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LAGRANGIAN COBORDISM OF POSITROID LINKS

JOHAN ASPLUND, YOUNGJIN BAE, ORSOLA CAPOVILLA-SEARLE,
MARCO CASTRONOVO, CAITLIN LEVERSON AND ANGELA WU

Positroid strata of the complex Grassmannian can be realized as augmen-
tation varieties of Legendrians called positroid links. We prove that the
partial order on strata induced by Zariski closure also has a symplectic
interpretation, given by exact Lagrangian cobordism.

1. Introduction

Positroid varieties are irreducible subvarieties of the complex Grassmannian that
were first introduced in the study of total positivity [Lusztig 1998; Postnikov 2006;
Rietsch 2006], and Poisson geometry [Brown et al. 2006]. Open positroid varieties
provide a stratification of the complex Grassmannian, and they can be enumerated
by a handful of different combinatorial objects.

Positroid varieties are known to admit cluster structures, which have also been
found on the coordinate rings of many algebraic varieties arising in representation
theory, including double Bruhat cells [Fomin and Zelevinsky 2002], double Bott–
Samelson cells [Shen and Weng 2021], positroid strata [Galashin and Lam 2023],
and certain Richardson strata [Casals et al. 2022; Galashin et al. 2022; 2023].
Geometrically, this allows one to think of such varieties as the result of gluing
algebraic tori along birational mutation maps, and their coordinate rings carry bases
whose structure constants are positive integers counting tropical curves [Fock and
Goncharov 2009; Gross et al. 2018].

Legendrian links in R3 are smooth links that are everywhere tangent to the plane
field ker(dz − ydx) which is called the standard contact structure of R3. Their
interpolating objects are exact Lagrangian cobordisms in the symplectization of R3.
Legendrian links and exact Lagrangian cobordisms between them can be studied
via the general framework of symplectic field theory [Eliashberg et al. 2000] which
aims to use counts of pseudoholomorphic curves to define invariants of contact
manifolds and the symplectic cobordisms between them. One such invariant is the
Chekanov–Eliashberg differential graded algebra associated to a Legendrian link 3,
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whose homology is a Legendrian isotopy invariant [Chekanov 2002; Eliashberg
et al. 2000].

Under favorable circumstances, the space of augmentations of the Chekanov–
Eliashberg dg-algebra forms an algebraic variety Aug(3). Exact Lagrangian fillings
(cobordisms from the empty set to 3) induce augmentations.

Augmentations have been shown to be related to simple microlocal sheaves
associated to 3 [Shende et al. 2017; 2019; Ng et al. 2020], leading to the idea
that augmentation varieties should have cluster structures, with torus charts corre-
sponding to embedded exact Lagrangian fillings of 3 and mutations arising from
Lagrangian surgery [Polterovich 1991]. So far this idea has been explored mainly
for Legendrian links in the standard contact R3; see [Casals and Weng 2024]. This
bridge between contact geometry and cluster algebras has been fruitful in both
directions, having been instrumental in resolving long-standing conjectures on the
abundance of Lagrangian fillings of Legendrian links [Casals and Gao 2022] and
on the existence of cluster structures on spaces of interest in representation theory
[Casals et al. 2022].

We explore this idea further, predicating that when augmentation varieties have
compactifications stratified by augmentation varieties of smaller dimension, then
the Legendrian submanifolds corresponding to adjacent strata should be related by
exact Lagrangian cobordisms. We establish this in the simplest class of examples:
positroid strata of complex Grassmannians [Knutson et al. 2013]. It is known
that all positroid strata are isomorphic to the moduli space of simple microlocal
sheaves of certain Legendrian links 3 in R3 with framings (marked points) [Shende
et al. 2019] and to augmentation varieties of 3 [Casals et al. 2021; 2020]. The top
positroid stratum was one of the key motivating examples for the development of
cluster algebras [Fomin and Zelevinsky 2002; Scott 2006], while cluster structures
on strata of lower dimension were described more recently [Galashin and Lam
2023].

1.1. Result. The positroid strata 5◦
⊂ Gr(k, n) of complex Grassmannians are

disjoint Zariski locally closed sets; see Definition 4.5. There is a distinguished class
of Legendrian links 35◦ in the standard contact R3, referred to as positroid links
whose augmentation varieties are related to the strata by an algebraic isomorphism

(1) 5◦ ∼= Aug(35◦) × (C∗)N (5◦),

where N (5◦) ∈ Z≥0 is a nonnegative integer depending on 5◦; see Section 5 for a
precise statement. The positroid link 35◦ is the Legendrian (−1)-closure of a braid
on k-strands associated to 5◦, known as a juggling braid (see Definition 5.4). The
positroid strata can be enumerated by bounded affine permutations (see Section 3)
and for each pair of integers 1 ≤ k < n, the set of positroid strata of Gr(k, n) is
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partially ordered by declaring 5◦

f ≤ 5◦
g if and only if 5◦

f ⊂ cl(5◦
g). Our main

result is the following.

Theorem 1.1 (Theorems 6.1 and 6.3). Given two comparable positroid strata
5◦

f ≤ 5◦
g in Gr(k, n), their associated Legendrian links 35◦

f
and 35◦

g
are related

by an exact Lagrangian cobordism from 35◦

f
to 35◦

g
whose Euler characteristic is

dim(5◦

g) − dim(5◦

f ) + # Fix(g) − # Fix( f ),

where # Fix denotes the number of fixed points (see Definition 3.9).

Remark 1.2. (1) We defer experts to Theorem 5.8 and Remark 6.2 for a discussion
on marked points placed on the positroid links.

(2) Two positroid links being exact Lagrangian cobordant does not imply that the
corresponding positroid strata are comparable in the partial order; see Example 7.2
and Remark 7.3.

Note that even for small k and n, complex Grassmannians have many positroid
strata, and their partial order is quite complicated; see Example 4.9 and Figure 5. The
exact Lagrangian cobordism in Theorem 1.1 is constructed by pinching contractible
Reeb chords, which is a well-known technique in contact geometry. We establish
that any chain connecting 5◦

f and 5◦
g in the partial order produces a sequence of

pinch moves.
If 5◦

f < 5◦
g then from Theorem 1.1 there is an exact Lagrangian cobordism

from 35◦

f
to 35◦

g
consisting of pinch moves. Let r be the number of such moves.

From [Pan 2017; Gao et al. 2024] it follows that there is an open embedding relating
the augmentation varieties of the ends:

Aug(35◦

f
) × (C∗)r ↪→ Aug(35◦

g
).

This means that if the bounded affine permutations f and g are related by r affine
transpositions, under the identification between positroid strata and augmentation
varieties in (1) we get an open embedding

5◦

f × (C∗)r+N (5◦
g) ↪→ 5◦

g × (C∗)
N (5◦

f ).

As pointed out to us by a referee it is an interesting question whether such embed-
dings admit a description purely in terms of algebraic combinatorics, i.e., without
using the connection with the topology of Legendrians.

Outline. In Section 2 we provide the necessary background on Legendrian links
and exact Lagrangian cobordisms. In Section 3 we provide the relevant definitions
and properties of bounded affine permutations. We recall the definition of positroid
strata of complex Grassmannians in Section 4. In Section 5 we describe positroid
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links via juggling braids coming from bounded affine permutations. Our main
theorem Theorem 1.1 is proven in Section 6. In Section 7 we discuss examples.

2. Background on contact geometry

We briefly review some basic facts on Legendrian links and exact Lagrangian
cobordisms. See [Etnyre and Ng 2022] for a more thorough introduction, and
[Geiges 2008] for background on contact geometry.

2.1. Legendrian links. The standard contact structure on R3 is the plane field
ξ := ker(dz − ydx). A smooth embedding of circles 3 ⊂ R3 is called a Legendrian
link if Tx3 ⊂ ξx for all x ∈ 3. Two Legendrian links are Legendrian isotopic if they
are smoothly isotopic through Legendrian links. The maps πL(x, y, z) = (x, y)

and πF (x, y, z) = (x, z) are called the Lagrangian projection and front projection,
respectively. The Lagrangian projection of a Legendrian link is an immersed curve
with zero oriented area. The front projection of a Legendrian link does not have
any vertical tangencies but instead has cusp and crossing singularities. Conversely,
any immersed disjoint union of circles with cusp and crossing singularities and no
vertical tangencies lifts uniquely to a Legendrian link in R3; see Figure 1 for an
example of both projections.

The Thurston–Bennequin number tb(3) ∈ Z of a Legendrian link 3 ⊂ R3

measures how much the contact structure ξ rotates along 3, and is defined as the
linking number of 3 and its push-off in any direction transverse to ξ . This number
is easily computed from a front projection as

tb(3) = #positive crossings of πF (3) − #negative crossings of πF (3)

− #right cusps of πF (3).

A Reeb chord of 3 is a trajectory of the vector field ∂z that begins and ends
on 3. Note that the Lagrangian projection induces a bijection between Reeb chords
and double points of πL(3). A Reeb chord of 3 is contractible if there exists a
smooth homotopy of 3 through Legendrian immersions (such that the Lagrangian
projections only have transverse double points throughout the homotopy) that shrinks
the length of the Reeb chord to zero; see [Ekholm et al. 2016, Definition 6.13].

Figure 1. Front (left) and Lagrangian (right) projections of a Leg-
endrian trefoil.



LAGRANGIAN COBORDISM OF POSITROID LINKS 5

2.2. Exact Lagrangian cobordisms. The symplectization of the standard contact R3

is defined as R×R3 equipped with the closed nondegenerate 2-form ω = dλ where
λ = et(dz − ydx). A Lagrangian cobordism from a Legendrian link 3− to a
Legendrian link 3+ is a smooth embedding of a surface L ⊂ R × R3 such that
ω|T L = 0 and such that L is a cylinder over 3± at infinity but is otherwise compact,
i.e., there is some T > 0 for which L ∩ [−T, T ] is compact,

E−(L) := L ∩ ((−∞, −T ) × R3) = (−∞, −T ) × 3−,

E+(L) := L ∩ ((T, ∞) × R3) = (T, ∞) × 3+.

A Lagrangian cobordism L is exact if there is a smooth function f : L → R

such that d f = λ|L and f |E±(L) is constant. A Lagrangian filling is a Lagrangian
cobordism with 3− = ∅. Exact Lagrangian cobordisms give a reflexive and
transitive relation, but not a symmetric one [Chantraine 2015]. All known examples
of exact Lagrangian cobordisms between Legendrians with maximal Thurston–
Bennequin numbers arise from

• Legendrian isotopy,

• the unique exact Lagrangian disk filling of an unlinked unknot component
with maximal Thurston–Bennequin number, and

• pinching a contractible Reeb chord.

The pinch move is a local modification of 3 ⊂ R3, depicted in Figure 2. A pinch
move induces an exact Lagrangian cobordism in the symplectization of R3 from
the knot after a pinch move to the knot before the pinch move. When a pinch move
is performed, the number of components of the Legendrian link either increases
or decreases by one, so the resulting exact Lagrangian cobordism is topologically
a pair of pants, and it is often called a saddle cobordism. See Figure 12 for an
example of an exact Lagrangian saddle cobordism between two Legendrians.

Figure 2. A pinch move in the front (left) and the Lagrangian
(right) projection. The arrows show the direction of the induced
exact Lagrangian cobordism.
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3. Bounded affine permutations

We review bounded affine permutations, the affine analogs of ordinary permutations.
See [Knutson et al. 2013] for a more thorough introduction and an interpretation in
terms of juggling. Throughout this section let k, n ∈ Z≥1 with k ≤ n.

Definition 3.1. An affine permutation of size n is a bijection f : Z → Z satisfying
f (i + n) = f (i) + n for all i ∈ Z. In addition, it is k-bounded if

(1) i ≤ f (i) ≤ i + n, and

(2)
∑n

i=1( f (i) − i) = nk.

Denote the set of k-bounded affine permutations of size n by Bound(k, n), and a
k-bounded affine permutation f : Z → Z by [ f (1), f (2), . . . , f (n)].

Lemma 3.2. A bijection f is a k-bounded affine permutation of size n if and only if
g := −(− f )−1 is a k-bounded affine permutation of size n.

Proof. Let i ∈ Z and define j = − f (i). Then f (i + n) = f (i) + n is equivalent
to i + n = −g(− f (i) − n), and hence −g( j) + n = −g( j − n). Note that i ≤

f (i) ≤ i + n is equivalent to −g((− f )(i)) ≤ f (i) ≤ −g((− f )(i + n)). We can
rewrite these inequalities as g( j) ≥ j and j ≥ g( j − n) = g( j) − n, which is
equivalent to j ≤ g( j) ≤ j + n. Finally,

∑n
i=1( f (i) − i) = nk is equivalent to∑n

j=1(− j + g( j)) = nk. □

A bounded affine permutation f ∈ Bound(k, n) can be visualized in the plane as
the set of line segments in R2 from (i, 1) to ( f (i), 0) for all i ∈ Z; see Figure 3 for
an example. Note that once f (i + n) = f (i) + n for all i ∈ Z, the picture is fully
determined by the region in the red dashed box in Figure 3.

Definition 3.3. For a bounded affine permutation f ∈ Bound(k, n), a pair (i, j) ∈

{1, . . . , n}
2 is an affine inversion if i < j and either f (i) > f ( j) or f (i) < f ( j)−n.

The length of an affine permutation f , ℓ( f )∈ Z≥0, is the number of affine inversions
of f .

Example 3.4. For the bounded affine permutation f = [3, 5, 6, 4] depicted in
Figure 3, (2, 4) and (3, 4) are the only affine inversions, and thus ℓ( f ) = 2. These

0 1 2 3 4−1− 2− 3− 4

0 1 2 3 4−1− 2− 3− 4

Figure 3. The bounded affine permutation f = [3, 5, 6, 4] ∈ Bound(2, 4).
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1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Figure 4. Left: [3, 5, 6, 4] ∈ Bound(2, 4). Right: [2, 5, 7, 4] ∈ Bound(2, 4).

two affine inversions correspond to the two circles in Figure 3. Similarly, we have
ℓ([3, 4, 6, 5]) = 1 and ℓ([2, 5, 7, 4]) = 3.

We now equip Bound(k, n) with a partial order.

Definition 3.5. An affine permutation σ : Z → Z of size n is a transposition if
σ(k) = σi (k) for some i ∈ Z, where

σi (k) :=


k + 1 if k = i (mod n),

k − 1 if k = i + 1 (mod n),

k if k ̸= i, i + 1 (mod n).

Definition 3.6. Let f, f ′
∈ Bound(k, n). Declare f ⋖ f ′ if and only if ℓ( f ) < ℓ( f ′)

and there exists an affine transposition σi of size n such that f ′
= f ◦σi or f ′

=σi ◦ f .
Define a relation < on Bound(k, n) as the transitive closure of the relation ⋖.

It follows from the definition that (Bound(k, n), <) is a partially ordered set.

Example 3.7. Note that

ℓ([3, 4, 6, 5]) < ℓ([3, 5, 6, 4]) and [3, 5, 6, 4] = σ4 ◦ [3, 4, 6, 5];

thus we have [3, 4, 6, 5]⋖ [3, 5, 6, 4]. Similarly

ℓ([3, 5, 6, 4]) < ℓ([2, 5, 7, 4]) and [2, 5, 7, 4] = σ2 ◦ [3, 5, 6, 4],

so that [3, 5, 6, 4]⋖[2, 5, 7, 4]; see Figure 4. Then the induced partial order satisfies
[3, 4, 6, 5] < [2, 5, 7, 4]. See Figure 5 for the Hasse diagram of the partial order <

on Bound(2, 4).

As in the case of ordinary permutations, one can define cycles of bounded affine
permutations.

Lemma 3.8. Let f ∈ Bound(k, n). Then f induces a bijection f̄ : Z/n → Z/n
defined by f̄ ([i]) = [ f (i)] for all [i] ∈ Z/n.

Proof. As f is a bounded affine permutation, for all i, t ∈ Z, we know f (i + tn) =

f (i) + tn = f (i) (mod n). Thus, f̄ is well-defined. Moreover, we have a well-
defined inverse function f̄ −1 given by f̄ −1([i]) = [ f −1(i)]. So f̄ is a bijection. □
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Definition 3.9. A cycle of length t of f ∈Bound(k, n) is a tuple (i1, . . . , it)∈ (Z/n)t

up to cyclic permutation such that

f̄ : i1 7→ i2 7→ · · · 7→ it 7→ i1,

where i1, . . . , it are all distinct. A cycle of length 1 is called a fixed point of f .

Example 3.10. The affine permutation f = [3, 5, 6, 4] has one cycle of length three
being (1, 3, 2) and one cycle of length one being (4).

4. Positroid strata

We collect definitions and known properties of positroid strata of the complex
Grassmannian from the literature [Knutson et al. 2013; Galashin and Lam 2021].

4.1. Complex Grassmannians. Fix k, n ∈ Z≥1 such that k ≤ n, and write Mat(k, n)

for the set of k×n matrices with complex entries.

Definition 4.1. The complex Grassmannian of k-planes in Cn is

Gr(k, n) = {M ∈ Mat(k, n) | rk(M) = k}/row operations.

Complex Grassmannians are smooth projective varieties. A widely used projec-
tive embedding of Gr(k, n) in P(n

k)−1 is given by Plücker coordinates; see [Harris
1992, Lecture 6].

Definition 4.2. Given M ∈ Mat(k, n) with column vectors M1, . . . , Mn and 1 ≤

i1 < · · · < ik ≤ n, we define the Plücker coordinates 1i1,...,ik (M) to be

1i1,...,ik (M) = det[Mi1, Mi2, Mi3, . . . , Mik ].

Example 4.3. For 1 ≤ i1 < i2 ≤ 4, label the
(4

2

)
= 6 homogeneous coordinates of P5

by 1i1,i2 . The corresponding Plücker coordinates on Gr(2, 4) give a projective
embedding of Gr(2, 4) as a hypersurface in P5, whose equation is

11,312,4 = 11,213,4 + 11,412,3.

For example, the matrix

M =

[
1 2 0 1
0 1 −1 1

]
has 11,2(M) = 1, 11,3(M) = −1, 11,4(M) = 1, 12,3(M) = −2, 12,4(M) = 1, and
13,4(M) = 1. Note that row operations on M change all Plücker coordinates by
a common factor, which is immaterial once one thinks of them as homogeneous
coordinates on P5.
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4.2. Positroid strata. The complex Grassmannian Gr(k, n) decomposes into dis-
joint subsets 5◦

f labeled by bounded affine permutations f ∈ Bound(k, n); see
[Knutson et al. 2013]. Any M ∈ Mat(k, n) with columns M1, . . . , Mn extends
periodically to a matrix with infinitely many columns, by setting Mi+n = Mi for all
i ∈ Z. Define an associated function fM : Z → Z by

fM(i) = min{ j ≥ i | Mi ∈ Span(Mi+1, . . . , M j )}.

If M ∈ Mat(k, n) has rank k, then fM : Z → Z is a k-bounded affine permutation
of size n that depends only on [M] ∈ Gr(k, n).

Example 4.4. The matrix M ∈ Mat(2, 4) from Example 4.3 extends periodically
to a matrix with infinitely many columns[

· · · 0 1 1 2 0 1 1 2 · · ·

· · · −1 1 0 1 −1 1 0 1 · · ·

]
,

and the corresponding bounded affine permutation fM : Z → Z of type (2, 4) is
fM = [3, 4, 5, 6].

Definition 4.5. The positroid stratum associated to f ∈ Bound(k, n) is defined as

5◦

f := {[M] ∈ Gr(k, n) | fM = f }.

The adjective positroid comes from the fact that the closure of a stratum is defined
by the vanishing of Plücker coordinates 1i1,...ik whose indexing sets {i1, . . . , ik} ⊂

{1, . . . , n} form a particular class of matroids [Postnikov 2006]. The term strata
refers to the following property.

Theorem 4.6 (Knutson–Lam–Speyer [Knutson et al. 2013, Theorems 5.9 and 5.10]).
Each positroid stratum is locally closed in the Zariski topology, and has closure

cl(5◦

f ) =

⋃
f ′≥ f

5◦

f ′ .

Definition 4.7 (partial order on positroid strata). Define 5◦

1 ≤ 5◦

2 if and only if
5◦

1 ⊂ cl(5◦

2).

It follows immediately that ≤ defines a partial order on the set of positroid strata
of Gr(k, n).

Theorem 4.8 [Knutson et al. 2013, Theorem 5.9]. The codimension of 5◦

f ⊂

Gr(k, n) is equal to ℓ( f ).

Example 4.9. There are 33 positroid strata 5◦

f ⊂ Gr(2, 4): one of dimension 4, four
of dimension 3, ten of dimension 2, twelve of dimension 1, and six of dimension 0.
Each dimension corresponds to a row in the Hasse diagram of Figure 5, with the
bottom row containing the only top-dimensional stratum.
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[1,2,7,8] [1,6,3,8] [1,6,7,4] [5,2,3,8] [5,2,7,4] [5,6,3,4]

[1,3,6,8] [1,4,7,6] [1,6,4,7] [2,5,3,8] [2,5,7,4] [3,2,5,8] [3,6,5,4] [4,2,7,5] [4,6,3,5] [5,2,4,7] [5,3,6,4] [5,4,3,6]

[1,4,6,7] [2,3,5,8] [2,4,7,5] [2,5,4,7] [3,5,6,4] [3,6,4,5] [4,2,5,7] [4,3,6,5] [4,5,3,6] [5,3,4,6]

[2,4,5,7] [3,4,6,5] [3,5,4,6] [4,3,5,6]

[3,4,5,6]

Figure 5. The Hasse diagram of the partial order on Bound(2, 4).

5. Positroid links

We follow Casals, Gorsky, Gorsky and Simental [Casals et al. 2021] and associate a
Legendrian link to a bounded affine permutation f ∈ Bound(k, n) (see Section 3).

Definition 5.1. Let f ∈ Bound(k, n) be a bounded affine permutation. For each
i ∈ {1, . . . , n}, let

Ai ( f ) :=
{
(x, y) ∈ R2

| (2x − f (i) − i)2
+ 4y2

= ( f (i) − i)2}
∩ {y ≥ 0} ⊂ R2

be the upper semicircle of a circle intersecting the x-axis in the points (i, 0)

and ( f (i), 0). We define the juggling diagram associated to f to be the subset⋃n
i=1 Ai ( f ) ⊂ R2.

Definition 5.2. Let f ∈ Bound(k, n) be a bounded affine permutation. After
modifying the associated juggling diagram with the moves shown in Figure 6, we
obtain a tangle diagram. After enumerating the strands of the tangle diagram from
top to bottom we can describe the tangle diagram with a braid word that we denote
by Jk( f ) and call the juggling braid of f .

Remark 5.3. By the definition of a bounded affine permutation, Jk( f ) is a positive
braid on k strands.

See Figure 7 for examples of juggling diagrams and their corresponding juggling
braids.

Figure 6. Converting from a juggling diagram to a braid via spec-
ified smoothings of cusps and crossings.
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1 2 3 4 5 6 1 2 3 4 5 6 7

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Figure 7. Examples of juggling diagrams and their corresponding
juggling braid words. Top left: J2([3, 4, 5, 6]) = σ 3

1 . Top right:
J2([5, 2, 7, 4]) = σ1. Middle: J4([4, 6, 7, 8, 10]) = σ1σ2σ1σ3(σ2σ1)

2.
Bottom: J3([3, 6, 4, 7, 10]) = σ1σ2σ

2
1 . Note that the dots in the top

right indicate fixed points of the bounded affine permutation. The
strands are different colors to increase visual clarity.

We will now set some notation. Let σ1, . . . , σk−1 denote the Artin generators of
the braid group and let Br+k be the submonoid of the braid group generated by non-
negative powers of the Artin generators. We let 1k = (σ1)(σ2σ1) · · · (σk−1 · · · σ1)

denote the positive half twist. Let w0 denote the image of 1k in the projection from
the braid group to the symmetric group.

Definition 5.4 [Casals et al. 2021, Definition 3.3]. Let f ∈ Bound(k, n) be a
bounded affine permutation, and let Jk( f ) ∈ Br+k be its associated juggling braid.
We define the positroid link of f , denoted by 3 f , to be the Legendrian (−1)-closure
(see Figure 8) of the positive braid Jk( f )1k ∈ Br+k with the orientation induced by
giving all strands of Jk( f ) ∈ Br+k the same orientation.

Remark 5.5. In [Casals et al. 2021], there are other (Legendrian isotopic) de-
scriptions of 3 f , using other enumerations of positroid strata of the complex
Grassmannian such as pairs of permutations (satisfying some properties), Le dia-
grams, and cyclic rank matrices. For the scope of this article, it suffices to consider
juggling braids.
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b

Figure 8. The front diagram of the Legendrian (−1)-closure of
the positive braid word β ∈ Br+k .

Lemma 5.6. Let f ∈ Bound(k, n). The Thurston–Bennequin number of 3 f is
given by

tb(3 f ) = |Jk( f )| −
k(k + 1)

2
,

where |Jk( f )| denotes the length of the braid word Jk( f ) ∈ Br+k .

Proof. Recall that the Thurston–Bennequin number of a Legendrian link is given
by the writhe minus the number of right cusps of a front diagram; see (2). There
are |Jk( f )| + |1k | positive crossings coming from the crossings in β = Jk( f )1k

and k right cusps in the positroid link of f . Note that |1k | =
k(k−1)

2 . There are
2|1k | = k(k − 1) negative crossings coming from the portion of the positroid link
of f outside of β = Jk( f )1k in the Legendrian (−1)-closure diagram. The sum of
these contributions is

tb(3 f ) = |Jk( f )| +
k(k − 1)

2
− k(k − 1) − k = |Jk( f )| −

k(k + 1)

2
. □

Corollary 5.7. Let f ∈ Bound(k, n). The Thurston–Bennequin number of 3 f is
given by

tb(3 f ) = dim 5◦

f + # Fix( f ) − n,

where Fix( f ) = {i ∈ {1, . . . , n} | f (i) = i}.

Proof. The statement of Lemma 3.10 in the first arXiv version of [Casals et al.
2021] states that

|Jk( f )| = |w| − |u| +

(
k
2

)
− (n − k) + # Fix( f ),

where (u, w) is a pair of permutations called the positroid pair corresponding to the
bounded affine permutation f (see [Casals et al. 2021, Definition 2.2] and [Knutson
et al. 2013, Proposition 3.15]). It is well-known that dim 5◦

f = |w| − |u| (see, e.g.,
[Knutson et al. 2014, Corollary 3.2]); hence

(2) |Jk( f )| = dim 5◦

f +

(
k
2

)
− (n − k) + # Fix( f ).
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Therefore we get

tb(3 f ) = |Jk( f )| −
k(k + 1)

2

= dim 5◦

f +

(
k
2

)
− (n − k) + # Fix( f ) −

k(k + 1)

2

= dim 5◦

f + # Fix( f ) − n,

where the first equality is by Lemma 5.6 and the second equality is by (2). □

The main motivation for calling 3 f a positroid link is the following connection
with positroid strata of the complex Grassmannian. To call upon this result, we
follow the convention of placing a marked point on each strand in the braid Jk( f )1k ,
and place each to the right of all crossings in Jk( f )1k on the respective strand
when defining the augmentation variety associated to 3 f , as in [Casals et al. 2020,
Section 2.6].

Theorem 5.8 (Casals–Gorsky–Gorsky–Simental [Casals et al. 2020; 2021]). Let
f ∈Bound(k, n) be a bounded affine permutation, and consider its positroid link 3 f .

Then, there is an algebraic isomorphism

5◦

f
∼= Aug(3 f ) × (C∗)n−# Fix f −k .

Proof. We have one marked point in 3 f for each strand in the braid Jk( f )1k . Then
by [Casals et al. 2020, Theorem 2.30] we have Aug(3 f ) ∼= X0(Jk( f ); w0), where
X0 denotes the braid variety as defined in [Casals et al. 2020]. Then, by [Casals
et al. 2021, Theorem 1.3] we have

5◦

f
∼= X0(Jk( f ); w0) × (C∗)n−# Fix f −k,

which gives the result. □

Proposition 5.9. For f ∈ Bound(k, n), the number of components of the link 3 f is
given by the number of cycles of f of length at least 2 (see Definition 3.9).

Proof. Consider a cyclic juggling diagram of f which can be obtained from a
juggling diagram by first restricting

⋃n
i=1 Ai ( f ) ⊂ R2 to {1 ≤ x ≤ n} and then

extending each arc cyclically. More precisely, we first arrange the juggling diagram
of f so that no crossing of

⋃n
i=1 Ai ( f ) belongs to {x ≥ n} ⊂ R2 by a smooth

isotopy of
⋃n

i=1 Ai ( f ) which leaves the braid word Jk( f ) unaffected (up to braid
moves); see [Casals et al. 2021, Lemma 2.19]. Then we define the cyclic juggling
diagram of f to be the subset

Ā( f ) :=

( n⋃
i=1

Ai ( f ) ∩ {1 ≤ x ≤ n}

)
∪

( ⋃
{i | f (i)>n}

Ashift
i ( f ) ∩ {1 ≤ x ≤ n}

)
⊂ R2
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1 2 3 4 5 6 ∆
Figure 9. Left: Extending the arcs of [3, 4, 12, 11, 8, 7] cyclically
to construct a cyclic juggling diagram. Right: The result of a
smooth isotopy from the left diagram, where all the arcs are pulled
downwards, demonstrating the half twist obtained from the added
arcs of the cyclic juggling diagram.

where

Ashift
i ( f ) :=

{
(x, y)∈R2

| (2(x+n−1)− f (i)−i)2
+4y2

= ( f (i)−i)2}
∩{y ≥0}⊂R2

is the arc Ai ( f ) shifted to the left by n − 1. Then, each cycle of f corresponds to
a sequence of arcs that closes up onto itself in the cyclic juggling diagram. See
Figure 9, left, for an example. We turn the cyclic juggling diagram Ā( f ) into a
braid by using the smoothing modifications of Figure 6 to obtain a cyclic juggling
braid J̄k( f ). We take the (−1)-closure of the J̄k( f ). Then, the resulting link
is smoothly isotopic to the (−1)-closure of the juggling braid 1k Jk( f ), i.e., the
link 3 f ; see Figure 9, right. Thus the number of components of 3 f is exactly the
number of cycles of f . □

6. Construction of the Lagrangian cobordisms

We say that there is a path from f to g in Bound(k, n) if there is a sequence of
affine bounded permutations (h1, . . . , hk) (this sequence might be empty) such that

f ⋖ h1 ⋖ · · ·⋖ hk ⋖ g.

Theorem 6.1. Given any path from f to g in Bound(k, n), there is an exact La-
grangian cobordism from 3g to 3 f .

Proof. Recall from Definition 5.2 that any bounded affine permutation f corresponds
to a juggling braid Jk( f ) which corresponds by Definition 5.4 to a Legendrian 3 f

given by the (−1)-closure of the positive braid Jk( f )1k . There is a convenient
Lagrangian projection of 3 f ; see [Casals and Ng 2022, Figure 8]. Since the positive
braid Jk( f )1k contains a positive half twist 1k , every crossing in the Lagrangian
projection of 3 f corresponds to a contractible Reeb chord; see [Casals and Ng
2022, Proposition 2.8]. If two affine permutations f and g have the same juggling
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a b= i i +1 a b= i i +1

a b i i +1 a b i i +1
Figure 10. Top: Arcs in the juggling diagrams of f (left) and g
(right) when a < b = i where f ⋖ g. Bottom: Arcs in the juggling
diagrams of f (left) and g (right) when a < b < i , where f ⋖ g.

braids Jk( f ) = Jk(g), then 3 f = 3g by definition. Suppose now that two affine
permutations f and g have juggling braids Jk( f ) and Jk(g) such that Jk( f ) has one
more positive crossing x than Jk(g). By Ng’s resolution procedure, the crossing x
in the front projection corresponds to a contractible Reeb chord of 3 f , and we can
perform a pinch move at x as in Figure 2 to obtain a Lagrangian saddle cobordism
from 3g to 3 f .

Let f, g ∈Bound(k, n) with f <g. It suffices to assume f ⋖g, that is, g =σi◦ f or
g = f ◦σi . Recall from Lemma 3.2 that h is a bounded affine permutation if and only
if −(−h)−1 is. Thus, because g = f ◦σi is equivalent to −(− f )−1

=σi ◦(−(−g)−1),
it suffices to consider the case g = σi ◦ f .

Namely, assume g(a) = i + 1, g(b) = i , f (a) = i and f (b) = i + 1 for some
a, b, i ∈ Z≥1 such that a < b. We show that Jk( f ) has one more positive crossing
than Jk(g) does or Jk( f ) = Jk(g). Therefore, there is either an orientable exact
Lagrangian saddle cobordism from 3g to 3 f , or the Legendrian links 3g and 3 f

are Legendrian isotopic and so are related by a trivial exact Lagrangian cobordism.
Since g(b) = i , we know b ≤ i so as a < b, we have a < b ≤ i . If b = i , the

respective juggling diagrams of f and g contain the arcs shown in Figure 10, top.
Thus we see that the juggling braids Jk( f ) and Jk(g) are equal as braids. If b < i ,
the juggling diagrams of f and g contain the arcs shown in Figure 10, bottom, from
which we can immediately conclude that the juggling braid Jk( f ) has one more
crossing than the juggling braid Jk(g). □

Remark 6.2. In view of Theorem 5.8, a discussion on marked points in the construc-
tion of the exact Lagrangian cobordisms in the proof of Theorem 6.1 is warranted.
Since both Jk( f )1k and Jk(g)1k are k-stranded braids, their Legendrian (−1)-
closures are decorated with one marked point per strand of the underlying braid.
Any trivial exact Lagrangian cobordism remains trivial when taking marked points
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into account. Any saddle cobordism induced by a pinch move will involve newly
created marked points in order to retain functoriality of the associated Chekanov–
Eliashberg dg-algebras with coefficients in C[t±1

1 , . . . , t±1
k ]; see [Casals and Ng

2022, Section 3.5] and [Gao et al. 2024, Section 2.4]. For our purpose, we will
ignore the marked points created by pinch moves by evaluating them to 1.

Theorem 6.3. Given any path γ from f to g in Bound(k, n), the corresponding
exact Lagrangian cobordism Lγ (g, f ) from the proof of Theorem 6.1 satisfies

χ(Lγ (g, f )) = dim(5◦

g) − dim(5◦

f ) + # Fix(g) − # Fix( f ),

where 5◦

f is the open positroid stratum associated to f .

Proof. Let γ = ( f1, . . . , ft) be a sequence of bounded affine permutations such
that each pair of adjacent bounded affine permutations are related by an affine
transposition, in other words, fi ⋖ fi−1 for all 1 < i ≤ t . So Lγ ( ft , f1) is the
corresponding Lagrangian cobordism. For each i , the dimensions of the respective
positroid strata differ by 1. Then following the construction, the exact Lagrangian
cobordism corresponding to fi ⋖ fi−1 is one of two things:

1. A trivial cobordism, when the change in the juggling diagrams J fi−1 to J fi is
the creation of a fixed point. This contributes 1 to # Fix( ft) − # Fix( f1).

2. A saddle cobordism corresponding to a single pinch move, when the change is
the removal of a crossing. This contributes 1 to χ(L(γ )).

Thus,

dim(5◦

f1
) − dim(5◦

ft
) = χ(L(γ )) + # Fix( ft) − # Fix( f1). □

Remark 6.4. Theorem 6.3 can also be proved using Corollary 5.7 and the work
of Chantraine [2010, Theorem 1.2] which provides the change in the Thurston–
Bennequin number for Legendrians related by an exact orientable Lagrangian
cobordism.

7. Examples

In Example 7.1 we provide an example of Theorem 1.1 and in Example 7.2 a
counterexample to the converse of Theorem 1.1.

Example 7.1. We consider a path f1 ⋖ · · ·⋖ f7 in the poset Bound(3, 8) where the
bounded affine permutations f1, . . . , f7 are defined as

f1 = [5, 4, 7, 6, 8, 9, 10, 11], f2 = [5, 4, 8, 6, 7, 9, 10, 11],

f3 = [5, 4, 8, 7, 6, 9, 10, 11], f4 = [6, 4, 8, 7, 5, 9, 10, 11],

f5 = [6, 3, 8, 7, 5, 9, 10, 12], f6 = [6, 2, 8, 7, 5, 9, 11, 12],

f7 = [7, 2, 8, 6, 5, 9, 11, 12].
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f1

f2

f3

f4

f5

f6

f7

saddle

saddle

trivial

saddle

trivial

saddle

Figure 11. The exact Lagrangian cobordism from 3 f7 to 3 f1

corresponding to f1 ⋖ · · ·⋖ f7.

Each fi corresponds to a positroid stratum of Gr(3, 8) of codimension i+1 and
a Legendrian link 3 fi , each of which is the (−1)-closure of the corresponding
juggling braid J3( fi ). The corresponding juggling braids are

J3( f1) = (σ1σ2)
4σ2σ1σ2, J3( f2) = (σ1σ2)

3σ 2
2 σ1σ2,

J3( f3) = (σ1σ2)
3σ2σ1σ2, J3( f4) = (σ1σ2)

3σ2σ1σ2,

J3( f5) = (σ1σ2)
3σ2σ1, J3( f6) = (σ1σ2)

3σ2σ1,

J3( f7) = (σ1σ2)
3σ1.

We have depicted the corresponding composition of exact Lagrangian cobordisms
in Figure 11.

As noted above we have codim 5◦

fi
= i + 1. Because we see that # Fix( f1) = 0

and # Fix( f7) = 2, Theorem 6.3 gives χ(L) = −4, which correctly predicts that the
exact Lagrangian cobordism depicted in Figure 11 has genus 2.

Example 7.2. We now show that the positroid links corresponding to two incompa-
rable positroid strata can still be exact Lagrangian cobordant; this is the converse to
Theorem 1.1.

Consider the two bounded affine permutations f1, f2 ∈ Bound(2, 6) defined by

f1 := [3, 4, 5, 7, 8, 6] and f2 := [3, 4, 7, 5, 6, 8].
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pinch move

f1

f2

Λ

Λ

Figure 12. Pinch move giving a saddle cobordism from the Hopf
link to the trefoil.

The corresponding juggling braids are J2( f1) = σ 4
1 and J2( f2) = σ 3

1 . The two
corresponding positroid links are the trefoil and the Hopf link, respectively. The
two bounded affine permutations f1 and f2 correspond to two different positroid
strata in Gr(2, 6) of dimension 6 and are therefore incomparable. However, there
is an exact Lagrangian cobordism from 3 f2 to 3 f1 given by a saddle cobordism
obtained by performing a pinch move at one of the crossings; see Figure 12.

Remark 7.3. In Example 7.2 we show that the braids σ 4
1 and σ 3

1 may appear as
juggling braids of two incomparable bounded affine permutations. They also appear
as the juggling braids J2(g1) and J2(g2), respectively, for g1, g2 ∈ Bound(2, 5)

defined as
g1 := [3, 4, 5, 6, 7] and g2 := [4, 3, 5, 6, 7],

which are comparable. Namely g1⋖g2 since g2 = g1◦σ1 and ℓ(g1)= 0 < 1 = ℓ(g2).
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LIOUVILLE EQUATIONS ON COMPLETE SURFACES
WITH NONNEGATIVE GAUSS CURVATURE

XIAOHAN CAI AND MIJIA LAI

We study finite total curvature solutions of the Liouville equation 1u+e2u =0
on a complete surface (M, g) with nonnegative Gauss curvature. It turns
out that the asymptotic behavior of the solution separates into two extremal
cases: on the one end, if the solution decays not too fast, then (M, g) must
be isometric to the standard Euclidean plane; on the other end, if (M, g) is
isometric to the flat cylinder S1 × R, then solutions must decay linearly and
can be completely classified.

1. Introduction

In their seminal work [1991], Chen and Li obtained the radial symmetry of the
solution of

1u + e2u
= 0(1-1)

on R2, provided that
∫

R2 e2u dx <∞. Putting the center of symmetry at the origin
and up to a rescaling, we have

u(x)= ln
2

1 + |x |2
.

The geometric meaning of above equation is that the conformal metric g = e2ug0

has constant Gauss curvature 1. It is tempting to think that g is isometric to the
standard round sphere. It is indeed true as the solution is the pull back of the round
metric via stereographic projection. Nevertheless this line of reasoning is valid only
if one establishes the precise asymptotic behavior of u at ∞, so that the metric
extends to a smooth metric on the sphere from R2. The readers are referred to [Li
and Tang 2020] for this line of reasoning; see also [Gui and Li 2021] regarding
metric completion of solutions to more general equations.

The assumption
∫

R2 e2u dx<∞ is natural since there are infinitely many solutions
to (1-1) with

∫
R2 e2u dx = ∞. One way to obtain such a solution is to pull back the

MSC2020: 35B40, 35B53, 53C45.
Keywords: Liouville equation, complete surfaces with nonnegative Gauss curvature.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC
BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org/pjm/
https://doi.org/10.2140/pjm.2024.332-1
https://doi.org/10.2140/pjm.2024.332.23
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


24 XIAOHAN CAI AND MIJIA LAI

spherical metric via a univalent holomorphic map from C to C. Recently, there ap-
peared some interesting studies on (1-1) subject to

∫
R2 e2u dx = ∞. Eremenko, Gui,

Li and Xu [Eremenko et al. 2022] give a complete classification of solutions of (1-1)
which are bounded from above. We also refer to [Gui and Li 2023; Bergweiler et al.
2023; Lytchak 2023] for some studies on (1-1) from a geometric point of view.

The story in higher dimensions was accomplished even earlier. For n ≥ 3, let u
be a positive solution of

(1-2) 1u + u(n+2)/(n−2)
= 0.

We refer to it as the scalar curvature equation as the conformal metric g = u4/(n−2)g0

has positive constant scalar curvature. Gidas, Ni and Nirenberg [Gidas et al. 1981]
first proved the radial symmetry of the solutions under the assumption u(x) ∼

O(|x |
2−n) as |x | → ∞. This can be viewed as an analytical proof of a famous

result of Obata on the classification of constant scalar curvature metrics which are
conformal to an Einstein metric. In a remarkable paper [Caffarelli et al. 1989],
Caffarelli, Gidas and Spruck established the radial symmetry of the solution without
any assumption on the asymptotic behavior of u.

The scalar curvature equation for conformal metrics has critical Sobolev power.
In the subcritical case,

(1-3) 1u + u p
= 0, 1< p <

n + 2
n − 2

.

Gidas and Spruck [1981] showed that any nonnegative solution must be trivial.
Recently, Catino and Monticelli [2024] carried out a systematic study of (1-1)–(1-3)
on complete manifolds with nonnegative Ricci curvature. Among many results,
one particular case is a full extension of Caffarelli, Gidas and Spruck’s result in
dimension three to complete manifolds with nonnegative Ricci curvature.

Inspired by Catino and Monticelli’s work, we study the Liouville equation (1-1)
on complete surfaces with nonnegative Gauss curvature; in particular, we are able
to connect the asymptotic behavior of the solution with the underlying manifold.

To be more precise, let (M, g) be a complete surface with nonnegative Gauss
curvature. We study the Liouville equation

(1-4) 1gu + e2u
= 0

on M . A solution is said to have finite total curvature if
∫

M e2u dg <∞.
In view of the Cohn-Vossen splitting theorem, a complete surface (M, g) with

nonnegative Gauss curvature is

• either isometric to the flat cylinder S1
× R (orientable case) or the flat Möbius

band (nonorientable case),

• or diffeomorphic to (R2, g0).
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In the latter case, by Huber’s theorem [1957], (M, g) is conformal to (R2, g0).
Without loss of generality, we assume from now on that M is orientable. In the

former case, we have the following classification of solutions to (1-4).

Theorem 1. Let u be a solution of (1-4) with finite total curvature on the flat
cylinder (S1

× R, gprod). Then there exists µ ∈ [0,∞) and β ∈ (−1,∞), such that
either β is an integer or µ= 0, and up to a rescaling, we have

e2u(z)
=

(2β + 2)2|z|2β+2

(|1 +µzβ+1|2 + |z|2β+2)2
on

(
C − {0},

1
|z|2

g0

)
.

The classification result is not new. Since the Gauss curvature for the flat cylinder
is identically zero, (1-4) has a geometric meaning that the conformal metric e2ugprod

has Gauss curvature 1. Note the flat cylinder is conformal to (R2
\ {0}, g0); thus

(1-4) can be translated to the Liouville equation on R2
\ {0}. Then the theorem

follows from a combination of results of Chou and Wan [1994, Theorem 5], Chen
and Li [1995, Theorem 3.1] and Troyanov [1989, Theorem II].

Our main theorem is the following rigidity result.

Theorem 2. Let u be a solution of (1-4) with finite total curvature on a complete
surface (M, g) with nonnegative Gauss curvature. Let r(x) be the distance function
on M with respect to a fixed point. If u(x)≥ −2 ln r(x)+o(ln r(x)), for r(x) large,
then (M, g) must be isometric to (R2, g0). Moreover, −2 is optimal in the sense
that there exists nonflat (M, g) which admits solutions satisfying u(x)∼ γ ln r(x)
for any γ <−2.

A similar result has been proved in [Catino and Monticelli 2024, Theorem 1.10].
Our contribution here has two-folds. On the one hand, our assumption on u is
weaker than that in [Catino and Monticelli 2024] and our treatment emphasizes the
analysis of asymptotic behavior of the solution which helps to identify the threshold
where the rigidity occurs. On the other hand, by setting the stage on the complete
surfaces with nonnegative Gauss curvature, we unite two works of Chen and Li
[1991; 1995].

The strategy of our proof is study the asymptotic behavior of the solution. If
(M, g) is conformal to (R2, g0), we write g = e2 f g0. Then (1-4) becomes

(1-5) 1u + e2 f e2u
= 0 on R2.

This is the so-called prescribing Gauss curvature equation on R2, which has been in-
vestigated intensively over the past few decades. Under a suitable decay assumption
of e2 f near infinity, Cheng and Lin [1997, Theorem 1.1] showed that the solution u
of (1-5) has the asymptotic behavior

lim
x→∞

u(x)
ln |x |

= −
1

2π

( ∫
R2

e2 f e2u dx
)
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if and only if
∫

R2 e2 f e2u dx <∞. However, a priori, there is not any decay control
for e2 f . In fact, f satisfies the similar equation

1 f + Kge2 f
= 0,

where Kg is the Gauss curvature of g. The only information here is that Kg ≥ 0.
Nevertheless, using Arsove and Huber’s result [1973], there exists an m ∈ [0, 1]

and an exceptional set E which is thin at infinity such that

(1-6) lim
x→∞
x /∈E

f (x)
ln |x |

= lim inf
x→∞

f (x)
ln |x |

= −m.

Here the thinness of a set at infinity is a concept concerning the logarithmic capacity.
For a complete conformal metric e2 f g0 on Rn (n ≥ 3) with nonnegative Ricci
curvature, Ma and Qing [2021] obtained a similar asymptotic behavior for the
conformal factor f .

While Cheng and Lin’s and Arsove and Huber’s works are the main analytical
inspirations for us, we also benefit from two interesting geometric ingredients: the
first is Li and Tam’s work [1991] on a comparison between the intrinsic distance
and the Euclidean distance on (R2, e2 f g0) (see Lemma 2.2) and the second is an
isoperimetric inequality on complete surfaces with nonnegative Gauss curvature
established recently by Brendle [2023] (see Lemma 2.3).

We shall present proofs of Theorems 1 and 2 in the next section.

2. Proof of the main theorem

Proof of Theorem 1. The flat cylinder S1
× R is conformal to (R2

\ {0}, g0) since

dt2
+ dθ2

=
1
r2 dr2

+ dθ2
=

1
r2 g0,

by setting t = ln r . Let e2w(x)
= (1/|x |

2)e2u(x). Then 1gu +e2u
= 0 is equivalent to

(2-1)

1w+ e2w
= 0 on R2

\ {0},∫
R2

e2w(x) dx <∞.

Chou and Wan’s complex analysis argument [1994, Theorem 5] shows that

w(x)= β1 ln |x | + O(1) as x → 0, for some β1 >−1.

Let w̃(x)= w(x/|x |
2)− 2 ln |x |, it is easy to see that w̃ satisfies1w̃+ e2w̃

= 0 on R2
\ {0},∫

R2
e2w̃(x) dx <∞.
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Applying Chou and Wan’s asymptotic result [1994, Theorem 5] to w̃ and tracing
back to w, we get

w(x)= β2 ln |x | + O(1) as x → ∞, for some β2 <−1.

Therefore, w(x) is a solution of (2-1) with conical singularities at x = 0 and x = ∞.
Hence the classification result of Troyanov [1989, Theorem II] yields that there
exists µ ∈ [0,∞) and β ∈ (−1,∞) such that either β is an integer or µ= 0, and
up to a rescaling, we have

e2w(z)
=

(2β + 2)2|z|2β

(|1 +µzβ+1|2 + |z|2β+2)2
on C − {0}.

Then the desired result follows since e2u(z)
= |z|2e2w(z). Note if both cone angles

are less than 2π (β ∈ (−1, 0)), Chen and Li [1995, Theorem 3.1] also obtained
such a classification. □

Next, we give the complete proof of Theorem 2.
First we exclude the case of a flat cylinder in Theorem 2: Suppose u is a finite

total curvature solution of (1-4) on the flat cylinder. Then Theorem 1 implies

u(x)∼ −(β + 1)r(x) for r(x) large,

where β > −1 is a constant. This is a contradiction with the assumption that
u(x)≥ −2 ln r(x)+ o(ln r(x)) for r(x) large. In conclusion, (M, g) cannot be the
flat cylinder and thus is conformal to (R2, g0) by the Cohn-Vossen splitting theorem
and Huber’s theorem.

We write g = e2 f g0. Then the finite total curvature solution u of (1-4) becomes1u + e2 f e2u
= 0 on R2,∫

R2
e2 f +2u dx <∞.

(2-2)

To fix the notation, we consider the quantity

α := −
1

2π

∫
R2

e2 f +2u dx .(2-3)

The strategy of our proof is as follows: using the asymptotic lower bound assumption
of the solution u, we establish a lower bound of α by analyzing carefully the
asymptotic upper bound of the solution to (2-2). On the other hand, with the help of
Brendle’s isoperimetric inequality, we prove that the reversed inequality still holds.
Hence the equality is obtained and the rigidity part of the isoperimetric inequality
brings the rigidity of the underlying manifold.

First, we aim at getting the lower bound of α. It is tempting to obtain a pointwise
upper bound of the solution u to (2-2) in terms of α so that the lower bound
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assumption on u could imply immediately the lower bound of α. However, due to
the lack of a uniform asymptotic behavior of the conformal factor f , it’s impossible
to derive such a pointwise bound for u. Instead, we shall give an upper bound of
the integral average of u on small balls. The argument is based on that of [Cheng
and Lin 1997].

Lemma 2.1. Let (M, g) = (R2, e2 f g0) be a complete surface with nonnegative
Gauss curvature. Assume u ∈ C2(R2) is a solution to (2-2). Then for any ϵ > 0,
σ > 0, there exists R > 0 such that for |x | ≥ R and ρ = |x |

−σ , there holds

1
πρ2

∫
Bρ(x)

u(y) dy ≤ (α+ ϵ) ln |x | + C,

where α is given by (2-3) and C is a constant depending on ϵ, σ , R.

Proof. Construct an auxiliary function

v(x)=
1

2π

∫
R2
ψ(y) ln

|x − y|

|y|
dy,

where ψ(y)= e2 f (y)+2u(y).
The proof consists of three claims:

(1) v(x)≤ −α ln |x | + C for |x | ≥ 2.

(2) u + v is a constant.

(3) For any ϵ > 0, σ > 0, there exists R > 0 such that for |x | ≥ R and ρ = |x |
−σ ,

(2-4) u(x)≤ (α+ ϵ) ln |x | +
1

2π

∫
Bρ(x)

ψ(y) ln
|y|

|x − y|
dy + C.

Proof of claim (1): For fixed x with |x | ≥ 2,

2πv(x)=

∫
T1

ψ(y) ln
|x − y|

|y|
dy +

∫
T2

ψ(y) ln
|x − y|

|y|
dy +

∫
T3

ψ(y) ln
|x − y|

|y|
dy

def
= I1 + I2 + I3,

where
T1 = {y : |y| ≤ 2},

T2 =

{
y : |y − x | ≤

|x |

2
, |y|≥ 2

}
,

T3 =

{
y : |y − x | ≥

|x |

2
, |y| ≥ 2

}
.
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For |x | ≥ 2 and y ∈ T1, we have ln |x − y| ≤ ln(|x | + 2)≤ ln |x | + ln 2. Thus

I1 =

∫
T1

ψ(y) ln |x − y| dy −

∫
T1

ψ(y) ln |y| dy

≤

∫
T1

ψ(y)(ln |x | + ln 2) dy −

∫
T1

ψ(y) ln |y| dy

= (ln |x |)

∫
T1

ψ(y) dy + C.

Now for y ∈ T2, we have |x − y| ≤ |x |/2 ≤ |y|. Thus

I2 ≤ 0.

For y ∈ T3 and |x | ≥ 2, there holds |x − y| ≤ |x | + |y| ≤ |x | |y|. Therefore

I3 ≤ (ln |x |)

∫
T3

ψ(y) dy.

We conclude that

2πv(x)= I1 + I2 + I3 ≤ −2πα ln |x | + C.

The proof of claim (1) is finished.

Proof of claim (2): It is easy to see that 1v = e2 f +2u and u + v is a harmonic
function on R2. Hence there exists an entire function f (z) such that Re f = 2(u+v).
Let F(z)= e f (z). Clearly, by claim (1) we get

|F(z)| = e2u+2v
≤ C |z|−2αe2u,

for |z| ≥ 2. Using the lower bound (1-6) for the conformal factor f (e2 f
≥ |z|−2m),

we get that for some R0 large enough,∫
|z|≥R0

|F(z)| |z|2α|z|−2m dx ≤ C
∫

|z|≥R0

e2ue2 f dx <∞.

Let M(ρ)=max|z|=ρ |F(z)|. We shall show that M(ρ)≤Cρ2m−2α for ρ≥ R0+1.
In fact, assume |z0| = ρ and M(ρ)= |F(z0)|. The mean value property implies

|F(z0)| ≤
1
π

∫
B1(z0)

|F(z)| dx ≤
1
π

∫
ρ−1≤|z|≤ρ+1

|F(z)| dx .

Hence we get

M(ρ)ρ2α−2m
≤

1
π

∫
ρ−1≤|z|≤ρ+1

|F(z)|ρ2α−2m dx

≤
1
π

∫
ρ−1≤|z|≤ρ+1

|F(z)| |z|2α−2m
(

ρ

ρ+ 1

)2α−2m

dx

≤
22m−2α

π

∫
|z|≥ρ−1

|F(z)| |z|2α−2m dx <∞.
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Therefore, the order of the entire function F(z) is

λ := lim sup
ρ→∞

ln ln M(ρ)
ln ρ

= 0.

By a theorem of Hadamard (see Theorem 8 on p. 209 in [Ahlfors 1978]), we
conclude that the genus of F(z) is zero and F(z) is a constant since F has no zeros.
The proof of claim (2) is completed.

Proof of claim (3): For any ϵ > 0, σ > 0, choose R > 0 large enough such that

(σ + 1)
∫

|y|≥R
ψ(y) dy ≤ πϵ,

where ψ(y)= e2 f (y)+2u(y). By claim (2), we have

2πu(x)= C+

∫
R2
ψ(y) ln

|y|

|x−y|
dy

= C+

∫
T̃1

ψ(y) ln
|y|

|x−y|
dy+

∫
T̃2

ψ(y) ln
|y|

|x−y|
dy+

∫
T̃3

ψ(y) ln
|y|

|x−y|
dy

def
= Ĩ1+ Ĩ2+ Ĩ3,

where
T̃1 = {y : |y| ≤ R},

T̃2 =

{
y : |y − x | ≤

|x |

2
, |y| ≥ R

}
,

T̃3 =

{
y : |y − x | ≥

|x |

2
, |y| ≥ R

}
.

Now for |x | ≥ R2/(R − 1) and y ∈ T̃1, we have ln |x − y| ≥ ln(|x | − R) ≥

ln |x | − ln R. Thus

Ĩ1 =

∫
T̃1

ψ(y) ln |y| dy −

∫
T̃1

ψ(y) ln |x − y| dy

≤ C − (ln |x |)

∫
T̃1

ψ(y) dy + (ln R)
∫

T̃1

ψ(y) dy

≤ −(ln |x |)

∫
T̃1

ψ(y) dy + C.

To estimate Ĩ2, let T̃ σ
= {y : |y − x | ≤ |x |

−σ , |y| ≥ R}. Then we have

Ĩ2 =

∫
T̃ σ
ψ(y) ln

|y|

|x − y|
dy +

∫
|x |−σ≤|y−x |≤|x |/2,|y|≥R

ψ(y) ln
|y|

|x − y|
dy

≤

∫
T̃ σ
ψ(y) ln

|y|

|x − y|
dy +

∫
|y|≥R

ψ(y) ln
3
2 |x |

|x |−σ
dy

≤

∫
|y−x |≤|x |−σ

ψ(y) ln
|y|

|x − y|
dy + (σ + 1)

∫
|y|≥R

ψ(y) dy + C.



LIOUVILLE EQUATIONS ON COMPLETE SURFACES 31

Now for y ∈ T̃3, one easily gets |y| ≤ 4|x − y|. Therefore

Ĩ3 =

∫
T̃3

ψ(y) ln
|y|

|x − y|
dy ≤ (ln 4)

∫
T̃3

ψ(y) dy ≤ C.

In conclusion, for |x | ≥ R2/(R − 1), there holds

2πu(x)= Ĩ1 + Ĩ2 + Ĩ3

≤ C − (ln |x |)

∫
|y|≤R

ψ(y) dy +

∫
|y−x |≤|x |−σ

ψ(y) ln
|y|

|x − y|
dy

+ (σ + 1)
∫

|y|≥R
ψ(y) dy

≤ C + 2π(α+ ϵ) ln |x | +

∫
|y−x |≤|x |−σ

ψ(y) ln
|y|

|x − y|
dy.

The proof of claim (3) is completed.
Finally, we give the upper bound of the integral average of u. By Green’s formula,

u(x)=
1
πρ2

∫
Bρ(x)

u(y) dy +
1

2π

∫
Bρ(x)

ψ(y) ln
ρ

|x − y|
dy,

for every x ∈ R2 and ρ > 0. Combined with (2-4), we have for any ϵ > 0, σ > 0,
there exists R > 0 such that for |x | ≥ R and ρ = |x |

−σ ,

1
πρ2

∫
Bρ(x)

u(y) dy ≤ (α+ ϵ) ln |x | +
1

2π

∫
Bρ(x)

ψ(y) ln
|y|

ρ
dy + C.(2-5)

Since |y|/ρ ≤ (|x | + ρ)/ρ = |x |
σ+1

+ 1 ≤ |x |
σ+2 for |x | large enough, the second

term in the right-hand side of (2-5) could be estimated as

1
2π

∫
Bρ(x)

ψ(y) ln
|y|

ρ
dy ≤

σ + 2
2π

(ln |x |)

∫
|y|≥R/2

ψ(y) dy ≤ ϵ ln |x |,

for |x | ≥ R provided R is large enough. Inserting this into (2-5), the proof of the
lemma is completed. □

To derive the lower bound of α, we need a lower bound of u in terms of the
Euclidean distance ln |x | rather than the intrinsic distance ln r(x) that appeared in
the hypotheses of Theorem 2. Fortunately, the comparison of these two distances is
established by Li and Tam [1991, Corollary 3.3]. Hartman [1964, Theorem 7.1]
revealed the connection between this limit and the asymptotic volume ratio of the
manifold. Their results are combined as follows.
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Lemma 2.2 (Hartman, Li–Tam). Let (R2, e2 f g0) be a complete manifold with
nonnegative Gauss curvature K . Then

lim
x→∞

ln r(x)
ln |x |

= 1 −
1

2π

∫
R2

K dg = β,

where

β := lim
t→∞

Area(B(p, t))
π t2 ∈ [0, 1]

is the asymptotic volume ratio of the manifold (R2, e2 f g0).

Given this asymptotic behavior of r(x), the a priori assumption on u could be
applied to obtain the lower bound of α in terms of the asymptotic volume ratio.

Proposition 2.1. Let (R2, e2 f g0) be a complete surface with nonnegative Gauss
curvature. Let u be a solution of (2-2). Assume

u(x)≥ −2 ln r(x)+ o(ln r(x)),

for r(x) large. Then
α ≥ −2β,

where α is given by (2-3) and β is the asymptotic volume ratio of (R2, e2 f g0).

Proof. By our assumption on u and Lemma 2.2, we get for any ϵ > 0, there exists
R > 0 such that for r(x)≥ R,

u(x)≥ −2 ln r(x)+ o(ln r(x))≥ (−2β − 2ϵ) ln |x | + o(ln |x |).

Lemma 2.1 yields that for any ϵ > 0, σ > 0, there exists R > 0 such that for
|x | ≥ R and ρ = |x |

−σ ,

1
πρ2

∫
Bρ(x)

u(y) dy ≤ (α+ ϵ) ln |x | + C,

where C is a constant depending on ϵ, σ , R.
We conclude that for any ϵ > 0, σ > 0, there exists R > 0 such that for |x | ≥ R

and ρ = |x |
−σ ,

(α+ ϵ) ln |x | + C ≥
1
πρ2

∫
Bρ(x)

u(y) dy

≥ (−2β − 2ϵ)
1
πρ2

∫
Bρ(x)

ln |y| dy + o(ln |x |)

≥ (−2β − 2ϵ)(ln |x | − ϵ)+ o(ln |x |).

Letting x →∞, we get α+ϵ≥−2β−2ϵ. Since ϵ could be arbitrarily small, we get

α ≥ −2β. □
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We shall see that the reversed inequality also holds, and thus the equality is
obtained. For this, we need the isoperimetric inequality on nonnegatively curved
surfaces established by Brendle [2023, Corollary 1.3], and it also helps to get the
rigidity of the underlying manifold in our setting.

Lemma 2.3 (Brendle). Let (M2, g) be a complete noncompact manifold with non-
negative Gauss curvature. Let D be a compact domain in M with boundary ∂D.
Then

L(∂D)2 ≥ 4πβA(D),

where L(∂D) and A(D) represent the length of ∂D and the area of D, respectively,
and β is the asymptotic volume ratio of (M, g). The equality holds if and only if
(M, g) is isometric to Euclidean space and D is a ball.

Now with the help of Lemma 2.3, one could mimic the argument in [Chen and
Li 1991] to give the upper bound of α.

Proposition 2.2. Let (R2, e2 f g0) be a complete surface with nonnegative Gauss
curvature. Let u be a solution of (2-2). Then

α ≤ −2β,

where α is given by (2-3) and β is the asymptotic volume ratio of (R2, e2 f g0).

Proof. Consider F(t) :=
∫
�t

e2u dg, where �t = {x : u(x) > t} is the upper level set
of u.

The finite total curvature assumption
∫

M e2u dg <∞ implies A(�t) <∞, where
A(�t) represents the area of �t in (R2, g = e2 f g0).

It follows from (1-4) and the divergence theorem that

F(t)=

∫
�t

e2u dg = −

∫
�t

1u dg = −

∫
∂�t

⟨∇u, η⟩ d Sg =

∫
∂�t

|∇u| d Sg.

By the coarea formula,

F ′(t)= −

∫
∂�t

e2u

|∇u|
d Sg = −e2t

∫
∂�t

1
|∇u|

d Sg.

Then the Hölder inequality and the isoperimetric inequality (Lemma 2.3) imply

(2-6) (F2(t))′ = −2e2t
∫
∂�t

|∇u| d Sg

∫
∂�t

1
|∇u|

d Sg

≤ −2e2t L(∂�t)
2

≤ −8πβ e2t A(�t).
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Note that the isoperimetric inequality still holds for noncompact regions whose
area are finite, since the length of its boundary must be infinite by the completeness
of (R2, e2 f g0).

Finally integrating (2-6) from −∞ to ∞ yields

−

( ∫
M

e2u dg
)2

≤ −8πβ
∫

∞

−∞

e2t A({x : e2u(x) > e2t
}) dt

= −4πβ
∫

∞

0
A({x : e2u(x) > λ}) dλ

= −4πβ
∫

M
e2u dg.

Thus the desired inequality holds. □

Proof of Theorem 2. By Propositions 2.1 and 2.2, we get

α = −2β.

Inspecting the proof of Proposition 2.2 shows that L(∂�t)
2
= 4πβA(�t) for every

t ∈ R. Hence Lemma 2.3 tells us (R2, e2 f g0) must be isometric to the Euclidean
space (R2, g0).

To see the sharpness of the −2 in the assumption u(x)≥ −2 ln r(x)+o(ln r(x)),
consider the following examples.

Let e2 f (x)
=γ /(1 + |x |

2)2−2γ . Then for γ ∈
[1

2 , 1
]
, (R2, g =e2 f g0) is a complete

surface with nonnegative Gauss curvature Kg = 4(1 − γ )/
(
γ (1 + |x |

2)2γ
)
.

Taking e2u(x)
= 4/(1 + |x |

2)2γ , it is easy to see that 1u + e2 f e2u
= 0, that is,

1gu + e2u
= 0.

Moreover,
∫

R2 e2u dg =
∫

R2 4γ /(1 + |x |
2)2 dx = 4πγ <∞.

Direct computation shows

lim
x→∞

ln r(x)
ln |x |

= 2γ − 1 for γ ∈

(
1
2
, 1

]
,

lim
x→∞

r(x)
ln |x |

= 1 for γ =
1
2
.

Thus for γ ∈
( 1

2 , 1
)
, we have

u(x)∼ −2γ ln |x | ∼ −
2γ

2γ − 1
ln r(x),

where −2γ /(2γ − 1) ∈ (−∞,−2).
In conclusion, for any k <−2, there exists a complete surface (R2, e2 f g0) with

nonnegative Gauss curvature which admits a finite total curvature solution u of (1-4)
with u(x)∼ k ln r(x). □
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We conclude this paper with the following remark. Theorem 2 states the rigidity
of the underlying manifold under the assumption u(x) ≥ −2 ln r(x)+ o(ln r(x)).
However, on the other end, we cannot expect such rigidity as illustrated by examples
above. More precisely, when γ =

1
2 , it readily follows that the solution u decays

linearly with respect to the distance induced by the metric. Hence one cannot
distinguish the flat cylinder by imposing linear decay conditions on the solution.

Nevertheless, when the solution decays sufficiently fast, we can get the volume
growth control of the underlying manifold. We record this as a result of independent
interest.

Proposition 2.3. Let (R2, e2 f g0) be a complete surface with nonnegative Gauss
curvature. Let u be a solution of (2-2) satisfying

lim inf
x→∞

u(x)
ln r(x)

= −∞.

Then the asymptotic volume ratio of (R2, e2 f g0) is zero.

Proof. Suppose the asymptotic volume ratio β is positive. According to the
claims (1) and (2) in Lemma 2.1, there holds

u(x)≥ α ln |x | + C for |x | ≥ 2,

where α = −(1/(2π))
∫

R2 e2 f e2u dx . Combined with Lemma 2.2 one gets

lim inf
x→∞

u(x)
ln r(x)

= lim inf
x→∞

u(x)
ln |x |

ln |x |

ln r(x)
≥
α

β
>−∞.

This contradicts the hypothesis. Hence we get β = 0. □

We also have a partial converse to Proposition 2.3.

Proposition 2.4. Let (R2, e2 f g0) be a complete surface with nonnegative and
bounded Gauss curvature. Suppose the asymptotic volume ratio β equals 0. Then
there exists a solution of (2-2) satisfying

lim
x→∞

u(x)
ln r(x)

= −∞.

Proof. Recall that f satisfies

1 f + K e2 f
= 0,

where 0 ≤ K ≤ C by assumption. Based on a work of Taliaferro [1999], Bonini,
Ma and Qing [Bonini et al. 2018, Lemma 4.2] showed that

e2 f
∼ |x |

−2(1−β)
= |x |

−2 as |x | → ∞.
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In view of the existence theorem of McOwen [1985, Theorem 1], for any α∈ (−2, 0),
there exists a solution u of (2-2) satisfying

u(x)∼ α ln |x | + O(1) at ∞.

Since Lemma 2.2 still holds for β = 0, the conclusion readily follows. □
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ON MODULI AND ARGUMENTS
OF ROOTS OF COMPLEX TRINOMIALS

JAN ČERMÁK, LUCIE FEDORKOVÁ AND JIŘÍ JÁNSKÝ

Root properties of a general complex trinomial have been explored in nu-
merous papers. Two questions have attracted a significant attention: the
relationships between the moduli of these roots and the trinomial’s entries,
and the location of the roots in the complex plane. We consider several
particular problems connected with these topics, and provide new insights
into them. As two main results, we describe the set of all trinomials having
a root with a given modulus, and derive explicit formula for calculations
of the arguments of such roots. In this fashion, we obtain a comprehensive
characterization of these roots. In addition, we develop a procedure enabling
us to compute moduli and arguments of all roots of a general complex
trinomial with arbitrary precision. This procedure is based on the derivation
of a family of real transcendental equations for the roots’ moduli, and it is
supported by the formula for their arguments. All our findings are compared
with the existing results.

1. Introduction

We consider a trinomial of the form

p(z)= zk
+ azℓ + b,

where z, a, b are complex numbers, and k > ℓ are positive integers. Because of a
lack of formula expressing the roots of p in terms of its entries, many theoretical
works analyzed the relationship between the k roots of p, and the values a, b,
k, ℓ. More precisely, dependence of moduli and arguments of these roots on a, b,
k, ℓ was investigated, and, vice versa, for a given configuration of roots of p, the
corresponding parameter space of coefficients was studied.

The list of particular problems discussed in this connection is pretty long. Among
others, it includes the following fundamental questions on moduli of the roots of p
(we still assume here that a, b are complex numbers, and k>ℓ are positive integers):
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(A) What is, for given a, b, k, ℓ and a positive real ϱ, the number of roots of p with
moduli lower than ϱ? Alternatively, the inverse of this problem is, for a given ϱ
and an integer n, 0 ≤ n ≤ k, to describe the set of all a, b, k, ℓ such that p has just
n roots with modulus lower than ϱ.

(B) What is, for given b, k, ℓ, and a positive real ϱ, the geometric structure of the
set of all complex numbers a such that p has a root with modulus ϱ?

(C) What is, for given b, k, ℓ, the geometric structure of the set of all complex
numbers a such that p has two (or more) roots with the same modulus? Alternatively,
problems (B) and (C) can be considered for a fixed a instead of b.

(D) What is, for given a, b, k, ℓ, the geometric description of the location of k roots
of p in the complex plane?

Problem (A) has an interesting history. It was completely answered in [Bohl
1908]. However, perhaps due to language reasons ([Bohl 1908] was written in
German), this result remained nearly unnoticed by the mathematical community.
Some of its particular cases were later rediscovered, among other studied things, for
example, in [Brilleslyper and Schaubroeck 2014; 2018; Dilcher et al. 1992; Howell
and Kyle 2018].

The inverse of problem (A) is of a great importance in the stability and asymptotic
theory of difference equations. Although it is closely related to problem (A) itself
(in fact, its solution can be deduced directly from Bohl’s result), its various particular
cases were investigated in dozens of works (see, for example, [Dannan 2004; Kipnis
and Nigmatullin 2016; Kuruklis 1994; Matsunaga and Hajiri 2010; Papanicolaou
1996; Čermák and Jánský 2015]) — again independently of the existence of Bohl’s
result. Only recently, [Bohl 1908] has attracted attention corresponding to its
relevance (see, for example, [Barrera et al. 2022; 2023a; Theobald and de Wolff
2016; Čermák and Fedorková 2023]).

Problems (B) and (C) were formulated and answered in [Theobald and de Wolff
2016], along with a comprehensive historical survey. Using the amoeba theory,
these answers revealed a nice geometric and topological structure of the parameter
space of trinomials p with respect to the moduli of their roots.

Problem (D) on locating and describing the geometry of roots of p in the complex
plane is a classical matter. Starting with [Nekrassoff 1887], a series of papers on
sectors in the complex plane, each containing a root of p, appeared (see, for example,
[Egerváry 1930]). The strongest results in this sense, namely disjoint annular sectors
smaller than those described in previous works, were obtained in [Melman 2012]. In
these investigations, Rouché’s theorem and other tools of complex analysis turned
out to be very useful. For other relevant results on roots of complex trinomials,
we refer to [Barrera et al. 2023b; Botta and da Silva 2019; Fell 1980; Szabó 2010;
Čermák et al. 2022].
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Our main goal is twofold. First, we wish to present new insights into problems
(A)–(D), and offer alternate answers to some of them. Second, we aim to learn
more about arguments of roots of p as well. Keeping in mind these outlines, the
paper is organized as follows.

In Section 2, we recall Bohl’s result answering problem (A). Using this result, we
discuss an inverse version of problem (A), namely characterization of all couples
(a, b) such that p has a prescribed number of roots whose modulus is lower than a
prescribed real number. Section 3 deals with problem (B), and formulates explicit
necessary and sufficient conditions guaranteeing that p has a root with a given
modulus. A formula for calculation of the arguments of such roots is derived as
well. Considerations performed in Section 4 are motivated by problem (D), and
result in theoretical justification of an algorithm that enables us to localize all k
roots of p with arbitrary precision. This algorithm is based on the derivation of k
(real) transcendental equations for moduli of these roots, supported by a formula for
calculation of their arguments. In Section 5, we illustrate our results and compare
them with the existing ones. Doing so, we consider assertions and examples from
earlier papers, and clarify contributions of our results to the existing theory on
complex trinomials. The final section summarizes the key parts of the paper, outlines
possible applications, and poses some open problems.

The main results of this paper are contained in Sections 3 and 4. Our intention
was to derive them without any support of advanced theoretical tools, using only
some basic facts from linear algebra, mathematical analysis and number theory.

Throughout the text, the following simplifications and notation are utilized. With-
out loss of generality, we assume that the integers k, ℓ are coprime (the opposite case
can be easily reduced to this one), and the complex numbers a, b are nonzero (the op-
posite case is trivial). Further, we assume that the arguments of complex numbers are
taken from the interval (−π, π], and introduce the notation θa = arg(a), θb = arg(b),

αϱ = arccos
−ϱ2k

+ |a|
2ϱ2ℓ

+ |b|
2

2|ab|ϱℓ
, βϱ = arccos

ϱ2k
− |a|

2ϱ2ℓ
+ |b|

2

2|b|ϱk ,(1-1)

θ = kθa − (k − ℓ)θb + (k − ℓ)π,(1-2)

and

(1-3) τ±

ϱ =
θ

2π
±

kαϱ + ℓβϱ

2π
.

Also, we utilize the notation

ϕ ≡ ψ (mod 2π)

for the arguments ϕ ∈ (−π, π] of appropriate complex numbers, meaning that the
difference between ϕ and a real number ψ is an integer multiple of 2π .
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Finally, we call the roots of p with modulus lower than ϱ (or equal to ϱ) ϱ-interior
(or ϱ-modular, respectively). If ϱ = 1, then the ϱ-modular roots of p are called
unimodular.

2. A number of ϱ-interior roots of p

Let nϱ be the number of ϱ-interior roots of p. As we have already mentioned, the
problem of finding an explicit formula for nϱ with respect to given a, b, k, ℓ and ϱ
was solved in [Bohl 1908]. Since the original formulation of this result has a rather
geometric character, we use here its equivalent analytical reformulation (see also
[Čermák and Fedorková 2023]).

Theorem 2.1. Let a, b be nonzero complex numbers, k > ℓ be coprime positive
integers, ϱ be a positive real number, and let θ be given by (1-2).

(i) If |b| ≥ ϱk
+ |a|ϱℓ then nϱ = 0.

(ii) If ϱk > |a|ϱℓ + |b| then nϱ = k.

(iii) If |a|ϱℓ > ϱk
+ |b| then nϱ = ℓ.

(iv) If |a|ϱℓ = ϱk
+ |b|< k

ℓ
ϱk and θ

π
+ ℓ is an even integer, then nϱ = ℓ.

(v) If

(2-1) |b|< ϱk
+ |a|ϱℓ, ϱk

≤ |a|ϱℓ + |b|, |a|ϱℓ ≤ ϱk
+ |b|,

and at least one of the assumptions of (iv) does not hold, then

(2-2) nϱ = ⌈τ+

ϱ ⌉ − ⌊τ−

ϱ ⌋ − 1,

where τ±
ϱ is given by (1-3), and the symbols ⌈ · ⌉, ⌊ · ⌋ mean the upper and lower

integer part.

Remark 2.2. The conditions (i)–(v) of Theorem 2.1 cover all (nontrivial) pos-
sibilities for the complex coefficients a, b and exponents k, ℓ of an arbitrary
trinomial p. One can observe some interesting geometric connections hidden
behind the inequalities forming these conditions. In fact, the conditions (i)–(iv)
reflect a dominance of monomials zk , azℓ, b in the sense that one of them exceeds or
equals to (in modulus) the sum of the remaining ones. The condition (v) is related
to the opposite situation when there exists a triangle with edges of lengths ϱk , |a|ϱℓ

and |b|. In this geometric interpretation, the values αϱ and βϱ are nothing more
than the angles between the edges of lengths |a|ϱℓ, |b| and ϱk , |b|, respectively.

Also note that the above stated dominance of monomials zk , azℓ, b is closely
related to the essential concepts of tropical geometry. In particular, using some basic
tools of tropical geometry, the problem of finding the roots of a tropical polynomial
(composed of the monomials zk , azℓ, b such that one of them is dominant) inside
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the circle of radius ϱ simultaneously provides the number of ϱ-interior roots of p
(see, for example, [Brugallé et al. 2015; Viro 2011]).

Now we consider an opposite problem: for a given real ϱ > 0 and a given
integer n ≥ 0, we search for the set of all a, b, k, ℓ such that n = nϱ, i.e., p has just
n ϱ-interior roots.

Since the relationship between nϱ and a, b, k, ℓ is elementary in the properties (i)–
(iv) of Theorem 2.1, it is enough to analyze the formula (2-2) forming the core
of the property (v). On this account, we introduce the function ω = ω(x) to be a
2π -periodic extension of ω∗(x)= |x |, x ∈ [−π, π]. Then the following holds:

Corollary 2.3. Let ϱ > 0 be a real number, n be a nonnegative integer, let a, b be
nonzero complex numbers, and k > ℓ be coprime positive integers. Further, assume
that (2-1) holds, whereas at least one of the assumptions of the property (iv) of
Theorem 2.1 does not hold. Then p has just n ϱ-interior roots if and only if either

(2-3) n is even and nπ −ω(θ) < kαϱ + ℓβϱ ≤ nπ +ω(θ),

or

(2-4) n is odd and (n − 1)π +ω(θ) < kαϱ + ℓβϱ ≤ (n + 1)π −ω(θ),

where αϱ, βϱ and θ are given by (1-1) and (1-2), respectively.

Proof. First, we assume that

2m1π ≤ |θ |< (2m1 + 1)π

for a nonnegative integer m1. Then, using

θ = (2m1π +ω(θ)) sgn(θ),

(2-2) implies that n = nϱ just when

(2-5) n =

⌈
ω(θ) sgn(θ)+ kαϱ + ℓβϱ

2π

⌉
−

⌊
ω(θ) sgn(θ)− (kαϱ + ℓβϱ)

2π

⌋
− 1.

Now we distinguish two cases leading to (2-3) and (2-4). If

(2-6) 2m2π −ω(θ) < kαϱ + ℓβϱ ≤ 2m2π +ω(θ), ω(θ) ̸= 0,

for an integer m2, then (2-5) becomes

n = m2 + 1 + m2 − 1 = 2m2 (if θ > 0),

n = m2 − (−m2 − 1)− 1 = 2m2 (if θ < 0).

Then, it is enough to substitute 2m2 = n in (2-6) to get (2-3).
Similarly, if

(2-7) 2m2π +ω(θ) < kαϱ + ℓβϱ ≤ (2m2 + 2)π −ω(θ), ω(θ) ̸= π,
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for an integer m2, then

n = m2 + 1 + m2 + 1 − 1 = 2m2 + 1.

Consequently, 2m2 = n − 1, and (2-7) yields (2-4).
Now, we assume that

(2m1 − 1)π ≤ |θ |< 2m1π

for a positive integer m1. Then

θ = (2m1π −ω(θ)) sgn(θ),

and n = nϱ is equivalent to

n =

⌈
−ω(θ) sgn(θ)+ kαϱ + ℓβϱ

2π

⌉
−

⌊
−ω(θ) sgn(θ)− (kαϱ + ℓβϱ)

2π

⌋
− 1

due to (2-2). Thus, using the same line of arguments as given above, we arrive at
(2-3) and (2-4). □

3. Existence of ϱ-modular roots of p

We formulate easily applicable conditions verifying whether p has a root with a
prescribed modulus. In the affirmative case, we find explicit formulae for arguments
of such roots. Thus, we find an effective answer to a more general version of
problem (B).

We start with recapitulation of some useful facts from elementary number theory.
Let k > ℓ be coprime positive integers. For a given integer τ , we consider the linear
Diophantine equation in two integer variables u, v

(3-1) ku + (k − ℓ)v = τ.

If we put

(3-2) u = τu0, v = τv0,

then (3-1) can be reduced to

(3-3) ku0 + (k − ℓ)v0 = 1,

whose integer solutions (u0, v0) are so-called Bézout coefficients for a couple
(k, k−ℓ). It is well known that (3-3) admits infinitely many integer solutions; indeed,
if (u∗

0, v
∗

0) are Bézout coefficients for (k, k − ℓ), then all integer solutions (u0, v0)

of (3-3) can be written as

(3-4) u0 = u∗

0 + (k − ℓ)m, v0 = v∗

0 − km, m ∈ Z.
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There are several algorithms to determine a couple (u0, v0) satisfying (3-3); the
most often used is the extended Euclidean algorithm applied to (k, k − ℓ) (see, for
example, [Fuhrmann 2012]).

Now we come back to problem (B). The next assertion presents a simple condition
verifying that p admits a ϱ-modular root. Moreover, for all a, b, k, ℓ meeting this
condition, we give an explicit evaluation of arguments of ϱ-modular roots. Thus,
we are able to provide their complete identification.

Theorem 3.1. Let a, b be nonzero complex numbers, let k > ℓ be coprime positive
integers, and let τ±

ϱ be given by (1-3). Then p has a ϱ-modular root z = ϱ exp(iϕ),
ϕ ∈ (−π, π], if and only if

(3-5) |b| ≤ ϱk
+ |a|ϱℓ, ϱk

≤ |a|ϱℓ + |b|, |a|ϱℓ ≤ ϱk
+ |b|,

and at least one of the values τ±
ϱ is an integer.

An explicit dependence of ϕ on ϱ can be expressed by the formula

(3-6) ϕ = ϕ±
≡


(2v0τ

+
ϱ − 1)π +βϱ + θb

k
(mod 2π) if τ+

ϱ is an integer,

(2v0τ
−
ϱ − 1)π −βϱ + θb

k
(mod 2π) if τ−

ϱ is an integer,

where v0 is the second component of a couple of Bézout coefficients (u0, v0) satisfy-
ing (3-3), and βϱ is given by (1-1).

Remark 3.2. (a) If just one of the values τ±
ϱ is an integer, then there exists a unique

ϱ-modular root of p (whose argument is ϕ = ϕ+, or ϕ = ϕ− if τ+
ϱ is an integer, or

τ−
ϱ is an integer, respectively). If τ±

ϱ are two distinct integers, then they generate,
along with two arguments ϕ = ϕ+ and ϕ = ϕ−, two distinct ϱ-modular roots of p.
Note that this situation occurs just when

(3-7) |b| ̸= ϱk
+ |a|ϱℓ, kθa − (k − ℓ)θb = j1π, kαϱ + ℓβϱ = j2π

for a couple of integers ( j1, j2) satisfying (−1) j1+k
= (−1) j2+ℓ.

(b) All ϱ-modular roots of p described in Theorem 3.1 are simple except for those
generated by the conditions

(3-8) |a|ϱℓ = ϱk
+ |b|, |a| |b|

(ℓ−k)/k
=

k
k − ℓ

(
k − ℓ

ℓ

)ℓ/k

,
θ

2π
+
ℓ

2
∈ Z

with θ given by (1-2). In this case, p has a double ϱ-modular root zd with the
argument ϕ = ϕ+

= ϕ− (in fact, the values ϕ+ and ϕ− coincide in such a case).
Note that this property was already known before since it is a special instance of
classical A-discriminant theory. Indeed, applying the formula (1.38), p. 406, of
[Gelfand et al. 1994], it is easy to verify that the discriminant of p vanishes just
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when (3-8) holds. The formula (1.28), p. 404, of [Gelfand et al. 1994] yields an
algorithm for direct detection of the double root zd of p (more precisely, k and ℓ
powers of zd can be expressed as linear rational functions of the coefficients of p).
In general, A-discriminants are useful to explain why many trinomial properties
can be described explicitly (contrary to polynomials with more than three terms).

(c) The formula for argument ϕ can be equivalently expressed in the form

(3-9) ϕ=ϕ±
≡


(2u0τ

+
ϱ +2v0τ

+
ϱ −1)π−αϱ−θa +θb

ℓ
(mod2π) if τ+

ϱ ∈ Z,

(2u0τ
−
ϱ +2v0τ

−
ϱ −1)π+αϱ−θa +θb

ℓ
(mod2π) if τ−

ϱ ∈ Z,

where u0 is the first component of a couple of Bézout coefficients (u0, v0), and αϱ is
given by (1-1). Because of (3-4), both the formulae (3-6) and (3-9) are independent
of a concrete choice of Bézout coefficients.

Proof of Theorem 3.1 and Remark 3.2. Let z = ϱ exp(iϕ), ϕ ∈ (−π, π], be a
ϱ-modular root of p. Then

ϱk exp(ikϕ)+ |a|ϱℓ exp(i(ℓϕ+ θa))+ |b| exp(iθb)= 0,

i.e.,

(3-10)
|a|ϱℓ cos(ℓϕ+ θa)+ |b| cos(θb)= −ϱk cos(kϕ),

|a|ϱℓ sin(ℓϕ+ θa)+ |b| sin(θb)= −ϱk sin(kϕ).

We solve (3-10) with respect to (positive real) unknowns |a|, |b|.
First, let the system matrix be singular, that is, sin(ℓϕ+θa −θb)= 0. Then (3-10)

has a solution |a|, |b| if and only if

kϕ− θb = j1π, (k − ℓ)ϕ− θa = j2π

for suitable integers j1, j2. Equivalently,

(3-11) ϕ =
j1π + θb

k
=
( j1 − j2)π − θa + θb

ℓ
,

which implies

(3-12)
θ

π
= − j2k + ( j1 + 1)(k − ℓ)

due to (1-2). Substituting (3-11) into (3-10) one gets

|a|ϱℓ cos(θb + ( j1 − j2)π)+ |b| cos(θb)= −ϱk cos(θb + j1π),

|a|ϱℓ sin(θb + ( j1 − j2)π)+ |b| sin(θb)= −ϱk sin(θb + j1π),
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i.e.,
(−1) j1− j2 |a|ϱℓ cos(θb)+ |b| cos(θb)= (−1) j1+1ϱk cos(θb),

(−1) j1− j2 |a|ϱℓ sin(θb)+ |b| sin(θb)= (−1) j1+1ϱk sin(θb).

This yields

(3-13) (−1) j1ϱk
+ (−1) j1− j2 |a|ϱℓ + |b| = 0.

The case when both j1 and j2 are even cannot occur in (3-13). We explore the
remaining parity variants.

If j1 is odd, j2 even, then (3-13) becomes |b| = ϱk
+ |a|ϱℓ, i.e., αϱ = βϱ = 0.

Moreover, the right-hand side of (3-12) is even, which implies the first couple of
conditions for the existence of a ϱ-modular root of p in the form

(3-14) |b| = ϱk
+ |a|ϱℓ, τ±

ϱ =
θ

2π
is an integer.

In addition, (3-12) is the linear Diophantine equation (3-1) with

u = −
j2
2
, v =

j1 + 1
2

, and τ = τ±

ϱ =
θ

2π
.

Then (3-2) and (3-4) imply

(3-15) j1 = 2(v0 − km)τ±

ϱ − 1, j2 = −2(u0 + (k − ℓ)m)τ±

ϱ

for an integer m. Now it is enough to substitute (3-15)1 into (3-11)1 to obtain

(3-16) ϕ ≡
(2v0τ

±
ϱ − 1)π + θb

k
(mod 2π).

If both j1 and j2 are odd, then (3-13) yields ϱk
= |a|ϱℓ + |b|, that is, αϱ = π ,

βϱ = 0. Also, (3-12) can be written as

(3-17)
θ

π
+ k = (1 − j2)k + ( j1 + 1)(k − ℓ).

Since the right-hand side of (3-17) is even, we get another couple of conditions

(3-18) ϱk
= |a|ϱℓ + |b|, τ+

ϱ =
θ

2π
+

k
2

is an integer.

Furthermore, (3-17) is (3-1) with

u =
1 − j2

2
, v =

j1 + 1
2

, and τ = τ+

ϱ =
θ

2π
+

k
2
.

Then (3-2) and (3-4) yield

j1 = 2τ+

ϱ (v0 − km)− 1, j2 = 1 − 2τ+

ϱ (u0 + (k − ℓ)m)
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for an integer m; hence (3-11)1 becomes

(3-19) ϕ ≡
(2v0τ

+
ϱ − 1)π + θb

k
(mod 2π).

If j1 is even, j2 odd, then (3-13) and (3-12) imply |a|ϱℓ = ϱk
+ |b|, that is,

αϱ = 0, βϱ = π , and

(3-20)
θ

π
+ ℓ= (1 − j2)k + j1(k − ℓ),

respectively. Since the right-hand side of (3-20) is even, we get the third couple of
conditions for the existence of a ϱ-modular root of p, namely

(3-21) |a|ϱℓ = ϱk
+ |b|, τ+

ϱ =
θ

2π
+
ℓ

2
is an integer.

Obviously, (3-20) is (3-1) with

u =
1 − j2

2
, v =

j1
2
, and τ = τ+

ϱ =
θ

2π
+
ℓ

2
,

which along with (3-2) and (3-4) yields

(3-22) j1 = 2τ+

ϱ (v0 − km), j2 = 1 − 2τ+

ϱ (u0 + (k − ℓ)m)

for an integer m. Then we substitute (3-22)1 into (3-11)1 to get

(3-23) ϕ ≡
2v0τ

+
ϱ π + θb

k
(mod 2π).

Now we assume the system matrix of (3-10) to be regular, in other words,
sin(ℓϕ+ θa − θb) ̸= 0. In this case, the solution of (3-10) is given by

(3-24) |a| = −ϱk−ℓ sin(kϕ− θb)

sin(ℓϕ+ θa − θb)
, |b| = ϱk sin((k − ℓ)ϕ− θa)

sin(ℓϕ+ θa − θb)
.

At the same time, we solve (3-10) with respect to ϕ. To do this, we square and sum
(3-10) to obtain

(3-25) cos(ℓϕ+ θa − θb)=
ϱ2k

− |a|
2ϱ2ℓ

− |b|
2

2|ab|ϱℓ
.

Alternatively, we can write (3-10) as

ϱk cos(kϕ)+ |b| cos(θb)= −|a|ϱℓ cos(ℓϕ+ θa),

ϱk sin(kϕ)+ |b| sin(θb)= −|a|ϱℓ sin(ℓϕ+ θa),

where repeated squaring and summation yield

(3-26) cos(kϕ− θb)= −
ϱ2k

− |a|
2ϱ2ℓ

+ |b|
2

2|b|ϱk .
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Now we analyze (3-25) and (3-26). Since the values of their right-hand sides
have to lie between −1 and 1, straightforward calculations imply

(3-27) |b|< ϱk
+ |a|ϱℓ, ϱk < |a|ϱℓ + |b|, |a|ϱℓ < ϱk

+ |b|

(the strict inequalities occur here due to sin(ℓϕ+ θa − θb) ̸= 0, sin(kϕ− θb) ̸= 0).
Further, to express ϕ from (3-25) and (3-26), we discuss the arguments of appropriate
goniometric functions appearing here.

Let sin(ℓϕ+θa −θb) > 0. Then |a|, |b| given by (3-24) are positive if and only if

sin(kϕ− θb) < 0, sin((k − ℓ)ϕ− θa) > 0.

Equivalently, there exist some integers u, v such that

(3-28)

(2v− 1)π < kϕ− θb < 2vπ,

−2uπ < (k − ℓ)ϕ− θa < (−2u + 1)π,

(2u + 2v− 2)π < ℓϕ+ θa − θb < (2u + 2v− 1)π.

Then, using (3-28), we can rewrite (3-25) and (3-26) into

ℓϕ+ θa − θb − (2u + 2v− 2)π = arccos
ϱ2k

− |a|
2ϱ2ℓ

− |b|
2

2|ab|ϱℓ

and

2vπ − (kϕ− θb)= arccos
−ϱ2k

+ |a|
2ϱ2ℓ

− |b|
2

2|b|ϱk ,

respectively. From here,

(3-29) ϕ =
(2v− 1)π +βϱ + θb

k
=
(2u + 2v− 1)π −αϱ − θa + θb

ℓ
.

The equality of two ratios in (3-29) is equivalent to

ku + (k − ℓ)v =
θ

2π
+

kαϱ + ℓβϱ

2π
.(3-30)

This particularly implies that

τ+

ϱ =
θ

2π
+

kαϱ + ℓβϱ

2π
is an integer.(3-31)

Moreover, (3-30) is the Diophantine equation (3-1) with τ = τ+
ϱ , which along with

(3-2), (3-4) and (3-29)1 yields

(3-32) ϕ = ϕ+
≡
(2v0τ

+
ϱ − 1)π +βϱ + θb

k
(mod 2π).
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Now let sin(ℓϕ+ θa − θb) < 0. An analogous argumentation yields

(2v− 2)π < kϕ− θb < (2v− 1)π,

(−2u − 1)π < (k − ℓ)ϕ− θa <−2uπ,

(2u + 2v− 1)π < ℓϕ+ θa − θb < (2u + 2v)π

for some integers u, v, and

(3-33) ϕ =
(2v− 1)π −βϱ + θb

k
=
(2u + 2v− 1)π +αϱ − θa + θb

ℓ
.

This implies

(3-34) ku + (k − ℓ)v =
θ

2π
−

kαϱ + ℓβϱ

2π
.

Therefore,

(3-35) τ−

ϱ =
θ

2π
−

kαϱ + ℓβϱ

2π
is an integer,

and (3-29)1 supported by (3-34), (3-2), (3-4) results in

(3-36) ϕ = ϕ−
≡
(2v0τ

−
ϱ − 1)π −βϱ + θb

k
(mod 2π).

If we summarize the conditions (3-14), (3-18), (3-21), (3-27), (3-31), and (3-35),
then we get the first assertion of Theorem 3.1. The formula (3-6) for arguments of
appropriate ϱ-modular roots then follows from (3-16), (3-19), (3-23), (3-32), and
(3-36).

Finally, we verify the observations mentioned in Remark 3.2. The part (a)
follows directly from the above proof procedures. We confirm the conditions
for the appearance of a ϱ-modular double root of p stated in the part (b). Let
z = ϱ exp(iϕ) be such a root. Then substitution into p(z)= p′(z)= 0 (supported
by some straightforward calculations) yields

(3-37) |a|ϱℓ = ϱk
+ |b| =

k
ℓ
ϱk .

This implies αϱ = 0, βϱ = π and θ/(2π)+ ℓ/2 is an integer. It is easy to verify
that (3-37) is equivalent with (3-8)1 and (3-8)2. Also,

ϕ+
≡

2v0τ
+
ϱ π + θb

k
(mod 2π), ϕ−

≡
(2v0τ

−
ϱ − 2)π + θb

k
(mod 2π)

due to (3-6). Since

τ+

ϱ =
θ

2π
+
ℓ

2
, τ−

ϱ =
θ

2π
−
ℓ

2
,
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we get ϕ+
= ϕ− by use of (3-3). Regarding the observation (c), the formula (3-9)

follows from alternate expressions of ϕ in (3-11), (3-29) and (3-33). More precisely,
while the use of first expressions in (3-11), (3-29) and (3-33) results into (3-6), the
use of the latter ones implies (3-9). □

Based on Theorem 3.1 and Remark 3.2, it is possible to deduce some other basic
root properties of complex trinomials. For example, assume that p has a couple of
complex conjugate imaginary roots z = ϱ exp(±iϕ)= ϱ exp(iϕ±), i.e., ϕ+

= −ϕ−.
Then, in addition to (3-7), the condition

(2v0τ
+
ϱ −1)π+βϱ+θb

k
+
(2v0τ

−
ϱ −1)π−βϱ+θb

k
= 2 jπ,

or equivalently,

(kθa − (k − ℓ)θb)v0 + ((k − ℓ)v0 − 1)π + θb = k jπ,(3-38)

has to be met for an integer j . Obviously, (3-7) and (3-38) imply θa, θb ∈ {0, π}.
Thus we get:

Corollary 3.3. Suppose p admits a pair of complex conjugate imaginary roots.
Then its coefficients a, b have to be real numbers.

To summarize our previous investigations: Theorem 3.1 is effective in the sense
that, for any ϱ> 0, it enables us to describe the set of all a, b, k, ℓ such that p admits
a ϱ-modular root. Moreover, we are able to specify arguments of such roots. Then
a crucial question arises, namely whether (and possibly how) this conclusion can
contribute to discussions on location of trinomial roots in the complex plane (see
problem (D)). In the next section, we are going to discuss this matter in more detail.

4. Calculating moduli and arguments of roots of p

We consider the trinomial p with arbitrary but fixed nonzero complex numbers a, b
and coprime positive integers k > ℓ. Let z = ϱ exp(iϕ), ϕ ∈ (−π, π], be a root of p.
Our task is to find conditions on ϱ and ϕ expressed in terms of entry parameters a,
b, k, ℓ.

By Theorem 3.1, z is a root of p if and only if (3-5) is true and

(4-1) θ + kαϱ + ℓβϱ = 2sπ or θ − (kαϱ + ℓβϱ)= 2sπ for an integer s,

αϱ, βϱ and θ being given by (1-1) and (1-2), respectively. To analyze (4-1), we
introduce the function

F(ϱ)= kαϱ + ℓβϱ = k arccos −ϱ2k
+|a|

2ϱ2ℓ
+|b|

2

2|ab|ϱℓ
+ ℓ arccos ϱ

2k
−|a|

2ϱ2ℓ
+|b|

2

2|b|ϱk



52 JAN ČERMÁK, LUCIE FEDORKOVÁ AND JIŘÍ JÁNSKÝ

whose domain is described just by the triplet of inequalities (3-5). Then (4-1)
becomes

(4-2) F(ϱ)= |θ − 2sπ |, s is an integer.

In the sequel, we describe some basic properties of F , namely its domain D(F),
image H(F) and monotony.

To clarify the domain of F with respect to (3-5), we need to perform a proper
sign analysis of real trinomials

Q1(ϱ)= ϱk
+|a|ϱℓ−|b|, Q2(ϱ)= ϱk

−|a|ϱℓ−|b|, Q3(ϱ)= ϱk
−|a|ϱℓ+|b|

considered for ϱ ≥ 0. On this account, we put

(4-3) σ(k, ℓ)=
k

k−ℓ

(
k−ℓ

ℓ

)ℓ/k
.

Then, based on elementary calculations, the following observations hold.

Proposition 4.1. (i) There is a unique positive root ξL of Q1 such that Q1(ϱ) < 0
for all 0 ≤ ϱ < ξL , and Q1(ϱ) > 0 for all ϱ > ξL .

(ii) There is a unique positive root ξR of Q2 such that Q2(ϱ) < 0 for all 0 ≤ ϱ < ξR ,
and Q2(ϱ) > 0 for all ϱ > ξR .

(iii) If |a| |b|
(ℓ−k)/k < σ(k, ℓ), then Q3 is positive for all ϱ ≥ 0.

(iv) If |a| |b|
(ℓ−k)/k

= σ(k, ℓ), then a unique positive double root ξM of Q3 appears
(and Q3 is positive otherwise).

(v) If |a| |b|
(ℓ−k)/k > σ(k, ℓ), then Q3 has a couple of positive roots ξM1 < ξM2

such that Q3(ϱ) > 0 if either 0 ≤ ϱ < ξM1 , or ϱ > ξM2 , and Q3(ϱ) < 0 whenever
ξM1 < ϱ < ξM2 .

(vi) If the assumption of the property (iii), or (iv), or (v) holds, then

ξL < ξR, or ξL < ξM < ξR, or ξL < ξM1 < ξM2 < ξR,

respectively.

Remark 4.2. In a slightly different context, the properties (i)–(vi) were described
for a triplet of related trinomials Φ, χ , Ψ in [Melman 2012].

Thus, keeping in mind (3-5), we get the following description of the domain of F .

Lemma 4.3. Let ξL , ξR and ξM1 , ξM2 be positive roots of Q1, Q2 and Q3, respec-
tively, whose existence is guaranteed by the conditions of Proposition 4.1.

(i) If |a| |b|
(ℓ−k)/k

≤ σ(k, ℓ), then D(F)= [ξL , ξR].

(ii) If |a| |b|
(ℓ−k)/k > σ(k, ℓ), then D(F)= [ξL , ξM1] ∪ [ξM2, ξR].
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The next assertion reveals other important properties of F (we still assume that
ξL , ξR and ξM1 , ξM2 are positive roots of Q1, Q2 and Q3, respectively).

Lemma 4.4. The function F defines a strictly increasing mapping of D(F) onto
H(F)= [0, kπ ]. This mapping is continuous on [ξL , ξR] provided |a| |b|

(ℓ−k)/k
≤

σ(k, ℓ), and it is continuous on [ξL , ξM1] and [ξM2, ξR] provided |a| |b|
(ℓ−k)/k >

σ(k, ℓ). In this case, F(ξM1)= F(ξM2)= ℓπ .

Proof. Obviously, the values of F are nonnegative. More precisely, F(ξL)= 0, and
F(ϱ) > 0 for all ϱ ∈ D(F), ϱ > ξL . Direct calculations confirm that F(ξR)= kπ
and F(ξM1)= F(ξM2)= ℓπ . It remains to show that F is strictly increasing on its
domain.

After some straightforward calculations and using the relations

(2|ab|ϱℓ)2 − (−ϱ2k
+ |a|

2ϱ2ℓ
+ |b|

2)2 = −Q1(ϱ)Q2(ϱ)Q3(ϱ)(ϱ
k
+ |a|ϱℓ + |b|),

(2|b|ϱk)2 − (ϱ2k
− |a|

2ϱ2ℓ
+ |b|

2)2 = −Q1(ϱ)Q2(ϱ)Q3(ϱ)(ϱ
k
+ |a|ϱℓ + |b|),

one gets the derivative of F with respect to ϱ in the form

F ′(ϱ)=
−G(ϱ)√

−Q1(ϱ)Q2(ϱ)Q3(ϱ)(ϱk + |a|ϱℓ + |b|)
,

where

G(ϱ)= 2k |ab|ϱℓ
(

−ϱ2k
+ |a|

2ϱ2ℓ
+ |b|

2

2|ab|ϱℓ

)′

+ 2ℓ|b|ϱk
(
ϱ2k

− |a|
2ϱ2ℓ

+ |b|
2

2|b|ϱk

)′

.

Then

F ′(ϱ)=
2(k2ϱ2k

− kℓϱ2k
− kℓ|a|

2ϱ2ℓ
+ ℓ2

|a|
2ϱ2ℓ

+ kℓ|b|
2)

ϱ
√

−Q1(ϱ)Q2(ϱ)Q3(ϱ)(ϱk + |a|ϱℓ + |b|)
,

i.e.,

F ′(ϱ)=
2(−kϱk

+ ℓ|a|ϱℓ)2 − 2kℓQ2(ϱ)Q3(ϱ)

ϱ
√

−Q1(ϱ)Q2(ϱ)Q3(ϱ)(ϱk + |a|ϱℓ + |b|)
, Q1(ϱ)Q2(ϱ)Q3(ϱ) ̸= 0.

Since Q2(ϱ)Q3(ϱ)≤0 on D(F), F ′ is positive on (ξL , ξR) provided |a| |b|
(ℓ−k)/k

≤

σ(k, ℓ), and it is positive on (ξL , ξM1)∪ (ξM2, ξR) provided |a| |b|
(ℓ−k)/k > σ(k, ℓ).

Since F(ξM1)= F(ξM2), we can conclude that F is strictly increasing on D(F). □

Now we come back to the analysis of (4-2). Based on Lemma 4.4, its geometric
interpretation is the following: we search for intersections ϱ of the function F
(whose values are monotonically varying on H(F)= [0, kπ ]), and the modulus of
the value θ moved via an integer multiple s of 2π .

To ensure the existence of such an intersection (and thus also solvability of (4-2)),
we have to require

−kπ ≤ θ − 2sπ ≤ kπ.
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This condition generates k integer values of s up to the case when θ/π + k is an
even integer. In this case, there are k + 1 integer values of s meeting the previous
inequality; in particular, it is satisfied in the form of equality for two values of s,
namely for s = θ/(2π)− k/2 and s = θ/(2π)+ k/2. Substitution of both these
values into (4-2) yields the same equation F(ϱ)= kπ having the unique root ξR .
Also, (3-6) yields the same value of the argument ϕ for both the values. Altogether,
these two values of s generate the same (simple) root of p; hence we can restrict to

−kπ < θ − 2sπ ≤ kπ,

i.e.,

(4-4) s =

⌈
θ

2π
−

k
2

⌉
,

⌈
θ

2π
−

k
2

⌉
+ 1, . . . ,

⌈
θ

2π
+

k
2

⌉
− 1.

Now let (s1, . . . , sk) be a permutation of the k-tuple of integers from (4-4) such that

(4-5) |θ − 2s jπ | ≤ |θ − 2s j+1π | for all j = 1, . . . , k − 1.

For the sake of uniqueness, if the equality sign occurs here (it happens just when
θ is an integer multiple of π), then we assume θ − 2s jπ > 0 and θ − 2s j+1π < 0.
To get a more explicit prescription for s j , it is enough to rewrite (4-5) as∣∣∣∣ θ2π − s j

∣∣∣∣ ≤

∣∣∣∣ θ2π − s j+1

∣∣∣∣ for all j = 1, . . . , k − 1,

i.e., values s j are ordered with respect to their distance from θ/(2π). Using this
geometric interpretation, it is easy to check that

(4-6) s1 = round
(
θ

2π

)
, s j = s1 + κ

⌊
j
2

⌋
, j = 2, . . . , k,

where round( · ) means the nearest integer value
(
if θ/π is an odd integer, then we

put s1 = θ/(2π)− 1
2

)
, and κ = (−1) j if s1<θ/(2π), or κ = (−1) j+1 if s1 ≥ θ/(2π).

Now we are ready to formulate an algorithm for computations of moduli and
arguments of roots of a given trinomial.

Theorem 4.5. Let z j = ϱ j exp(iϕ j ), ϕ j ∈ (−π, π], j = 1, . . . , k, be roots of p,
where a, b are nonzero complex numbers and k > ℓ are coprime positive integers.
Further, let s j , j = 1, . . . , k, be given by (4-6). Then ϱ j are (unique) roots of

(4-7) F(ϱ)= |θ − 2s jπ |, j = 1, . . . , k,

and

(4-8) ϕ j ≡


(2v0s j − 1)π +βϱ j + θb

k
(mod 2π) if θ − 2s jπ ≤ 0,

(2v0s j − 1)π −βϱ j + θb

k
(mod 2π) if θ − 2s jπ > 0.
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Here, v0 is the second component of a couple of Bézout coefficients (u0, v0) satisfy-
ing (3-3), and βϱ j are given by (1-1) with ϱ = ϱ j .

Remark 4.6. Theorem 4.5 offers a computational procedure for finding moduli ϱ j

and arguments ϕ j of all roots of p. Based on this procedure, we are able to find all k
moduli ϱ j as roots of k (real) transcendental equations (4-7) with appropriate integer
values s j , j = 1, . . . , k, given by (4-6). In particular, we can a priori determine s j

such that (4-7) generates the maximal modulus. Then, a deeper analysis of such
an equation may result in strong bounds of the maximal modulus. Note that this
matter is crucial (and still insufficiently analyzed) in the frame of asymptotic theory
for autonomous difference equations.

Despite a lot of literature on solving sparse polynomials (see, for example,
[Tonelli-Cueto and Tsigaridas 2023]), we believe that Theorem 4.5 can provide a
new insight into the distribution problem of trinomial roots. By (4-7), the moduli ϱ j

are the intersections of the transcendental function F (depending on moduli of a, b),
and a constant function (depending on arguments of a, b) that is moved (in modulus)
via an integer multiple of 2π . Furthermore, (4-8) yields the exact formula for the
dependence of arguments ϕ j on moduli ϱ j . Besides its direct meaning, this formula
might be useful in discussions on argument discrepancies and related equidistribution
properties of roots of complex trinomials (see, for example, [D’Andrea et al. 2014]
and [Erdős and Turán 1950]).

Some other comments on the application of Theorem 4.5 are presented in
Example 5.3.

Proof of Theorem 4.5. The part describing calculations of the moduli ϱ j follows
from observations preceding this assertion. The formula (4-8) for the values of
arguments ϕ j is a direct consequence of (3-6). □

Now we present two consequences of Theorem 4.5. The first assertion answers
problem (C), that is, formulates conditions under which p has two roots with the
same modulus.

Corollary 4.7. Let ϱ j , j = 1, . . . , k, be moduli of roots of p labeled with respect
to (4-7). Further, let ξL , ξR and ξM , ξM1 , ξM2 be positive roots of Q1, Q2 and Q3,
respectively (their existence is guaranteed by Proposition 4.1). Finally, let θ and
σ(k, ℓ) be given by (1-2) and (4-3), respectively. We distinguish two cases:

(i) If θ/π is not an integer, then the ϱ j satisfy the strict inequality

ξL < ϱ1 < ϱ2 < · · ·< ϱk < ξR.

(ii) If θ/π is an integer, then the ordering of ϱ j is summarized in Table 1. Here,
we use the symbols E or O if the appropriate integer values are even or odd,
respectively, and put 6 =6(a, b, k, ℓ)= |a| |b|

(ℓ−k)/k/σ(k, ℓ).
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θ/π k ℓ 6
moduli ϱ j ( j = 1, . . . , k):

their ordering and specific values

E O O ξL = ϱ1 < ϱ2 = ϱ3 < · · ·< ϱk−1 = ϱk < ξR

O O E ξL < ϱ1 = ϱ2 < · · ·< ϱk−2 = ϱk−1 < ϱk = ξR

< 1
ξL < ϱ1 = ϱ2 < · · ·< ϱℓ

= ϱℓ+1 < · · ·< ϱk−1 = ϱk < ξR

O E O = 1
ξL < ϱ1 = ϱ2 < · · ·< ϱℓ = ξM

= ϱℓ+1 < · · ·< ϱk−1 = ϱk < ξR

> 1
ξL < ϱ1 = ϱ2 < · · ·< ϱℓ

= ξM1 < ξM2 = ϱℓ+1 < · · ·< ϱk−1 = ϱk < ξR

E E O ξL = ϱ1 < ϱ2 = ϱ3 < · · ·< ϱk−2 = ϱk−1 < ϱk = ξR

< 1
ξL = ϱ1 < ϱ2 = ϱ3 < · · ·< ϱℓ

= ϱℓ+1 < · · ·< ϱk−1 = ϱk < ξR

E O E = 1
ξL = ϱ1 < ϱ2 = ϱ3 < · · ·< ϱℓ = ξM

= ϱℓ+1 < · · ·< ϱk−1 = ϱk < ξR

> 1
ξL = ϱ1 < ϱ2 = ϱ3 < · · ·< ϱℓ

= ξM1 < ξM2 = ϱℓ+1 < · · ·< ϱk−1 = ϱk < ξR

< 1
ξL < ϱ1 = ϱ2 < · · ·< ϱℓ

= ϱℓ+1 < · · ·< ϱk−2 = ϱk−1 < ϱk = ξR

O O O = 1
ξL < ϱ1 = ϱ2 < · · ·< ϱℓ = ξM

= ϱℓ+1 < · · ·< ϱk−2 = ϱk−1 < ϱk = ξR

> 1
ξL < ϱ1 = ϱ2 < · · ·< ϱℓ = ξM1 < ξM2

= ϱℓ+1 < · · ·< ϱk−2 = ϱk−1 < ϱk = ξR

Table 1. Ordering of moduli ϱ j ( j = 1, . . . , k) provided θ/π is
an integer (for several specific values of k and ℓ, some parts of
the presented inequalities lose a formal sense; in such cases, these
inequalities need to be simplified appropriately).

Proof. If θ/π is not an integer, then the strict ordering of moduli ϱ j follows from
the strict monotony of the sequence (|θ − 2s jπ |)kj=1. If θ/π is an integer, then
|θ−2s jπ |= |θ−2s j+1π |; hence ϱ j =ϱ j+1 for some j = 1, . . . , k−1. Furthermore,
θ/π is an integer if and only if at least one of the numbers

θ

π
,

θ

π
+ k,

θ

π
+ ℓ

is even (note that all three values cannot be simultaneously even). This implies six
parity variants concerning θ/π , k and ℓ that produce slightly different conclusions on
the ordering of the ϱ j presented in Table 1 (this ordering reflects a type of monotony
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of the sequence (|θ − 2s jπ |)kj=1, and its derivation is quite straightforward for any
of the six variants). □

Remark 4.8. If θ/π is an integer, then Table 1 immediately implies the following
location of moduli ϱ j , j = 1, . . . , k (we still assume that the ϱ j are labeled with
respect to (4-7)): Let |a| |b|

(ℓ−k)/k > σ(k, ℓ). Then

(4-9) ξL ≤ ϱ j ≤ ξM1, j = 1, . . . , ℓ, and ξM2 ≤ ϱ j ≤ ξR, j = ℓ+ 1, . . . , k.

In fact, it is easy to check that (4-9) holds for noninteger values of θ/π as well.
Indeed, by Proposition 4.1 (the case (vi)) and Lemma 4.4, it is enough to search for
a number of solutions of (4-2), where ξL ≤ ϱ ≤ ξM1 , i.e., 0 ≤ F(ϱ)≤ ℓπ . Thus, we
need to find all s j from (4-6) such that ℓπ ≥ |θ − 2s jπ |. Equivalently,

θ

2π
−
ℓ

2
< s j <

θ

2π
+
ℓ

2
.

Exactly ℓ values of s j from (4-6) (namely s1, . . . , sℓ) satisfy these inequalities.

As the second consequence of Theorem 4.5, we state some interesting connections
between moduli and arguments of roots zℓ, zℓ+1 of p. In particular, we describe
the situation when p has two roots with the same argument.

Corollary 4.9. Let ϱ j and ϕ j , j = ℓ, ℓ+ 1, be moduli and arguments of roots zℓ,
zℓ+1 of p labeled with respect to (4-7) and (4-8), respectively. Let θ and σ(k, ℓ) be
given by (1-2) and (4-3), respectively, and let θ/π and ℓ have the same parity. Then
three qualitatively different relations between moduli and arguments of zℓ, zℓ+1 can
occur:

(i) If |a| |b|
(ℓ−k)/k < σ(k, ℓ), then ϱℓ = ϱℓ+1 and ϕℓ ̸= ϕℓ+1 (i.e., we have two

distinct simple roots zℓ ̸= zℓ+1 with the same moduli and different arguments).

(ii) If |a| |b|
(ℓ−k)/k

= σ(k, ℓ), then ϱℓ= ϱℓ+1 and ϕℓ=ϕℓ+1 (i.e., we have a double
root zℓ = zℓ+1).

(iii) If |a| |b|
(ℓ−k)/k > σ(k, ℓ), then ϱℓ < ϱℓ+1 and ϕℓ = ϕℓ+1 (i.e., we have two

distinct simple roots zℓ ̸= zℓ+1 with the same arguments and different moduli).

Proof. Since θ/π and ℓ have the same parity, the properties (i) and (ii) follow from
Table 1 (with respect to the conditions of Remark 3.2 (b)).

Let |a| |b|
(ℓ−k)/k > σ(k, ℓ). Then ϱℓ = ξM1 < ξM2 = ϱℓ+1. Because of (3-6)

and the fact that αϱℓ = αϱℓ+1 = 0, βϱℓ = βϱℓ+1 = π , the arguments ϕℓ and ϕℓ+1 are
generated by the formula

ϕ±
≡
(θ±ℓπ)v0−π±π+θb

k
(mod 2π).

Since
(θ−ℓπ)v0−2π+θb

k
=
(θ+ℓπ)v0+θb

k
−
ℓv0+1

k
2π,

both the values ϕ± coincide, that is, ϕℓ = ϕℓ+1. □
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5. Some comparisons with existing results

We compare conclusions of our main results (Theorems 3.1 and 4.5) with previous
answers to problems (B)–(D).

5.1. Problem (B) — Theorem 3.1 and some earlier results. We start with compar-
isons between our Theorem 3.1 and Theorem 4.1 of [Theobald and de Wolff 2016]
solving problem (B). Its formulation uses a roulette curve called a hypotrochoid
which depends on three general positive real constants r , R, d with r < R. In the
Gauss a-plane, this curve can be described by the parametric equation

ℜ(a)+ iℑ(a)= (R − r) exp(it)+ d exp
(

i
r − R

r
t
)
,

where t is a real parameter. If R/r is a rational number, then the hypotrochoid
is a closed curve (for more interesting properties of this curve see [Lockwood
2007]). The assertion of Theorem 4.1 of [Theobald and de Wolff 2016] now can be
formulated as follows:

Let b be a nonzero complex number, k > ℓ be coprime positive integers,
and let ϱ be a positive real number. Then p has a ϱ-modular root z if
and only if its complex coefficient a is located on a hypotrochoid up to a
rotation with parameters

R =
kϱk−ℓ

ℓ
, r =

(k − ℓ)ϱk−ℓ

ℓ
, d = |b|ϱ−ℓ.

Equivalently, this condition says that p has a ϱ-modular root z if and only if its
complex coefficient a satisfies

(5-1)
ℜ(a)= −(R − r) cos

(
t +

r
R
θb

)
− d cos

(
r − R

r
t +

r
R
θb

)
,

ℑ(a)= −(R − r) sin
(

t +
r
R
θb

)
− d sin

(
r − R

r
t +

r
R
θb

)
for a suitable t ∈ (−(k − ℓ)π, (k − ℓ)π ].

To compare this result with Theorem 3.1, we rearrange the conclusions of
Theorem 3.1 in the following way: if b is considered to be fixed, then we need to
find all complex values a such that

(5-2)
∣∣ϱk−ℓ

− |b|ϱ−ℓ
∣∣ ≤ |a| ≤ ϱk−ℓ

+ |b|ϱ−ℓ,

and at least one of the values τ±
ϱ is an integer. Equivalently,

(5-3) θa = ±

(
αϱ +

ℓ

k
βϱ

)
+
(k − ℓ)(θb −π)

k
+

2mπ
k
,
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where m is a positive integer such that −π < θa ≤ π (it is easy to check that there
exist at most 2k integer values of m with this property). Thus, (5-3) offers a polar
representation of all coefficients a such that p has a ϱ-modular root z. Notice
that this representation provides an explicit dependence of the argument θa on
modulus |a| (we recall that |a| is involved in αϱ and βϱ introduced by (1-1)). In
the Gauss a-plane, (5-3) defines a closed curve whose parts are generated by the
above specified integer values of m.

To demonstrate the usefulness of this polar representation, we utilize Example 4.2
of [Theobald and de Wolff 2016] serving as an illustration of Theorem 4.1 of the
same article.

Example 5.1. We describe the set of all complex numbers a such that the trinomial

f (z)= z5
+ az + 1

has a unimodular root. By Theorem 4.1 of [Theobald and de Wolff 2016], this
occurs if and only if the complex coefficient a is located on the trajectory of the
hypotrochoid with parameters R = 5, r = 4, d = 1, or equivalently (according
to (5-1)), a satisfies the equations

ℜ(a)= −cos(t)− cos
(

t
4

)
, ℑ(a)= −sin(t)+ sin

(
t
4

)
,

where t ∈ (−4π, 4π ]. Now we apply conclusions of our previous considerations
following from Theorem 3.1. If we put b = 1, k = 5, ℓ= 1 and ϱ = 1, then

α1 = arccos
|a|

2
, β1 = arccos

2 − |a|
2

2
= π − 2 arccos

|a|

2
,

and (5-2), (5-3) become

(5-4) 0 ≤ |a| ≤ 2, θa = ±
1
5

(
π + 3 arccos

|a|

2

)
+

2mπ − 4π
5

.

In the case of the plus variant, (5-4) can be rewritten (using straightforward calcula-
tions) as

(5-5) |a| = 2 cos
(

5
3
θa + s+π

)
, θa ∈

[
−6s+π

10
,

3π − 6s+π

10

]
,

where s+
=

5
3 , 1, 1

3 ,−
1
3 ,−1.

(
To be consistent with the assumption −π < θa ≤ π ,

we formally remove the left endpoint from this interval if s+
=

5
3 .

)
Similarly, if the

minus sign is considered in (5-4), then we get the remaining set of conditions, namely

(5-6) |a| = 2 cos
(

5
3
θa + s−π

)
, θa ∈

[
−3π − 6s−π

10
,
−6s−π

10

]
,
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s = 1−+

s =1−
s =1+

s = 1−−

−s = 1
3−−

−s = 1
3−+

−s = 5
3−−

−s = 1
3

−

−s = 1
3

+
−s = 5
3

+

− 2.0 −1.5 −1.0 − 0.5 0.5 1.0 1.5 2.0− 2.0 0.5

2.0

1.5

1.0

0.5

− 0.5

−1.0

−1.5

− 2.0

0

(a)

(a)
0

Figure 1. Parts of hypotrochoid described by (5-5) (curves labeled
with the corresponding values of s+) and (5-6) (dashed curves
labeled with the corresponding values of s−).

where s−
= 1, 1

3 ,−
1
3 ,−1,− 5

3 . Thus, (5-5) and (5-6) yield polar descriptions of all
coefficients a such that f has a unimodular root. The corresponding curves are
depicted in the a-plane in Figure 1.

Analogously, we can proceed in a more general case when the powers k = 5 and
ℓ= 1 in f are replaced by general coprime integers k>ℓ. In this case, the trinomial

g(z)= zk
+ azℓ + 1

has a unimodular root if and only if

(5-7) 0 ≤ |a| ≤ 2, θa = ±
1
k

(
ℓπ + (k − 2ℓ) arccos

|a|

2

)
−
(k − ℓ)π

k
+

2mπ
k
,

where m is a positive integer such that −π < θa ≤ π . Moreover, (5-7) can possibly
be converted into polar forms analogous to (5-5) and (5-6).

Such polar representations can offer a better insight into the structure of all
complex numbers a such that p has a root with a given modulus. Among others,
they enable us to decide immediately whether a given complex number a has this
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property. If the answer is affirmative, then Theorem 3.1 provides an additional
benefit, namely calculation of the argument of such a root.

Example 5.2. We consider the trinomial f with a = 1 +
√

2/2 +
(√

2/2
)
i, and

discuss the existence of its unimodular root. First, we apply directly Theorem 3.1.
After checking (3-5), one gets τ+

1 = 3, τ−

1 = 1.625, which implies that f (with the
above specified coefficient a) actually has a unique unimodular root. The Bézout
coefficients for the couple (5, 4) are u0 = 1, v0 = −1 due to (3-3). Then, using
(3-6) with β1 = 3π/4 and θb = 0, one can find the exact form of this unimodular
root, namely z = exp(−5π i/4). Of course, verification of the existence of this
unimodular root of f can be equivalently done by (5-5), (5-6).

On the other hand, application of Theorem 4.1 of [Theobald and de Wolff 2016]
to this problem is more complicated. In general, numerical solution of a nonlinear
equation with unknown parameter t is required.

5.2. Problem (D) — Theorem 4.5 and some earlier results. Now we turn our atten-
tion to Theorem 4.5 and its relevance with respect to previous results dealing with
problem (D). In [Avendaño et al. 2018], the explicit metric bounds, circumscribing
the annuli where log-moduli of roots of p cluster, are derived by use of a concept
of Archimedean tropical variety. However, currently strongest bounds on moduli
and arguments of roots of p were presented in [Melman 2012]; hence we shortly
comment on the main results of this paper. Here, k disjoint annular sectors, each
containing just one root of p were derived. More precisely, [Melman 2012] analyzes
location of roots of p with b = −1 (which can be done without loss of generality).
On this account, we involve this formal simplification in our next considerations as
well. Forms of these sectors slightly differ with respect to the cases |a|> σ(k, ℓ)
and |a|< σ(k, ℓ). In the sequel, we comment on the first case (discussions of the
latter one are analogous).

If |a|> σ(k, ℓ), then Theorem 4.1 of [Melman 2012] describes several bounds
on moduli and arguments of roots z j = ϱ j exp(iϕ j ) of p labeled so that ϱ j ≤ ϱ j+1,
j = 1, . . . , k − 1. The strongest bounds on the ϱ j following from Theorem 4.1 and
Remarks 4.2 of [Melman 2012] are given by (4-9) (thus, our observations made
in Remark 4.8 confirm these bounds). Similarly, the arguments ϕ j are located in
k disjoint intervals whose lengths again depend on whether j belongs to the set
{1, . . . , ℓ}, or {ℓ+ 1, . . . , k} (for more details, including bounds not utilizing ξL ,
ξR , ξM1 , ξM2 , see [Melman 2012]).

Now we clarify the position of Theorem 4.5 with respect to problem (D) and
results from [Melman 2012]. Theorem 4.5 enables us to calculate moduli ϱ j of
the k roots of p as a numerical solution of the k transcendental equations (4-7)
which differ from each other only by an additive constant appearing on their right-
hand side. Also, the interval [ξL , ξR] was introduced here as a localization interval
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containing just one root for each of these equations. Notice that this interval can
be slightly precised due to (4-9). Then, using an appropriate procedure (such as
the bisection method) applied to (4-7), lengths of these localization intervals can
be made arbitrarily small, and moduli ϱ j of all roots of p can be computed with
any prescribed precision. Finally, having at our disposal moduli of roots, their
arguments are given directly by (4-8).

We demonstrate this algorithm via Example 4.4 of [Melman 2012] that illustrated
bounds derived in Theorem 4.1 of that same article.

Example 5.3. We consider the trinomial

h(z)= z10
− (1.6 + i)z7

− 1.

In this case, a = −1.6− i, b = −1, k = 10 and ℓ= 7; hence |a| =
√

89/5 = 1.8868
and σ(10, 7)= 1.8420. Let z j = ϱ j exp(iϕ j ), j = 1, . . . , 10, be roots of h labeled
in a way so that ϱ j ≤ ϱ j+1, j = 1, . . . , 9. Using tropical methods, one can obtain
that the z j cluster around the circles with radii r1 = 0.9133 and r2 = 1.2357
for j = 1, . . . , 7 and j = 8, 9, 10, respectively. The explicit bounds given by
Theorem 1.5 of [Avendaño et al. 2018] are nevertheless too wide, namely

0.4566 ≤ ϱ j ≤ 2.4714, j = 1, . . . , 10.

Example 4.4 of [Melman 2012] presents several tighter bounds for ϱ j ; the best of
them, based on (4-9), yield

(5-8)
0.8746 ≤ ϱ j ≤ 1.0389, j = 1, . . . , 7,

1.1438 ≤ ϱ j ≤ 1.2744, j = 8, 9, 10.

We employ Theorem 4.5 to specify values of these moduli. Doing this, we follow
the algorithm summarized in Remark 4.6. First, (4-6) with θ = −25.8299 yields

s1 = −4, s2= −5, s3 = −3, s4= −6, s5 = −2,

s6 = −7, s7= −1, s8 = −8, s9 = 0, s10 = −9.

Then, by (4-7), moduli ϱ j of roots z j are solutions of

(5-9) 10 arccos(−0.2650ϱ13
+ 0.9434ϱ7

+ 0.2650ϱ−7)

+ 7 arccos(0.5ϱ10
− 1.78ϱ4

+ 0.5ϱ−10)

= |25.8299 + 2s jπ |, j = 1, . . . , 10.

A clear geometric interpretation of these equations, depicted in Figure 2, offers a
better understanding of the location of all the moduli (obviously, ϱ j ≤ ϱ j+1, j =

1, . . . , 9). As localization intervals for the use of appropriate numerical calculations,
the bounds (5-8) can be used (of course, lengths of these intervals can be made
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F
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xM2
xM1

10987654
321

1.251.21.151.101.051.00

10 p
30.709

25.830
24.436

19.547
18.152

13.264
11.869

6.980
5.586

0.697

7 p

0.950.9

Figure 2. Geometric illustration of (5-9), and specification of some
significant values.

arbitrarily small due to (5-9)). MATLAB’s fzero routine1 provides (in its default
setting) the roots of (5-9) as

ϱ1 = 0.8746, ϱ2= 0.8803, ϱ3 = 0.8836, ϱ4= 0.9027, ϱ5 = 0.9108,

ϱ6 = 0.9557, ϱ7= 0.9771, ϱ8 = 1.2140, ϱ9= 1.2379, ϱ10 = 1.2739.

Knowing moduli of all 10 roots of h now enables us, along with the formula (4-8),
to directly compute their arguments as

ϕ1 = 1.2632, ϕ2= 3.0882, ϕ3 = −0.5613, ϕ4= −1.3737, ϕ5 = −2.3808,

ϕ6 = 0.4322, ϕ7= 2.1059, ϕ8 = 2.3238, ϕ9 = 0.1467, ϕ10 = −1.9025.

5.3. Problem (C) — Corollaries 4.7, 4.9, and some earlier results. Finally, we
consider some consequences of Theorem 4.5 (discussed in Corollaries 4.7, 4.9,
and summarized in Table 1) confirming and extending a series of assertions from
[Theobald and de Wolff 2016] that are related to problem (C). In particular, our
previous discussions confirmed that at most two roots of p have the same modulus
(see also Proposition 4.3 of [Theobald and de Wolff 2016]), and formulated condi-
tions under which two roots of p share the same modulus (see also Theorems 4.4
and 4.9 of [Theobald and de Wolff 2016]). Also, we clarified whether equality or
strict inequality occurs between moduli ϱℓ and ϱℓ+1 of roots zℓ and zℓ+1 of a given
trinomial p (see also Corollary 4.13 of [Theobald and de Wolff 2016]).

1The fzero algorithm uses a combination of bisection, secant, and inverse quadratic interpolation
methods — the so-called Brent’s method. It is known that the order of convergence is superlinear for
well-behaved functions.
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θa |a| j = 1, . . . , 5

π/2 6 ϱ j : 0.5426< 0.5498< 0.5587< 2.4397< 2.4593
ϕ j : 0.5312, −1.5875, 2.6274, 2.3521, −0.7815

0 6 ϱ j : 0.5416< 0.5546 = 0.5546< 2.4498 = 2.4498
ϕ j : π, 1.0318 ̸= −1.0318, −1.5765 ̸= 1.5765

1.95 ϱ j : 0.7534 = 0.7534< 1.0842 = 1.0842< 1.4990
ϕ j : 2.0297 ̸= −2.0297, −0.0415 ̸= 0.0415, π

π σ(5, 3) ϱ j : 0.7524 = 0.7524< 1.0845 = 1.0845< 1.5018
ϕ j : 2.0301 ̸= −2.0301, 0 = 0, π

1.97 ϱ j : 0.7516 = 0.7516< 1.0413< 1.1301< 1.5045
ϕ j : 2.0304 ̸= −2.0304, 0 = 0, π

Table 2. Moduli ϱ j and arguments ϕ j of roots z j of q with given a,
j = 1, . . . , 5.

We illustrate these observations by an extended version of a part of Example 4.10
of [Theobald and de Wolff 2016] that supported theoretical results obtained in that
same article.

Example 5.4. We consider the trinomial

q(z)= z5
+ az3

+ 1.

Again, let z j = ϱ j exp(iϕ j ) be roots of q labeled so that ϱ j ≤ ϱ j+1, j = 1, . . . , 4.
Note that q with a = 6 was considered in Example 4.10 of [Theobald and de Wolff
2016] where the resulting relations between moduli ϱ j appeared in the form

ϱ1 < ϱ2 = ϱ3 < ϱ4 = ϱ5.

Based on Corollaries 4.7, 4.9 and Table 1, we perform the same discussion on ϱ j

with respect to the variable complex number a considered in q. Also, we state
relations between some values of the arguments ϕ j . Doing this, we first notice
that considering the trinomial q we have k = 5, ℓ = 3, b = 1, θ = 5θa + 2π and
σ(5, 3)= 1.9601. Then observations made in Corollaries 4.7, 4.9 and summarized
in Table 1 imply (see Table 2):

• Let θa ̸= jπ/5 for any integer j . Then

ϱ1 < ϱ2 < ϱ3 < ϱ4 < ϱ5.

• Let θa = jπ/5 for some j = 0,±2,±4 (we note that this case includes the above
choice a = 6). Then

ϱ1 < ϱ2 = ϱ3 < ϱ4 = ϱ5, ϕ2 ̸= ϕ3, ϕ4 ̸= ϕ5.
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• Let θa = jπ/5 for some j = ±1,±3, 5, and let |a|< σ(5, 3). Then

ϱ1 = ϱ2 < ϱ3 = ϱ4 < ϱ5, ϕ1 ̸= ϕ2, ϕ3 ̸= ϕ4.

• Let θa = jπ/5 for some j = ±1,±3, 5, and let |a| = σ(5, 3). Then

ϱ1 = ϱ2 < ϱ3 = ϱ4 < ϱ5, ϕ1 ̸= ϕ2, ϕ3 = ϕ4.

• Let θa = jπ/5 for some j = ±1,±3, 5, and let |a|> σ(5, 3). Then

ϱ1 = ϱ2 < ϱ3 < ϱ4 < ϱ5, ϕ1 ̸= ϕ2, ϕ3 = ϕ4.

6. Concluding remarks

We focused on several basic questions concerning moduli and arguments of roots of
complex trinomials. Keeping in mind that similar problems were topics of many ear-
lier investigations, we aimed to offer new views and new answers to these questions.

Our two main results analyzed problems (B) and (D) stated in the introduction.
The assertion of Theorem 3.1 enabled us to describe the set of all entry parameters
of a general trinomial p such that p has a root with a prescribed modulus. We
were able to calculate the arguments of such roots, and thus obtain their complete
identification. Theorem 4.5 described a procedure how to localize and compute
moduli and arguments of roots of complex trinomials with arbitrary precision.

We believe that these results and their consequences can contribute not only to
trinomial theory itself, but also to other areas connected with questions we discussed.
In particular, conclusions of Corollary 2.3 and Theorem 3.1 have a considerable
application potential towards qualitative theory of autonomous difference equations
(stability of their equilibria, existence of periodic solutions, asymptotic bounds
of solutions). Also, the comparisons performed in Section 5 indicate alternate
possibilities of numerical evaluation of roots of complex trinomials, and new insights
into analytic descriptions of some roulette curves (hypotrochoids, epitrochoids). Of
course, investigations of problems (A)–(D) in the context of polynomials with more
than three terms remain the main (and probably very difficult) challenge.
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ON THE TRANSIENT NUMBER OF A KNOT

MARIO EUDAVE-MUÑOZ AND JOAN CARLOS SEGURA-AGUILAR

The transient number of a knot K , denoted tr(K ), is the minimal number of
simple arcs that have to be attached to K , in order for K to be homotoped
to a trivial knot in a regular neighborhood of the union of K and the arcs.
We give a lower bound for tr(K ) in terms of the rank of the first homology
group of the double branched cover of K . In particular, if tr(K ) = 1, then
the first homology group of the double branched cover of K is cyclic. Using
this, we can calculate the transient number of many knots in the tables and
show that there are knots with arbitrarily large transient number.

1. Introduction

Let K be a knot in the 3-sphere and let M be a submanifold of S3 containing K .
We say that K is transient in M if K can be homotoped within M to the trivial knot
in S3; otherwise K is called persistent. For example, K is persistent in a regular
neighborhood N (K ) of K , but it is transient in a 3-ball B containing K . Yuya Koda
and Makoto Ozawa [2] proved that every knot is transient in a submanifold M if
and only if M is unknotted, that is, its complement in S3 is a union of handlebodies.
Then Koda and Ozawa [2] introduced a new invariant of knots, called the transient
number of K , which somehow measures, starting with N (K ), how large must be a
submanifold in which K is transient.

The transient number is defined as follows: given a knot K in S3, there is a
collection of arcs {τ1, τ2, . . . , τn}, disjointly embedded in S3, each τi intersecting
K exactly at its endpoints, such that K can be homotoped in a regular neighborhood
of K union the arcs, T = N (K ∪ τ1 ∪ · · · ∪ τn), into the trivial knot. That is, we
perform crossing changes and isotopies inside T , until we get the trivial knot K ′.
Note that any knot K ′ obtained from K in this way is not trivial in T , i.e., it cannot
bound a disk contained in T , but it can be trivial in S3. The transient number of K ,
tr(K ), is then defined as the minimal number of arcs needed in such a system of
arcs. The transient number is related to other knot invariants, namely tr(K ) ≤ u(K ),
where u(K ) is the unknotting number, and tr(K ) ≤ t (K ), where t (K ) is the tunnel
number. It is easy to check these inequalities. For the unknotting number, given
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a sequence of crossing changes that unknot K , consider for each crossing change
an arc with endpoints in K that guides the crossing change, such that a regular
neighborhood of the arc encapsulates the crossing change. Then clearly K can be
made trivial in a neighborhood T of K union the arcs. For the case of the tunnel
number, consider a tunnel system and a neighborhood T of the union of K and the
arcs, so that the exterior is a handlebody. Isotope T so that it looks like a standard
handlebody in S3. Then K can be projected to the intersection of a plane with T ,
and guided by this projection to a plane, crossing changes can be performed to K
inside T to get the trivial knot.

There is a knot K such that tr(K ) = 1 whereas u(K ) and t (k) are larger than
one. Some examples with this property are given in [2]. However, in that paper
no example is given of a knot K with tr(K ) > 1. Homology groups of branched
covers have been used to bound invariants like u(K ) and t (K ), which goes back to
the work of Wendt [13]. In fact, it is well known that if 6[K ] denotes the double
branched cover of K , then the rank of the group H1(6[K ]) gives a lower bound
for u(K ); see [13] or [4]. It is also not difficult to show that the rank of H1(6[K ])

is at most 2t (K )+ 1; in particular it is known that if t (K ) = 1 then H1(6[K ]) is a
cyclic group (though not explicitly stated, this follows from the computations of
homology of cyclic covers done in [1], or from [8]).

We prove that the rank of the first homology group of a cyclic branched cover of
a knot gives lower bounds for the transient number. By using the Montesinos trick,
it can be shown that if K is a knot with u(K ) = n, then 6[K ] can be obtained by
Dehn surgery on an n-component link in S3, which implies then the bound for u(K ).
We do a kind of generalized Montesinos trick. Our main results are the following.

Theorem 1.1. If K is a knot in S3 such that tr(K ) = n, then the first homology
group of the double branched cover of K has a presentation with at most 2n + 1
generators.

Theorem 1.2. If K is a knot in S3 such that tr(K ) = n, then the first homology
group of the p-fold cyclic branched cover of K has a presentation with at most
pn + 1 generators.

These results imply that rank
(
H1(6[K ])

)
≤ 2 tr(K ) + 1. If 6p[K ] denotes the

p-fold cylic branched cover of K , it follows that rank
(
H1(6p[K ])

)
≤ p tr(K ) + 1.

For the case that tr(K ) = 1, we can get a better bound. In fact, by doing a careful
calculation of the first homology group of 6[K ], we get the following result.

Theorem 1.3. If K is a knot in S3 such that tr(K ) = 1, then the first homology
group of the double branched cover of K is cyclic.

Of course, these results may not be sharp. It would be interesting to find sharp
bounds for these inequalities. It would also be interesting to find bounds for the
transient number depending on other classical invariants of knots.



ON THE TRANSIENT NUMBER OF A KNOT 71

Given any knot invariant, it is always interesting to study its behavior under
connected sums of knots. We have the following:

Theorem 1.4. Let K1, K2 be knots in S3. Then tr(K1 # K2) ≤ tr(K1) + tr(K2) + 1.

The paper is organized as follows. In Section 2 we sketch a proof that the
unknotting number and tunnel number are bounded below by the rank of the first
homology group of double branched covers. Then we prove the main results. As
part of the proofs, we show also that if t (K ) = 1, then H1(6[K ]) is cyclic; this
claim is used to prove Theorem 1.3. In Section 3 we give examples of knots with
large transient number and explore the transient number of knots in the tables of
KnotInfo [3]. In Section 4 we consider the transient number of a connected sum of
knots, prove some facts and propose some problems.

We work in the piecewise linear category. To avoid cumbersome notation we
use expressions like the double branched cover of a knot to mean the double cover
of S3 branched along the knot. If 3 is a simple closed curve in the boundary of
a 3-manifold M , we say adding a 2-handle along 3, to mean that we attach a
2-handle D2

× I to M , such that ∂ D2
× I is identified with a regular neighborhood

of 3 in ∂ M , which is an annulus. Also, if M and T are compact 3-manifolds, with
T ⊂ M , then by M \ T we mean M minus the interior of T , or the closure in M
of M − T . If X is a topological space, |X | denotes its number of components.

2. Transient number and double branched covers

This section is inspired by an idea that is used to build the double branched cover of a
knot with unknotting number equal to one. Consider a knot K in S3 with unknotting
number equal to one. Let α be an arc embedded in S3, with endpoints in K , such
that a regular neighborhood of it encapsulates the crossing change. So there is a
homotopy in N (K ∪ α) between the knot K and the trivial knot, which is denoted
by K ′. Clearly this homotopy can be taken so that it is constant in N (K ) \N (α)

and that the changes are occurring only in N (α); so we assume that K ′ is obtained
from K just by taking the two arcs K ∩ N (α) and passing one arc through the other,
which would correspond to a crossing change in the corresponding knot diagram.
Due to the above we have that K ∩ (S3

\N (α)) = K ′
∩ (S3

\N (α)).
Let 6(K ′) be the double branched cover of the knot K ′, with covering function

given by p : 6(K ′) → S3. Now, since K ′ is the trivial knot, 6(K ′) is homeomor-
phic to S3. We know that N (α) is a 3-ball intersecting K ′ in two arcs, therefore
p−1(N (α)) is a solid torus, and p−1(∂N (α)) is a surface of genus one. Therefore,
S3

\ p−1(N (α)) is a double cover of S3
\N (α) branched along K ∩ (S3

\ N (α)).
So to finish building the double branched cover of the knot K , all we have to do is
to refill S3

\ p−1(N (α)) appropriately.
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Note that there exists a compressing disk for ∂(N (α))\K contained in N (α)\K ;
we denote this disk by D. As K ∩ D = ∅, |K ′

∩ D| is an even number, so the
curve ∂ D is lifted by p into two curves in p−1(∂N (α)); we denote these curves
by 31 and 32. Let 6′ be the 3-manifold obtained by adding two 2-handles to the
3-manifold S3

\ p−1(N (α)), attached along the curves 31 and 32; we denote these
2-handles by 31 and 32, respectively. So 6′

=
[
S3

\ p−1(N (α))
]
∪ 31 ∪ 32.

We know that 31 ∪ 32 is a double cover of ∂ D with covering function given
by p|31∪32 . So we can extend the function p|31∪32 to 31 ∪32, to get that 31 ∪32

is a double cover of N (D). Thus, 6′ is a double cover of
[
S3

\ p−1(N (α))
]
∪N (D)

branched along two arcs of K .
We have that ∂

(
[S3

\N (α)] ∪N (D)
)

consists of two 2-spheres and ∂6′ also
consists of two 2-spheres. The 2-spheres of ∂6′ are a double cover of the two spheres
of ∂

(
[S3

\N (α)] ∪N (D)
)

branched over the points K ∩ ∂
(
[S3

\N (α)] ∪N (D)
)
.

Now we can fill the sphere boundary components of 6′ with 3-balls, and extend
the function p to these 3-balls in order to get the double covering of S3 branched
along the knot K .

The idea described above is known as the Montesinos trick. Similar to the
previous construction, we will build the double branched covers of knots for which
we know the tunnel number or the transient number. For the case of the tunnel
number, note that if K has tunnel number n, then K is contained in a genus n + 1
handlebody V , such that its complement is another genus n + 1 handlebody W .
By taking 6[K ], V and W lift to genus 2n + 1 handlebodies, that is, give a genus
2n + 1 Heegaard decomposition of 6[K ]. This shows that H1(6[K ]) is an abelian
group of rank at most 2n + 1.

The following lemma is a general result of coverings which we will use often.
The proof is a standard argument, so we omit it.

Lemma 2.1. Let M be a manifold. Let 6 be a double cover of M with covering
function p : 6 → M ; and let C ⊂ M. If M is path connected and p−1(C) is
connected then 6 is connected.

The following theorem is our first important result of this section. We will
see that if we are given a transient system of a knot we can construct the double
branched cover of this knot and from there calculate its first homology group.

Theorem 2.2. If K is a knot in S3 such that tr(K ) = n, then the first homology
group of the double branched cover of K has a presentation with at most 2n + 1
generators.

Proof. Let K be a knot in S3 such that tr(K ) = n, let {τ1, τ2, . . . , τn} be a transient
system for K , and let T =N (K ∪τ1∪τ2∪· · ·∪τn), this is a genus n+1 handlebody.
Let K ′

⊂ T be the trivial knot, such that K ′ is homotopic to K in T .
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Let us define a family of compressing disks for ∂T properly embedded in T , say
{D1, D2, . . . , Dn, Dn+1}, which satisfy the following properties:

(1) For each i ∈ {1, 2, . . . , n} the disk Di is properly embedded in N (τi ).

(2) The disk Dn+1 is properly embedded in N (K ) and is a compression disk for it.

All of these disks are properly embedded in T , so we can deduce that:

(1) The family {D1, D2, . . . , Dn, Dn+1} is pairwise disjoint.

(2) For each i ∈ {1, 2, . . . , n}, |Di ∪ K | = 0.

(3) |Dn+1 ∩ K | = 1.

Let 6[K ′
] be the double branched cover of K ′ with covering function given by

p : 6[K ′
] → S3. Note that 6[K ′

] is homeomorphic to S3.

Claim 2.3. For each i ∈ {1, 2, . . . , n}, p−1(∂ Di ) has exactly two connected com-
ponents, where each connected component is a simple closed curve in p−1(∂T );
whereas p−1(∂ Dn+1) is a single simple closed curve in p−1(∂T ). Also, all these
curves are disjoint in p−1(∂T ).

Proof. We know that |Dn+1∩K |=1 and |Di ∩K |=0 for all i ∈{1, 2, . . . , n}. As K ′

is homotopic to K in T , |Dn+1∩K ′
| is an odd integer and |Di ∩K ′

| is an even integer
for all i ∈{1, 2, . . . , n}. Therefore, for each i ∈{1, 2, . . . , n} we have that p−1(∂ Di )

has exactly two connected components in p−1(∂T ), where each connected compo-
nent is a simple closed curve; and p−1(∂ Dn+1) is a simple closed connected curve
in p−1(∂T ). Now, since the disks of the family {D1, D2, . . . , Dn+1} are pairwise
disjoint, we have that all the curves are pairwise disjoint. □

Claim 2.4. p−1(∂T ) is a connected, orientable surface with Euler characteristic
−4n (and genus 2n + 1) contained in 6[K ′

].

Proof. Note that ∂T is a genus n + 1 surface, then χ(∂T ) = −2n, and therefore
χ(p−1(∂T )))= 2χ(∂T )=−4n. Since ∂T is connected, p−1(∂T ) is a double cover
of ∂T , ∂ Dn+1 ⊂ ∂T and p−1(∂ Dn+1) is a connected curve on p−1(∂T ). Then by
Lemma 2.1 we have that p−1(∂T ) is connected. Therefore p−1(∂T ) is a connected
orientable surface of Euler characteristic −4n (and of genus 2n + 1). □

Claim 2.5. p−1
(
∂T \

⋃n
j=1 ∂ D j

)
is connected.

Proof. Clearly ∂T \
⋃n

j=1 ∂ D j is connected. We have that p−1
(
∂T \

⋃n
j=1 ∂ D j

)
is a double cover of ∂T \

⋃n
j=1 ∂ D j , that ∂ Dn+1 ⊂ ∂T \

⋃n
j=1 ∂ D j and that

p−1(∂ Dn+1) is a connected curve on p−1
(
∂T \

⋃n
j=1 ∂ D j

)
. Then using Lemma 2.1

we have that p−1
(
∂T \

⋃n
j=1 ∂ D j

)
is connected. □

By Claim 2.3 we know that for each i ∈ {1, 2, . . . , n} the curve ∂ Di lifts, under p,
to exactly two simple closed curves in p−1(∂T ). Let us denote by 3i

1 and 3i
2 the

two liftings of ∂ Di in p−1(∂T ), so {31
1, 3

1
2, 3

2
1, 3

2
2, . . . , 3

n
1, 3

n
2} is a pairwise
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disjoint collection of simple closed curves in p−1(∂T ). Also, 3i
1 ∪3i

2 is a double
cover of ∂ Di with p|3i

1∪3i
2

the corresponding covering function. Then the functions
p|3i

1
: 3i

1 → ∂ Di and p|3i
2
: 3i

2 → ∂ Di are homeomorphisms.
By Claim 2.3 we have that p−1(Dn+1) is a simple closed curve on p−1(∂T ).

Let us denote by 3 the curve p−1(∂ Dn+1). So 3 is a double cover for ∂ Dn+1 with
covering function p|3 : 3 → ∂ Dn+1.

Let us introduce the notation

• Ext(T ) := S3
\ T ,

• 6[Ext(T )] := 6[K ′
] \ p−1(T ).

Note that 6[Ext(T )] is a double cover of Ext(T ), and ∂6[Ext(T )] = p−1(∂T ).
Let 6[Ext(K )] be the 3-manifold obtained from 6[Ext(T )] by adding a 2-handle

along each of the members of the family of curves {31
1, 3

1
2, 3

2
1, 3

2
2, . . . , 3

n
1, 3

n
2}.

Since the functions p|3i
r

are homeomorphisms for each i ∈ {1, 2, . . . , n} and r ∈

{1, 2}, we can extend each of these homeomorphisms to a homeomorphism whose
domain is a disk whose boundary is the curve 3i

r , and which maps to the disk Di .
We then extend these last homeomorphisms to homeomorphisms from the 2-handle
added along 3i

r to N (Di ). With this we conclude that 6[Ext(K )] is a double cover
of Ext(T )∪

( ⋃n
j=1 N (D j )

)
. Recall that the family of disks {D1, D2, . . . , Dn} was

chosen such that Ext(T )∪
( ⋃n

j=1 N (Dj)
)

is homeomorphic to Ext(K ). Therefore
6[Ext(K )] is a double cover of Ext(K ).

On the other hand, from Claim 2.4 we know that p−1(∂T ) is an orientable con-
nected surface of genus 2n+1 and by Claim 2.5 we know that p−1

(
∂T \

⋃n
j=1 ∂ D j

)
is connected. Since {31

1, 3
1
2, 3

2
1, 3

2
2, . . . , 3

n
1, 3

n
2} consist of 2n curves and

p−1
(

∂T \

n⋃
j=1

∂ D
)

= p−1(∂T ) \
⋃

i∈{1,2,...,n}

r∈{1,2}

3i
r ,

∂6[Ext(K )] is an orientable surface of genus one.
Now, note that ∂ Dn+1 ⊂ ∂Ext(K ) since ∂ Dn+1 ⊂ ∂N (K ) and Dn+1 ∩ Di = ∅

for all i ∈ {1, 2, . . . , n}. Therefore we also have 3 ⊂ ∂6[Ext(K )].
Let us define the 3-manifold 6[K ] obtained from 6[Ext(K )] by adding a 2-

handle along 3 on ∂6[Ext(K )], and then complete with a 3-ball so that 6[K ]

is a closed 3-manifold. Since p|3 is a two-to-one covering function then we can
extend this function to a function that goes from a disk, whose boundary is 3, to the
disk Dn+1, where this extension is two-to-one branched at the point K ∩ Dn+1. This
last function is then extended to a function that goes from the 2-handle added along 3

to N (Dn+1), where this function is two-to-one branched along the arc K ∩N (Dn+1).
Finally, this last function is extended to the added 3-ball, thus obtaining a function
that goes from 6[K ] to S3 which is two-to-one branched along the knot K . From
the above we conclude that 6[K ] is the double branched cover of K .
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By Claim 2.4, p−1(∂T ) is an orientable connected surface of genus 2n + 1
contained in S3. Since ∂6[Ext(T )] = p−1(∂T ) and 6[Ext(T )] ⊂ 6[K ′

] = S3,
H1

(
6[Ext(T )]

)
is a free abelian group of rank 2n + 1. So, let H1

(
6[Ext(T )]

)
=

⟨θ1, θ2, . . . , θ2n+1⟩, where θi for i ∈ {1, 2, . . . , 2n + 1} are generators.
Thus, H1(6[K ]) = ⟨θ1, θ2, . . . , θ2n+1 | λ1

1, λ
2
1, λ

1
2, λ

2
2, . . . , λ

1
n, λ

2
n, λ⟩, where λ

and the λ
j
r , for j ∈ {1, 2, . . . , n} and r ∈ {1, 2}, correspond to the homology classes

in H1
(
6[Ext(T )]

)
of the respective curves 3 and 3

j
r . □

In the proof of Theorem 2.2, besides from proving the result, we construct the
double cover of S3 branched along the knot for which we know the transient number.
This construction will continue to be repeated throughout this work. Theorem 2.2
can be generalized to p-fold cyclic branched covers, with a similar proof.

Theorem 2.6. If K is a knot in S3 such that tr(K ) = n, then the first homology
group of the p-fold cyclic branched cover of K has a presentation with at most
pn + 1 generators.

The next lemma is a general result of the algebra of groups, which we will use
for the proof of Theorems 2.8 and 2.10.

Lemma 2.7. Let G1 and G2 be abelian groups such that

G1 = ⟨θ1, θ2, θ3 : λ1, λ2, λ3⟩ and G2 = ⟨β1, β2 : δ1, δ2⟩.

Suppose that there exist homomorphisms 9 : ⟨θ1, θ2, θ3⟩ → ⟨θ1, θ2, θ3⟩ and
8 : ⟨θ1, θ2, θ3⟩ → ⟨β1, β2⟩ between free abelian groups such that

9(θ1) = θ2, 9(θ2) = θ1, 9(θ3) = θ3,

9(λ1) = λ2, 9(λ2)= λ1, 9(λ3) = λ3,

8(θ1) = β1, 8(θ2)= β1, 8(θ3) = 2β2,

8(λ1) = δ1, 8(λ2)= δ1, 8(λ3) = 2δ2.

If λ1 = xθ1 + yθ2 + zθ3 and G2 is the trivial group, then G1 is isomorphic to the
finite cyclic group Zx−y .

Proof. Let ai j be integers, with i, j ∈ {1, 2, 3}, such that

(1)
λ1 = a11θ1 + a12θ2 + a13θ3,

λ2 = a21θ1 + a22θ2 + a23θ3,

λ3 = a31θ1 + a32θ2 + a33θ3.

Applying the homomorphism 9, on both sides of the previous system of equa-
tions, we obtain

(2)
λ2 = 9(λ1) = 9(a11θ1 + a12θ2 + a13θ3) = a11θ2 + a12θ1 + a13θ3,

λ1 = 9(λ2) = 9(a21θ1 + a22θ2 + a23θ3) = a21θ2 + a22θ1 + a23θ3,

λ3 = 9(λ3) = 9(a31θ1 + a32θ2 + a33θ3) = a31θ2 + a32θ1 + a33θ3.
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From the systems (1) and (2) we get

(3)

0 = (a11 − a22)θ1 + (a12 − a21)θ2 + (a13 − a23)θ3,

0 = (a12 − a21)θ1 + (a11 − a22)θ2 + (a13 − a23)θ3,

0 = (a31 − a32)θ1 + (a32 − a31)θ2.

Since ⟨θ1, θ2, θ3⟩ is a free abelian group, from the system in (3) we have

a11 = a22, a12 = a21, a13 = a23, a31 = a32.

Then the system (1) can be rewritten as

(4)

λ1 = a1θ1 + a2θ2 + a3θ3,

λ2 = a2θ1 + a1θ2 + a3θ3,

λ3 = a4θ1 + a4θ2 + a5θ3,

where a1 = a11, a2 = a12, a3 = a23, a4 = a31 and a5 = a33. Applying the homomor-
phism 8 to the system (4) we obtain

(5)

δ1 = 8(λ1) = 8(a1θ1 + a2θ2 + a3θ3) = (a1 + a2)β1 + 2a3β2,

δ1 = 8(λ2) = 8(a2θ1 + a1θ2 + a3θ3) = (a2 + a1)β1 + 2a3β2,

2δ2 = 8(λ3) = 8(a4θ1 + a4θ2 + a5θ3) = 2a4β1 + 2a5β2.

By properties of free abelian groups, we obtain from the last equation of the
system (5) that

δ2 = a4β1 + a5β2.

So the system in (5) can be rewritten as

(6)
δ1 = (a1 + a2)β1 + 2a3β2,

δ2 = a4β1 + a5β2.

From the system (6) we see that the matrix A, given by

A =

(
a1+a2 2a3

a4 a5

)
is the representation matrix of the group G2 = ⟨β1, β2 : δ1, δ2⟩. From the system
in (4), doing an operation on rows, we see that the matrix Ã, given by

Ã =

 a1 a2 a3

a1+a2 a1+a2 2a3

a4 a4 a5


is a representation matrix of the group G1.
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By the Smith normal form theorem, there exists matrices S1 and S2 of order 2×2,
invertible and with integer entries such that the matrix S1 AS2 is a diagonal matrix
with integer entries. From the Smith normal form theorem it is also known that
the inverse matrices of S1 and S2 have integer entries, therefore det S1 = ±1 and
det S2 = ±1. Now, since G2 is the trivial group, det A = ±1. So the matrix S1 AS2

is of the form

(7) S1 AS2 =

(
±1 0

0 ±1

)
.

From (7) we can ensure that there is a matrix S of order 2×2, invertible and with
integer entries that satisfies

(8) SA =

(
1 0
0 1

)
.

Let us define the matrix

S̃ =

1 0 0
0
0

S

.

Clearly the matrix S̃ has integer entries and using the result in (8) we have

(9) S̃ Ã =

a1 a2 a3

1 1 0
0 0 1

.

Using elementary operations, from the matrix in (9) we obtaina1−a2 0 0
0 1 0
0 0 1

.

From the above matrix we conclude that the group ⟨θ1, θ2, θ3 : λ1, λ2, λ3⟩ is
isomorphic to Za1−a2 , therefore the group G1 is isomorphic to Za1−a2 . □

The following result is well known to experts. We include a proof for complete-
ness and because it will help us as a lemma in the proof of Theorem 2.10.

Theorem 2.8. If K is a knot in S3 such that t (K ) = 1, then the first homology group
of the double branched cover of K is cyclic.

Proof. Let K be a knot in S3 such that t (K ) = 1, and let τ be an unknotting
tunnel for K . Let T = N (K ∪ τ) and Ext(T ) = S3

\ T , so Ext(T ) is a genus two
handlebody. Since Ext(T ) is a handlebody, we can ensure that there exists a knot
K ′

⊂ T such that K ′ is a trivial knot in S3 and it is homotopic to the knot K in T .
Let 6(K ′) be the double branched cover of the knot K ′ and let p : 6(K ′) → S3 be
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the associated covering function. It is easy to notice, for the way it is defined T , that
there are meridian disks D1 and D2 in T such that |D1 ∩ K | = 0 and |D2 ∩ K | = 1.
Since K ′ is homotopic to K in T , |D1 ∩ K ′

| is an even integer and |D2 ∩ K ′
| is an

odd integer. Therefore ∂ D1 lifts, under p, to two simple closed curves; while ∂ D2

lifts to exactly a single simple closed curve. Let us denote by 31 and 32 the liftings
of ∂ D1 and by 33 the lifting of ∂ D2. For each i ∈ {1, 2, 3} we attach a 2-handle
to p−1(Ext(T )) along 3i ⊂ ∂

(
p−1(Ext(T ))

)
; let us denote the 2-handle attached

along 3i by 3i . Let 6 be the 3-manifold obtained by attaching to p−1(Ext(T ))

the 2-handles 3i , that is: 6 := p−1(Ext(T )) ∪
( ⋃3

i=1 3i
)
.

Let us note the following observations:

(1) ∂p−1(Ext(T )) is a genus three connected surface.

(2) p−1(Ext(T )) is a double covering of Ext(T ).

(3) The function p can be extended to 6, such that 31 ∪32 is a double covering
of N (D1) and 33 is a double covering of N (D2) branched along K ∩N (D2).

(4) ∂6 is a 2-sphere.

Let 6(K ) be the 3-manifold obtained by attaching a 3-ball to 6 along its
boundary. So, we can extend the covering function p|p−1(Ext(T )) : p−1(Ext(T )) →

Ext(T ) to a covering function p′
: 6(K ) → S3 which branches along the knot K .

Therefore 6(K ) is the double covering of S3 branched along K with covering
function given by p′.

We know that Ext(T ) is a genus two handlebody, therefore H1(Ext(T )) is a free
abelian group in two generators. Note that p−1(Ext(T )) is a genus three handlebody,
therefore H1(p−1(Ext(T ))) is a free abelian group in three generators.

Claim 2.9. There are two connected simple closed curves in Ext(T ), denoted
by B1 and B2, such that B1 lifts, by p, to two closed and connected simple curves,
denoted by 21 and 22; while B2 lifts, by p, to exactly one simple curve closed,
denoted by 23. If β j is the homology class of B j in H1(Ext(T )) and θi is the
homology class of 2i in H1

(
p−1(Ext(T ))

)
for all j ∈ {1, 2} and i ∈ {1, 2, 3}, then

H1(Ext(T )) = ⟨β1, β2⟩, H1
(

p−1(Ext(T ))
)
= ⟨θ1, θ2, θ3⟩.

Proof. Note that Ext(T ) is a genus two handlebody, call it V . Let D be a disk in V
which splits it in two solid tori V1 and V2. Note that p−1(Vi ) double covers Vi ;
thus, it is either a set of two solid tori or a solid torus that coves Vi two-to-one.
There are two possibilities:

(1) V1 is covered by two solid tori, say V 1
1 and V 2

1 , and V2 is covered two-to-one
by a solid torus V ′

2. See Figure 1.

(2) V1 and V2 are covered both two-to-one by solid tori V ′

1 and V ′

2. See Figure 2.
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21 23 22

V 1
1

V ′

2 V 2
1

p

B2 B1

V2
D V1

Figure 1. V1 is covered by two solid tori, say V 1
1 and V 2

1 , and V2

is covered two-to-one by a solid torus V ′

2.

In case (1), take as Bi , i = 1, 2, a core of the solid tori Vi . Clearly B1 lifts to two
simple closed curves 21 and 22, which are a core of the solid tori V 1

1 and V 2
1 , and

B2 lifts to a simple closed curve 23 which is a core of the solid tori V ′

2, and which
cover two-to-one the curve B2. In this case it is clear that the homology classes of
the curves satisfy the required properties. See Figure 1.

In case (2), take as B1 a curve that goes once around each of the cores of V1

and V2 and intersects D in two points. In this case B1 lifts to two simple closed
curves 21 and 22, each of which goes once around V 1

1 and V 2
1 . Take as B2 a core

of V1, then clearly it lifts to a curve 23 which covers B2 two-to-one. It is clear that
the homology classes of the curves satisfy the required properties. See Figure 2. □

21 22

23 p
B1

B2

D

Figure 2. V1 and V2 are covered both two-to-one by solid tori V ′

1 and V ′

2.
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We know that p−1(Ext(T )) is a double covering of Ext(T ), with covering func-
tion given by the restriction of p. Let p∗ : H1

(
p−1(Ext(T ))

)
→ H1(Ext(T )) be the

homomorphism associated with the restriction of p. For each i ∈ {1, 2, 3}, let us
denote by λi the homology class in H1

(
p−1(Ext(T ))

)
associated to the curve 3i .

Note that H1(6[K ]) = ⟨θ1, θ2, θ3 : λ1, λ2, λ3⟩. For each j ∈ {1, 2}, let us denote
by δ j the homology class in H1(Ext(T )) associated to the curve ∂ D j . We have that
H1(Ext(T )) = ⟨β1, β2 : δ1, δ2⟩. By choosing orientations conveniently, assume that

(10) p∗(λ1) = δ1, p∗(λ2) = δ1, p∗(λ3) = 2δ2.

According to Claim 2.9, we have that

(11) p∗(θ1) = β1, p∗(θ2) = β1, p∗(θ3) = 2β2.

Let q : p−1(Ext(T )) → p−1(Ext(T )) be the nontrivial covering transformation
associated to the covering function p|p−1(Ext(T )). Let q∗ : H1

(
p−1(Ext(T ))

)
→

H1
(

p−1(Ext(T ))
)

be the homomorphism induced by the covering transformation q .
By Claim 2.9 we have that

(12)
q∗(θ1) = θ2, q∗(θ2) = θ1, q∗(θ3) = θ3,

q∗(λ1) = λ2, q∗(λ2)= λ1, q∗(λ3) = λ3.

Then, applying Lemma 2.7 directly we have that H1(62(K )) = Zx−y , where
λ1 = xθ1 + yθ2 + zθ3. □

Now we prove our main result.

Theorem 2.10. If K is a knot in S3 such that tr(K ) = 1 then the first homology
group of the double branched cover of K is cyclic.

Proof. Let K be a knot in S3 such that tr(K )=1, and let {τ } be a transient system for
the knot K . Let T =N (K ∪τ) and let K ′

⊂ T be a trivial knot in S3 such that K ′ is
homotopic to K in T . Define also the 3-manifold Ext(T ) as Ext(T ) := S3

\ Int(T ).
As ∂T is a genus two surface in the exterior of the knot K ′, which is trivial, it

follows that ∂T is compressible in Ext(K ′), that is, there is a compression disk E1

for ∂T disjoint from K ′.
There are two possibilities for the disk E1:

(1) The disk E1 is a compression disk for ∂T lying in the interior of T .

(2) The disk E1 is a compression disk for ∂T lying in the exterior of T .

Suppose first that we have case (1), that is, E1 lies in the interior of T . If E1

separates T , then by cutting along E1 we get two solid tori, one of them contains K ′,
and then there is a compression disk in the other solid tori which is nonseparating
in T . So, we can assume that there is a compression disk E1 for ∂T , lying in T ,
and which does not separate T .
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Claim 2.11. There exist a knot K ′′ and a disk E2 in T such that:

(1) E2 is a compression disk for ∂T which is properly embedded in T .

(2) K ′′ is a trivial knot in S3 and it is homotopic to K in T .

(3) |E2 ∩ K ′′
| = 1.

Proof. By cutting T along E1, we get a solid torus V . The knot K ′ lies in V , and
as K ′ represents a primitive element in π1(T ), it must be homotopic to the core
of V . If V is knotted, then ∂V is incompressible in Ext(K ′), which is not possible,
for K ′ is the trivial knot. Then V must be a standard solid torus in S3. Then K ′

can be further homotoped to the core of V , which is a trivial knot in the 3-sphere.
Then there is a disk E2 in V such that |E2 ∩ K ′′

| = 1. □

Let 6[K ′′
] be the double cover of S3 branched along K ′′ with covering function

given by p : 6[K ′′
] → S3. The disks E1 and E2 form a meridian disk system for

T , and as K ′′ is disjoint from E1 and intersects E2 in one point, it follows that
p−1(T ) is a genus three handlebody, p−1(E1) consists of two disks and p−1(E2)

consists of a single disk which covers two-to-one the disk E2. Note that these disks
form a meridian system for p−1(T ). Let Bi = ∂ Ei , i = 1, 2. Denote by 21 and 22

the two components of p−1(B1), and let 23 = p−1(B2). As 6[K ′′
] is the 3-sphere,

and p−1(T ) is a genus three handlebody, it follows that the homology classes of
the curves 2i , i = 1, 2, 3, generate H1(p−1(Ext(T )).

Let D1 and D2 be compression disks in the interior of T such that D1 is properly
embedded in N (τ ) and D2 is properly embedded in N (K ), such that |D1 ∩ K | = 0
and |D2 ∩ K | = 1. Note that the disks D1 and D2 do not separate T . As K ′′

is homotopic to K in T , |D1 ∩ K ′′
| is an even number and |D2 ∩ K ′′

| is an odd
number. Therefore ∂ D1 lifts, under p, to two simple closed curves, while ∂ D2 lifts
exactly to a single simple closed curve. Denote by 31 and 32 the liftings of ∂ D1

and by 33 the lifting of ∂ D2. Attach 2-handles to the 3-manifold p−1(Ext(T ))

along the curves 3i , note that these curves lie in ∂(p−1(Ext(T ))), and denote the
2-handle attached along 3i by 3i . Let 6 be the 3-manifold obtained by attaching
to p−1(Ext(T )) the 2-handles 3i .

Note that p−1(Ext(T )) is a double covering of Ext(T ), with covering function p′

given by p′
= p|p−1(Ext(T )). The function p′ can be extended to a function p′

: 6 →

Ext(T ) ∪ N (D1) ∪ N (D2), such that 31 ∪ 32 is a double covering of N (D1) and
33 is a double covering of N (D2) branched along K ∩N (D2).

Note that ∂6 is a 2-sphere. Let 6(K ) be the 3-manifold obtained by attaching
a 3-ball to 6 along its boundary. We can extend the covering function p′ to a
covering function p̂ : 6(K ) → S3, which branches along K . Therefore 6(K ) is
the double cover of S3 branched along K with covering function given by p̂.
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As p−1(Ext(T )) is a double covering of Ext(T ), with covering function given
by the restriction of p, let p∗ : H1

(
p−1(Ext(T ))

)
→ H1(Ext(T )) be the homomor-

phism induced by p. For each i ∈ {1, 2, 3} denote by λi the homology class in
H1

(
p−1(Ext(T ))

)
associated to the curve 3i . For each j ∈ {1, 2} denote by δ j the

homology class in H1(Ext(T )) associated to the curve ∂ D j . Then

(13) p∗(λ1) = δ1, p∗(λ2) = δ1, p∗(λ3) = 2δ2.

Note that H1(Ext(T )) is a free abelian group in two generators, generated by the
homology classes of the curves B1 and B2, which we denote by β1 and β2. As we
said before, H1

(
p−1(Ext(T ))

)
is a free abelian group in three generators, generated

by the homology classes of the curves 2i , which we denote by θi , i = 1, 2, 3. We
have that

(14) H1(Ext(T )) = ⟨β1, β2⟩, H1(p−1(Ext(T ))) = ⟨θ1, θ2, θ3⟩

We also obtain that

H1(Ext(T )) = ⟨β1, β2 : δ1, δ2⟩, H1(6[K ]) = ⟨θ1, θ2, θ3; λ1, λ2, λ3⟩,(15)

p∗(θ1) = β1, p∗(θ2) = β1, p(θ3) = 2β2.(16)

Let q : p−1(Ext(T ))→ p−1(Ext(T )) be the nontrivial covering transformation, as-
sociated to the covering function p. Let q∗ : H1

(
p−1(Ext(T ))

)
→ H1

(
p−1(Ext(T ))

)
be the homomorphism associated to the covering transformation q. By the way
that θi and the λi were defined we have that

(17)
q∗(θ1) = θ2, q∗(θ2) = θ1, q∗(θ3) = θ3,

q∗(λ1) = λ2, q∗(λ2)= λ1, q∗(λ3) = λ3.

Applying Lemma 2.7 we have that H1(6(K )) = Zx−y , where λ1 = xθ1 + yθ2 + zθ3.
So, we have proved that if the compression disk E1 is contained in T , then the
homology group of the double branched cover of K is cyclic.

Now suppose that we have case (2), that is, the compression disk E1 is contained
in Ext(T ). In this situation we can suppose that Ext(T ) is not a handlebody, for
otherwise we have that t (K ) = 1 and by Theorem 2.8 we get the desired result.
Suppose first that the disk E1 does not separate Ext(T ). Define 0 = T ∪N (E1).
As E1 does not divide ∂T then ∂0 is a connected genus one surface, and it must
bound a solid torus. Then 0 is a solid torus, for otherwise Ext(T ) will be a genus
two handlebody. So, 0 is a knotted solid torus and K ′ lies on it. As K ′ is a
trivial knot, it must lie in a 3-ball contained in 0, for otherwise there will be an
incompressible torus in Ext(K ). In particular, K ′ has winding number zero in 0.
Then K is also of winding number zero in 0, as it is homotopic to K ′ in T ⊂ 0.
Embed 0 in S3 so that it is an standard solid torus V , and that a preferred longitude



ON THE TRANSIENT NUMBER OF A KNOT 83

of 0 goes to a preferred longitude of V . Let K be the image of K in V . Then K is
a satellite knot with pattern given by K . As K has winding number zero in V , it
follows that H1(6[K ]) is isomorphic to H1(6[K ]), by [12]. Let T be the image
of T in V , clearly T is the neighborhood of K union a transient arc, and the exterior
of T is the exterior of V , which is a solid torus, union a 1-handle given by the image
of the disk E1. This shows K is a tunnel number one knot and then H1(6[K ]) is a
cyclic group, which implies then that H1(6[K ]) is also cyclic.

Suppose now that the disk E1 separates Ext(T ) and that there is no nonseparating
compression disk in Ext(T ). Let 0 = T ∪N (E1). As E1 is separating, ∂0 consist
of two tori, say S1 and S2. Then S1 bounds a solid torus V1 which contains 0,
and also contains S2. Then V1 is a knotted solid torus, and as K ′ is contained
in V1, it must lie inside a 3-ball, and then as in the previous case, K has winding
number zero in V1. Embed V1 in S3 so that it is an standard solid torus V2, and
such that a preferred longitude of V1 goes to a preferred longitude of V2. Let K be
the image of K in V2. Then K is a satellite knot with pattern given by K . As K has
winding number zero in V , it follows that H1(6[K ]) is isomorphic to H1(6[K ]),
by [12]. Let T be the image of T in V , clearly T is the neighborhood of K union a
transient arc, and the exterior of T is the exterior of V , which is a solid torus union
a manifold bounded by the image of S2 plus 1-handle given by the image of the
disk E1. It follows that K is a transient number one knot such that the exterior of the
knot union a transient arc is compressible, and it has a nonseparating compression
disk. By the previous case, H1(6[K ]) is a cyclic group, which implies then that
H1(6[K ]) is also cyclic. □

3. Knots with large transient number

By the results of Section 2, we can now estimate the transient number of some knots.

Theorem 3.1. Let K be a knot such that its double branched cover is not a homology
sphere, that is, H1(6[K ]) is not trivial. Then

(1) tr(K # K ) ≥ 2;

(2) tr(Kn) ≥ (n − 1)/2, where Kn = K # K # · · · # K , is the connected sum of n
copies of K .

Proof. It is known that 6[Kn] = 6[K ] # 6[K ] # · · · # 6[K ], the connected sum
of n copies of 6[K ]. As H1(6[K ]) is not trivial, H1(6[Kn]) has rank at least n.
By Theorem 2.2, tr(Kn) ≥ (n − 1)/2, this shows (2). In particular H1(6[K2]) =

H1(6[K ]) + H1(6[K ]), which is not cyclic, and this implies (1). □

This shows that there are knots with arbitrarily large transient number, which
answers a question of Koda and Ozawa [2].

Now we concentrate on the tables of knots up to crossing number 10.
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1099 {2, {9, 9}}, {6, {2, 2, 6, 6, 0, 0, 0, 0}}

10123 {2, {11, 11}}, {5, {2, 2, 2, 2, 2, 2, 2, 2}}

12a427 {2, {15, 15}}, {4, {3, 3, 3, 3, 15, 15}}, {6, {4, 4, 20, 20, 0, 0, 0, 0}}

12a435 {2, {3, 75}}, {6, {2, 2, 8, 200, 0, 0, 0, 0}}

12a465 {6, {2, 2, 2, 2, 2, 2, 38, 9158}}

12a466 {6, {2, 2, 2, 2, 2, 2, 26, 5434}}

12a475 {6, {2, 2, 2, 10, 20, 340, 0, 0}}

12a647 {2, {3, 51}}, {6, {2, 2, 2, 34, 0, 0, 0, 0}}

12a868 {5, {2, 2, 2, 2, 8, 8, 88, 88}}

12a975 {2, {5, 45}}, {4, {5, 5, 5, 5, 5, 45}}

12a990 {2, {3, 75}} {6, {2, 2, 8, 200, 0, 0, 0, 0}}

12a1019 {2, {19, 19}}, {5, {6, 6, 6, 6, 6, 6, 6, 6}}

12a1102 {6, {2, 2, 2, 2, 2, 2, 112, 34160}}

12a1105 {2, {17, 17}}, {6, {2, 2, 2, 2, 10, 10, 170, 170}}

12a1167 {5, {2, 2, 2, 2, 2, 2, 82, 82}}

12a1229 {5, {2, 2, 2, 2, 8, 8, 8, 8}}

12a1288 {2, {3, 39}}, {6, {2, 2, 2, 26, 0, 0, 0, 0}}

12n518 {2, {3, 21}}, {6, {2, 2, 4, 28, 0, 0, 0, 0}}

12n533 {6, {2, 2, 2, 2, 2, 42, 0, 0}}

12n604 {2, {3, 27}}, {6, {2, 2, 2, 18, 0, 0, 0, 0}}

12n605 {2, {3, 3}}, {6, {2, 2, 2, 2, 0, 0, 0, 0}}

12n706 {2, {7, 7}}, {5, {3, 3, 3, 3, 3, 3, 3, 3}}, {6, {2, 2, 2, 2, 2, 2, 14, 14}}

12n840 {6, {2, 2, 2, 2, 2, 2, 10, 1190}}

12n879 {5, {2, 2, 2, 2, 4, 4, 4, 4}}

12n888 {2, {3, 15}}, {6, {2, 2, 2, 10, 0, 0, 0, 0}}

Table 1. List of the knots with the corresponding homology group
needed for the proof of Theorem 3.3.

Theorem 3.2. (1) These knots have transient number 2: 818, 935, 937, 940, 941, 946,
947, 948, 949, 1074, 1075, 1098, 1099, 10103, 10123, 10155, 10157.

(2) These knots have transient number at most 2: 816, 929, 932, 938, 1061, 1062, 1063,
1064, 1065, 1066, 1067, 1068, 1069, 1079, 1080, 1081, 1083, 1085, 1086, 1087, 1089,
1090, 1092, 1093, 1094, 1096, 1097, 10100, 10101, 10105, 10106, 10108, 10109, 10110,
10111, 10112, 10115, 10116, 10117, 10120, 10121, 10122, 10140, 10142, 10144, 10148,
10149, 10150, 10151, 10152, 10153, 10154, 10158, 10160, 10162, 10163, 10165.

(3) Any other knot of crossing number at most 10 has transient number one.

Proof. According to the information given in KnotInfo [3], the knots in (1) and (2)
are precisely the knots with crossing number up to 10, whose unknotting number
and tunnel number are both larger that 1. So, any other knot has unknotting number
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or tunnel number equal to 1, and then has transient number 1. The knots in (1)
are precisely the knots whose double branched cover has noncyclic first homology
group, and furthermore these knots have tunnel number 2. Therefore its transient
number must be two. The knots in (2) have tunnel number two but their double
branched cover has cyclic first homology group; hence we cannot detect the transient
number yet. □

A similar result can be done for the knots of crossing number 11 or 12.
The following knots are interesting, for we use the homology of p-branched

covers of a knot to determine the transient number.

Theorem 3.3. These knots have transient number 2: 1099, 10123, 12a427, 12a435,
12a465, 12a466, 12a475, 12a647, 12a742, 12a801, 12a868, 12a975, 12a990, 12a1019,
12a1102, 12a1105, 12a1167, 12a1206, 12a1229, 12a1288, 12n518, 12n533, 12n604, 12n605,
12n642, 12n706, 12n840, 12n879, 12n888.

Proof. According to Theorem 2.6, if K has tr(K ) = 1, then rank
(
H1(6p[K ])

)
≤

p + 1. Using this and the information given in KnotInfo [3], we show that these
knots cannot have transient number one. As they have tunnel number two, they must
also have transient number two. In Table 1, there is a list of the knots with the corre-
sponding homology group needed for the proof. For some of them, it is enough to
use the homology of 6[K ], but not for all. A symbol {6, {2, 2, 2, 10, 20, 340, 0, 0}}

means that H1(66[K ]) = Z2 + Z2 + Z2 + Z10 + Z20 + Z340 + Z + Z. □

4. Transient number and connected sums

It is natural to consider the behavior of a knot invariant with respect to connected
sums. It is easy to see that

u(K1 # K2) ≤ u(K1) + u(K2),

and equality is conjectured. It is also not difficult to see that

t (K1 # K2) ≤ t (K1) + t (K2) + 1.

There are known examples of knots with t (K1 # K2) = t (K1) + t (K2) + 1 [6],
examples with t (K1 # K2) = t (K1) + t (K2), and examples with t (K1 # K2) <

t (K1) + t (K2) [4]. So, we can expect a similar inequality for the transient number.

Theorem 4.1. Let K1, K2 be knots in S3. Then

tr(K1 # K2) ≤ tr(K1) + tr(K2) + 1.

Proof. Let K1 be a knot with transient number tr(K ) = n, and let {γ1, γ2, . . . , γn}

be a system of transient arcs for K1. Let T1 =N (K ∪γ1 ∪γ2 ∪· · ·∪γn). Then T1 is
a genus n+1 handlebody with the property that K1 can be homotoped in the interior
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of T1 to the trivial knot in S3. We can assume that the homotopy that transform K1

into the trivial knot can be realized by a sequence of ambient isotopies of K1 and
crossing changes. So, suppose that after making isotopies, all crossing changes are
performed simultaneously. Suppose r crossing changes are performed, numbered
1, 2, . . . , r , and for each crossing change let αi be an arc with endpoints in K1

which remembers the crossing change, that is, if Bi is a regular neighborhood of αi ,
in fact a 3-ball that intersects K1 in two unknotted arcs, then a crossing change can
be performed inside each Bi to get the trivial knot. Make an isotopy to move K1 to
its original position, and then {α1, α2, . . . , αr } is a collection of disjoint arcs with
endpoints in K1 contained in T1. Let δ1 be an arc in T1 with an endpoint in K1 and
the other in ∂ N (K1), such that δ1 is disjoint from the arcs αi .

If K2 is knot with tr(K2) = m, then as above there is a genus m + 1 handlebody
that is the neighborhood of K union a system of transient arcs {γ ′

1, γ
′

2, . . . , γ
′
m},

and there is a collection of arcs {β1, . . . , βs} that determines crossing changes that
unknot K2. Let δ2 be an arc in T2 with an endpoint in K2 and the other in ∂ N (K2),
such that δ2 is disjoint from the arcs βi .

Suppose that T1 and T2 lie in disjoint 3-balls C1 and C2 contained in S3. Suppose
that ∂Ti ∩ ∂Ci consists of a disk Di , such that the endpoint of δi lying in ∂Ti , it lies
in Di , for i = 1, 2. Do a disk sum of T1 and T2, identifying D1 and D2, such that
the endpoints of δ1 and δ2 coincide. Let δ = δ1 ∪ δ2, this is an arc with an endpoints
in K1 and K2. Following δ, do a band sum of K1 and K2. As K1 and K2 lie in
disjoint 3-balls, this band sum is in fact a connected sum K1 # K2. Let T = T1 ∪ T2,
this is a genus n + m + 2 handlebody, and K1 # K2 can be homotoped to the trivial
knot inside it, to see that just do crossing changes following the arcs αi and β j .
Now note that T is the regular neighborhood of K1 # K2 and a system of n + m + 1
arcs, that is, the n arcs for a system of K1, the m arcs for a system of K2, plus
one more arc which is dual to the band used to perform the connected sum of K1

and K2; see Figure 3. This shows that the transient number of K1 # K2 is at most
n + m + 1. □

In many cases we can ensure that tr(K1 # K2) is at most tr(K1) + tr(K2). For
example, if the arc systems that unknot K1 and K2 are disjoint from a meridian
disk E1 for N (K1) and a meridian disk E2 for N (K2), then at most tr(K1)+ tr(K2)

arcs are needed to unknot K1 # K2. To see this consider handlebodies T1 and T2

as above, and disjoint 3-balls C1 and C2 that contain them, such that Ti and Ci

intersect in a disk Di . We can suppose that the boundary of the disk Ei intersects Di

in a single arc. Instead of doing a band sum of T1 and T2, cut Ti along Ei , and
identify the two copies of E1 with the corresponding copies for E2, this is like
doing a connected sum T2 # T2 between T1 and T2. We get a genus n + m + 1
handlebody T ′. Note that K1 # K2 is contained in the handlebody T ′. Now consider
the arcs αi and β j as in the above proof. These arcs are disjoint from the meridian



ON THE TRANSIENT NUMBER OF A KNOT 87

α2

K1

α1

δ1

D1

D2

δ2

β1
K1 # K2

K2

K1 # K2

Figure 3. The arcs and sum K1 # K2 described in the proof of Theorem 4.1.

disks Ei , and then they are contained in T ′. Then these arcs can be used to unknot
K1 # K2, which then have transient number at most n + m = tr(K1) + tr(K2).

There are examples of knots K1 and K2, such that t (K1) = 1 = t (K2), but
t (K1 # K2) = 3 [6]. For these examples, it is clear that

tr(K1) = 1 = tr(K2),

but it is not clear what is tr(K1 # K2).
There are also examples of knots K1 and K2, such that t (K1) = 2, t (K2) = 1,

but t (K1 # K2) = 2 [5]. In this case

tr(K2) = 1 and tr(K1 # K2) ≤ 2,

but it is not clear whether tr(K1) = 1 or 2.
It is well known that knots with unknotting number one or tunnel number one are

prime, but the proofs are not so easy. The first proof that knots K with u(K ) = 1
are prime [10] uses heavy combinatorial arguments, a second proof uses sutured
manifold theory [11], and a third proof depends on double branched covers and
deep results on Dehn surgery on knots [14]. There are also two proofs that tunnel
number one knots are prime, one uses combinatorial group theory [7], and the other
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uses combinatorial arguments [9]. A proof that transient number one knots are
prime would imply both, that unknotting number one and tunnel number one knots
are prime, so it may not be easy to prove that. However it seems reasonable to
conjecture the following.

Conjecture 4.2. If K is a knot with tr(K ) = 1 then K is prime.

Theorem 3.1(1) gives some evidence for this conjecture.
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PRESERVATION OF ELEMENTARITY BY TENSOR PRODUCTS
OF TRACIAL VON NEUMANN ALGEBRAS

ILIJAS FARAH AND SAEED GHASEMI

Tensoring with type I algebras preserves elementary equivalence in the cate-
gory of tracial von Neumann algebras. The proof involves a novel and general
Feferman–Vaught-type theorem for direct integrals of metric structures.

In [19] it was proven that reduced products and their generalizations preserve
elementary equivalence, in the sense that the first-order theory of the product can be
computed from the theories of the factors and information about the ideal (if any)
used to form the reduced product. The question of preservation of elementarity
by tensor products and free products is a bit subtler. Somewhat surprisingly, free
products preserve elementary equivalence both in the case of groupoids [28] and,
by a deep result of Sela [33], in the case of groups. It is not known whether this is
the case with tracial von Neumann algebras [25, Question 5.3].

On the other hand, tensor products in general do not preserve elementary equiva-
lence in the category of modules [27] and in the category of C∗-algebras [11; 16].
David Jekel [25, Section 5.1] asked whether tensor products of tracial von Neumann
algebras preserve elementary equivalence. We give partial positive answers to this
question (see Section 1.2 for the notation and terminology).

Theorem 1. If M and N are tracial von Neumann algebras at least one of which is
type I, then the theory of their tensor product depends only on theories of M and N.
In other words, if M1 ≡ M and N1 ≡ N then M1⊗N1 ≡ M⊗N. More precisely, if
M1 ⪯ M and N1 ⪯ N then (with the natural identification) M1⊗N1 ⪯ M⊗N.

In the course of proving Theorem 1 we prove a Feferman–Vaught-type theorem
for direct integrals of metric structures (Theorem 3.3). This proof roughly follows
the lines of the proof of the Feferman–Vaught theorem for metric reduced products
given in [22] (see also [10, Section 16]). Also, standard results imply that among
McDuff factors, tensoring with the hyperfinite II1 factor preserves elementarity (see
Section 5). Unlike C∗-algebras, among tracial von Neumann algebras there is no
known example of a failure of preservation of elementarity by tensor products.
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1. Preliminaries

Good general references are, for operator algebras [8], for type II1 factors [1], and
for continuous model theory [6; 23; 24].

1.1. Direct integrals. Our original definition of measurable fields of metric struc-
tures and direct integrals of metric structures was analogous to measurable fields
and direct integrals of Hilbert spaces and of von Neumann algebras [34, Defini-
tions IV.8.9, IV.8.15, and IV.8.17]. Here we include the more polished definition
from [36, Section 8].1 Although this definition can be extended to the case of
nonseparable metric spaces, we will consider only the separable case. For simplicity,
we will restrict our attention to the case when L is a single-sorted language; the
definition is generalized to multi-sorted languages by making obvious modifications.

Definition 1.1 (measurable fields and direct integrals of metric structures). Suppose
that L is a continuous language, (�,B, µ) is a separable probability measure space,
and (Mω, dω) for ω ∈�, are separable L-structures. Assume that en for n ∈N, is a
sequence in

∏
ω∈�Mω such that the following two conditions hold:

(1) For every ω, the set {en(ω) | n ∈ N} is dense in Mω.

(2) For every predicate R(x̄) in L and every tuple en̄ = ⟨en(0), . . . , en( j−1)⟩ of the
appropriate sort, the function ω 7→ RMω(en̄(ω)) is measurable.

The structures Mω, together with the functions en , form a measurable field of
L-structures.

The direct integral of Mω, for ω ∈�, is the structure denoted

M =
∫
⊕

�

Mω dµ(ω)

and defined as follows. Consider the set M of all a ∈
∏
ω∈�Mω such that the

functions
ω 7→ dω(a(ω), en(ω))

are measurable for all n. On M consider the pseudometric

d M(a, b)=
∫
�

dω(a(ω), b(ω)) dµ(ω).

Then the domain of M is defined to be the set of equivalence classes of functions
in M with respect to the equivalence relation defined by a ∼ b if d M(a, b)= 0, with
the quotient metric d .

1A visible, but ultimately insubstantial, technical difference between this definition and the standard
definition of a direct integral of tracial von Neumann algebras will be discussed in Section 4.
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Lemma 1.2. If F is an n-ary function symbol and ā ∈Mn , then the interpretation
ω 7→ F Mω(ā) is a measurable function. If R is an n-ary predicate symbol and
ā ∈Mn , then the interpretation ω 7→ F Mω(ā) is a measurable function.

Proof. We will prove the second assertion. Fix an n-ary predicate symbol R and
an n-tuple ā in M. Given ε > 0, the syntax requires that there is δ = δ(ε) > 0 such
that for n-tuples x̄ and ȳ in any L-structure N we have that d(ā, b̄) < δ implies
|RN (x̄)− RN (ȳ)|< ε.

Since en(ω) for n ∈N, is dense in every Mω, there is a partition �=
⊔

i X i into
measurable sets and a function h : N× n→ N such that for all i and j we have
d Mω(a j (ω)−eh(i, j)(ω)) < δ for all ω ∈ X i . Writing ē(i) for the n-tuple in M whose
j -th coordinate agrees with eh(i, j)(ω), the interpretation ω 7→ RMω(ā) is uniformly
ε-approximated by

ω 7→
∑

i

χX i RMω(ē(i)).

By (2) of Definition 1.1, this function is measurable. Therefore the evaluation of R
at ā is, as a uniform limit of measurable functions, measurable.

The proof in case of function symbols is analogous. □

On M the interpretations of function symbols and predicate symbols in L are
defined in the natural way. The interpretation of a function symbol F(x̄) in L, for
a tuple ā in M of appropriate sort, is the equivalence class F M(ā) of the function
on � such that

ω 7→ F Mω(āω).

If R(x̄) is a relation symbol in L and ā in M is of appropriate sort, then

RM(ā)=
∫
�

RMω(āω) dµ(ω).

Lemma 1.3. If L is a continuous language and Mω, for ω ∈ �, is a measurable
field of L-structures, then

∫
⊕Mω dµ(ω) is an L-structure. □

Proof. It is straightforward to verify that M is complete with respect to d and that
the interpretation of each function and predicate symbol in a direct integral is
continuous with respect to d, with the modulus of continuity as required by the
syntax in L. The conclusion follows. □

A remark on randomizations. Keisler’s randomizations of discrete structures [26]
as well as their metric analog [3, Definition 3.4; 5] are closely related to direct
integrals of measurable fields of structures. Unlike direct integrals, randomizations
are presented in an expanded two-sorted language. Precise relation between ran-
domizations (of both discrete structures and continuous structures whose theory has
an additional property, that the space of quantifier-free n-types is a Bauer simplex
for all n ≥ 1) is discussed in detail in [36, Section 21]. Note that the quantifier
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elimination results for randomizations (see [26, Theorem 3.6], [5, Theorem 2.9],
and [3, Corollary 3.33]) refer to the expanded language. It is not difficult to see that,
for example, a nontrivial direct integral of a measurable field of II1 factors does not
admit quantifier elimination in the language of tracial von Neumann algebras. As a
matter of fact, no type II1 tracial von Neumann algebra admits quantifier elimination
by the main result of [12]. This result has been improved further in [17] where it
was shown that these theories are not even model complete.

1.2. Elementarity. The model theory of tracial von Neumann algebras and C∗-
algebras were introduced in [14]. For every tuple x̄ = ⟨x0, . . . , xn−1⟩ of variables
(n ≥ 0, allowing for the empty tuple) one associates the algebra of formulas Fx̄ with
free variables included in x̄ . If ϕ(x̄) is a formula with free variables included in x̄ ,
(N , τ ) is a tracial von Neumann algebra, then the interpretation ϕN (ā) is defined
for every tuple ā in N of the appropriate sort. Sentences are formulas with no free
variables.

To every tracial von Neumann algebra N one defines a seminorm ∥ ·∥N on Fx̄ by

∥ϕ(x̄)∥N = supϕN U
(ā).

Here ā ranges over all n-tuples in the unit ball of N . (The standard definition of
∥ϕ(x̄)∥ takes supremum over all structures M elementarily equivalent to N and all
n-tuples in M of the appropriate sort, but the two seminorms coincide.)

Definition 1.4. Suppose that M and N are tracial von Neumann algebras. They are
said to be elementarily equivalent, M ≡ N , if every sentence ϕ satisfies ϕM

= ϕN .
An elementary embedding9 :M→N is an embedding such that ϕM(ā)=ϕN(9(ā))
for every ϕ(x̄) and every ā of the appropriate sort.

If M is a subalgebra of N and the identity map is an elementary embedding,
then M is called an elementary submodel of N , in symbols M ⪯ N .

The diagonal embedding of M into its ultrapower MU is elementary (Łoś’s
theorem). If M ⪯ N and N ⪯ P , then M ⪯ P . If M ⪯ P , N ⪯ P , and M ⊆ N , then
M ⪯ N . However, M ⪯ P , M ⪯ N , and P ⊆ N does not in general imply P ⪯ N .

2. Definability in probability measure algebras

Here we start the proof of our Feferman–Vaught theorem stated and proven in
Section 3, by laying down some general definability results following a request of
one of the referees. Let LMBA denote the language of probability measure algebras as
in [7]. In addition to Boolean operations, this language is equipped with a predicate
for a probability measure and metric derived from it. Thus if (B, µ) is a measure
algebra, the distance is given by dµ(A, B)= µ(A1B), and the language includes
(symbols for) the Boolean operations. For definiteness, if (B, µ) is a measure
algebra then on Bn we consider the max distance, dµ(A, B)=maxi<n µ(Ai1Bi ).
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The simple fact stated in Lemma 2.1 below is a warm up for Lemma 2.2 used in
proof of Theorem 3.3.

Lemma 2.1. Each of the following sets is definable in every measure algebra (B, µ).

(1) The set X1 = {(A1, A2) | A1 ⊆ A2}.

(2) The set X2 = {(A, B,C) | A∩ B = C}.

(3) For A ∈B, the set XA = {B ∈B | B ⊆ A} is definable with A as a parameter.

Proof. In each of the instances, we need a formula that bounds the distance of an
element (or a tuple of the appropriate sort) to the set in question (see [6, Section 9]
and more specifically [6, Definition 9.16]).

(1) Let ϕ(X1, X2)= µ(X1 \ X2). It is clear that X1 is the zero set of ϕ. Moreover,
for every A ∈ B2 we have that the pair B = (A1 ∩ A2, A2) is in X1 and that
dµ(A, B)= µ(A11(A1 ∩ A2))= ϕ(A1, A2).

(2) Let ψ(X1, X2, X3) = µ((X1 ∩ X2)1X3). Clearly X2 is the zero set of ψ
is X2. Also, for every A ∈ B3 the triple B = (A1, A2, A1 ∩ A2) is in X2 and
dµ(A, B)= ψ(A), as required.

(3) Follows from (1). □

Lemmas 2.2 and 2.3 below would be consequences of Lemma 2.1 if it only were
the case that an intersection of definable sets is definable. (Counterexamples can
be found in as of yet unpublished papers [4] and [18].) The notation in these two
lemmas is chosen to comply with the natural notation in the proof of Theorem 3.3
at the point when Lemma 2.3 is being invoked.

Lemma 2.2. Suppose that ℓ≥ 1 and U = (U j ) j<ℓ is a tuple in a measure algebra
(B, µ) such that U0 ≥U1 ≥ · · · ≥Uℓ−1. Then the set

X[U ] =
{

Y ∈Bℓ
| Y j ≤U j

⋂
i< j

Yi for j < ℓ
}

is a definable set with parameter U.

Proof. As in Lemma 2.1, it suffices to find a formula ϕU such that its zero set
is X[U ] and for every X = (X i : i < ℓ) in Bℓ the distance from X to X[U ] is at
most ϕU (X). For an ℓ-tuple U that satisfies U0 ≥U1 ≥ · · · ≥Uℓ−1 let

ϕU (X)= max
1≤m<ℓ

(
µ

(
Xm \

⋂
j<m

X j

)
+µ(Xm \Um)

)
.

Clearly X[U ] is the zero set of ϕU . Fix an ℓ-tuple X in Bℓ. Let

Ym =
⋂
j≤m

X j ∩Um for 1≤ m < ℓ.

Then Ym ⊆
⋂

j<mY j ∩Um for all 1≤ m < ℓ, and hence Y ∈ X[U ].
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To estimate dµ(X , Y ), note that since Ym1Xm ⊆ (Xm\
⋂

j<m X j )∪ (Xm\Um),
we also have dµ(Xm, Ym)≤ ϕU (X), as required. □

A little bit of natural (albeit slightly cumbersome) notation will be helpful.
Suppose F is a finite set, ℓ(ζ )≥ 1 for ζ ∈ F, and we have

U = (U ζ
j )ζ∈F, j<ℓ(ζ ).

Then we write U ζ
= (U ζ

j ) j<ℓ(ζ ) for ζ ∈ F.
As pointed out above, an intersection of definable sets is not necessarily definable.

However, in the following lemma we are dealing with a product of definable sets,
not an intersection.

Lemma 2.3. Suppose that F is a finite set and U ζ
= (U ζ

j ) j<ℓ(ζ ) for ζ ∈ F and
ℓ(ζ )≥ 1, is a tuple in a measure algebra (B, µ) such that U ζ

0 ≥U ζ

1 ≥ · · · ≥U ζ

ℓ(ζ )−1.
Then the set

Y[U ] = {Y ζj | ζ ∈ F, j < ℓ(ζ ), and (Y ζj ) j<ℓ(ζ ) ∈ X[U ζ
]}

is definable with parameter U = (U ζ )ζ∈F.

Proof. With ϕU as in the proof of Lemma 2.2, let ψU (X)=maxζ∈F ϕU ζ (X ζ ). As
there is no interaction between Y ζ for different ζ ∈ F, and as Y[U ] is equal to
{Y | Y ζ ∈X[U ζ

] for all ζ ∈ F}, ψU witnesses that Y[U ] is definable, as required. □

3. The Feferman–Vaught-type theorem for direct integrals

Throughout this section we fix an arbitrary metric language L and let LMBA be the
language of probability measure algebras studied in Section 2.

Definition 3.1. An LMBA-formula G(X) in m variables X =⟨X1, . . . Xm⟩ is coordi-
natewise increasing if for every measure algebra (B, µ) and every pair of m-tuples
A= ⟨Ai ⟩ and A′= ⟨A′i ⟩ in it, if Ai ≤ A′i for all i ≤m then G(B,µ)(A)≤G(B,µ)(A′).

Definition 3.2 and Theorem 3.3 are stated for L-formulas whose ranges are
included in [0, 1]. Since the range of every L-formula ϕ(x̄) is a bounded interval,
the range of r(ϕ(x̄)− t) is [0, 1] for appropriately chosen real numbers r and t , and
this assumption will not result in loss of applicability of the theorem. In particular,
the conclusion of Theorem 3.3 holds for tracial von Neumann algebras.

Given a probability space (�,B, µ) and a measurable field Mω for ω ∈ �, of
L-structures, for an L-formula ϕ ∈ Fx̄ , ā of the appropriate sort, and t ∈ [0, 1] we
define

(3-1) Z ζt [ā] = {ω ∈� : ζ(āω)
Mω > t}.

Definition 3.2. An L-formula ϕ(x̄) whose range is included in [0, 1] is determined
in direct integrals of L-structures, if the following objects exist.
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(D1) A finite set F[ϕ] of L-formulas whose free variables are included in the free
variables of ϕ(x̄) and whose ranges are included in [0, 1].

(D2) For every k ≥ 2, an integer l(k, ϕ, ζ ) ≥ 1 and a coordinatewise increasing
LMBA-formula Gϕ,k(X) with

∑
ζ∈F[ϕ] l(k, ϕ, ζ )many variables X ζ

i/ l(k,ϕ,ζ ) for
ζ ∈ F[ϕ] and i < l(k, ϕ, ζ ).

These objects are required to be such that for every probability space (�,B, µ)

and a measurable field Mω for ω ∈�, of L-structures, and ā of the appropriate sort
the following hold. (Writing M =

∫
⊕

�
Mω dµ(ω).)

(D3) ϕ(ā)M > t/k implies

Gϕ,k
(
Z ζi/ l(k,ϕ,ζ )[ā], i < l(k, ϕ, ζ ), ζ ∈ F[ϕ]

)
> (t − 1)/k.

(D4) Gϕ,k
(
Z ζi/ l(k,ϕ,ζ )[ā], i < l(k, ϕ, ζ ), ζ ∈ F[ϕ]

)
> t/k implies

ϕ(ā)M > (t − 1)/k.

Similarly, if (D1) holds and (D2)–(D4) hold for a specific value of k, we say that
ϕ is k-determined.

In particular, Definition 3.2 asserts that the value of ϕ(ā) is determined up to 2/k
by the value of Gϕ,k , which is in turn determined by the distribution of the eval-
uations of formulas ζ in the finite set F[ϕ], up to (roughly) 1/ l(k, ϕ, ζ ) in the
measurable field Mω.

On the set of all L-formulas consider the natural uniform metric

d(ϕ(x̄), ψ(x̄))= sup|ϕM(ā)−ψM(ā)|,

where the supremum is taken over all L-structures M and all tuples ā of the
appropriate sort in M .

Theorem 3.3. For every metric language L the set of all determined formulas is
dense in the set of all L-formulas.

Proof. The proof proceeds by induction on complexity of ϕ, simultaneously for
all k ≥ 2. It will be clear from the proof that the set F[ϕ] does not depend on the
choice of k. This is essentially the set of all subformulas of ϕ.

By [6, Proposition 6.6], any set of L-formulas that includes the atomic formulas
and is closed under multiplication by 1

2 , the operation ϕ .
−ψ =max(0, ϕ−ψ), and

quantifiers inf and sup is dense in the set of all L-formulas. It therefore suffices to
prove that the sets of all k-determined formulas satisfy four closure properties:

(1) All atomic formulas are k-determined.

(2) If ϕ is k-determined, so is 1
2ϕ.

(3) If ϕ and ψ are 3k-determined, then ϕ .
−ψ is k-determined.

(4) If ϕ is k-determined, so are supxϕ and infxϕ for every variable x .
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For readability of the ongoing proof, presented by induction on the complexity
of ϕ simultaneously for all k ≥ 2, we combine the recursive construction of F[ϕ],
l(k, ϕ, ζ ) for ζ ∈ F[ϕ], and Gϕ,k with a proof that these objects have the required
properties for an arbitrary probability space (�,B, µ), a measurable family of
L-structures (Mω)ω∈�, and its direct integral

M =
∫
⊕

�

Mω dµ(ω).

(Needless to say, the constructed objects will not depend on the choice of the
measure space or the measurable family.)

(1) Suppose that ϕ(x̄) is atomic or constant (i.e., a scalar) and that ā ∈ M is of the
appropriate sort. Let F[ϕ] = {ϕ}, l(k, ϕ)= k, and define

Gϕ,k(X)=
1
k

k−1∑
i=1

µ(X i ).

It is clear that this formula is coordinatewise increasing. Then for 0≤ i < k, with

Zϕi/k[ā] = {ω ∈� | ϕ(āω)
Mω > i/k},

we have (for simplicity we will write Zϕ = (Zϕ0 [ā], . . . , Zϕ(k−1)/k[ā])). From the
layer cake decomposition formula for the integral of a nonnegative function we
obtain

Gϕ,k(Zϕ)≤
∫
�

ϕ(āω)Mω dµ(ω)≤
1
k

k−1∑
i=0

µ(Zϕi/k[ā])≤ Gϕ,k(Zϕ)+
1
k
.

Thus the conditions (D3) and (D4) are clearly satisfied.

(2) Suppose that ϕ(x̄) = 1
2ψ(x̄) and that ψ is k-determined. Let F[ϕ] = F[ψ],

l(k, ϕ, ζ )= l(k, ψ, ζ ) (we could have taken l(k, ϕ, ζ ) to be
⌈ 1

2 l(k, ψ, ζ )
⌉

, but there
is no reason to be frugal) and define

Gϕ,k(X)= 1
2 Gψ,k(X).

These objects satisfy the requirements by the definitions.

(3) Suppose that ϕ = ψ .
− η and each one of ψ and η is 3k-determined. In order to

prove that ϕ is k-determined let

F[ϕ] = F[ψ] ∪ {1− ζ : ζ ∈ F[η]}.

(If ζ ∈ F[η], then its range is included in [0, 1], and hence the range of 1 − ζ
is also included in [0, 1].) Also, let l(k, ϕ, ζ ) = l(3k, ψ, ζ ) for ζ ∈ F[ψ], and
l(k, ϕ, 1− ζ )= l(3k, η, ζ ) for ζ ∈ F[η]. To define Gϕ,k , we need an additional bit
of notation.
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For ζ ∈ F[η] and s ∈ [0, 1] let (writing ℓ= l(3k, η, ζ ) for readability)

Z̃1−ζ
s = {ω ∈� : 1− ζ(āω)M

≥ s}.

For a tuple Z1−ζ
= (Z1−ζ

0 , . . . , Z1−ζ
(ℓ−1)/ℓ) let

−�
Z

1−ζ
= (Z̃1−ζ

(ℓ−1)/ℓ, . . . , Z̃1−ζ
0 ).

First, note that for every 0 ≤ i ≤ ℓ and ζ ∈ F[η] we have (Y ∁ denotes the
complement of Y , applied pointwise if Y is a tuple)

(Z̃1−ζ
(ℓ−i)/ℓ[ā])

∁
=

{
ω ∈� : (1− ζ(āω))Mω ≥

ℓ−i
ℓ

}∁

=

{
ω ∈� : ζ(āω)Mω ≤

i
ℓ

}∁

=

{
ω ∈� : ζ(āω)Mω >

i
ℓ

}
= Z ζi/ℓ[ā].

This shows that (
←−−
Z1−ζ )∁ = Z ζ . Define2

Gϕ,k(Z ξ , Z1−ζ , ξ ∈ F[ψ], ζ ∈ F[η])

= Gψ,3k(Z ξ , ξ ∈ F[ψ])
.
−Gη,3k((

−�
Z

1−ζ
)∁, ζ ∈ F[η]).

Then Gϕ,k is coordinatewise increasing since the same is true for Gψ,3k and Gη,3k .

Claim 3.4. The formula Gϕ,k satisfies (D3) and (D4) of Definition 3.2.

Proof. Suppose ϕM(ā) > t/k for M =
∫
⊕

�
Mω dµ(ω) and ā in M of the appropriate

sort. There exists m < 3(k− t) such that

• ψ(ā)M > (3t +m)/3k and

• η(ā)M
≤ (m+ 1)/3k.

By the induction hypothesis,

(IH1) Gψ,3k(Z ξ , ξ ∈ F[ψ]) > (3t +m− 1)/3k and

(IH2) Gη,3k(Z ζ , ζ ∈ F[η])≤ (m+ 2)/3k.

2For simplicity, we present Gϕ,k not as a formula in a tuple X abstract variables, but in terms of

the intended values for these variables. Note that, since (
−�
Z

1−ζ
)∁ consists of the complements of sets

in Z1−ζ , Gϕ,k depends on the correct choice of variables, Zζ for ζ ∈ F[ϕ].
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By (IH1) and (IH2), we have

Gϕ,k(Z ξ , Z1−ζ , ξ ∈ F[ψ], ζ ∈ F[η])

= Gψ,3k(Z ξ , ξ ∈ F[ψ])
.
−Gη,3k((

←−−

Z1−ξ )∁, ζ ∈ F[η])

≥ Gψ,3k(Z ξ , ξ ∈ F[ψ])
.
−Gη,3k(Z ζ , ζ ∈ F[η])

>
3t+m−1

3k
−

m+2
3k
=

t−1
k
.

This completes the proof of (D3).
To prove (D4), suppose that Gϕ,k(Z ξ , Z1−ζ , ξ ∈ F[ψ], ζ ∈ F[η]) > t/k. Then

by the definition of Gϕ,k , for some m < 3(k− t) we have

Gψ,3k(Z ξ , ξ ∈ F[ψ]) >
3t+m

3k
and Gη,3k(Z ζ , ζ ∈ F[η])≤

m+1
3k

.

By the induction hypothesis this implies

(IH3) ψ(ā)M > (3t +m− 1)/3k and

(IH4) η(ā)M
≤ (m+ 2)/3k.

Conditions (IH3) and (IH4) immediately imply that ϕ(ā)M > (t − 1)/k. □

(4) Suppose that ϕ(x̄)= supyψ(x̄, y) and ψ is k-determined. Let

R[ζ ] = {i/ l(k, ψ, ζ ) | i < l(k, ψ, ζ )} for ζ ∈ F[ψ],

C=
{
α | there is a nonempty F⊆ F[ψ] such that α ∈

∏
ζ∈F

R[ζ ]
}
.

One may think of α ∈C as a function from F into Q∩[0, 1]. The point of specifying
α(ζ ) ∈R[ζ ] is that, because each R[ζ ] is finite, the set C is finite as well.

For α ∈ C define the L-formula

(3-2) ξα(x̄)= sup
y

min
ζ∈dom(α)

(ζ(x̄, y)−α(ζ )).

Then for every α ∈ C, and ā in M we have

Z ξα0 [ā] = {ω | ξα(āω)
Mω > 0} =

{
ω | sup

y∈Mω

min
ζ∈dom(α)

(ζ(ā, y)−α(ζ )) > 0
}

⊆

⋂
ζ∈dom(α)

{
ω | sup

y∈Mω

ζ(ā, y) > α(ζ )
}

=

⋂
ζ∈dom(α)

Z ξζα(ζ )[ā].

Let
F[ϕ] = {ξα | α ∈ C},

l(k, ξα, ϕ)=max{l(k, ζ, ψ) | ζ ∈ dom(α)} for k ≥ 2 and α ∈ C.
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For simplicity of notation we will denote Z ξα0 [ā] with Z ξα0 and, more generally,
Zηr [ā] with Zηr , whenever there is no ambiguity. It will also be helpful to introduce
an abbreviation and write, for ζ ∈ F[ψ],

ℓ(ζ )= l(k, ψ, ζ ).

Prior to defining the LMBA-formula Gϕ,k , we note that every variable occurring
in Gψ,k is of the form Z ζi/ℓ(ζ ) for some ζ ∈ F[ψ] and i < ℓ(ζ ). Let

(3-3) Z = (Z ξα0 | α ∈ C).

Claim 3.5. With the notation from the previous paragraph, the set Y[Z ] of all
Y = (Y ζi | i < ℓ(ζ ), ζ ∈ F[ψ]) that satisfy conditions

(i) Y ζi ⊆ Z ξα0 for all α ∈ C such that ζ ∈ dom(α) and α(ζ )= i
ℓ(ζ )

,

(ii) Y ζi ⊆ Y ζi−1 if i ≥ 1

is definable with parameters Z as in (3-3).

Proof. For m < ℓ(ζ ), let

U ζ
m =

⋂{
Z ξα0 | α ∈ C, ζ ∈ dom(α), α(ζ )≤

m
ℓ(ζ )

}
.

Then U ζ

0 ⊇U ζ

1 ⊇ · · · ⊇U ζ

ℓ(ζ )−1 for every ζ . Let

X[U ζ
] =

{
Y ζ ∈Bℓ(ζ )

| Y ζj ≤U ζ
j ∩

⋂
i< j

Y ζi for j < ℓ(ζ )
}
.

Then Y[U ] = {Y ζj | ζ ∈ F[ψ], j < ℓ(ζ ) and (Y ζj ) j<ℓ(ζ ) ∈ X[U ζ
]}, as considered

in Lemma 2.3 is definable. This set is equal to Y[Z ] and it is definable with
parameters Z . □

Therefore Gϕ,k as defined below is a formula (on the right-hand side, in Gψ,k

the variable Z ζi/ l(ζ ) is replaced with Y ζi for all ζ ∈ F[ψ] and i < ℓ(ζ )):

Gϕ,k(Z ξ : ξ ∈ F[ϕ])= sup
Y∈Y[Z ]

Gψ,k(Y
ζ
i ζ ∈ F[ψ], i < l(ζ )).

Clearly, Gϕ,k is coordinatewise increasing since Gψ,k has this property and since
the set Y[Z ] is also increasing in Z (in the sense that Z ≤ Z ′ implies Y[Z ]⊆Y[Z ′]).
It remains to prove that Gϕ,k satisfies the requirements of Definition 3.2.

To prove (D3), suppose ϕ(ā)M > t/k for M =
∫
⊕

�
Mω dµ(ω) and ā in M of the

appropriate sort. Pick b ∈ M such that ψ(ā, b)M > t/k. Then, by the induction
hypothesis we have

(3-4) Gψ,k(Z ζ [ā, b], ζ ∈ F[ψ]) >
t − 1
ℓ(k)

.
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For ζ ∈ F[ψ] and i < ℓ(ζ ) let

Y ζi = Z ζi/ l(ζ )[ā, b].

We claim that Y defined in this manner belongs to the set Y[Z ] as in Claim 3.5.
Condition (ii) is clearly satisfied and condition (i) is satisfied because for all ζ ∈F[ψ]

and i < l(ζ ), we have that

Y ζi = {ω ∈�} | ζ(āω, bω)Mω > i/ℓ(ζ )}

⊆

⋂
α∈C,ζ∈dom(α)
α(ζ )≤i/ℓ(ζ )

{
ω ∈� | sup

y∈Mω

min
ζ∈dom(α)

η(āω, y)Mω −α(ζ ) > 0
}

=

⋂
α∈C,ζ∈dom(α)
α(ζ )≤i/ℓ(ζ )

Z ξα0 .

By (3-4) we have

Gϕ,k(Z ξ , ξ ∈ F[ϕ])≥ Gψ,k(Y
ζ
i , ζ ∈ F[ψ], i < ℓ(ζ )) >

t − 1
ℓ(k)

.

This completes the proof of (D3).
To prove (D4), assume Gϕ,k(Z ξζ [ā], ζ ∈F[ψ])> t/k. Then there are measurable

sets (as before, ā is suppressed for readability) Y ζi for ζ ∈ F[ψ] and i < ℓ(ζ )

satisfying (i) and (ii) such that

(3-5) Gψ,k(Y
ζ
i , ζ ∈ F[ψ], i < ℓ(ζ )) > t/k.

For each ω ∈� let
Dω = {ζ ∈ F[ψ] : ω ∈ Y ζ0 }.

Define αω ∈ C with dom(αω)= Dω by

(3-6) αω(ζ )=max{i/ℓ(ζ ) : ω ∈ Y ζi }.

If Dω ̸= ∅ then ω ∈
⋂
ζ∈Dω

Y ζαω(ζ ) and (i) implies that Y ζαω(ζ ) ⊆ Z ξαω0 for every
ζ ∈ dom(αω), and hence we have

⋂
ζ∈Dω

Y ζαω(ζ ) ⊆ Z ξαω0 and ω ∈ Z ξαω0 . Therefore,

sup
y

min
ζ∈Dω

ζ(āω, y) > αω(ζ ).

Recall from Definition 1.1 that all Mω for ω ∈ �, are separable and that en for
n ∈ N, enumerate a subset of M such that en(ω) for n ∈ N, form a dense subset
of Mω for every ω ∈�. Thus, if Dω ̸=∅ there exists n ∈ N such that

min
ζ∈Dω

ζMω(āω, en(ω)) > αω(ζ ).
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Let n(ω) be the minimal n with this property. For each n ∈ N, let

�n = {ω ∈� | n(ω)= n}

and �∞ = {ω ∈ � | Dω = ∅}. Note that �∞ = � \
⋃
ζ∈F[ψ]Y

ζ

0 . Therefore,
{�n | n ∈N∪{∞}} is a partition of � into measurable sets. The function b defined
on � by

bω =
{

en(ω) if ω ∈�n,

e0(ω) if ω ∈�∞
is a measurable field of elements and it therefore defines an element of M . By the
choice of n(ω), if Dω ̸=∅, then

(3-7) min
ζ∈Dω

ζ(āω, bω)Mω > αω(ζ ).

Claim 3.6. We have Y ζi ⊆ Z ζi/ℓ(ζ )[ā, b] for all ζ ∈ F[ψ] and i < ℓ(ζ ).

Proof. Suppose ω ∈ Y ζi . Then, from (3-6) we have i/ℓ(ζ )≤ αω(ζ ). By the choice
of b, we have

ζ(āω, bω)Mω > αω(ζ )≥ i/ℓ(ζ ),

which means, ω ∈ Z ζi/ℓ(ζ )[ā, b]. □

Since Gψ,k is coordinatewise increasing, Claim 3.6 and (3-5) together imply

Gψ,k(Z ζ [ā, b], ζ ∈ F[ψ]) > t/k.

The inductive hypothesis implies that ψ(ā, b)M > (t−1)/k, and therefore we have
ϕ(ā)M > (t − 1)/k as required.

Since infy ψ(x̄, y)= 1− supy(1−ψ(x̄, y)), the case when ϕ(x̄)= infy ψ(x̄, y)
for some ψ that satisfies the inductive assumption follows from the previous case.
This completes the proof by induction on complexity of ϕ. □

What makes Theorem 3.3 (or in general, Feferman–Vaught-type theorems)
“effective” is that the objects in (D1)-(D2) of Definition 3.2 can be recursively
obtained from only the syntax of ϕ, as the proof shows. In order to state Corollary 3.8
we need a definition.

Definition 3.7 (measurable fields and direct integrals of metric structures). Suppose
that L is a continuous language, (�,B, µ) is a separable probability measure space,
(Nω, dω) for ω ∈�, are separable L-structures and Mω is a substructure of Nω for
a set of ω of full measure. Assume that en for n ∈ N, is a sequence in

∏
ω∈�Nω

such that the following two conditions hold.

(1) For every ω the set {e2n(ω) | n ∈N} is dense in Mω and the set {en(ω) | n ∈N}

is dense in Nω.

(2) For every predicate R(x̄) in L and every tuple e2n̄ = ⟨e2n(0), . . . , e2n( j−1)⟩ of
the appropriate sort, the function ω 7→ RMω(e2n̄(ω)) is measurable.



104 ILIJAS FARAH AND SAEED GHASEMI

(3) For every predicate R(x̄) in L and every tuple en̄ = ⟨en(0), . . . , en( j−1)⟩ of the
appropriate sort, the function ω 7→ RNω(en̄(ω)) is measurable.

As in Definition 1.1, the structures Nω, together with the functions en , form a
measurable field of L-structures and the structures Mω form a measurable subfield
of this measurable field.

Corollary 3.8. Suppose (�,B, µ) is a separable measure space, and Mω and Nω
are measurable fields of structures of the same language, for all ω ∈�.

If Mω ≡ Nω for almost all ω, then∫
⊕

�

Mω dµ(ω)≡
∫
⊕

�

Nω dµ(ω).

If Mω for ω∈� is a measurable subfield of Nω for ω∈� and in addition Mω⪯ Nω
for almost all ω, then ∫

⊕

�

Mω dµ(ω)⪯
∫
⊕

�

Nω dµ(ω).

Proof. We prove the second part. Fix a formula ϕ(x̄) and k ≥ 2. By Theorem 3.3
can be uniformly approximated by a formula that is determined. Therefore, without
loss of generality we assume ϕ(x̄) is determined. Let

M =
∫
⊕

�

Mω dµ(ω) and N =
∫
⊕

�

Nω dµ(ω).

For every ā in M of the appropriate sort and every formula ζ(x̄)∈ F[ϕ], the set of ω
such that ζ(āω)Nω = ζ(āω)Mω has full measure. That is, the sets of the form Z ζr [ā],
as in Definition 3.2, evaluated in structures M and N are the same. Therefore
|ϕ(ā)N

−ϕ(ā)M
|< 2/k and because k was arbitrary it follows that ϕ(ā)N

= ϕ(ā)M .
Since ϕ and ā were arbitrary, Nω ⪯ Mω.

Proof of the first part is analogous. □

As Itaï Ben Yaacov [5] pointed out, Corollary 3.8 can be proven using quantifier
elimination in atomless randomizations. This result applies only to atomless measure
spaces but is in this case even slightly stronger as it shows that the direct integrals
are elementarily equivalent even as randomization structures.

A special case of Corollary 3.8 where all the fiber of the direct integrals are the
same tracial von Neumann algebra leads to the following corollary.

Corollary 3.9. Suppose M and N are elementarily equivalent tracial von Neumann
algebras and (�,B, µ) is a separable measure space. Then

M⊗L∞(�,µ)≡ N⊗L∞(�,µ).

If M ⪯ N then
M⊗L∞(�,µ)⪯ N⊗L∞(�,µ).
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4. Applications to tracial von Neumann algebras

In this section we prove Theorem 1, after discussing a technical point.

4.1. Two languages for tracial von Neumann algebra. Tracial von Neumann
algebras are equipped with a distinguished tracial state τ , usually suppressed for the
simplicity of notation.3 In the literature tracial von Neumann algebras are usually
considered with respect to the ∥ · ∥2-norm:

∥a∥2 = τ(a∗a)1/2,

but in [36, Section 29] they are for convenience considered with respect to the ∥ · ∥1
norm:

∥a∥1 = τ((a∗a)1/2).

We will denote the corresponding languages L∥·∥2 and L∥·∥1 , respectively. Since
the syntax of continuous logic requires each function symbol to be equipped with
a modulus of uniform continuity, the difference between these two languages is
not only notational. By [36, Lemma 29.1], on operator norm-bounded balls the
∥·∥1-norm is compatible with the strong operator topology (and therefore equivalent
to the ∥ · ∥2-norm). We thus have two competing languages and two competing
axiomatizations (the standard one and the one in [36, Proposition 29.4]) of tracial
von Neumann algebras in continuous logic. In order to facilitate the ongoing
discussion, for j = 1, 2 we will refer to the axiomatization (formulas, definable
predicates, etc.) using the ∥ · ∥ j -norm as j -axiomatization ( j -formulas, j-definable
predicates, etc.).

Lemma 4.1. (1) The tracial state is a j-definable predicate for J = 1, 2.

(2) The norm ∥ · ∥2 is a 1-definable predicate.

(3) The norm ∥ · ∥1 is a 2-definable affine predicate.

(4) Every 2-definable predicates is a 1-definable predicate and vice versa.

Proof. We prove that the tracial state is a 1-definable predicate by exhibiting a
concrete defining formula. If a = a∗ and ∥a∥ ≤ n (data visible from the sort of a)
then |a+n| = a+n and τ(a)=∥a+n∥1−n. Since a can be written as a= a0+ ia1

where a0 :=
1
2(a + a∗) and a1 :=

1
2i (a − a∗) are self-adjoint, we have that (still

assuming ∥a∥ ≤ n)

τ(a)= ∥a0+ n∥1+ i∥a1+ n∥− (1+ i) n.

Similarly, if a = a∗ and ∥a∥ ≤ n then τ(a) = ∥a + n∥22− n, which by the above
argument shows that τ is 2-definable.

3For simplicity, in this proof we allow tracial von Neumann algebras whose distinguished trace is
not normalized.
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Since ∥a∥2 = τ(a∗a)1/2, the 2-norm is a 1-definable predicate.
The remaining parts of the lemma follow. □

Corollary 4.2. Two tracial von Neumann algebras are 1-elementarily equivalent if
and only if they are 2-elementarily equivalent.

A class of tracial von Neumann algebras is 1-axiomatizable (in continuous logic)
if and only if it is 2-axiomatizable (in continuous logic). □

4.2. Proof of Theorem 1. En route to the proof of Theorem 1 we prove the follow-
ing (very likely well-known, yet not completely trivial) result. By Corollary 4.2,
we do not need to indicate whether “elementarily equivalent” refers to the 1-logic
or to the 2-logic as discussed in the previous subsection.

Proposition 4.3. Suppose that M and M1 are elementarily equivalent tracial von
Neumann algebras and one of them is of type I. Then the other one is also of type I.

If in addition both M and M1 have separable predual, then they are isomorphic.
In other words, the theory is a complete isomorphism invariant for separable tracial
von Neumann algebras of type I.

Proposition 4.3 will follow from a more precise (and more obvious), statement
(Lemma 4.4) given after a few clarifying remarks.

Note that being type I is not axiomatizable in language of tracial von Neumann
algebras, since the category of type I tracial von Neumann algebras is not preserved
under ultraproducts. (E.g., the ultraproduct of Mn(C) for n ∈ N associated with
a nonprincipal ultrafilter on N is an interesting II1 factor without property 0.)
However, every tracial von Neumann algebra elementarily equivalent to Mn(C) is
isomorphic to it.

By the second part of Proposition 4.3, type I tracial von Neumann algebras behave
similarly to compact metric structures, or to finite-dimensional C∗-algebras (all of
whose sorts are compact). More precisely, the second part of Proposition 4.3 is a
poor man’s version of the fact that Mn(C)≡ A implies Mn(C)∼= A: Every tracial
von Neumann algebra with separable predual elementarily equivalent to a given
type I tracial von Neumann algebra M with separable predual is isomorphic to it. In
terminology of [16], being isomorphic to M is separably axiomatizable. In the stan-
dard model-theoretic terminology, the theory of M is ℵ0-categorical (some authors
write ω-categorical, as the ordinal ω is routinely identified with the cardinal ℵ0).

Lemma 4.4. If M is a tracial von Neumann algebra, then there is a unique function

ρM : (N \ {0})×N→ [0, 1],

with the following properties.

(1)
∑

m,n ρM(m, n)≤ 1, with the equality holding if and only if M has type I.

(2) ρM(m, n)≥ ρM(m, n+ 1) whenever n ≥ 1.
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(3) M =
∏

m≥1Mm(L∞(Xm, µm)), where (Xm, µm) is a measure space which has
atoms of measure ρM(m, n) for n ≥ 1 (with multiplicities), and diffuse part of
measure ρM(m, 0) (with µ(Xm)=

∑
n ρM(m, n)).

Moreover, the function ρM is computable from the theory of M.

Proof. By the type decomposition of finite von Neumann algebras [34, Section V],
M is isomorphic to the direct sum MI⊕MII where MI is of type I and MII of type II.

By the same decomposition result, MI is of the form
∏

m≥1Mm(L∞(Xm, µm))

with
∑

mµm(Xm) = 1 (possibly with µm(Xm) = 0 for some m). Since every
finite measure space can be decomposed into diffuse and atomic part as specified,
giving rise to ρM . Measures of the atoms are listed in decreasing order in order
to assure (2), securing the uniqueness of the function ρM . To be precise, let Ym,n

for n ∈N, enumerate all atoms in the measure space (Xm, µm), listed in order of
decreasing measure, with multiplicities. If there are only k atoms, then let Ym,n =∅
for n ≥ k. Finally let ρM(m, n) = µm(Ym,n). We therefore only need to explain
how to determine ρM from the theory of M .

First we use the fact that the center Z(M) of a tracial von Neumann algebra M
is definable (this is essentially [13, Lemma 4.1]). The proof shows that the lattice of
projections in the center is also definable (this is not an immediate consequence of the
fact that the set of projections is also definable, since by an unpublished result of Hen-
son in continuous logic the intersection of definable sets is not necessarily definable).

As observed in [16, Theorem 2.5.1], m-subhomogeneous C∗-algebras are axiom-
atizable. This clearly extends to von Neumann algebras, by using the same formula.
So for every m ≥ 1 the set (by τ we denote the distinguished tracial state of M)

{τ(p) | p ∈ Z(M) is a projection and pMp is m-subhomogeneous}

can be read off the theory of M . The supremum of this set is equal to∑
j≤m

∑
n
ρM( j, n).

Thus µm(Xm) is determined from Th(M).
It remains to compute the measures of the atoms of each µm . Again using the

fact that the projections in Z(M) form a definable set, these are the values of τ(p)
where p is a central projection such that pMp∼=Mm(C). Multiplicities are handled
similarly. □

Proof of Proposition 4.3. Suppose that M and M1 are elementarily equivalent tracial
von Neumann algebras and that M has type I. Lemma 4.4 implies that ρM = ρM1 .
By (1) of Lemma 4.4 we have

∑
m,n ρM1(m, n)=

∑
m,n ρM(m, n)=1, and therefore

M1 is also of type I.
Note that ρM = ρM1 implies that the atomic parts of M and M1 are isomorphic.

Since every diffuse abelian tracial von Neumann algebra is isomorphic to L∞([0, 1]),
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if in addition to being of type I and elementarily equivalent both M and M1 have
separable predual, then they are isomorphic. □

The following well-known lemma uses the notion of the eq of a metric structure,
studied in [16, Section 3]. Briefly, if M is a metric structure then Meq is formed
from M by expanding it as follows (see [16, Section 3.3] for details). First, one
adds all countable products of sorts in M and equips them with natural product
metric. Second, one adds all definable subsets of such products. Third, one takes
quotients by all definable equivalence relations on such definable sets. The structure
obtained in this way is denoted Meq. Its theory T eq depends only T = Th(M), the
category of models of T eq is equivalent to the category of models of T , and it is
abstractly characterized as the largest conservative extension of the category of
models of T (this is [16, Theorem 3.3.5]). It is easier than its C∗-algebraic analog,
[16, Lemma 3.10.2].

Lemma 4.5. If N and F are tracial von Neumann algebras and F is finite-
dimensional, then F⊗N is in N eq. Thus, if M is also a tracial von Neumann
algebra such that M ≡ N (M ⪯ M), then F⊗M ≡ F⊗N (F⊗M ⪯ F⊗N ).

Proof. We first consider the case F=Mm(C) for some m≥1. Then the distinguished
tracial state of F⊗N is σ = trm⊗τ (where trm is the normalized tracial state on
Mm(C) and τ is the distinguished tracial state of N ). Then the unit ball of (F⊗N , σ )
can be identified with a subset of the unit ball N m2

with the naturally defined matrix
arithmetic operations and tracial state σ((ai j )i, j≤m)=

∑
i≤mτ(ai i ).

For the general case, note that F is the direct sum of full matrix algebras,
F =

⊕
j≤k Ml( j)(C) and that its distinguished tracial state is a convex combination

of trl( j) for j ≤ k. By the argument similar to the one for Mm(C), F⊗N can be
identified with N

∑
j≤k l( j)2 with the appropriately defined arithmetic operations and

distinguished tracial state. □

Proof of Theorem 1. We will prove the theorem for ⪯. The proof for≡ is analogous,
and alternatively it follows by the fact that elementarily equivalent structures can
be elementarily embedded into the same structure.

The result follows from the conjunction of the following two statements.

(1) If M, N , N1 are tracial von Neumann algebras, N1 ⪯ N , and M has type I,
then M⊗N1 ⪯ M⊗N .

(2) If M, N , N1 are tracial von Neumann algebras, N1 ⪯ N , and N has type I,
then M⊗N1 ⪯ M⊗N .

(1) As in the proof of Proposition 4.3, we have M =
∏

m≥1Mm(L∞(Xm, µm)). By
Corollary 3.9, N1 ⪯ N implies that N1(m)= L∞(Xm, µm)⊗N1 is an elementary
submodel of N (m)= L∞(Xm, µm)⊗N .
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The matrix case of Lemma 4.5 implies Mm(N1(m)) ⪯ Mm(N (m)) for all m.
Corollary 3.8 applied to the measure space (N, µ) where µ is a probability Radon
measure implies that M⊗N1 ⪯ M⊗N .

(2) Analogously to case (1), N =
∏

m≥1Mm(Pm) for some abelian von Neumann
algebras Pm . By Proposition 4.3, N1 =

∏
m≥1Mm(P1,m) with P1,m ≡ Pm for

all m, and furthermore the algebras Pm and P1,m have atoms and diffuse parts
of the same measure. This implies that Pm and P1,m are isomorphic. Therefore,
P1,m⊗M ⪯ P⊗M . Lemma 4.5 implies that further tensoring with Mm(C) pre-
serves elementarity, and hence Corollary 3.8 implies that

∏
m≥1Mm(P1,m⊗M) is

an elementary submodel of
∏

m≥1Mm(Pm⊗M). That is, M⊗N1 ⪯ M⊗N . □

5. Concluding remarks

In general, tensoring with strongly self-absorbing C∗-algebras [35] does not preserve
elementarity [11, Proposition 6.2]. All known examples of the failure of preservation
of elementary equivalence by tensor products relied on failure of regularity properties
of C∗-algebras, such as definability of tracial states [11, Proposition 6.2] and stable
rank being greater than 1 ([16, Corollary 3.10.4], using [32, Theorem 3.1]).

However, known results imply that tensoring with a strongly self-absorbing
C∗-algebra D preserves elementary equivalence in a large class of C∗-algebras.
It follows from [16, Corollary 2.7.2] that if A is tensorially D-absorbing, then
A ⪯ A⊗ D via the map that sends a to a⊗ 1D for all a ∈ A (since D ∼= D

⊗
N by

[35, Proposition 1.9]). Being tensorially D-absorbing is separably axiomatizable by
[16, Theorem 2.5.2]. (A property is separably axiomatizable if there is a theory T
such that all separable models of T satisfy this property.) Let TD be the theory
of separable D-absorbing C∗-algebras (see [15, Section 2.1]). Models of TD are
called potentially D-absorbing [15, Definition 2.4], and they have the property
that all of their separable elementary submodels are D-absorbing. The Downward
Löwenheim–Skolem theorem thus implies that if A is potentially D-absorbing and
A ≡ B, then A⊗ D ≡ B⊗ D.

If A ⪯ B and A is potentially D-absorbing, then by identifying A with A⊗ 1D

in A⊗ D we have A ⪯ B ⊗ D. A slightly finer analysis using [15, Lemma 1.4]
applied to the inclusions A⊆ A⊗ D ⊆ B⊗ D (or directly using the Tarski–Vaught
test) shows that A⊗ D ⪯ B⊗ D.

Proposition 5.1. If A ⪯ B and A is potentially D-absorbing, then A⊗ D ⪯ B⊗ D
via the natural embedding that fixes 1⊗ D.

By a result of Connes, the hyperfinite II1 factor R is the only strongly self-
absorbing II1 factor. Potentially R-absorbing tracial von Neumann algebras are
the McDuff factors, and an argument analogous to that of the previous paragraph
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shows that if M ≡ N and M is McDuff, then M⊗R ≡ N⊗R and if M ⪯ N and M
is McDuff then M⊗R ⪯ N⊗R.

It is not known whether tensor products of tracial von Neumann algebras preserve
elementarity or not. The fact that theories of type II1 tracial von Neumann algebras
do not admit quantifier elimination (see [12] and [17] for a finer result) makes the
question of preservation of elementarity more intricate.

Definition 5.2. If M =
∫
⊕

�
Mω dµ(x) is a direct integral, then the distribution of

the theories in the measurable field Mω for ω ∈�, is the function α that to every
n ≥ 1 and every n-tuple of L-sentences ϕ̄ = ⟨ϕ j : j ≤ n⟩, associates the distribution
αϕ̄ : [0, 1]n→ [0, 1] by

αϕ̄(r̄)= µ{ω | ϕ
Mω

j > r j for all j ≤ n}.

Theorem 3.3 (together with Lemma 4.1 that provides translation between lan-
guages L∥·∥2 and L∥·∥1) has the following natural corollary.

Corollary 5.3. The theory of a direct integral M =
∫
⊕

�
Mω dµ(ω) is uniquely

determined by the distribution of the theories in the measurable field Mω for ω ∈�.
□

The converse to this corollary is in general false, it is not possible to disintegrate
the theory of a direct integral to recover the theories of Mω for almost allω. However,
every tracial von Neumann algebra with separable predual admits a disintegration
into a measurable field of factors that is essentially unique [34, Section IV]. Con-
firming Conjecture 4.5 from the original version of the present paper, David Gao
and David Jekel proved that if M is a direct integral of a measurable field of II1

factors then its theory uniquely determines the distribution of theories of II1 factors
in this measurable field [21, Theorem A]. The proof uses a variant of [5]. Together
with an easy Fubini-type argument, this theorem implies the following.

Corollary 5.4. Tensor products of tracial von Neumann algebras preserve elemen-
tary equivalence if and only if tensor products of II1 factors preserve elementary
equivalence. □

While a Feferman–Vaught-style theorem technically solves the problem of com-
puting the theory of a given structure, it is desirable to have a more efficient
procedure. In [30] and [31], Palyutin isolated a class of so-called h-formulas
and shown that they satisfy a version of Łoś’s theorem in every reduced product
M =

∏
i∈I Mi/I and that if in addition the Boolean algebra P(I )/I is atomless

then every formula in the language of M is equivalent to a Boolean combination of
h-formulas. This has, for example, been used to provide a much simpler proof of
ℵ1-saturation of reduced products associated with a countable ideal in [29]. The
analog of Palyutin’s theory for continuous logic has been developed in [20].
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It would be desirable to develop analogous theory for direct integrals of structures
in place of reduced products. We will now describe some partial results along these
lines. In [2], Bagheri proved a preservation theorem for affine formulas under
direct integrals. He introduced a variant of the continuous logic, nowadays known
as the affine logic, a systematic study of which is in [36] . Affine formulas are
defined recursively starting from atomic formulas. Logical connectives are restricted
to affine functions, while the role of quantifiers is still played by supremum and
infimum [36, Section 2]. Structures and interpretation of formulas are analogous to
those in continuous logic. The operation of taking direct integrals of measurable
fields of affine structures preserves the affine theory (note that for tracial von
Neumann algebras this is true only if they are considered with respect to the ∥ · ∥1
norm, see Lemma 4.1). A preservation under direct integrals of tracial von Neumann
algebras for certain convex formulas had been proven in [18] in a work motivated
by the need to systematize the theory of tracially complete C∗-algebras [9].

Moving to the other important class of self-adjoint operator algebras, we ask
whether there is a C∗-algebraic analog of Theorem 1? Tensor products by finite-
dimensional C∗-algebras preserve elementary equivalence. By the C∗-algebraic
analog of Lemma 4.5, if A and F are C∗-algebras such that F is finite-dimensional,
then A ⊗ F belongs to Aeq [16, Section 3] and therefore the theory of A ⊗ F
can be computed from the theory of A. However, tensoring by C([0, 1]) do not
preserve elementary equivalence [16, Corollary 3.10.4]. To the best of our current
(lamentably limited) understanding, the following would be a plausible analog of
Theorem 1.

Conjecture 5.5. Suppose that A is a C∗-algebra all of whose irreducible repre-
sentations are finite-dimensional and the Gelfand spectrum of its center is totally
disconnected. If B and C are elementarily equivalent C∗-algebras, then A⊗ B and
A⊗C are elementarily equivalent.
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EFFICIENT CYCLES OF HYPERBOLIC MANIFOLDS

ROBERTO FRIGERIO, ENNIO GRAMMATICA AND BRUNO MARTELLI

Let N be a complete finite-volume hyperbolic n-manifold. An efficient
cycle for N is the limit (in an appropriate measure space) of a sequence of
fundamental cycles whose ℓ1-norm converges to the simplicial volume of N .
Gromov and Thurston’s smearing construction exhibits an explicit efficient
cycle, and Jungreis and Kuessner proved that, in dimension n ≥ 3, such a
cycle actually is the unique efficient cycle for a huge class of finite-volume
hyperbolic manifolds, including all the closed ones. We prove that, for n ≥ 3,
the class of finite-volume hyperbolic manifolds for which the uniqueness of
the efficient cycle does not hold is exactly the commensurability class of the
figure-8 knot complement (or, equivalently, of the Gieseking manifold).

Introduction

The simplicial volume is a homotopy invariant of manifolds introduced by Gromov
in his pioneering paper [1982]. If N is a compact connected oriented n-manifold
(possibly with boundary) the simplicial volume ∥N∥ of N is defined by

∥N∥ = inf
{ k∑

i=1

|ai | :

[ k∑
i=1

aiσi

]
= [N ] ∈ Hn(N , ∂N )

}
,

where [N ] denotes the real fundamental class of N , and Hn(N , ∂N ) denotes the
relative singular homology module of the pair (N , ∂N ) with real coefficients.

Computing the simplicial volume is usually a very difficult task. Many vanishing
theorems are available by now, but positive exact values of the simplicial volume
are known only for a few classes of manifolds, such as complete finite-volume hy-
perbolic manifolds [Gromov 1982; Thurston 1979], closed manifolds isometrically
covered by the product of two copies of the hyperbolic plane [Bucher-Karlsson
2008], some 3-manifolds with higher genus boundary [Bucher et al. 2015] and
special families of 4-manifolds [Heuer and Löh 2021]. Even when the simplicial
volume of a manifold N is known, characterizing (or, at least, exhibiting) almost
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minimal fundamental cycles (i.e., fundamental cycles whose norm is close to ∥N∥)
may be surprisingly difficult. For example, it is known that the simplicial volume
of any closed simply connected manifold N vanishes, but there is no recipe, in
general, which describes fundamental cycles of N of arbitrarily small norm; in a
similar spirit, even if the value of the simplicial volume of the product 6×6′ of
two hyperbolic surfaces has been computed in [Bucher-Karlsson 2008], exhibiting
a sequence of fundamental cycles whose norm approximates ∥6×6′

∥ seems very
challenging [Marasco 2023].

The situation is better understood for hyperbolic manifolds: the computation by
Gromov and Thurston of the simplicial volume of such manifolds explicitly con-
structs almost minimal cycles via an averaging operator called smearing [Thurston
1979]. A natural question is to which extent this construction is unique, that is,
whether there exist sequences of almost minimal fundamental cycles which do not
come from smearing: this problem has been partially addressed by Jungreis [1997]
and Kuessner [2003].

We improve their results by showing that, in dimension n ≥ 3, the unique
hyperbolic manifolds admitting “exotic” almost minimal fundamental cycles are
those which are commensurable with the Gieseking manifold (it is known that
hyperbolic surfaces admit many almost minimal efficient cycles which do not come
from smearing; see, e.g., [Jungreis 1997, Remark at page 647]).

In order to state more precisely our results, let us introduce some notation. Let
N be a complete finite-volume hyperbolic n-manifold. If N is closed, we denote
by ∥N∥ its simplicial volume. If N is noncompact, it is the internal part of a compact
manifold with boundary N , and for the sake of simplicity we still denote by ∥N∥ the
simplicial volume of (N , ∂N ). In fact, by replacing finite chains with locally finite
ones, the definition of simplicial volume may be extended to open manifolds, and
for finite-volume hyperbolic manifolds this notion of simplicial volume coincides
with the simplicial volume of the compactification (see, for example, [Kim and
Kuessner 2015]). In order to better compare our results with Kuessner’s we prefer
to work with the relative simplicial volume of compact manifolds with boundary
rather than the simplicial volume of open manifolds, even if our proofs can be easily
adapted to the latter framework.

Let ci , i ∈ N, be a sequence of (relative) fundamental cycles such that

lim
i→+∞

∥ci∥ = ∥N∥.

Any possible limit µ of such a sequence naturally sits in the space M(S
∗

n(N ))
of signed measures on the space of (nondegenerate and possibly ideal) geodesic
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simplices in N , and will be called an efficient cycle for N : thus, an efficient cycle
is a measure rather than a classical chain (we refer the reader to Section 1 for more
details). In fact, it is not difficult to prove that an efficient cycle µ is supported
on the subspace Reg(N ) of regular ideal simplices, which may be identified with
0\Isom(Hn), where 0 is the subgroup of Isom(Hn) such that N = 0\Hn (see
Lemma 2.3). The Haar measure on Isom(Hn) may then be exploited to define
a uniformly distributed measure µeq on Reg(N ), and Gromov and Thurston’s
smearing procedure constructs sequences of fundamental cycles converging exactly
to a suitable multiple of µeq.

Jungreis and Kuessner provided a complete characterization of efficient cycles for
all finite-volume hyperbolic n-manifolds, n ≥ 3, except for the so-called Gieseking-
like manifolds.

Definition 1. Let N = 0\H3 be a cusped hyperbolic 3-manifold. Let us fix an
identification between ∂H3 and the space C∪{∞}, and let P=Q(eiπ/3)∪{∞}⊆∂H3.
Then N is Gieseking-like if there exists a conjugate 0′ of 0 in Isom(H3) such that
P is contained in the set of parabolic fixed points of 0′.

The well-known Gieseking manifold is indeed Gieseking-like. Being Gieseking-
like is invariant with respect to commensurability; hence all hyperbolic 3-manifolds
which are commensurable with the Gieseking manifold (like, for example, the
figure-8 knot complement) are Gieseking-like. It is still unknown whether the
class of Gieseking-like manifolds coincides with the commensurability class of the
Gieseking manifold, or it is strictly larger (see [Long and Reid 2002]).

Let vn be the volume of a regular ideal simplex in hyperbolic space Hn . We are
now ready to state Jungreis’ and Kuessner’s results:

Theorem 2 [Jungreis 1997]. Let N be a closed orientable n-hyperbolic manifold
with n ≥ 3. Then N admits a unique efficient cycle, which is given by the measure

1
2vn

·µeq.

Theorem 3 [Kuessner 2003]. Let N be a complete finite-volume n-hyperbolic mani-
fold, n ≥ 3, and suppose that N is not Gieseking-like (this condition is automatically
satisfied if n ≥ 4). Then every efficient cycle of N is a multiple of µeq.

In fact, Kuessner [2003, Theorem 4.5] proved that any efficient cycle is a
nonvanishing multiple of µeq, without explicitly computing the proportionality
coefficient 1/(2vn) appearing in Jungreis’ theorem. When N is noncompact, the
space of straight simplices in N is noncompact, which introduces some issues when
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dealing with the weak-* convergence of measures (namely, by passing to the limit
there could be some loss of mass).

Let us say that a measure in M(Reg(N )) is equidistributed if it is a multiple
of µeq. Our main results strengthen and clarify Kuessner’s result in three directions:

(1) We prove that the total variation of any efficient cycle of a cusped hyperbolic
manifold is equal to its simplicial volume, thus showing that, in the non-Gieseking
like case, also for cusped manifolds the proportionality coefficient between any
efficient cycle and µeq is equal to 1/(2vn), as in Jungreis’ theorem.

(2) We show that if a cusped 3-manifold N admits nonequidistributed efficient
cycles, then it is commensurable with the Gieseking manifold (a condition which is
potentially stronger than being Gieseking-like).

(3) For any such manifold we exhibit nonequidistributed efficient cycles, thus
obtaining a complete characterization of hyperbolic manifolds with nonunique
efficient cycles.

Let us state more precisely our results:

Theorem 4 (no loss of mass). Let N be a complete finite-volume hyperbolic n-
manifold, n ≥ 3, and let µ be an efficient cycle for N. Then ∥µ∥ = ∥N∥.

Theorem 5. Let N be a complete finite-volume hyperbolic manifold. Then N
admits nonequidistributed efficient cycles if and only if it is commensurable with the
Gieseking manifold.

Putting together Theorems 4 and 5 we can then deduce the following:

Theorem 6. Let N be a complete finite-volume hyperbolic n-manifold with n ≥ 3.

(1) If N is not commensurable with the Gieseking manifold and ci , i ∈ N, is any
minimizing sequence for N , then

lim
i→+∞

ci =
1

2vn
µeq.

(2) If N is commensurable with the Gieseking manifold, then N admits nonequidis-
tributed efficient cycles.

We can be more precise. If N is commensurable with the Gieseking manifold,
then a finite cover M of N admits a decomposition T into regular ideal tetrahedra.
The triangulation T induces a measure cycle µT ∈ M(Reg(M)) which is a finite
sum of atomic measures supported on the regular ideal tetrahedra appearing in T
(see Section 4.4 for the precise definition of µT ). We then have the following:
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Theorem 7. Let M be a complete finite-volume 3-manifold admitting a decomposi-
tion T into regular ideal tetrahedra. Then µT is an efficient cycle for M.

From the nonequidistributed efficient cycle µT for M one can then easily con-
struct a nonequidistributed efficient cycle for N . The proof of Theorem 7 exploits a
construction described in [Francaviglia et al. 2012, Section 5.4], which allows one to
replace an ideal triangulation T of a cusped manifold with a classical triangulation
of its compactification in a very controlled way. By applying this procedure to a
suitably chosen tower of coverings of M and pushing-forward the resulting classical
triangulations to M we obtain a minimizing sequence whose limit is equal to µT .

Plan of the paper. In Section 1 we recall the definition of simplicial volume, of
minimizing sequence, of efficient cycle and of equidistributed efficient cycle. To
this aim we also introduce the measure spaces we will exploit throughout the paper.
Section 2 is devoted to the proof of some fundamental properties of efficient cycles,
including Theorem 4. In Section 3 we prove that, if a complete finite-volume
hyperbolic n-manifold, n ≥ 3, admits a nonequidistributed efficient cycle, then it is
necessarily commensurable with the Gieseking manifold, while Section 4 is devoted
to the construction of nonequidistributed efficient cycles for manifolds which are
commensurable with the Gieseking manifold.

1. Preliminaries

1.1. Simplicial volume. Let X be a topological space. For every k ∈ N, we denote
by Ŝk(X) the set of singular k-simplices with values in X , and by Ck(X) the
chain module of singular k-chains with real coefficients, i.e., the real vector space
with free basis Ŝk(X). If Y ⊆ X , we denote by C∗(X, Y ) the chain complex of
relative singular cochains with real coefficients, and by H∗(X, Y ) the corresponding
homology module. We endow C∗(X) with the ℓ1-norm ∥ · ∥ defined by∥∥∥∥∑

i=1

aiσi

∥∥∥∥ =

k∑
i=1

|ai |.

This norm descends to a norm on C∗(X, Y ) and, by taking the infimum over
representatives, to a seminorm on H∗(X, Y ), still denoted by ∥ · ∥.

If N is a compact oriented n-dimensional manifold (possibly with boundary),
then the singular homology module with integral coefficients Hn(N , ∂N ; Z) ∼=

Z is generated by the integral fundamental class [N ]Z ∈ Hn(N , ∂N ,Z). Under
the change of coefficient homomorphism induced by the inclusion Z ↪→ R, the
class [N ]Z is sent to the real fundamental class [N ] ∈ Hn(N , ∂N ; R).
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Definition 1.1 [Gromov 1982]. The simplicial volume of N is

∥N∥ = ∥[N ]∥.

Henceforth, all the homology modules will be understood with real coefficients,
and the coefficients will be omitted from our notation.

1.2. Straight chains on hyperbolic manifolds. Let N =0\Hn be a cusped oriented
hyperbolic n-manifold, where 0 is a discrete subgroup of Isom+(Hn). For every
k ∈ N, if σ :1k

→ Hn is a singular simplex, we denote by ∼strk(σ ) the straightening
of σ , that is, the singular simplex obtained by suitably parametrizing the convex hull
of the vertices of σ (see, for instance, [Frigerio 2017, Section 8.7] or [Martelli 2022,
Chapter III.13]). We denote by Sk(H

n)⊆ Ŝk(H
n) the image of ∼strk , i.e., the subset

of straight hyperbolic k-simplices, and observe that there is a natural identification

Sk(H
n)= (Hn)k+1

sending a straight simplex to the (ordered) set of its vertices, which will be under-
stood henceforth. With a slight abuse, we still denote by ∼strk : Ck(H

n)→ Ck(H
n)

the R-linear extension of ∼strk to the space of singular chains, and recall that
∼str∗ : C∗(H

n)→ C∗(H
n) is in fact a chain map (see, for instance, [Frigerio 2017,

Proposition 8.11]).
Being Isom(Hn)-equivariant (and equivariantly homotopic to the identity), the

map ∼strk is in particular 0-equivariant, and induces a well-defined chain map
str∗ : C∗(N ) → C∗(N ), which is chain homotopic to the identity. We denote
by Sk(N ) the image of Ŝk(N ) via strk , i.e., the set of straight simplices in N , and
we observe that there is a natural identification

Sk(N )= 0\Sk(H
n)= 0\(Hn)k+1.

A chain is called straight if it is supported on straight simplices or, equivalently, if
it lies in the image of the chain map str∗ (or ∼str∗).

We denote by SC∗(H
n) ⊆ C∗(H

n) (resp. SC∗(N ) ⊆ C∗(N )) the complex of
straight chains in Hn (resp. in N ). By construction, under the above identification
between the set of straight k-simplices and (Hn)k+1 (resp. 0\(Hn)k+1), the complex
SC∗(H

n) (resp. SC∗(N )) is identified with the free vector space with basis (Hn)∗+1

(resp. 0\(Hn)∗+1), with boundary operators which linearly extend the maps

∂k(v0, . . . , vk)=

k∑
i=0

(−1)i (v0, . . . , v̂i , . . . , vk)

(
resp. ∂k[(v0, . . . , vk)] =

∑k
i=0(−1)i [(v0, . . . , v̂i , . . . , vk)]

)
.
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If σ = (v0, . . . , vk) ∈ (Hn)k+1 is a straight simplex, the alternating chain associ-
ated to σ is defined by

altk(σ )=
1
k!

∑
τ∈Sk+1

ε(τ ) · (vτ(0), . . . , vτ(k)),

where Sk+1 is the group of the permutations of the set {0, . . . , k}, and ε(τ )= ±1
is the sign of τ for every τ ∈ Sk+1. The maps altk linearly extend to a chain map
alt∗ : SC∗(H

n)→ SC∗(H
n) which is 0-equivariant, and 0-equivariantly homotopic

to the identity (see, for example, [Fujiwara and Manning 2011, Appendix A]). In
particular, alt∗ induces a well-defined chain map alt∗ : SC∗(N )→ SC∗(N ), which
is homotopic to the identity. A chain in SC∗(H

n) (or in SC∗(N )) is alternating if it
lies in the image of alt∗.

1.3. Thick-thin decomposition of hyperbolic manifolds. For every ε>0 we denote
by Nε the ε-thick part of N , that is, the set of points of N whose injectivity radius
is not smaller than ε. We will always choose ε > 0 small enough so that Nε
is a compact submanifold with boundary of N , obtained from N by removing
open neighborhoods of its cusps. We denote by N the natural compactification
of N , which is diffeomorphic to Nε. The inclusion (Nε, ∂Nε)→ (N , N \ int(Nε))
and the obvious deformation retraction r : (N , N \ int(Nε))→ (Nε, ∂Nε) are the
homotopy inverses of each other, and they induce norm nonincreasing maps in
homology. Therefore, in order to compute the simplicial volume of N we may
consider relative fundamental cycles in Cn(N , N \ int(Nε)). The complement in Hn

of the preimage of Nε under the covering projection is an equivariant family of
disjoint open horoballs. Since horoballs are convex in Hn , the straightening operator
induces a well-defined chain map on the relative chain complex C∗(N , N \ int(Nε)).
Finally, since both the straightening and the alternating operators are obviously
norm nonincreasing (and they induce the identity also on relative homology), in
order to compute the simplicial volume of N it is not restrictive to consider only
straight and alternating relative cycles in C∗(N , N \ int(Nε)).

1.4. Minimizing sequences and efficient cycles. We say that a sequence ci ∈Cn(N )
of chains is a minimizing sequence if the following conditions hold:

(1) Each ci is straight and alternating.

(2) For all sufficiently large i ∈ N, ci is a relative cycle in Cn(N2−i , N \ int(N2−i )).

(3) Under the identification Hn(N2−i , N\int(N2−i ))∼= Hn(N , ∂N ) described above,
the relative cycle ci represents the fundamental class of (N , ∂N ).

(4) ∥ci∥ ≤ ∥N∥ + 2−i for all sufficiently large i ∈ N.
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Of course, in the definition of minimizing sequence the values 2−i may be
replaced by any infinitesimal sequence ηi ; we decided to choose this specific
sequence just to simplify the notation.

We now introduce the measure spaces we are interested in. Recall that Sn(N )=

0\(Hn)n+1 is the space of straight simplices with values in N . Of course, this
space does not contain any ideal simplex; hence we need to enlarge it in order
to construct a measure space which could support possible limits of minimizing
sequences (recall from the introduction that efficient cycles are supported on regular
ideal simplices). The natural space to look at is then Sn(N ) = 0\(Hn)n+1 but,
unfortunately, the action of 0 on Sn(H

n)= (Hn)n+1 has not closed orbits, so that
the quotient space is not Hausdorff. In order to avoid this inconvenience, and for
other later purposes, we introduce the following:

Definition 1.2. A straight simplex in Sn(H
n) is degenerate if its vertices (hence,

its image) lie on (the closure at infinity of) a hyperplane of Hn or, equivalently,
if its image has volume equal to 0. A straight simplex in Sn(N ) = 0\Sn(H

n) is
degenerate if it is the image of a degenerate simplex in Sn(H

n).
We denote by S

∗

n(H
n) (resp. S

∗

n(N )) the set of nondegenerate straight simplices
in Sn(H

n) (resp. Sn(N )).

It is not difficult to show that, when endowed with the quotient topology,
the space S

∗

n(N ) is metrizable and locally compact (see, e.g., [Kuessner 2003,
Lemma 2.6] for a similar result and the proof of Lemma 2.7 here below). We denote
by M(S

∗

n(N )) the space of signed regular measures on S
∗

n(N ). If σ : 1n → N
is a straight simplex, then we denote by δσ ∈ M(S

∗

n(N )) the atomic measure
concentrated on σ . The map σ 7→ δσ linearly extends to a map

(1) 2 : SCn(N )→ M(S
∗

n(N )).

We are now ready to define the notion of efficient cycle for complete finite-volume
hyperbolic manifolds:

Definition 1.3. A measure µ ∈ M(S
∗

n(N )) is an efficient cycle for N if there exists
a minimizing sequence ci , i ∈ N, such that

µ= lim
i→+∞

2(ci ),

where the limit is taken with respect to the weak-* topology on M(S
∗

n(N )).

1.5. Equidistributed measure cycles. As explained in the introduction, we are
going to prove that, if N is not commensurable with the Gieseking manifold, then
there exists a unique efficient cycle for N , which is concentrated on (classes of)
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regular ideal straight simplices, and is equidistributed on such simplices. Let us
formally describe what we mean by equidistributed measure on (classes of) regular
ideal straight simplices.

We define

Reg(Hn)

= {(v0, . . . , vn) ∈ (∂Hn)n+1
| v0, . . . , vn span a regular ideal straight simplex}

and we denote by Reg+(Hn) (resp. Reg−(∂Hn)) the subset of Reg(Hn) correspond-
ing to positively oriented (resp. negatively oriented) simplices. We then set

Reg±(N )= 0\Reg±(Hn)⊆ S
∗

n(N ).

Since N is oriented, elements of 0 are orientation-preserving; hence the sets
Reg+(N ) and Reg−(N ) are disjoint.

Let 10 = (v0, . . . , vn) ∈ (∂Hn)n+1 be the (ordered) (n+1)-tuple of vertices of a
fixed positively oriented regular ideal hyperbolic simplex. We then have bijections

Isom±(Hn)→ Reg±(Hn), g 7→ g ·10 = (g(v0), . . . , g(vn)),

which induce bijections

0\Isom±(Hn)→ Reg±(N ).

We denote by the symbol Haar the Haar measure on Isom(Hn), normalized in such
a way that, for every measurable subset �⊆ Hn and any x0 ∈ Hn ,

Haar{g ∈ Isom(Hn) | g(x0) ∈�} = Vol(�).

Being bi-invariant, the Haar measure induces well-defined finite measures Haar±
on 0/Isom±(Hn), hence on Reg±(N ) via the above identifications. We finally set

µeq = Haar+ − Haar− ∈ M(Reg(N ))⊆ M(S
∗

n(N )),

where the subscript “eq” stands for “equidistributed”. Using again the bi-invariance
of Haar one can easily check that the definition of Haar± (hence of µeq) on Reg(Hn)

does not depend on the choice of 10.

2. Some properties of efficient cycles

For every ε > 0 we denote by ωε : Cn(N , N \ int(Nε))→ R the restriction of the
volume cochain to Nε, i.e., the cochain such that

ωε(c)=

∫
c

d Volε,
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where d Volε is the (discontinuous) n-form that coincides with the hyperbolic
volume form on Nε and is equal to 0 on N \ Nε (for our purposes, it is sufficient to
define ωε on straight chains, which of course are C1, so the integral above makes
sense). If c ∈ Cn(N ) is a straight relative fundamental cycle for (N , N \ int(Nε)),
then we have

ωε(c)= Vol(Nε).

If σ is a straight simplex with values in N , then it is immediate to check that
ωε(σ )= ± Vol(̃σ ∩ Ñε), where σ̃ is a lift of σ to Hn , the space Ñε is the preimage
of Nε in Hn , and the sign is positive (resp. negative) if σ is positively oriented (resp.
negatively oriented).

The following lemma shows that, in a minimizing sequence, the orientation of
simplices has to be coherent with the sign of their coefficients, at least asymptotically.

Lemma 2.1. Let ci , i ∈ N, be a minimizing sequence, and for every i ∈ N let

ci =

ni∑
k=1

ai,kσi,k

be the reduced form of ci (that is, σi,k ̸= σi,k′ whenever k ̸= k ′, where the σi,k are
straight singular simplices and the ai,k are real coefficients). For every i, k, set
bi,k = ai,k if ai,k > 0 and σi,k is not positively oriented or ai,k < 0 and σi,k is not
negatively oriented, and bi,k = 0 otherwise. If c′

i =
∑ni

k=1 bi,kσi,k , then

lim
i→+∞

∥c′

i∥ = 0.

Proof. By definition of minimizing sequence we have

lim
i→+∞

ω2−i (ci )= lim
i→+∞

Vol(N2−i )= Vol(N );

hence

(2) lim
i→+∞

ω2−i (ci )

vn
=

Vol(N )
vn

= ∥N∥ = lim
i→+∞

∥ci∥.

Since the hyperbolic volume of any straight simplex is at most vn , we have

ω2−i (ci − c′

i )≤ ∥ci − c′

i∥ · vn,

while our definition of c′

i readily implies that ω2−i (c′

i )≤ 0. Therefore,

ω2−i (ci )

vn
=
ω2−i (ci − c′

i )+ω2−i (c′

i )

vn
≤ ∥ci − c′

i∥ = ∥ci∥ −∥c′

i∥,

where the last equality follows from the fact that, by construction, the set of simplices
appearing in c′

i is disjoint from the set of simplices appearing in ci − c′

i , so that
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∥ci∥ = ∥(ci − c′

i ) + c′

i∥ = ∥ci − c′

i∥ + ∥c′

i∥. The conclusion follows from this
inequality and (2). □

A very similar argument shows that the volume of “most” simplices appearing
in minimizing sequences converges to vn . We properly state and prove this result,
since we will need it later.

Lemma 2.2. Let ci , i ∈ N, be a minimizing sequence, and for every i ∈ N let

ci =

ni∑
k=1

ai,kσi,k

be the reduced form of ci , as in the previous lemma. Let ε > 0 be fixed, and, for
every i, k, set bi,k = ai,k if the hyperbolic volume of a lift of σi,k to Hn is smaller
that vn − ε, and bi,k = 0 otherwise. If c′

i =
∑ni

k=1 bi,kσi,k , then

lim
i→+∞

∥c′

i∥ = 0.

Proof. Just as in the proof of the previous lemma we have ∥ci − c′

i∥ = ∥ci∥−∥c′

i∥.
Using this fact, since the hyperbolic volume of any straight simplex is at most vn ,
our definition of c′

i implies that

|ω2−i (ci )|≤|ω2−i (ci−c′

i )|+|ω2−i (c′

i )|≤∥ci−c′

i∥·vn+∥c′

i∥(vn−ε)=∥ci∥vn−∥c′

i∥ε,

whence

∥N∥ = lim
i→+∞

|ω2−i (ci )|

vn
≤ lim

i→+∞

∥ci∥−
ε

vn
lim sup
i→+∞

∥c′

i∥ = ∥N∥−
ε

vn
lim sup
i→+∞

∥c′

i∥.

The conclusion follows. □

The previous lemma may be exploited to prove that efficient cycles are supported
on regular ideal straight simplices:

Lemma 2.3 [Kuessner 2003, Lemma 3.5]. Let µ be an efficient cycle for N. Then
µ is supported on Reg(N )⊆ S

∗

n(N ).

Therefore, we will considerµ both as an element of M(S
∗

n(N )) and as an element
of M(Reg(N )).

We are now going to prove that the total variation of an efficient cycle is equal to
the simplicial volume of N (recall that the total variation is only lower semicontin-
uous with respect to weak-* convergence; hence the total variation of an efficient
cycle could be strictly smaller than ∥N∥ a priori).

To this aim we need the definition of incenter and inradius of a straight hyperbolic
simplex. Consider a nondegenerate straight n-simplex 1 ∈ S

∗
(Hn) (recall that a
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straight simplex is nondegenerate if its image is not contained in a hyperplane). For
every point p ∈1∩ Hn we denote by r1(p) the radius of the maximal hyperbolic
ball centered in p and contained in 1. Since the volume of any straight n-simplex
is smaller than vn and the volume of hyperbolic balls diverges as the radius diverges,
there exists a constant rn > 0 such that r1(p)⩽ rn for every 1∈ S

∗

n(H
n) and p ∈1.

Definition 2.4. Take a nondegenerate straight simplex 1 ∈ S
∗

n(H
n). The inradius

r(1) of 1 is
r(1)= sup

p∈1∩Hn
r1(p) ∈ (0, rn]

(observe that r(1) > 0 since 1 is nondegenerate). The incenter inc(1) is the
unique point p ∈1∩ Hn such that r1(p)= r(1).

It is shown in [Francaviglia et al. 2012, Lemma 3.12] that the incenter is well-
defined, and that the functions

inc : S
∗

n(H
n)→ Hn, r : S

∗

n(H
n)→ R

are continuous.
If 1 is a straight simplex in S

∗

n(N ), we define its inradius r(1) as the inradius of
any lift of 1 to Hn , and its incenter inc(1) as the projection in N of the incenter of
any lift of 1 to Hn (the fact that these notions are well-defined is easily checked).

Lemma 2.5. Let δ̄ be the inradius of the n-dimensional regular ideal straight
simplex, and let1i ∈ S

∗

n(H
n), i ∈ N, be a sequence such that limi→+∞ Vol(1i )=vn .

Then limi→+∞ r(1i )= δ̄.

Proof. By [Francaviglia et al. 2012, Proposition 3.14], for every i ∈ N there exists
an element gi ∈ Isom(Hn) such that limi→+∞ gi (1i ) = 1, where 1 is a regular
ideal straight simplex. Since the map r : S

∗

n(H
n)→ R is continuous, we thus get

lim
i→+∞

r(1i )= lim
i→+∞

r(gi (1i ))= r(1)= δ̄. □

Lemma 2.6. Let K ⊆ N be compact, and let δ0 > 0. Then the set

3= {1 ∈ S
∗

n(N ) | inc(1) ∈ K , r(1)≥ δ0}

is compact.

Proof. Let K̃ ⊆ Hn be a compact subset such that π(K̃ ) = K (for example, if
π : Hn

→ N is the universal covering, then K̃ may be chosen as the intersection
between π−1(K ) and a Dirichlet domain for the action of 0 on H3), and let

3̃= {1̃ ∈ S
∗

n(H
n) | inc(1̃) ∈ K̃ , r(1̃)≥ δ0}.
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Under the projection S
∗

n(H
n)→ S

∗

n(N ), the set 3̃ is sent to 3; hence in order to
conclude it suffices to show that 3̃ is compact or, equivalently, sequentially compact
(being a subset of (Hn)n+1, the space 3̃ is metrizable).

Let 1̃i = (vi
0, v

i
1, . . . , v

i
n) ∈ (H

n
)n+1, i ∈ N, be a sequence of elements in 3̃.

Since (H
n
)n+1 is compact, up to passing to a subsequence we may assume that 1̃i

tends to 1̃∞ ∈ (H
n
)n+1. Since the maps r : S

∗

n(H
n)→ R and inc : S

∗

n(H
n)→ Hn

are continuous and K̃ is closed, we have r(1̃∞) ≥ δ0 and inc(1̃∞) ∈ K̃ . Thus
in order to conclude it is sufficient to observe that 1̃∞ is nondegenerate, since it
contains the hyperbolic ball of radius r(1̃∞) > 0 centered at inc(1̃∞); hence it
cannot be contained in a hyperplane. □

Lemma 2.7. Let n = dim N ≥ 3, and let 3 be a compact subset of S
∗

n(N ). Then,
there exists a compactly supported continuous function g : S

∗

n(N )→ [−1, 1] such
that g(1)= 1 for every positively oriented simplex in 3 and g(1)= −1 for every
negatively oriented simplex in 3.

Proof. Let us first prove that S
∗

n(N ) is metrizable. Let SSn(H
n) be the space of

(possibly ideal) straight simplices with pairwise distinct vertices, i.e.,

SSn(H
n)= {(v0, . . . , vn) ∈ (H

n
)n+1

| vi ̸= v j for i ̸= j}.

It is proved in [Kuessner 2003, Lemma 2.6] that the action of 0 on SSn(H
n) is

free and properly discontinuous, and that the quotient space SSn(N )= 0\SSn(H
n)

is metrizable. But S
∗

n(N ) is clearly a subspace of SSn(N ), and its topology as a
quotient of S

∗

n(H
n
) coincides with the topology it inherits as a subspace of SSn(N ).

Therefore, S
∗

n(N ) is metrizable. Indeed, since the action of 0 on S
∗

n(H
n) is free

and properly discontinuous, and the space S
∗

n(H
n) is a topological manifold with

boundary (being an open subset of the topological manifold (H
n
)n+1)), also the

space S
∗

n(N ) is a topological manifold. In particular, it is locally compact.
Let now h : S

∗

n(N )→ [−1, 1] be such that h(1)= 1 if 1 is positively oriented,
and h(1)=−1 if1 is negatively oriented. Since the subspace of positively oriented
(resp. negatively oriented) simplices in S

∗

n(N ) is clopen in S
∗

n(N ), the map h is
continuous. Since S

∗

n(N ) is locally compact, we may choose a relatively compact
open neighborhood U of 3. By the Urysohn lemma, there exists a continuous
function ψ : S

∗

n(N )→ [0, 1] such that ψ(1)= 1 for every1∈3 and ψ(1)= 0 for
every 1 /∈ U . By construction, the function g = f ·ψ is continuous and compactly
supported, takes values in [−1, 1] and is such that g(1)= 1 for every positively
oriented simplex in3 and g(1)=−1 for every negatively oriented simplex in3. □

We are now ready to prove Theorem 4 from the introduction, which we recall
here for the convenience of the reader:
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Theorem 4. Let N be a complete finite-volume hyperbolic n-manifold, n ≥ 3, and
let µ be an efficient cycle for N. Then ∥µ∥ = ∥N∥.

Proof. Let rn be a universal upper bound for the inradius of any nondegenerate
n-dimensional straight simplex, as above. For every ε > 0 we set

thε = {1 ∈ S
∗

n(N ) | inc(1) ∈ B(Nε, rn)},

where B(Nε, rn) denotes the closed rn-neighborhood of Nε in N ; in other words,
thε denotes the set of nondegenerate straight simplices of N whose incenter lies in
the closed rn-neighborhood of the ε-thick part of N .

Let δ̄ be the inradius of the regular ideal straight n-simplex, and fix some constant
0 < δ0 < δ̄. Also denote by V0 the hyperbolic volume of a hyperbolic n-ball of
radius δ0, and set �δ0 = {1 ∈ S

∗

n(N ) | r(1)≥ δ0}.
Let now ci , i ∈ N, be a minimizing sequence, and let us fix ε > 0. We choose

i0 ∈ N such that Vol(N \ N2−i0 ) ≤ εvn . Let i ≥ i0, and consider the following
partition of the space of nondegenerate straight simplices in N :

31 = S
∗

n(N ) \�δ0, 32 =�δ0 ∩ th2−i0 , 33 =�δ0 \ th2−i0 .

We denote by ci = c1
i + c2

i + c3
i the corresponding decomposition of ci , i.e.,

we assume that the simplices appearing in c j
i belong to 3 j for j = 1, 2, 3. By

Lemma 2.5, since δ0 is smaller than the inradius of the regular ideal tetrahedron,
the volume of the lifts to Hn of the simplices in 31 is bounded above by a constant
strictly smaller than vn . By Lemma 2.2, we then have

(3) lim
i→+∞

∥c1
i ∥ = 0.

Let now 1 ∈33, i.e., suppose that r(1)≥ δ0 and inc(1) /∈ B(N2−i0 , rn). Since
δ0 ≤ rn , the ball B(inc(1), δ0) ⊆ 1 does not intersect N2−i0 ; hence |ω2−i0 (1)| ≤

vn − V0. Thus
|ω2−i0 (c3

i )| ≤ ∥c3
i ∥ · (vn − V0).

Observe now that ci , being a relative fundamental cycle for N2−i , is a fortiori a
relative fundamental cycle for N2−i0 . Hence

Vol(N2−i0 )= |ω2−i0 (ci )| ≤ |ω2−i0 (c1
i )| + |ω2−i0 (c2

i )| + |ω2−i0 (c3
i )|

≤ ∥c1
i ∥ · vn + ∥c2

i ∥ · vn + ∥c3
i ∥ · (vn − V0)= ∥ci∥ · vn − ∥c3

i ∥ · V0.

After dividing by vn we obtain

Vol(N2−i0 )

vn
≤ ∥ci∥ −∥c3

i ∥ ·
V0

vn
,
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whence

∥N∥− ε =
Vol(N )
vn

− ε ≤
Vol(N2−i0 )

vn
≤ ∥ci∥−∥c3

i ∥ ·
V0

vn
≤ ∥N∥+ 2−i

−∥c3
i ∥ ·

V0

vn

and

∥c3
i ∥ ≤

vn

V0
(ε+ 2−i ).

In particular, we have

(4) lim sup
i→+∞

∥c3
i ∥ ≤

vn

V0
ε.

Since ∥ci∥ ≥ ∥N∥ we also have

∥c2
i ∥ = ∥ci∥ −∥c1

i ∥ −∥c3
i ∥ ≥ ∥N∥ −∥c1

i ∥ −
vn

V0
(ε+ 2−i );

hence (recalling that ∥c1
i ∥ → 0 as i → +∞)

(5) lim inf
i→+∞

∥c2
i ∥ ≥ ∥N∥ − ε

vn

V0
.

Observe that, thanks to Lemma 2.6, the set 32 is compact. Therefore, by
Lemma 2.7 one may construct a compactly supported continuous function g :

S
∗
(N ) → [−1, 1] such that g(1) = 1 for every positively oriented 1 ∈ 32 and

g(1)= −1 for every negatively oriented1∈32. Just as in Lemma 2.1, decompose
c2

i (resp. ci ) as c2
i = (c2

i − (c2
i )

′) (resp. ci = (ci −c′

i )+c′

i ), where (c2
i )

′ (resp. c′

i ) is a
linear combination of positively oriented simplices with negative coefficients and of
negatively oriented simplices with positive coefficients. We know from Lemma 2.1
that limi→+∞ ∥c′

i∥ = 0; hence, a fortiori,

(6) lim
i→+∞

∥(c2
i )

′
∥ = 0

(hence, also lim infi→+∞ ∥c2
i − (c2

i )
′
∥ = lim infi→+∞ ∥c2

i ∥).
Since the supports of 2(ci

1) and of 2(ci
3) are disjoint from 32, we have

(7)
∫
32

g d2(ci )=

∫
32

g d2(c2
i )=

∫
32

g d2(c2
i − (c2

i )
′)+

∫
32

g d2((c2
i )

′).

By definition, every simplex appearing in the chain ci − c′

i has a positive coefficient
if it is positively oriented, and a negative coefficient otherwise. Therefore, by the
very definition of the function g, we have

(8)
∫
32

g d2(ci − (c2
i )

′)= ∥c2
i − (c2

i )
′
∥.
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Finally, since ∥g∥∞ ≤ 1, we have

(9)
∣∣∣∣∫
32

g d2((c2
i )

′)

∣∣∣∣ ≤ ∥(c2
i )

′
∥.

Putting together the (in)equalities (6)–(9), we then have

(10) lim inf
i→+∞

∫
32

g d2(ci )= lim inf
i→+∞

∥c2
i ∥.

By definition of weak-* convergence, if µ = limi→+∞2(ci ), then from (3)–(5)
and (10) (and the fact that ∥g∥∞ ≤ 1) we obtain∣∣∣∣∫

S
∗
(N )

g dµ
∣∣∣∣ = ∣∣∣∣ lim

i→+∞

∫
31

g d2(ci )+ lim
i→+∞

∫
32

g d2(ci )+ lim
i→+∞

∫
33

g d2(ci )

∣∣∣∣
≥ −

∣∣∣∣ lim
i→+∞

∫
31

g d2(ci )

∣∣∣∣+∣∣∣∣ lim
i→+∞

∫
32

g d2(ci )

∣∣∣∣−∣∣∣∣ lim
i→+∞

∫
33

g d2(ci )

∣∣∣∣
≥ − limsup

i→+∞

∥c1
i ∥+liminf

i→+∞

∥c2
i ∥−limsup

i→+∞

∥c3
i ∥

≥ ∥N∥−
2εvn

V0
.

Since ∥g∥∞ ≤ 1, this inequality implies that the total variation of µ is not smaller
than ∥N∥−2εvn/V0. Due to the arbitrariness of ε, we may conclude that ∥µ∥≥∥N∥.
On the other hand, it is well known that the total variation is lower semicontinuous
with respect to the weak-* convergence; hence ∥µ∥ ≤ limi→+∞ ∥2(ci )∥ = ∥N∥.
This concludes the proof. □

Our normalization of the Haar measure implies that ∥µeq∥=2 Vol(N ). Therefore,
Theorem 4 readily implies the following:

Corollary 2.8. Let k ∈ R and suppose that the measure µ = kµeq is an efficient
cycle for N. Then k = 1/(2vn).

3. Manifolds admitting a unique efficient cycle

Jungreis and Kuessner proved that, if N is a non-Gieseking like hyperbolic mani-
fold, then every efficient cycle of N is equidistributed. We strengthen this result
by showing that the same conclusion holds under the supposedly less restrictive
requirement that N be noncommensurable with the Gieseking manifold. We may
concentrate our attention on the three-dimensional case, the higher-dimensional
case being covered by the results proved in [Kuessner 2003]. Therefore, throughout
this section we denote by N a complete finite-volume hyperbolic 3-manifold.
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Henceforth we fix a regular ideal straight simplex (with ordered vertices) 10 ∈

Reg(H3), which we exploit to fix an identification Reg(H3) ∼= Isom(H3), as ex-
plained at the end of Section 1. For i = 0, . . . , 3, let ri ∈ Isom−(H3) be the
hyperbolic reflection with respect to the plane containing the i-th face of 10. Under
the identification Reg(H3)∼= Isom(H3), the right multiplication

Isom(H3)→ Isom(H3), g 7→ g · ri ,

corresponds to the map ρi : Reg(H3)→ Reg(H3) sending any simplex1∈ Reg(H3)

to the simplex obtained by reflecting 1 with respect to the plane containing its i-th
face. We denote by R the subgroup of Isom(H3) generated by the ri , i = 0, . . . , 3,
and we set R±

= R ∩ Isom±(H3). Observe that, since the (left) action of 0 and the
(right) action of R on Isom(H3) commute, the groups R, R+ also act on Reg(N ).

Recall that any efficient cycle for N is supported on Reg(N ), so that we can
consider efficient cycles as elements of M(Reg(N )). The following result is proved
in [Kuessner 2003, Lemmas 3.9 and 3.10] (see also [Jungreis 1997, Lemma 2.2]):

Lemma 3.1. Let µ ∈ M(Reg(N )) be any efficient cycle for N. Then µ is invariant
with respect to the right action of R+ on Reg(N ). For every r ∈ R− we have
r∗(µ)= −µ.

If1= (v0, v1, v2, v3)∈ Reg(H3) is an arbitrary regular ideal straight simplex, we
denote by T1⊆ Reg(H3) the set defined as follows: 1′

= (v′

0, v
′

1, v
′

2, v
′

3)∈ Reg(H3)

belongs to T1 if and only if its vertices v′

0, v
′

1, v
′

2, v
′

3 span a simplex of the unique
tiling of H3 by regular ideal straight tetrahedra containing the simplex spanned by
v0, v1, v2, v3. We also denote by Aut(T1) < Isom(H3) the subgroup of Isom(H3)

leaving T1 invariant. It is easy to check that Aut(T1) is discrete.
Recall that two subgroups 01, 02 of Isom(H3) are commensurable if there exists

g ∈ Isom(H3) such that (g01g−1)∩02 has finite index both in g01g−1 and in 02.
If 01 and 02 are discrete and torsion-free, this is equivalent to requiring that the
hyperbolic manifolds 01\H3 and 02\H3 admit a common finite-sheeted Riemannian
covering.

Lemma 3.2. For every 1 ∈ Reg(H3), the group Aut(T1) is commensurable with R.
Both these groups are commensurable with the fundamental group of the Gieseking
manifold.

Proof. If g ∈ Isom(H3) is such that g(10)=1, then g · Aut(T10) · g−1
= Aut(T1).

Moreover, R < Aut(T10) and the index of R is finite, since Aut(T10) is discrete
and R has finite covolume. This implies that Aut(T1) is commensurable with R.
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Up to conjugacy, we may suppose that10 is a fundamental domain for the action
of the fundamental group G of the Gieseking manifold on H3. Then G <Aut(T10)

and, as above, the index of G in Aut(T10) is finite because G has finite covolume
(in fact, this index is equal to 4! = 24). This concludes the proof. □

Theorem 3.3. Suppose there is a nonequidistributed efficient cycleµ∈M(Reg(N )).
Then N is commensurable with the Gieseking manifold.

Proof. Let N = 0\H3. As proved in [Kuessner 2003, Section 4], the efficient
cycle µ decomposes into the sum of a multiple of µeq and a measure µ′

∈ Reg(N )
which is supported on tetrahedra whose lifts in H3 have all their vertices in parabolic
fixed points of 0. Since µ is nonequidistributed, we may assume that µ′

̸= 0.
Since parabolic fixed points of 0 are in countable number, the support of µ′ is

also countable, and this implies in turn that µ′ is purely atomic. Moreover, since
µ′

= µ− kµeq for some k ∈ R, the measure µ′ also satisfies r∗(µ
′)= µ′ for every

r ∈ R+ and r∗(µ
′)= −µ′ for every r ∈ R−. Let us set

�=
{
[1] ∈ Reg(N ) | µ′

(
{[1]}

)
̸= 0

}
̸= ∅.

Due to the R-equivariance of µ′, the countable set � is R-invariant. Let us fix a
nonempty R-orbit � ⊆ �. The absolute value of the measure µ′ is constant on
elements of �. Since µ′ has finite total variation, this implies that

�= {[11], . . . , [1k]}

is finite. For every i = 1, . . . , k, let 1i be a lift of [1n] ∈ Reg(N ) in Reg(H3). By
looking at the definition of the actions of R and of 0 on Reg(H3), we deduce that
the R-orbit of 11 in Reg(H3) is contained in

0 ·11 ∪ · · · ∪0 ·1k .

Observe now that the R-orbit of 11 in Reg(H3) realizes a tiling of H3 by regular
ideal tetrahedra. Therefore, up to adding to the 1 j , j = 1, . . . , k, all the straight
simplices obtained by permuting their vertices (which are still in finite number),
we may assume that

T11 ⊆ 0 ·11 ∪ · · · ∪0 ·1k .

Moreover, up to reordering the 1 j , we may assume that T11 ∩ (0 ·1 j ) ̸= ∅ for
every j = 1, . . . , k ′ and T11 ∩ (0 ·1 j )= ∅ for every j = k ′

+ 1, . . . , k, for some
k ′

≤ k. By construction, we still have

(11) T11 ⊆ 0 ·11 ∪ · · · ∪0 ·1k′ .
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We are now going to show that the group0∩Aut(T11) has finite index in Aut(T11).
To this aim we will just exploit (11). For j = 1, . . . , k ′, up to replacing 1 j with
another simplex in its 0-orbit, we suppose that 1 j ∈ T11 . Observe now that T11

is the orbit of 11 under the action of Aut(T11); hence, thanks to (11), for every
j = 1, . . . , k ′ there exists g j ∈ Aut(T11) such that g j ·1 j =11.

Let us fix g ∈ Aut(T11). Since g ·11 ∈ T11 ⊆ 0 ·11 ∪ · · · ∪0 ·1k′ , there exist
γ ∈ 0, j ∈ {1, . . . , k ′

} such that g ·11 = γ ·1 j , whence (γ−1g) ·11 = 1 j and
(g jγ

−1g) ·11 = g j ·1 j = 11. However, since the unique hyperbolic isometry
which fixes the vertices of a regular ideal tetrahedron is the identity, the stabilizer
of 11 in Aut(T11) is trivial; hence g jγ

−1g = 1, i.e., g = γ g−1
j (and, in particular,

γ ∈ 0 ∩ Aut(T11)). We have thus shown that the set {g1, . . . , gk′} contains a set of
representatives for the set of right lateral classes of 0 ∩ Aut(T11) in Aut(T11).

Since 0 is discrete and 0 ∩ Aut(T11) has finite covolume (being a finite index
subgroup of Aut(T11)), the group 0 ∩ Aut(T11) has finite index also in 0. Thus 0
is commensurable with Aut(T11); hence N is commensurable with the Gieseking
manifold by Lemma 3.2. □

Putting together Theorem 3.3 and Corollary 2.8 we obtain the following:

Corollary 3.4. Let N be a complete finite-volume n-hyperbolic manifold, n ≥ 3,
and suppose that N is not commensurable with the Gieseking manifold. Then N
admits a unique efficient cycle, which is given by the measure

1
2vn

·µeq.

4. Manifolds admitting nonequidistributed efficient cycles

We prove that manifolds that are commensurable with the Gieseking manifold admit
nonequidistributed efficient cycles. We will first prove that this phenomenon occurs
for manifolds admitting an ideal triangulation by regular ideal tetrahedra, and we will
then deduce the general case from the fact that any manifold which is commensurable
with the Gieseking manifold admits a finite covering with such a triangulation.

4.1. Triangulations and ideal triangulations. Let N be a compact 3-manifold with
nonempty boundary made of tori. We recall the well-known notions of triangulation
and ideal triangulation, widely used in 3-dimensional topology.

A triangulation of N is a realization of N via a simplicial face-pairing of finitely
many tetrahedra. A triangulation of N naturally induces a triangulation of its
boundary.
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An ideal triangulation of N (or of N ) is a realization of N = int(N ) as a simplicial
face-pairing of finitely many tetrahedra, with all their vertices removed. The
removed vertices are called ideal and they correspond to the boundary components
of N ; the link of every ideal vertex is a triangulation of the corresponding boundary
component of N .

We say as usual that N is hyperbolic if its interior has a finite-volume complete
hyperbolic metric. If N is hyperbolic, every geometric decomposition of N into
hyperbolic ideal tetrahedra is an example of ideal triangulation, that we call a
geometric ideal triangulation of N (or of N ). We still do not know whether every
hyperbolic 3-manifold has a geometric ideal triangulation, but we know it does so
virtually [Luo et al. 2008].

We are interested here in transforming a geometric ideal triangulation into a
triangulation in an efficient way. One method called inflation was introduced by
Jaco and Rubinstein [2014]. Here we introduce a similar method where we employ
the dual viewpoint of simple spines, as Matveev [1990; 2003], in a similar fashion
as in [Francaviglia et al. 2012, Section 5.4].

Consider a geometric ideal triangulation T of N . We lift it to a geometric ideal
triangulation T̃ of the universal cover H3. We choose some disjoint cusp sections
in N ; their preimage consists of infinitely many disjoint horoballs in H3, centered
at the vertices of T̃ .

For ε > 0 sufficiently small, the ε-thick part Nε of N is obtained by removing
from N sufficiently deep cusp sections, and it is homeomorphic to N . The ideal
triangulation T of N restricts to a decomposition of Nε into truncated tetrahedra. To
obtain a triangulation for Nε would now suffice to take its barycentric subdivision;
however, this operation is not useful for us because it produces too many tetrahedra:
we are looking for a triangulation for Nε which contains the same number of
tetrahedra as T , plus only a few more.

We explain our request more precisely. We say that a triangulation T ′ of Nε is
adapted to the geometric ideal triangulation T if there is an injective map i from
the set of ideal tetrahedra of T to the set of tetrahedra of T ′ such that for every
tetrahedron 1 of T , every lift of i(1) is a tetrahedron in H3 whose vertices lie in
the boundary of the 4 removed horoballs whose centers are the vertices of a lift of1.
(We do not require the lift of i(1) to be a straight tetrahedron, only a topological
one.) In some sense we require 1 and i(1) to be close. Every tetrahedron of T ′

that is not in the image of i is called residual.

We will need the following lemma, which says that for any hyperbolic manifold N
with a geometric ideal triangulation T it is possible to construct a tower of finite
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Figure 1. Neighborhoods of points in a simple polyhedron.

coverings, each equipped with an adapted triangulation T ′

i whose residual tetrahedra
grow sublinearly with respect to the degree of the cover.

Proposition 4.1. Let N be a hyperbolic manifold equipped with a geometric ideal
triangulation T . There is a tower of finite coverings Wi → N of degree di such that
the following holds: every Wi admits a triangulation T ′

i adapted to the geometric
ideal triangulation Ti obtained by lifting T , with ri residual tetrahedra, such that

lim
i→∞

ri

di
→ 0.

Subsections 4.2 and 4.3 are devoted to a proof of this proposition.

4.2. Construction of an adapted triangulation. We introduce an efficient method
to transform a geometric ideal triangulation T of a hyperbolic manifold N into a
triangulation T ′ that is adapted to T .

A compact 2-dimensional polyhedron X is simple if every point x of X has a
star neighborhood PL-homeomorphic to one of the three models shown in Figure 1.
Points of type (1) are called vertices. Points of type (2) and (3) form respectively
some manifolds of dimension 1 and 2: their connected components are called
respectively edges and regions. A simple polyhedron X is special if every edge is
an open segment and every region is an open disc, so in particular it has a natural
CW structure.

Let N be a compact 3-manifold with (possibly empty) boundary. A compact
2-dimensional subpolyhedron X ⊂ N = int(N ) is a spine of N if N \ X consists of
an open collar of ∂N and some (possibly none) open balls (the presence of some
open balls is necessary when ∂N = ∅).

Let N be a compact manifold with boundary made of tori. Suppose that N is
hyperbolic and equipped with a geometric ideal triangulation T . We now describe
a method to construct a triangulation T ′ for N ∼= Nε adapted to T .

First, we dualize the ideal triangulation T to get a special spine X of N with one
vertex at the barycenter of each ideal tetrahedron as shown in Figure 2.
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Figure 2. By dualizing an ideal triangulation we get a simple spine.

Second, we add some cells to X to obtain a new special polyhedron X ′, so that
by dualizing X ′ back we will get our desired triangulation T ′. We construct X ′ as
follows. By construction N \ X consists of an open collar of ∂N , that is a finite
union of products S×(0, 1] where S is a torus and S×{1} is a boundary component
of N . Choose a θ -shaped graph Y ⊂ S that is itself a spine of S, i.e., S \ Y consists
of an open disc. Add to X the polyhedron

Y × (0, 1] ∪ S × {1}.

If we do this at each product S × (0, 1] in N \ X , we obtain a 2-dimensional
polyhedron X ′

⊂ N that contains ∂N . If Y is chosen generically, the polyhedron X ′

is special. The complement N \ X ′ consists of open balls, one for each boundary
component of N .

As we mentioned above, the triangulation T ′ for N is constructed by dualizing
X ′ in the appropriate way. Every boundary torus S of N inherits from X ′ a cellu-
larization with two vertices, three edges, and one disc (the cellularization depends
on the chosen θ-shaped spine Y ); this cellularization is dualized to a one-vertex
triangulation for S. This triangulation extends from ∂N to N as follows: every disc,
edge, and vertex of X ′ that is not adjacent to ∂N dualizes to an edge, a triangle,
and a tetrahedron for T ′.

The resulting triangulation T ′ has the smallest possible number of vertices: one
for each boundary component. The tetrahedra of T are in natural 1-1 correspondence
with the vertices of X . The tetrahedra of T ′ are in natural 1-1 correspondence with
the vertices of X ′ that are not contained in ∂N . Since every vertex of X is also a
vertex of X ′ of this kind, we get a natural injection i from the set of tetrahedra of T
into the set of tetrahedra of T ′.

Lemma 4.2. If T is a geometric ideal triangulation for N , the triangulation T ′ is
adapted to T .
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Proof. We fix some disjoint horocusp sections and truncate N along these, to obtain
a smaller copy Nε of N . Their preimage in H3 consists of horospheres. When
passing from X to X ′ we add the cusp sections ∂Nε and some products Y × (0, 1].
In H3 this corresponds to adding the horospheres and some products Ỹ ×(0, 1]. The
resulting dual triangulation T ′ has all its vertices in the cusp sections, which lift to
vertices in the horospheres. By construction for every ideal tetrahedron 1 in T the
corresponding i(1) has its vertices in the same horospheres that are crossed by the
edges of 1. □

The residual tetrahedra correspond to the vertices of X ′ contained in the interior
of N that were not themselves vertices of X , and that were created by attaching the
products Y × (0, 1] along some generic map Y → X . We now need to construct
some tower of coverings where this kind of vertices grow sublinearly in number.

4.3. Characteristic coverings. We now build the tower of coverings for N needed
in Proposition 4.1. We will use some results of Hamilton [Hamilton 2001] on
coverings determined by characteristic subgroups. A similar construction was made
in [Francaviglia et al. 2012, Section 5.3].

Recall that a characteristic subgroup of a group G is a subgroup H < G which
is invariant by any automorphism of G. For a natural number x ∈ N, the x-
characteristic subgroup of Z × Z is the subgroup x(Z × Z) generated by (x, 0)
and (0, x). It has index x2 if x > 0 and ∞ if x = 0. The characteristic subgroups
of Z×Z are precisely the x-characteristic subgroups with x ∈ N. It is easy to prove
that a subgroup of Z × Z of index x contains the x-characteristic subgroup.

A covering map p : T̃ → T of tori is x-characteristic if p∗(π1(T̃ )) is the
x-characteristic subgroup of π1(T ) ∼= Z × Z. A covering map p : Ñ → N of 3-
manifolds bounded by tori is x-characteristic if the restriction of p to each boundary
component of Ñ is x-characteristic.

Lemma 5 from [Hamilton 2001] implies the following.

Lemma 4.3 (E. Hamilton). Let N be a hyperbolic compact, orientable 3-manifold
with boundary tori. For every integer i > 0 there exist an integer k > 0 and a
finite-index normal subgroup Ki ◁π1(N ) such that Ki ∩π1(T j ) is the characteristic
subgroup of index (ik)2 in π1(T j ), for each component T j of ∂N. Hence the
covering Wi → N corresponding to Ki is (ik)-characteristic.

We can now prove Proposition 4.1. We restate it for the sake of clarity.

Proposition 4.1. Let N be a hyperbolic manifold equipped with a geometric ideal
triangulation T . There is a tower of finite coverings Wi → N of degree di such that
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Figure 3. We color in green the regions of the inserted portions
Y ×(0, 1)∪ S×{1}. There are four types of vertices A, B, C , and D
in the spine Q, according to the colors of the incident regions.

the following holds: every Wi admits a triangulation T ′

i adapted to the geometric
ideal triangulation Ti obtained by lifting T , with ri residual tetrahedra, such that

lim
i→∞

ri

di
→ 0.

Proof. Let X be the spine dual to T . Following Section 4.2 we enlarge X to a
special polyhedron X ′ by adding one piece

Y × (0, 1] ∪ S × {1}

for each boundary torus S of N , inside the corresponding collar S × (0, 1] in N \ X .
This operation depends on the choice of a generic θ -shaped spine Y ⊂ S.

The polyhedron X ′ has all the vertices of X , plus some additional ones that we
now investigate carefully. The following discussion is similar to [Francaviglia et al.
2012, proof of Lemma 5.9]. Color in white the regions of X and in green the regions
in the products Y × (0, 1] ∪ S × {1} that are attached to X . There are five types A,
B, C , D, E of vertices in X ′ according to the colors of the incident regions: the
vertices of type A, B,C, D are shown in Figure 3, while those of type E are those
that lie in ∂N and that are incident to green regions only. The vertices of type A
are precisely those of X . The vertices of type B,C, D are dual to the residual
tetrahedra of T ′, and we want to control their number. Those of type E are not
interesting here.

For every boundary torus S, the collar map S → X is a (possibly noninjective)
immersion, and the cellularization of X pulls back to a cellularization of S, which
is in fact dual to the triangulation link of the corresponding ideal vertex of T . The
θ-shaped spine Y is generic, transverse to this cellularization as in Figure 4 (left).
The four types of vertices A, B,C, D that may arise are shown in Figure 4 (right).

Let vA, vB , vC , and vD be the number of vertices of type A, B, C , and D in X ′.
The number of residual tetrahedra in T ′ is vB + vC + vD .

We build the tower of coverings. By Lemma 4.3, for every integer i ≥ 1, there
are a ki > 0 and an (iki )-characteristic covering Wi → N .
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Figure 4. The cellularization of a boundary torus S induced by
the collar map S → X , and the θ-shaped spine Y of S colored in
green (left). The four types of vertices A, B, C , D (right).

We now construct the triangulation T ′

i adapted to the lifted geometric ideal
triangulation Ti of Wi . The preimage of X is a spine X i of Wi dual to Ti . To
construct the adapted triangulation T ′

i , we choose an appropriate θ-shaped spine
inside every boundary torus of Wi . We explain now how to make this choice.

Since the covering Wi → N is (iki )-characteristic, every boundary torus S̃ of Wi

covers a torus S of N as an (iki )-characteristic covering. The case iki = 3 is
shown in Figure 5. We have chosen in the previous paragraphs a spine Y for S; see
Figure 4. As shown in Figure 5 (left), the preimage Ỹ of Y in S̃ is a spine of S̃,
whose complement in S consists of (iki )

2 discs. Figure 5 (right) shows that we can
eliminate most vertices and edges of Ỹ and obtain a simpler spine Ỹ ′

⊂ Ỹ of S̃,
whose complement in S̃ consists of only one disc. This is the θ-shaped spine that
we use on each boundary component S̃ of Wi .

It remains to estimate the number ri of residual tetrahedra in T ′

i . Recall that

ri = vi
B + vi

C + vi
D,

Figure 5. A 3-characteristic covering S̃ → S. The spine Y of S
lifts to the green spine Ỹ shown in the left picture. We can eliminate
most of its edges and still get a spine Ỹ ′ of S̃.
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where vi
B , vi

C , v′

D are the numbers of vertices of type B, C , D in the dual polyhe-
dron X ′

i . The covering Wi → N has degree

di = (iki )
2hi ,

where hi is the number of distinct boundary tori in ∂Wi that project to one boundary
torus of N . It is clear from Figure 5 that

vi
B ≤ 2iki hivB, vi

C ≤ 2vC , vi
D ≤ 2iki hivD.

Therefore
ri

di
=
vi

B + vi
C + vi

D

(iki )2hi
≤

2iki hi

(iki )2hi
(vB + vC + vD)→ 0

as i → ∞. The proof is complete. □

4.4. Efficient cycles from regular ideal triangulations. We are now ready to show
that if a hyperbolic 3-manifold N admits a geometric ideal triangulation T by regular
ideal tetrahedra, then it also admits a nonequidistributed efficient cycle. Indeed, let
11,12, . . . ,1h be the regular ideal tetrahedra of T , considered as subsets of N .
For every i = 1, . . . , k we denote by σ̃i ∈ Reg+(H3)⊆ (H3)4 a (positively oriented)
ordering (ṽ0, . . . , ṽ3) of the set of vertices of a lift of 1i to H3, and by σi the class
of σ̃i in Reg+(N ). Finally, we set

(12) µT =2

(
alt3

( k∑
i=1

σi

))
.

(Strictly speaking, we defined the alternating operator only on straight simplices
with vertices in H3, but of course it may be extended by the same formula also on
ideal straight simplices).

The main result of this section is Theorem 7, which we recall here for the
convenience of the reader:

Theorem 7. Let M be a complete finite-volume 3-manifold admitting a decomposi-
tion T into regular ideal tetrahedra. Then µT is an efficient cycle for M.

Proof. Let us fix some notation. As usual, for every sufficiently large i ∈ N we fix an
identification N ∼= N2−i between the natural compactification of N and the 2−i -thick
part of N . By Proposition 4.1, there is a tower of finite coverings Wi → N2−i of
degree di such that the following holds: every Wi admits a triangulation T ′

i adapted
to the geometric ideal triangulation Ti obtained by lifting T , with ri residual
tetrahedra, such that

(13) lim
i→∞

ri

di
→ 0.
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For every sufficiently large i ∈ N, we construct a relative fundamental cycle ci

for N2−i as follows. The universal covering of Wi coincides with the universal cov-
ering of N2−i (which is the complement of a collection of disjoint horoballs in H3);
hence we may apply the straightening operator to any positively oriented parametriza-
tion of any simplex appearing in T ′

i ; after applying the alternating operator to the
sum of the obtained straight tetrahedra, we get a relative fundamental cycle c̃i for Wi

(more precisely, for the pair (W ′

i ,W ′

i \ int(Wi )), where W ′

i is the complete finite-
volume hyperbolic manifold obtained from Wi by adding back the removed cusps).
If pi : (W ′

i ,W ′

i \int(Wi ))→ (N , N \int(N2−i )) is the covering projection, we then set

ci =
(pi )∗(c̃i )

di
.

For simplicity, we will say that a simplex appearing in ci is nonresidual if it is
obtained (via (pi )∗) from the alternation of the straightening of a nonresidual
simplex of T ′

i .
It is easy to check that ci , i ∈ N, is a minimizing sequence: if k is the number of

the tetrahedra of T , then Vol(N )= kv3; hence ∥N∥ = Vol(N )/v3 = k. On the other
hand, by construction the number of nonresidual simplices in c̃i is equal to kdi and
the alternating operator is norm nonincreasing; hence

lim sup
i→+∞

∥ci∥ = lim sup
i→+∞

∥(pi )∗(c̃i )∥

di
≤ lim sup

i→+∞

∥c̃i∥

di
= lim sup

i→+∞

kdi + ri

di
= k,

and this proves that the sequence ci , i ∈ N, is minimizing.
In order to conclude we are then left to show that

lim
i→+∞

2(ci )= µT ,

where 2(ci ) is the measure associated to the cycle ci (see (1)) and µT is the
measure associated to the triangulation T (see (12)). Let 10 ∈ Reg+(N ) be a
(positively oriented representative of a) tetrahedron of T , and let 1̃0 ∈ Reg(H3) be
a lift of 10 to H3 with vertices (v0, v1, v2, v3). There exist pairwise disjoint open
neighborhoods U0, . . . ,U3 of v0, . . . , v3 in H

3
such that the following conditions

hold: every straight tetrahedron having its i-th vertex in Ui is nondegenerate and
positively oriented, and the tetrahedron 1̃0 = (v0, v1, v2, v3) is the unique lift of
the tetrahedron of T whose vertices lie (in the correct order) in U0, . . . ,U3. We set

�̃= {(v0, v1, v2, v3) ∈ S
∗

3(H
3) | vi ∈ Ui for every i = 0, 1, 2, 3}

and we let� be the projection of �̃ in S
∗

3(N ). Of course, �̃ is an open neighborhood
of 1̃0 in S

∗

3(H
3), and since the projection S

∗

3(H
3)→ S

∗

3(N ) is open, the set � is
an open neighborhood of 10 in S

∗

3(N ).
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Let now f : S
∗

3(N ) be any continuous compactly supported function such that
f (10)= 1. Recall that the vertices of the lifts of nonresidual tetrahedra of T ′

i lie on
the boundary of (deeper and deeper, as i → +∞) removed horoballs centered at the
ideal vertices of lifts of tetrahedra of T . We say that a simplex σ ′ appearing in the
cycle ci is a relative of 10 if it is nonresidual and it admits a lift to H3 with vertices
on horospheres centered at the ideal vertices of a lift of 10 (in the correct order).

Thanks to our definition of�, we can choose i ∈ N such that, if σ is a nonresidual
simplex appearing in ci , then σ belongs to � if and only if it is a relative of 10.
Let us now decompose ci as

ci = c0
i + cnr

i + cr
i ,

where c0
i is supported on relatives of 10, cnr

i is supported on nonresidual simplices
which are not relatives of 10, and cr

i is supported on residual simplices. Since the
simplices appearing in cnr

i cannot belong to � for i sufficiently large, we have

(14) lim
i→+∞

∫
�

f d2(cnr
i )= 0.

Recall now that the alternating operator associates to every simplex the average
of 24 singular simplices, and that positively oriented simplices come with the
coefficient +

1
24 . Therefore, c0

i is a linear combination of di simplices, each of
which comes with the real coefficient 1/(24di ). In particular, we have ∥c0

i ∥ =
1
24 . In

the very same way, if one starts with a negatively oriented10, still ∥c0
i ∥=

1
24 but the

coefficients appearing in c0
i are all negative. As a consequence, since f (10)= 1 and

the simplices appearing in c0
i are converging to 10 in S

∗

3(N ) (and f is continuous),

(15) lim
i→+∞

∫
�

f d2(c0
i )= ∥c0

i ∥ =
1

24(
while, if 10 were negatively oriented, we would have limi→+∞

∫
�

f d2(c0
i ) =

−∥c0
i ∥ = −

1
24

)
.

Finally from (13) we deduce that limi→+∞ ∥cr
i∥ = 0; hence

(16) lim
i→+∞

∫
�

f d2(cr
i )= 0.

Putting together (14)–(16) we then obtain

lim
i→+∞

∫
�

f d2(ci )= ±
1

24
,

where the sign depends on whether 10 is positively or negatively oriented.
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Let us now denote by µ the limit of 2(ci ) (which we may assume to exist, up
to passing to a subsequence; in fact, with a little more effort we could easily prove
that the sequence 2(ci ), i ∈ N, is itself convergent). Due to the definition of weak-*
convergence, we have thus proved that there exists a neighborhood � of 10 such
that, for every compactly supported f : S

∗

3(N )→ R with f (10)= 1, we have∫
�

f dµ= ±
1
24
.

This implies that µ({10})= ±
1
24 .

We have thus shown that µ({10}) = ±
1

24 for every tetrahedron 10 ∈ Reg(N )
whose geometric realization is a tetrahedron of the ideal triangulation T we started
with. But every ideal tetrahedron of T gives rise to 24 tetrahedra in Reg(N ), and
the simplicial volume ∥N∥ is equal to the number of tetrahedra of T , hence the
contribution to µ of the atomic measures supported by tetrahedra whose geometric
realizations are in T has total variation equal to ∥N∥. Since we already know from
Theorem 4 that ∥µ∥ = ∥N∥, this finally implies that µ= µT , as desired. □

We can now conclude the proof of Theorems 5 and 6 by showing that, if N is
commensurable with the Gieseking manifold, then it admits nonequidistributed
efficient cycles.

4.5. Proof of Theorem 5. We have proved in Section 3 that, if N is not commensu-
rable with the Gieseking manifold, then every efficient cycle for N is equidistributed.

Vice versa, if N is commensurable with the Gieseking manifold, then there
exists a degree-d covering p : N̂ → N , where N̂ admits a triangulation T̂ by
regular ideal tetrahedra. Let ĉi , i ∈ N, be the relative fundamental cycles for N̂
constructed in the proof of Theorem 7, and for every i ∈ N let ci = p∗(ci )/d.
The covering map p induces a continuous map S

∗

3(N̂ ) → S
∗

3(N ), hence a map
M(S

∗

3(N̂ ))→ M(S
∗

3(N )). The very same proof of Theorem 7 shows that the limit
µ = limi→+∞2(ci ) ∈ M(S

∗

3(N )) is an efficient cycle for N , and is equal to the
image of µT̂ via the map M(S

∗

3(N̂ )) → M(S
∗

3(N )). But the image of a purely
atomic measure via a continuous map is itself purely atomic. In particular, µ is a
nonequidistributed efficient cycle for N , and this concludes the proof.

4.6. Proof of Theorem 6. We are only left to show that, if N is not commensurable
with the Gieseking manifold and ci , i ∈ N is any minimizing sequence for N , then

lim
i→+∞

2(ci )=
1

2vn
µeq.



144 ROBERTO FRIGERIO, ENNIO GRAMMATICA AND BRUNO MARTELLI

Of course, it is sufficient to show that every subsequence of ci , i ∈ N admits
a subsequence whose image via 2 converges to µeq/(2vn). However, the total
variation of the measures 2(ci ) is uniformly bounded; hence by compactness of the
unit ball in M(S

∗

n(N ) every subsequence of2(ci ) admits a subsequence converging
to some measure µ ∈ M(S

∗

n(N ). By Corollary 3.4 we must have µ= µeq/(2vn),
and this concludes the proof.
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ON DISJOINT STATIONARY SEQUENCES

MAXWELL LEVINE

We answer a question of Krueger by obtaining disjoint stationary sequences
on successive cardinals. The main idea is an alternative presentation of a
mixed support iteration, using it more explicitly as a variant of Mitchell
forcing. We also use a Mahlo cardinal to obtain a model in which ℵ2 /∈ I[ℵ2]

and there is no disjoint stationary sequence on ℵ2, answering a question
of Gilton.

1. Introduction and background

In order to develop the theory of infinite cardinals, set theorists study a variety
of objects that can potentially exist on these cardinals. The objects of interest for
us are called disjoint stationary sequences. These were introduced by Krueger to
answer a question of Abraham and Shelah about forcing clubs through stationary
sets [2]. Beginning in joint work with Friedman, Krueger wrote a series of papers in
this area, connecting a wide range of concepts and answering seemingly unrelated
questions of Foreman and Todorčević [8; 17; 18; 19; 20; 21]. Our purpose is to
further develop this area.

Krueger’s new arguments generally hinged on the behavior of two-step iterations
of the form Add(τ ) ∗ P. In order to extend the application of these arguments as
widely as possible, Krueger developed the notion of mixed support forcing [18; 21],
which had apparently been part of the folklore for some time. These forcings are to
some extent an analog of the forcing that Mitchell used to obtain the tree property at
double successors of regular cardinals. Their most notable feature is the appearance
of quotients insofar as the forcings took the form M ≃ M ∗ Add(τ ) ∗ E where M

is a partial mixed support iteration. The appearance of Add(τ ) after the initial
component, together with the preservation properties of the quotient E, allowed
Krueger’s new arguments to go through various complicated constructions. Mixed
support iterations have found several applications since [10], particularly in regard
to guessing models [22].

Our main idea is to use a version of Mitchell forcing to accomplish the task
of a mixed support iteration. Specifically, we prove that this version of Mitchell
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forcing takes the form M ≃ M∗Add(τ )∗E.1 The trick used to obtain this structural
property goes back to Mitchell’s thesis and is also reminiscent of the one used by
Cummings, S. D. Friedman, Magidor, Rinot, and Sinapova [5] to demonstrate that
subtle variations in the definitions of Mitchell forcing — up to merely shifting a Lévy
collapse by a single coordinate — can substantially alter the properties of the forcing
extension. The benefit of the forcing used here is that it comes with a projection
analysis of the sort that Abraham used for Mitchell forcing [1]. Both the forcing
itself and its quotients are projections of products of the form A × T where A has
a good chain condition and T has a good closure property. This allows us to obtain
preservation properties conveniently, without having to delve into too many technical
details. Abraham in fact used this projection analysis to extend Mitchell’s result
to successive cardinals. This is exactly what we do here for disjoint stationary se-
quences, answering the first component of a question of Krueger [21, Question 12.8]:

Theorem 1. Suppose λ1 < λ2 are two Mahlo cardinals in V . Then there is a forcing
extension in which there are disjoint stationary sequences on ℵ2 and ℵ3.

We lay out the basic definition and concepts in the following subsections and
then develop the proof in Section 2. We also achieve one of Krueger’s separations
for successive cardinals, which answers a component of another one of his questions
[21, Question 12.9]:

Theorem 2. Suppose λ1 < λ2 are two Mahlo cardinals in V . Then there is a forcing
extension in which for µ ∈ {ℵ1, ℵ2}, there are stationarily many N ∈ [H(µ+)]µ

that are internally stationary but not internally club.

The last main result is motivated by work of Gilton and Krueger, who answered
a question from [5] by obtaining stationary reflection for subsets of ℵ2 ∩ cof(ω)

together with failure of approachability at ℵ2 (i.e., ℵ2 /∈ I [ℵ2]) using disjoint station-
ary sequences [10]. This result used the fact that the existence of a disjoint stationary
sequence implies failure of approachability. Gilton asked for the exact consistency
strength of the failure of approachability at ℵ2 together with the nonexistence of a
disjoint stationary sequence on ℵ2 [9, Question 9.0.15]. (He pointed out that Cox
found this separation using PFA [3].) It is known that the failure of approachability
requires the consistency strength of a Mahlo cardinal since □τ holds if τ+ is not
Mahlo in L [16] and □τ implies the approachability property τ+

∈ I [τ+
] [6]. In

Section 3 we show that a Mahlo cardinal is sufficient for the separation:

Theorem 3. Suppose that λ is Mahlo in V . Then there is a forcing extension in
which ℵ2 /∈ I [ℵ2] and there is no disjoint stationary sequence on ℵ2.

1The extent to which all variations of these forcings are equivalent or not is left as a loose end. Here
we only deal with the case where the two-step iteration Add(τ )∗P takes the form Add(τ )∗ Ċol(µ, δ).
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Disjoint stationary sequences are known to be interpretable in terms of canonical
structure (see Fact 6 below), and the main idea for Theorem 3 is a simple master
condition argument that exploits this connection.

1.1. Basic definitions. We assume familiarity with the basics of forcing and large
cardinals. We use the following conventions: If P is a forcing poset, then p ≤ q
for p, q ∈ P means that p is stronger than q. We say that P is κ-closed if for all
≤P-decreasing sequences ⟨pξ : ξ < τ ⟩ with τ < κ , there is a lower bound p, i.e.,
p ≤ pξ for all ξ < τ . (Not all authors use this formulation of κ-closedness.) We say
that P has the κ-chain condition if all antichains A ⊆ P have cardinality strictly less
than κ . All posets considered will be separative. Now we give our main definitions:

Definition 4. Given a regular cardinal µ, a disjoint stationary sequence on µ+ is a
sequence ⟨Sα : α ∈ S⟩ such that

• S ⊆ µ+
∩ cof(µ) is stationary,

• Sα is a stationary subset of Pµ(α) for all α ∈ S,

• Sα ∩ Sβ = ∅ if α ̸= β.

We write DSS(µ+) to say that there is a disjoint stationary sequence on µ+.

Definition 5. Given an uncountable regular κ and a set N ∈ [H(2)]κ ,2 we say:

• N is internally unbounded if for all x ∈ Pκ(N ), there is an M ∈ N such that
x ⊆ M .

• N is internally stationary if Pκ(N ) ∩ N is stationary in Pκ(N ).

• N is internally club if Pκ(N ) ∩ N is club in Pκ(N ).

• N is internally approachable if there is an increasing and continuous chain
⟨Mξ : ξ < κ⟩ such that |Mξ | < κ and ⟨Mη : η < ξ⟩ ∈ Mξ+1 for all ξ < κ such
that N =

⋃
ξ<κ Mξ .

Although disjoint stationary sequences may seem unrelated to the separation of
variants of internal approachability, there are deep connections here, for example:

Fact 6 (Krueger [21]). If µ is regular and 2µ
= µ+, then DSS(µ+) is equivalent to

the existence of a stationary set U ⊆ [H(µ+)]µ such that every N ∈ U is internally
unbounded but not internally club.

1.2. Projections and preservation lemmas. Technically speaking, our main goal
is to show that certain forcing quotients behave nicely. We will make an effort to
demonstrate the preservation properties of these quotients directly. These quotients
will be defined in terms of projections:

2See Jech’s book [15] for details on stationary sets.
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Definition 7. If P1 and P2 are posets, a projection is an onto map π : P1 → P2

such that

• p ≤ q implies that π(p) ≤ π(q),

• if r ≤ π(p), then there is some q ≤ p such that π(q) = r .

A projection is trivial if for all p, q ∈ P1, if π(p) and π(q) are compatible, then
p and q are compatible.

Trivial projections are basically isomorphisms:

Fact 8. If π : P1 → P2 is a trivial projection, then P1 ≃ P2, that is, P1 and P2 are
forcing-equivalent.

For our purposes, we are interested in the preservation of stationary sets. The
chain condition gives us preservation fairly straightforwardly. The following fact is
implicit in parts of the literature, and a version of it can be found in the form of
Proposition 26.

Fact 9. If P has the µ-chain condition and S ⊂ Pµ(X) is stationary, then P forces
that S is stationary in Pµ(X).

However, we must place demands on our stationary sets in order for them to be
preserved by closed forcings.

Definition 10. Consider a regular uncountable cardinal µ and a stationary set
S ⊂ Pµ(X). We say that S is internally approachable of length τ if for all N ∈ S
with N ≺ H(X), there is a continuous chain of elementary submodels ⟨Mi : i < τ ⟩

such that: N =
⋃

i<τ Mi and for all i < τ , ⟨Mi : i < j⟩ ∈ N . In this case we write
S ⊆ IA(τ ).

Here we are following Krueger’s convention [21], which withholds the require-
ment that |Mi | < µ for i < τ .

Fact 11. If S ⊂ Pµ(X)∩ IA(τ ) is an internally approachable stationary set, τ < µ,
and P is µ-closed, then P forces that S is stationary in Pµ(X)V ).3

1.3. Costationarity of the ground model. The notion of ground model costationar-
ity is a key ingredient in arguments pertaining to disjoint stationary sequences. It
will specifically give us the disjointness, since we will be picking stationary sets
that are not added by initial segments of these forcings.

Gitik obtained the classical result:

Fact 12 (Gitik [12]). If V ⊂ W are models of ZFC with the same ordinals, W \ V
contains a real, and κ is a regular cardinal in W such that (κ+)W

≤λ, then PW
κ (λ)\V

is stationary as a subset of Pκ(λ) in the model W .

3See [7] for discussion of related facts.
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Because we will need Fact 11, we will actually use Krueger’s refinement of
Gitik’s theorem:

Fact 13 (Krueger [21]). Suppose V ⊂ W are models of ZFC with the same ordinals,
W \ V contains a real, µ is a regular cardinal in W , and X ∈ V is such that
(µ+)W

⊆ X , and that in W , 2 is a regular cardinal such that X ⊂ H(2). Then
in W the set {N ∈ Pµ(H(2)) ∩ IA(ω) : N ∩ X /∈ V } is stationary.

2. The new Mitchell forcing

2.1. Defining the forcing. Here we will illustrate the basic idea of this paper by
using our new take on Mitchell forcing to prove a known result:

Fact 14 (Krueger [21]). If λ is a Mahlo cardinal and µ < λ is regular, there is a
forcing extension in which 2ω

= µ+
= λ and there is a disjoint stationary sequence

on λ.

Specifically, we will define a forcing M+(τ, µ, λ) such that the model W in
Fact 14 can be realized as an extension by M+(ω, µ, λ).

For standard technical reasons, we define a poset isomorphic to Add(τ, λ):

Definition 15. Given a regular τ and a set of ordinals Y , we let Add∗(τ, Y ) be
the poset consisting of partial functions p : {δ ∈ Y : δ is inaccessible}× τ → {0, 1}

where |dom p| < τ . We let p ≤Add∗(τ,Y ) q if and only if p ⊇ q .

In later subsections we will conflate Add(τ, λ) and Add∗(τ, λ) to simplify no-
tation.

Definition 16. Let λ be inaccessible and let τ <µ<λ be regular cardinals such that
τ<τ

= τ . We define a forcing M+(τ, µ, λ) that consists of pairs (p, q) such that

(1) p ∈ Add∗(τ, λ);

(2) q is a function such that

(a) dom q ⊂ {δ < λ : δ is inaccessible},

(b) |dom q| < µ,

(c) for all δ ∈ dom q, q(δ) is an Add∗(τ, δ + 1)-name such that

p ↾ ((δ + 1) × τ) ⊩Add∗(τ,δ+1) “q(δ) ∈ Ċol(µ, δ)”.

We let (p, q) ≤ (p′, q ′) if and only if

(i) p ≤Add∗(τ,λ) p′,

(ii) dom q ⊇ dom q ′,

(iii) for all δ ∈ dom q ′, p ↾ ((δ + 1) × τ) ⊩Add∗(τ,δ+1) “q(δ) ≤Ċol(µ,δ) q ′(δ)”.
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First we go through the more routine properties that one would expect of this
forcing.

Proposition 17. M+(τ, µ, λ) is τ -closed and λ-Knaster.

Proof. Closure uses the facts that Add∗(τ, λ) is τ -closed and ⊩Add∗(τ,δ+1) “Ċol(µ, δ)

is µ-closed” for all δ. For Knasterness: consider {(pi , qi ) : i < λ} ⊆ M+(τ, µ, λ),
then fix a regular ρ ∈ (µ, λ) and find a stationary subset of λ ∩ cof(ρ) on which
dom pi , dom qi are fixed, and then proceed with a standard delta system lemma
argument. □

Crucially, we get a nice termspace:

Definition 18. Let T = T(M+(τ, µ, λ)) be the poset consisting of conditions q
such that

(1) dom q ⊂ {δ < λ : δ is inaccessible},

(2) |dom q| < µ,

(3) for all δ ∈ dom q,⊩Add∗(τ,δ+1) “q(δ) ∈ Ċol(µ, δ)”.

Most importantly, we let q ≤ q ′ if and only if

(i) dom q ⊇ dom q ′,

(ii) for all δ ∈ dom q, ⊩Add∗(τ,δ+1) “q(δ) ≤ q ′(δ)”.

Proposition 19. There is a projection Add∗(τ, λ)×T(M+(τ, µ, λ))↠M+(τ, µ, λ).

Proof. We let π be the projection with the definition π(p, q) = (p, q). This is
automatically order-preserving because the ordering ≤Add∗(τ,λ)×T is coarser than the
ordering ≤M+(τ,µ,λ). For obtaining the density condition, suppose (r, s) ≤M+(τ,µ,λ)

(p0, q0). We want to find some (p1, q1) such that (p1, q1) ≤Add∗(τ,λ)×T (p0, q0) and
(p1, q1) ≤M+(τ,µ,λ) (r, s). To do this, we first let p1 = r , and then we define q1 with
dom q1 = dom r such that at each coordinate δ ∈ dom q1, we use standard arguments
on names to show that we can get both p0 ↾ ((δ + 1)× τ) ⊩Add∗(τ,λ) “q1(δ) ≤ s(δ)”
as well as 1Add∗(τ,λ) ⊩Add∗(τ,λ) “q1(δ) ≤ q0(δ)”. □

Proposition 20. T = T(M+(τ, µ, λ)) is µ-closed.

Proof. This is an application of the mixing principle. Given a ≤T-decreasing
sequence ⟨qi : i < τ ⟩ with τ < µ we let d =

⋃
i<τ dom qi . Then we define a lower

bound q̄ with domain d such that for all δ ∈ d , q(δ) is a canonically defined name
for a lower bound of the qi (δ)’s (where i is large enough that δ ∈ dom qi ). □

Then we get the standard consequences of the termspace analysis:

Proposition 21. The following are true in any extension by M+(τ, µ, λ):

(1) V -cardinals up to and including µ are cardinals.

(2) For all α < λ, |α| = µ.



ON DISJOINT STATIONARY SEQUENCES 153

(3) λ = µ+.

(4) 2τ
= λ.

Proof. (1) follows from the projection analysis and the fact that T is µ-closed and
Add∗(τ, λ) is τ+-cc, and from τ -closure of M+(τ, µ, λ). (2) follows from the fact
that for all inaccessible δ < λ, M+(τ, µ, λ) projects onto Add∗(τ, δ) ∗ Ċol(µ, δ).
(3) follows from (1) and (2) plus λ-Knasterness. (4) follows from the fact that
M+(µ, λ) projects onto Add∗(τ, λ), so it forces that 2τ

≥ λ. Since the poset has
size λ and λ is inaccessible, it also forces that 2τ

≤ λ. □

The following lemma is the crux of the new idea.

Lemma 22. If δ0 < λ is inaccessible, then there is a forcing equivalence

M+(τ, µ, λ) ≃ M+(τ, µ, δ0) ∗ Add(τ ) ∗ E,

where M+(τ, µ, δ0)∗Add(τ ) forces that E is a projection of a product of a µ-closed
forcing and a τ+-cc forcing.

Proof. In particular, we will show that there is a forcing equivalence M+(τ, µ, λ) ≃

M+(τ, µ, δ0)∗Add(τ )∗ (F×G) where, in the extension by M+(τ, µ, δ0)∗Add(τ ),

• G is a projection of a product of a µ-closed forcing and Add∗(τ, λ), and

• F is µ-closed.

The statement of the lemma can then be obtained by merging F with the closed
component of the product that projects onto G.

First we describe F and G. To do this, we fix some notation. Given Y ⊆ λ, we let
πY

Add denote the projection (p, q) 7→ p↾(Y ×τ) from M+(τ, µ, λ) onto Add∗(τ, Y ).
For any poset P, we employ the convention that 0(P) denotes a canonical name for
a P-generic. If X ⊂ P, then we use the notation ↑X := {q ∈ P : ∃p ∈ X, p ≤ q}.

We will let

F := Col(µ, δ0)
V [(↑(π

δ0
Add”0(M+(τ,µ,δ0))))×0(Add(τ ))]

if we are working in an extension by M+(τ, µ, δ0) ∗ Add(τ ). (In other words, the
poset F will be the version of Col(µ, δ0) as interpreted in the extension of V by
Add∗(τ, δ0 + 1) where the initial coordinates come from M+(τ, µ, δ0) and the last
coordinate comes from the additional copy of Add(τ ) that occupies the coordinate δ0

in Add∗(τ, δ0 + 1).)
Still working in an extension by M+(τ, µ, δ0) ∗ Add(τ ), the poset G consists of

pairs (p, q) such that

(1) p ∈ Add∗(τ, (δ0, λ));

(2) q is a function such that

(a) dom q ⊂ {δ ∈ (δ0, λ) : δ is inaccessible},
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(b) |dom q| < µ,

(c) for all δ ∈ dom q, p ↾
(
(δ0, (δ + 1)) × τ

)
⊩Add∗(τ,(δ0,δ+1)) “q(δ) ∈ Ċol(µ, δ)”.

The ordering is the one analogous to that of M+(τ, µ, λ). An easy adaptation of
the arguments for the projection analysis for M+(τ, µ, λ) will then give a projection
analysis for G.

The rest of the proof of the lemma consists of verifying the more substantial
claims.

Claim 23. M+(τ, µ, λ) ≃ M+(τ, µ, δ0) ∗ Add(τ, 1) ∗ (F × G).

Proof. We identify M+(τ, µ, δ0) ∗ Add(τ, 1) ∗ (F × G) with the dense subset of
conditions ((r, s), t, u, (ṙ ′, ṡ ′)) such that ṡ ′ is forced to have a specific domain in V .
The fact that this subset is dense follows from the fact that M+(τ, µ, λ)∗Add(τ, 1)

has the µ-covering property.
We will argue that there is a trivial projection defined by

π : (p, q) 7→
(
(p ↾ (δ0 × τ), q ↾ δ0)︸ ︷︷ ︸

M+(µ,δ0)

, p ↾ ({δ0} × τ)︸ ︷︷ ︸
Add(τ )

, q∗(δ0)︸ ︷︷ ︸
F

, ( p̄, q̄)︸ ︷︷ ︸
G

)
such that

• p̄ := p ↾ ((δ0, λ)× τ);

• q∗(δ0) is obtained by changing q(δ0) from an Add∗(τ, δ0 + 1)-name to an
Add(τ )-name as interpreted in the extension by the relevant generic, namely(
↑
(
π

δ0
Add”0(M+(τ, µ, δ0))

))
;

• q̄ has domain (δ0, λ), and for each δ ∈ (δ0, λ), q̄(δ) has changes analogous to
the changes made to q∗(δ0).

It is clear that π is order-preserving. We also want to show that if

((r, s), t, u, (ṙ ′, ṡ ′)) ≤M+(τ,µ,δ0)∗Add(τ )∗(F×G) π(p0, q0)

then there is some (p1, q1) ≤M+(µ,λ) (p0, q0) such that we have π(p1, q1) ≤

((r, s), t, u, (ṙ ′, ṡ ′)). This can be done by taking

• p1 = r∗
∪ t̃ ∪r ′ where r∗

≤ r decides t and ṙ ′ and t̃ writes t as a partial function
{δ} × τ → {0, 1},

• q1 = s ∪ ũ ∪ s̃ ′ where ũ reinterprets u as an Add∗(δ0 + 1)-name and for each
δ ∈ dom ṡ ′, s̃ ′ reinterprets ṡ ′(δ) as an Add∗(δ + 1)-name.

Last, we argue that π(p0, q0) = π(p1, q1) implies that (p0, q0) and (p1, q1) are
compatible. Suppose that (p0, q0) and (p1, q1) are incompatible. If p0 and p1 are
incompatible as elements of Add∗(τ, λ), then one of pi ↾(δ0×τ), pi ↾({δ0}×τ), and
pi ↾ ((δ0, λ)×τ) must be distinct for i = 0 and i = 1. Otherwise, there is some p′

≤

p0, p1 and some δ ∈ dom q0 ∩ dom q1 inaccessible such that p′ ⊩ “q0(δ) ⊥ q1(δ)”,



ON DISJOINT STATIONARY SEQUENCES 155

which implies that q0(δ) ̸= q1(δ). Therefore, one of qi ↾ δ0, qi (δ0), or qi ↾ (δ0, λ) is
distinct for i ∈ {0, 1}. □

Claim 24. ⊩M+(τ,µ,δ0)∗Add(τ,1) “F is µ-closed”.

Proof. In fact, our argument will also show that

⊩M+(τ,µ,δ0)∗Add(τ,1) “F = Col(µ, δ0)”.

We fix some arbitrary generics:

• G is M+(τ, µ, δ0)-generic over V ,

• r is Add(τ, 1)-generic over V [G],

• H is the Add∗(τ, δ0)-generic induced from G by π
δ0
Add,

• K is the generic for the quotient of M+(τ, µ, δ0) by Add∗(τ, δ0), i.e., the
generic such that V [H ][K ] = V [G],

• T is the generic for the termspace forcing T(M+(τ, µ, δ0)), so that V [G] ⊂

V [T ][H ].

It is enough to argue that V [G][r ] |H “F is µ-closed” knowing that V [H ][r ] |H “F

is µ-closed”. Because adjoining G does not change the definition of Add(τ, 1), and
because K is defined in terms of the subsets of τ adjoined by the filter H , we have
V [G][r ] = V [H ][K ][r ] = V [H ][r ][K ]. Therefore, it is enough to show that K
does not add <µ-sequences over V [H ][r ], so that V [H ][r ]’s version of Col(µ, δ0)

remains µ-closed in V [G][r ]. We have

V [H ][r ] ⊂ V [H ][r ][K ] = V [H ][K ][r ] = V [G][r ] ⊂ V [T ][H ][r ] = V [H ][r ][T ].

Recall Easton’s lemma, which states in part that if A is µ-cc and B is µ-closed,
then ⊩A “B is µ-distributive”. Easton’s lemma implies that T does not add new
<µ-sequences over V [H ][r ] since the forcing adjoining r is µ-cc over V [H ] and
the forcing adjoining T is µ-closed over V [H ]. Therefore K does not add new
<µ-sequences over V [H ][r ] since it is an intermediate factor of the extension. □

This completes the proof of the lemma. □

Now we have an application for the case where τ = ω.

Proposition 25. If λ is Mahlo, then ⊩M+(ω,µ,λ) DSS(λ).

This basically repeats Krueger’s argument for [21, Theorem 9.1].

Proof. Let G be M+(ω, µ, λ)-generic over V . The set of V -inaccessibles in λ will
form the stationary set S ⊂ µ+

∩ cof(µ) carrying the disjoint stationary sequence
in the extension by M+(ω, µ, λ). For every such δ ∈ S, let G be the generic
on M+(ω, µ, δ) induced by G and let r be the Add(ω)-generic induced by G
via π

{δ}

Add. We use Fact 13 to obtain a stationary set S∗

δ ⊂ Pµ(H(δ))V [G][r ] such that
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for all N ∈ S∗

δ , N ∩ δ /∈ V [G] and such that N is also internally approachable by a
ω-sequence. Therefore we can apply Lemma 22 with Fact 11 and then Fact 9 to
find that S∗

δ is stationary in V [G]. We then let Sδ = {N ∩ δ : N ∈ S∗

δ }, and we see
that ⟨Sδ : δ ∈ S⟩ is a disjoint stationary sequence. □

2.2. Proving the main theorems. Now we will apply the new version of Mitchell
forcing to answer Krueger’s questions. We can readily prove Theorem 1, which
states that we can obtain DSS(ℵ2)∧ DSS(ℵ3):

Proof of Theorem 1. Begin with a ground model V in which λ1 < λ2 and the λ’s are
Mahlo. Let M1 = M+(ω, ℵ1, λ1). (Any λ1-sized forcing that turns λ1 into ℵ2 and
adds a disjoint stationary sequence on ℵ2 would work, so we could also use a more
standard mixed support iteration.) Then let Ṁ2 be an M1-name for M+(ω, λ1, λ2).
We argue that if G1 is M1-generic over V and G2 is Ṁ2[G1]-generic over V [G1],
then V [G1][G2] |H “DSS(λ1) ∧ DSS(λ2)”. We get DSS(λ2) from the fact that λ2

remains Mahlo in V [G1] together with Proposition 25, so we only need to argue
that the disjoint stationary sequence S⃗ := ⟨Sα : α ∈ S⟩ ∈ V [G1] remains a disjoint
stationary sequence in V [G1][G2].

Working in V [G1], preservation of S⃗ follows from the projection analysis:
Let H1 and H2 be chosen so that H1 is T := T(M2)-generic over V [G1], H2

is Add(ω, λ2)
V [G1]-generic over V [G1][H1], and V [G1][G2] ⊆ V [G1][H1][H2].

Since T is λ1-closed, it preserves stationarity of S and the Sα’s, and Add(ω, λ2)
V [G1]

still has the countable chain condition in V [G1][H1]. It follows that the stationarity
of S is preserved in V [G1][H1][H2], as well as the stationarity of the Sα’s (by
Fact 9). Therefore S⃗ is a disjoint stationary sequence on λ1 in V [G1][G2]. □

It will take a bit more work to show how to obtain Theorem 2 in the same model
for Theorem 1. (Recall that Theorem 2 states that we can simultaneously separate
internally stationary and internally club for [H(ℵ2)]

ℵ1 and [H(ℵ3)]
ℵ2 .) Note that

we cannot just apply Fact 6 because 2ω
= ℵ3 in the model for Theorem 1, plus it is

consistent that there can be a stationary set which is internally unbounded but not
internally stationary [19].

We will give some facts on preservation of the distinction between stationary
sets that are internally stationary but not internally club:

Proposition 26. Suppose P is ν-closed and S ⊆ [X ]
δ is a stationary set such that

|[X ]
δ
| ≤ ν and |X | > 1. Then ⊩P “S is stationary in [X ]

δ”.

Proof. Let Ċ be a P-name for a club in [X ]
δ and let x⃗ = ⟨xξ : ξ ≤ ν̄⟩ enumerate [X ]

δ

(where ν̄ ≤ ν). Note that we have δ < 2δ
≤ |X |

δ
≤ ν, so conditions in P can decide

names for elements of Ċ . We construct a sequence z⃗ = ⟨zξ : ξ < ν̄⟩ ⊆ [X ]
δ and a

≤P-descending sequence ⟨pξ : ξ < ν̄⟩ using the closure of P such that for all ξ < ν̄,
pξ ⊩ “xξ ⊆ zξ ∈ Ċ” and pξ ∥ “xξ ∈ Ċ”.
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Then let D be the set {xξ : ∃ζ < ν̄, pζ ⊩ “xξ ∈ Ċ”}. We can argue that D is
a club: It is unbounded because of the sets chosen for zξ . It is closed because
if ⟨xξi : i < δ̄⟩ ⊆ D (for δ̄ ≤ δ) is an ⊆-increasing sequence such that we have
pζi ⊩ “xξi ∈ Ċ”, and ζ ∗

= supi<δ̄ ζi , then pζ ∗ ⊩ “
⋃

i<δ̄ xξi ∈ Ċ”.
There is some w ∈ D ∩ S. If pξ is such that pξ ⊩ “w ∈ Ċ”, then we have

pξ ⊩ “Ċ ∩ S ̸= ∅”. □

Proposition 27. Suppose |[H(θ)]δ| ≤ ν. Let F have the δ-chain condition and
let G be ν-closed. If there is a stationary set S ⊆ [H(θ)]δ consisting of sets that
are internally stationary but not internally club, then F × G forces that there is a
stationary set consisting of sets that are internally stationary but not internally club.

Proof. Since G preserves the chain condition of F, we show that preservation of the
distinction can be achieved by forcing with G and then F. The poset G preserves
the distinction by Proposition 26 and the fact that it does not change H(θ).

Now we argue that F preserves the distinction. Let S be the witnessing stationary
set in V and let X = H(θ)V . If G is F-generic over V , let Y = H(θ)V [G] and
let S∗

= {M ∈ [Y ]
δ
: M ∩ X ∈ S}. We will argue that S∗ witnesses the relevant

statement in V [G]. Let Ṡ∗ be a name for S∗.
To see that Ṡ∗ is forced to be stationary, let Ċ be a name for a club in [Ẏ ]

δ . Given
p ∈ F, let D = {z : ∃ẇ, p ⊩ “ẇ ∈ Ċ”, ẇ ∩ X = z}. Then D is a club in [X ]

δ as
regarded in V , so there is some z ∈ S, and hence p ⊩ “ẇ ∈ Ċ ∩ Ṡ∗”.

Next we argue that members of Ṡ∗ are forced not to be internally club. Suppose
for contradiction, then, that p forces Ṁ ∈ Ṡ∗ to be internally club as witnessed by ċ,
and also that N = Ṁ ∩ X where N ∈ S. Let d = {z : ∃ẇ, p ⊩ “ẇ ∈ ċ”, ẇ ∩ X = z}.
Then d is a club in Pµ(N ) since if a ∈ z ⊆ N then a ∈ N and if p ⊩ “ẇ ∩ X = z”
then in particular p ⊩ “ẇ ∈ Ṁ”, so z ∈ N . This contradicts the fact that N consists
of sets that are not internally club.

Finally, we argue that Ṡ∗ is forced to be internally stationary. Let Ṁ be forced
by p to be in Ṡ∗ and that N = Ṁ ∩ X . Let G be generic with p ∈ G and work
in V [G]. Then {w ⊆ Pδ(M) : ∃z ∈ N , w = z[G]} is a club as regarded in V [G].
As in the argument for stationarity, any name ċ for a club in Pδ(Ṁ) can produce a
corresponding club d in the ground model. Then we can find some z ∈ N ∩ d and
if G is generic with p ∈ G then z[G] ∈ c ∩ M . □

We use a concept from Harrington and Shelah to handle Mahlo cardinals [13]:

Definition 28. Let λ be Mahlo and let N be a model of some fragment of ZFC. We
say that M ≺ N is rich if

(1) λ ∈ M;

(2) λ̄ := M∩ λ ∈ λ;

(3) λ̄ is an inaccessible cardinal in N;
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(4) the size of M is λ̄;

(5) M is closed under <λ̄-sequences and λ̄ < λ.

Lemma 29. If λ is Mahlo, then M+(ω, µ, λ) forces that there are stationarily many
Z ∈ [µ+

]
µ which are internally stationary but not internally club.

This follows Krueger’s proof of [21, Theorem 10.1], making necessary changes
for Mahlo cardinals, and including enough details to show that we can get the
necessary preservation of stationarity simply from the projection analysis. We do
not need guessing functions (which are used in Krueger’s argument) because we
are only obtaining one instance of separation per large cardinal.

Proof of Lemma 29. Define M := M+(ω, µ, λ) and let Ċ be an M-name for
a club in

(
[H(µ+)]µ

)V [M]. We want to find an M-name Ż for an element of(
[H(µ+)]µ

)V [M]
∩ Ċ that is internally stationary but not internally club. Let Ḟ be

an M-name for a function (H(µ+)V [M])<ω
→ H(µ+)V [M] with the property that

all of its closure points are in Ċ . Let 2 be as large as needed for the following
discussion and let N be the structure (H(2), ∈, <2, M, Ḟ, λ, µ) where <2 is a
well-ordering of H(2).

Since λ is Mahlo, we can find some K≺N with µ ⊂K that is a rich submodel of
cardinality λ̄. Now set G to be M-generic over V . Note that H(λ)V [G]

= H(λ)[G]

because M has the λ-chain condition and M ⊂ H(λ). We will argue that Z :=

K[G] ∩ H(λ)[G] is what we are looking for.

Claim 30. Z ∈ C := Ċ[G].

Proof. We have λ̄ ≤ |Z | ≤ |K| ≤ λ̄ and λ̄ has cardinality µ in N[G], so Z ∈

[H(λ)V [G]
]
µ. If a1, . . . , an ∈ Z , there are M-names ḃ1, . . . , ḃn ∈ K∩ H(λ) such

that ai = ḃG
i for all 1 ≤ i ≤ n. By elementarity, K contains the <2-least maximal

antichain A ⊂ M of conditions deciding Ḟ(ḃ1, . . . , ḃn). Since |A| < λ, we have
|A| ∈ K ∩ λ = λ̄, so it will follow that A ⊂ K. Therefore if p ∈ G ∩ A, then
p ∈ M in particular, so p ⊩ Ḟ(ḃ1, . . . , ḃn) = ḃ∗ for some ḃ∗ ∈K∩ H(λ) where we
automatically get ḃ∗ ∈ H(λ̄), and therefore

F(a1, . . . , an) = a∗ := ḃG
∗

∈ K[G] ∩ H(λ)[G] = Z

(where of course F := Ḟ[G]). □

For the rest of the proof let G := πK(G) where πK is the Mostowski collapse
relative to K. Since πK(M) = M+(ω, µ, λ̄), there is an extension πK : K[G] ∼=

πK(K)[G]. We also define h := πK(H(λ)[G] ∩K[G]).

Claim 31. Z is internally stationary.

Proof. First, we argue that S := Pµ(h)N[G] is stationary as a subset of Pµ(h)N[G]

in N[G]. By Lemma 22, the quotient M/G is a projection of a forcing of the form
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A1 ∗ (Ṫ × A2) where A1 has the countable chain condition, Ṫ is an A1-name for
a µ-closed forcing, and A2 also has the countable chain condition. Let K1, KT ,
and K2 be respective generics such that V [G] ⊆ V [G][K1][KT ][K2]. Working
in N[G], note that S′

:= S ∩ IA(ω) is stationary, and therefore has its stationarity
preserved in V [G][K1] by Fact 9.

We must also show that the stationarity of S′ will be preserved by countably
closed forcings over N[G][K1]. Suppose ⟨Mn : n < ω⟩ witnesses internal approach-
ability of some N ∈ S′ in V [G] with respect to the structure H(λ+)V [G], and let
Mω :=

⋃
n<ω Mn . Then we can see that ⟨Mn[K1] : n < ω⟩ is a chain of elementary

submodels of H(λ)[G][K1] = H(λ)V [G][K1]. We also have Mn[K1] ∩ V [G] = M
and Mω[K1] ∩ V [G] = Mω ∈ S′ with Mω[K1] ≺ H(λ)V [G][K1]. If we choose
the Mn’s to be elementary substructures of H(λ+)V [G](∈, <∗, Ċ, . . .) where <∗

is a well-ordering and Ċ is an A1 ∗ Ṫ-name for a club, then an argument almost
exactly like the one showing that internal approachability is preserved (i.e., the
proof of Fact 11) will show that S′ is stationary in N[G][K1][KT ].

Then the extension of N[G][K1][KT ][K2] over N[G][K1][KT ] preserves the
stationarity of S′ by another application of Fact 9, so we get stationarity in N[G].

Now that we have established preservation of stationarity of S′, we can finish
the argument. Since |h| = µ in N[G], we can write h =

⋃
i<µ xi where ⟨xi : i < µ⟩

is a continuous and ⊂-increasing chain of elements of Pµ(h). (This is not a chain
through Pµ(h)N[G].) The chain is a club in Pµ(h)N[G], in which S′ is stationary,
so there is a stationary X ⊆ µ such that {xi : i ∈ X} ⊆ S′. Since S′

⊆ S, it follows
that i ∈ X implies that xi = πK(yi ) for some yi ∈ Z . Therefore ⟨yi : i < µ⟩ is
⊂-increasing with union Z , and in particular ⟨yi : i ∈ X⟩ is stationary in Z . □

Claim 32. Z is not internally club.

Proof. Suppose for contradiction that Z is internally club and hence that there is
a ⊂-increasing and continuous chain ⟨Zi : i < µ⟩ ∈ N[G] with |Zi | < µ for all
i < µ and

⋃
i<µ Zi = Z . So for all i < µ, Zi ⊂ Z , and so ⟨πK[Zi ] : i < µ⟩ is an

⊂-increasing and continuous chain with union h. If we let Wi := πK[Zi ] for all
i < µ, then the fact that |Wi | < µ implies that Wi = πK(Zi ) ∈ K[G]. Therefore
⟨Wi : i < µ⟩ is a continuous and ⊂-increasing chain of sets in Pµ(h) with union h.

We define a set U ∈N[G][r ] (where r is the generic induced by G from π
{λ̄}

Add) as{
A ∈ Pµ(H(χ)) ∩ IA(ω) : A ∩ h /∈ N[G]

}
.

We have a real in N[G][r ] \N[G] and (µ+)N[G][r ]
= λ ⊂ H(λ). Hence we apply

Fact 13 to see that U is stationary in N[G][r ], and it remains stationary in N[G] by
the preservation properties of the quotient (i.e., Lemma 22 combined with Facts 11
and 9). Therefore in N[G], since h ⊆ H(χ)N[G][r ], {A ∩ h : A ∈ U } is stationary
in Pµ(h). Since ⟨Wi : i < µ⟩ is club in h, there is some i < µ such that Wi = A ∩h
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for some A ∈ U . But by definition, A ∩ h /∈ N[G], but Wi ∈ K[G] ⊂ N[G], so this
is a contradiction. □

This completes the proof of the lemma. □

Proof of Theorem 2. Let M1 be any λ1-sized forcing that turns λ1 into ℵ2 and adds
stationarily many N ∈ [H(ℵ2)]

ℵ1 that are internally stationary but not internally
club. Let Ṁ2 be an M1-name for M+(ω, λ1, λ2), let G1 be M1-generic over V , and
let G2 be Ṁ2[G1]-generic over V [G1]. Then we can see that the theorem holds
in V [G1][G2]: the distinction between internally stationary and internally club
on [H(ℵ2)]

ℵ1 is preserved in V [G1][G2] by Proposition 27, and we get a distinction
between internally stationary and internally club for [H(ℵ3)]

ℵ2 by Lemma 29. □

3. A club forcing and a guessing sequence

3.1. A review of the tools. The main idea of the proof of Theorem 3 is to force a
club through the complement of a canonical stationary set — that is, it is canonical
in the sense that it is independent of a particular enumeration used to define it. This
set is described as follows:

Fact 33 (Krueger [21]). Suppose µ is an uncountable regular cardinal and µ<µ
≤µ+.

Let x = ⟨xα : α < µ+
⟩ enumerate [µ+

]
<µ and let

S(x) := {α ∈ µ+
∩ cof(µ) : Pµ(α) \ ⟨xβ : β < α⟩ is stationary}.

Then DSS(µ+) holds if and only if S(x) is stationary.

The natural thing to do is to define the following:

Definition 34. Let µ be an uncountable regular cardinal such that µ<µ
= µ+

and let x and S(x) be defined as in Fact 33. Then let C(x) be the set of closed
bounded subsets p of µ+ such that p ∩ S(x) = ∅. We let p′

≤ p if and only if
p′

∩ (max p + 1) = p.

Proposition 35. Assuming µ<µ
≤ µ+, C(x) is µ+-distributive.

Sketch of proof. If S(x) is nonstationary, then the result is trivial. If it is stationary,
then S(x) does not contain a stationary set of approachable points [17, Corollary 3.7].
Since µ<µ

≤ µ+ there is going to be a stationary set S∗ of approachable points,
which without loss of generality is disjoint from S(x). Then a standard distributivity
argument applies (see Cox’s explanation [3]). □

We will also crucially need a characterization of diamonds. The following
appears in joint work with Gilton and Stejskalová [11, Lemma 3.12].

Fact 36. The following are equivalent:

(1) λ is Mahlo and ♦λ(Reg) (where of course Reg = {τ < λ : τ regular}) holds.
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(2) There is a function ℓ :λ→ Vλ such that for every transitive structure N satisfying
a rich fragment of ZFC that is closed under λ+-sequences in V , the following holds:
for every A ∈N with A ∈ H(λ+) and any a ⊂N with |a| < λ, there is a rich M≺N

with a ∪ {ℓ} ∪ {A} ⊂ M such that ℓ(λ̄) = πM(A) (where λ̄ = M∩ λ and πM is the
Mostowski collapse).4

We can always use such an ℓ assuming the consistency of a Mahlo cardinal: If λ

is Mahlo in a model V , then it is Mahlo in Gödel’s class L where ♢λ(S) holds for
all regular λ and stationary S ⊂ λ.

Two other forcings will be used, mostly for their black-boxed properties:

Definition 37. If T is a wide Aronszajn tree5 of cardinality ℵ1, let B(T ) be Baum-
gartner’s forcing for specializing Aronszajn trees. It consists of finite functions
f : T → ω such that f (x) ̸= f (y) if x ≤T y or y ≤T x . If f, g ∈ B(T ), then f ≤ g
if and only if f ⊇ g.

Definition 38. Let S ⊂ [ℵ2]
ω be stationary. Then let P(S) be the forcing consisting

of continuous, increasing, and countable chains ⟨Mξ : ξ ≤ η⟩ of elements of S. For
p, q ∈ P(S), p ≤ q if and only if p end-extends q [8].

Fact 39. The following are true for these forcings:

(1) For Aronszajn trees T of cardinality ℵ1, B(T ) has the countable chain con-
dition.

(2) For S ⊂[ℵ2]
ω stationary, P(S) adds a closed unbounded set in [ℵ

V
2 ]

ω through S.

(3) If S ∈ V , then Add(ω)∗ Ṗ(S) has the weak ω1-approximation property, that is,
if ḟ is an Add(ω)∗Ṗ(S)-name for a function ω1 → ON whose initial segments
are in V , then ḟ is forced to be in V [17].

(4) If S ∈ V , then Add(ω) ∗ Ṗ(S) is proper [17].

3.2. The proof. Now we prove Theorem 3. Fix λ Mahlo. We can assume that
♢λ(Reg) holds, so let ℓ witness Fact 36.

Let I=⟨Iα, J̇α :α<λ⟩ be a countable-support iteration of length λ such that if ℓ(δ)

is an Iδ-name for a proper forcing then ⊩Iδ “J̇δ = ℓ(δ)” and otherwise J̇δ is forced to
be the trivial forcing.6 We will argue momentarily that we have ⊩I “ℵ<ℵ1

1 ≤ℵ2 =λ”,
so we fix an I-name ẋ of [ℵ2]

<ℵ1 in the extension by I as well as a sequence of
names ⟨ẋα : α < ℵ2⟩ that canonically represent the elements listed by ẋ . Then let Ċ

4The original is stated with a different quantification — for all such N, there exists a function, not
the other way around. However, the proof works with the quantification used here.

5We say that T is a wide Aronszajn tree of cardinality ℵ1 if it has no uncountable branches. This is
meant to distinguish our situation from the case in which T has countable levels.

6See the work of Abraham [1] and Cummings and Foreman [4] for classical examples of forcings
that use guessing functions in their definitions.



162 MAXWELL LEVINE

be an I-name for C(ẋ). Let G be I-generic over V and let H be C := Ċ[G]-generic
over V [G]. Then the model in which the theorem is realized is V [G][H ].

Most of the desired properties of V [G][H ] follow easily. First of all, V [G][H ] |H

λ = ℵ2: For all 2 < λ the forcing Col(ℵ1, 2) appears in the iteration, I has the
λ-chain condition because the iterands have size less than <λ, and I preserves ℵ1 be-
cause it is proper. Then adjoining H preserves ℵ2 by the distributivity property noted
above. The fact that V [G][H ] |H ¬DSS(µ+) follows from Fact 33 given that the
generic object added by H is a club through the complement of the relevant station-
ary set. The main part of the work is to show that the approachability property fails.

If M ≺ N is rich and πM is the Mostowski collapse relative to M, we will
typically denote πM(a) as ā.

Lemma 40. V [G][H ] |H ¬AP(ℵ2).

Proof. If AP(ℵ2) holds then this is forced by some condition z ∈ I ∗C. Assuming
this is the case, we can derive a contradiction.

Claim 41. Let M ≺ N be a rich model chosen to witness Fact 36 in the sense of
having the properties that M∩ λ = λ̄, z ∈ M, and ℓ(λ̄) is an I ↾ λ̄-name for

πM(Ċ(ẋ) ∗ Add(ω) ∗ P(Y ) ∗ B(Y )),

where Y = ([λ]
ω)V [I∗Ċ(ẋ)], and P(Y ) is defined with respect to the interpretation

of Y as a stationary set and B(Y ) is defined with respect to the interpretation of Y
as a tree ordered by end-extension.

Suppose G0∗ H 0 is Ī∗C-generic over V . Then there is a G0∗ H0 which is I∗C(ẋ)-
generic over V such that if j :M→M⊂N is the inverse of the Mostowski collapse,
then there is a lift j : M[G0][H 0] → N[G0][H0] with the property that G0 ∗ H0 is
an ℵ1-preserving extension over V [G0][H 0][K 0][K 1][K 2] where K 0 ∗ K 1 ∗ K 2 is
Add(ω) ∗ P(Y ) ∗ B(Y )-generic.

Proof of Claim 41. We will lift the elementary embedding j : M → N to j :

M[G0][H 0] → N[G0][H0]. We therefore fix the notation λ̄ = M∩ λ, and we have
an M-generic G0, so we let C = Ċ(ẋ)[G0].

To perform the lift, we need to show that we can absorb the generic H 0. The first
stage is for handling G0. The forcing Ċ(ẋ) ∗ Add(ω) ∗ P(Y ) ∗ B(Y ) is an iteration
of proper forcings and is therefore proper, and its image under πM is proper for
similar reasons. Hence, since it is also guessed, it is used in the iteration. Therefore
G0 takes the form G0 ∗ H 0 ∗ K 0 ∗ K 1 ∗ K 2 ∗ K 3 where K 3 is just a remainder. The
quotient preserves ℵ1 since the whole forcing does.

To lift the embedding further, we use a master condition argument. Specifically,
we want to show that ∪H 0 ∪{λ̄} is a condition in C. This follows because λ̄ /∈ S(x)

as evaluated in N[G0]: Since M<λ̄
⊆ M and I ↾ λ̄ has the λ̄-chain condition, the

evaluation ⟨xβ : β < λ̄⟩ is equal to the countable subsets of λ̄ in M[G0]. Therefore
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Pµ(λ̄) \ ⟨xβ : β < λ̄⟩ will be nonstationary because of the club added by P(Y ).
Hence we choose H0 to be a generic containing ∪H 0 ∪ {λ̄}. □

Suppose then that z ∈ M ∗ Ċ(x) forces that approachability holds. By the claim,
there is an embedding M[G][H ] → N[G][H ] such that V [G ∗ H ] is an extension
over V [G][H ][K 0][K 1][K 2] that preserves ℵ1 where K 0 ∗ K 1 ∗ K 2 is generic for
πM(Add(ω) ∗ P(Y ) ∗ B(Y )). Since we are supposing that approachability holds,
there is in N[G][H ] a club C ⊆ ℵ2 such that all of its points of cofinality ℵ1 are
approachable. By elementarity it follows that λ̄ ∈ C , so it is enough to show that λ̄

cannot actually be an approachable point.
We need to show that Y does not have a cofinal branch. By the weak ω1-

approximation property of πM(Add(ω) ∗ Ṗ(S)) (Fact 39), Y is a wide Aronszajn
tree in V [G][H ][K 0][K 1] because no new cofinal branches are added. More-
over it has cardinality ℵ1 in that model. If D ⊆ λ̄ is a club of order-type ω1 in
V [G][H ][K 0][K 1], we can conflate Y with

{
x ∈ ([λ̄]

ω)V [G][H ]
: sup x ∈ D

}
so that

it has height ω1. The forcing K 2 adds a specializing function, therefore it remains
a wide Aronszajn tree in any ℵ1-preserving extension, so in particular this is true
for V [G][H ].

If λ̄ were an approachable point as witnessed by (without loss of generality) a
club E , then for all α ∈ E ∩ D, we have E ∩α ∈ ([λ̄]

ω)V [G][H ]. Hence it would be
implied that Y has a cofinal branch, which is a contradiction. □

Remark 42. This master condition argument can also be used to show that C(x) is
distributive over V [I].

Now we are finished with the proof of Theorem 3.

4. Further directions

We propose some other considerations along the lines of the question: Why did we
have to do more work to get Theorem 2 after obtaining Theorem 1? Or rather, is
the assumption 2µ

= µ+ necessary for Fact 6?

Question 1. Is it consistent for µ regular that exactly one of DSS(µ+) and “inter-
nally club and internally unbounded are distinct for [H(µ+)]µ” holds?7

On a similar note, the assumption that 2µ
= |H(µ+)| is also used in a folklore

result that assuming 2µ
= µ+, the distinction between internally unbounded and

internally approachable for [µ+
]
µ requires a Mahlo cardinal.

Question 2. What is the exact equiconsistency strength of the separation of inter-
nally approachable and internally unbounded for [H(µ+)]µ for regular µ?

7This question was answered by Jakob after the previous version of this paper was released [14].
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PRODUCT MANIFOLDS AND
THE CURVATURE OPERATOR OF THE SECOND KIND

XIAOLONG LI

We investigate the curvature operator of the second kind on product Rie-
mannian manifolds and obtain some optimal rigidity results. For instance,
we prove that the universal cover of an n-dimensional nonflat complete
locally reducible Riemannian manifold with

(
n+

n−2
n

)
-nonnegative (respec-

tively,
(
n+

n−2
n

)
-nonpositive) curvature operator of the second kind must be

isometric to Sn−1 × R (respectively, Hn−1 × R) up to scaling. We also prove
analogous optimal rigidity results for Sn1 × Sn2 and Hn1 × Hn2 , n1, n2 ≥ 2,
among product Riemannian manifolds, as well as for CPm1 × CPm2 and
CHm1 × CHm2 , m1, m2 ≥ 1, among product Kähler manifolds. The approach
is pointwise and algebraic.

1. Introduction

On a Riemannian manifold (Mn, g), the curvature operator of the second kind
refers to the symmetric bilinear form R̊ : S2

0(Tp M)× S2
0(Tp M)→ R defined by

R̊(ϕ, ψ)= Ri jklϕilψ jk,

where S2
0(Tp M) is the space of traceless symmetric two-tensors on Tp M . The

terminology is due to Nishikawa [1986]. Early works studying this notion of
curvature operator include [Calabi and Vesentini 1960; Berger and Ebin 1969;
Bourguignon and Karcher 1978; Koiso 1979a; 1979b; Ogiue and Tachibana 1979;
Nishikawa 1986; Kashiwada 1993].

Recently, the curvature operator of the second kind has received much attention;
see [Cao et al. 2023; Li 2022; 2023a; 2023b; 2024; Nienhaus et al. 2023a; 2023b;
Fluck and Li 2024; Dai and Fu 2024; Dai et al. 2024]. In particular, the longstanding
conjecture of Nishikawa [1986], which asserts that a closed Riemannian manifold
with positive curvature operator of the second kind is diffeomorphic to a spherical
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space form and a closed Riemannian manifold with nonnegative curvature operator
of the second kind is diffeomorphic to a Riemannian locally symmetric space, has
been resolved by Cao, Gursky and Tran [Cao et al. 2023], Li [2024], and Nienhaus,
Petersen, and Wink [Nienhaus et al. 2023a], under weaker assumptions but with
stronger conclusions. More precisely, it is known now that:

Theorem 1.1 [Cao et al. 2023; Li 2024; Nienhaus et al. 2023a]. Let (Mn, g) be a
closed Riemannian manifold of dimension n ≥ 3.

(1) If (Mn, g) has three-positive curvature operator of the second kind, then M is
diffeomorphic to a spherical space form.

(2) If (Mn, g) has three-nonnegative curvature operator of the second kind, then
M is either flat or diffeomorphic to a spherical space form.

The key observation made by Cao, Gursky, and Tran in [2023] is that two-positive
curvature operator of the second kind implies strictly PIC1 (i.e., M ×R has positive
isotropic curvature). This is sufficient to solve the positive case of Nishikawa’s
conjecture, as one can appeal to a result of Brendle [2008] stating that the normalized
Ricci flow on a compact manifold starting with a strictly PIC1 metric exists for
all time and converges to a limit metric with constant positive sectional curvature.
Shortly after, the author showed that strictly PIC1 is implied by three-positivity of
the curvature operator of the second kind; thus getting an immediate improvement
of the result in [Cao et al. 2023]. To deal with the nonnegative case, the author
[2024] reduces the problem to the locally irreducible case by proving that a complete
n-dimensional Riemannian manifold with n-nonnegative curvature operator of the
second kind is either flat or locally irreducible (see also Theorem 1.6 below for an
optimal improvement of this result). Finally, nonflat Kähler manifolds are ruled out
using [Li 2024, Theorem 1.9] (see also [Li 2023a] for an optimal improvement of
it) and compact irreducible symmetric spaces are ruled out by Nienhaus, Petersen,
and Wink [2023a, Theorem A]. We refer the reader to [Li 2022] or [Li 2023a] for a
detailed account of the notion of the curvature operator of the second kind, as well
as some recent developments.

We aim to study the curvature operator of the second kind on product Riemannian
manifolds and obtain some optimal rigidity results. We first recall the following
definition. Let N :=

(n−1)(n+2)
2 denote the dimension of S2

0(Tp M). For α ∈ [1, N ],
we say (Mn, g) has α-positive (respectively, α-nonnegative) curvature operator of
the second kind if for any p ∈ M and any orthonormal basis {ϕi }

N
i=1 of S2

0(Tp M),

(1-1)
⌊α⌋∑
i=1

R̊(ϕi , ϕi )+ (α− ⌊α⌋)R̊(ϕ⌊α⌋+1, ϕ⌊α⌋+1) > 0 (respectively, ≥ 0).
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Here and in the rest of this article, ⌊x⌋ denotes the floor function defined by

⌊x⌋ := max{m ∈ Z : m ≤ x}.

When α = k is an integer, this reduces to the usual definition, which means the
sum of the smallest k eigenvalues of the matrix R̊(ϕi , ϕ j ) is positive (respectively,
nonnegative) for any orthonormal basis {ϕi }

N
i=1 of S2

0(Tp M). Similarly, (Mn, g)
is said to have α-negative (respectively, α-nonpositive) curvature operator of the
second kind if the direction of the inequality (1-1) is reversed.

Our first main result is the following rigidity result for Sn−1
× R and Hn−1

× R,
where Sn and Hn , n ≥ 2, denote the n-dimensional sphere and hyperbolic space
with constant sectional curvature 1 and −1, respectively.

Theorem 1.2. Let (Mn, g) be a nonflat complete locally reducible Riemannian
manifold of dimension n ≥ 4.

(1) If M has
(
n+

n−2
n

)
-nonnegative curvature operator of the second kind, then

the universal cover of M is, up to scaling, isometric to Sn−1
× R.

(2) If M has
(
n+

n−2
n

)
-nonpositive curvature operator of the second kind, then the

universal cover of M is, up to scaling, isometric to Hn−1
× R.

Closely related is the following holonomy restriction theorem in the spirit of
[Nienhaus et al. 2023b].

Theorem 1.3. Let (Mn, g) be a (not necessarily complete) Riemannian manifold
of dimension n ≥ 3. Suppose that (M, g) has α-nonnegative or α-nonpositive
curvature operator of the second kind for some α < n +

n−2
n . Then either M is flat

or the restricted holonomy of M is SO(n).

Theorems 1.2 and 1.3 improve previous results obtained in [Li 2024] and [Nien-
haus et al. 2023b]. The author [2024, Theorem 1.8] proved that an n-dimensional
complete Riemannian manifold with n-nonnegative curvature operator of the second
kind is either flat or locally reducible. This result plays a significant role in resolving
the nonnegative part of Nishikawa’s conjecture in [Li 2024], as it allows one to
reduce the problem to the locally irreducible setting. A slight modification of the
proof yields the same conclusion under n-nonpositive curvature operator of the
second kind. The method used in [Li 2024] is pointwise and algebraic. In [Nienhaus
et al. 2023b], it is shown that if the curvature operator of the second kind of an
n-dimensional Riemannian manifold, not necessarily complete, is n-nonnegative
or n-nonpositive, then either the restricted holonomy of M is SO(n) or M is flat.
This is a generalization of the author’s result in [Li 2024] mentioned above. The
approach of [Nienhaus et al. 2023b] is local. The key idea is that, unless the
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restricted holonomy is generic, there exists a parallel form, at least locally on the
manifold. However, the Bochner technique with the curvature assumption implies
that no such local parallel form exists unless the manifold is flat.

We would like to point out that the number n +
n−2

n in Theorems 1.2 and 1.3 is
optimal in all dimensions, since Sn−1

×R and Hn−1
×R have

(
n+

n−2
n

)
-nonnegative

and
(
n+

n−2
n

)
-nonpositive curvature operator of the second kind, respectively, and

they both have restricted holonomy SO(n − 1). In dimension four, CP2 and CH2

have 4 1
2 -nonnegative and 4 1

2 -nonpositive curvature operator of the second kind,
respectively, and they both have restricted holonomy U(2).

Theorem 1.3 can also be viewed as supporting evidence to the author’s conjecture
in [Li 2022]: a closed n-dimensional Riemannian manifold with

(
n+

n−2
n

)
-positive

curvature operator of the second kind is diffeomorphic to a spherical space form.
As a generalization of Theorem 1.1, the author proved in [Li 2022] that a closed

Riemannian manifold of dimension n ≥ 4 with 4 1
2 -positive curvature operator of

the second kind is homeomorphic to a spherical space form. This is obtained by
showing that 4 1

2 -positive curvature operator of the second kind implies positive
isotropic curvature and

(
n+

n−2
n

)
-positive curvature operator of the second kind

implies positive Ricci curvature, and then making use of the work of Micallef and
Moore [1988]. A classification result of closed manifolds with 4 1

2 -nonnegative
curvature operator of the second kind was also obtained in [Li 2022, Theorem 1.4].
Using Theorem 1.2, together with [Li 2023a, Theorem 1.2] and [Nienhaus et al.
2023a, Theorem B], we get an improvement of [Li 2022, Theorem 1.4].

Theorem 1.4. Let (Mn, g) be a closed nonflat Riemannian manifold of dimension
n ≥ 4. Suppose that M has 4 1

2 -nonnegative curvature operator of the second kind.
Then one of the following statements holds:

(1) M is homeomorphic (diffeomorphic if either n = 4 or n ≥ 12) to a spherical
space form.

(2) n = 4 and M is isometric to CP2 with Fubini–Study metric up to scaling.

(3) n = 4 and the universal cover of M is isometric to S3
× R up to scaling.

Our second main result is the rigidity of Sn1 ×Sn2 and Hn1 ×Hn2 among product
Riemannian manifolds.

Theorem 1.5. Let (Mni
i , gi ) be a Riemannian manifold of dimension ni ≥ 2 for

i = 1, 2, and let (Mn1+n2, g)= (Mn1
1 × Mn2

2 , g1 ⊕ g2). Set

(1-2) An1,n2 := 1 + n1n2 +
n1(n2 − 1)+ n2(n1 − 1)

n1 + n2
.
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Then:

(1) If M has α-nonnegative or α-nonpositive curvature operator of the second
kind for some α < An1,n2 , then M is flat.

(2) If M has An1,n2-nonnegative curvature operator of the second kind, then both
M1 and M2 have constant sectional curvature c ≥ 0.

(3) If M has An1,n2-nonpositive curvature operator of the second kind, then both
M1 and M2 have constant sectional curvature c ≤ 0.

If M is further assumed to be complete and nonflat, then the universal cover of M
is isometric to Sn1 × Sn2 in part (2) and Hn1 × Hn2 in part (3), up to scaling.

The author [2024, Proposition 5.1] proved that an n-manifold with (k(n−k)+1)-
nonnegative curvature operator of the second kind cannot split off a k-dimensional
factor with 1 ≤ k ≤

n
2 , unless it is flat. The number k(n − k)+ 1 is only optimal

for some special n and k. Combining Theorems 1.2 and 1.5, we get the following
generalization, which is optimal for any n and 1 ≤ k ≤

n
2 .

Theorem 1.6. An n-dimensional Riemannian manifold with α-nonnegative or α-
nonpositive curvature operator of the second kind for some

α < k(n − k)+
2k(n − k)

n

cannot locally split off a k-dimensional factor with 1 ≤ k ≤
n
2 , unless it is flat.

In another direction, the curvature operator of the second kind has been investi-
gated for Kähler manifolds in [Bourguignon and Karcher 1978; Li 2023a; 2023b;
2024; Nienhaus et al. 2023b]. For instance, it was shown in [Li 2023a] that an m-
dimensional Kähler manifold with 3

2(m
2
−1)-nonnegative (respectively, 3

2(m
2
−1)-

nonpositive) curvature operator of the second kind has constant nonnegative (respec-
tively, nonpositive) holomorphic sectional curvature, and a closed m-dimensional
Kähler manifold with

( 3m3
−m+2
2m

)
-positive curvature operator of the second kind

has positive orthogonal bisectional curvature; thus being biholomorphic to CPm .
Here we prove the following rigidity result for CPm1 × CPm2 and CHm1 × CHm2

(all equipped with their standard metrics) among product Kähler manifolds.

Theorem 1.7. Let (Mmi
i , gi ) be a Kähler manifold of complex dimension mi ≥ 1

for i = 1, 2, and let (Mm1+m2, g)= (Mm1
1 × Mm2

2 , g1 ⊕ g2). Set

(1-3) Bm1,m2 := 4m1m2 +
3
2
(m2

1 + m2
2)+

m1m2

m1 + m2
.

Then:
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(1) If M has α-nonnegative or α-nonpositive curvature operator of the second
kind for some α < Bm1,m2 , then M is flat.

(2) If M has Bm1,m2-nonnegative curvature operator of the second kind, then both
M1 and M2 have constant holomorphic sectional curvature c ≥ 0.

(3) If M has Bm1,m2-nonpositive curvature operator of the second kind, then both
M1 and M2 have constant holomorphic sectional curvature c ≤ 0.

If M is further assumed to be complete and nonflat, then the universal cover of M is
isometric to CPm1 × CPm2 in part (2) and CHm1 × CHm2 in part (3), up to scaling.

Our investigation of the curvature operator of the second kind on product man-
ifolds is motivated not only by the above mentioned optimal rigidity results but
also by the fact that the spectrum of R̊ is known only for a few examples: space
forms with constant sectional curvature, Kähler and quaternion-Kähler space forms
[Bourguignon and Karcher 1978], S2

× S2 [Cao et al. 2023], Sn−1
× R [Li 2024],

Sp
× Sq [Nienhaus et al. 2023b]. We determine the spectrum of R̊ for a class of

product manifolds by proving the following theorem.

Theorem 1.8. Let (Mi , gi ) be an ni -dimensional Einstein manifold with Ric(gi )=

ρi gi and ni ≥ 1 for i = 1, 2. Denote by R̊i the curvature operator of the second kind
of Mi for i = 1, 2, and R̊ the curvature operator of the second kind of the product
manifold

(Mn1+n2, g)= (Mn1
1 × Mn2

2 , g1 ⊕ g2).

Then the eigenvalues of R̊ are precisely those of R̊1 and R̊2, and 0 with multiplicity
n1n2, and −

n1ρ2+n2ρ1
n1+n2

with multiplicity one.

Theorem 1.8 enables us to determine the spectrum of the curvature operator of
the second kind on (M1, g1)× (M2, g2), with (Mi , gi ) being either a space form
with constant sectional curvature or a Kähler space form with constant holomorphic
sectional curvature for i = 1, 2. Examples are listed at the end of Section 2. More
generally, Theorem 1.8 can be applied repeatedly to calculate the spectrum of R̊
for product manifolds of the form (M1, g1)× · · · × (Mk, gk), provided that each
(Mi , gi ) is Einstein and the eigenvalues of the curvature operator of the second
kind are known on Mi .

Let’s discuss the strategy of our proofs. The key idea to prove Theorems 1.2,
1.5 and 1.7 is to use the corresponding borderline example, such as Sn−1

× R,
Sn1 × Sn2 or CPm1 × CPm2 , as a model space and apply R̊ to the eigenvectors
of the curvature operator of the second kind on the model space. This idea has
been successfully employed in [Li 2022] with CP2 and S3

× R as model spaces,
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in [Li 2023b] with S2
× S2 as the model space and in [Li 2023a] with CPm and

CPm−1
× CP1 as model spaces. With the right choice of model space, this strategy

leads to optimal results as the inequalities are all achieved as equalities on the model
space. Theorem 1.6 is essentially a consequence of Theorems 1.2 and 1.5. The proof
of Theorem 1.3 uses Berger’s classification of restricted holonomy groups, together
with Propositions 3.1 and 4.1, and results in [Li 2023a] and [Nienhaus et al. 2023b].
The proof of Theorem 1.8 relies on the fact that when both factors are Einstein, we
can choose an orthonormal basis of the space of traceless symmetric two-tensors
that diagonalizes the curvature operator of the second kind on the product manifold.

At last, we emphasize that our approach is pointwise, and, therefore, many of our
results are of a pointwise nature, and the completeness of the metric is not required.
Another feature is that our proofs are purely algebraic and work equally well for
nonpositivity conditions on R̊.

The article is organized as follows. In Section 2, we study the curvature operator
of the second kind on product Riemannian manifolds and prove Theorem 1.8. We
present the proofs of Theorems 1.2 and 1.4 in Section 3. The proofs of Theorems 1.5
and 1.6 are given in Section 4. In Section 5, we prove Theorem 1.3. Section 6 is
devoted to the proof of Theorem 1.7.

2. Product manifolds

We study the curvature operator of the second kind on product Riemannian manifolds
and prove Theorem 1.8.

Recall that for Riemannian manifolds (M1, g1) and (M2, g2), the product metric
g1 ⊕ g2 on M1 × M2 is defined by

g(X1 + X2, Y1 + Y2)= g1(X1, Y1)+ g2(X2, Y2)

for X i , Yi ∈ Tpi Mi under the natural identification

T(p1,p2)(M1 × M2)= Tp1 M1 ⊕ Tp2 M2.

Let R denote the Riemann curvature tensor of M = M1 × M2, and R1 and R2 denote
the Riemann curvature tensor of M1 and M2, respectively. Then one can relate R,
R1 and R2 by

R(X1+X2,Y1+Y2, Z1+Z2,W1+W2)= R1(X1,Y1, Z1,W1)+R2(X2,Y2, Z2,W2),

where X i , Yi , Zi ,Wi ∈ T Mi for i = 1, 2. As the reader will see, the above equation,
which is a consequence of the product structure, plays a significant role in this
section.
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From now on, let’s focus on a single point in a product manifold and work in
a purely algebraic way. For i = 1, 2, let (Vi , gi ) be a Euclidean vector space of
dimension ni ≥ 1. The product space V = V1 × V2 will be naturally identified with
V1 ⊕ V2 via the isomorphism (X1, X2)→ X1 + X2 for X i ∈ Vi . The product metric
on V , denoted by g = g1 ⊕ g2, is defined by

(2-1) g(X1 + X2, Y1 + Y2)= g1(X1, Y1)+ g2(X2, Y2)

for X i , Yi ∈ Vi .
Denote by S2

B(3
2V ) the space of algebraic curvature operators on (V, g). That is

to say, R ∈ S2
B(3

2V ) is a symmetric two-tensor on the space of two-forms 32V on
V and R also satisfies the first Bianchi identity. Given Ri ∈ S2

B(3
2Vi ) for i = 1, 2,

we define R ∈ S2
B(3

2V ) by

(2-2) R(X1 + X2, Y1 + Y2, Z1 + Z2,W1 + W2)

= R1(X1, Y1, Z1,W1)+ R2(X2, Y2, Z2,W2),

for X i , Yi , Zi ,Wi ∈ Vi . Throughout this paper, we simply write

R = R1 ⊕ R2

whenever R, R1 and R2 are related by (2-2). We denote by R̊, R̊1 and R̊2 the associ-
ated curvature operator of the second kind for R = R1 ⊕ R2, R1 and R2, respectively.

The key result of this section is the following proposition.

Proposition 2.1. Let Ri ∈ S2
B(3

2Vi ) for i = 1, 2 with dim(Vi ) = ni ≥ 1 and let
R = R1 ⊕ R2. If Ric(Ri )= ρi gi for i = 1, 2, then the eigenvalues of R̊ are precisely
those of R̊1 and R̊2, together with 0 with multiplicity n1n2 and −

n2ρ1+n1ρ2
n1+n2

with
multiplicity one.

In the rest of this section, R̊ acts on the space of symmetric two-tensors S2(V ) via

R̊(ϕ)i j =

n∑
k,l=1

Rikl jϕkl .

Note that the curvature operator of the second kind (defined as a symmetric bilinear
form in the Introduction) is equivalent to the symmetric bilinear form associated
with the self-adjoint operator π ◦ R̊ : S2

0(V )→ S2
0(V ), where π : S2(V )→ S2

0(V )
is the projection map. This can be seen as

R̊(ϕ, ψ)= ⟨R̊(ϕ), ψ⟩ = ⟨(π ◦ R̊)(ϕ), ψ⟩ = (π ◦ R̊)(ϕ, ψ)

for ϕ,ψ ∈ S2
0(V ). Thus, the spectrum of the curvature operator of the second kind R̊

(as a bilinear form) is the same as the spectrum of the self-adjoint operator π ◦ R̊.
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We will present the proof of Proposition 2.1 after we establish the following
three lemmas. First of all, standard calculations using (2-2) show that zero is an
eigenvalue of R̊ with multiplicity (at least) n1n2.

Lemma 2.2. Let Ri ∈ S2
B(3

2Vi ) for i = 1, 2 with dim(Vi ) = ni ≥ 1 and let
R = R1 ⊕ R2. Let E be the subspace of S2

0(V1 × V2) given by

E = span{u ⊙ v : u ∈ V1, v ∈ V2},

where u ⊙ v = u ⊗ v+ v⊗ u is the symmetric product. Then E lies in the kernel
of R̊. In particular, 0 is an eigenvalue of R̊ with multiplicity (at least) n1n2.

Proof. This is observed in [Nienhaus et al. 2023b, Lemma 2.1]. For the convenience
of the reader, we give a detailed proof below. We start by constructing an orthonor-
mal basis of E . Let {ei }

n1
i=1 be an orthonormal basis of V1 and {ei }

n1+n2
i=n1+1 be an

orthonormal basis of V2. Then {ei }
n1+n2
i=1 is an orthonormal basis of V = V1 × V2.

Define
ξpq =

1
√

2
ep ⊙ eq ,

for 1 ≤ p ≤ n1 and n1 + 1 ≤ q ≤ n1 + n2. Then one can verify that the ξpq’s are
traceless symmetric two-tensors on V1 × V2 and they form an orthonormal basis
of E . In particular, dim(E)= n1n2.

To prove that E lies in the kernel of R̊, it suffices to show that R̊(ξpq)= 0. We
first observe that (2-2) implies that

(2-3) R(ei , e j , ek, el)=


R1(ei , e j , ek, el), i, j, k, l ∈ {1, . . . , n1},

R2(ei , e j , ek, el), i, j, k, l ∈ {n1 + 1, . . . , n1 + n2},

0, otherwise.

We then compute, using (ep ⊙ eq)(e j , ek)= (δpjδqk + δq jδpk), that

R̊(ξpq)(ei , el)=

n∑
j,k=1

R(ei , e j , ek, el)ξpq(e j , ek)

=
1

√
2

n∑
j,k=1

R(ei , e j , ek, el)(δpjδqk + δq jδpk)

=
1

√
2

n1∑
j,k=1

(R(ei , ep, eq , el)+ R(ei , eq , ep, el))

= 0,

where the last step is because of (2-3) and the fact that 1 ≤ p ≤ n1 and n1 + 1 ≤

q ≤ n1 +n2. Thus we have proved that 0 is an eigenvalue of R̊ with multiplicity (at
least) n1n2. □
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Next, we show that the eigenvalues of R1 and R2 are also eigenvalues of R =

R1 ⊕ R2, provided that both R1 and R2 are Einstein.

Lemma 2.3. Let Ri ∈ S2
B(3

2Vi ) for i = 1, 2 with dim(Vi ) = ni ≥ 1 and let
R = R1 ⊕ R2. If R1 (respectively, R2) is Einstein, then the eigenvalues of R̊1

(respectively, R̊2) are also eigenvalues of R̊.

Proof. It suffices to prove the statement for R1. Since R1 is Einstein, we have that
R̊1 : S2

0(V1)→ S2
0(V1) is a self-adjoint operator. We can then choose an orthonormal

basis {ϕp}
N1
p=1 of S2

0(V1) such that

R̊1(ϕp)= λpϕp,

where N1 =
(n1−1)(n1+2)

2 is the dimension of S2
0(V1). We may also view the ϕp’s as

elements in S2
0(V1 × V2) via zero extension, namely,

ϕp(X1 + X2, Y1 + Y2)= ϕp(X1, Y1),

for X i , Yi ∈ Vi . Then we have

(2-4) ϕp(e j , ek)=

{
ϕp(e j , ek), j, k ∈ {1, . . . , n1},

0, otherwise,

where {ei }
n1+n2
i=1 is the same basis of V in Lemma 2.2.

Next, we calculate using (2-4) that, for 1 ≤ i, l ≤ n1,

R̊(ϕp)(ei , el)=

n1+n2∑
j,k=1

R(ei , e j , ek, el)ϕp(e j , ek)

=

n1∑
j,k=1

R(ei , e j , ek, el)ϕp(e j , ek)

=

n1∑
j,k=1

R1(ei , e j , ek, el)ϕp(e j , ek)

= λpϕp(ei , el),

and, for n1 + 1 ≤ i, l ≤ n1 + n2,

R̊(ϕp)(ei , el)=

n1+n2∑
j,k=1

R(ei , e j , ek, el)ϕp(e j , ek)

=

n1∑
j,k=1

R(ei , e j , ek, el)ϕp(e j , ek)

= λpϕp(ei , el)

= 0.
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Therefore, we have proved R̊(ϕp)= λpϕp for 1 ≤ p ≤ N1. Hence the eigenvalues
of R̊1 are also eigenvalues of R̊ with the same eigenvectors. □

Finally, we prove:

Lemma 2.4. Let Ri ∈ S2
B(3

2Vi ) for i = 1, 2 with dim(Vi ) = ni ≥ 1 and let
R = R1 ⊕ R2. If Ric(Ri )= ρi gi for i = 1, 2, then −

n2ρ1+n1ρ2
n1+n2

is an eigenvalue of R̊
with eigenvector n2g1 − n1g2.

Proof. As in the proof of Lemma 2.3, we may also view g1 and g2 as elements in
S2(V1 × V2) via zero extension. Clearly, tr(n2g1 − n1g2) = n2n1 − n1n2 = 0. So
we have n2g1 − n1g2 ∈ S2

0(V1 × V2).
We then compute that

R̊(n2g1 − n1g2)= n2 R̊(g1)− n1 R̊(g2)

= n2 R̊1(g1)− n1 R̊2(g2)

= −n2 Ric(R1)+ n1 Ric(R2)

= −n2ρ1g1 + n1ρ2g2,

where we have used R̊i (gi )= −Ric(Ri )= −ρi gi for i = 1, 2.
Using

tr(−n2ρ1g1 + n1ρ2g2)= −n1n2(ρ1 − ρ2)

and R̊(gi )= −ρi g1 for i = 1, 2, we then obtain that

(π ◦ R̊)(n2g1 − n1g2)= π(n2 R̊(g1)− n1 R̊(g2))

= π(n2ρ1g1 + n1ρ2g2)

= −n2ρ1g1 + n1ρ2g2 −
−n1n2(ρ1 − ρ2)

n1 + n2
(g1 + g2)

= −n2g1

(
ρ1 −

n1(ρ1 − ρ2)

n1 + n2

)
+ n1g2

(
ρ2 +

n2(ρ1 − ρ2)

n1 + n2

)
= −

(
n1ρ2 + n2ρ1

n1 + n2

)
(n2g1 − n1g2).

Thus, we see that −
n1ρ2+n2ρ1

n1+n2
is an eigenvalue of R̊ with eigenvector n2g1 − n1g2.

The proof is now complete. □

Proof of Proposition 2.1. Let {ei }
n1+n2
i=1 be an orthonormal basis of V , where

e1, . . . , en1 ∈ V1 and en1+1, . . . , en1+n2 ∈ V2. Let {ϕp}
N1
p=1 be an orthonormal basis

of S2
0(V1) such that R̊1(ϕp)= λpϕp and {ψq}

N2
q=1 be an orthonormal basis of S2

0(V2)
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such that R̊2(ψq) = µqψq , where the dimension of S2
0(Vi ) for i = 1, 2 is Ni =

(ni −1)(ni +2)
2 . We then define, on V , the traceless symmetric two-tensors

ξpq =
1

√
2

ep ⊙ eq

for 1 ≤ p ≤ n1 and n1 + 1 ≤ q ≤ n1 + n2, and

ζ =
1

√
n1n2(n1 + n2)

(n2g1 − n1g2).

Then one can verify, via straightforward computations, that

{ϕp}
N1
p=1 ∪ {ψq}

N2
q=1 ∪ {ξpq}1≤p≤n1,n1+1≤q≤n1+n2 ∪ {ζ }

forms an orthonormal basis of S2
0(V ).

According to Lemma 2.2, 2.3 and 2.4, the above basis diagonalizes R̊ as

λ1
. . .

λN1

µ1
. . .

µN2

0
. . .

0

−
n2ρ1+n1ρ2

n1+n2



.

□

Theorem 1.8 now follows immediately from Proposition 2.1, since on a prod-
uct manifold the product metric satisfies (2-1) and the Riemann curvature tensor
satisfies (2-2).

Since the spectrum of R̊ is known on space forms with constant sectional curva-
ture and Kähler space forms with constant holomorphic sectional curvature, we can
use Theorem 1.8 or Proposition 2.1 to determine the eigenvalues of the curvature
operator of the second kind on their product.

In the rest of this section, we use the following notation:

• Sn(κ) and Hn(−κ), n ≥ 2 and κ > 0, denote the n-dimensional simply connected
space form with constant sectional curvature κ and −κ , respectively.
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• CPm(κ) and CHm(−κ), m ≥ 1 and κ > 0, denote the (complex) m-dimensional
simply connected Kähler space form with constant holomorphic sectional curvature
4κ and −4κ , respectively.

Example 2.5. R̊ = κ idS2
0

on Sn(κ). R̊ = −κ idS2
0

on Hn(−κ).

Example 2.6. R̊ has two distinct eigenvalues on CPm(κ): −2κ with multiplicity
(m−1)(m+1) and 4κ with multiplicity m(m+1). R̊ has two distinct eigenvalues on
CHm(−κ): 2κ with multiplicity (m−1)(m+1) and −4κ with multiplicity m(m+1).
See [Bourguignon and Karcher 1978].

Example 2.7. Let M = Sn1(κ1)× Sn2(κ2). Then the curvature operator of the sec-
ond kind of M has eigenvalues: κ1 with multiplicity (n1−1)(n1+2)

2 , κ2 with multiplicity
(n2−1)(n2+2)

2 , 0 with multiplicity n1n2 and −
n1(n2−1)κ2+n2(n1−1)κ1

n1+n2
with multiplicity

one.

Example 2.8. Let M = Hn1(−κ1)× Hn2(−κ2). Then the curvature operator of
the second kind of M has eigenvalues: −κ1 with multiplicity (n1−1)(n1+2)

2 , −κ2

with multiplicity (n2−1)(n2+2)
2 , 0 with multiplicity n1n2 and n1(n2−1)κ2+n2(n1−1)κ1

n1+n2
with

multiplicity one.

Example 2.9. Let M = Sn1(κ1)× Rn2 . Then the curvature operator of the second
kind of M has eigenvalues: κ1 with multiplicity (n1−1)(n1+2)

2 , 0 with multiplicity
n1n2 +

(n2−1)(n2+2)
2 and −

n2(n1−1)κ1
n1+n2

with multiplicity one.

Example 2.10. Let M =Hn1(−κ1)×Rn2 . Then the curvature operator of the second
kind of M has eigenvalues: −κ1 with multiplicity (n1−1)(n1+2)

2 , 0 with multiplicity
n1n2 +

(n2−1)(n2+2)
2 and n2(n1−1)κ1

n1+n2
with multiplicity one.

Example 2.11. Let M = Sn1(κ1) × Hn2(−κ2). Then the curvature operator of
the second kind of M has eigenvalues: κ1 with multiplicity (n1−1)(n1+2)

2 , −κ2 with
multiplicity (n2−1)(n2+2)

2 , 0 with multiplicity n1n2 and −
n1n2(κ1−κ2)+n1κ2−n2κ1

n1+n2
with

multiplicity one.

Example 2.12. Let M = CPm1(κ1)× CPm2(κ2). Then the curvature operator of
the second kind of M has eigenvalues: −2κ1 with multiplicity (m1 − 1)(m1 + 1),
−2κ2 with multiplicity (m2 −1)(m2 +1), 4κ1 with multiplicity m1(m1 +1), 4κ2 with
multiplicity m2(m2 + 1), 0 with multiplicity 4m1m2, and −

2m1(m2+1)κ2+2m2(m1+1)κ1
m1+m2

with multiplicity one.

Example 2.13. Let M = CHm1(−κ1)× CHm2(−κ2). Then the curvature operator
of the second kind of M has eigenvalues: 2κ1 with multiplicity (m1−1)(m1+1), 2κ2

with multiplicity (m2 − 1)(m2 + 1), −4κ1 with multiplicity m1(m1 + 1), −4κ2 with
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multiplicity m2(m2 + 1), 0 with multiplicity 4m1m2, and 2m1(m2+1)κ2+2m2(m1+1)κ1
m1+m2

with multiplicity one.

Example 2.14. Let M = CPm1(κ1)× Cm2 . Then the curvature operator of the
second kind of M has eigenvalues: −2κ1 with multiplicity (m1 − 1)(m1 + 1), 4κ1

with multiplicity m1(m1 + 1), 0 with multiplicity 4m1m2 + (2m2 − 1)(m2 + 1), and
−

2m2(m1+1)κ1
m1+m2

with multiplicity one.

Example 2.15. Let M = CHm1(−κ1)× Cm2 . Then the curvature operator of the
second kind of M has eigenvalues: 2κ1 with multiplicity (m1 − 1)(m1 + 1), −4κ2

with multiplicity m1(m1 + 1), 0 with multiplicity 4m1m2 + (2m2 − 1)(m2 + 1), and
2m2(m1+1)κ1

m1+m2
with multiplicity one.

Example 2.16. Let M = CPm1(κ1)× CHm2(−κ2). Then the curvature operator of
the second kind of M has eigenvalues: −2κ1 with multiplicity (m1 − 1)(m1 + 1),
4κ2 with multiplicity m1(m1 +1), 2κ2 with multiplicity (m2 −1)(m2 +1), −4κ2 with
multiplicity m2(m2 +1), 0 with multiplicity 4m1m2, and −

2m1m2(κ1−κ2)+2m2κ1−2m1κ2
m1+m2

with multiplicity one.

In particular, we have the following observation, which will be needed later on.

Proposition 2.17. For n1, n2 ≥ 2, m1,m2 ≥ 1, κ1, κ2 > 0, we have the following:

(1) Sn1(κ1)× Sn2(κ2) has An1,n2-nonnegative curvature operator of the second
kind if and only if κ1 = κ2 > 0.

(2) Hn1(−κ1)×Hn2(−κ2) has An1,n2-nonpositive curvature operator of the second
kind if and only if κ1 = κ2 > 0.

(3) CPm1(κ1)× CPm2(κ2) has Bm1,m2-nonnegative curvature operator of the sec-
ond kind if and only if κ1 = κ2 > 0.

(4) CHm1(−κ1)× CHm2(−κ2) has Bm1,m2-nonpositive curvature operator of the
second kind if and only if κ1 = κ2 < 0.

3. Rigidity of cylinders

We prove Theorem 1.2. The key result of this section is the following proposition.

Proposition 3.1. Let (V, g) be a Euclidean vector space of dimension n − 1 with
n ≥ 2 and let R1 ∈ S2

B(3
2V ).

(1) Suppose that R = R1⊕ 0∈ S2
B(3

2(V ×R)) has
(
n+

n−2
n

)
-nonnegative curvature

operator of the second kind. Then R1 has constant nonnegative sectional curvature.

(2) Suppose that R = R1⊕ 0 ∈ S2
B(3

2(V ×R)) has
(
n+

n−2
n

)
-nonpositive curvature

operator of the second kind. Then R1 has constant nonpositive sectional curvature.
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(3) Suppose that R = R1 ⊕ 0 ∈ S2
B(3

2(V ×R)) has α-nonnegative or α-nonpositive
curvature operator of the second kind for some α < n +

n−2
n . Then R is flat.

Proof. (1) Let {ei }
n−1
i=1 be an orthonormal basis of V and let en be a unit vector in R.

Then {ei }
n
i=1 is an orthonormal basis of V ×R ∼= V ⊕R. Next, we define, on V ⊕R,

the symmetric two-tensors

ξi =
1

√
2

ei ⊙ en for 1 ≤ i ≤ n − 1,

ϕkl =
1

√
2

ek ⊙ el for 1 ≤ k < l ≤ n − 1,

ζ =
1

2
√

n(n − 1)

( n−1∑
p=1

ep ⊙ ep − (n − 1)en ⊙ en

)
.

One easily verifies that {ξi }
n−1
i=1 ∪{ϕkl}1≤k<l≤n−1 ∪{ζ } forms an orthonormal subset

of S2
0(3

2(V ⊕ R)).
Since R = R1 ⊕ 0, we have by (2-2) that

(3-1) R(ei , e j , ek, el)=

{
R1(ei , e j , ek, el), i, j, k, l ∈ {1, . . . , n − 1},

0, otherwise.

In particular, we have Rnjn j = 0 for 1 ≤ j ≤ n − 1.
Direct calculation using the identity

R̊(ei ⊙ e j , ek ⊙ el)= 2(Rikl j + Rilk j )

shows that

R̊(ξi , ξi )= 0 for 1 ≤ i ≤ n − 1,

R̊(ϕkl, ϕkl)= (R1)klkl for 1 ≤ k < l ≤ n − 1,

R̊(ζ, ζ )= −
1

n(n − 1)
S1,

where S1 is the scalar curvature of R1. Note that S1 ≥ 0 since S1 is also equal to the
scalar curvature of R, which must be nonnegative since R has

(
n+

n−2
n

)
-nonnegative

curvature operator of the second kind; see, e.g., [Li 2024, Proposition 4.1, part (1)].
Since R has

(
n +

n−2
n

)
-nonnegative curvature operator of the second kind, we

get that, for any 1 ≤ k < l ≤ n − 1,

0 ≤ R̊(ζ, ζ )+
n−1∑
i=1

R̊(ξi , ξi )+
n − 2

n
R̊(ϕkl, ϕkl)

= −
1

n(n − 1)
S1 +

n − 2
n

(R1)klkl =
n − 2

n

(
(R1)klkl −

S1

(n − 1)(n − 2)

)
.
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Summing over 1 ≤ k < l ≤ n − 1 yields

S1 ≤

∑
1≤k<l≤n−1

(R1)klkl .

On the other hand,

S1 =

∑
1≤k<l≤n−1

(R1)klkl .

Therefore, we must have (R1)klkl =
S1

(n−1)(n−2) for all 1 ≤ k < l ≤ n − 1. Since
the orthonormal basis {e1, . . . , en−1} is arbitrary, we conclude that R1 has constant
nonnegative sectional curvature.

(2) Apply (1) to −R.

(3) By (1) and (2), we have R = cIn−1 ⊕ 0 for some c ∈ R, where In−1 is the
Riemann curvature tensor of Sn−1. However, R = cIn−1 ⊕ 0 has α-nonnegative or
α-nonpositive curvature operator of the second kind for some α < n +

n−2
n if and

only if c = 0. Therefore, R is flat. □

We now present the proof of Theorem 1.2.

Proof of Theorem 1.2. (1) Recall that we say that (Mn, g) is locally reducible if
there exists a nontrivial subspace of Tp M which is invariant under the action of
the restricted holonomy group. By a theorem of de Rham, a complete Riemannian
manifold is locally reducible if and only if its universal cover is isometric to the
product of two Riemannian manifolds of lower dimension.

Denote by (M̃, g̃) the universal cover of M with the lifted metric g̃. Since M is
locally reducible, (M̃, g̃) is isometric to a product of the form (Mk

1 , g1)×(Mn−k
2 , g2),

where 1 ≤ k ≤
n
2 . Note that k ≥ 2 implies

k(n − k)+ 1 ≥ n +
n − 2

n
,

so M̃ must be flat if k ≥ 2, according to [Li 2024, Proposition 5.1] (or its improve-
ment Theorem 1.6). Thus we must have k = 1 and M̃ is isometric to N n−1

× R.
By part (1) of Proposition 3.1, N has pointwise constant nonnegative sectional
curvature. Since n − 1 ≥ 3, Schur’s lemma implies that N must have constant
nonnegative sectional curvature. Therefore, M is either flat or its universal cover is
isometric to Sn−1

× R up to scaling.

(2) This is similar to the proof of (1), by noticing that [Li 2024, Proposition 5.1]
is valid for the nonpositivity condition (alternatively, one can use Theorem 1.6). □
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Proof of Theorem 1.4. Let (Mn, g) be a closed nonflat Riemannian manifold of
dimension n ≥ 4 and suppose that M has 4 1

2 -nonnegative curvature operator of the
second kind. It was shown in [Li 2022] that one of the following statements holds:

(a) M is homeomorphic (diffeomorphic if n = 4 or n ≥ 12) to a spherical
space form.

(b) n = 2m and the universal cover of M is a Kähler manifold biholomorphic
to CPm .

(c) n = 4 and the universal cover of M is diffeomorphic to S3
× R.

(d) n ≥5 and M is isometric to a quotient of a compact irreducible symmetric space.

By Theorem 1.2 in [Li 2023a], the Kähler manifold in part (2) is either flat or
isometric to CP2 with the Fubini–Study metric, up to scaling. In part (c), the
manifold is reducible and we conclude using Theorem 1.2 that the universal cover
of M is isometric to S3

×R, up to scaling. Part (d) can be ruled out using [Nienhaus
et al. 2023a, Theorem B], as the manifold is either flat or a homology sphere. □

4. Rigidity of product of spheres and hyperbolic spaces

We prove Theorem 1.5. The key result of this section is the following proposition.
In this section, In , n ≥ 2, denotes the Riemann curvature tensor of the n-sphere
with constant sectional curvature 1.

Proposition 4.1. For i = 1, 2, let (Vi , gi ) be a Euclidean vector space of dimension
ni with ni ≥ 2. Let Ri ∈ S2

B(3
2Vi ) and R = R1 ⊕ R2 ∈ S2

B(3
2(V1 × V2)).

(1) Suppose that R has An1,n2-nonnegative curvature operator of the second kind.
Then R = c(In1 ⊕ In2) for some c ≥ 0.

(2) Suppose that R has An1,n2-nonpositive curvature operator of the second kind.
Then R = c(In1 ⊕ In2) for some c ≤ 0.

(3) Suppose that R has α-nonnegative or α-nonpositive curvature operator of the
second kind for some α < An1,n2 . Then R is flat.

We need an elementary lemma, which can be found in [Li 2023a, Lemma 5.1].

Lemma 4.2. Let N be a positive integer and A be a collection of N real numbers.
Denote by ai the i-th smallest number in A for 1 ≤ i ≤ N. Define a function f (A, x)
by

f (A, x)=

⌊x⌋∑
i=1

ai + (x − ⌊x⌋)a⌊x⌋+1,
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for x ∈ [1, N ]. Then we have

(4-1) f (A, x)≤ xā,

where ā :=
1
N

∑N
i=1 ai is the average of all numbers in A. The equality holds for

some x ∈ [1, N ) if and only if ai = ā for all 1 ≤ i ≤ N.

Proof of Proposition 4.1. (1) Let {ei }
n1
i=1 be an orthonormal basis of V1 and let

{ei }
n1+n2
i=n1+1 be an orthonormal basis of V2. Then {ei }

n1+n2
i=1 is an orthonormal basis

of V1 × V2 ∼= V1 ⊕ V2.
We construct an orthonormal basis of S2

0(V1 × V2) as follows. Choose an or-
thonormal basis {ϕi }

N1
i=1 of S2

0(V1) and an orthonormal basis {ψi }
N2
i=1 of S2

0(V2),
where Ni = dim(S2

0(Vi )) =
(ni −1)(ni +2)

2 for i = 1, 2. Note that h ∈ S2
0(V1) can be

identified with the element π∗h in S2
0(V1 × V2) via

(π∗h)(X1 + X2, Y1 + Y2)= h(X1, X2),

where X i , Yi ∈ Vi for i = 1, 2. We shall simply write π∗h as h. Similarly, S2
0(V2)

can be identified with a subspace of S2
0(V1 × V2). Next, we define, on V1 × V2, the

symmetric two-tensors

ξkl =
1

√
2

ek ⊙ el for 1 ≤ k ≤ n1, n1 + 1 ≤ l ≤ n1 + n2,

ζ =
1

√
n1n2(n1 + n2)

(n2g1 − n1g2).

One verifies that

{ϕi }
N1
i=1 ∪ {ψi }

N2
i=1 ∪ {ξkl}1≤k≤n1,n1+1≤l≤n1+n2 ∪ {ζ }

forms an orthonormal basis of S2
0(V1 × V2). This corresponds to the orthogonal

decomposition

S2
0(V1 × V2)= S2

0(V1)⊕ S2
0(V2)⊕ span{u ⊙ v : u ∈ V1, v ∈ V2} ⊕ Rζ.

The next step is to calculate some diagonal elements of the matrix representing
R̊ with respect to the above basis. Since R = R1 ⊕ R2, we have by (2-2) that

(4-2) R(ei , e j , ek, el)=


R1(ei , e j , ek, el), i, j, k, l ∈ {1, . . . , n1},

R2(ei , e j , ek, el), i, j, k, l ∈ {n1 + 1, . . . , n1 + n2},

0, otherwise.

In particular, we have Rklkl = 0 if 1 ≤ k ≤ n1 and n1 ≤ l ≤ n1+n2. Using the identity

R̊(ei ⊙ e j , ek ⊙ el)= 2(Rikl j + Rilk j ),
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we get

(4-3)
∑

1≤k≤n1
n1+1≤l≤n1+n2

R̊(ξkl, ξkl)=

∑
1≤k≤n1

n1+1≤l≤n1+n2

Rklkl = 0.

We also calculate

R̊(ζ, ζ )=
1

n1n2(n1 + n2)
(n2

2 R̊(g1, g1)+ n2
1 R̊(g2, g2)+ 2n1n2 R̊(g1, g2))

=
1

n1n2(n1 + n2)
(n2

2 R̊1(g1, g1)+ n2
1 R̊2(g2, g2))

= −
n2

2S1 + n2
1S2

n1n2(n1 + n2)
,

where Si denotes the scalar curvature of Ri for i = 1, 2.
Let A be the collection of the values of R̊(ϕi , ϕi ) for 1 ≤ i ≤ N1 and let B be

the collection of the values of R̊(ψi , ψi ) for 1 ≤ i ≤ N2. Denote by ā and b̄ the
average of all numbers in A and B, respectively. Then

ā =
1

N1

N1∑
i=1

R̊(ϕi , ϕi )=
1

N1

N1∑
i=1

R̊1(ϕi , ϕi )=
S1

n1(n1 − 1)
,

b̄ =
1

N2

N2∑
i=1

R̊(ψi , ψi )=
1

N2

N2∑
i=1

R̊2(ψi , ψi )=
S2

n2(n2 − 1)
,

where we have used

N1∑
i=1

R̊1(ψi , ψi )=
n1 + 2

2n1
S1 and

N2∑
i=1

R̊2(ψi , ψi )=
n2 + 2

2n2
S2.

For simplicity, we write

A1 =
n2(n1 − 1)

n1 + n2
and A2 =

n1(n2 − 1)
n1 + n2

.

Notice that we have A1 < N1, A2 < N2 and

(4-4) An1,n2 = 1 + n1n2 + A1 + A2.

Also, the expression for R̊(ζ, ζ ) can be written as

(4-5) R̊(ζ, ζ )= −A1ā − A2b̄.
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Since R has An1,n2-nonnegative curvature operator of the second kind, we get
using (4-3), (4-4) and (4-5) that

(4-6) −R̊(ζ, ζ )≤ f (A, ⌊A1⌋)+ f (B, A1 + A2 − ⌊A1⌋)

≤ ⌊A1⌋ā + (A1 + A2 − ⌊A1⌋)b̄

= A1ā + A2b̄ + (A1 − ⌊A1⌋)(b̄ − ā),

where f is the function defined in Lemma 4.2 and we have used Lemma 4.2 in
estimating f . Similarly, we also have

(4-7) −R̊(ζ, ζ )≤ f (A, A1 + A2 − ⌊A2⌋)+ f (B, ⌊A2⌋),

≤ (A1 + A2 − ⌊A2⌋)ā + ⌊A2⌋)b̄

= A1ā + A2b̄ + (A2 − ⌊A2⌋)(ā − b̄).

Therefore, by (4-5), we get from (4-6) if ā ≥ b̄ and from (4-7) if ā ≤ b̄ that

A1ā + A2b̄ = −R̊(ζ, ζ )≤ A1ā + A2b̄.

This implies that, either in (4-6) or (4-7), we must have equalities in the inequalities
used for f . We then get from Lemma 4.2, that all the values in A are equal to ā and
all the values in B are equal to b̄. Hence, both R1 and R2 have constant sectional
curvature, that is to say, R = c1 In1 ⊕ c2 In2 for c1, c2 ∈ R.

Finally, we must have c1 = c2 ≥ 0, as R = c1 In1 ⊕ c2 In2 has An1,n2-nonnegative
curvature operator of the second kind if and only if c1 = c2 ≥ 0 by Proposition 2.17.

(2) Apply (1) to −R.

(3) This follows from the fact that R = c(In1 ⊕ In2) has α-nonnegative or α-
nonpositive curvature operator of the second kind for some α < An1,n2 if and
only if c = 0. □

At last, we give the proof of Theorem 1.5.

Proof of Theorem 1.5. (1) This is an immediate consequence of part (3) of
Proposition 4.1.

(2) Let (p1, p2) ∈ M1 × M2. By part (2) of Proposition 4.1, we have

R(p1, p2)= c(p1, p2)(In1 ⊕ In2)

with c(p1, p2)≥ 0. If both n1 and n2 are at least 3, then Schur’s lemma implies that
c(p1, p2)≡ c ≥ 0. Below we provide an argument that works whenever n1, n2 ≥ 2.

Note that both (M1, g1) and (M2, g2) have pointwise constant sectional curvature.
By Proposition 2.1, the eigenvalues of R̊ at (p1, p2) are given by ρ1(p1)

n1−1 with multi-
plicity (n1−1)(n1+2)

2 , ρ2(p2)
n2−1 with multiplicity (n2−1)(n2+2)

2 , 0 with multiplicity n1n2,
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and −
n2ρ1(p1)+n1ρ2(p2)

n1+n2
with multiplicity one. Here ρi (pi ) is the Einstein constant of

Mi at pi , i.e., Ric(gi )(pi )= ρi (pi )gi at pi for i = 1, 2. Using the assumption that
M1 × M2 has An1,n2-nonnegative curvature operator of the second kind, we obtain

−
n2ρ1(p1)+ n1ρ2(p2)

n1 + n2
+

n1(n2 − 1)+ n2(n1 − 1)
n1 + n2

ρ1(p1)

n1 − 1
≥ 0

and

−
n2ρ1(p1)+ n1ρ2(p2)

n1 + n2
+

n1(n2 − 1)+ n2(n1 − 1)
n1 + n2

ρ2(p2)

n2 − 1
≥ 0.

The two inequalities force

(n2 − 1)ρ1(p1)= (n1 − 1)ρ2(p2).

Fixing p1 while letting p2 vary in M2 shows that ρ2(p2) is independent of p2.
Similarly, ρ1(p1) is independent of p1. Since ρi (pi )= (ni −1)c(p1, p2) for i = 1, 2,
we conclude that c(p1, p2)≡ c ≥ 0. Therefore, both (M1, g1) and (M2, g2) have
constant sectional curvature c ≥ 0.

If M is further assumed to be complete, then M is either flat or the universal
cover of M is isometric to Sn1 × Sn2 , up to scaling.

(3) Similar to the proof of (2). □

Proof of Theorem 1.6. Suppose that (Mn, g) splits locally near q ∈ M as a Riemann-
ian product (Mk

1 × Mn−k
2 , g1 ⊕ g2) with 1 ≤ k ≤

n
2 . Then the Riemann curvature

tensor R of M satisfies R = R1⊕R2 near q , where Ri denotes the Riemann curvature
tensor of Mi for i = 1, 2.

By part (3) of Proposition 3.1 if k = 1 and part (3) of Proposition 4.1 if 2 ≤ k ≤
n
2 ,

the assumption

α < k(n − k)+
2k(n − k)

n
implies that M must be flat near q . Since the restricted holonomy does not depend
on q ∈ M , we conclude that M is flat. □

5. Holonomy restriction

Proof of Theorem 1.3. Suppose that (Mn, g) splits locally near q ∈ M as a Riemann-
ian product (Mk

1 × Mn−k
2 , g1 ⊕ g2) with 2 ≤ k ≤

n
2 . Then the Riemann curvature

tensor R of M satisfies R = R1⊕R2 near q , where Ri denotes the Riemann curvature
tensor of Mi for i = 1, 2.

Noticing that

α < n +
n − 2

n
≤ Ak,n−k = k(n − k)+

2k(n − k)
n
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for any 1 ≤ k ≤
n
2 , we conclude from part (3) of Propositions 3.1 if k = 1 and

part (3) of Proposition 4.1 if 2 ≤ k ≤
n
2 that M is locally flat. Since the restricted

holonomy does not depend on q ∈ M , we conclude that M is flat. Therefore, M is
either locally irreducible or flat.

If n = 3, then the holonomy of M must be SO(3) as M is locally irreducible. So
we may assume n ≥ 4 below.

If M is an irreducible locally symmetric space, then it is Einstein. Since

α < n +
n−2

n
≤

3n
2

n+2
n+4

for any n ≥ 4, we get from [Nienhaus et al. 2023b, Theorem B] that either M is flat
or the restricted holonomy of M is SO(n).

So we may assume that M is not locally symmetric with irreducible holonomy
representation. Then the restricted holonomy of M is contained in Berger’s list of
holonomy groups [1955]: SO(n), U

( n
2

)
, SU

( n
2

)
, Sp

( n
4

)
Sp(1), Sp

(n
4

)
, G2 and Spin(7).

Note that if its restricted holonomy is SU
( n

2

)
, Sp

( n
4

)
, G2 or Spin(7), then M must

be Ricci flat and thus flat.
If the restricted holonomy of M is Sp

( n
4

)
Sp(1), then M is quaternion-Kähler and

it is also Einstein in this case. Thus, either the restricted holonomy of M is SO(n)
or M is flat by [Nienhaus et al. 2023b, Theorem B].

If the restricted holonomy of M is U
( n

2

)
, then M is Kähler. Noticing that

α < n +
n−2

n
≤

3
2

(n2

4
− 1

)
for any n ≥ 4, M must be flat by [Li 2023a, Therorem 1.2].

Overall, either the restricted holonomy of M is SO(n) or M is flat. □

6. Kähler manifolds

We prove Theorem 1.7. The proof shares the same idea as in Section 4, but we use
the orthonormal basis of the space of traceless symmetric two-tensors on a complex
Euclidean space constructed in [Li 2023a].

In the following, Bm1,m2 is the expression defined in (1-3) and RCPm denotes the
Riemann curvature tensor of the complex projective space with constant holomor-
phic sectional curvature 4. We establish the following proposition.

Proposition 6.1. For i =1, 2, let (Vi , gi , Ji ) be a complex Euclidean vector space of
complex dimension mi ≥ 1. Let Ri ∈ S2

B(3
2Vi ) and R = R1⊕R2 ∈ S2

B(3
2(V1×V2)).

(1) Suppose that R has Bm1,m2-nonnegative curvature operator of the second kind.
Then R = c(RCPm1 ⊕ RCPm2 ) for some c ≥ 0.
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(2) Suppose that R has Bm1,m2-nonpositive curvature operator of the second kind.
Then R = c(RCPm1 ⊕ RCPm2 ) for some c ≤ 0.

(3) Suppose that R has α-nonnegative or α-nonpositive curvature operator of the
second kind for some α < Bm1,m2 . Then R is flat.

Proof. (1) Let
{e1, . . . , em1, J1e1, . . . , J1em1}

be an orthonormal basis of (V1, g1, J1) and

{em1+1, . . . , em1+m2, J2em1+1, . . . , J2em1+m2}

be an orthonormal basis of (V2, g2, J2).
As in Section 4, we have the orthogonal decomposition

S2
0(V1 × V2)= S2

0(V1)⊕ S2
0(V2)⊕ span{u ⊙ v : u ∈ V1, v ∈ V2} ⊕ Rζ,

where

ζ =
1

√
2m1m2(m1 + m2)

(m2g1 − m1g2).

The same computation as in Section 4 gives that

(6-1) R̊(ζ, ζ )= −
m2

2S1 + m2
1S2

2m1m2(m1 + m2)
,

where Si denotes the scalar curvature of Ri for i = 1, 2.
By Lemma 2.2, the subspace span{u ⊙v : u ∈ V1, v ∈ V2} lies in the kernel of R̊

and its real dimension is 4m1m2.
For S2

0(V1) and S2
0(V2), we use the orthonormal bases constructed in Section 4

of [Li 2023a]. More precisely, the following traceless symmetric two-tensors form
an orthonormal basis of S2

0(V1):

ϕ
1,±
i j =

1
2
(ei ⊙ e j ∓ J1ei ⊙ J1e j ) for 1 ≤ i < j ≤ m1,

ψ
1,±
i j =

1
2
(ei ⊙ J1e j ± J1ei ⊙ e j ) for 1 ≤ i < j ≤ m1,

α1
i =

1

2
√

2
(ei ⊙ ei − J1ei ⊙ Jei ) for 1 ≤ i ≤ m1,

α1
m1+i =

1
√

2
(ei ⊙ J1ei ) for 1 ≤ i ≤ m1,

η1
k =

k
√

8k(k + 1)
(ek+1 ⊙ ek+1 + J1ek+1 ⊙ J1ek+1)

−
1

√
8k(k + 1)

k∑
i=1

(ei ⊙ ei + J1ei ⊙ J1ei ) for 1 ≤ k ≤ m1 − 1.
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Similarly, the traceless symmetric two-tensors

ϕ
2,±
i j =

1
2
(ei⊙e j∓J2ei⊙J2e j ) for m1+1 ≤ i < j ≤ m1+m2,

ψ
2,±
i j =

1
2
(ei⊙J2e j±J2ei⊙e j ) for m1+1 ≤ i < j ≤ m1+m2,

α2
i =

1

2
√

2
(ei⊙ei−J1ei⊙Jei ) for m1+1 ≤ i ≤ m1+m2,

α2
m2+i =

1
√

2
(ei⊙J1ei ) for m1+1 ≤ i ≤ m1+m2,

η2
k =

k
√

8k(k+1)
(ek+1⊙ek+1+J2ek+1⊙J2ek+1)

−
1

√
8k(k+1)

k∑
i=1

(ei⊙ei+J2ei⊙J2ei ) for m1+1 ≤ k ≤ m1+m2−1

form an orthonormal basis for S2
0(V2). Here the superscripts 1 and 2 indicate that

these are quantities associated with the space V1 and V2, respectively.
By Lemma 4.3 in [Li 2023a], we have

(6-2)
∑

1≤i< j≤m1

(R̊(ϕ1,−
i j , ϕ

1,−
i j )+ R̊(ψ1,−

i j , ψ
1,−
i j ))+

m1−1∑
k=1

R̊(ηk, ηk)= −
m1 − 1

2m1
S1

and

(6-3)
∑

m1+1≤i< j≤m1+m2

(R̊(ϕ2,−
i j , ϕ

2,−
i j )+ R̊(ψ2,−

i j , ψ
2,−
i j ))+

m1+m2−1∑
k=m1+1

R̊(ηk, ηk)

= −
m2 − 1

2m2
S2.

Let A be the collection of the values R̊(α1
i , α

1
i ) for 1 ≤ i ≤ 2m1, R̊(ϕ1,+

i j , ϕ
1,+
i j )

and R̊(ψ1,+
i j , ψ

1,+
i j ) for 1 ≤ i < j ≤ m. By Lemma 4.3 in [Li 2023a], we know that

A contains two copies of R(ei , J1ei , ei , J1ei ) for each 1 ≤ i ≤ m1 and two copies
of 2R(ei , J1ei , e j , J1e j ) for each 1 ≤ i < j ≤ m1. Therefore, the sum of all values
in A is equal to S1, the scalar curvature of R1, and ā, the average of all values in A,
is given by

ā =
S1

m1(m1 + 1)
.

Let B be the collection of the values R̊(α2
i , α

2
i ) for m1 + 1 ≤ i ≤ m1 + 2m2,

R̊(ϕ2,+
i j , ϕ

2,+
i j ) and R̊(ψ2,+

i j , ψ
2,+
i j ) for m1 + 1 ≤ i < j ≤ m1 + m2. By Lemma 4.3

in [Li 2023a], we know that B contains two copies of R(ei , J2ei , ei , J2ei ) for
each m1 + 1 ≤ i ≤ m1 + m2 and two copies of 2R(ei , J2ei , e j , J2e j ) for each
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m1 + 1 ≤ i < j ≤ m1 + m2. Therefore, the sum of all values in B is equal to S2,
the scalar curvature of R2, and b̄, the average of all values in B, is given by

b̄ =
S2

m2(m2 + 1)
.

Combining (6-1), (6-2) and (6-3) together yields∑
1≤i< j≤m1

(R̊(ϕ1,−
i j , ϕ

1,−
i j )+ R̊(ψ1,−

i j , ψ
1,−
i j ))

+

∑
m1+1≤i< j≤m1+m2

(R̊(ϕ2,−
i j , ϕ

2,−
i j )+ R̊(ψ2,−

i j , ψ
2,−
i j ))

+

m1−1∑
k=1

R̊(ηk, ηk)+

m1+m2−1∑
k=m1+1

R̊(ηk, ηk)+ R̊(ζ, ζ )

= −
m1 − 1

2m1
S1 −

m2 − 1
2m2

S2 + R̊(ζ, ζ )

= −
1
2
(m2

1 − 1)ā −
1
2
(m2

2 − 1)b̄ −
m2

2S1 + m2
1S2

2m1m2(m1 + m2)

= −B1ā − B2b̄,

where we have introduced

B1 =
1
2
(m2

1 − 1)+
(m1 + 1)m2

2(m1 + m2)
and B2 =

1
2
(m2

2 − 1)+
(m2 + 1)m1

2(m1 + m2)

for simplicity of notation. Note that −B1ā − B2b̄ is the sum of

1 + 4m1m2 + (m2
1 − 1)+ (m2

2 − 1)

many diagonal elements of the matrix representation of R̊ with respect to the
orthonormal basis of S2

0(V1 × V2) constructed above (here one can pick any or-
thonormal basis for the subspace span{u ⊙ v : u ∈ V1, v ∈ V2} as it is in the kernel
of R̊).

Noticing that

Bm1,m2 = 1 + (m2
1 − 1)+ (m2

2 − 1)+ 4m1m2 + B1 + B2,

the assumption R has Bm1,m2-nonnegative curvature operator of the second kind
implies that

(6-4) B1ā + B2b̄ ≤ f (A, ⌊B1⌋)+ f (B, B1 + B2 − ⌊B1⌋)

≤ ⌊B1⌋ā + (B1 + B2 − ⌊B1⌋)b̄

= B1ā + B2b̄ + (B1 − ⌊B1⌋)(b̄ − ā)
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and

(6-5) B1ā + B2b̄ ≤ f (A, B1 + B2 − ⌊B2⌋)+ f (B, ⌊B2⌋)

≤ (B1 + B2 − ⌊B2⌋)ā + ⌊B2⌋b̄

= B1ā + B2b̄ + (B2 − ⌊B2⌋)(ā − b̄),

where f is the function defined in Lemma 4.2 and we have used Lemma 4.2 to
estimate f . So we get from (6-4) if ā ≥ b̄ and from (6-5) if ā ≤ b̄ that

B1ā + B2b̄ ≤ B1ā + B2b̄.

Therefore, either in (6-4) or (6-5), we must have equalities in the inequalities used
for f . By Lemma 4.2, we get that all the values in A are equal to ā and all the
values in B are equal to b̄. Hence, both R1 and R2 have constant holomorphic
sectional curvature, that is to say, R = c1 RCPm1 ⊕ c2 RCPm2 for c1, c2 ∈ R.

Finally, we must have c1 = c2 ≥ 0, as R = c1 RCPm1 ⊕ c2 RCPm2 has Bm1,m2-
nonnegative curvature operator of the second kind if and only if c1 = c2 ≥ 0 by
Proposition 2.17.

(2) Apply (1) to −R.

(3) This follows from the fact that R = c(RCPm1 ⊕ RCPm2 ) has α-nonnegative or
α-nonpositive curvature operator of the second kind for some α < Bm1,m2 if and
only if c = 0. □

Proof of Theorem 1.7. Once we have Proposition 6.1, this is similar to the proof of
Theorem 1.5 and we omit the details. □
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