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EFFICIENT CYCLES OF HYPERBOLIC MANIFOLDS

ROBERTO FRIGERIO, ENNIO GRAMMATICA AND BRUNO MARTELLI

Let N be a complete finite-volume hyperbolic n-manifold. An efficient
cycle for N is the limit (in an appropriate measure space) of a sequence of
fundamental cycles whose ℓ1-norm converges to the simplicial volume of N .
Gromov and Thurston’s smearing construction exhibits an explicit efficient
cycle, and Jungreis and Kuessner proved that, in dimension n ≥ 3, such a
cycle actually is the unique efficient cycle for a huge class of finite-volume
hyperbolic manifolds, including all the closed ones. We prove that, for n ≥ 3,
the class of finite-volume hyperbolic manifolds for which the uniqueness of
the efficient cycle does not hold is exactly the commensurability class of the
figure-8 knot complement (or, equivalently, of the Gieseking manifold).

Introduction

The simplicial volume is a homotopy invariant of manifolds introduced by Gromov
in his pioneering paper [1982]. If N is a compact connected oriented n-manifold
(possibly with boundary) the simplicial volume ∥N∥ of N is defined by

∥N∥ = inf
{ k∑

i=1

|ai | :

[ k∑
i=1

aiσi

]
= [N ] ∈ Hn(N , ∂N )

}
,

where [N ] denotes the real fundamental class of N , and Hn(N , ∂N ) denotes the
relative singular homology module of the pair (N , ∂N ) with real coefficients.

Computing the simplicial volume is usually a very difficult task. Many vanishing
theorems are available by now, but positive exact values of the simplicial volume
are known only for a few classes of manifolds, such as complete finite-volume hy-
perbolic manifolds [Gromov 1982; Thurston 1979], closed manifolds isometrically
covered by the product of two copies of the hyperbolic plane [Bucher-Karlsson
2008], some 3-manifolds with higher genus boundary [Bucher et al. 2015] and
special families of 4-manifolds [Heuer and Löh 2021]. Even when the simplicial
volume of a manifold N is known, characterizing (or, at least, exhibiting) almost
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minimal fundamental cycles (i.e., fundamental cycles whose norm is close to ∥N∥)
may be surprisingly difficult. For example, it is known that the simplicial volume
of any closed simply connected manifold N vanishes, but there is no recipe, in
general, which describes fundamental cycles of N of arbitrarily small norm; in a
similar spirit, even if the value of the simplicial volume of the product 6×6′ of
two hyperbolic surfaces has been computed in [Bucher-Karlsson 2008], exhibiting
a sequence of fundamental cycles whose norm approximates ∥6×6′

∥ seems very
challenging [Marasco 2023].

The situation is better understood for hyperbolic manifolds: the computation by
Gromov and Thurston of the simplicial volume of such manifolds explicitly con-
structs almost minimal cycles via an averaging operator called smearing [Thurston
1979]. A natural question is to which extent this construction is unique, that is,
whether there exist sequences of almost minimal fundamental cycles which do not
come from smearing: this problem has been partially addressed by Jungreis [1997]
and Kuessner [2003].

We improve their results by showing that, in dimension n ≥ 3, the unique
hyperbolic manifolds admitting “exotic” almost minimal fundamental cycles are
those which are commensurable with the Gieseking manifold (it is known that
hyperbolic surfaces admit many almost minimal efficient cycles which do not come
from smearing; see, e.g., [Jungreis 1997, Remark at page 647]).

In order to state more precisely our results, let us introduce some notation. Let
N be a complete finite-volume hyperbolic n-manifold. If N is closed, we denote
by ∥N∥ its simplicial volume. If N is noncompact, it is the internal part of a compact
manifold with boundary N , and for the sake of simplicity we still denote by ∥N∥ the
simplicial volume of (N , ∂N ). In fact, by replacing finite chains with locally finite
ones, the definition of simplicial volume may be extended to open manifolds, and
for finite-volume hyperbolic manifolds this notion of simplicial volume coincides
with the simplicial volume of the compactification (see, for example, [Kim and
Kuessner 2015]). In order to better compare our results with Kuessner’s we prefer
to work with the relative simplicial volume of compact manifolds with boundary
rather than the simplicial volume of open manifolds, even if our proofs can be easily
adapted to the latter framework.

Let ci , i ∈ N, be a sequence of (relative) fundamental cycles such that

lim
i→+∞

∥ci∥ = ∥N∥.

Any possible limit µ of such a sequence naturally sits in the space M(S
∗

n(N ))
of signed measures on the space of (nondegenerate and possibly ideal) geodesic
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simplices in N , and will be called an efficient cycle for N : thus, an efficient cycle
is a measure rather than a classical chain (we refer the reader to Section 1 for more
details). In fact, it is not difficult to prove that an efficient cycle µ is supported
on the subspace Reg(N ) of regular ideal simplices, which may be identified with
0\Isom(Hn), where 0 is the subgroup of Isom(Hn) such that N = 0\Hn (see
Lemma 2.3). The Haar measure on Isom(Hn) may then be exploited to define
a uniformly distributed measure µeq on Reg(N ), and Gromov and Thurston’s
smearing procedure constructs sequences of fundamental cycles converging exactly
to a suitable multiple of µeq.

Jungreis and Kuessner provided a complete characterization of efficient cycles for
all finite-volume hyperbolic n-manifolds, n ≥ 3, except for the so-called Gieseking-
like manifolds.

Definition 1. Let N = 0\H3 be a cusped hyperbolic 3-manifold. Let us fix an
identification between ∂H3 and the space C∪{∞}, and let P=Q(eiπ/3)∪{∞}⊆∂H3.
Then N is Gieseking-like if there exists a conjugate 0′ of 0 in Isom(H3) such that
P is contained in the set of parabolic fixed points of 0′.

The well-known Gieseking manifold is indeed Gieseking-like. Being Gieseking-
like is invariant with respect to commensurability; hence all hyperbolic 3-manifolds
which are commensurable with the Gieseking manifold (like, for example, the
figure-8 knot complement) are Gieseking-like. It is still unknown whether the
class of Gieseking-like manifolds coincides with the commensurability class of the
Gieseking manifold, or it is strictly larger (see [Long and Reid 2002]).

Let vn be the volume of a regular ideal simplex in hyperbolic space Hn . We are
now ready to state Jungreis’ and Kuessner’s results:

Theorem 2 [Jungreis 1997]. Let N be a closed orientable n-hyperbolic manifold
with n ≥ 3. Then N admits a unique efficient cycle, which is given by the measure

1
2vn

·µeq.

Theorem 3 [Kuessner 2003]. Let N be a complete finite-volume n-hyperbolic mani-
fold, n ≥ 3, and suppose that N is not Gieseking-like (this condition is automatically
satisfied if n ≥ 4). Then every efficient cycle of N is a multiple of µeq.

In fact, Kuessner [2003, Theorem 4.5] proved that any efficient cycle is a
nonvanishing multiple of µeq, without explicitly computing the proportionality
coefficient 1/(2vn) appearing in Jungreis’ theorem. When N is noncompact, the
space of straight simplices in N is noncompact, which introduces some issues when
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dealing with the weak-* convergence of measures (namely, by passing to the limit
there could be some loss of mass).

Let us say that a measure in M(Reg(N )) is equidistributed if it is a multiple
of µeq. Our main results strengthen and clarify Kuessner’s result in three directions:

(1) We prove that the total variation of any efficient cycle of a cusped hyperbolic
manifold is equal to its simplicial volume, thus showing that, in the non-Gieseking
like case, also for cusped manifolds the proportionality coefficient between any
efficient cycle and µeq is equal to 1/(2vn), as in Jungreis’ theorem.

(2) We show that if a cusped 3-manifold N admits nonequidistributed efficient
cycles, then it is commensurable with the Gieseking manifold (a condition which is
potentially stronger than being Gieseking-like).

(3) For any such manifold we exhibit nonequidistributed efficient cycles, thus
obtaining a complete characterization of hyperbolic manifolds with nonunique
efficient cycles.

Let us state more precisely our results:

Theorem 4 (no loss of mass). Let N be a complete finite-volume hyperbolic n-
manifold, n ≥ 3, and let µ be an efficient cycle for N. Then ∥µ∥ = ∥N∥.

Theorem 5. Let N be a complete finite-volume hyperbolic manifold. Then N
admits nonequidistributed efficient cycles if and only if it is commensurable with the
Gieseking manifold.

Putting together Theorems 4 and 5 we can then deduce the following:

Theorem 6. Let N be a complete finite-volume hyperbolic n-manifold with n ≥ 3.

(1) If N is not commensurable with the Gieseking manifold and ci , i ∈ N, is any
minimizing sequence for N , then

lim
i→+∞

ci =
1

2vn
µeq.

(2) If N is commensurable with the Gieseking manifold, then N admits nonequidis-
tributed efficient cycles.

We can be more precise. If N is commensurable with the Gieseking manifold,
then a finite cover M of N admits a decomposition T into regular ideal tetrahedra.
The triangulation T induces a measure cycle µT ∈ M(Reg(M)) which is a finite
sum of atomic measures supported on the regular ideal tetrahedra appearing in T
(see Section 4.4 for the precise definition of µT ). We then have the following:
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Theorem 7. Let M be a complete finite-volume 3-manifold admitting a decomposi-
tion T into regular ideal tetrahedra. Then µT is an efficient cycle for M.

From the nonequidistributed efficient cycle µT for M one can then easily con-
struct a nonequidistributed efficient cycle for N . The proof of Theorem 7 exploits a
construction described in [Francaviglia et al. 2012, Section 5.4], which allows one to
replace an ideal triangulation T of a cusped manifold with a classical triangulation
of its compactification in a very controlled way. By applying this procedure to a
suitably chosen tower of coverings of M and pushing-forward the resulting classical
triangulations to M we obtain a minimizing sequence whose limit is equal to µT .

Plan of the paper. In Section 1 we recall the definition of simplicial volume, of
minimizing sequence, of efficient cycle and of equidistributed efficient cycle. To
this aim we also introduce the measure spaces we will exploit throughout the paper.
Section 2 is devoted to the proof of some fundamental properties of efficient cycles,
including Theorem 4. In Section 3 we prove that, if a complete finite-volume
hyperbolic n-manifold, n ≥ 3, admits a nonequidistributed efficient cycle, then it is
necessarily commensurable with the Gieseking manifold, while Section 4 is devoted
to the construction of nonequidistributed efficient cycles for manifolds which are
commensurable with the Gieseking manifold.

1. Preliminaries

1.1. Simplicial volume. Let X be a topological space. For every k ∈ N, we denote
by Ŝk(X) the set of singular k-simplices with values in X , and by Ck(X) the
chain module of singular k-chains with real coefficients, i.e., the real vector space
with free basis Ŝk(X). If Y ⊆ X , we denote by C∗(X, Y ) the chain complex of
relative singular cochains with real coefficients, and by H∗(X, Y ) the corresponding
homology module. We endow C∗(X) with the ℓ1-norm ∥ · ∥ defined by∥∥∥∥∑

i=1

aiσi

∥∥∥∥ =

k∑
i=1

|ai |.

This norm descends to a norm on C∗(X, Y ) and, by taking the infimum over
representatives, to a seminorm on H∗(X, Y ), still denoted by ∥ · ∥.

If N is a compact oriented n-dimensional manifold (possibly with boundary),
then the singular homology module with integral coefficients Hn(N , ∂N ; Z) ∼=

Z is generated by the integral fundamental class [N ]Z ∈ Hn(N , ∂N ,Z). Under
the change of coefficient homomorphism induced by the inclusion Z ↪→ R, the
class [N ]Z is sent to the real fundamental class [N ] ∈ Hn(N , ∂N ; R).
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Definition 1.1 [Gromov 1982]. The simplicial volume of N is

∥N∥ = ∥[N ]∥.

Henceforth, all the homology modules will be understood with real coefficients,
and the coefficients will be omitted from our notation.

1.2. Straight chains on hyperbolic manifolds. Let N =0\Hn be a cusped oriented
hyperbolic n-manifold, where 0 is a discrete subgroup of Isom+(Hn). For every
k ∈ N, if σ :1k

→ Hn is a singular simplex, we denote by ∼strk(σ ) the straightening
of σ , that is, the singular simplex obtained by suitably parametrizing the convex hull
of the vertices of σ (see, for instance, [Frigerio 2017, Section 8.7] or [Martelli 2022,
Chapter III.13]). We denote by Sk(H

n)⊆ Ŝk(H
n) the image of ∼strk , i.e., the subset

of straight hyperbolic k-simplices, and observe that there is a natural identification

Sk(H
n)= (Hn)k+1

sending a straight simplex to the (ordered) set of its vertices, which will be under-
stood henceforth. With a slight abuse, we still denote by ∼strk : Ck(H

n)→ Ck(H
n)

the R-linear extension of ∼strk to the space of singular chains, and recall that
∼str∗ : C∗(H

n)→ C∗(H
n) is in fact a chain map (see, for instance, [Frigerio 2017,

Proposition 8.11]).
Being Isom(Hn)-equivariant (and equivariantly homotopic to the identity), the

map ∼strk is in particular 0-equivariant, and induces a well-defined chain map
str∗ : C∗(N ) → C∗(N ), which is chain homotopic to the identity. We denote
by Sk(N ) the image of Ŝk(N ) via strk , i.e., the set of straight simplices in N , and
we observe that there is a natural identification

Sk(N )= 0\Sk(H
n)= 0\(Hn)k+1.

A chain is called straight if it is supported on straight simplices or, equivalently, if
it lies in the image of the chain map str∗ (or ∼str∗).

We denote by SC∗(H
n) ⊆ C∗(H

n) (resp. SC∗(N ) ⊆ C∗(N )) the complex of
straight chains in Hn (resp. in N ). By construction, under the above identification
between the set of straight k-simplices and (Hn)k+1 (resp. 0\(Hn)k+1), the complex
SC∗(H

n) (resp. SC∗(N )) is identified with the free vector space with basis (Hn)∗+1

(resp. 0\(Hn)∗+1), with boundary operators which linearly extend the maps

∂k(v0, . . . , vk)=

k∑
i=0

(−1)i (v0, . . . , v̂i , . . . , vk)

(
resp. ∂k[(v0, . . . , vk)] =

∑k
i=0(−1)i [(v0, . . . , v̂i , . . . , vk)]

)
.
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If σ = (v0, . . . , vk) ∈ (Hn)k+1 is a straight simplex, the alternating chain associ-
ated to σ is defined by

altk(σ )=
1
k!

∑
τ∈Sk+1

ε(τ ) · (vτ(0), . . . , vτ(k)),

where Sk+1 is the group of the permutations of the set {0, . . . , k}, and ε(τ )= ±1
is the sign of τ for every τ ∈ Sk+1. The maps altk linearly extend to a chain map
alt∗ : SC∗(H

n)→ SC∗(H
n) which is 0-equivariant, and 0-equivariantly homotopic

to the identity (see, for example, [Fujiwara and Manning 2011, Appendix A]). In
particular, alt∗ induces a well-defined chain map alt∗ : SC∗(N )→ SC∗(N ), which
is homotopic to the identity. A chain in SC∗(H

n) (or in SC∗(N )) is alternating if it
lies in the image of alt∗.

1.3. Thick-thin decomposition of hyperbolic manifolds. For every ε>0 we denote
by Nε the ε-thick part of N , that is, the set of points of N whose injectivity radius
is not smaller than ε. We will always choose ε > 0 small enough so that Nε
is a compact submanifold with boundary of N , obtained from N by removing
open neighborhoods of its cusps. We denote by N the natural compactification
of N , which is diffeomorphic to Nε. The inclusion (Nε, ∂Nε)→ (N , N \ int(Nε))
and the obvious deformation retraction r : (N , N \ int(Nε))→ (Nε, ∂Nε) are the
homotopy inverses of each other, and they induce norm nonincreasing maps in
homology. Therefore, in order to compute the simplicial volume of N we may
consider relative fundamental cycles in Cn(N , N \ int(Nε)). The complement in Hn

of the preimage of Nε under the covering projection is an equivariant family of
disjoint open horoballs. Since horoballs are convex in Hn , the straightening operator
induces a well-defined chain map on the relative chain complex C∗(N , N \ int(Nε)).
Finally, since both the straightening and the alternating operators are obviously
norm nonincreasing (and they induce the identity also on relative homology), in
order to compute the simplicial volume of N it is not restrictive to consider only
straight and alternating relative cycles in C∗(N , N \ int(Nε)).

1.4. Minimizing sequences and efficient cycles. We say that a sequence ci ∈Cn(N )
of chains is a minimizing sequence if the following conditions hold:

(1) Each ci is straight and alternating.

(2) For all sufficiently large i ∈ N, ci is a relative cycle in Cn(N2−i , N \ int(N2−i )).

(3) Under the identification Hn(N2−i , N\int(N2−i ))∼= Hn(N , ∂N ) described above,
the relative cycle ci represents the fundamental class of (N , ∂N ).

(4) ∥ci∥ ≤ ∥N∥ + 2−i for all sufficiently large i ∈ N.
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Of course, in the definition of minimizing sequence the values 2−i may be
replaced by any infinitesimal sequence ηi ; we decided to choose this specific
sequence just to simplify the notation.

We now introduce the measure spaces we are interested in. Recall that Sn(N )=

0\(Hn)n+1 is the space of straight simplices with values in N . Of course, this
space does not contain any ideal simplex; hence we need to enlarge it in order
to construct a measure space which could support possible limits of minimizing
sequences (recall from the introduction that efficient cycles are supported on regular
ideal simplices). The natural space to look at is then Sn(N ) = 0\(Hn)n+1 but,
unfortunately, the action of 0 on Sn(H

n)= (Hn)n+1 has not closed orbits, so that
the quotient space is not Hausdorff. In order to avoid this inconvenience, and for
other later purposes, we introduce the following:

Definition 1.2. A straight simplex in Sn(H
n) is degenerate if its vertices (hence,

its image) lie on (the closure at infinity of) a hyperplane of Hn or, equivalently,
if its image has volume equal to 0. A straight simplex in Sn(N ) = 0\Sn(H

n) is
degenerate if it is the image of a degenerate simplex in Sn(H

n).
We denote by S

∗

n(H
n) (resp. S

∗

n(N )) the set of nondegenerate straight simplices
in Sn(H

n) (resp. Sn(N )).

It is not difficult to show that, when endowed with the quotient topology,
the space S

∗

n(N ) is metrizable and locally compact (see, e.g., [Kuessner 2003,
Lemma 2.6] for a similar result and the proof of Lemma 2.7 here below). We denote
by M(S

∗

n(N )) the space of signed regular measures on S
∗

n(N ). If σ : 1n → N
is a straight simplex, then we denote by δσ ∈ M(S

∗

n(N )) the atomic measure
concentrated on σ . The map σ 7→ δσ linearly extends to a map

(1) 2 : SCn(N )→ M(S
∗

n(N )).

We are now ready to define the notion of efficient cycle for complete finite-volume
hyperbolic manifolds:

Definition 1.3. A measure µ ∈ M(S
∗

n(N )) is an efficient cycle for N if there exists
a minimizing sequence ci , i ∈ N, such that

µ= lim
i→+∞

2(ci ),

where the limit is taken with respect to the weak-* topology on M(S
∗

n(N )).

1.5. Equidistributed measure cycles. As explained in the introduction, we are
going to prove that, if N is not commensurable with the Gieseking manifold, then
there exists a unique efficient cycle for N , which is concentrated on (classes of)
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regular ideal straight simplices, and is equidistributed on such simplices. Let us
formally describe what we mean by equidistributed measure on (classes of) regular
ideal straight simplices.

We define

Reg(Hn)

= {(v0, . . . , vn) ∈ (∂Hn)n+1
| v0, . . . , vn span a regular ideal straight simplex}

and we denote by Reg+(Hn) (resp. Reg−(∂Hn)) the subset of Reg(Hn) correspond-
ing to positively oriented (resp. negatively oriented) simplices. We then set

Reg±(N )= 0\Reg±(Hn)⊆ S
∗

n(N ).

Since N is oriented, elements of 0 are orientation-preserving; hence the sets
Reg+(N ) and Reg−(N ) are disjoint.

Let 10 = (v0, . . . , vn) ∈ (∂Hn)n+1 be the (ordered) (n+1)-tuple of vertices of a
fixed positively oriented regular ideal hyperbolic simplex. We then have bijections

Isom±(Hn)→ Reg±(Hn), g 7→ g ·10 = (g(v0), . . . , g(vn)),

which induce bijections

0\Isom±(Hn)→ Reg±(N ).

We denote by the symbol Haar the Haar measure on Isom(Hn), normalized in such
a way that, for every measurable subset �⊆ Hn and any x0 ∈ Hn ,

Haar{g ∈ Isom(Hn) | g(x0) ∈�} = Vol(�).

Being bi-invariant, the Haar measure induces well-defined finite measures Haar±
on 0/Isom±(Hn), hence on Reg±(N ) via the above identifications. We finally set

µeq = Haar+ − Haar− ∈ M(Reg(N ))⊆ M(S
∗

n(N )),

where the subscript “eq” stands for “equidistributed”. Using again the bi-invariance
of Haar one can easily check that the definition of Haar± (hence of µeq) on Reg(Hn)

does not depend on the choice of 10.

2. Some properties of efficient cycles

For every ε > 0 we denote by ωε : Cn(N , N \ int(Nε))→ R the restriction of the
volume cochain to Nε, i.e., the cochain such that

ωε(c)=

∫
c

d Volε,
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where d Volε is the (discontinuous) n-form that coincides with the hyperbolic
volume form on Nε and is equal to 0 on N \ Nε (for our purposes, it is sufficient to
define ωε on straight chains, which of course are C1, so the integral above makes
sense). If c ∈ Cn(N ) is a straight relative fundamental cycle for (N , N \ int(Nε)),
then we have

ωε(c)= Vol(Nε).

If σ is a straight simplex with values in N , then it is immediate to check that
ωε(σ )= ± Vol(̃σ ∩ Ñε), where σ̃ is a lift of σ to Hn , the space Ñε is the preimage
of Nε in Hn , and the sign is positive (resp. negative) if σ is positively oriented (resp.
negatively oriented).

The following lemma shows that, in a minimizing sequence, the orientation of
simplices has to be coherent with the sign of their coefficients, at least asymptotically.

Lemma 2.1. Let ci , i ∈ N, be a minimizing sequence, and for every i ∈ N let

ci =

ni∑
k=1

ai,kσi,k

be the reduced form of ci (that is, σi,k ̸= σi,k′ whenever k ̸= k ′, where the σi,k are
straight singular simplices and the ai,k are real coefficients). For every i, k, set
bi,k = ai,k if ai,k > 0 and σi,k is not positively oriented or ai,k < 0 and σi,k is not
negatively oriented, and bi,k = 0 otherwise. If c′

i =
∑ni

k=1 bi,kσi,k , then

lim
i→+∞

∥c′

i∥ = 0.

Proof. By definition of minimizing sequence we have

lim
i→+∞

ω2−i (ci )= lim
i→+∞

Vol(N2−i )= Vol(N );

hence

(2) lim
i→+∞

ω2−i (ci )

vn
=

Vol(N )
vn

= ∥N∥ = lim
i→+∞

∥ci∥.

Since the hyperbolic volume of any straight simplex is at most vn , we have

ω2−i (ci − c′

i )≤ ∥ci − c′

i∥ · vn,

while our definition of c′

i readily implies that ω2−i (c′

i )≤ 0. Therefore,

ω2−i (ci )

vn
=
ω2−i (ci − c′

i )+ω2−i (c′

i )

vn
≤ ∥ci − c′

i∥ = ∥ci∥ −∥c′

i∥,

where the last equality follows from the fact that, by construction, the set of simplices
appearing in c′

i is disjoint from the set of simplices appearing in ci − c′

i , so that
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∥ci∥ = ∥(ci − c′

i ) + c′

i∥ = ∥ci − c′

i∥ + ∥c′

i∥. The conclusion follows from this
inequality and (2). □

A very similar argument shows that the volume of “most” simplices appearing
in minimizing sequences converges to vn . We properly state and prove this result,
since we will need it later.

Lemma 2.2. Let ci , i ∈ N, be a minimizing sequence, and for every i ∈ N let

ci =

ni∑
k=1

ai,kσi,k

be the reduced form of ci , as in the previous lemma. Let ε > 0 be fixed, and, for
every i, k, set bi,k = ai,k if the hyperbolic volume of a lift of σi,k to Hn is smaller
that vn − ε, and bi,k = 0 otherwise. If c′

i =
∑ni

k=1 bi,kσi,k , then

lim
i→+∞

∥c′

i∥ = 0.

Proof. Just as in the proof of the previous lemma we have ∥ci − c′

i∥ = ∥ci∥−∥c′

i∥.
Using this fact, since the hyperbolic volume of any straight simplex is at most vn ,
our definition of c′

i implies that

|ω2−i (ci )|≤|ω2−i (ci−c′

i )|+|ω2−i (c′

i )|≤∥ci−c′

i∥·vn+∥c′

i∥(vn−ε)=∥ci∥vn−∥c′

i∥ε,

whence

∥N∥ = lim
i→+∞

|ω2−i (ci )|

vn
≤ lim

i→+∞

∥ci∥−
ε

vn
lim sup
i→+∞

∥c′

i∥ = ∥N∥−
ε

vn
lim sup
i→+∞

∥c′

i∥.

The conclusion follows. □

The previous lemma may be exploited to prove that efficient cycles are supported
on regular ideal straight simplices:

Lemma 2.3 [Kuessner 2003, Lemma 3.5]. Let µ be an efficient cycle for N. Then
µ is supported on Reg(N )⊆ S

∗

n(N ).

Therefore, we will considerµ both as an element of M(S
∗

n(N )) and as an element
of M(Reg(N )).

We are now going to prove that the total variation of an efficient cycle is equal to
the simplicial volume of N (recall that the total variation is only lower semicontin-
uous with respect to weak-* convergence; hence the total variation of an efficient
cycle could be strictly smaller than ∥N∥ a priori).

To this aim we need the definition of incenter and inradius of a straight hyperbolic
simplex. Consider a nondegenerate straight n-simplex 1 ∈ S

∗
(Hn) (recall that a
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straight simplex is nondegenerate if its image is not contained in a hyperplane). For
every point p ∈1∩ Hn we denote by r1(p) the radius of the maximal hyperbolic
ball centered in p and contained in 1. Since the volume of any straight n-simplex
is smaller than vn and the volume of hyperbolic balls diverges as the radius diverges,
there exists a constant rn > 0 such that r1(p)⩽ rn for every 1∈ S

∗

n(H
n) and p ∈1.

Definition 2.4. Take a nondegenerate straight simplex 1 ∈ S
∗

n(H
n). The inradius

r(1) of 1 is
r(1)= sup

p∈1∩Hn
r1(p) ∈ (0, rn]

(observe that r(1) > 0 since 1 is nondegenerate). The incenter inc(1) is the
unique point p ∈1∩ Hn such that r1(p)= r(1).

It is shown in [Francaviglia et al. 2012, Lemma 3.12] that the incenter is well-
defined, and that the functions

inc : S
∗

n(H
n)→ Hn, r : S

∗

n(H
n)→ R

are continuous.
If 1 is a straight simplex in S

∗

n(N ), we define its inradius r(1) as the inradius of
any lift of 1 to Hn , and its incenter inc(1) as the projection in N of the incenter of
any lift of 1 to Hn (the fact that these notions are well-defined is easily checked).

Lemma 2.5. Let δ̄ be the inradius of the n-dimensional regular ideal straight
simplex, and let1i ∈ S

∗

n(H
n), i ∈ N, be a sequence such that limi→+∞ Vol(1i )=vn .

Then limi→+∞ r(1i )= δ̄.

Proof. By [Francaviglia et al. 2012, Proposition 3.14], for every i ∈ N there exists
an element gi ∈ Isom(Hn) such that limi→+∞ gi (1i ) = 1, where 1 is a regular
ideal straight simplex. Since the map r : S

∗

n(H
n)→ R is continuous, we thus get

lim
i→+∞

r(1i )= lim
i→+∞

r(gi (1i ))= r(1)= δ̄. □

Lemma 2.6. Let K ⊆ N be compact, and let δ0 > 0. Then the set

3= {1 ∈ S
∗

n(N ) | inc(1) ∈ K , r(1)≥ δ0}

is compact.

Proof. Let K̃ ⊆ Hn be a compact subset such that π(K̃ ) = K (for example, if
π : Hn

→ N is the universal covering, then K̃ may be chosen as the intersection
between π−1(K ) and a Dirichlet domain for the action of 0 on H3), and let

3̃= {1̃ ∈ S
∗

n(H
n) | inc(1̃) ∈ K̃ , r(1̃)≥ δ0}.
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Under the projection S
∗

n(H
n)→ S

∗

n(N ), the set 3̃ is sent to 3; hence in order to
conclude it suffices to show that 3̃ is compact or, equivalently, sequentially compact
(being a subset of (Hn)n+1, the space 3̃ is metrizable).

Let 1̃i = (vi
0, v

i
1, . . . , v

i
n) ∈ (H

n
)n+1, i ∈ N, be a sequence of elements in 3̃.

Since (H
n
)n+1 is compact, up to passing to a subsequence we may assume that 1̃i

tends to 1̃∞ ∈ (H
n
)n+1. Since the maps r : S

∗

n(H
n)→ R and inc : S

∗

n(H
n)→ Hn

are continuous and K̃ is closed, we have r(1̃∞) ≥ δ0 and inc(1̃∞) ∈ K̃ . Thus
in order to conclude it is sufficient to observe that 1̃∞ is nondegenerate, since it
contains the hyperbolic ball of radius r(1̃∞) > 0 centered at inc(1̃∞); hence it
cannot be contained in a hyperplane. □

Lemma 2.7. Let n = dim N ≥ 3, and let 3 be a compact subset of S
∗

n(N ). Then,
there exists a compactly supported continuous function g : S

∗

n(N )→ [−1, 1] such
that g(1)= 1 for every positively oriented simplex in 3 and g(1)= −1 for every
negatively oriented simplex in 3.

Proof. Let us first prove that S
∗

n(N ) is metrizable. Let SSn(H
n) be the space of

(possibly ideal) straight simplices with pairwise distinct vertices, i.e.,

SSn(H
n)= {(v0, . . . , vn) ∈ (H

n
)n+1

| vi ̸= v j for i ̸= j}.

It is proved in [Kuessner 2003, Lemma 2.6] that the action of 0 on SSn(H
n) is

free and properly discontinuous, and that the quotient space SSn(N )= 0\SSn(H
n)

is metrizable. But S
∗

n(N ) is clearly a subspace of SSn(N ), and its topology as a
quotient of S

∗

n(H
n
) coincides with the topology it inherits as a subspace of SSn(N ).

Therefore, S
∗

n(N ) is metrizable. Indeed, since the action of 0 on S
∗

n(H
n) is free

and properly discontinuous, and the space S
∗

n(H
n) is a topological manifold with

boundary (being an open subset of the topological manifold (H
n
)n+1)), also the

space S
∗

n(N ) is a topological manifold. In particular, it is locally compact.
Let now h : S

∗

n(N )→ [−1, 1] be such that h(1)= 1 if 1 is positively oriented,
and h(1)=−1 if1 is negatively oriented. Since the subspace of positively oriented
(resp. negatively oriented) simplices in S

∗

n(N ) is clopen in S
∗

n(N ), the map h is
continuous. Since S

∗

n(N ) is locally compact, we may choose a relatively compact
open neighborhood U of 3. By the Urysohn lemma, there exists a continuous
function ψ : S

∗

n(N )→ [0, 1] such that ψ(1)= 1 for every1∈3 and ψ(1)= 0 for
every 1 /∈ U . By construction, the function g = f ·ψ is continuous and compactly
supported, takes values in [−1, 1] and is such that g(1)= 1 for every positively
oriented simplex in3 and g(1)=−1 for every negatively oriented simplex in3. □

We are now ready to prove Theorem 4 from the introduction, which we recall
here for the convenience of the reader:
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Theorem 4. Let N be a complete finite-volume hyperbolic n-manifold, n ≥ 3, and
let µ be an efficient cycle for N. Then ∥µ∥ = ∥N∥.

Proof. Let rn be a universal upper bound for the inradius of any nondegenerate
n-dimensional straight simplex, as above. For every ε > 0 we set

thε = {1 ∈ S
∗

n(N ) | inc(1) ∈ B(Nε, rn)},

where B(Nε, rn) denotes the closed rn-neighborhood of Nε in N ; in other words,
thε denotes the set of nondegenerate straight simplices of N whose incenter lies in
the closed rn-neighborhood of the ε-thick part of N .

Let δ̄ be the inradius of the regular ideal straight n-simplex, and fix some constant
0 < δ0 < δ̄. Also denote by V0 the hyperbolic volume of a hyperbolic n-ball of
radius δ0, and set �δ0 = {1 ∈ S

∗

n(N ) | r(1)≥ δ0}.
Let now ci , i ∈ N, be a minimizing sequence, and let us fix ε > 0. We choose

i0 ∈ N such that Vol(N \ N2−i0 ) ≤ εvn . Let i ≥ i0, and consider the following
partition of the space of nondegenerate straight simplices in N :

31 = S
∗

n(N ) \�δ0, 32 =�δ0 ∩ th2−i0 , 33 =�δ0 \ th2−i0 .

We denote by ci = c1
i + c2

i + c3
i the corresponding decomposition of ci , i.e.,

we assume that the simplices appearing in c j
i belong to 3 j for j = 1, 2, 3. By

Lemma 2.5, since δ0 is smaller than the inradius of the regular ideal tetrahedron,
the volume of the lifts to Hn of the simplices in 31 is bounded above by a constant
strictly smaller than vn . By Lemma 2.2, we then have

(3) lim
i→+∞

∥c1
i ∥ = 0.

Let now 1 ∈33, i.e., suppose that r(1)≥ δ0 and inc(1) /∈ B(N2−i0 , rn). Since
δ0 ≤ rn , the ball B(inc(1), δ0) ⊆ 1 does not intersect N2−i0 ; hence |ω2−i0 (1)| ≤

vn − V0. Thus
|ω2−i0 (c3

i )| ≤ ∥c3
i ∥ · (vn − V0).

Observe now that ci , being a relative fundamental cycle for N2−i , is a fortiori a
relative fundamental cycle for N2−i0 . Hence

Vol(N2−i0 )= |ω2−i0 (ci )| ≤ |ω2−i0 (c1
i )| + |ω2−i0 (c2

i )| + |ω2−i0 (c3
i )|

≤ ∥c1
i ∥ · vn + ∥c2

i ∥ · vn + ∥c3
i ∥ · (vn − V0)= ∥ci∥ · vn − ∥c3

i ∥ · V0.

After dividing by vn we obtain

Vol(N2−i0 )

vn
≤ ∥ci∥ −∥c3

i ∥ ·
V0

vn
,
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whence

∥N∥− ε =
Vol(N )
vn

− ε ≤
Vol(N2−i0 )

vn
≤ ∥ci∥−∥c3

i ∥ ·
V0

vn
≤ ∥N∥+ 2−i

−∥c3
i ∥ ·

V0

vn

and

∥c3
i ∥ ≤

vn

V0
(ε+ 2−i ).

In particular, we have

(4) lim sup
i→+∞

∥c3
i ∥ ≤

vn

V0
ε.

Since ∥ci∥ ≥ ∥N∥ we also have

∥c2
i ∥ = ∥ci∥ −∥c1

i ∥ −∥c3
i ∥ ≥ ∥N∥ −∥c1

i ∥ −
vn

V0
(ε+ 2−i );

hence (recalling that ∥c1
i ∥ → 0 as i → +∞)

(5) lim inf
i→+∞

∥c2
i ∥ ≥ ∥N∥ − ε

vn

V0
.

Observe that, thanks to Lemma 2.6, the set 32 is compact. Therefore, by
Lemma 2.7 one may construct a compactly supported continuous function g :

S
∗
(N ) → [−1, 1] such that g(1) = 1 for every positively oriented 1 ∈ 32 and

g(1)= −1 for every negatively oriented1∈32. Just as in Lemma 2.1, decompose
c2

i (resp. ci ) as c2
i = (c2

i − (c2
i )

′) (resp. ci = (ci −c′

i )+c′

i ), where (c2
i )

′ (resp. c′

i ) is a
linear combination of positively oriented simplices with negative coefficients and of
negatively oriented simplices with positive coefficients. We know from Lemma 2.1
that limi→+∞ ∥c′

i∥ = 0; hence, a fortiori,

(6) lim
i→+∞

∥(c2
i )

′
∥ = 0

(hence, also lim infi→+∞ ∥c2
i − (c2

i )
′
∥ = lim infi→+∞ ∥c2

i ∥).
Since the supports of 2(ci

1) and of 2(ci
3) are disjoint from 32, we have

(7)
∫
32

g d2(ci )=

∫
32

g d2(c2
i )=

∫
32

g d2(c2
i − (c2

i )
′)+

∫
32

g d2((c2
i )

′).

By definition, every simplex appearing in the chain ci − c′

i has a positive coefficient
if it is positively oriented, and a negative coefficient otherwise. Therefore, by the
very definition of the function g, we have

(8)
∫
32

g d2(ci − (c2
i )

′)= ∥c2
i − (c2

i )
′
∥.



130 ROBERTO FRIGERIO, ENNIO GRAMMATICA AND BRUNO MARTELLI

Finally, since ∥g∥∞ ≤ 1, we have

(9)
∣∣∣∣∫
32

g d2((c2
i )

′)

∣∣∣∣ ≤ ∥(c2
i )

′
∥.

Putting together the (in)equalities (6)–(9), we then have

(10) lim inf
i→+∞

∫
32

g d2(ci )= lim inf
i→+∞

∥c2
i ∥.

By definition of weak-* convergence, if µ = limi→+∞2(ci ), then from (3)–(5)
and (10) (and the fact that ∥g∥∞ ≤ 1) we obtain∣∣∣∣∫

S
∗
(N )

g dµ
∣∣∣∣ = ∣∣∣∣ lim

i→+∞

∫
31

g d2(ci )+ lim
i→+∞

∫
32

g d2(ci )+ lim
i→+∞

∫
33

g d2(ci )

∣∣∣∣
≥ −

∣∣∣∣ lim
i→+∞

∫
31

g d2(ci )

∣∣∣∣+∣∣∣∣ lim
i→+∞

∫
32

g d2(ci )

∣∣∣∣−∣∣∣∣ lim
i→+∞

∫
33

g d2(ci )

∣∣∣∣
≥ − limsup

i→+∞

∥c1
i ∥+liminf

i→+∞

∥c2
i ∥−limsup

i→+∞

∥c3
i ∥

≥ ∥N∥−
2εvn

V0
.

Since ∥g∥∞ ≤ 1, this inequality implies that the total variation of µ is not smaller
than ∥N∥−2εvn/V0. Due to the arbitrariness of ε, we may conclude that ∥µ∥≥∥N∥.
On the other hand, it is well known that the total variation is lower semicontinuous
with respect to the weak-* convergence; hence ∥µ∥ ≤ limi→+∞ ∥2(ci )∥ = ∥N∥.
This concludes the proof. □

Our normalization of the Haar measure implies that ∥µeq∥=2 Vol(N ). Therefore,
Theorem 4 readily implies the following:

Corollary 2.8. Let k ∈ R and suppose that the measure µ = kµeq is an efficient
cycle for N. Then k = 1/(2vn).

3. Manifolds admitting a unique efficient cycle

Jungreis and Kuessner proved that, if N is a non-Gieseking like hyperbolic mani-
fold, then every efficient cycle of N is equidistributed. We strengthen this result
by showing that the same conclusion holds under the supposedly less restrictive
requirement that N be noncommensurable with the Gieseking manifold. We may
concentrate our attention on the three-dimensional case, the higher-dimensional
case being covered by the results proved in [Kuessner 2003]. Therefore, throughout
this section we denote by N a complete finite-volume hyperbolic 3-manifold.
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Henceforth we fix a regular ideal straight simplex (with ordered vertices) 10 ∈

Reg(H3), which we exploit to fix an identification Reg(H3) ∼= Isom(H3), as ex-
plained at the end of Section 1. For i = 0, . . . , 3, let ri ∈ Isom−(H3) be the
hyperbolic reflection with respect to the plane containing the i-th face of 10. Under
the identification Reg(H3)∼= Isom(H3), the right multiplication

Isom(H3)→ Isom(H3), g 7→ g · ri ,

corresponds to the map ρi : Reg(H3)→ Reg(H3) sending any simplex1∈ Reg(H3)

to the simplex obtained by reflecting 1 with respect to the plane containing its i-th
face. We denote by R the subgroup of Isom(H3) generated by the ri , i = 0, . . . , 3,
and we set R±

= R ∩ Isom±(H3). Observe that, since the (left) action of 0 and the
(right) action of R on Isom(H3) commute, the groups R, R+ also act on Reg(N ).

Recall that any efficient cycle for N is supported on Reg(N ), so that we can
consider efficient cycles as elements of M(Reg(N )). The following result is proved
in [Kuessner 2003, Lemmas 3.9 and 3.10] (see also [Jungreis 1997, Lemma 2.2]):

Lemma 3.1. Let µ ∈ M(Reg(N )) be any efficient cycle for N. Then µ is invariant
with respect to the right action of R+ on Reg(N ). For every r ∈ R− we have
r∗(µ)= −µ.

If1= (v0, v1, v2, v3)∈ Reg(H3) is an arbitrary regular ideal straight simplex, we
denote by T1⊆ Reg(H3) the set defined as follows: 1′

= (v′

0, v
′

1, v
′

2, v
′

3)∈ Reg(H3)

belongs to T1 if and only if its vertices v′

0, v
′

1, v
′

2, v
′

3 span a simplex of the unique
tiling of H3 by regular ideal straight tetrahedra containing the simplex spanned by
v0, v1, v2, v3. We also denote by Aut(T1) < Isom(H3) the subgroup of Isom(H3)

leaving T1 invariant. It is easy to check that Aut(T1) is discrete.
Recall that two subgroups 01, 02 of Isom(H3) are commensurable if there exists

g ∈ Isom(H3) such that (g01g−1)∩02 has finite index both in g01g−1 and in 02.
If 01 and 02 are discrete and torsion-free, this is equivalent to requiring that the
hyperbolic manifolds 01\H3 and 02\H3 admit a common finite-sheeted Riemannian
covering.

Lemma 3.2. For every 1 ∈ Reg(H3), the group Aut(T1) is commensurable with R.
Both these groups are commensurable with the fundamental group of the Gieseking
manifold.

Proof. If g ∈ Isom(H3) is such that g(10)=1, then g · Aut(T10) · g−1
= Aut(T1).

Moreover, R < Aut(T10) and the index of R is finite, since Aut(T10) is discrete
and R has finite covolume. This implies that Aut(T1) is commensurable with R.
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Up to conjugacy, we may suppose that10 is a fundamental domain for the action
of the fundamental group G of the Gieseking manifold on H3. Then G <Aut(T10)

and, as above, the index of G in Aut(T10) is finite because G has finite covolume
(in fact, this index is equal to 4! = 24). This concludes the proof. □

Theorem 3.3. Suppose there is a nonequidistributed efficient cycleµ∈M(Reg(N )).
Then N is commensurable with the Gieseking manifold.

Proof. Let N = 0\H3. As proved in [Kuessner 2003, Section 4], the efficient
cycle µ decomposes into the sum of a multiple of µeq and a measure µ′

∈ Reg(N )
which is supported on tetrahedra whose lifts in H3 have all their vertices in parabolic
fixed points of 0. Since µ is nonequidistributed, we may assume that µ′

̸= 0.
Since parabolic fixed points of 0 are in countable number, the support of µ′ is

also countable, and this implies in turn that µ′ is purely atomic. Moreover, since
µ′

= µ− kµeq for some k ∈ R, the measure µ′ also satisfies r∗(µ
′)= µ′ for every

r ∈ R+ and r∗(µ
′)= −µ′ for every r ∈ R−. Let us set

�=
{
[1] ∈ Reg(N ) | µ′

(
{[1]}

)
̸= 0

}
̸= ∅.

Due to the R-equivariance of µ′, the countable set � is R-invariant. Let us fix a
nonempty R-orbit � ⊆ �. The absolute value of the measure µ′ is constant on
elements of �. Since µ′ has finite total variation, this implies that

�= {[11], . . . , [1k]}

is finite. For every i = 1, . . . , k, let 1i be a lift of [1n] ∈ Reg(N ) in Reg(H3). By
looking at the definition of the actions of R and of 0 on Reg(H3), we deduce that
the R-orbit of 11 in Reg(H3) is contained in

0 ·11 ∪ · · · ∪0 ·1k .

Observe now that the R-orbit of 11 in Reg(H3) realizes a tiling of H3 by regular
ideal tetrahedra. Therefore, up to adding to the 1 j , j = 1, . . . , k, all the straight
simplices obtained by permuting their vertices (which are still in finite number),
we may assume that

T11 ⊆ 0 ·11 ∪ · · · ∪0 ·1k .

Moreover, up to reordering the 1 j , we may assume that T11 ∩ (0 ·1 j ) ̸= ∅ for
every j = 1, . . . , k ′ and T11 ∩ (0 ·1 j )= ∅ for every j = k ′

+ 1, . . . , k, for some
k ′

≤ k. By construction, we still have

(11) T11 ⊆ 0 ·11 ∪ · · · ∪0 ·1k′ .
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We are now going to show that the group0∩Aut(T11) has finite index in Aut(T11).
To this aim we will just exploit (11). For j = 1, . . . , k ′, up to replacing 1 j with
another simplex in its 0-orbit, we suppose that 1 j ∈ T11 . Observe now that T11

is the orbit of 11 under the action of Aut(T11); hence, thanks to (11), for every
j = 1, . . . , k ′ there exists g j ∈ Aut(T11) such that g j ·1 j =11.

Let us fix g ∈ Aut(T11). Since g ·11 ∈ T11 ⊆ 0 ·11 ∪ · · · ∪0 ·1k′ , there exist
γ ∈ 0, j ∈ {1, . . . , k ′

} such that g ·11 = γ ·1 j , whence (γ−1g) ·11 = 1 j and
(g jγ

−1g) ·11 = g j ·1 j = 11. However, since the unique hyperbolic isometry
which fixes the vertices of a regular ideal tetrahedron is the identity, the stabilizer
of 11 in Aut(T11) is trivial; hence g jγ

−1g = 1, i.e., g = γ g−1
j (and, in particular,

γ ∈ 0 ∩ Aut(T11)). We have thus shown that the set {g1, . . . , gk′} contains a set of
representatives for the set of right lateral classes of 0 ∩ Aut(T11) in Aut(T11).

Since 0 is discrete and 0 ∩ Aut(T11) has finite covolume (being a finite index
subgroup of Aut(T11)), the group 0 ∩ Aut(T11) has finite index also in 0. Thus 0
is commensurable with Aut(T11); hence N is commensurable with the Gieseking
manifold by Lemma 3.2. □

Putting together Theorem 3.3 and Corollary 2.8 we obtain the following:

Corollary 3.4. Let N be a complete finite-volume n-hyperbolic manifold, n ≥ 3,
and suppose that N is not commensurable with the Gieseking manifold. Then N
admits a unique efficient cycle, which is given by the measure

1
2vn

·µeq.

4. Manifolds admitting nonequidistributed efficient cycles

We prove that manifolds that are commensurable with the Gieseking manifold admit
nonequidistributed efficient cycles. We will first prove that this phenomenon occurs
for manifolds admitting an ideal triangulation by regular ideal tetrahedra, and we will
then deduce the general case from the fact that any manifold which is commensurable
with the Gieseking manifold admits a finite covering with such a triangulation.

4.1. Triangulations and ideal triangulations. Let N be a compact 3-manifold with
nonempty boundary made of tori. We recall the well-known notions of triangulation
and ideal triangulation, widely used in 3-dimensional topology.

A triangulation of N is a realization of N via a simplicial face-pairing of finitely
many tetrahedra. A triangulation of N naturally induces a triangulation of its
boundary.
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An ideal triangulation of N (or of N ) is a realization of N = int(N ) as a simplicial
face-pairing of finitely many tetrahedra, with all their vertices removed. The
removed vertices are called ideal and they correspond to the boundary components
of N ; the link of every ideal vertex is a triangulation of the corresponding boundary
component of N .

We say as usual that N is hyperbolic if its interior has a finite-volume complete
hyperbolic metric. If N is hyperbolic, every geometric decomposition of N into
hyperbolic ideal tetrahedra is an example of ideal triangulation, that we call a
geometric ideal triangulation of N (or of N ). We still do not know whether every
hyperbolic 3-manifold has a geometric ideal triangulation, but we know it does so
virtually [Luo et al. 2008].

We are interested here in transforming a geometric ideal triangulation into a
triangulation in an efficient way. One method called inflation was introduced by
Jaco and Rubinstein [2014]. Here we introduce a similar method where we employ
the dual viewpoint of simple spines, as Matveev [1990; 2003], in a similar fashion
as in [Francaviglia et al. 2012, Section 5.4].

Consider a geometric ideal triangulation T of N . We lift it to a geometric ideal
triangulation T̃ of the universal cover H3. We choose some disjoint cusp sections
in N ; their preimage consists of infinitely many disjoint horoballs in H3, centered
at the vertices of T̃ .

For ε > 0 sufficiently small, the ε-thick part Nε of N is obtained by removing
from N sufficiently deep cusp sections, and it is homeomorphic to N . The ideal
triangulation T of N restricts to a decomposition of Nε into truncated tetrahedra. To
obtain a triangulation for Nε would now suffice to take its barycentric subdivision;
however, this operation is not useful for us because it produces too many tetrahedra:
we are looking for a triangulation for Nε which contains the same number of
tetrahedra as T , plus only a few more.

We explain our request more precisely. We say that a triangulation T ′ of Nε is
adapted to the geometric ideal triangulation T if there is an injective map i from
the set of ideal tetrahedra of T to the set of tetrahedra of T ′ such that for every
tetrahedron 1 of T , every lift of i(1) is a tetrahedron in H3 whose vertices lie in
the boundary of the 4 removed horoballs whose centers are the vertices of a lift of1.
(We do not require the lift of i(1) to be a straight tetrahedron, only a topological
one.) In some sense we require 1 and i(1) to be close. Every tetrahedron of T ′

that is not in the image of i is called residual.

We will need the following lemma, which says that for any hyperbolic manifold N
with a geometric ideal triangulation T it is possible to construct a tower of finite
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Figure 1. Neighborhoods of points in a simple polyhedron.

coverings, each equipped with an adapted triangulation T ′

i whose residual tetrahedra
grow sublinearly with respect to the degree of the cover.

Proposition 4.1. Let N be a hyperbolic manifold equipped with a geometric ideal
triangulation T . There is a tower of finite coverings Wi → N of degree di such that
the following holds: every Wi admits a triangulation T ′

i adapted to the geometric
ideal triangulation Ti obtained by lifting T , with ri residual tetrahedra, such that

lim
i→∞

ri

di
→ 0.

Subsections 4.2 and 4.3 are devoted to a proof of this proposition.

4.2. Construction of an adapted triangulation. We introduce an efficient method
to transform a geometric ideal triangulation T of a hyperbolic manifold N into a
triangulation T ′ that is adapted to T .

A compact 2-dimensional polyhedron X is simple if every point x of X has a
star neighborhood PL-homeomorphic to one of the three models shown in Figure 1.
Points of type (1) are called vertices. Points of type (2) and (3) form respectively
some manifolds of dimension 1 and 2: their connected components are called
respectively edges and regions. A simple polyhedron X is special if every edge is
an open segment and every region is an open disc, so in particular it has a natural
CW structure.

Let N be a compact 3-manifold with (possibly empty) boundary. A compact
2-dimensional subpolyhedron X ⊂ N = int(N ) is a spine of N if N \ X consists of
an open collar of ∂N and some (possibly none) open balls (the presence of some
open balls is necessary when ∂N = ∅).

Let N be a compact manifold with boundary made of tori. Suppose that N is
hyperbolic and equipped with a geometric ideal triangulation T . We now describe
a method to construct a triangulation T ′ for N ∼= Nε adapted to T .

First, we dualize the ideal triangulation T to get a special spine X of N with one
vertex at the barycenter of each ideal tetrahedron as shown in Figure 2.
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Figure 2. By dualizing an ideal triangulation we get a simple spine.

Second, we add some cells to X to obtain a new special polyhedron X ′, so that
by dualizing X ′ back we will get our desired triangulation T ′. We construct X ′ as
follows. By construction N \ X consists of an open collar of ∂N , that is a finite
union of products S×(0, 1] where S is a torus and S×{1} is a boundary component
of N . Choose a θ -shaped graph Y ⊂ S that is itself a spine of S, i.e., S \ Y consists
of an open disc. Add to X the polyhedron

Y × (0, 1] ∪ S × {1}.

If we do this at each product S × (0, 1] in N \ X , we obtain a 2-dimensional
polyhedron X ′

⊂ N that contains ∂N . If Y is chosen generically, the polyhedron X ′

is special. The complement N \ X ′ consists of open balls, one for each boundary
component of N .

As we mentioned above, the triangulation T ′ for N is constructed by dualizing
X ′ in the appropriate way. Every boundary torus S of N inherits from X ′ a cellu-
larization with two vertices, three edges, and one disc (the cellularization depends
on the chosen θ-shaped spine Y ); this cellularization is dualized to a one-vertex
triangulation for S. This triangulation extends from ∂N to N as follows: every disc,
edge, and vertex of X ′ that is not adjacent to ∂N dualizes to an edge, a triangle,
and a tetrahedron for T ′.

The resulting triangulation T ′ has the smallest possible number of vertices: one
for each boundary component. The tetrahedra of T are in natural 1-1 correspondence
with the vertices of X . The tetrahedra of T ′ are in natural 1-1 correspondence with
the vertices of X ′ that are not contained in ∂N . Since every vertex of X is also a
vertex of X ′ of this kind, we get a natural injection i from the set of tetrahedra of T
into the set of tetrahedra of T ′.

Lemma 4.2. If T is a geometric ideal triangulation for N , the triangulation T ′ is
adapted to T .
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Proof. We fix some disjoint horocusp sections and truncate N along these, to obtain
a smaller copy Nε of N . Their preimage in H3 consists of horospheres. When
passing from X to X ′ we add the cusp sections ∂Nε and some products Y × (0, 1].
In H3 this corresponds to adding the horospheres and some products Ỹ ×(0, 1]. The
resulting dual triangulation T ′ has all its vertices in the cusp sections, which lift to
vertices in the horospheres. By construction for every ideal tetrahedron 1 in T the
corresponding i(1) has its vertices in the same horospheres that are crossed by the
edges of 1. □

The residual tetrahedra correspond to the vertices of X ′ contained in the interior
of N that were not themselves vertices of X , and that were created by attaching the
products Y × (0, 1] along some generic map Y → X . We now need to construct
some tower of coverings where this kind of vertices grow sublinearly in number.

4.3. Characteristic coverings. We now build the tower of coverings for N needed
in Proposition 4.1. We will use some results of Hamilton [Hamilton 2001] on
coverings determined by characteristic subgroups. A similar construction was made
in [Francaviglia et al. 2012, Section 5.3].

Recall that a characteristic subgroup of a group G is a subgroup H < G which
is invariant by any automorphism of G. For a natural number x ∈ N, the x-
characteristic subgroup of Z × Z is the subgroup x(Z × Z) generated by (x, 0)
and (0, x). It has index x2 if x > 0 and ∞ if x = 0. The characteristic subgroups
of Z×Z are precisely the x-characteristic subgroups with x ∈ N. It is easy to prove
that a subgroup of Z × Z of index x contains the x-characteristic subgroup.

A covering map p : T̃ → T of tori is x-characteristic if p∗(π1(T̃ )) is the
x-characteristic subgroup of π1(T ) ∼= Z × Z. A covering map p : Ñ → N of 3-
manifolds bounded by tori is x-characteristic if the restriction of p to each boundary
component of Ñ is x-characteristic.

Lemma 5 from [Hamilton 2001] implies the following.

Lemma 4.3 (E. Hamilton). Let N be a hyperbolic compact, orientable 3-manifold
with boundary tori. For every integer i > 0 there exist an integer k > 0 and a
finite-index normal subgroup Ki ◁π1(N ) such that Ki ∩π1(T j ) is the characteristic
subgroup of index (ik)2 in π1(T j ), for each component T j of ∂N. Hence the
covering Wi → N corresponding to Ki is (ik)-characteristic.

We can now prove Proposition 4.1. We restate it for the sake of clarity.

Proposition 4.1. Let N be a hyperbolic manifold equipped with a geometric ideal
triangulation T . There is a tower of finite coverings Wi → N of degree di such that
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Figure 3. We color in green the regions of the inserted portions
Y ×(0, 1)∪ S×{1}. There are four types of vertices A, B, C , and D
in the spine Q, according to the colors of the incident regions.

the following holds: every Wi admits a triangulation T ′

i adapted to the geometric
ideal triangulation Ti obtained by lifting T , with ri residual tetrahedra, such that

lim
i→∞

ri

di
→ 0.

Proof. Let X be the spine dual to T . Following Section 4.2 we enlarge X to a
special polyhedron X ′ by adding one piece

Y × (0, 1] ∪ S × {1}

for each boundary torus S of N , inside the corresponding collar S × (0, 1] in N \ X .
This operation depends on the choice of a generic θ -shaped spine Y ⊂ S.

The polyhedron X ′ has all the vertices of X , plus some additional ones that we
now investigate carefully. The following discussion is similar to [Francaviglia et al.
2012, proof of Lemma 5.9]. Color in white the regions of X and in green the regions
in the products Y × (0, 1] ∪ S × {1} that are attached to X . There are five types A,
B, C , D, E of vertices in X ′ according to the colors of the incident regions: the
vertices of type A, B,C, D are shown in Figure 3, while those of type E are those
that lie in ∂N and that are incident to green regions only. The vertices of type A
are precisely those of X . The vertices of type B,C, D are dual to the residual
tetrahedra of T ′, and we want to control their number. Those of type E are not
interesting here.

For every boundary torus S, the collar map S → X is a (possibly noninjective)
immersion, and the cellularization of X pulls back to a cellularization of S, which
is in fact dual to the triangulation link of the corresponding ideal vertex of T . The
θ-shaped spine Y is generic, transverse to this cellularization as in Figure 4 (left).
The four types of vertices A, B,C, D that may arise are shown in Figure 4 (right).

Let vA, vB , vC , and vD be the number of vertices of type A, B, C , and D in X ′.
The number of residual tetrahedra in T ′ is vB + vC + vD .

We build the tower of coverings. By Lemma 4.3, for every integer i ≥ 1, there
are a ki > 0 and an (iki )-characteristic covering Wi → N .
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Figure 4. The cellularization of a boundary torus S induced by
the collar map S → X , and the θ-shaped spine Y of S colored in
green (left). The four types of vertices A, B, C , D (right).

We now construct the triangulation T ′

i adapted to the lifted geometric ideal
triangulation Ti of Wi . The preimage of X is a spine X i of Wi dual to Ti . To
construct the adapted triangulation T ′

i , we choose an appropriate θ-shaped spine
inside every boundary torus of Wi . We explain now how to make this choice.

Since the covering Wi → N is (iki )-characteristic, every boundary torus S̃ of Wi

covers a torus S of N as an (iki )-characteristic covering. The case iki = 3 is
shown in Figure 5. We have chosen in the previous paragraphs a spine Y for S; see
Figure 4. As shown in Figure 5 (left), the preimage Ỹ of Y in S̃ is a spine of S̃,
whose complement in S consists of (iki )

2 discs. Figure 5 (right) shows that we can
eliminate most vertices and edges of Ỹ and obtain a simpler spine Ỹ ′

⊂ Ỹ of S̃,
whose complement in S̃ consists of only one disc. This is the θ-shaped spine that
we use on each boundary component S̃ of Wi .

It remains to estimate the number ri of residual tetrahedra in T ′

i . Recall that

ri = vi
B + vi

C + vi
D,

Figure 5. A 3-characteristic covering S̃ → S. The spine Y of S
lifts to the green spine Ỹ shown in the left picture. We can eliminate
most of its edges and still get a spine Ỹ ′ of S̃.
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where vi
B , vi

C , v′

D are the numbers of vertices of type B, C , D in the dual polyhe-
dron X ′

i . The covering Wi → N has degree

di = (iki )
2hi ,

where hi is the number of distinct boundary tori in ∂Wi that project to one boundary
torus of N . It is clear from Figure 5 that

vi
B ≤ 2iki hivB, vi

C ≤ 2vC , vi
D ≤ 2iki hivD.

Therefore
ri

di
=
vi

B + vi
C + vi

D

(iki )2hi
≤

2iki hi

(iki )2hi
(vB + vC + vD)→ 0

as i → ∞. The proof is complete. □

4.4. Efficient cycles from regular ideal triangulations. We are now ready to show
that if a hyperbolic 3-manifold N admits a geometric ideal triangulation T by regular
ideal tetrahedra, then it also admits a nonequidistributed efficient cycle. Indeed, let
11,12, . . . ,1h be the regular ideal tetrahedra of T , considered as subsets of N .
For every i = 1, . . . , k we denote by σ̃i ∈ Reg+(H3)⊆ (H3)4 a (positively oriented)
ordering (ṽ0, . . . , ṽ3) of the set of vertices of a lift of 1i to H3, and by σi the class
of σ̃i in Reg+(N ). Finally, we set

(12) µT =2

(
alt3

( k∑
i=1

σi

))
.

(Strictly speaking, we defined the alternating operator only on straight simplices
with vertices in H3, but of course it may be extended by the same formula also on
ideal straight simplices).

The main result of this section is Theorem 7, which we recall here for the
convenience of the reader:

Theorem 7. Let M be a complete finite-volume 3-manifold admitting a decomposi-
tion T into regular ideal tetrahedra. Then µT is an efficient cycle for M.

Proof. Let us fix some notation. As usual, for every sufficiently large i ∈ N we fix an
identification N ∼= N2−i between the natural compactification of N and the 2−i -thick
part of N . By Proposition 4.1, there is a tower of finite coverings Wi → N2−i of
degree di such that the following holds: every Wi admits a triangulation T ′

i adapted
to the geometric ideal triangulation Ti obtained by lifting T , with ri residual
tetrahedra, such that

(13) lim
i→∞

ri

di
→ 0.
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For every sufficiently large i ∈ N, we construct a relative fundamental cycle ci

for N2−i as follows. The universal covering of Wi coincides with the universal cov-
ering of N2−i (which is the complement of a collection of disjoint horoballs in H3);
hence we may apply the straightening operator to any positively oriented parametriza-
tion of any simplex appearing in T ′

i ; after applying the alternating operator to the
sum of the obtained straight tetrahedra, we get a relative fundamental cycle c̃i for Wi

(more precisely, for the pair (W ′

i ,W ′

i \ int(Wi )), where W ′

i is the complete finite-
volume hyperbolic manifold obtained from Wi by adding back the removed cusps).
If pi : (W ′

i ,W ′

i \int(Wi ))→ (N , N \int(N2−i )) is the covering projection, we then set

ci =
(pi )∗(c̃i )

di
.

For simplicity, we will say that a simplex appearing in ci is nonresidual if it is
obtained (via (pi )∗) from the alternation of the straightening of a nonresidual
simplex of T ′

i .
It is easy to check that ci , i ∈ N, is a minimizing sequence: if k is the number of

the tetrahedra of T , then Vol(N )= kv3; hence ∥N∥ = Vol(N )/v3 = k. On the other
hand, by construction the number of nonresidual simplices in c̃i is equal to kdi and
the alternating operator is norm nonincreasing; hence

lim sup
i→+∞

∥ci∥ = lim sup
i→+∞

∥(pi )∗(c̃i )∥

di
≤ lim sup

i→+∞

∥c̃i∥

di
= lim sup

i→+∞

kdi + ri

di
= k,

and this proves that the sequence ci , i ∈ N, is minimizing.
In order to conclude we are then left to show that

lim
i→+∞

2(ci )= µT ,

where 2(ci ) is the measure associated to the cycle ci (see (1)) and µT is the
measure associated to the triangulation T (see (12)). Let 10 ∈ Reg+(N ) be a
(positively oriented representative of a) tetrahedron of T , and let 1̃0 ∈ Reg(H3) be
a lift of 10 to H3 with vertices (v0, v1, v2, v3). There exist pairwise disjoint open
neighborhoods U0, . . . ,U3 of v0, . . . , v3 in H

3
such that the following conditions

hold: every straight tetrahedron having its i-th vertex in Ui is nondegenerate and
positively oriented, and the tetrahedron 1̃0 = (v0, v1, v2, v3) is the unique lift of
the tetrahedron of T whose vertices lie (in the correct order) in U0, . . . ,U3. We set

�̃= {(v0, v1, v2, v3) ∈ S
∗

3(H
3) | vi ∈ Ui for every i = 0, 1, 2, 3}

and we let� be the projection of �̃ in S
∗

3(N ). Of course, �̃ is an open neighborhood
of 1̃0 in S

∗

3(H
3), and since the projection S

∗

3(H
3)→ S

∗

3(N ) is open, the set � is
an open neighborhood of 10 in S

∗

3(N ).
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Let now f : S
∗

3(N ) be any continuous compactly supported function such that
f (10)= 1. Recall that the vertices of the lifts of nonresidual tetrahedra of T ′

i lie on
the boundary of (deeper and deeper, as i → +∞) removed horoballs centered at the
ideal vertices of lifts of tetrahedra of T . We say that a simplex σ ′ appearing in the
cycle ci is a relative of 10 if it is nonresidual and it admits a lift to H3 with vertices
on horospheres centered at the ideal vertices of a lift of 10 (in the correct order).

Thanks to our definition of�, we can choose i ∈ N such that, if σ is a nonresidual
simplex appearing in ci , then σ belongs to � if and only if it is a relative of 10.
Let us now decompose ci as

ci = c0
i + cnr

i + cr
i ,

where c0
i is supported on relatives of 10, cnr

i is supported on nonresidual simplices
which are not relatives of 10, and cr

i is supported on residual simplices. Since the
simplices appearing in cnr

i cannot belong to � for i sufficiently large, we have

(14) lim
i→+∞

∫
�

f d2(cnr
i )= 0.

Recall now that the alternating operator associates to every simplex the average
of 24 singular simplices, and that positively oriented simplices come with the
coefficient +

1
24 . Therefore, c0

i is a linear combination of di simplices, each of
which comes with the real coefficient 1/(24di ). In particular, we have ∥c0

i ∥ =
1
24 . In

the very same way, if one starts with a negatively oriented10, still ∥c0
i ∥=

1
24 but the

coefficients appearing in c0
i are all negative. As a consequence, since f (10)= 1 and

the simplices appearing in c0
i are converging to 10 in S

∗

3(N ) (and f is continuous),

(15) lim
i→+∞

∫
�

f d2(c0
i )= ∥c0

i ∥ =
1

24(
while, if 10 were negatively oriented, we would have limi→+∞

∫
�

f d2(c0
i ) =

−∥c0
i ∥ = −

1
24

)
.

Finally from (13) we deduce that limi→+∞ ∥cr
i∥ = 0; hence

(16) lim
i→+∞

∫
�

f d2(cr
i )= 0.

Putting together (14)–(16) we then obtain

lim
i→+∞

∫
�

f d2(ci )= ±
1

24
,

where the sign depends on whether 10 is positively or negatively oriented.
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Let us now denote by µ the limit of 2(ci ) (which we may assume to exist, up
to passing to a subsequence; in fact, with a little more effort we could easily prove
that the sequence 2(ci ), i ∈ N, is itself convergent). Due to the definition of weak-*
convergence, we have thus proved that there exists a neighborhood � of 10 such
that, for every compactly supported f : S

∗

3(N )→ R with f (10)= 1, we have∫
�

f dµ= ±
1
24
.

This implies that µ({10})= ±
1
24 .

We have thus shown that µ({10}) = ±
1

24 for every tetrahedron 10 ∈ Reg(N )
whose geometric realization is a tetrahedron of the ideal triangulation T we started
with. But every ideal tetrahedron of T gives rise to 24 tetrahedra in Reg(N ), and
the simplicial volume ∥N∥ is equal to the number of tetrahedra of T , hence the
contribution to µ of the atomic measures supported by tetrahedra whose geometric
realizations are in T has total variation equal to ∥N∥. Since we already know from
Theorem 4 that ∥µ∥ = ∥N∥, this finally implies that µ= µT , as desired. □

We can now conclude the proof of Theorems 5 and 6 by showing that, if N is
commensurable with the Gieseking manifold, then it admits nonequidistributed
efficient cycles.

4.5. Proof of Theorem 5. We have proved in Section 3 that, if N is not commensu-
rable with the Gieseking manifold, then every efficient cycle for N is equidistributed.

Vice versa, if N is commensurable with the Gieseking manifold, then there
exists a degree-d covering p : N̂ → N , where N̂ admits a triangulation T̂ by
regular ideal tetrahedra. Let ĉi , i ∈ N, be the relative fundamental cycles for N̂
constructed in the proof of Theorem 7, and for every i ∈ N let ci = p∗(ci )/d.
The covering map p induces a continuous map S

∗

3(N̂ ) → S
∗

3(N ), hence a map
M(S

∗

3(N̂ ))→ M(S
∗

3(N )). The very same proof of Theorem 7 shows that the limit
µ = limi→+∞2(ci ) ∈ M(S

∗

3(N )) is an efficient cycle for N , and is equal to the
image of µT̂ via the map M(S

∗

3(N̂ )) → M(S
∗

3(N )). But the image of a purely
atomic measure via a continuous map is itself purely atomic. In particular, µ is a
nonequidistributed efficient cycle for N , and this concludes the proof.

4.6. Proof of Theorem 6. We are only left to show that, if N is not commensurable
with the Gieseking manifold and ci , i ∈ N is any minimizing sequence for N , then

lim
i→+∞

2(ci )=
1

2vn
µeq.
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Of course, it is sufficient to show that every subsequence of ci , i ∈ N admits
a subsequence whose image via 2 converges to µeq/(2vn). However, the total
variation of the measures 2(ci ) is uniformly bounded; hence by compactness of the
unit ball in M(S

∗

n(N ) every subsequence of2(ci ) admits a subsequence converging
to some measure µ ∈ M(S

∗

n(N ). By Corollary 3.4 we must have µ= µeq/(2vn),
and this concludes the proof.
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