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PRESERVATION OF ELEMENTARITY BY TENSOR PRODUCTS
OF TRACIAL VON NEUMANN ALGEBRAS

ILIJAS FARAH AND SAEED GHASEMI

Tensoring with type I algebras preserves elementary equivalence in the cate-
gory of tracial von Neumann algebras. The proof involves a novel and general
Feferman–Vaught-type theorem for direct integrals of metric structures.

In [19] it was proven that reduced products and their generalizations preserve
elementary equivalence, in the sense that the first-order theory of the product can be
computed from the theories of the factors and information about the ideal (if any)
used to form the reduced product. The question of preservation of elementarity
by tensor products and free products is a bit subtler. Somewhat surprisingly, free
products preserve elementary equivalence both in the case of groupoids [28] and,
by a deep result of Sela [33], in the case of groups. It is not known whether this is
the case with tracial von Neumann algebras [25, Question 5.3].

On the other hand, tensor products in general do not preserve elementary equiva-
lence in the category of modules [27] and in the category of C∗-algebras [11; 16].
David Jekel [25, Section 5.1] asked whether tensor products of tracial von Neumann
algebras preserve elementary equivalence. We give partial positive answers to this
question (see Section 1.2 for the notation and terminology).

Theorem 1. If M and N are tracial von Neumann algebras at least one of which is
type I, then the theory of their tensor product depends only on theories of M and N.
In other words, if M1 ≡ M and N1 ≡ N then M1⊗N1 ≡ M⊗N. More precisely, if
M1 ⪯ M and N1 ⪯ N then (with the natural identification) M1⊗N1 ⪯ M⊗N.

In the course of proving Theorem 1 we prove a Feferman–Vaught-type theorem
for direct integrals of metric structures (Theorem 3.3). This proof roughly follows
the lines of the proof of the Feferman–Vaught theorem for metric reduced products
given in [22] (see also [10, Section 16]). Also, standard results imply that among
McDuff factors, tensoring with the hyperfinite II1 factor preserves elementarity (see
Section 5). Unlike C∗-algebras, among tracial von Neumann algebras there is no
known example of a failure of preservation of elementarity by tensor products.
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1. Preliminaries

Good general references are, for operator algebras [8], for type II1 factors [1], and
for continuous model theory [6; 23; 24].

1.1. Direct integrals. Our original definition of measurable fields of metric struc-
tures and direct integrals of metric structures was analogous to measurable fields
and direct integrals of Hilbert spaces and of von Neumann algebras [34, Defini-
tions IV.8.9, IV.8.15, and IV.8.17]. Here we include the more polished definition
from [36, Section 8].1 Although this definition can be extended to the case of
nonseparable metric spaces, we will consider only the separable case. For simplicity,
we will restrict our attention to the case when L is a single-sorted language; the
definition is generalized to multi-sorted languages by making obvious modifications.

Definition 1.1 (measurable fields and direct integrals of metric structures). Suppose
that L is a continuous language, (�,B, µ) is a separable probability measure space,
and (Mω, dω) for ω ∈�, are separable L-structures. Assume that en for n ∈N, is a
sequence in

∏
ω∈�Mω such that the following two conditions hold:

(1) For every ω, the set {en(ω) | n ∈ N} is dense in Mω.

(2) For every predicate R(x̄) in L and every tuple en̄ = ⟨en(0), . . . , en( j−1)⟩ of the
appropriate sort, the function ω 7→ RMω(en̄(ω)) is measurable.

The structures Mω, together with the functions en , form a measurable field of
L-structures.

The direct integral of Mω, for ω ∈�, is the structure denoted

M =
∫
⊕

�

Mω dµ(ω)

and defined as follows. Consider the set M of all a ∈
∏
ω∈�Mω such that the

functions
ω 7→ dω(a(ω), en(ω))

are measurable for all n. On M consider the pseudometric

d M(a, b)=
∫
�

dω(a(ω), b(ω)) dµ(ω).

Then the domain of M is defined to be the set of equivalence classes of functions
in M with respect to the equivalence relation defined by a ∼ b if d M(a, b)= 0, with
the quotient metric d .

1A visible, but ultimately insubstantial, technical difference between this definition and the standard
definition of a direct integral of tracial von Neumann algebras will be discussed in Section 4.
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Lemma 1.2. If F is an n-ary function symbol and ā ∈Mn , then the interpretation
ω 7→ F Mω(ā) is a measurable function. If R is an n-ary predicate symbol and
ā ∈Mn , then the interpretation ω 7→ F Mω(ā) is a measurable function.

Proof. We will prove the second assertion. Fix an n-ary predicate symbol R and
an n-tuple ā in M. Given ε > 0, the syntax requires that there is δ = δ(ε) > 0 such
that for n-tuples x̄ and ȳ in any L-structure N we have that d(ā, b̄) < δ implies
|RN (x̄)− RN (ȳ)|< ε.

Since en(ω) for n ∈N, is dense in every Mω, there is a partition �=
⊔

i X i into
measurable sets and a function h : N× n→ N such that for all i and j we have
d Mω(a j (ω)−eh(i, j)(ω)) < δ for all ω ∈ X i . Writing ē(i) for the n-tuple in M whose
j -th coordinate agrees with eh(i, j)(ω), the interpretation ω 7→ RMω(ā) is uniformly
ε-approximated by

ω 7→
∑

i

χX i RMω(ē(i)).

By (2) of Definition 1.1, this function is measurable. Therefore the evaluation of R
at ā is, as a uniform limit of measurable functions, measurable.

The proof in case of function symbols is analogous. □

On M the interpretations of function symbols and predicate symbols in L are
defined in the natural way. The interpretation of a function symbol F(x̄) in L, for
a tuple ā in M of appropriate sort, is the equivalence class F M(ā) of the function
on � such that

ω 7→ F Mω(āω).

If R(x̄) is a relation symbol in L and ā in M is of appropriate sort, then

RM(ā)=
∫
�

RMω(āω) dµ(ω).

Lemma 1.3. If L is a continuous language and Mω, for ω ∈ �, is a measurable
field of L-structures, then

∫
⊕Mω dµ(ω) is an L-structure. □

Proof. It is straightforward to verify that M is complete with respect to d and that
the interpretation of each function and predicate symbol in a direct integral is
continuous with respect to d, with the modulus of continuity as required by the
syntax in L. The conclusion follows. □

A remark on randomizations. Keisler’s randomizations of discrete structures [26]
as well as their metric analog [3, Definition 3.4; 5] are closely related to direct
integrals of measurable fields of structures. Unlike direct integrals, randomizations
are presented in an expanded two-sorted language. Precise relation between ran-
domizations (of both discrete structures and continuous structures whose theory has
an additional property, that the space of quantifier-free n-types is a Bauer simplex
for all n ≥ 1) is discussed in detail in [36, Section 21]. Note that the quantifier
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elimination results for randomizations (see [26, Theorem 3.6], [5, Theorem 2.9],
and [3, Corollary 3.33]) refer to the expanded language. It is not difficult to see that,
for example, a nontrivial direct integral of a measurable field of II1 factors does not
admit quantifier elimination in the language of tracial von Neumann algebras. As a
matter of fact, no type II1 tracial von Neumann algebra admits quantifier elimination
by the main result of [12]. This result has been improved further in [17] where it
was shown that these theories are not even model complete.

1.2. Elementarity. The model theory of tracial von Neumann algebras and C∗-
algebras were introduced in [14]. For every tuple x̄ = ⟨x0, . . . , xn−1⟩ of variables
(n ≥ 0, allowing for the empty tuple) one associates the algebra of formulas Fx̄ with
free variables included in x̄ . If ϕ(x̄) is a formula with free variables included in x̄ ,
(N , τ ) is a tracial von Neumann algebra, then the interpretation ϕN (ā) is defined
for every tuple ā in N of the appropriate sort. Sentences are formulas with no free
variables.

To every tracial von Neumann algebra N one defines a seminorm ∥ ·∥N on Fx̄ by

∥ϕ(x̄)∥N = supϕN U
(ā).

Here ā ranges over all n-tuples in the unit ball of N . (The standard definition of
∥ϕ(x̄)∥ takes supremum over all structures M elementarily equivalent to N and all
n-tuples in M of the appropriate sort, but the two seminorms coincide.)

Definition 1.4. Suppose that M and N are tracial von Neumann algebras. They are
said to be elementarily equivalent, M ≡ N , if every sentence ϕ satisfies ϕM

= ϕN .
An elementary embedding9 :M→N is an embedding such that ϕM(ā)=ϕN(9(ā))
for every ϕ(x̄) and every ā of the appropriate sort.

If M is a subalgebra of N and the identity map is an elementary embedding,
then M is called an elementary submodel of N , in symbols M ⪯ N .

The diagonal embedding of M into its ultrapower MU is elementary (Łoś’s
theorem). If M ⪯ N and N ⪯ P , then M ⪯ P . If M ⪯ P , N ⪯ P , and M ⊆ N , then
M ⪯ N . However, M ⪯ P , M ⪯ N , and P ⊆ N does not in general imply P ⪯ N .

2. Definability in probability measure algebras

Here we start the proof of our Feferman–Vaught theorem stated and proven in
Section 3, by laying down some general definability results following a request of
one of the referees. Let LMBA denote the language of probability measure algebras as
in [7]. In addition to Boolean operations, this language is equipped with a predicate
for a probability measure and metric derived from it. Thus if (B, µ) is a measure
algebra, the distance is given by dµ(A, B)= µ(A1B), and the language includes
(symbols for) the Boolean operations. For definiteness, if (B, µ) is a measure
algebra then on Bn we consider the max distance, dµ(A, B)=maxi<n µ(Ai1Bi ).
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The simple fact stated in Lemma 2.1 below is a warm up for Lemma 2.2 used in
proof of Theorem 3.3.

Lemma 2.1. Each of the following sets is definable in every measure algebra (B, µ).

(1) The set X1 = {(A1, A2) | A1 ⊆ A2}.

(2) The set X2 = {(A, B,C) | A∩ B = C}.

(3) For A ∈B, the set XA = {B ∈B | B ⊆ A} is definable with A as a parameter.

Proof. In each of the instances, we need a formula that bounds the distance of an
element (or a tuple of the appropriate sort) to the set in question (see [6, Section 9]
and more specifically [6, Definition 9.16]).

(1) Let ϕ(X1, X2)= µ(X1 \ X2). It is clear that X1 is the zero set of ϕ. Moreover,
for every A ∈ B2 we have that the pair B = (A1 ∩ A2, A2) is in X1 and that
dµ(A, B)= µ(A11(A1 ∩ A2))= ϕ(A1, A2).

(2) Let ψ(X1, X2, X3) = µ((X1 ∩ X2)1X3). Clearly X2 is the zero set of ψ
is X2. Also, for every A ∈ B3 the triple B = (A1, A2, A1 ∩ A2) is in X2 and
dµ(A, B)= ψ(A), as required.

(3) Follows from (1). □

Lemmas 2.2 and 2.3 below would be consequences of Lemma 2.1 if it only were
the case that an intersection of definable sets is definable. (Counterexamples can
be found in as of yet unpublished papers [4] and [18].) The notation in these two
lemmas is chosen to comply with the natural notation in the proof of Theorem 3.3
at the point when Lemma 2.3 is being invoked.

Lemma 2.2. Suppose that ℓ≥ 1 and U = (U j ) j<ℓ is a tuple in a measure algebra
(B, µ) such that U0 ≥U1 ≥ · · · ≥Uℓ−1. Then the set

X[U ] =
{

Y ∈Bℓ
| Y j ≤U j

⋂
i< j

Yi for j < ℓ
}

is a definable set with parameter U.

Proof. As in Lemma 2.1, it suffices to find a formula ϕU such that its zero set
is X[U ] and for every X = (X i : i < ℓ) in Bℓ the distance from X to X[U ] is at
most ϕU (X). For an ℓ-tuple U that satisfies U0 ≥U1 ≥ · · · ≥Uℓ−1 let

ϕU (X)= max
1≤m<ℓ

(
µ

(
Xm \

⋂
j<m

X j

)
+µ(Xm \Um)

)
.

Clearly X[U ] is the zero set of ϕU . Fix an ℓ-tuple X in Bℓ. Let

Ym =
⋂
j≤m

X j ∩Um for 1≤ m < ℓ.

Then Ym ⊆
⋂

j<mY j ∩Um for all 1≤ m < ℓ, and hence Y ∈ X[U ].
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To estimate dµ(X , Y ), note that since Ym1Xm ⊆ (Xm\
⋂

j<m X j )∪ (Xm\Um),
we also have dµ(Xm, Ym)≤ ϕU (X), as required. □

A little bit of natural (albeit slightly cumbersome) notation will be helpful.
Suppose F is a finite set, ℓ(ζ )≥ 1 for ζ ∈ F, and we have

U = (U ζ
j )ζ∈F, j<ℓ(ζ ).

Then we write U ζ
= (U ζ

j ) j<ℓ(ζ ) for ζ ∈ F.
As pointed out above, an intersection of definable sets is not necessarily definable.

However, in the following lemma we are dealing with a product of definable sets,
not an intersection.

Lemma 2.3. Suppose that F is a finite set and U ζ
= (U ζ

j ) j<ℓ(ζ ) for ζ ∈ F and
ℓ(ζ )≥ 1, is a tuple in a measure algebra (B, µ) such that U ζ

0 ≥U ζ

1 ≥ · · · ≥U ζ

ℓ(ζ )−1.
Then the set

Y[U ] = {Y ζj | ζ ∈ F, j < ℓ(ζ ), and (Y ζj ) j<ℓ(ζ ) ∈ X[U ζ
]}

is definable with parameter U = (U ζ )ζ∈F.

Proof. With ϕU as in the proof of Lemma 2.2, let ψU (X)=maxζ∈F ϕU ζ (X ζ ). As
there is no interaction between Y ζ for different ζ ∈ F, and as Y[U ] is equal to
{Y | Y ζ ∈X[U ζ

] for all ζ ∈ F}, ψU witnesses that Y[U ] is definable, as required. □

3. The Feferman–Vaught-type theorem for direct integrals

Throughout this section we fix an arbitrary metric language L and let LMBA be the
language of probability measure algebras studied in Section 2.

Definition 3.1. An LMBA-formula G(X) in m variables X =⟨X1, . . . Xm⟩ is coordi-
natewise increasing if for every measure algebra (B, µ) and every pair of m-tuples
A= ⟨Ai ⟩ and A′= ⟨A′i ⟩ in it, if Ai ≤ A′i for all i ≤m then G(B,µ)(A)≤G(B,µ)(A′).

Definition 3.2 and Theorem 3.3 are stated for L-formulas whose ranges are
included in [0, 1]. Since the range of every L-formula ϕ(x̄) is a bounded interval,
the range of r(ϕ(x̄)− t) is [0, 1] for appropriately chosen real numbers r and t , and
this assumption will not result in loss of applicability of the theorem. In particular,
the conclusion of Theorem 3.3 holds for tracial von Neumann algebras.

Given a probability space (�,B, µ) and a measurable field Mω for ω ∈ �, of
L-structures, for an L-formula ϕ ∈ Fx̄ , ā of the appropriate sort, and t ∈ [0, 1] we
define

(3-1) Z ζt [ā] = {ω ∈� : ζ(āω)
Mω > t}.

Definition 3.2. An L-formula ϕ(x̄) whose range is included in [0, 1] is determined
in direct integrals of L-structures, if the following objects exist.
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(D1) A finite set F[ϕ] of L-formulas whose free variables are included in the free
variables of ϕ(x̄) and whose ranges are included in [0, 1].

(D2) For every k ≥ 2, an integer l(k, ϕ, ζ ) ≥ 1 and a coordinatewise increasing
LMBA-formula Gϕ,k(X) with

∑
ζ∈F[ϕ] l(k, ϕ, ζ )many variables X ζ

i/ l(k,ϕ,ζ ) for
ζ ∈ F[ϕ] and i < l(k, ϕ, ζ ).

These objects are required to be such that for every probability space (�,B, µ)

and a measurable field Mω for ω ∈�, of L-structures, and ā of the appropriate sort
the following hold. (Writing M =

∫
⊕

�
Mω dµ(ω).)

(D3) ϕ(ā)M > t/k implies

Gϕ,k
(
Z ζi/ l(k,ϕ,ζ )[ā], i < l(k, ϕ, ζ ), ζ ∈ F[ϕ]

)
> (t − 1)/k.

(D4) Gϕ,k
(
Z ζi/ l(k,ϕ,ζ )[ā], i < l(k, ϕ, ζ ), ζ ∈ F[ϕ]

)
> t/k implies

ϕ(ā)M > (t − 1)/k.

Similarly, if (D1) holds and (D2)–(D4) hold for a specific value of k, we say that
ϕ is k-determined.

In particular, Definition 3.2 asserts that the value of ϕ(ā) is determined up to 2/k
by the value of Gϕ,k , which is in turn determined by the distribution of the eval-
uations of formulas ζ in the finite set F[ϕ], up to (roughly) 1/ l(k, ϕ, ζ ) in the
measurable field Mω.

On the set of all L-formulas consider the natural uniform metric

d(ϕ(x̄), ψ(x̄))= sup|ϕM(ā)−ψM(ā)|,

where the supremum is taken over all L-structures M and all tuples ā of the
appropriate sort in M .

Theorem 3.3. For every metric language L the set of all determined formulas is
dense in the set of all L-formulas.

Proof. The proof proceeds by induction on complexity of ϕ, simultaneously for
all k ≥ 2. It will be clear from the proof that the set F[ϕ] does not depend on the
choice of k. This is essentially the set of all subformulas of ϕ.

By [6, Proposition 6.6], any set of L-formulas that includes the atomic formulas
and is closed under multiplication by 1

2 , the operation ϕ .
−ψ =max(0, ϕ−ψ), and

quantifiers inf and sup is dense in the set of all L-formulas. It therefore suffices to
prove that the sets of all k-determined formulas satisfy four closure properties:

(1) All atomic formulas are k-determined.

(2) If ϕ is k-determined, so is 1
2ϕ.

(3) If ϕ and ψ are 3k-determined, then ϕ .
−ψ is k-determined.

(4) If ϕ is k-determined, so are supxϕ and infxϕ for every variable x .
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For readability of the ongoing proof, presented by induction on the complexity
of ϕ simultaneously for all k ≥ 2, we combine the recursive construction of F[ϕ],
l(k, ϕ, ζ ) for ζ ∈ F[ϕ], and Gϕ,k with a proof that these objects have the required
properties for an arbitrary probability space (�,B, µ), a measurable family of
L-structures (Mω)ω∈�, and its direct integral

M =
∫
⊕

�

Mω dµ(ω).

(Needless to say, the constructed objects will not depend on the choice of the
measure space or the measurable family.)

(1) Suppose that ϕ(x̄) is atomic or constant (i.e., a scalar) and that ā ∈ M is of the
appropriate sort. Let F[ϕ] = {ϕ}, l(k, ϕ)= k, and define

Gϕ,k(X)=
1
k

k−1∑
i=1

µ(X i ).

It is clear that this formula is coordinatewise increasing. Then for 0≤ i < k, with

Zϕi/k[ā] = {ω ∈� | ϕ(āω)
Mω > i/k},

we have (for simplicity we will write Zϕ = (Zϕ0 [ā], . . . , Zϕ(k−1)/k[ā])). From the
layer cake decomposition formula for the integral of a nonnegative function we
obtain

Gϕ,k(Zϕ)≤
∫
�

ϕ(āω)Mω dµ(ω)≤
1
k

k−1∑
i=0

µ(Zϕi/k[ā])≤ Gϕ,k(Zϕ)+
1
k
.

Thus the conditions (D3) and (D4) are clearly satisfied.

(2) Suppose that ϕ(x̄) = 1
2ψ(x̄) and that ψ is k-determined. Let F[ϕ] = F[ψ],

l(k, ϕ, ζ )= l(k, ψ, ζ ) (we could have taken l(k, ϕ, ζ ) to be
⌈ 1

2 l(k, ψ, ζ )
⌉

, but there
is no reason to be frugal) and define

Gϕ,k(X)= 1
2 Gψ,k(X).

These objects satisfy the requirements by the definitions.

(3) Suppose that ϕ = ψ .
− η and each one of ψ and η is 3k-determined. In order to

prove that ϕ is k-determined let

F[ϕ] = F[ψ] ∪ {1− ζ : ζ ∈ F[η]}.

(If ζ ∈ F[η], then its range is included in [0, 1], and hence the range of 1 − ζ
is also included in [0, 1].) Also, let l(k, ϕ, ζ ) = l(3k, ψ, ζ ) for ζ ∈ F[ψ], and
l(k, ϕ, 1− ζ )= l(3k, η, ζ ) for ζ ∈ F[η]. To define Gϕ,k , we need an additional bit
of notation.
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For ζ ∈ F[η] and s ∈ [0, 1] let (writing ℓ= l(3k, η, ζ ) for readability)

Z̃1−ζ
s = {ω ∈� : 1− ζ(āω)M

≥ s}.

For a tuple Z1−ζ
= (Z1−ζ

0 , . . . , Z1−ζ
(ℓ−1)/ℓ) let

−�
Z

1−ζ
= (Z̃1−ζ

(ℓ−1)/ℓ, . . . , Z̃1−ζ
0 ).

First, note that for every 0 ≤ i ≤ ℓ and ζ ∈ F[η] we have (Y ∁ denotes the
complement of Y , applied pointwise if Y is a tuple)

(Z̃1−ζ
(ℓ−i)/ℓ[ā])

∁
=

{
ω ∈� : (1− ζ(āω))Mω ≥

ℓ−i
ℓ

}∁

=

{
ω ∈� : ζ(āω)Mω ≤

i
ℓ

}∁

=

{
ω ∈� : ζ(āω)Mω >

i
ℓ

}
= Z ζi/ℓ[ā].

This shows that (
←−−
Z1−ζ )∁ = Z ζ . Define2

Gϕ,k(Z ξ , Z1−ζ , ξ ∈ F[ψ], ζ ∈ F[η])

= Gψ,3k(Z ξ , ξ ∈ F[ψ])
.
−Gη,3k((

−�
Z

1−ζ
)∁, ζ ∈ F[η]).

Then Gϕ,k is coordinatewise increasing since the same is true for Gψ,3k and Gη,3k .

Claim 3.4. The formula Gϕ,k satisfies (D3) and (D4) of Definition 3.2.

Proof. Suppose ϕM(ā) > t/k for M =
∫
⊕

�
Mω dµ(ω) and ā in M of the appropriate

sort. There exists m < 3(k− t) such that

• ψ(ā)M > (3t +m)/3k and

• η(ā)M
≤ (m+ 1)/3k.

By the induction hypothesis,

(IH1) Gψ,3k(Z ξ , ξ ∈ F[ψ]) > (3t +m− 1)/3k and

(IH2) Gη,3k(Z ζ , ζ ∈ F[η])≤ (m+ 2)/3k.

2For simplicity, we present Gϕ,k not as a formula in a tuple X abstract variables, but in terms of

the intended values for these variables. Note that, since (
−�
Z

1−ζ
)∁ consists of the complements of sets

in Z1−ζ , Gϕ,k depends on the correct choice of variables, Zζ for ζ ∈ F[ϕ].
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By (IH1) and (IH2), we have

Gϕ,k(Z ξ , Z1−ζ , ξ ∈ F[ψ], ζ ∈ F[η])

= Gψ,3k(Z ξ , ξ ∈ F[ψ])
.
−Gη,3k((

←−−

Z1−ξ )∁, ζ ∈ F[η])

≥ Gψ,3k(Z ξ , ξ ∈ F[ψ])
.
−Gη,3k(Z ζ , ζ ∈ F[η])

>
3t+m−1

3k
−

m+2
3k
=

t−1
k
.

This completes the proof of (D3).
To prove (D4), suppose that Gϕ,k(Z ξ , Z1−ζ , ξ ∈ F[ψ], ζ ∈ F[η]) > t/k. Then

by the definition of Gϕ,k , for some m < 3(k− t) we have

Gψ,3k(Z ξ , ξ ∈ F[ψ]) >
3t+m

3k
and Gη,3k(Z ζ , ζ ∈ F[η])≤

m+1
3k

.

By the induction hypothesis this implies

(IH3) ψ(ā)M > (3t +m− 1)/3k and

(IH4) η(ā)M
≤ (m+ 2)/3k.

Conditions (IH3) and (IH4) immediately imply that ϕ(ā)M > (t − 1)/k. □

(4) Suppose that ϕ(x̄)= supyψ(x̄, y) and ψ is k-determined. Let

R[ζ ] = {i/ l(k, ψ, ζ ) | i < l(k, ψ, ζ )} for ζ ∈ F[ψ],

C=
{
α | there is a nonempty F⊆ F[ψ] such that α ∈

∏
ζ∈F

R[ζ ]
}
.

One may think of α ∈C as a function from F into Q∩[0, 1]. The point of specifying
α(ζ ) ∈R[ζ ] is that, because each R[ζ ] is finite, the set C is finite as well.

For α ∈ C define the L-formula

(3-2) ξα(x̄)= sup
y

min
ζ∈dom(α)

(ζ(x̄, y)−α(ζ )).

Then for every α ∈ C, and ā in M we have

Z ξα0 [ā] = {ω | ξα(āω)
Mω > 0} =

{
ω | sup

y∈Mω

min
ζ∈dom(α)

(ζ(ā, y)−α(ζ )) > 0
}

⊆

⋂
ζ∈dom(α)

{
ω | sup

y∈Mω

ζ(ā, y) > α(ζ )
}

=

⋂
ζ∈dom(α)

Z ξζα(ζ )[ā].

Let
F[ϕ] = {ξα | α ∈ C},

l(k, ξα, ϕ)=max{l(k, ζ, ψ) | ζ ∈ dom(α)} for k ≥ 2 and α ∈ C.
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For simplicity of notation we will denote Z ξα0 [ā] with Z ξα0 and, more generally,
Zηr [ā] with Zηr , whenever there is no ambiguity. It will also be helpful to introduce
an abbreviation and write, for ζ ∈ F[ψ],

ℓ(ζ )= l(k, ψ, ζ ).

Prior to defining the LMBA-formula Gϕ,k , we note that every variable occurring
in Gψ,k is of the form Z ζi/ℓ(ζ ) for some ζ ∈ F[ψ] and i < ℓ(ζ ). Let

(3-3) Z = (Z ξα0 | α ∈ C).

Claim 3.5. With the notation from the previous paragraph, the set Y[Z ] of all
Y = (Y ζi | i < ℓ(ζ ), ζ ∈ F[ψ]) that satisfy conditions

(i) Y ζi ⊆ Z ξα0 for all α ∈ C such that ζ ∈ dom(α) and α(ζ )= i
ℓ(ζ )

,

(ii) Y ζi ⊆ Y ζi−1 if i ≥ 1

is definable with parameters Z as in (3-3).

Proof. For m < ℓ(ζ ), let

U ζ
m =

⋂{
Z ξα0 | α ∈ C, ζ ∈ dom(α), α(ζ )≤

m
ℓ(ζ )

}
.

Then U ζ

0 ⊇U ζ

1 ⊇ · · · ⊇U ζ

ℓ(ζ )−1 for every ζ . Let

X[U ζ
] =

{
Y ζ ∈Bℓ(ζ )

| Y ζj ≤U ζ
j ∩

⋂
i< j

Y ζi for j < ℓ(ζ )
}
.

Then Y[U ] = {Y ζj | ζ ∈ F[ψ], j < ℓ(ζ ) and (Y ζj ) j<ℓ(ζ ) ∈ X[U ζ
]}, as considered

in Lemma 2.3 is definable. This set is equal to Y[Z ] and it is definable with
parameters Z . □

Therefore Gϕ,k as defined below is a formula (on the right-hand side, in Gψ,k

the variable Z ζi/ l(ζ ) is replaced with Y ζi for all ζ ∈ F[ψ] and i < ℓ(ζ )):

Gϕ,k(Z ξ : ξ ∈ F[ϕ])= sup
Y∈Y[Z ]

Gψ,k(Y
ζ
i ζ ∈ F[ψ], i < l(ζ )).

Clearly, Gϕ,k is coordinatewise increasing since Gψ,k has this property and since
the set Y[Z ] is also increasing in Z (in the sense that Z ≤ Z ′ implies Y[Z ]⊆Y[Z ′]).
It remains to prove that Gϕ,k satisfies the requirements of Definition 3.2.

To prove (D3), suppose ϕ(ā)M > t/k for M =
∫
⊕

�
Mω dµ(ω) and ā in M of the

appropriate sort. Pick b ∈ M such that ψ(ā, b)M > t/k. Then, by the induction
hypothesis we have

(3-4) Gψ,k(Z ζ [ā, b], ζ ∈ F[ψ]) >
t − 1
ℓ(k)

.
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For ζ ∈ F[ψ] and i < ℓ(ζ ) let

Y ζi = Z ζi/ l(ζ )[ā, b].

We claim that Y defined in this manner belongs to the set Y[Z ] as in Claim 3.5.
Condition (ii) is clearly satisfied and condition (i) is satisfied because for all ζ ∈F[ψ]

and i < l(ζ ), we have that

Y ζi = {ω ∈�} | ζ(āω, bω)Mω > i/ℓ(ζ )}

⊆

⋂
α∈C,ζ∈dom(α)
α(ζ )≤i/ℓ(ζ )

{
ω ∈� | sup

y∈Mω

min
ζ∈dom(α)

η(āω, y)Mω −α(ζ ) > 0
}

=

⋂
α∈C,ζ∈dom(α)
α(ζ )≤i/ℓ(ζ )

Z ξα0 .

By (3-4) we have

Gϕ,k(Z ξ , ξ ∈ F[ϕ])≥ Gψ,k(Y
ζ
i , ζ ∈ F[ψ], i < ℓ(ζ )) >

t − 1
ℓ(k)

.

This completes the proof of (D3).
To prove (D4), assume Gϕ,k(Z ξζ [ā], ζ ∈F[ψ])> t/k. Then there are measurable

sets (as before, ā is suppressed for readability) Y ζi for ζ ∈ F[ψ] and i < ℓ(ζ )

satisfying (i) and (ii) such that

(3-5) Gψ,k(Y
ζ
i , ζ ∈ F[ψ], i < ℓ(ζ )) > t/k.

For each ω ∈� let
Dω = {ζ ∈ F[ψ] : ω ∈ Y ζ0 }.

Define αω ∈ C with dom(αω)= Dω by

(3-6) αω(ζ )=max{i/ℓ(ζ ) : ω ∈ Y ζi }.

If Dω ̸= ∅ then ω ∈
⋂
ζ∈Dω

Y ζαω(ζ ) and (i) implies that Y ζαω(ζ ) ⊆ Z ξαω0 for every
ζ ∈ dom(αω), and hence we have

⋂
ζ∈Dω

Y ζαω(ζ ) ⊆ Z ξαω0 and ω ∈ Z ξαω0 . Therefore,

sup
y

min
ζ∈Dω

ζ(āω, y) > αω(ζ ).

Recall from Definition 1.1 that all Mω for ω ∈ �, are separable and that en for
n ∈ N, enumerate a subset of M such that en(ω) for n ∈ N, form a dense subset
of Mω for every ω ∈�. Thus, if Dω ̸=∅ there exists n ∈ N such that

min
ζ∈Dω

ζMω(āω, en(ω)) > αω(ζ ).
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Let n(ω) be the minimal n with this property. For each n ∈ N, let

�n = {ω ∈� | n(ω)= n}

and �∞ = {ω ∈ � | Dω = ∅}. Note that �∞ = � \
⋃
ζ∈F[ψ]Y

ζ

0 . Therefore,
{�n | n ∈N∪{∞}} is a partition of � into measurable sets. The function b defined
on � by

bω =
{

en(ω) if ω ∈�n,

e0(ω) if ω ∈�∞
is a measurable field of elements and it therefore defines an element of M . By the
choice of n(ω), if Dω ̸=∅, then

(3-7) min
ζ∈Dω

ζ(āω, bω)Mω > αω(ζ ).

Claim 3.6. We have Y ζi ⊆ Z ζi/ℓ(ζ )[ā, b] for all ζ ∈ F[ψ] and i < ℓ(ζ ).

Proof. Suppose ω ∈ Y ζi . Then, from (3-6) we have i/ℓ(ζ )≤ αω(ζ ). By the choice
of b, we have

ζ(āω, bω)Mω > αω(ζ )≥ i/ℓ(ζ ),

which means, ω ∈ Z ζi/ℓ(ζ )[ā, b]. □

Since Gψ,k is coordinatewise increasing, Claim 3.6 and (3-5) together imply

Gψ,k(Z ζ [ā, b], ζ ∈ F[ψ]) > t/k.

The inductive hypothesis implies that ψ(ā, b)M > (t−1)/k, and therefore we have
ϕ(ā)M > (t − 1)/k as required.

Since infy ψ(x̄, y)= 1− supy(1−ψ(x̄, y)), the case when ϕ(x̄)= infy ψ(x̄, y)
for some ψ that satisfies the inductive assumption follows from the previous case.
This completes the proof by induction on complexity of ϕ. □

What makes Theorem 3.3 (or in general, Feferman–Vaught-type theorems)
“effective” is that the objects in (D1)-(D2) of Definition 3.2 can be recursively
obtained from only the syntax of ϕ, as the proof shows. In order to state Corollary 3.8
we need a definition.

Definition 3.7 (measurable fields and direct integrals of metric structures). Suppose
that L is a continuous language, (�,B, µ) is a separable probability measure space,
(Nω, dω) for ω ∈�, are separable L-structures and Mω is a substructure of Nω for
a set of ω of full measure. Assume that en for n ∈ N, is a sequence in

∏
ω∈�Nω

such that the following two conditions hold.

(1) For every ω the set {e2n(ω) | n ∈N} is dense in Mω and the set {en(ω) | n ∈N}

is dense in Nω.

(2) For every predicate R(x̄) in L and every tuple e2n̄ = ⟨e2n(0), . . . , e2n( j−1)⟩ of
the appropriate sort, the function ω 7→ RMω(e2n̄(ω)) is measurable.
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(3) For every predicate R(x̄) in L and every tuple en̄ = ⟨en(0), . . . , en( j−1)⟩ of the
appropriate sort, the function ω 7→ RNω(en̄(ω)) is measurable.

As in Definition 1.1, the structures Nω, together with the functions en , form a
measurable field of L-structures and the structures Mω form a measurable subfield
of this measurable field.

Corollary 3.8. Suppose (�,B, µ) is a separable measure space, and Mω and Nω
are measurable fields of structures of the same language, for all ω ∈�.

If Mω ≡ Nω for almost all ω, then∫
⊕

�

Mω dµ(ω)≡
∫
⊕

�

Nω dµ(ω).

If Mω for ω∈� is a measurable subfield of Nω for ω∈� and in addition Mω⪯ Nω
for almost all ω, then ∫

⊕

�

Mω dµ(ω)⪯
∫
⊕

�

Nω dµ(ω).

Proof. We prove the second part. Fix a formula ϕ(x̄) and k ≥ 2. By Theorem 3.3
can be uniformly approximated by a formula that is determined. Therefore, without
loss of generality we assume ϕ(x̄) is determined. Let

M =
∫
⊕

�

Mω dµ(ω) and N =
∫
⊕

�

Nω dµ(ω).

For every ā in M of the appropriate sort and every formula ζ(x̄)∈ F[ϕ], the set of ω
such that ζ(āω)Nω = ζ(āω)Mω has full measure. That is, the sets of the form Z ζr [ā],
as in Definition 3.2, evaluated in structures M and N are the same. Therefore
|ϕ(ā)N

−ϕ(ā)M
|< 2/k and because k was arbitrary it follows that ϕ(ā)N

= ϕ(ā)M .
Since ϕ and ā were arbitrary, Nω ⪯ Mω.

Proof of the first part is analogous. □

As Itaï Ben Yaacov [5] pointed out, Corollary 3.8 can be proven using quantifier
elimination in atomless randomizations. This result applies only to atomless measure
spaces but is in this case even slightly stronger as it shows that the direct integrals
are elementarily equivalent even as randomization structures.

A special case of Corollary 3.8 where all the fiber of the direct integrals are the
same tracial von Neumann algebra leads to the following corollary.

Corollary 3.9. Suppose M and N are elementarily equivalent tracial von Neumann
algebras and (�,B, µ) is a separable measure space. Then

M⊗L∞(�,µ)≡ N⊗L∞(�,µ).

If M ⪯ N then
M⊗L∞(�,µ)⪯ N⊗L∞(�,µ).
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4. Applications to tracial von Neumann algebras

In this section we prove Theorem 1, after discussing a technical point.

4.1. Two languages for tracial von Neumann algebra. Tracial von Neumann
algebras are equipped with a distinguished tracial state τ , usually suppressed for the
simplicity of notation.3 In the literature tracial von Neumann algebras are usually
considered with respect to the ∥ · ∥2-norm:

∥a∥2 = τ(a∗a)1/2,

but in [36, Section 29] they are for convenience considered with respect to the ∥ · ∥1
norm:

∥a∥1 = τ((a∗a)1/2).

We will denote the corresponding languages L∥·∥2 and L∥·∥1 , respectively. Since
the syntax of continuous logic requires each function symbol to be equipped with
a modulus of uniform continuity, the difference between these two languages is
not only notational. By [36, Lemma 29.1], on operator norm-bounded balls the
∥·∥1-norm is compatible with the strong operator topology (and therefore equivalent
to the ∥ · ∥2-norm). We thus have two competing languages and two competing
axiomatizations (the standard one and the one in [36, Proposition 29.4]) of tracial
von Neumann algebras in continuous logic. In order to facilitate the ongoing
discussion, for j = 1, 2 we will refer to the axiomatization (formulas, definable
predicates, etc.) using the ∥ · ∥ j -norm as j -axiomatization ( j -formulas, j-definable
predicates, etc.).

Lemma 4.1. (1) The tracial state is a j-definable predicate for J = 1, 2.

(2) The norm ∥ · ∥2 is a 1-definable predicate.

(3) The norm ∥ · ∥1 is a 2-definable affine predicate.

(4) Every 2-definable predicates is a 1-definable predicate and vice versa.

Proof. We prove that the tracial state is a 1-definable predicate by exhibiting a
concrete defining formula. If a = a∗ and ∥a∥ ≤ n (data visible from the sort of a)
then |a+n| = a+n and τ(a)=∥a+n∥1−n. Since a can be written as a= a0+ ia1

where a0 :=
1
2(a + a∗) and a1 :=

1
2i (a − a∗) are self-adjoint, we have that (still

assuming ∥a∥ ≤ n)

τ(a)= ∥a0+ n∥1+ i∥a1+ n∥− (1+ i) n.

Similarly, if a = a∗ and ∥a∥ ≤ n then τ(a) = ∥a + n∥22− n, which by the above
argument shows that τ is 2-definable.

3For simplicity, in this proof we allow tracial von Neumann algebras whose distinguished trace is
not normalized.
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Since ∥a∥2 = τ(a∗a)1/2, the 2-norm is a 1-definable predicate.
The remaining parts of the lemma follow. □

Corollary 4.2. Two tracial von Neumann algebras are 1-elementarily equivalent if
and only if they are 2-elementarily equivalent.

A class of tracial von Neumann algebras is 1-axiomatizable (in continuous logic)
if and only if it is 2-axiomatizable (in continuous logic). □

4.2. Proof of Theorem 1. En route to the proof of Theorem 1 we prove the follow-
ing (very likely well-known, yet not completely trivial) result. By Corollary 4.2,
we do not need to indicate whether “elementarily equivalent” refers to the 1-logic
or to the 2-logic as discussed in the previous subsection.

Proposition 4.3. Suppose that M and M1 are elementarily equivalent tracial von
Neumann algebras and one of them is of type I. Then the other one is also of type I.

If in addition both M and M1 have separable predual, then they are isomorphic.
In other words, the theory is a complete isomorphism invariant for separable tracial
von Neumann algebras of type I.

Proposition 4.3 will follow from a more precise (and more obvious), statement
(Lemma 4.4) given after a few clarifying remarks.

Note that being type I is not axiomatizable in language of tracial von Neumann
algebras, since the category of type I tracial von Neumann algebras is not preserved
under ultraproducts. (E.g., the ultraproduct of Mn(C) for n ∈ N associated with
a nonprincipal ultrafilter on N is an interesting II1 factor without property 0.)
However, every tracial von Neumann algebra elementarily equivalent to Mn(C) is
isomorphic to it.

By the second part of Proposition 4.3, type I tracial von Neumann algebras behave
similarly to compact metric structures, or to finite-dimensional C∗-algebras (all of
whose sorts are compact). More precisely, the second part of Proposition 4.3 is a
poor man’s version of the fact that Mn(C)≡ A implies Mn(C)∼= A: Every tracial
von Neumann algebra with separable predual elementarily equivalent to a given
type I tracial von Neumann algebra M with separable predual is isomorphic to it. In
terminology of [16], being isomorphic to M is separably axiomatizable. In the stan-
dard model-theoretic terminology, the theory of M is ℵ0-categorical (some authors
write ω-categorical, as the ordinal ω is routinely identified with the cardinal ℵ0).

Lemma 4.4. If M is a tracial von Neumann algebra, then there is a unique function

ρM : (N \ {0})×N→ [0, 1],

with the following properties.

(1)
∑

m,n ρM(m, n)≤ 1, with the equality holding if and only if M has type I.

(2) ρM(m, n)≥ ρM(m, n+ 1) whenever n ≥ 1.
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(3) M =
∏

m≥1Mm(L∞(Xm, µm)), where (Xm, µm) is a measure space which has
atoms of measure ρM(m, n) for n ≥ 1 (with multiplicities), and diffuse part of
measure ρM(m, 0) (with µ(Xm)=

∑
n ρM(m, n)).

Moreover, the function ρM is computable from the theory of M.

Proof. By the type decomposition of finite von Neumann algebras [34, Section V],
M is isomorphic to the direct sum MI⊕MII where MI is of type I and MII of type II.

By the same decomposition result, MI is of the form
∏

m≥1Mm(L∞(Xm, µm))

with
∑

mµm(Xm) = 1 (possibly with µm(Xm) = 0 for some m). Since every
finite measure space can be decomposed into diffuse and atomic part as specified,
giving rise to ρM . Measures of the atoms are listed in decreasing order in order
to assure (2), securing the uniqueness of the function ρM . To be precise, let Ym,n

for n ∈N, enumerate all atoms in the measure space (Xm, µm), listed in order of
decreasing measure, with multiplicities. If there are only k atoms, then let Ym,n =∅
for n ≥ k. Finally let ρM(m, n) = µm(Ym,n). We therefore only need to explain
how to determine ρM from the theory of M .

First we use the fact that the center Z(M) of a tracial von Neumann algebra M
is definable (this is essentially [13, Lemma 4.1]). The proof shows that the lattice of
projections in the center is also definable (this is not an immediate consequence of the
fact that the set of projections is also definable, since by an unpublished result of Hen-
son in continuous logic the intersection of definable sets is not necessarily definable).

As observed in [16, Theorem 2.5.1], m-subhomogeneous C∗-algebras are axiom-
atizable. This clearly extends to von Neumann algebras, by using the same formula.
So for every m ≥ 1 the set (by τ we denote the distinguished tracial state of M)

{τ(p) | p ∈ Z(M) is a projection and pMp is m-subhomogeneous}

can be read off the theory of M . The supremum of this set is equal to∑
j≤m

∑
n
ρM( j, n).

Thus µm(Xm) is determined from Th(M).
It remains to compute the measures of the atoms of each µm . Again using the

fact that the projections in Z(M) form a definable set, these are the values of τ(p)
where p is a central projection such that pMp∼=Mm(C). Multiplicities are handled
similarly. □

Proof of Proposition 4.3. Suppose that M and M1 are elementarily equivalent tracial
von Neumann algebras and that M has type I. Lemma 4.4 implies that ρM = ρM1 .
By (1) of Lemma 4.4 we have

∑
m,n ρM1(m, n)=

∑
m,n ρM(m, n)=1, and therefore

M1 is also of type I.
Note that ρM = ρM1 implies that the atomic parts of M and M1 are isomorphic.

Since every diffuse abelian tracial von Neumann algebra is isomorphic to L∞([0, 1]),
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if in addition to being of type I and elementarily equivalent both M and M1 have
separable predual, then they are isomorphic. □

The following well-known lemma uses the notion of the eq of a metric structure,
studied in [16, Section 3]. Briefly, if M is a metric structure then Meq is formed
from M by expanding it as follows (see [16, Section 3.3] for details). First, one
adds all countable products of sorts in M and equips them with natural product
metric. Second, one adds all definable subsets of such products. Third, one takes
quotients by all definable equivalence relations on such definable sets. The structure
obtained in this way is denoted Meq. Its theory T eq depends only T = Th(M), the
category of models of T eq is equivalent to the category of models of T , and it is
abstractly characterized as the largest conservative extension of the category of
models of T (this is [16, Theorem 3.3.5]). It is easier than its C∗-algebraic analog,
[16, Lemma 3.10.2].

Lemma 4.5. If N and F are tracial von Neumann algebras and F is finite-
dimensional, then F⊗N is in N eq. Thus, if M is also a tracial von Neumann
algebra such that M ≡ N (M ⪯ M), then F⊗M ≡ F⊗N (F⊗M ⪯ F⊗N ).

Proof. We first consider the case F=Mm(C) for some m≥1. Then the distinguished
tracial state of F⊗N is σ = trm⊗τ (where trm is the normalized tracial state on
Mm(C) and τ is the distinguished tracial state of N ). Then the unit ball of (F⊗N , σ )
can be identified with a subset of the unit ball N m2

with the naturally defined matrix
arithmetic operations and tracial state σ((ai j )i, j≤m)=

∑
i≤mτ(ai i ).

For the general case, note that F is the direct sum of full matrix algebras,
F =

⊕
j≤k Ml( j)(C) and that its distinguished tracial state is a convex combination

of trl( j) for j ≤ k. By the argument similar to the one for Mm(C), F⊗N can be
identified with N

∑
j≤k l( j)2 with the appropriately defined arithmetic operations and

distinguished tracial state. □

Proof of Theorem 1. We will prove the theorem for ⪯. The proof for≡ is analogous,
and alternatively it follows by the fact that elementarily equivalent structures can
be elementarily embedded into the same structure.

The result follows from the conjunction of the following two statements.

(1) If M, N , N1 are tracial von Neumann algebras, N1 ⪯ N , and M has type I,
then M⊗N1 ⪯ M⊗N .

(2) If M, N , N1 are tracial von Neumann algebras, N1 ⪯ N , and N has type I,
then M⊗N1 ⪯ M⊗N .

(1) As in the proof of Proposition 4.3, we have M =
∏

m≥1Mm(L∞(Xm, µm)). By
Corollary 3.9, N1 ⪯ N implies that N1(m)= L∞(Xm, µm)⊗N1 is an elementary
submodel of N (m)= L∞(Xm, µm)⊗N .
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The matrix case of Lemma 4.5 implies Mm(N1(m)) ⪯ Mm(N (m)) for all m.
Corollary 3.8 applied to the measure space (N, µ) where µ is a probability Radon
measure implies that M⊗N1 ⪯ M⊗N .

(2) Analogously to case (1), N =
∏

m≥1Mm(Pm) for some abelian von Neumann
algebras Pm . By Proposition 4.3, N1 =

∏
m≥1Mm(P1,m) with P1,m ≡ Pm for

all m, and furthermore the algebras Pm and P1,m have atoms and diffuse parts
of the same measure. This implies that Pm and P1,m are isomorphic. Therefore,
P1,m⊗M ⪯ P⊗M . Lemma 4.5 implies that further tensoring with Mm(C) pre-
serves elementarity, and hence Corollary 3.8 implies that

∏
m≥1Mm(P1,m⊗M) is

an elementary submodel of
∏

m≥1Mm(Pm⊗M). That is, M⊗N1 ⪯ M⊗N . □

5. Concluding remarks

In general, tensoring with strongly self-absorbing C∗-algebras [35] does not preserve
elementarity [11, Proposition 6.2]. All known examples of the failure of preservation
of elementary equivalence by tensor products relied on failure of regularity properties
of C∗-algebras, such as definability of tracial states [11, Proposition 6.2] and stable
rank being greater than 1 ([16, Corollary 3.10.4], using [32, Theorem 3.1]).

However, known results imply that tensoring with a strongly self-absorbing
C∗-algebra D preserves elementary equivalence in a large class of C∗-algebras.
It follows from [16, Corollary 2.7.2] that if A is tensorially D-absorbing, then
A ⪯ A⊗ D via the map that sends a to a⊗ 1D for all a ∈ A (since D ∼= D

⊗
N by

[35, Proposition 1.9]). Being tensorially D-absorbing is separably axiomatizable by
[16, Theorem 2.5.2]. (A property is separably axiomatizable if there is a theory T
such that all separable models of T satisfy this property.) Let TD be the theory
of separable D-absorbing C∗-algebras (see [15, Section 2.1]). Models of TD are
called potentially D-absorbing [15, Definition 2.4], and they have the property
that all of their separable elementary submodels are D-absorbing. The Downward
Löwenheim–Skolem theorem thus implies that if A is potentially D-absorbing and
A ≡ B, then A⊗ D ≡ B⊗ D.

If A ⪯ B and A is potentially D-absorbing, then by identifying A with A⊗ 1D

in A⊗ D we have A ⪯ B ⊗ D. A slightly finer analysis using [15, Lemma 1.4]
applied to the inclusions A⊆ A⊗ D ⊆ B⊗ D (or directly using the Tarski–Vaught
test) shows that A⊗ D ⪯ B⊗ D.

Proposition 5.1. If A ⪯ B and A is potentially D-absorbing, then A⊗ D ⪯ B⊗ D
via the natural embedding that fixes 1⊗ D.

By a result of Connes, the hyperfinite II1 factor R is the only strongly self-
absorbing II1 factor. Potentially R-absorbing tracial von Neumann algebras are
the McDuff factors, and an argument analogous to that of the previous paragraph
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shows that if M ≡ N and M is McDuff, then M⊗R ≡ N⊗R and if M ⪯ N and M
is McDuff then M⊗R ⪯ N⊗R.

It is not known whether tensor products of tracial von Neumann algebras preserve
elementarity or not. The fact that theories of type II1 tracial von Neumann algebras
do not admit quantifier elimination (see [12] and [17] for a finer result) makes the
question of preservation of elementarity more intricate.

Definition 5.2. If M =
∫
⊕

�
Mω dµ(x) is a direct integral, then the distribution of

the theories in the measurable field Mω for ω ∈�, is the function α that to every
n ≥ 1 and every n-tuple of L-sentences ϕ̄ = ⟨ϕ j : j ≤ n⟩, associates the distribution
αϕ̄ : [0, 1]n→ [0, 1] by

αϕ̄(r̄)= µ{ω | ϕ
Mω

j > r j for all j ≤ n}.

Theorem 3.3 (together with Lemma 4.1 that provides translation between lan-
guages L∥·∥2 and L∥·∥1) has the following natural corollary.

Corollary 5.3. The theory of a direct integral M =
∫
⊕

�
Mω dµ(ω) is uniquely

determined by the distribution of the theories in the measurable field Mω for ω ∈�.
□

The converse to this corollary is in general false, it is not possible to disintegrate
the theory of a direct integral to recover the theories of Mω for almost allω. However,
every tracial von Neumann algebra with separable predual admits a disintegration
into a measurable field of factors that is essentially unique [34, Section IV]. Con-
firming Conjecture 4.5 from the original version of the present paper, David Gao
and David Jekel proved that if M is a direct integral of a measurable field of II1

factors then its theory uniquely determines the distribution of theories of II1 factors
in this measurable field [21, Theorem A]. The proof uses a variant of [5]. Together
with an easy Fubini-type argument, this theorem implies the following.

Corollary 5.4. Tensor products of tracial von Neumann algebras preserve elemen-
tary equivalence if and only if tensor products of II1 factors preserve elementary
equivalence. □

While a Feferman–Vaught-style theorem technically solves the problem of com-
puting the theory of a given structure, it is desirable to have a more efficient
procedure. In [30] and [31], Palyutin isolated a class of so-called h-formulas
and shown that they satisfy a version of Łoś’s theorem in every reduced product
M =

∏
i∈I Mi/I and that if in addition the Boolean algebra P(I )/I is atomless

then every formula in the language of M is equivalent to a Boolean combination of
h-formulas. This has, for example, been used to provide a much simpler proof of
ℵ1-saturation of reduced products associated with a countable ideal in [29]. The
analog of Palyutin’s theory for continuous logic has been developed in [20].
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It would be desirable to develop analogous theory for direct integrals of structures
in place of reduced products. We will now describe some partial results along these
lines. In [2], Bagheri proved a preservation theorem for affine formulas under
direct integrals. He introduced a variant of the continuous logic, nowadays known
as the affine logic, a systematic study of which is in [36] . Affine formulas are
defined recursively starting from atomic formulas. Logical connectives are restricted
to affine functions, while the role of quantifiers is still played by supremum and
infimum [36, Section 2]. Structures and interpretation of formulas are analogous to
those in continuous logic. The operation of taking direct integrals of measurable
fields of affine structures preserves the affine theory (note that for tracial von
Neumann algebras this is true only if they are considered with respect to the ∥ · ∥1
norm, see Lemma 4.1). A preservation under direct integrals of tracial von Neumann
algebras for certain convex formulas had been proven in [18] in a work motivated
by the need to systematize the theory of tracially complete C∗-algebras [9].

Moving to the other important class of self-adjoint operator algebras, we ask
whether there is a C∗-algebraic analog of Theorem 1? Tensor products by finite-
dimensional C∗-algebras preserve elementary equivalence. By the C∗-algebraic
analog of Lemma 4.5, if A and F are C∗-algebras such that F is finite-dimensional,
then A ⊗ F belongs to Aeq [16, Section 3] and therefore the theory of A ⊗ F
can be computed from the theory of A. However, tensoring by C([0, 1]) do not
preserve elementary equivalence [16, Corollary 3.10.4]. To the best of our current
(lamentably limited) understanding, the following would be a plausible analog of
Theorem 1.

Conjecture 5.5. Suppose that A is a C∗-algebra all of whose irreducible repre-
sentations are finite-dimensional and the Gelfand spectrum of its center is totally
disconnected. If B and C are elementarily equivalent C∗-algebras, then A⊗ B and
A⊗C are elementarily equivalent.
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JAN ČERMÁK, LUCIE FEDORKOVÁ and JIŘÍ JÁNSKÝ
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