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LAGRANGIAN COBORDISM OF POSITROID LINKS

JOHAN ASPLUND, YOUNGJIN BAE, ORSOLA CAPOVILLA-SEARLE,
MARCO CASTRONOVO, CAITLIN LEVERSON AND ANGELA WU

Positroid strata of the complex Grassmannian can be realized as augmen-
tation varieties of Legendrians called positroid links. We prove that the
partial order on strata induced by Zariski closure also has a symplectic
interpretation, given by exact Lagrangian cobordism.

1. Introduction

Positroid varieties are irreducible subvarieties of the complex Grassmannian that
were first introduced in the study of total positivity [Lusztig 1998; Postnikov 2006;
Rietsch 2006], and Poisson geometry [Brown et al. 2006]. Open positroid varieties
provide a stratification of the complex Grassmannian, and they can be enumerated
by a handful of different combinatorial objects.

Positroid varieties are known to admit cluster structures, which have also been
found on the coordinate rings of many algebraic varieties arising in representation
theory, including double Bruhat cells [Fomin and Zelevinsky 2002], double Bott–
Samelson cells [Shen and Weng 2021], positroid strata [Galashin and Lam 2023],
and certain Richardson strata [Casals et al. 2022; Galashin et al. 2022; 2023].
Geometrically, this allows one to think of such varieties as the result of gluing
algebraic tori along birational mutation maps, and their coordinate rings carry bases
whose structure constants are positive integers counting tropical curves [Fock and
Goncharov 2009; Gross et al. 2018].

Legendrian links in R3 are smooth links that are everywhere tangent to the plane
field ker(dz − ydx) which is called the standard contact structure of R3. Their
interpolating objects are exact Lagrangian cobordisms in the symplectization of R3.
Legendrian links and exact Lagrangian cobordisms between them can be studied
via the general framework of symplectic field theory [Eliashberg et al. 2000] which
aims to use counts of pseudoholomorphic curves to define invariants of contact
manifolds and the symplectic cobordisms between them. One such invariant is the
Chekanov–Eliashberg differential graded algebra associated to a Legendrian link 3,
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whose homology is a Legendrian isotopy invariant [Chekanov 2002; Eliashberg
et al. 2000].

Under favorable circumstances, the space of augmentations of the Chekanov–
Eliashberg dg-algebra forms an algebraic variety Aug(3). Exact Lagrangian fillings
(cobordisms from the empty set to 3) induce augmentations.

Augmentations have been shown to be related to simple microlocal sheaves
associated to 3 [Shende et al. 2017; 2019; Ng et al. 2020], leading to the idea
that augmentation varieties should have cluster structures, with torus charts corre-
sponding to embedded exact Lagrangian fillings of 3 and mutations arising from
Lagrangian surgery [Polterovich 1991]. So far this idea has been explored mainly
for Legendrian links in the standard contact R3; see [Casals and Weng 2024]. This
bridge between contact geometry and cluster algebras has been fruitful in both
directions, having been instrumental in resolving long-standing conjectures on the
abundance of Lagrangian fillings of Legendrian links [Casals and Gao 2022] and
on the existence of cluster structures on spaces of interest in representation theory
[Casals et al. 2022].

We explore this idea further, predicating that when augmentation varieties have
compactifications stratified by augmentation varieties of smaller dimension, then
the Legendrian submanifolds corresponding to adjacent strata should be related by
exact Lagrangian cobordisms. We establish this in the simplest class of examples:
positroid strata of complex Grassmannians [Knutson et al. 2013]. It is known
that all positroid strata are isomorphic to the moduli space of simple microlocal
sheaves of certain Legendrian links 3 in R3 with framings (marked points) [Shende
et al. 2019] and to augmentation varieties of 3 [Casals et al. 2021; 2020]. The top
positroid stratum was one of the key motivating examples for the development of
cluster algebras [Fomin and Zelevinsky 2002; Scott 2006], while cluster structures
on strata of lower dimension were described more recently [Galashin and Lam
2023].

1.1. Result. The positroid strata 5◦
⊂ Gr(k, n) of complex Grassmannians are

disjoint Zariski locally closed sets; see Definition 4.5. There is a distinguished class
of Legendrian links 35◦ in the standard contact R3, referred to as positroid links
whose augmentation varieties are related to the strata by an algebraic isomorphism

(1) 5◦ ∼= Aug(35◦) × (C∗)N (5◦),

where N (5◦) ∈ Z≥0 is a nonnegative integer depending on 5◦; see Section 5 for a
precise statement. The positroid link 35◦ is the Legendrian (−1)-closure of a braid
on k-strands associated to 5◦, known as a juggling braid (see Definition 5.4). The
positroid strata can be enumerated by bounded affine permutations (see Section 3)
and for each pair of integers 1 ≤ k < n, the set of positroid strata of Gr(k, n) is
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partially ordered by declaring 5◦

f ≤ 5◦
g if and only if 5◦

f ⊂ cl(5◦
g). Our main

result is the following.

Theorem 1.1 (Theorems 6.1 and 6.3). Given two comparable positroid strata
5◦

f ≤ 5◦
g in Gr(k, n), their associated Legendrian links 35◦

f
and 35◦

g
are related

by an exact Lagrangian cobordism from 35◦

f
to 35◦

g
whose Euler characteristic is

dim(5◦

g) − dim(5◦

f ) + # Fix(g) − # Fix( f ),

where # Fix denotes the number of fixed points (see Definition 3.9).

Remark 1.2. (1) We defer experts to Theorem 5.8 and Remark 6.2 for a discussion
on marked points placed on the positroid links.

(2) Two positroid links being exact Lagrangian cobordant does not imply that the
corresponding positroid strata are comparable in the partial order; see Example 7.2
and Remark 7.3.

Note that even for small k and n, complex Grassmannians have many positroid
strata, and their partial order is quite complicated; see Example 4.9 and Figure 5. The
exact Lagrangian cobordism in Theorem 1.1 is constructed by pinching contractible
Reeb chords, which is a well-known technique in contact geometry. We establish
that any chain connecting 5◦

f and 5◦
g in the partial order produces a sequence of

pinch moves.
If 5◦

f < 5◦
g then from Theorem 1.1 there is an exact Lagrangian cobordism

from 35◦

f
to 35◦

g
consisting of pinch moves. Let r be the number of such moves.

From [Pan 2017; Gao et al. 2024] it follows that there is an open embedding relating
the augmentation varieties of the ends:

Aug(35◦

f
) × (C∗)r ↪→ Aug(35◦

g
).

This means that if the bounded affine permutations f and g are related by r affine
transpositions, under the identification between positroid strata and augmentation
varieties in (1) we get an open embedding

5◦

f × (C∗)r+N (5◦
g) ↪→ 5◦

g × (C∗)
N (5◦

f ).

As pointed out to us by a referee it is an interesting question whether such embed-
dings admit a description purely in terms of algebraic combinatorics, i.e., without
using the connection with the topology of Legendrians.

Outline. In Section 2 we provide the necessary background on Legendrian links
and exact Lagrangian cobordisms. In Section 3 we provide the relevant definitions
and properties of bounded affine permutations. We recall the definition of positroid
strata of complex Grassmannians in Section 4. In Section 5 we describe positroid
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links via juggling braids coming from bounded affine permutations. Our main
theorem Theorem 1.1 is proven in Section 6. In Section 7 we discuss examples.

2. Background on contact geometry

We briefly review some basic facts on Legendrian links and exact Lagrangian
cobordisms. See [Etnyre and Ng 2022] for a more thorough introduction, and
[Geiges 2008] for background on contact geometry.

2.1. Legendrian links. The standard contact structure on R3 is the plane field
ξ := ker(dz − ydx). A smooth embedding of circles 3 ⊂ R3 is called a Legendrian
link if Tx3 ⊂ ξx for all x ∈ 3. Two Legendrian links are Legendrian isotopic if they
are smoothly isotopic through Legendrian links. The maps πL(x, y, z) = (x, y)

and πF (x, y, z) = (x, z) are called the Lagrangian projection and front projection,
respectively. The Lagrangian projection of a Legendrian link is an immersed curve
with zero oriented area. The front projection of a Legendrian link does not have
any vertical tangencies but instead has cusp and crossing singularities. Conversely,
any immersed disjoint union of circles with cusp and crossing singularities and no
vertical tangencies lifts uniquely to a Legendrian link in R3; see Figure 1 for an
example of both projections.

The Thurston–Bennequin number tb(3) ∈ Z of a Legendrian link 3 ⊂ R3

measures how much the contact structure ξ rotates along 3, and is defined as the
linking number of 3 and its push-off in any direction transverse to ξ . This number
is easily computed from a front projection as

tb(3) = #positive crossings of πF (3) − #negative crossings of πF (3)

− #right cusps of πF (3).

A Reeb chord of 3 is a trajectory of the vector field ∂z that begins and ends
on 3. Note that the Lagrangian projection induces a bijection between Reeb chords
and double points of πL(3). A Reeb chord of 3 is contractible if there exists a
smooth homotopy of 3 through Legendrian immersions (such that the Lagrangian
projections only have transverse double points throughout the homotopy) that shrinks
the length of the Reeb chord to zero; see [Ekholm et al. 2016, Definition 6.13].

Figure 1. Front (left) and Lagrangian (right) projections of a Leg-
endrian trefoil.
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2.2. Exact Lagrangian cobordisms. The symplectization of the standard contact R3

is defined as R×R3 equipped with the closed nondegenerate 2-form ω = dλ where
λ = et(dz − ydx). A Lagrangian cobordism from a Legendrian link 3− to a
Legendrian link 3+ is a smooth embedding of a surface L ⊂ R × R3 such that
ω|T L = 0 and such that L is a cylinder over 3± at infinity but is otherwise compact,
i.e., there is some T > 0 for which L ∩ [−T, T ] is compact,

E−(L) := L ∩ ((−∞, −T ) × R3) = (−∞, −T ) × 3−,

E+(L) := L ∩ ((T, ∞) × R3) = (T, ∞) × 3+.

A Lagrangian cobordism L is exact if there is a smooth function f : L → R

such that d f = λ|L and f |E±(L) is constant. A Lagrangian filling is a Lagrangian
cobordism with 3− = ∅. Exact Lagrangian cobordisms give a reflexive and
transitive relation, but not a symmetric one [Chantraine 2015]. All known examples
of exact Lagrangian cobordisms between Legendrians with maximal Thurston–
Bennequin numbers arise from

• Legendrian isotopy,

• the unique exact Lagrangian disk filling of an unlinked unknot component
with maximal Thurston–Bennequin number, and

• pinching a contractible Reeb chord.

The pinch move is a local modification of 3 ⊂ R3, depicted in Figure 2. A pinch
move induces an exact Lagrangian cobordism in the symplectization of R3 from
the knot after a pinch move to the knot before the pinch move. When a pinch move
is performed, the number of components of the Legendrian link either increases
or decreases by one, so the resulting exact Lagrangian cobordism is topologically
a pair of pants, and it is often called a saddle cobordism. See Figure 12 for an
example of an exact Lagrangian saddle cobordism between two Legendrians.

Figure 2. A pinch move in the front (left) and the Lagrangian
(right) projection. The arrows show the direction of the induced
exact Lagrangian cobordism.
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3. Bounded affine permutations

We review bounded affine permutations, the affine analogs of ordinary permutations.
See [Knutson et al. 2013] for a more thorough introduction and an interpretation in
terms of juggling. Throughout this section let k, n ∈ Z≥1 with k ≤ n.

Definition 3.1. An affine permutation of size n is a bijection f : Z → Z satisfying
f (i + n) = f (i) + n for all i ∈ Z. In addition, it is k-bounded if

(1) i ≤ f (i) ≤ i + n, and

(2)
∑n

i=1( f (i) − i) = nk.

Denote the set of k-bounded affine permutations of size n by Bound(k, n), and a
k-bounded affine permutation f : Z → Z by [ f (1), f (2), . . . , f (n)].

Lemma 3.2. A bijection f is a k-bounded affine permutation of size n if and only if
g := −(− f )−1 is a k-bounded affine permutation of size n.

Proof. Let i ∈ Z and define j = − f (i). Then f (i + n) = f (i) + n is equivalent
to i + n = −g(− f (i) − n), and hence −g( j) + n = −g( j − n). Note that i ≤

f (i) ≤ i + n is equivalent to −g((− f )(i)) ≤ f (i) ≤ −g((− f )(i + n)). We can
rewrite these inequalities as g( j) ≥ j and j ≥ g( j − n) = g( j) − n, which is
equivalent to j ≤ g( j) ≤ j + n. Finally,

∑n
i=1( f (i) − i) = nk is equivalent to∑n

j=1(− j + g( j)) = nk. □

A bounded affine permutation f ∈ Bound(k, n) can be visualized in the plane as
the set of line segments in R2 from (i, 1) to ( f (i), 0) for all i ∈ Z; see Figure 3 for
an example. Note that once f (i + n) = f (i) + n for all i ∈ Z, the picture is fully
determined by the region in the red dashed box in Figure 3.

Definition 3.3. For a bounded affine permutation f ∈ Bound(k, n), a pair (i, j) ∈

{1, . . . , n}
2 is an affine inversion if i < j and either f (i) > f ( j) or f (i) < f ( j)−n.

The length of an affine permutation f , ℓ( f )∈ Z≥0, is the number of affine inversions
of f .

Example 3.4. For the bounded affine permutation f = [3, 5, 6, 4] depicted in
Figure 3, (2, 4) and (3, 4) are the only affine inversions, and thus ℓ( f ) = 2. These

0 1 2 3 4−1− 2− 3− 4

0 1 2 3 4−1− 2− 3− 4

Figure 3. The bounded affine permutation f = [3, 5, 6, 4] ∈ Bound(2, 4).
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1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Figure 4. Left: [3, 5, 6, 4] ∈ Bound(2, 4). Right: [2, 5, 7, 4] ∈ Bound(2, 4).

two affine inversions correspond to the two circles in Figure 3. Similarly, we have
ℓ([3, 4, 6, 5]) = 1 and ℓ([2, 5, 7, 4]) = 3.

We now equip Bound(k, n) with a partial order.

Definition 3.5. An affine permutation σ : Z → Z of size n is a transposition if
σ(k) = σi (k) for some i ∈ Z, where

σi (k) :=


k + 1 if k = i (mod n),

k − 1 if k = i + 1 (mod n),

k if k ̸= i, i + 1 (mod n).

Definition 3.6. Let f, f ′
∈ Bound(k, n). Declare f ⋖ f ′ if and only if ℓ( f ) < ℓ( f ′)

and there exists an affine transposition σi of size n such that f ′
= f ◦σi or f ′

=σi ◦ f .
Define a relation < on Bound(k, n) as the transitive closure of the relation ⋖.

It follows from the definition that (Bound(k, n), <) is a partially ordered set.

Example 3.7. Note that

ℓ([3, 4, 6, 5]) < ℓ([3, 5, 6, 4]) and [3, 5, 6, 4] = σ4 ◦ [3, 4, 6, 5];

thus we have [3, 4, 6, 5]⋖ [3, 5, 6, 4]. Similarly

ℓ([3, 5, 6, 4]) < ℓ([2, 5, 7, 4]) and [2, 5, 7, 4] = σ2 ◦ [3, 5, 6, 4],

so that [3, 5, 6, 4]⋖[2, 5, 7, 4]; see Figure 4. Then the induced partial order satisfies
[3, 4, 6, 5] < [2, 5, 7, 4]. See Figure 5 for the Hasse diagram of the partial order <

on Bound(2, 4).

As in the case of ordinary permutations, one can define cycles of bounded affine
permutations.

Lemma 3.8. Let f ∈ Bound(k, n). Then f induces a bijection f̄ : Z/n → Z/n
defined by f̄ ([i]) = [ f (i)] for all [i] ∈ Z/n.

Proof. As f is a bounded affine permutation, for all i, t ∈ Z, we know f (i + tn) =

f (i) + tn = f (i) (mod n). Thus, f̄ is well-defined. Moreover, we have a well-
defined inverse function f̄ −1 given by f̄ −1([i]) = [ f −1(i)]. So f̄ is a bijection. □
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Definition 3.9. A cycle of length t of f ∈Bound(k, n) is a tuple (i1, . . . , it)∈ (Z/n)t

up to cyclic permutation such that

f̄ : i1 7→ i2 7→ · · · 7→ it 7→ i1,

where i1, . . . , it are all distinct. A cycle of length 1 is called a fixed point of f .

Example 3.10. The affine permutation f = [3, 5, 6, 4] has one cycle of length three
being (1, 3, 2) and one cycle of length one being (4).

4. Positroid strata

We collect definitions and known properties of positroid strata of the complex
Grassmannian from the literature [Knutson et al. 2013; Galashin and Lam 2021].

4.1. Complex Grassmannians. Fix k, n ∈ Z≥1 such that k ≤ n, and write Mat(k, n)

for the set of k×n matrices with complex entries.

Definition 4.1. The complex Grassmannian of k-planes in Cn is

Gr(k, n) = {M ∈ Mat(k, n) | rk(M) = k}/row operations.

Complex Grassmannians are smooth projective varieties. A widely used projec-
tive embedding of Gr(k, n) in P(n

k)−1 is given by Plücker coordinates; see [Harris
1992, Lecture 6].

Definition 4.2. Given M ∈ Mat(k, n) with column vectors M1, . . . , Mn and 1 ≤

i1 < · · · < ik ≤ n, we define the Plücker coordinates 1i1,...,ik (M) to be

1i1,...,ik (M) = det[Mi1, Mi2, Mi3, . . . , Mik ].

Example 4.3. For 1 ≤ i1 < i2 ≤ 4, label the
(4

2

)
= 6 homogeneous coordinates of P5

by 1i1,i2 . The corresponding Plücker coordinates on Gr(2, 4) give a projective
embedding of Gr(2, 4) as a hypersurface in P5, whose equation is

11,312,4 = 11,213,4 + 11,412,3.

For example, the matrix

M =

[
1 2 0 1
0 1 −1 1

]
has 11,2(M) = 1, 11,3(M) = −1, 11,4(M) = 1, 12,3(M) = −2, 12,4(M) = 1, and
13,4(M) = 1. Note that row operations on M change all Plücker coordinates by
a common factor, which is immaterial once one thinks of them as homogeneous
coordinates on P5.
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4.2. Positroid strata. The complex Grassmannian Gr(k, n) decomposes into dis-
joint subsets 5◦

f labeled by bounded affine permutations f ∈ Bound(k, n); see
[Knutson et al. 2013]. Any M ∈ Mat(k, n) with columns M1, . . . , Mn extends
periodically to a matrix with infinitely many columns, by setting Mi+n = Mi for all
i ∈ Z. Define an associated function fM : Z → Z by

fM(i) = min{ j ≥ i | Mi ∈ Span(Mi+1, . . . , M j )}.

If M ∈ Mat(k, n) has rank k, then fM : Z → Z is a k-bounded affine permutation
of size n that depends only on [M] ∈ Gr(k, n).

Example 4.4. The matrix M ∈ Mat(2, 4) from Example 4.3 extends periodically
to a matrix with infinitely many columns[

· · · 0 1 1 2 0 1 1 2 · · ·

· · · −1 1 0 1 −1 1 0 1 · · ·

]
,

and the corresponding bounded affine permutation fM : Z → Z of type (2, 4) is
fM = [3, 4, 5, 6].

Definition 4.5. The positroid stratum associated to f ∈ Bound(k, n) is defined as

5◦

f := {[M] ∈ Gr(k, n) | fM = f }.

The adjective positroid comes from the fact that the closure of a stratum is defined
by the vanishing of Plücker coordinates 1i1,...ik whose indexing sets {i1, . . . , ik} ⊂

{1, . . . , n} form a particular class of matroids [Postnikov 2006]. The term strata
refers to the following property.

Theorem 4.6 (Knutson–Lam–Speyer [Knutson et al. 2013, Theorems 5.9 and 5.10]).
Each positroid stratum is locally closed in the Zariski topology, and has closure

cl(5◦

f ) =

⋃
f ′≥ f

5◦

f ′ .

Definition 4.7 (partial order on positroid strata). Define 5◦

1 ≤ 5◦

2 if and only if
5◦

1 ⊂ cl(5◦

2).

It follows immediately that ≤ defines a partial order on the set of positroid strata
of Gr(k, n).

Theorem 4.8 [Knutson et al. 2013, Theorem 5.9]. The codimension of 5◦

f ⊂

Gr(k, n) is equal to ℓ( f ).

Example 4.9. There are 33 positroid strata 5◦

f ⊂ Gr(2, 4): one of dimension 4, four
of dimension 3, ten of dimension 2, twelve of dimension 1, and six of dimension 0.
Each dimension corresponds to a row in the Hasse diagram of Figure 5, with the
bottom row containing the only top-dimensional stratum.
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[1,2,7,8] [1,6,3,8] [1,6,7,4] [5,2,3,8] [5,2,7,4] [5,6,3,4]

[1,3,6,8] [1,4,7,6] [1,6,4,7] [2,5,3,8] [2,5,7,4] [3,2,5,8] [3,6,5,4] [4,2,7,5] [4,6,3,5] [5,2,4,7] [5,3,6,4] [5,4,3,6]

[1,4,6,7] [2,3,5,8] [2,4,7,5] [2,5,4,7] [3,5,6,4] [3,6,4,5] [4,2,5,7] [4,3,6,5] [4,5,3,6] [5,3,4,6]

[2,4,5,7] [3,4,6,5] [3,5,4,6] [4,3,5,6]

[3,4,5,6]

Figure 5. The Hasse diagram of the partial order on Bound(2, 4).

5. Positroid links

We follow Casals, Gorsky, Gorsky and Simental [Casals et al. 2021] and associate a
Legendrian link to a bounded affine permutation f ∈ Bound(k, n) (see Section 3).

Definition 5.1. Let f ∈ Bound(k, n) be a bounded affine permutation. For each
i ∈ {1, . . . , n}, let

Ai ( f ) :=
{
(x, y) ∈ R2

| (2x − f (i) − i)2
+ 4y2

= ( f (i) − i)2}
∩ {y ≥ 0} ⊂ R2

be the upper semicircle of a circle intersecting the x-axis in the points (i, 0)

and ( f (i), 0). We define the juggling diagram associated to f to be the subset⋃n
i=1 Ai ( f ) ⊂ R2.

Definition 5.2. Let f ∈ Bound(k, n) be a bounded affine permutation. After
modifying the associated juggling diagram with the moves shown in Figure 6, we
obtain a tangle diagram. After enumerating the strands of the tangle diagram from
top to bottom we can describe the tangle diagram with a braid word that we denote
by Jk( f ) and call the juggling braid of f .

Remark 5.3. By the definition of a bounded affine permutation, Jk( f ) is a positive
braid on k strands.

See Figure 7 for examples of juggling diagrams and their corresponding juggling
braids.

Figure 6. Converting from a juggling diagram to a braid via spec-
ified smoothings of cusps and crossings.
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1 2 3 4 5 6 1 2 3 4 5 6 7

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Figure 7. Examples of juggling diagrams and their corresponding
juggling braid words. Top left: J2([3, 4, 5, 6]) = σ 3

1 . Top right:
J2([5, 2, 7, 4]) = σ1. Middle: J4([4, 6, 7, 8, 10]) = σ1σ2σ1σ3(σ2σ1)

2.
Bottom: J3([3, 6, 4, 7, 10]) = σ1σ2σ

2
1 . Note that the dots in the top

right indicate fixed points of the bounded affine permutation. The
strands are different colors to increase visual clarity.

We will now set some notation. Let σ1, . . . , σk−1 denote the Artin generators of
the braid group and let Br+k be the submonoid of the braid group generated by non-
negative powers of the Artin generators. We let 1k = (σ1)(σ2σ1) · · · (σk−1 · · · σ1)

denote the positive half twist. Let w0 denote the image of 1k in the projection from
the braid group to the symmetric group.

Definition 5.4 [Casals et al. 2021, Definition 3.3]. Let f ∈ Bound(k, n) be a
bounded affine permutation, and let Jk( f ) ∈ Br+k be its associated juggling braid.
We define the positroid link of f , denoted by 3 f , to be the Legendrian (−1)-closure
(see Figure 8) of the positive braid Jk( f )1k ∈ Br+k with the orientation induced by
giving all strands of Jk( f ) ∈ Br+k the same orientation.

Remark 5.5. In [Casals et al. 2021], there are other (Legendrian isotopic) de-
scriptions of 3 f , using other enumerations of positroid strata of the complex
Grassmannian such as pairs of permutations (satisfying some properties), Le dia-
grams, and cyclic rank matrices. For the scope of this article, it suffices to consider
juggling braids.
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b

Figure 8. The front diagram of the Legendrian (−1)-closure of
the positive braid word β ∈ Br+k .

Lemma 5.6. Let f ∈ Bound(k, n). The Thurston–Bennequin number of 3 f is
given by

tb(3 f ) = |Jk( f )| −
k(k + 1)

2
,

where |Jk( f )| denotes the length of the braid word Jk( f ) ∈ Br+k .

Proof. Recall that the Thurston–Bennequin number of a Legendrian link is given
by the writhe minus the number of right cusps of a front diagram; see (2). There
are |Jk( f )| + |1k | positive crossings coming from the crossings in β = Jk( f )1k

and k right cusps in the positroid link of f . Note that |1k | =
k(k−1)

2 . There are
2|1k | = k(k − 1) negative crossings coming from the portion of the positroid link
of f outside of β = Jk( f )1k in the Legendrian (−1)-closure diagram. The sum of
these contributions is

tb(3 f ) = |Jk( f )| +
k(k − 1)

2
− k(k − 1) − k = |Jk( f )| −

k(k + 1)

2
. □

Corollary 5.7. Let f ∈ Bound(k, n). The Thurston–Bennequin number of 3 f is
given by

tb(3 f ) = dim 5◦

f + # Fix( f ) − n,

where Fix( f ) = {i ∈ {1, . . . , n} | f (i) = i}.

Proof. The statement of Lemma 3.10 in the first arXiv version of [Casals et al.
2021] states that

|Jk( f )| = |w| − |u| +

(
k
2

)
− (n − k) + # Fix( f ),

where (u, w) is a pair of permutations called the positroid pair corresponding to the
bounded affine permutation f (see [Casals et al. 2021, Definition 2.2] and [Knutson
et al. 2013, Proposition 3.15]). It is well-known that dim 5◦

f = |w| − |u| (see, e.g.,
[Knutson et al. 2014, Corollary 3.2]); hence

(2) |Jk( f )| = dim 5◦

f +

(
k
2

)
− (n − k) + # Fix( f ).
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Therefore we get

tb(3 f ) = |Jk( f )| −
k(k + 1)

2

= dim 5◦

f +

(
k
2

)
− (n − k) + # Fix( f ) −

k(k + 1)

2

= dim 5◦

f + # Fix( f ) − n,

where the first equality is by Lemma 5.6 and the second equality is by (2). □

The main motivation for calling 3 f a positroid link is the following connection
with positroid strata of the complex Grassmannian. To call upon this result, we
follow the convention of placing a marked point on each strand in the braid Jk( f )1k ,
and place each to the right of all crossings in Jk( f )1k on the respective strand
when defining the augmentation variety associated to 3 f , as in [Casals et al. 2020,
Section 2.6].

Theorem 5.8 (Casals–Gorsky–Gorsky–Simental [Casals et al. 2020; 2021]). Let
f ∈Bound(k, n) be a bounded affine permutation, and consider its positroid link 3 f .

Then, there is an algebraic isomorphism

5◦

f
∼= Aug(3 f ) × (C∗)n−# Fix f −k .

Proof. We have one marked point in 3 f for each strand in the braid Jk( f )1k . Then
by [Casals et al. 2020, Theorem 2.30] we have Aug(3 f ) ∼= X0(Jk( f ); w0), where
X0 denotes the braid variety as defined in [Casals et al. 2020]. Then, by [Casals
et al. 2021, Theorem 1.3] we have

5◦

f
∼= X0(Jk( f ); w0) × (C∗)n−# Fix f −k,

which gives the result. □

Proposition 5.9. For f ∈ Bound(k, n), the number of components of the link 3 f is
given by the number of cycles of f of length at least 2 (see Definition 3.9).

Proof. Consider a cyclic juggling diagram of f which can be obtained from a
juggling diagram by first restricting

⋃n
i=1 Ai ( f ) ⊂ R2 to {1 ≤ x ≤ n} and then

extending each arc cyclically. More precisely, we first arrange the juggling diagram
of f so that no crossing of

⋃n
i=1 Ai ( f ) belongs to {x ≥ n} ⊂ R2 by a smooth

isotopy of
⋃n

i=1 Ai ( f ) which leaves the braid word Jk( f ) unaffected (up to braid
moves); see [Casals et al. 2021, Lemma 2.19]. Then we define the cyclic juggling
diagram of f to be the subset

Ā( f ) :=

( n⋃
i=1

Ai ( f ) ∩ {1 ≤ x ≤ n}

)
∪

( ⋃
{i | f (i)>n}

Ashift
i ( f ) ∩ {1 ≤ x ≤ n}

)
⊂ R2
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1 2 3 4 5 6 ∆
Figure 9. Left: Extending the arcs of [3, 4, 12, 11, 8, 7] cyclically
to construct a cyclic juggling diagram. Right: The result of a
smooth isotopy from the left diagram, where all the arcs are pulled
downwards, demonstrating the half twist obtained from the added
arcs of the cyclic juggling diagram.

where

Ashift
i ( f ) :=

{
(x, y)∈R2

| (2(x+n−1)− f (i)−i)2
+4y2

= ( f (i)−i)2}
∩{y ≥0}⊂R2

is the arc Ai ( f ) shifted to the left by n − 1. Then, each cycle of f corresponds to
a sequence of arcs that closes up onto itself in the cyclic juggling diagram. See
Figure 9, left, for an example. We turn the cyclic juggling diagram Ā( f ) into a
braid by using the smoothing modifications of Figure 6 to obtain a cyclic juggling
braid J̄k( f ). We take the (−1)-closure of the J̄k( f ). Then, the resulting link
is smoothly isotopic to the (−1)-closure of the juggling braid 1k Jk( f ), i.e., the
link 3 f ; see Figure 9, right. Thus the number of components of 3 f is exactly the
number of cycles of f . □

6. Construction of the Lagrangian cobordisms

We say that there is a path from f to g in Bound(k, n) if there is a sequence of
affine bounded permutations (h1, . . . , hk) (this sequence might be empty) such that

f ⋖ h1 ⋖ · · ·⋖ hk ⋖ g.

Theorem 6.1. Given any path from f to g in Bound(k, n), there is an exact La-
grangian cobordism from 3g to 3 f .

Proof. Recall from Definition 5.2 that any bounded affine permutation f corresponds
to a juggling braid Jk( f ) which corresponds by Definition 5.4 to a Legendrian 3 f

given by the (−1)-closure of the positive braid Jk( f )1k . There is a convenient
Lagrangian projection of 3 f ; see [Casals and Ng 2022, Figure 8]. Since the positive
braid Jk( f )1k contains a positive half twist 1k , every crossing in the Lagrangian
projection of 3 f corresponds to a contractible Reeb chord; see [Casals and Ng
2022, Proposition 2.8]. If two affine permutations f and g have the same juggling
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a b= i i +1 a b= i i +1

a b i i +1 a b i i +1
Figure 10. Top: Arcs in the juggling diagrams of f (left) and g
(right) when a < b = i where f ⋖ g. Bottom: Arcs in the juggling
diagrams of f (left) and g (right) when a < b < i , where f ⋖ g.

braids Jk( f ) = Jk(g), then 3 f = 3g by definition. Suppose now that two affine
permutations f and g have juggling braids Jk( f ) and Jk(g) such that Jk( f ) has one
more positive crossing x than Jk(g). By Ng’s resolution procedure, the crossing x
in the front projection corresponds to a contractible Reeb chord of 3 f , and we can
perform a pinch move at x as in Figure 2 to obtain a Lagrangian saddle cobordism
from 3g to 3 f .

Let f, g ∈Bound(k, n) with f <g. It suffices to assume f ⋖g, that is, g =σi◦ f or
g = f ◦σi . Recall from Lemma 3.2 that h is a bounded affine permutation if and only
if −(−h)−1 is. Thus, because g = f ◦σi is equivalent to −(− f )−1

=σi ◦(−(−g)−1),
it suffices to consider the case g = σi ◦ f .

Namely, assume g(a) = i + 1, g(b) = i , f (a) = i and f (b) = i + 1 for some
a, b, i ∈ Z≥1 such that a < b. We show that Jk( f ) has one more positive crossing
than Jk(g) does or Jk( f ) = Jk(g). Therefore, there is either an orientable exact
Lagrangian saddle cobordism from 3g to 3 f , or the Legendrian links 3g and 3 f

are Legendrian isotopic and so are related by a trivial exact Lagrangian cobordism.
Since g(b) = i , we know b ≤ i so as a < b, we have a < b ≤ i . If b = i , the

respective juggling diagrams of f and g contain the arcs shown in Figure 10, top.
Thus we see that the juggling braids Jk( f ) and Jk(g) are equal as braids. If b < i ,
the juggling diagrams of f and g contain the arcs shown in Figure 10, bottom, from
which we can immediately conclude that the juggling braid Jk( f ) has one more
crossing than the juggling braid Jk(g). □

Remark 6.2. In view of Theorem 5.8, a discussion on marked points in the construc-
tion of the exact Lagrangian cobordisms in the proof of Theorem 6.1 is warranted.
Since both Jk( f )1k and Jk(g)1k are k-stranded braids, their Legendrian (−1)-
closures are decorated with one marked point per strand of the underlying braid.
Any trivial exact Lagrangian cobordism remains trivial when taking marked points
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into account. Any saddle cobordism induced by a pinch move will involve newly
created marked points in order to retain functoriality of the associated Chekanov–
Eliashberg dg-algebras with coefficients in C[t±1

1 , . . . , t±1
k ]; see [Casals and Ng

2022, Section 3.5] and [Gao et al. 2024, Section 2.4]. For our purpose, we will
ignore the marked points created by pinch moves by evaluating them to 1.

Theorem 6.3. Given any path γ from f to g in Bound(k, n), the corresponding
exact Lagrangian cobordism Lγ (g, f ) from the proof of Theorem 6.1 satisfies

χ(Lγ (g, f )) = dim(5◦

g) − dim(5◦

f ) + # Fix(g) − # Fix( f ),

where 5◦

f is the open positroid stratum associated to f .

Proof. Let γ = ( f1, . . . , ft) be a sequence of bounded affine permutations such
that each pair of adjacent bounded affine permutations are related by an affine
transposition, in other words, fi ⋖ fi−1 for all 1 < i ≤ t . So Lγ ( ft , f1) is the
corresponding Lagrangian cobordism. For each i , the dimensions of the respective
positroid strata differ by 1. Then following the construction, the exact Lagrangian
cobordism corresponding to fi ⋖ fi−1 is one of two things:

1. A trivial cobordism, when the change in the juggling diagrams J fi−1 to J fi is
the creation of a fixed point. This contributes 1 to # Fix( ft) − # Fix( f1).

2. A saddle cobordism corresponding to a single pinch move, when the change is
the removal of a crossing. This contributes 1 to χ(L(γ )).

Thus,

dim(5◦

f1
) − dim(5◦

ft
) = χ(L(γ )) + # Fix( ft) − # Fix( f1). □

Remark 6.4. Theorem 6.3 can also be proved using Corollary 5.7 and the work
of Chantraine [2010, Theorem 1.2] which provides the change in the Thurston–
Bennequin number for Legendrians related by an exact orientable Lagrangian
cobordism.

7. Examples

In Example 7.1 we provide an example of Theorem 1.1 and in Example 7.2 a
counterexample to the converse of Theorem 1.1.

Example 7.1. We consider a path f1 ⋖ · · ·⋖ f7 in the poset Bound(3, 8) where the
bounded affine permutations f1, . . . , f7 are defined as

f1 = [5, 4, 7, 6, 8, 9, 10, 11], f2 = [5, 4, 8, 6, 7, 9, 10, 11],

f3 = [5, 4, 8, 7, 6, 9, 10, 11], f4 = [6, 4, 8, 7, 5, 9, 10, 11],

f5 = [6, 3, 8, 7, 5, 9, 10, 12], f6 = [6, 2, 8, 7, 5, 9, 11, 12],

f7 = [7, 2, 8, 6, 5, 9, 11, 12].
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f1

f2

f3

f4

f5

f6

f7

saddle

saddle

trivial

saddle

trivial

saddle

Figure 11. The exact Lagrangian cobordism from 3 f7 to 3 f1

corresponding to f1 ⋖ · · ·⋖ f7.

Each fi corresponds to a positroid stratum of Gr(3, 8) of codimension i+1 and
a Legendrian link 3 fi , each of which is the (−1)-closure of the corresponding
juggling braid J3( fi ). The corresponding juggling braids are

J3( f1) = (σ1σ2)
4σ2σ1σ2, J3( f2) = (σ1σ2)

3σ 2
2 σ1σ2,

J3( f3) = (σ1σ2)
3σ2σ1σ2, J3( f4) = (σ1σ2)

3σ2σ1σ2,

J3( f5) = (σ1σ2)
3σ2σ1, J3( f6) = (σ1σ2)

3σ2σ1,

J3( f7) = (σ1σ2)
3σ1.

We have depicted the corresponding composition of exact Lagrangian cobordisms
in Figure 11.

As noted above we have codim 5◦

fi
= i + 1. Because we see that # Fix( f1) = 0

and # Fix( f7) = 2, Theorem 6.3 gives χ(L) = −4, which correctly predicts that the
exact Lagrangian cobordism depicted in Figure 11 has genus 2.

Example 7.2. We now show that the positroid links corresponding to two incompa-
rable positroid strata can still be exact Lagrangian cobordant; this is the converse to
Theorem 1.1.

Consider the two bounded affine permutations f1, f2 ∈ Bound(2, 6) defined by

f1 := [3, 4, 5, 7, 8, 6] and f2 := [3, 4, 7, 5, 6, 8].
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pinch move

f1

f2

Λ

Λ

Figure 12. Pinch move giving a saddle cobordism from the Hopf
link to the trefoil.

The corresponding juggling braids are J2( f1) = σ 4
1 and J2( f2) = σ 3

1 . The two
corresponding positroid links are the trefoil and the Hopf link, respectively. The
two bounded affine permutations f1 and f2 correspond to two different positroid
strata in Gr(2, 6) of dimension 6 and are therefore incomparable. However, there
is an exact Lagrangian cobordism from 3 f2 to 3 f1 given by a saddle cobordism
obtained by performing a pinch move at one of the crossings; see Figure 12.

Remark 7.3. In Example 7.2 we show that the braids σ 4
1 and σ 3

1 may appear as
juggling braids of two incomparable bounded affine permutations. They also appear
as the juggling braids J2(g1) and J2(g2), respectively, for g1, g2 ∈ Bound(2, 5)

defined as
g1 := [3, 4, 5, 6, 7] and g2 := [4, 3, 5, 6, 7],

which are comparable. Namely g1⋖g2 since g2 = g1◦σ1 and ℓ(g1)= 0 < 1 = ℓ(g2).
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