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PRODUCT MANIFOLDS AND
THE CURVATURE OPERATOR OF THE SECOND KIND

XIAOLONG LI

We investigate the curvature operator of the second kind on product Rie-
mannian manifolds and obtain some optimal rigidity results. For instance,
we prove that the universal cover of an n-dimensional nonflat complete
locally reducible Riemannian manifold with

(
n+

n−2
n

)
-nonnegative (respec-

tively,
(
n+

n−2
n

)
-nonpositive) curvature operator of the second kind must be

isometric to Sn−1 × R (respectively, Hn−1 × R) up to scaling. We also prove
analogous optimal rigidity results for Sn1 × Sn2 and Hn1 × Hn2 , n1, n2 ≥ 2,
among product Riemannian manifolds, as well as for CPm1 × CPm2 and
CHm1 × CHm2 , m1, m2 ≥ 1, among product Kähler manifolds. The approach
is pointwise and algebraic.

1. Introduction

On a Riemannian manifold (Mn, g), the curvature operator of the second kind
refers to the symmetric bilinear form R̊ : S2

0(Tp M)× S2
0(Tp M)→ R defined by

R̊(ϕ, ψ)= Ri jklϕilψ jk,

where S2
0(Tp M) is the space of traceless symmetric two-tensors on Tp M . The

terminology is due to Nishikawa [1986]. Early works studying this notion of
curvature operator include [Calabi and Vesentini 1960; Berger and Ebin 1969;
Bourguignon and Karcher 1978; Koiso 1979a; 1979b; Ogiue and Tachibana 1979;
Nishikawa 1986; Kashiwada 1993].

Recently, the curvature operator of the second kind has received much attention;
see [Cao et al. 2023; Li 2022; 2023a; 2023b; 2024; Nienhaus et al. 2023a; 2023b;
Fluck and Li 2024; Dai and Fu 2024; Dai et al. 2024]. In particular, the longstanding
conjecture of Nishikawa [1986], which asserts that a closed Riemannian manifold
with positive curvature operator of the second kind is diffeomorphic to a spherical
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space form and a closed Riemannian manifold with nonnegative curvature operator
of the second kind is diffeomorphic to a Riemannian locally symmetric space, has
been resolved by Cao, Gursky and Tran [Cao et al. 2023], Li [2024], and Nienhaus,
Petersen, and Wink [Nienhaus et al. 2023a], under weaker assumptions but with
stronger conclusions. More precisely, it is known now that:

Theorem 1.1 [Cao et al. 2023; Li 2024; Nienhaus et al. 2023a]. Let (Mn, g) be a
closed Riemannian manifold of dimension n ≥ 3.

(1) If (Mn, g) has three-positive curvature operator of the second kind, then M is
diffeomorphic to a spherical space form.

(2) If (Mn, g) has three-nonnegative curvature operator of the second kind, then
M is either flat or diffeomorphic to a spherical space form.

The key observation made by Cao, Gursky, and Tran in [2023] is that two-positive
curvature operator of the second kind implies strictly PIC1 (i.e., M ×R has positive
isotropic curvature). This is sufficient to solve the positive case of Nishikawa’s
conjecture, as one can appeal to a result of Brendle [2008] stating that the normalized
Ricci flow on a compact manifold starting with a strictly PIC1 metric exists for
all time and converges to a limit metric with constant positive sectional curvature.
Shortly after, the author showed that strictly PIC1 is implied by three-positivity of
the curvature operator of the second kind; thus getting an immediate improvement
of the result in [Cao et al. 2023]. To deal with the nonnegative case, the author
[2024] reduces the problem to the locally irreducible case by proving that a complete
n-dimensional Riemannian manifold with n-nonnegative curvature operator of the
second kind is either flat or locally irreducible (see also Theorem 1.6 below for an
optimal improvement of this result). Finally, nonflat Kähler manifolds are ruled out
using [Li 2024, Theorem 1.9] (see also [Li 2023a] for an optimal improvement of
it) and compact irreducible symmetric spaces are ruled out by Nienhaus, Petersen,
and Wink [2023a, Theorem A]. We refer the reader to [Li 2022] or [Li 2023a] for a
detailed account of the notion of the curvature operator of the second kind, as well
as some recent developments.

We aim to study the curvature operator of the second kind on product Riemannian
manifolds and obtain some optimal rigidity results. We first recall the following
definition. Let N :=

(n−1)(n+2)
2 denote the dimension of S2

0(Tp M). For α ∈ [1, N ],
we say (Mn, g) has α-positive (respectively, α-nonnegative) curvature operator of
the second kind if for any p ∈ M and any orthonormal basis {ϕi }

N
i=1 of S2

0(Tp M),

(1-1)
⌊α⌋∑
i=1

R̊(ϕi , ϕi )+ (α− ⌊α⌋)R̊(ϕ⌊α⌋+1, ϕ⌊α⌋+1) > 0 (respectively, ≥ 0).
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Here and in the rest of this article, ⌊x⌋ denotes the floor function defined by

⌊x⌋ := max{m ∈ Z : m ≤ x}.

When α = k is an integer, this reduces to the usual definition, which means the
sum of the smallest k eigenvalues of the matrix R̊(ϕi , ϕ j ) is positive (respectively,
nonnegative) for any orthonormal basis {ϕi }

N
i=1 of S2

0(Tp M). Similarly, (Mn, g)
is said to have α-negative (respectively, α-nonpositive) curvature operator of the
second kind if the direction of the inequality (1-1) is reversed.

Our first main result is the following rigidity result for Sn−1
× R and Hn−1

× R,
where Sn and Hn , n ≥ 2, denote the n-dimensional sphere and hyperbolic space
with constant sectional curvature 1 and −1, respectively.

Theorem 1.2. Let (Mn, g) be a nonflat complete locally reducible Riemannian
manifold of dimension n ≥ 4.

(1) If M has
(
n+

n−2
n

)
-nonnegative curvature operator of the second kind, then

the universal cover of M is, up to scaling, isometric to Sn−1
× R.

(2) If M has
(
n+

n−2
n

)
-nonpositive curvature operator of the second kind, then the

universal cover of M is, up to scaling, isometric to Hn−1
× R.

Closely related is the following holonomy restriction theorem in the spirit of
[Nienhaus et al. 2023b].

Theorem 1.3. Let (Mn, g) be a (not necessarily complete) Riemannian manifold
of dimension n ≥ 3. Suppose that (M, g) has α-nonnegative or α-nonpositive
curvature operator of the second kind for some α < n +

n−2
n . Then either M is flat

or the restricted holonomy of M is SO(n).

Theorems 1.2 and 1.3 improve previous results obtained in [Li 2024] and [Nien-
haus et al. 2023b]. The author [2024, Theorem 1.8] proved that an n-dimensional
complete Riemannian manifold with n-nonnegative curvature operator of the second
kind is either flat or locally reducible. This result plays a significant role in resolving
the nonnegative part of Nishikawa’s conjecture in [Li 2024], as it allows one to
reduce the problem to the locally irreducible setting. A slight modification of the
proof yields the same conclusion under n-nonpositive curvature operator of the
second kind. The method used in [Li 2024] is pointwise and algebraic. In [Nienhaus
et al. 2023b], it is shown that if the curvature operator of the second kind of an
n-dimensional Riemannian manifold, not necessarily complete, is n-nonnegative
or n-nonpositive, then either the restricted holonomy of M is SO(n) or M is flat.
This is a generalization of the author’s result in [Li 2024] mentioned above. The
approach of [Nienhaus et al. 2023b] is local. The key idea is that, unless the
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restricted holonomy is generic, there exists a parallel form, at least locally on the
manifold. However, the Bochner technique with the curvature assumption implies
that no such local parallel form exists unless the manifold is flat.

We would like to point out that the number n +
n−2

n in Theorems 1.2 and 1.3 is
optimal in all dimensions, since Sn−1

×R and Hn−1
×R have

(
n+

n−2
n

)
-nonnegative

and
(
n+

n−2
n

)
-nonpositive curvature operator of the second kind, respectively, and

they both have restricted holonomy SO(n − 1). In dimension four, CP2 and CH2

have 4 1
2 -nonnegative and 4 1

2 -nonpositive curvature operator of the second kind,
respectively, and they both have restricted holonomy U(2).

Theorem 1.3 can also be viewed as supporting evidence to the author’s conjecture
in [Li 2022]: a closed n-dimensional Riemannian manifold with

(
n+

n−2
n

)
-positive

curvature operator of the second kind is diffeomorphic to a spherical space form.
As a generalization of Theorem 1.1, the author proved in [Li 2022] that a closed

Riemannian manifold of dimension n ≥ 4 with 4 1
2 -positive curvature operator of

the second kind is homeomorphic to a spherical space form. This is obtained by
showing that 4 1

2 -positive curvature operator of the second kind implies positive
isotropic curvature and

(
n+

n−2
n

)
-positive curvature operator of the second kind

implies positive Ricci curvature, and then making use of the work of Micallef and
Moore [1988]. A classification result of closed manifolds with 4 1

2 -nonnegative
curvature operator of the second kind was also obtained in [Li 2022, Theorem 1.4].
Using Theorem 1.2, together with [Li 2023a, Theorem 1.2] and [Nienhaus et al.
2023a, Theorem B], we get an improvement of [Li 2022, Theorem 1.4].

Theorem 1.4. Let (Mn, g) be a closed nonflat Riemannian manifold of dimension
n ≥ 4. Suppose that M has 4 1

2 -nonnegative curvature operator of the second kind.
Then one of the following statements holds:

(1) M is homeomorphic (diffeomorphic if either n = 4 or n ≥ 12) to a spherical
space form.

(2) n = 4 and M is isometric to CP2 with Fubini–Study metric up to scaling.

(3) n = 4 and the universal cover of M is isometric to S3
× R up to scaling.

Our second main result is the rigidity of Sn1 ×Sn2 and Hn1 ×Hn2 among product
Riemannian manifolds.

Theorem 1.5. Let (Mni
i , gi ) be a Riemannian manifold of dimension ni ≥ 2 for

i = 1, 2, and let (Mn1+n2, g)= (Mn1
1 × Mn2

2 , g1 ⊕ g2). Set

(1-2) An1,n2 := 1 + n1n2 +
n1(n2 − 1)+ n2(n1 − 1)

n1 + n2
.
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Then:

(1) If M has α-nonnegative or α-nonpositive curvature operator of the second
kind for some α < An1,n2 , then M is flat.

(2) If M has An1,n2-nonnegative curvature operator of the second kind, then both
M1 and M2 have constant sectional curvature c ≥ 0.

(3) If M has An1,n2-nonpositive curvature operator of the second kind, then both
M1 and M2 have constant sectional curvature c ≤ 0.

If M is further assumed to be complete and nonflat, then the universal cover of M
is isometric to Sn1 × Sn2 in part (2) and Hn1 × Hn2 in part (3), up to scaling.

The author [2024, Proposition 5.1] proved that an n-manifold with (k(n−k)+1)-
nonnegative curvature operator of the second kind cannot split off a k-dimensional
factor with 1 ≤ k ≤

n
2 , unless it is flat. The number k(n − k)+ 1 is only optimal

for some special n and k. Combining Theorems 1.2 and 1.5, we get the following
generalization, which is optimal for any n and 1 ≤ k ≤

n
2 .

Theorem 1.6. An n-dimensional Riemannian manifold with α-nonnegative or α-
nonpositive curvature operator of the second kind for some

α < k(n − k)+
2k(n − k)

n

cannot locally split off a k-dimensional factor with 1 ≤ k ≤
n
2 , unless it is flat.

In another direction, the curvature operator of the second kind has been investi-
gated for Kähler manifolds in [Bourguignon and Karcher 1978; Li 2023a; 2023b;
2024; Nienhaus et al. 2023b]. For instance, it was shown in [Li 2023a] that an m-
dimensional Kähler manifold with 3

2(m
2
−1)-nonnegative (respectively, 3

2(m
2
−1)-

nonpositive) curvature operator of the second kind has constant nonnegative (respec-
tively, nonpositive) holomorphic sectional curvature, and a closed m-dimensional
Kähler manifold with

( 3m3
−m+2
2m

)
-positive curvature operator of the second kind

has positive orthogonal bisectional curvature; thus being biholomorphic to CPm .
Here we prove the following rigidity result for CPm1 × CPm2 and CHm1 × CHm2

(all equipped with their standard metrics) among product Kähler manifolds.

Theorem 1.7. Let (Mmi
i , gi ) be a Kähler manifold of complex dimension mi ≥ 1

for i = 1, 2, and let (Mm1+m2, g)= (Mm1
1 × Mm2

2 , g1 ⊕ g2). Set

(1-3) Bm1,m2 := 4m1m2 +
3
2
(m2

1 + m2
2)+

m1m2

m1 + m2
.

Then:
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(1) If M has α-nonnegative or α-nonpositive curvature operator of the second
kind for some α < Bm1,m2 , then M is flat.

(2) If M has Bm1,m2-nonnegative curvature operator of the second kind, then both
M1 and M2 have constant holomorphic sectional curvature c ≥ 0.

(3) If M has Bm1,m2-nonpositive curvature operator of the second kind, then both
M1 and M2 have constant holomorphic sectional curvature c ≤ 0.

If M is further assumed to be complete and nonflat, then the universal cover of M is
isometric to CPm1 × CPm2 in part (2) and CHm1 × CHm2 in part (3), up to scaling.

Our investigation of the curvature operator of the second kind on product man-
ifolds is motivated not only by the above mentioned optimal rigidity results but
also by the fact that the spectrum of R̊ is known only for a few examples: space
forms with constant sectional curvature, Kähler and quaternion-Kähler space forms
[Bourguignon and Karcher 1978], S2

× S2 [Cao et al. 2023], Sn−1
× R [Li 2024],

Sp
× Sq [Nienhaus et al. 2023b]. We determine the spectrum of R̊ for a class of

product manifolds by proving the following theorem.

Theorem 1.8. Let (Mi , gi ) be an ni -dimensional Einstein manifold with Ric(gi )=

ρi gi and ni ≥ 1 for i = 1, 2. Denote by R̊i the curvature operator of the second kind
of Mi for i = 1, 2, and R̊ the curvature operator of the second kind of the product
manifold

(Mn1+n2, g)= (Mn1
1 × Mn2

2 , g1 ⊕ g2).

Then the eigenvalues of R̊ are precisely those of R̊1 and R̊2, and 0 with multiplicity
n1n2, and −

n1ρ2+n2ρ1
n1+n2

with multiplicity one.

Theorem 1.8 enables us to determine the spectrum of the curvature operator of
the second kind on (M1, g1)× (M2, g2), with (Mi , gi ) being either a space form
with constant sectional curvature or a Kähler space form with constant holomorphic
sectional curvature for i = 1, 2. Examples are listed at the end of Section 2. More
generally, Theorem 1.8 can be applied repeatedly to calculate the spectrum of R̊
for product manifolds of the form (M1, g1)× · · · × (Mk, gk), provided that each
(Mi , gi ) is Einstein and the eigenvalues of the curvature operator of the second
kind are known on Mi .

Let’s discuss the strategy of our proofs. The key idea to prove Theorems 1.2,
1.5 and 1.7 is to use the corresponding borderline example, such as Sn−1

× R,
Sn1 × Sn2 or CPm1 × CPm2 , as a model space and apply R̊ to the eigenvectors
of the curvature operator of the second kind on the model space. This idea has
been successfully employed in [Li 2022] with CP2 and S3

× R as model spaces,
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in [Li 2023b] with S2
× S2 as the model space and in [Li 2023a] with CPm and

CPm−1
× CP1 as model spaces. With the right choice of model space, this strategy

leads to optimal results as the inequalities are all achieved as equalities on the model
space. Theorem 1.6 is essentially a consequence of Theorems 1.2 and 1.5. The proof
of Theorem 1.3 uses Berger’s classification of restricted holonomy groups, together
with Propositions 3.1 and 4.1, and results in [Li 2023a] and [Nienhaus et al. 2023b].
The proof of Theorem 1.8 relies on the fact that when both factors are Einstein, we
can choose an orthonormal basis of the space of traceless symmetric two-tensors
that diagonalizes the curvature operator of the second kind on the product manifold.

At last, we emphasize that our approach is pointwise, and, therefore, many of our
results are of a pointwise nature, and the completeness of the metric is not required.
Another feature is that our proofs are purely algebraic and work equally well for
nonpositivity conditions on R̊.

The article is organized as follows. In Section 2, we study the curvature operator
of the second kind on product Riemannian manifolds and prove Theorem 1.8. We
present the proofs of Theorems 1.2 and 1.4 in Section 3. The proofs of Theorems 1.5
and 1.6 are given in Section 4. In Section 5, we prove Theorem 1.3. Section 6 is
devoted to the proof of Theorem 1.7.

2. Product manifolds

We study the curvature operator of the second kind on product Riemannian manifolds
and prove Theorem 1.8.

Recall that for Riemannian manifolds (M1, g1) and (M2, g2), the product metric
g1 ⊕ g2 on M1 × M2 is defined by

g(X1 + X2, Y1 + Y2)= g1(X1, Y1)+ g2(X2, Y2)

for X i , Yi ∈ Tpi Mi under the natural identification

T(p1,p2)(M1 × M2)= Tp1 M1 ⊕ Tp2 M2.

Let R denote the Riemann curvature tensor of M = M1 × M2, and R1 and R2 denote
the Riemann curvature tensor of M1 and M2, respectively. Then one can relate R,
R1 and R2 by

R(X1+X2,Y1+Y2, Z1+Z2,W1+W2)= R1(X1,Y1, Z1,W1)+R2(X2,Y2, Z2,W2),

where X i , Yi , Zi ,Wi ∈ T Mi for i = 1, 2. As the reader will see, the above equation,
which is a consequence of the product structure, plays a significant role in this
section.
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From now on, let’s focus on a single point in a product manifold and work in
a purely algebraic way. For i = 1, 2, let (Vi , gi ) be a Euclidean vector space of
dimension ni ≥ 1. The product space V = V1 × V2 will be naturally identified with
V1 ⊕ V2 via the isomorphism (X1, X2)→ X1 + X2 for X i ∈ Vi . The product metric
on V , denoted by g = g1 ⊕ g2, is defined by

(2-1) g(X1 + X2, Y1 + Y2)= g1(X1, Y1)+ g2(X2, Y2)

for X i , Yi ∈ Vi .
Denote by S2

B(3
2V ) the space of algebraic curvature operators on (V, g). That is

to say, R ∈ S2
B(3

2V ) is a symmetric two-tensor on the space of two-forms 32V on
V and R also satisfies the first Bianchi identity. Given Ri ∈ S2

B(3
2Vi ) for i = 1, 2,

we define R ∈ S2
B(3

2V ) by

(2-2) R(X1 + X2, Y1 + Y2, Z1 + Z2,W1 + W2)

= R1(X1, Y1, Z1,W1)+ R2(X2, Y2, Z2,W2),

for X i , Yi , Zi ,Wi ∈ Vi . Throughout this paper, we simply write

R = R1 ⊕ R2

whenever R, R1 and R2 are related by (2-2). We denote by R̊, R̊1 and R̊2 the associ-
ated curvature operator of the second kind for R = R1 ⊕ R2, R1 and R2, respectively.

The key result of this section is the following proposition.

Proposition 2.1. Let Ri ∈ S2
B(3

2Vi ) for i = 1, 2 with dim(Vi ) = ni ≥ 1 and let
R = R1 ⊕ R2. If Ric(Ri )= ρi gi for i = 1, 2, then the eigenvalues of R̊ are precisely
those of R̊1 and R̊2, together with 0 with multiplicity n1n2 and −

n2ρ1+n1ρ2
n1+n2

with
multiplicity one.

In the rest of this section, R̊ acts on the space of symmetric two-tensors S2(V ) via

R̊(ϕ)i j =

n∑
k,l=1

Rikl jϕkl .

Note that the curvature operator of the second kind (defined as a symmetric bilinear
form in the Introduction) is equivalent to the symmetric bilinear form associated
with the self-adjoint operator π ◦ R̊ : S2

0(V )→ S2
0(V ), where π : S2(V )→ S2

0(V )
is the projection map. This can be seen as

R̊(ϕ, ψ)= ⟨R̊(ϕ), ψ⟩ = ⟨(π ◦ R̊)(ϕ), ψ⟩ = (π ◦ R̊)(ϕ, ψ)

for ϕ,ψ ∈ S2
0(V ). Thus, the spectrum of the curvature operator of the second kind R̊

(as a bilinear form) is the same as the spectrum of the self-adjoint operator π ◦ R̊.
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We will present the proof of Proposition 2.1 after we establish the following
three lemmas. First of all, standard calculations using (2-2) show that zero is an
eigenvalue of R̊ with multiplicity (at least) n1n2.

Lemma 2.2. Let Ri ∈ S2
B(3

2Vi ) for i = 1, 2 with dim(Vi ) = ni ≥ 1 and let
R = R1 ⊕ R2. Let E be the subspace of S2

0(V1 × V2) given by

E = span{u ⊙ v : u ∈ V1, v ∈ V2},

where u ⊙ v = u ⊗ v+ v⊗ u is the symmetric product. Then E lies in the kernel
of R̊. In particular, 0 is an eigenvalue of R̊ with multiplicity (at least) n1n2.

Proof. This is observed in [Nienhaus et al. 2023b, Lemma 2.1]. For the convenience
of the reader, we give a detailed proof below. We start by constructing an orthonor-
mal basis of E . Let {ei }

n1
i=1 be an orthonormal basis of V1 and {ei }

n1+n2
i=n1+1 be an

orthonormal basis of V2. Then {ei }
n1+n2
i=1 is an orthonormal basis of V = V1 × V2.

Define
ξpq =

1
√

2
ep ⊙ eq ,

for 1 ≤ p ≤ n1 and n1 + 1 ≤ q ≤ n1 + n2. Then one can verify that the ξpq’s are
traceless symmetric two-tensors on V1 × V2 and they form an orthonormal basis
of E . In particular, dim(E)= n1n2.

To prove that E lies in the kernel of R̊, it suffices to show that R̊(ξpq)= 0. We
first observe that (2-2) implies that

(2-3) R(ei , e j , ek, el)=


R1(ei , e j , ek, el), i, j, k, l ∈ {1, . . . , n1},

R2(ei , e j , ek, el), i, j, k, l ∈ {n1 + 1, . . . , n1 + n2},

0, otherwise.

We then compute, using (ep ⊙ eq)(e j , ek)= (δpjδqk + δq jδpk), that

R̊(ξpq)(ei , el)=

n∑
j,k=1

R(ei , e j , ek, el)ξpq(e j , ek)

=
1

√
2

n∑
j,k=1

R(ei , e j , ek, el)(δpjδqk + δq jδpk)

=
1

√
2

n1∑
j,k=1

(R(ei , ep, eq , el)+ R(ei , eq , ep, el))

= 0,

where the last step is because of (2-3) and the fact that 1 ≤ p ≤ n1 and n1 + 1 ≤

q ≤ n1 +n2. Thus we have proved that 0 is an eigenvalue of R̊ with multiplicity (at
least) n1n2. □
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Next, we show that the eigenvalues of R1 and R2 are also eigenvalues of R =

R1 ⊕ R2, provided that both R1 and R2 are Einstein.

Lemma 2.3. Let Ri ∈ S2
B(3

2Vi ) for i = 1, 2 with dim(Vi ) = ni ≥ 1 and let
R = R1 ⊕ R2. If R1 (respectively, R2) is Einstein, then the eigenvalues of R̊1

(respectively, R̊2) are also eigenvalues of R̊.

Proof. It suffices to prove the statement for R1. Since R1 is Einstein, we have that
R̊1 : S2

0(V1)→ S2
0(V1) is a self-adjoint operator. We can then choose an orthonormal

basis {ϕp}
N1
p=1 of S2

0(V1) such that

R̊1(ϕp)= λpϕp,

where N1 =
(n1−1)(n1+2)

2 is the dimension of S2
0(V1). We may also view the ϕp’s as

elements in S2
0(V1 × V2) via zero extension, namely,

ϕp(X1 + X2, Y1 + Y2)= ϕp(X1, Y1),

for X i , Yi ∈ Vi . Then we have

(2-4) ϕp(e j , ek)=

{
ϕp(e j , ek), j, k ∈ {1, . . . , n1},

0, otherwise,

where {ei }
n1+n2
i=1 is the same basis of V in Lemma 2.2.

Next, we calculate using (2-4) that, for 1 ≤ i, l ≤ n1,

R̊(ϕp)(ei , el)=

n1+n2∑
j,k=1

R(ei , e j , ek, el)ϕp(e j , ek)

=

n1∑
j,k=1

R(ei , e j , ek, el)ϕp(e j , ek)

=

n1∑
j,k=1

R1(ei , e j , ek, el)ϕp(e j , ek)

= λpϕp(ei , el),

and, for n1 + 1 ≤ i, l ≤ n1 + n2,

R̊(ϕp)(ei , el)=

n1+n2∑
j,k=1

R(ei , e j , ek, el)ϕp(e j , ek)

=

n1∑
j,k=1

R(ei , e j , ek, el)ϕp(e j , ek)

= λpϕp(ei , el)

= 0.
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Therefore, we have proved R̊(ϕp)= λpϕp for 1 ≤ p ≤ N1. Hence the eigenvalues
of R̊1 are also eigenvalues of R̊ with the same eigenvectors. □

Finally, we prove:

Lemma 2.4. Let Ri ∈ S2
B(3

2Vi ) for i = 1, 2 with dim(Vi ) = ni ≥ 1 and let
R = R1 ⊕ R2. If Ric(Ri )= ρi gi for i = 1, 2, then −

n2ρ1+n1ρ2
n1+n2

is an eigenvalue of R̊
with eigenvector n2g1 − n1g2.

Proof. As in the proof of Lemma 2.3, we may also view g1 and g2 as elements in
S2(V1 × V2) via zero extension. Clearly, tr(n2g1 − n1g2) = n2n1 − n1n2 = 0. So
we have n2g1 − n1g2 ∈ S2

0(V1 × V2).
We then compute that

R̊(n2g1 − n1g2)= n2 R̊(g1)− n1 R̊(g2)

= n2 R̊1(g1)− n1 R̊2(g2)

= −n2 Ric(R1)+ n1 Ric(R2)

= −n2ρ1g1 + n1ρ2g2,

where we have used R̊i (gi )= −Ric(Ri )= −ρi gi for i = 1, 2.
Using

tr(−n2ρ1g1 + n1ρ2g2)= −n1n2(ρ1 − ρ2)

and R̊(gi )= −ρi g1 for i = 1, 2, we then obtain that

(π ◦ R̊)(n2g1 − n1g2)= π(n2 R̊(g1)− n1 R̊(g2))

= π(n2ρ1g1 + n1ρ2g2)

= −n2ρ1g1 + n1ρ2g2 −
−n1n2(ρ1 − ρ2)

n1 + n2
(g1 + g2)

= −n2g1

(
ρ1 −

n1(ρ1 − ρ2)

n1 + n2

)
+ n1g2

(
ρ2 +

n2(ρ1 − ρ2)

n1 + n2

)
= −

(
n1ρ2 + n2ρ1

n1 + n2

)
(n2g1 − n1g2).

Thus, we see that −
n1ρ2+n2ρ1

n1+n2
is an eigenvalue of R̊ with eigenvector n2g1 − n1g2.

The proof is now complete. □

Proof of Proposition 2.1. Let {ei }
n1+n2
i=1 be an orthonormal basis of V , where

e1, . . . , en1 ∈ V1 and en1+1, . . . , en1+n2 ∈ V2. Let {ϕp}
N1
p=1 be an orthonormal basis

of S2
0(V1) such that R̊1(ϕp)= λpϕp and {ψq}

N2
q=1 be an orthonormal basis of S2

0(V2)
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such that R̊2(ψq) = µqψq , where the dimension of S2
0(Vi ) for i = 1, 2 is Ni =

(ni −1)(ni +2)
2 . We then define, on V , the traceless symmetric two-tensors

ξpq =
1

√
2

ep ⊙ eq

for 1 ≤ p ≤ n1 and n1 + 1 ≤ q ≤ n1 + n2, and

ζ =
1

√
n1n2(n1 + n2)

(n2g1 − n1g2).

Then one can verify, via straightforward computations, that

{ϕp}
N1
p=1 ∪ {ψq}

N2
q=1 ∪ {ξpq}1≤p≤n1,n1+1≤q≤n1+n2 ∪ {ζ }

forms an orthonormal basis of S2
0(V ).

According to Lemma 2.2, 2.3 and 2.4, the above basis diagonalizes R̊ as

λ1
. . .

λN1

µ1
. . .

µN2

0
. . .

0

−
n2ρ1+n1ρ2

n1+n2



.

□

Theorem 1.8 now follows immediately from Proposition 2.1, since on a prod-
uct manifold the product metric satisfies (2-1) and the Riemann curvature tensor
satisfies (2-2).

Since the spectrum of R̊ is known on space forms with constant sectional curva-
ture and Kähler space forms with constant holomorphic sectional curvature, we can
use Theorem 1.8 or Proposition 2.1 to determine the eigenvalues of the curvature
operator of the second kind on their product.

In the rest of this section, we use the following notation:

• Sn(κ) and Hn(−κ), n ≥ 2 and κ > 0, denote the n-dimensional simply connected
space form with constant sectional curvature κ and −κ , respectively.
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• CPm(κ) and CHm(−κ), m ≥ 1 and κ > 0, denote the (complex) m-dimensional
simply connected Kähler space form with constant holomorphic sectional curvature
4κ and −4κ , respectively.

Example 2.5. R̊ = κ idS2
0

on Sn(κ). R̊ = −κ idS2
0

on Hn(−κ).

Example 2.6. R̊ has two distinct eigenvalues on CPm(κ): −2κ with multiplicity
(m−1)(m+1) and 4κ with multiplicity m(m+1). R̊ has two distinct eigenvalues on
CHm(−κ): 2κ with multiplicity (m−1)(m+1) and −4κ with multiplicity m(m+1).
See [Bourguignon and Karcher 1978].

Example 2.7. Let M = Sn1(κ1)× Sn2(κ2). Then the curvature operator of the sec-
ond kind of M has eigenvalues: κ1 with multiplicity (n1−1)(n1+2)

2 , κ2 with multiplicity
(n2−1)(n2+2)

2 , 0 with multiplicity n1n2 and −
n1(n2−1)κ2+n2(n1−1)κ1

n1+n2
with multiplicity

one.

Example 2.8. Let M = Hn1(−κ1)× Hn2(−κ2). Then the curvature operator of
the second kind of M has eigenvalues: −κ1 with multiplicity (n1−1)(n1+2)

2 , −κ2

with multiplicity (n2−1)(n2+2)
2 , 0 with multiplicity n1n2 and n1(n2−1)κ2+n2(n1−1)κ1

n1+n2
with

multiplicity one.

Example 2.9. Let M = Sn1(κ1)× Rn2 . Then the curvature operator of the second
kind of M has eigenvalues: κ1 with multiplicity (n1−1)(n1+2)

2 , 0 with multiplicity
n1n2 +

(n2−1)(n2+2)
2 and −

n2(n1−1)κ1
n1+n2

with multiplicity one.

Example 2.10. Let M =Hn1(−κ1)×Rn2 . Then the curvature operator of the second
kind of M has eigenvalues: −κ1 with multiplicity (n1−1)(n1+2)

2 , 0 with multiplicity
n1n2 +

(n2−1)(n2+2)
2 and n2(n1−1)κ1

n1+n2
with multiplicity one.

Example 2.11. Let M = Sn1(κ1) × Hn2(−κ2). Then the curvature operator of
the second kind of M has eigenvalues: κ1 with multiplicity (n1−1)(n1+2)

2 , −κ2 with
multiplicity (n2−1)(n2+2)

2 , 0 with multiplicity n1n2 and −
n1n2(κ1−κ2)+n1κ2−n2κ1

n1+n2
with

multiplicity one.

Example 2.12. Let M = CPm1(κ1)× CPm2(κ2). Then the curvature operator of
the second kind of M has eigenvalues: −2κ1 with multiplicity (m1 − 1)(m1 + 1),
−2κ2 with multiplicity (m2 −1)(m2 +1), 4κ1 with multiplicity m1(m1 +1), 4κ2 with
multiplicity m2(m2 + 1), 0 with multiplicity 4m1m2, and −

2m1(m2+1)κ2+2m2(m1+1)κ1
m1+m2

with multiplicity one.

Example 2.13. Let M = CHm1(−κ1)× CHm2(−κ2). Then the curvature operator
of the second kind of M has eigenvalues: 2κ1 with multiplicity (m1−1)(m1+1), 2κ2

with multiplicity (m2 − 1)(m2 + 1), −4κ1 with multiplicity m1(m1 + 1), −4κ2 with



180 XIAOLONG LI

multiplicity m2(m2 + 1), 0 with multiplicity 4m1m2, and 2m1(m2+1)κ2+2m2(m1+1)κ1
m1+m2

with multiplicity one.

Example 2.14. Let M = CPm1(κ1)× Cm2 . Then the curvature operator of the
second kind of M has eigenvalues: −2κ1 with multiplicity (m1 − 1)(m1 + 1), 4κ1

with multiplicity m1(m1 + 1), 0 with multiplicity 4m1m2 + (2m2 − 1)(m2 + 1), and
−

2m2(m1+1)κ1
m1+m2

with multiplicity one.

Example 2.15. Let M = CHm1(−κ1)× Cm2 . Then the curvature operator of the
second kind of M has eigenvalues: 2κ1 with multiplicity (m1 − 1)(m1 + 1), −4κ2

with multiplicity m1(m1 + 1), 0 with multiplicity 4m1m2 + (2m2 − 1)(m2 + 1), and
2m2(m1+1)κ1

m1+m2
with multiplicity one.

Example 2.16. Let M = CPm1(κ1)× CHm2(−κ2). Then the curvature operator of
the second kind of M has eigenvalues: −2κ1 with multiplicity (m1 − 1)(m1 + 1),
4κ2 with multiplicity m1(m1 +1), 2κ2 with multiplicity (m2 −1)(m2 +1), −4κ2 with
multiplicity m2(m2 +1), 0 with multiplicity 4m1m2, and −

2m1m2(κ1−κ2)+2m2κ1−2m1κ2
m1+m2

with multiplicity one.

In particular, we have the following observation, which will be needed later on.

Proposition 2.17. For n1, n2 ≥ 2, m1,m2 ≥ 1, κ1, κ2 > 0, we have the following:

(1) Sn1(κ1)× Sn2(κ2) has An1,n2-nonnegative curvature operator of the second
kind if and only if κ1 = κ2 > 0.

(2) Hn1(−κ1)×Hn2(−κ2) has An1,n2-nonpositive curvature operator of the second
kind if and only if κ1 = κ2 > 0.

(3) CPm1(κ1)× CPm2(κ2) has Bm1,m2-nonnegative curvature operator of the sec-
ond kind if and only if κ1 = κ2 > 0.

(4) CHm1(−κ1)× CHm2(−κ2) has Bm1,m2-nonpositive curvature operator of the
second kind if and only if κ1 = κ2 < 0.

3. Rigidity of cylinders

We prove Theorem 1.2. The key result of this section is the following proposition.

Proposition 3.1. Let (V, g) be a Euclidean vector space of dimension n − 1 with
n ≥ 2 and let R1 ∈ S2

B(3
2V ).

(1) Suppose that R = R1⊕ 0∈ S2
B(3

2(V ×R)) has
(
n+

n−2
n

)
-nonnegative curvature

operator of the second kind. Then R1 has constant nonnegative sectional curvature.

(2) Suppose that R = R1⊕ 0 ∈ S2
B(3

2(V ×R)) has
(
n+

n−2
n

)
-nonpositive curvature

operator of the second kind. Then R1 has constant nonpositive sectional curvature.
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(3) Suppose that R = R1 ⊕ 0 ∈ S2
B(3

2(V ×R)) has α-nonnegative or α-nonpositive
curvature operator of the second kind for some α < n +

n−2
n . Then R is flat.

Proof. (1) Let {ei }
n−1
i=1 be an orthonormal basis of V and let en be a unit vector in R.

Then {ei }
n
i=1 is an orthonormal basis of V ×R ∼= V ⊕R. Next, we define, on V ⊕R,

the symmetric two-tensors

ξi =
1

√
2

ei ⊙ en for 1 ≤ i ≤ n − 1,

ϕkl =
1

√
2

ek ⊙ el for 1 ≤ k < l ≤ n − 1,

ζ =
1

2
√

n(n − 1)

( n−1∑
p=1

ep ⊙ ep − (n − 1)en ⊙ en

)
.

One easily verifies that {ξi }
n−1
i=1 ∪{ϕkl}1≤k<l≤n−1 ∪{ζ } forms an orthonormal subset

of S2
0(3

2(V ⊕ R)).
Since R = R1 ⊕ 0, we have by (2-2) that

(3-1) R(ei , e j , ek, el)=

{
R1(ei , e j , ek, el), i, j, k, l ∈ {1, . . . , n − 1},

0, otherwise.

In particular, we have Rnjn j = 0 for 1 ≤ j ≤ n − 1.
Direct calculation using the identity

R̊(ei ⊙ e j , ek ⊙ el)= 2(Rikl j + Rilk j )

shows that

R̊(ξi , ξi )= 0 for 1 ≤ i ≤ n − 1,

R̊(ϕkl, ϕkl)= (R1)klkl for 1 ≤ k < l ≤ n − 1,

R̊(ζ, ζ )= −
1

n(n − 1)
S1,

where S1 is the scalar curvature of R1. Note that S1 ≥ 0 since S1 is also equal to the
scalar curvature of R, which must be nonnegative since R has

(
n+

n−2
n

)
-nonnegative

curvature operator of the second kind; see, e.g., [Li 2024, Proposition 4.1, part (1)].
Since R has

(
n +

n−2
n

)
-nonnegative curvature operator of the second kind, we

get that, for any 1 ≤ k < l ≤ n − 1,

0 ≤ R̊(ζ, ζ )+
n−1∑
i=1

R̊(ξi , ξi )+
n − 2

n
R̊(ϕkl, ϕkl)

= −
1

n(n − 1)
S1 +

n − 2
n

(R1)klkl =
n − 2

n

(
(R1)klkl −

S1

(n − 1)(n − 2)

)
.
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Summing over 1 ≤ k < l ≤ n − 1 yields

S1 ≤

∑
1≤k<l≤n−1

(R1)klkl .

On the other hand,

S1 =

∑
1≤k<l≤n−1

(R1)klkl .

Therefore, we must have (R1)klkl =
S1

(n−1)(n−2) for all 1 ≤ k < l ≤ n − 1. Since
the orthonormal basis {e1, . . . , en−1} is arbitrary, we conclude that R1 has constant
nonnegative sectional curvature.

(2) Apply (1) to −R.

(3) By (1) and (2), we have R = cIn−1 ⊕ 0 for some c ∈ R, where In−1 is the
Riemann curvature tensor of Sn−1. However, R = cIn−1 ⊕ 0 has α-nonnegative or
α-nonpositive curvature operator of the second kind for some α < n +

n−2
n if and

only if c = 0. Therefore, R is flat. □

We now present the proof of Theorem 1.2.

Proof of Theorem 1.2. (1) Recall that we say that (Mn, g) is locally reducible if
there exists a nontrivial subspace of Tp M which is invariant under the action of
the restricted holonomy group. By a theorem of de Rham, a complete Riemannian
manifold is locally reducible if and only if its universal cover is isometric to the
product of two Riemannian manifolds of lower dimension.

Denote by (M̃, g̃) the universal cover of M with the lifted metric g̃. Since M is
locally reducible, (M̃, g̃) is isometric to a product of the form (Mk

1 , g1)×(Mn−k
2 , g2),

where 1 ≤ k ≤
n
2 . Note that k ≥ 2 implies

k(n − k)+ 1 ≥ n +
n − 2

n
,

so M̃ must be flat if k ≥ 2, according to [Li 2024, Proposition 5.1] (or its improve-
ment Theorem 1.6). Thus we must have k = 1 and M̃ is isometric to N n−1

× R.
By part (1) of Proposition 3.1, N has pointwise constant nonnegative sectional
curvature. Since n − 1 ≥ 3, Schur’s lemma implies that N must have constant
nonnegative sectional curvature. Therefore, M is either flat or its universal cover is
isometric to Sn−1

× R up to scaling.

(2) This is similar to the proof of (1), by noticing that [Li 2024, Proposition 5.1]
is valid for the nonpositivity condition (alternatively, one can use Theorem 1.6). □
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Proof of Theorem 1.4. Let (Mn, g) be a closed nonflat Riemannian manifold of
dimension n ≥ 4 and suppose that M has 4 1

2 -nonnegative curvature operator of the
second kind. It was shown in [Li 2022] that one of the following statements holds:

(a) M is homeomorphic (diffeomorphic if n = 4 or n ≥ 12) to a spherical
space form.

(b) n = 2m and the universal cover of M is a Kähler manifold biholomorphic
to CPm .

(c) n = 4 and the universal cover of M is diffeomorphic to S3
× R.

(d) n ≥5 and M is isometric to a quotient of a compact irreducible symmetric space.

By Theorem 1.2 in [Li 2023a], the Kähler manifold in part (2) is either flat or
isometric to CP2 with the Fubini–Study metric, up to scaling. In part (c), the
manifold is reducible and we conclude using Theorem 1.2 that the universal cover
of M is isometric to S3

×R, up to scaling. Part (d) can be ruled out using [Nienhaus
et al. 2023a, Theorem B], as the manifold is either flat or a homology sphere. □

4. Rigidity of product of spheres and hyperbolic spaces

We prove Theorem 1.5. The key result of this section is the following proposition.
In this section, In , n ≥ 2, denotes the Riemann curvature tensor of the n-sphere
with constant sectional curvature 1.

Proposition 4.1. For i = 1, 2, let (Vi , gi ) be a Euclidean vector space of dimension
ni with ni ≥ 2. Let Ri ∈ S2

B(3
2Vi ) and R = R1 ⊕ R2 ∈ S2

B(3
2(V1 × V2)).

(1) Suppose that R has An1,n2-nonnegative curvature operator of the second kind.
Then R = c(In1 ⊕ In2) for some c ≥ 0.

(2) Suppose that R has An1,n2-nonpositive curvature operator of the second kind.
Then R = c(In1 ⊕ In2) for some c ≤ 0.

(3) Suppose that R has α-nonnegative or α-nonpositive curvature operator of the
second kind for some α < An1,n2 . Then R is flat.

We need an elementary lemma, which can be found in [Li 2023a, Lemma 5.1].

Lemma 4.2. Let N be a positive integer and A be a collection of N real numbers.
Denote by ai the i-th smallest number in A for 1 ≤ i ≤ N. Define a function f (A, x)
by

f (A, x)=

⌊x⌋∑
i=1

ai + (x − ⌊x⌋)a⌊x⌋+1,
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for x ∈ [1, N ]. Then we have

(4-1) f (A, x)≤ xā,

where ā :=
1
N

∑N
i=1 ai is the average of all numbers in A. The equality holds for

some x ∈ [1, N ) if and only if ai = ā for all 1 ≤ i ≤ N.

Proof of Proposition 4.1. (1) Let {ei }
n1
i=1 be an orthonormal basis of V1 and let

{ei }
n1+n2
i=n1+1 be an orthonormal basis of V2. Then {ei }

n1+n2
i=1 is an orthonormal basis

of V1 × V2 ∼= V1 ⊕ V2.
We construct an orthonormal basis of S2

0(V1 × V2) as follows. Choose an or-
thonormal basis {ϕi }

N1
i=1 of S2

0(V1) and an orthonormal basis {ψi }
N2
i=1 of S2

0(V2),
where Ni = dim(S2

0(Vi )) =
(ni −1)(ni +2)

2 for i = 1, 2. Note that h ∈ S2
0(V1) can be

identified with the element π∗h in S2
0(V1 × V2) via

(π∗h)(X1 + X2, Y1 + Y2)= h(X1, X2),

where X i , Yi ∈ Vi for i = 1, 2. We shall simply write π∗h as h. Similarly, S2
0(V2)

can be identified with a subspace of S2
0(V1 × V2). Next, we define, on V1 × V2, the

symmetric two-tensors

ξkl =
1

√
2

ek ⊙ el for 1 ≤ k ≤ n1, n1 + 1 ≤ l ≤ n1 + n2,

ζ =
1

√
n1n2(n1 + n2)

(n2g1 − n1g2).

One verifies that

{ϕi }
N1
i=1 ∪ {ψi }

N2
i=1 ∪ {ξkl}1≤k≤n1,n1+1≤l≤n1+n2 ∪ {ζ }

forms an orthonormal basis of S2
0(V1 × V2). This corresponds to the orthogonal

decomposition

S2
0(V1 × V2)= S2

0(V1)⊕ S2
0(V2)⊕ span{u ⊙ v : u ∈ V1, v ∈ V2} ⊕ Rζ.

The next step is to calculate some diagonal elements of the matrix representing
R̊ with respect to the above basis. Since R = R1 ⊕ R2, we have by (2-2) that

(4-2) R(ei , e j , ek, el)=


R1(ei , e j , ek, el), i, j, k, l ∈ {1, . . . , n1},

R2(ei , e j , ek, el), i, j, k, l ∈ {n1 + 1, . . . , n1 + n2},

0, otherwise.

In particular, we have Rklkl = 0 if 1 ≤ k ≤ n1 and n1 ≤ l ≤ n1+n2. Using the identity

R̊(ei ⊙ e j , ek ⊙ el)= 2(Rikl j + Rilk j ),
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we get

(4-3)
∑

1≤k≤n1
n1+1≤l≤n1+n2

R̊(ξkl, ξkl)=

∑
1≤k≤n1

n1+1≤l≤n1+n2

Rklkl = 0.

We also calculate

R̊(ζ, ζ )=
1

n1n2(n1 + n2)
(n2

2 R̊(g1, g1)+ n2
1 R̊(g2, g2)+ 2n1n2 R̊(g1, g2))

=
1

n1n2(n1 + n2)
(n2

2 R̊1(g1, g1)+ n2
1 R̊2(g2, g2))

= −
n2

2S1 + n2
1S2

n1n2(n1 + n2)
,

where Si denotes the scalar curvature of Ri for i = 1, 2.
Let A be the collection of the values of R̊(ϕi , ϕi ) for 1 ≤ i ≤ N1 and let B be

the collection of the values of R̊(ψi , ψi ) for 1 ≤ i ≤ N2. Denote by ā and b̄ the
average of all numbers in A and B, respectively. Then

ā =
1

N1

N1∑
i=1

R̊(ϕi , ϕi )=
1

N1

N1∑
i=1

R̊1(ϕi , ϕi )=
S1

n1(n1 − 1)
,

b̄ =
1

N2

N2∑
i=1

R̊(ψi , ψi )=
1

N2

N2∑
i=1

R̊2(ψi , ψi )=
S2

n2(n2 − 1)
,

where we have used

N1∑
i=1

R̊1(ψi , ψi )=
n1 + 2

2n1
S1 and

N2∑
i=1

R̊2(ψi , ψi )=
n2 + 2

2n2
S2.

For simplicity, we write

A1 =
n2(n1 − 1)

n1 + n2
and A2 =

n1(n2 − 1)
n1 + n2

.

Notice that we have A1 < N1, A2 < N2 and

(4-4) An1,n2 = 1 + n1n2 + A1 + A2.

Also, the expression for R̊(ζ, ζ ) can be written as

(4-5) R̊(ζ, ζ )= −A1ā − A2b̄.
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Since R has An1,n2-nonnegative curvature operator of the second kind, we get
using (4-3), (4-4) and (4-5) that

(4-6) −R̊(ζ, ζ )≤ f (A, ⌊A1⌋)+ f (B, A1 + A2 − ⌊A1⌋)

≤ ⌊A1⌋ā + (A1 + A2 − ⌊A1⌋)b̄

= A1ā + A2b̄ + (A1 − ⌊A1⌋)(b̄ − ā),

where f is the function defined in Lemma 4.2 and we have used Lemma 4.2 in
estimating f . Similarly, we also have

(4-7) −R̊(ζ, ζ )≤ f (A, A1 + A2 − ⌊A2⌋)+ f (B, ⌊A2⌋),

≤ (A1 + A2 − ⌊A2⌋)ā + ⌊A2⌋)b̄

= A1ā + A2b̄ + (A2 − ⌊A2⌋)(ā − b̄).

Therefore, by (4-5), we get from (4-6) if ā ≥ b̄ and from (4-7) if ā ≤ b̄ that

A1ā + A2b̄ = −R̊(ζ, ζ )≤ A1ā + A2b̄.

This implies that, either in (4-6) or (4-7), we must have equalities in the inequalities
used for f . We then get from Lemma 4.2, that all the values in A are equal to ā and
all the values in B are equal to b̄. Hence, both R1 and R2 have constant sectional
curvature, that is to say, R = c1 In1 ⊕ c2 In2 for c1, c2 ∈ R.

Finally, we must have c1 = c2 ≥ 0, as R = c1 In1 ⊕ c2 In2 has An1,n2-nonnegative
curvature operator of the second kind if and only if c1 = c2 ≥ 0 by Proposition 2.17.

(2) Apply (1) to −R.

(3) This follows from the fact that R = c(In1 ⊕ In2) has α-nonnegative or α-
nonpositive curvature operator of the second kind for some α < An1,n2 if and
only if c = 0. □

At last, we give the proof of Theorem 1.5.

Proof of Theorem 1.5. (1) This is an immediate consequence of part (3) of
Proposition 4.1.

(2) Let (p1, p2) ∈ M1 × M2. By part (2) of Proposition 4.1, we have

R(p1, p2)= c(p1, p2)(In1 ⊕ In2)

with c(p1, p2)≥ 0. If both n1 and n2 are at least 3, then Schur’s lemma implies that
c(p1, p2)≡ c ≥ 0. Below we provide an argument that works whenever n1, n2 ≥ 2.

Note that both (M1, g1) and (M2, g2) have pointwise constant sectional curvature.
By Proposition 2.1, the eigenvalues of R̊ at (p1, p2) are given by ρ1(p1)

n1−1 with multi-
plicity (n1−1)(n1+2)

2 , ρ2(p2)
n2−1 with multiplicity (n2−1)(n2+2)

2 , 0 with multiplicity n1n2,
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and −
n2ρ1(p1)+n1ρ2(p2)

n1+n2
with multiplicity one. Here ρi (pi ) is the Einstein constant of

Mi at pi , i.e., Ric(gi )(pi )= ρi (pi )gi at pi for i = 1, 2. Using the assumption that
M1 × M2 has An1,n2-nonnegative curvature operator of the second kind, we obtain

−
n2ρ1(p1)+ n1ρ2(p2)

n1 + n2
+

n1(n2 − 1)+ n2(n1 − 1)
n1 + n2

ρ1(p1)

n1 − 1
≥ 0

and

−
n2ρ1(p1)+ n1ρ2(p2)

n1 + n2
+

n1(n2 − 1)+ n2(n1 − 1)
n1 + n2

ρ2(p2)

n2 − 1
≥ 0.

The two inequalities force

(n2 − 1)ρ1(p1)= (n1 − 1)ρ2(p2).

Fixing p1 while letting p2 vary in M2 shows that ρ2(p2) is independent of p2.
Similarly, ρ1(p1) is independent of p1. Since ρi (pi )= (ni −1)c(p1, p2) for i = 1, 2,
we conclude that c(p1, p2)≡ c ≥ 0. Therefore, both (M1, g1) and (M2, g2) have
constant sectional curvature c ≥ 0.

If M is further assumed to be complete, then M is either flat or the universal
cover of M is isometric to Sn1 × Sn2 , up to scaling.

(3) Similar to the proof of (2). □

Proof of Theorem 1.6. Suppose that (Mn, g) splits locally near q ∈ M as a Riemann-
ian product (Mk

1 × Mn−k
2 , g1 ⊕ g2) with 1 ≤ k ≤

n
2 . Then the Riemann curvature

tensor R of M satisfies R = R1⊕R2 near q , where Ri denotes the Riemann curvature
tensor of Mi for i = 1, 2.

By part (3) of Proposition 3.1 if k = 1 and part (3) of Proposition 4.1 if 2 ≤ k ≤
n
2 ,

the assumption

α < k(n − k)+
2k(n − k)

n
implies that M must be flat near q . Since the restricted holonomy does not depend
on q ∈ M , we conclude that M is flat. □

5. Holonomy restriction

Proof of Theorem 1.3. Suppose that (Mn, g) splits locally near q ∈ M as a Riemann-
ian product (Mk

1 × Mn−k
2 , g1 ⊕ g2) with 2 ≤ k ≤

n
2 . Then the Riemann curvature

tensor R of M satisfies R = R1⊕R2 near q , where Ri denotes the Riemann curvature
tensor of Mi for i = 1, 2.

Noticing that

α < n +
n − 2

n
≤ Ak,n−k = k(n − k)+

2k(n − k)
n
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for any 1 ≤ k ≤
n
2 , we conclude from part (3) of Propositions 3.1 if k = 1 and

part (3) of Proposition 4.1 if 2 ≤ k ≤
n
2 that M is locally flat. Since the restricted

holonomy does not depend on q ∈ M , we conclude that M is flat. Therefore, M is
either locally irreducible or flat.

If n = 3, then the holonomy of M must be SO(3) as M is locally irreducible. So
we may assume n ≥ 4 below.

If M is an irreducible locally symmetric space, then it is Einstein. Since

α < n +
n−2

n
≤

3n
2

n+2
n+4

for any n ≥ 4, we get from [Nienhaus et al. 2023b, Theorem B] that either M is flat
or the restricted holonomy of M is SO(n).

So we may assume that M is not locally symmetric with irreducible holonomy
representation. Then the restricted holonomy of M is contained in Berger’s list of
holonomy groups [1955]: SO(n), U

( n
2

)
, SU

( n
2

)
, Sp

( n
4

)
Sp(1), Sp

(n
4

)
, G2 and Spin(7).

Note that if its restricted holonomy is SU
( n

2

)
, Sp

( n
4

)
, G2 or Spin(7), then M must

be Ricci flat and thus flat.
If the restricted holonomy of M is Sp

( n
4

)
Sp(1), then M is quaternion-Kähler and

it is also Einstein in this case. Thus, either the restricted holonomy of M is SO(n)
or M is flat by [Nienhaus et al. 2023b, Theorem B].

If the restricted holonomy of M is U
( n

2

)
, then M is Kähler. Noticing that

α < n +
n−2

n
≤

3
2

(n2

4
− 1

)
for any n ≥ 4, M must be flat by [Li 2023a, Therorem 1.2].

Overall, either the restricted holonomy of M is SO(n) or M is flat. □

6. Kähler manifolds

We prove Theorem 1.7. The proof shares the same idea as in Section 4, but we use
the orthonormal basis of the space of traceless symmetric two-tensors on a complex
Euclidean space constructed in [Li 2023a].

In the following, Bm1,m2 is the expression defined in (1-3) and RCPm denotes the
Riemann curvature tensor of the complex projective space with constant holomor-
phic sectional curvature 4. We establish the following proposition.

Proposition 6.1. For i =1, 2, let (Vi , gi , Ji ) be a complex Euclidean vector space of
complex dimension mi ≥ 1. Let Ri ∈ S2

B(3
2Vi ) and R = R1⊕R2 ∈ S2

B(3
2(V1×V2)).

(1) Suppose that R has Bm1,m2-nonnegative curvature operator of the second kind.
Then R = c(RCPm1 ⊕ RCPm2 ) for some c ≥ 0.
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(2) Suppose that R has Bm1,m2-nonpositive curvature operator of the second kind.
Then R = c(RCPm1 ⊕ RCPm2 ) for some c ≤ 0.

(3) Suppose that R has α-nonnegative or α-nonpositive curvature operator of the
second kind for some α < Bm1,m2 . Then R is flat.

Proof. (1) Let
{e1, . . . , em1, J1e1, . . . , J1em1}

be an orthonormal basis of (V1, g1, J1) and

{em1+1, . . . , em1+m2, J2em1+1, . . . , J2em1+m2}

be an orthonormal basis of (V2, g2, J2).
As in Section 4, we have the orthogonal decomposition

S2
0(V1 × V2)= S2

0(V1)⊕ S2
0(V2)⊕ span{u ⊙ v : u ∈ V1, v ∈ V2} ⊕ Rζ,

where

ζ =
1

√
2m1m2(m1 + m2)

(m2g1 − m1g2).

The same computation as in Section 4 gives that

(6-1) R̊(ζ, ζ )= −
m2

2S1 + m2
1S2

2m1m2(m1 + m2)
,

where Si denotes the scalar curvature of Ri for i = 1, 2.
By Lemma 2.2, the subspace span{u ⊙v : u ∈ V1, v ∈ V2} lies in the kernel of R̊

and its real dimension is 4m1m2.
For S2

0(V1) and S2
0(V2), we use the orthonormal bases constructed in Section 4

of [Li 2023a]. More precisely, the following traceless symmetric two-tensors form
an orthonormal basis of S2

0(V1):

ϕ
1,±
i j =

1
2
(ei ⊙ e j ∓ J1ei ⊙ J1e j ) for 1 ≤ i < j ≤ m1,

ψ
1,±
i j =

1
2
(ei ⊙ J1e j ± J1ei ⊙ e j ) for 1 ≤ i < j ≤ m1,

α1
i =

1

2
√

2
(ei ⊙ ei − J1ei ⊙ Jei ) for 1 ≤ i ≤ m1,

α1
m1+i =

1
√

2
(ei ⊙ J1ei ) for 1 ≤ i ≤ m1,

η1
k =

k
√

8k(k + 1)
(ek+1 ⊙ ek+1 + J1ek+1 ⊙ J1ek+1)

−
1

√
8k(k + 1)

k∑
i=1

(ei ⊙ ei + J1ei ⊙ J1ei ) for 1 ≤ k ≤ m1 − 1.
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Similarly, the traceless symmetric two-tensors

ϕ
2,±
i j =

1
2
(ei⊙e j∓J2ei⊙J2e j ) for m1+1 ≤ i < j ≤ m1+m2,

ψ
2,±
i j =

1
2
(ei⊙J2e j±J2ei⊙e j ) for m1+1 ≤ i < j ≤ m1+m2,

α2
i =

1

2
√

2
(ei⊙ei−J1ei⊙Jei ) for m1+1 ≤ i ≤ m1+m2,

α2
m2+i =

1
√

2
(ei⊙J1ei ) for m1+1 ≤ i ≤ m1+m2,

η2
k =

k
√

8k(k+1)
(ek+1⊙ek+1+J2ek+1⊙J2ek+1)

−
1

√
8k(k+1)

k∑
i=1

(ei⊙ei+J2ei⊙J2ei ) for m1+1 ≤ k ≤ m1+m2−1

form an orthonormal basis for S2
0(V2). Here the superscripts 1 and 2 indicate that

these are quantities associated with the space V1 and V2, respectively.
By Lemma 4.3 in [Li 2023a], we have

(6-2)
∑

1≤i< j≤m1

(R̊(ϕ1,−
i j , ϕ

1,−
i j )+ R̊(ψ1,−

i j , ψ
1,−
i j ))+

m1−1∑
k=1

R̊(ηk, ηk)= −
m1 − 1

2m1
S1

and

(6-3)
∑

m1+1≤i< j≤m1+m2

(R̊(ϕ2,−
i j , ϕ

2,−
i j )+ R̊(ψ2,−

i j , ψ
2,−
i j ))+

m1+m2−1∑
k=m1+1

R̊(ηk, ηk)

= −
m2 − 1

2m2
S2.

Let A be the collection of the values R̊(α1
i , α

1
i ) for 1 ≤ i ≤ 2m1, R̊(ϕ1,+

i j , ϕ
1,+
i j )

and R̊(ψ1,+
i j , ψ

1,+
i j ) for 1 ≤ i < j ≤ m. By Lemma 4.3 in [Li 2023a], we know that

A contains two copies of R(ei , J1ei , ei , J1ei ) for each 1 ≤ i ≤ m1 and two copies
of 2R(ei , J1ei , e j , J1e j ) for each 1 ≤ i < j ≤ m1. Therefore, the sum of all values
in A is equal to S1, the scalar curvature of R1, and ā, the average of all values in A,
is given by

ā =
S1

m1(m1 + 1)
.

Let B be the collection of the values R̊(α2
i , α

2
i ) for m1 + 1 ≤ i ≤ m1 + 2m2,

R̊(ϕ2,+
i j , ϕ

2,+
i j ) and R̊(ψ2,+

i j , ψ
2,+
i j ) for m1 + 1 ≤ i < j ≤ m1 + m2. By Lemma 4.3

in [Li 2023a], we know that B contains two copies of R(ei , J2ei , ei , J2ei ) for
each m1 + 1 ≤ i ≤ m1 + m2 and two copies of 2R(ei , J2ei , e j , J2e j ) for each
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m1 + 1 ≤ i < j ≤ m1 + m2. Therefore, the sum of all values in B is equal to S2,
the scalar curvature of R2, and b̄, the average of all values in B, is given by

b̄ =
S2

m2(m2 + 1)
.

Combining (6-1), (6-2) and (6-3) together yields∑
1≤i< j≤m1

(R̊(ϕ1,−
i j , ϕ

1,−
i j )+ R̊(ψ1,−

i j , ψ
1,−
i j ))

+

∑
m1+1≤i< j≤m1+m2

(R̊(ϕ2,−
i j , ϕ

2,−
i j )+ R̊(ψ2,−

i j , ψ
2,−
i j ))

+

m1−1∑
k=1

R̊(ηk, ηk)+

m1+m2−1∑
k=m1+1

R̊(ηk, ηk)+ R̊(ζ, ζ )

= −
m1 − 1

2m1
S1 −

m2 − 1
2m2

S2 + R̊(ζ, ζ )

= −
1
2
(m2

1 − 1)ā −
1
2
(m2

2 − 1)b̄ −
m2

2S1 + m2
1S2

2m1m2(m1 + m2)

= −B1ā − B2b̄,

where we have introduced

B1 =
1
2
(m2

1 − 1)+
(m1 + 1)m2

2(m1 + m2)
and B2 =

1
2
(m2

2 − 1)+
(m2 + 1)m1

2(m1 + m2)

for simplicity of notation. Note that −B1ā − B2b̄ is the sum of

1 + 4m1m2 + (m2
1 − 1)+ (m2

2 − 1)

many diagonal elements of the matrix representation of R̊ with respect to the
orthonormal basis of S2

0(V1 × V2) constructed above (here one can pick any or-
thonormal basis for the subspace span{u ⊙ v : u ∈ V1, v ∈ V2} as it is in the kernel
of R̊).

Noticing that

Bm1,m2 = 1 + (m2
1 − 1)+ (m2

2 − 1)+ 4m1m2 + B1 + B2,

the assumption R has Bm1,m2-nonnegative curvature operator of the second kind
implies that

(6-4) B1ā + B2b̄ ≤ f (A, ⌊B1⌋)+ f (B, B1 + B2 − ⌊B1⌋)

≤ ⌊B1⌋ā + (B1 + B2 − ⌊B1⌋)b̄

= B1ā + B2b̄ + (B1 − ⌊B1⌋)(b̄ − ā)
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and

(6-5) B1ā + B2b̄ ≤ f (A, B1 + B2 − ⌊B2⌋)+ f (B, ⌊B2⌋)

≤ (B1 + B2 − ⌊B2⌋)ā + ⌊B2⌋b̄

= B1ā + B2b̄ + (B2 − ⌊B2⌋)(ā − b̄),

where f is the function defined in Lemma 4.2 and we have used Lemma 4.2 to
estimate f . So we get from (6-4) if ā ≥ b̄ and from (6-5) if ā ≤ b̄ that

B1ā + B2b̄ ≤ B1ā + B2b̄.

Therefore, either in (6-4) or (6-5), we must have equalities in the inequalities used
for f . By Lemma 4.2, we get that all the values in A are equal to ā and all the
values in B are equal to b̄. Hence, both R1 and R2 have constant holomorphic
sectional curvature, that is to say, R = c1 RCPm1 ⊕ c2 RCPm2 for c1, c2 ∈ R.

Finally, we must have c1 = c2 ≥ 0, as R = c1 RCPm1 ⊕ c2 RCPm2 has Bm1,m2-
nonnegative curvature operator of the second kind if and only if c1 = c2 ≥ 0 by
Proposition 2.17.

(2) Apply (1) to −R.

(3) This follows from the fact that R = c(RCPm1 ⊕ RCPm2 ) has α-nonnegative or
α-nonpositive curvature operator of the second kind for some α < Bm1,m2 if and
only if c = 0. □

Proof of Theorem 1.7. Once we have Proposition 6.1, this is similar to the proof of
Theorem 1.5 and we omit the details. □
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