof. The proof is identical to the proof of Proposition 4.4. □
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