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HOMOTOPY VERSUS ISOTOPY: 2-SPHERES IN 5-MANIFOLDS

DANICA KOSANOVIĆ, ROB SCHNEIDERMAN AND PETER TEICHNER

We give a complete obstruction for two homotopic embeddings of a 2-sphere
into a 5-manifold to be isotopic. The results are new even though the methods
are classical, the main tool being the elimination of double points via a level
preserving Whitney move in codimension 3. Moreover, we discuss how
this recovers a particular case of a result of Dax on metastable homotopy
groups of embedding spaces. It follows that “homotopy implies isotopy”
for 2-spheres in simply connected 5-manifolds and for 2-spheres admitting
algebraic dual 3-spheres.

1. Introduction and results

A curious consequence of our generalizations [Schneiderman and Teichner 2022;
Kosanović and Teichner 2024a] of the 4-dimensional light bulb theorems of David
Gabai [2020; 2021] is that homotopic 2-spheres R, R′

: S2 ↪→ M , embedded in a
4-manifold M with a common dual sphere, are smoothly isotopic in M if and only
if they are isotopic in the 5-manifold M ×R, see [Schneiderman and Teichner 2022,
Corollary 1.5]. The complete isotopy obstruction in [Schneiderman and Teichner
2022, Theorem 1.1] is given by the Freedman–Quinn invariant

fq(R, R′) := [µ3(H)] ∈
F2TM

µ3(π3 M)
,

where µ3(H) is Wall’s self-intersection invariant of the track

H : S2
× [0, 1] ↬ M × R × [0, 1]

of a generic homotopy between R and R′ in M × R. Moreover, F2TM is the F2-
vector space with basis TM := {g ∈ π1 M | g2

= 1 ̸= g}, the set of involutions
in π1 M . It turns out that µ3 also gives a homomorphism µ3 : π3 M → F2TM ,
whose cokernel eliminates the choice of homotopy in the definition of fq. Michael
Freedman and Frank Quinn [1990, Chapter 10] introduced this invariant, while
studying topological concordance classes of embedded 2-spheres in 4-manifolds.
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This isotopy classification also follows from [Kosanović and Teichner 2024a,
Theorem 1.1] via a more powerful invariant due originally to Jean-Pierre Dax [1972]
which detects relative isotopy classes of neatly embedded 2-disks having a common
dual in ∂M . Dax extends the parametrized double-point elimination method of
André Haefliger [1961a; 1961b], which is in turn an extension of the Whitney
trick [Whitney 1944]. Haefliger’s results were used by Lawrence Larmore [1978,
Theorem 6.0.1] to show a special case of Dax’s result, see (1.14) below.

In the current paper we consider the “homotopy versus isotopy” question for
2-spheres in general 5-manifolds and show that there is again a self-intersection
invariant of a homotopies which detects isotopy classes and takes values in a
quotient of the group ring of the ambient fundamental group. The dimensions under
consideration here are right at the transition between low- and high-dimensional
topology, with successful Whitney moves generally available in the presence of
vanishing algebraic obstructions.

With this in mind, our exposition will be aimed at describing this transition
from the point of view of the low-dimensional topologist, rather than starting by
presenting results in full generality. In particular, we will:

(1) Explain how the isotopy classification can be described by self-intersection
invariants of homotopies, using a level-preserving Whitney trick.

(2) Explain how Dax’s work recovers the same result, from the perspective of
space level techniques and homotopy groups of embedding spaces.

Both approaches can be generalized to describe isotopy classifications for compact
n-manifolds embedded in (2n + 1)-manifolds, as will be described in upcoming
work [Kosanović et al. ≥ 2024] which recasts Dax [1972] in full generality in this
language; see Theorem 4.1 below.

We next give a quick outline of the main results, and refer to the rest of the
introduction for details. For any fixed embedded sphere U : S2 ↪→ N 5 in a 5-
manifold N , we will define the set AU∗

as a certain quotient of the group ring Zπ1 N ,
see Definition 1.10. The image in AU∗

of the self-intersections µ3(H) of a generic
track H : S2

× I ↬ N × I of a homotopy between U and R : S2 ↪→ N will by
design only depend on U and R, not on H . Here the notation U is meant to suggest
that one can think of this fixed 2-sphere as an “unknot”, although we emphasize
that there are no restrictions on its homotopy class. Denoting this invariant by
fqU∗

(R) := [µ3(H)] ∈ AU∗
, a basic statement of our main result is the following

corollary of Theorem 1.11:

Corollary 1.1. Homotopic spheres U and R are isotopic if and only if the formula
fqU∗

(R)= 0 ∈ AU∗
holds. Moreover, any element in AU∗

is realized as fqU∗
(R) for

an embedded sphere R.
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We note that in this 5-dimensional setting, the result does not require any dual
spheres (unlike in four dimensions), see Corollary 1.13. If π1 N is trivial, then
AU∗

= {0} and we get:

Corollary 1.2. Homotopy implies isotopy for 2-spheres in simply connected 5-
manifolds.

There is a straightforward proof of Corollary 1.2, using cusp-cancellation (in
dimension 6) and the theorem of John Hudson [1970] that in codimension > 2
concordance implies isotopy. We will give a self-contained proof of the general
classification result, by providing a level-preserving version of the Whitney move
in codimension > 2 (Proposition 2.5).

If π1 N is not trivial then our classification result is similar to the 4-dimensional
setting with common duals, namely fqU∗

gives the unique obstruction for homotopic
embeddings to be isotopic. Our main work will be in spelling out the precise range
of this obstruction and showing that all values in AU∗

are realized. A new issue that
arises in the current setting is the distinction between based and free homotopies,
whereas the assumption of common duals in the 4-dimensional setting essentially
allowed for consideration of only based homotopies (see [Gabai 2020, Theorem 6.1;
Schneiderman and Teichner 2022, Lemma 2.1]). We will occasionally emphasize
this issue by applying the adjective “free” to the terms “homotopy” and “isotopy”,
even though by traditional definitions it would suffice to just omit the adjective
“based”.

1.1. 2-knots in 5-manifolds. We now turn to precise formulations of our main
results, working in the smooth oriented category throughout. Fixing a basepoint in
such a 5-manifold N , and a basepoint in S2, we have the following commutative
diagram which will guide the discussion of our invariants:

π0 Emb∗(S2, N ) π0 Map∗(S
2, N )

π0 Emb(S2, N ) π0 Map(S2, N )

p∗

mod π1 N mod π1 N

p

Here

π0 Emb∗(S2, N ) := {based embeddings S2 ↪→ N }/based isotopy

is the embedded version of π0 Map∗(S
2, N )= π2 N , and

π0 Emb(S2, N ) := {embeddings S2 ↪→ N }/free isotopy

is the embedded version of π0 Map(S2, N ) = [S2, N ]. Both horizontal arrows
forget the fact that we have embeddings, and the vertical arrows divide out the
π1 N -actions (using embedded tubes along closed paths at the basepoint on the
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left-hand side). Both p and p∗ are surjective (that is, any (based) map is homotopic
to a (based) embedding) by general position: the dimension of the double point
set is 5 − 6 = −1 (so generically this set is empty), since codimensions of generic
intersections add.

Along with using the label ∗ for based objects, our notational convention is
to use a bracket to denote the homotopy class of an embedded object, which is
otherwise considered up to isotopy. For example, the upper horizontal map p∗

sends R∗ ∈ π0 Emb∗(S2, N ) to [R∗] ∈ π0 Map∗(S
2, N ), and the left vertical map

sends R∗ to R ∈ π0 Emb(S2, N ). We are ultimately interested in the fibers of p,
but it turns out to be convenient to first understand the fibers of p∗.

1.2. The based isotopy invariant. As recalled in (2.2) below, the quotient

A :=
Zπ1 N

⟨g + g−1, 1⟩

of the integral fundamental group ring Zπ1 N ∼= Zπ1(N × I ) is the usual target for
the self-intersection invariant

(1.3) µ3 : {simply connected 3-manifolds immersed in the 6-manifold N × I }
→ A,

which is invariant under homotopy rel boundary.
Let us fix a based embedding U∗ : S2 ↪→ N , and define a homomorphism of

abelian groups φ[U∗] : π3 N → A by

(1.4) φ[U∗](A) := µ3(A)+ [λN (A, [U∗])],

where µ3 denotes the self-intersection invariant on π3(N × I )∼= π3 N , and λN is
the intersection pairing between π3 N and π2 N taking values in Zπ1 N .

Definition 1.5. A[U∗] :=
A

φ[U∗](π3 N )
.

Note that the abelian group A[U∗] only depends on the based homotopy class
[U∗] ∈ π2 N . We now consider the fiber of p∗ over [U∗] ∈ π2 N :

p−1
∗
([U∗])= {R∗ : S2 ↪→ N | R∗ is based homotopic to U∗}/(based isotopy).

Definition 1.6. For R∗ ∈ p−1
∗

[U∗], let H∗ : S2
× I ↬ N × I be a generic track of a

based homotopy from U∗ to R∗, and define

fq[U∗]
(R∗) := [µ3(H∗)] ∈ A[U∗].

By the following theorem, fq[U∗]
(R∗) does not depend on the choice of homotopy,

and vanishes if and only if R∗ and U∗ are based isotopic.
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Theorem 1.7. The map fq[U∗]
: p−1

∗
[U∗] → A[U∗] is a bijection, whose inverse is

given by a geometric action on U∗.

The action of g ∈ π1 N on U∗ ∈ π0 Emb∗(S2, N ) is by a “finger move” along g,
which in this setting is an ambient connected sum of U∗ with its meridian sphere mU∗

along a tube following a loop representing g. Elements in the group ring act by
multiple finger moves, which turn out to involve signs and preserve the relations
in the quotient A of the group ring (see Section 2.3). The proof of Theorem 1.7
shows the following.

Corollary 1.8. The abelian group A acts on π0 Emb∗(S2, N ) compatibly with the
π1 N-actions, preserving p∗ and acting transitively on its fibers, with the stabilizer
of U∗ equal to φ[U∗](π3 N ).

1.3. The free isotopy invariant. Now consider free homotopy versus isotopy, i.e.,
the set

p−1
[U ] := {R : S2 ↪→ N | R is freely homotopic to U }/(free isotopy)

for U : S2 ↪→ N a fixed embedding in Emb(S2, N )⊂Map(S2, N ). Choose U (e)∈ N
as the basepoint for N , where e denotes the basepoint for S2.

To define the target of an invariant that characterizes p−1
[U ] we will define an

affine action on A[U∗] (the range of the bijection in the based setting of Theorem 1.7)
by the group

Stab[U∗] := {s ∈ π1 N : s · [U∗] = [U∗]},

that is, the stabilizer subgroup of [U∗] ∈ π2 N of the usual action of π1 N on π2 N .
Recall that an affine transformation T of an abelian group A is given by an

endomorphism ℓ and a translation a0 of A, i.e., T (a)= a0 +ℓ(a), where a0 = T (0).
An affine action of a group on A is a homomorphism to the group of affine trans-
formations of A. In our case, the linear action of s ∈ Stab[U∗] will be a 7→ sas−1,
whereas the translational part will be given by Us , both of which we explain next.

Firstly, we claim that the linear action (s, a) 7→ sas−1 of Stab[U∗] on Zπ1 N
descends to A[U∗]: for A ∈ π3 N we have

µ3(g · A)= gµ3(A) g−1 and λN (g · A, [U∗])= gλN (A, [U∗]),

so if g ·[U∗]= [U∗] then the last expression also equals gλN (A, [U∗])g−1, implying

gφ[U∗](A)g
−1

= φ[U∗](g · A) ∈ φ[U∗](π3 N ).

Secondly, for s ∈ Stab[U∗] there is a generic track Js : S2
× I ↬ N × I of a free

self-homotopy of U∗ such that the projection of Js(e,−) to N represents s. It turns
out that

Us := [µ3(Js)] ∈ A[U∗]
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only depends on s and the isotopy class U∗ (and not on Js , see Lemma 3.1). It is
easy to show that under concatenation, for s, r ∈ Stab[U∗] this behaves as

Us·r = Us + sUr s−1.

This implies that the formula

(aff) sa := Us + sas−1

satisfies

(1.9) sra =Usr +srar−1s−1
=Us +sUr s−1

+srar−1s−1
=

s(Ur +rar−1)= s(ra).

In other words, the composition in the group Stab[U∗] turns into the composition
of affine transformations, so s 7→

sa defines an affine action of s ∈ Stab[U∗] on
a ∈ A[U∗]. This action and the following definition will be examined and clarified
below in Section 3.2.

Definition 1.10. Denote by AU∗
the quotient set of this affine action by Stab[U∗]

on A[U∗].

Note that the definition of AU∗
depends on the based isotopy class U∗, a fixed

basing of U . However, the following result shows that it characterizes the set of
free isotopy classes of embeddings homotopic to U .

Theorem 1.11. There is a bijection

fqU∗
: p−1

[U ] → AU∗
, R 7→ [µ3(H)],

where H is a generic track of any free homotopy from U to R.

Here both the computation of µ3(H) and the definition of AU∗
use the same

basing U∗, and the inverse of the bijection is defined using the same geometric
action as in Corollary 1.8.

Curiously, in the based setting of Theorem 1.7, both the target A[U∗] and the set
p−1

∗
[U∗] only depend on the based homotopy class [U∗] ∈ π2 N , whereas in the

free setting of Theorem 1.11, the target AU∗
depends on the based isotopy class

U∗ ∈ π0 Emb∗(S2, N ), while the set p−1
[U ] depends on the free homotopy class

[U ] ∈ π0 Map(S2, N ) of the embedding U .

Example. If U∗ is the trivial 2-sphere then Us = 0 for all s ∈ Stab[U∗] = π1 N
because any self-homotopy Js can be chosen to be a self-isotopy. As a consequence:

Corollary 1.12 (null-homotopic isotopy classes). Null-homotopic free isotopy
classes of 2-spheres in N are in bijection with AU∗

= A[U∗]/π1 N , the quotient
of the abelian group

A[U∗] =
Z[π1 N ]

⟨1, g + g−1, µ3(A) : g ∈ π1 N , A ∈ π3 N ⟩
,

by the conjugation action of π1 N.
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Note that although the free self-isotopies of U have vanishing self-intersection
invariants, they still contribute to the indeterminacy of the invariant fqU∗

by arbitrarily
conjugating double-point group elements in the computation of µ3(H).

Example. If λN (G, [U∗])= 1 for some G ∈ π3 N such that µ3(G)= 0 ∈ A, then
φ[U∗](π3 N )= A, since for any

∑
gi ∈ Z[π1 N ] we have

φ[U∗]

(∑
gi · G

)
= 0 +

[
λN

(∑
gi · G, [U∗]

)]
=

[∑
gi · λN (G, [U∗])

]
=

[∑
gi

]
.

It follows that in this case A[U∗] contains a single element, and hence so does AU∗
.

Corollary 1.13 (5-dimensional light bulb theorem). Homotopy implies isotopy for
spheres U∗ : S2 ↪→ N 5 admitting an algebraic dual G ∈ π3 N as above.

See Section 3.3 for more examples.

1.4. Isotopy classification via mapping spaces. In Section 4 we present a slightly
different perspective to the problem of isotopy classification. Namely, the fibers
of the map p : π0 Emb(S2, N ) → π0 Map(S2, N ) can also be determined us-
ing the homotopy exact sequence associated to the inclusion of mapping spaces
Emb(S2, N )⊂ Map(S2, N ):

π1(Map(S2, N ),U )

π1(Map(S2, N ),Emb(S2, N ),U ) π0 Emb(S2, N ) π0 Map(S2, N ).

j

p

Here we picked an embedding U : S2 ↪→ N as a basepoint, and the leftmost
absolute π1 is a group that acts on the relative π1 (which is just a set) such that the
quotient set is isomorphic to the fiber p−1

[U ] of p over [U ] ∈ π0 Map(S2, N ).
The relative π1 is the first nonvanishing relative homotopy group, and that

is exactly what was computed by Jean-Pierre Dax [1972]. He translated this
(and also other relative homotopy groups in the “metastable range”) to certain
bordism groups. Computations of this bordism group (which is 0-dimensional in
the first nonvanishing case) were carried out in [Kosanović and Teichner 2024b,
Theorem 4.14], for the cases (Imm∂(V, X),Emb∂(V, X)) when embeddings have
nonempty boundary condition, and V is 1-connected. In [Kosanović et al. ≥ 2024]
we extend this to closed and disconnected manifolds, and compare to maps instead
of immersions. Specializing [Kosanović et al. ≥ 2024] to V = S2 and d = 5 leads
to Theorem 4.1: there is a bijection

(1.14) Dax : π1(Map(S2, N ),Emb(S2, N ),U )→ A, h 7→ µ3(H),

where H is a homotopy from U to an embedding that represents h, and µ3(H) ∈ A

is the self-intersection invariant of a generic track H of the homotopy, as in (1.3).
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In order to compute the set p−1
[U ] from this viewpoint it remains to understand

the action of the absolute π1 on the relative π1 in the sequence displayed above. To
the best of our current knowledge this does not seem to have been done previously,
and guided by our classification using self-intersection invariants of homotopy
tracks we proceed as follows: Firstly, we use the fibration sequence

Map∗(S
2, N )→ Map(S2, N )→ N

to obtain exactness in the column of the following diagram, where the first map is
the inclusion i and the second map evaluates at the basepoint e ∈ S2:

π3 N ∼= π1(Map∗(S
2, N ),U∗)

π1(Map(S2, N ),U ) π1(Map(S2, N ),Emb(S2, N ),U ) A

Stab[U∗]

i

j

eve

Dax
∼=

By definition the composite Dax ◦ j ◦ i sends β ∈ π3 N to Dax(A) where A is a
loop in Map∗(S

2, N ), based at U . We will see that this precisely agrees with φ[U∗]

from (1.4).
Moreover, we will see that the induced action of s ∈ Stab[U∗] on the quotient

of A by Dax ◦ j ◦ i(π3 N ) sends a = Dax(H) to

(1.15) Dax(Js)+ sas−1,

where Js is a free self-homotopy of U∗ such that eve(Js)= s, i.e., the projection of
Js(e,−) to N represents s. This action is precisely (aff), so we recover

p−1
[U ] ∼= AU∗

as in Theorem 1.11, except that instead of fqU∗
this map is now naturally called

Dax. This will be stated as Theorem 4.7.

Remark 1.16. Using the analogous fibration sequence

Emb∗(S2, N )→ Emb(S2, N )→ N ,

we show in [Kosanović et al. ≥ 2024] that there is an isomorphism

i rel
:π1(Map∗(S

2,N ),Emb∗(S2,N ),U∗) π1(Map(S2,N ),Emb(S2,N ),U ).
∼=

In Theorem 4.6 we will show that Dax ◦ i rel
◦ j∗ = φ[U∗] precisely gives the in-

determinacy for the based setting: p−1
∗

[U∗]
∼= A/φ[U∗](π3 N ), as in Theorem 1.7.

Moreover, this shows that Dax ◦ i rel
◦ j∗ = Dax ◦ j ◦ i . Therefore, similarly to our
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first approach, in this approach we see: a linear action for the based setting (just the
quotient by the image of φ[U∗]), and an affine action for the free setting (the further
quotient by the action (aff)).

2. Intersection invariants and homotopies

2.1. 3-manifolds in 6-manifolds. Recall that for a smooth oriented 6-manifold P6,
the intersection and self-intersection invariants give maps

λ3 : π3 P ×π3 P → Zπ1 P and µ3 : π3 P → Zπ1 P/⟨g + g−1, 1⟩.

To compute λ3 geometrically, start by representing the two homotopy classes by
transverse based maps S3

→ P , and then count each intersection point p with a
sign ϵp determined by orientations and a group element gp ∈ π1 P represented by
a sheet-changing loop through p. Here a based map is equipped with a whisker,
which is an arc running between a basepoint on the image of the map and the
basepoint of the ambient manifold P . Note that by general position a map of a
manifold of codimension > 1 is ambient isotopic to a map whose basepoint is equal
to the basepoint of the ambient manifold.

Similarly, for µ3 one represents the homotopy class by a generic map A : S3 ↬ P
and counts self-intersections, again with signs and group elements. In this dimension,
switching the ordering of sheets at a double point p changes εp to −εp, and changes
gp to g−1

p , explaining the relation g+g−1
= 0 in the range of µ3. The relation 1 = 0

makes µ3(A) only depend on the homotopy class of A, since a cusp homotopy
introduces a double point with arbitrary sign and trivial group element. Changing
the whisker on A changes µ3(A) by a conjugation, with the corresponding group
element represented by the difference of the whiskers. The argument for homotopy
invariance of µ3 arises from considering the double-point arcs and circles of the
track of a generic homotopy S3

× I ↬ P6
× I of A.

Using the involution ḡ := g−1 on Zπ1 P , the “quadratic form” (λ3, µ3) satisfies

(2.1)
µ3(A + B)= µ3(A)+µ3(B)+ [λ3(A, B)],

λ3(A, A)= µ3(A)−µ3(A) ∈ Zπ1 P,

where the second formula has no content for the coefficient at the trivial element in
π1 P: Since λ3 is skew-hermitian, it vanishes on the left-hand side, whereas it is
automatically zero on the right-hand side that is defined by picking a representative
of µ3(A) ∈ Zπ1 P and then applying the involution to that specific choice. We will
be interested in the case that P = N × I is the product of a 5-manifold N with an
interval I , and we denote the target of µ3 by

A :=
Zπ1 N

⟨g + g−1, 1⟩

∼=
Zπ1 P

⟨g + g−1, 1⟩
.
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2.2. The self-intersection invariant for homotopies of 2-spheres in 5-manifolds.
The above descriptions of λ3 andµ3 can also be applied to properly immersed simply
connected 3-manifolds with boundary in a 6-manifold. In this setting the invariants
are computed just as above, by summing signed double point group elements,
and are invariant under homotopies that restrict to isotopies on the boundary. For
a smooth oriented 5-manifold N , and any homotopy H : S2

× I → N between
embedded spheres, we define the self-intersection invariant

(2.2) µ3(H) ∈ A

to be the self-intersection invariant of a generic track S2
× I ↬ N × I for H . We

will sometimes use the same letter H to denote either the homotopy or its track
when the context is clear.

The “time” parameter (the I -factor) of a homotopy will generally be the unit
interval I = [0, 1], although it will be frequently suppressed from notation or
reparametrized without mention.

For the purpose of computing the self-intersection invariant µ3(H), the whisker
on the track of H will be taken at the “start” H(S2

× 0) ⊂ N × 0 ⊂ N × I
of the homotopy unless explicitly stated otherwise. So for a homotopy H from
U∗ : S2 ↪→ N to an embedding, the whisker for U∗ will generally be used to
compute µ3(H).

Note that choosing a whisker on the track of a homotopy to provide a “basing”
for the purposes of computing an intersection invariant is different than saying
that the homotopy is a “based homotopy”, which is “a homotopy through based
maps”.

2.3. Geometric action of A. For g ∈π1 N and U∗ : S2 ↪→N , we define g·U∗ : S2 ↪→N
as follows, see Figure 2.3 for several examples. Firstly, note that the normal bundle
of U∗ is 3-dimensional, so its meridian m F is a 2-sphere; we choose it over a point
near the basepoint z := U∗(e) and orient it according to the orientations of S2 and N .
We then define g · U∗ as an ambient connected sum of U∗ with m F along a tube
following an arc representing g, where the arc starts and ends near z and has interior
disjoint from U∗. This is well defined up to isotopy since removing a neighborhood
of U∗ does not change the fundamental group and “homotopy implies isotopy” for
arcs in this dimension.

Similarly, (−g) ·U∗ is defined to be the connected sum of U∗ with the oppositely
oriented meridian sphere −m F . Linear combinations

∑
i ni gi act by multiple

connected sums along gi into copies of m F for ni > 0 respectively −m F for ni < 0.
It is not hard to check that the relations g + g−1

= 0 = 1 carry over to isotopies of
these connected sums, see Figure 2.3. Therefore, we have an action of A on the set
π0 Emb∗(S2, N ).
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Figure 2.3. The relations g = −g−1 and 1 = 0 realized by isotopies.

Since each meridian sphere m F bounds a normal 3-ball that intersects U∗ exactly
once, we get the following result.

Lemma 2.4. For any a ∈ A, shrinking the meridian spheres along their 3-balls
gives a based homotopy Ha from a · U∗ to U∗ with µ3(Ha)= a. □

2.4. The level-preserving Whitney move.

Proposition 2.5. The track H : S2
× I → N 5

× I of a homotopy between two
embeddings is homotopic (rel boundary) to the track of an isotopy if and only if its
self-intersection invariant µ3(H) ∈ A vanishes.

It will follow from the proof that if the original homotopy is a based homotopy,
then the resulting isotopy can be taken to be based. In fact, the construction given
in the proof can be taken to be supported away from any I -family of whiskers.

We remark that since the classical Whitney move works for immersed 3-manifolds
in 6-manifolds [Milnor 1965, Theorem 6.6], the vanishing of µ3(H) ∈ A imme-
diately implies that the track S2

× I ↬ N × I is homotopic (rel boundary) to a
concordance, so Proposition 2.5 would then follow from Hudson’s theorem that
concordance implies isotopy in codimensions ≥ 3 [Hudson 1970]. Rather than
invoking Hudson’s result, our proof of Proposition 2.5 will show that one can
arrange for the Whitney moves to preserve I -levels in order to directly achieve an
isotopy rather than just a concordance.

Proof of Proposition 2.5. The “only if” direction is clear since µ3 is invariant under
homotopy and vanishes on embeddings.

To prove the “if” direction, we first introduce some streamlined notation that will
only be used in the proof of Proposition 2.5, including the ancillary Lemma 2.6.

Notation. For any subset σ ⊂ I , denote by Hσ := H |S2×σ the restriction to S2
×σ of

the track H : S2
×I → N×I . By the standard abuse of the notation, Hσ := H(S2

×σ)

is also the image of this map, and is contained in the subset Nσ := N ×σ ⊂ N × I .
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Lemma 2.6. For H as in Proposition 2.5 with µ3(H)= 0 ∈ A, it may be arranged
by a homotopy rel ∂ that there exist finitely many distinct points ci ∈ I such that the
transverse self-intersections of H occur in pairs {pi , qi } ⊂ Hci with gpi = gqi and
ϵpi = −ϵqi for each i .

Assuming Lemma 2.6 (which will be proved just below), Proposition 2.5 follows
by a standard application of Whitney moves to eliminate each of the self-intersection
pairs of Lemma 2.6 in a way that yields the track of an isotopy. We describe details
here for completeness, with the key observation being that each Whitney disk can
be chosen to be contained in a level.

Dropping the subscript i from the notation, let p and q be a pair of self-
intersections of Hc as in Lemma 2.6. Since Hc is a map of a 2-sphere S2

× c,
the self-intersections p and q are not transverse for Hc, but there exists some small
δ > 0 such that {p, q} = H[c−δ,c+δ] ⋔ H[c−δ,c+δ], the transverse self-intersections
of the immersed 3-manifold H[c−δ,c+δ] in the 6-manifold N[c−δ,c+δ].

Since p and q have the same group elements gp = gq and opposite signs ϵp =−ϵq ,
there exists a Whitney disk W ⊂ N[c−δ,c+δ] pairing p and q. By general position
we may assume that W is embedded in the 5-dimensional slice Nc ⊂ N[c−δ,c+δ]

with interior disjoint from Hc. The Whitney disk boundary ∂W = α ∪ β is the
union of embedded arcs α and β contained in Hc, with α∩β = {p, q}. Let ᾱ and β̄
be slightly longer arcs in Hc containing α and β, respectively, such that ᾱ and β̄
extend just beyond p and q .

Let A, B ⊂ H[c−δ,c+δ] denote regular 3-ball neighborhoods of ᾱ and β̄ in
H[c−δ,c+δ]. Each of A and B is “the image of a local sheet of a 2-sphere Ht

moving in time”, with At and Bt each embedded in Ht for t ∈ [c − δ, c + δ], and
A ∩ B = {p, q}. It follows that A : D2

× I ↪→ N × I is the track of an isotopy At ,
and similarly for B.

The Whitney move that eliminates p and q will be described using a particular
choice of coordinates for an open neighborhood V ⊂ N[c−δ,c+δ] containing W .

By [Milnor 1965, Lemma 6.7], the neighborhood V may be chosen to be diffeo-
morphic to W × R2

A × R2
B , where:

• W ⊂ Nc is a smooth 2-disk formed from W by attaching a half-open collar to ∂W .

• V ∩ A = ᾱ× R2
A × (0, 0) and V ∩ B = β̄ × (0, 0)× R2

B .

Let ᾱ(s) be a smooth isotopy of the arc ᾱ in W , for 0 ≤ s ≤ 1, such that ᾱ(0)= ᾱ,
and ᾱ(1) passes just above β ⊂ β̄ as in Figure 2.7. In particular, ᾱ(s) is supported
near W ⊂ W for all 0 ≤ s ≤ 1, and ᾱ(1) is disjoint from B.

Let ρ : R2
→ [0, 1] be a smooth bump function (u, v) 7→ ρ(u, v) such that

• ρ(u, v)= 1 if
√

u2 + v2 ≤ 1,

• ρ(u, v)= 0 if
√

u2 + v2 ≥ 2.
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Figure 2.7. A smooth isotopy of the arc ᾱ in W .

Now we use ᾱ(s) and ρ to define the Whitney move as the result of an isotopy
A(s), 0 ≤ s ≤ 1 of A which fixes B, where (a1, a2) runs through R2

A:

A(s)= ᾱ(sρ(a1, a2))× (a1, a2)× (0, 0)⊂ W × R2
A × R2

B,

Then A(0)= A, and the result of the W -Whitney move on A is A′
:= A(1), so that

A′
∩ B = ∅.
Note that A(s)= A near ∂V , and hence we can extend A(s) to be the identity

outside V . This defines a homotopy H(s) of H = H(0) such that H ′
:= H(1)

satisfies H ′ ⋔ H ′
= (H ⋔ H)− {p, q}.

By construction A(s) only moves points of A along the W -factor, which is
orthogonal to the I -factor of N × I since W ⊂ Nc. This means that for each s,
A(s) consists of the track of an isotopy At(s), and similarly for B(s).

Performing Whitney moves on all the self-intersection pairs of Lemma 2.6 yields
the track of an isotopy as desired. □

Proof of Lemma 2.6. The condition µ3 H = 0 ∈ A means that the (finite) set
of transverse self-intersections of the generic track H : S2

× I ↬ N × I can be
decomposed into finitely many pairs {pi , qi } with gpi = gqi and ϵpi = −ϵqi (for
appropriately chosen sheets, and after perhaps performing a single cusp homotopy
on H ).

Suppose, for some i we have pi ∈ Ht1 ∩Ht1 ⊂ H ⋔ H and qi ∈ Ht2 ∩Ht2 ⊂ H ⋔ H ,
with t1 < t2. We will describe how to change H by an isotopy rel boundary which
“moves” qi to q ′

i ∈ Ht1 ∩ Ht1 and is supported away from all other self-intersections
of H . The construction will show more generally that self-intersections of H can be
arranged to occur at any chosen times, while preserving signs and group elements.

Special case. Consider the special case that H has just a single pair {p, q}= H ⋔ H
of self-intersections with p ∈ Ht1 ∩ Ht1 and q ∈ Ht2 ∩ Ht2 , and with 0< t1 < t2 < 1
in I = [0, 1]. Suppose that (x, t2) and (y, t2) are the two distinct preimages in
S2

×t2 ⊂ S2
×I of q = Ht2((x, t2))= Ht2((y, t2)). Define vertical arcs a := x×[t1, t2]

and b := y × [t1, t2] in the domain S2
× I (see Figure 2.8, left).

For 0 ≤ s ≤ 1 we will define smooth isotopies ψs : S2
× I → S2

× I supported near
a ∪b and projecting to the identity on S2 such that the smooth family of homotopies
H ◦ψs satisfies H = H ◦ψ0 and (H ◦ψ1) ⋔ (H ◦ψ1)= {p, q ′

} ⊂ (H ◦ψ1)t1 .
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Figure 2.8. Schematic pictures in the domain S2
× I , with the

I -factor running vertically from bottom to top. Left: the vertical
arcs a and b, and a horizontal subarc of S2

× t1. Right: images
of the subarc of S2

× t1 containing the nested disks dx ⊂ Dx and
dy ⊂ Dy under the isotopy ψs for s = 0, s = 1, and for two other
intermediate values of s.
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0

1

0
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Figure 2.9. A schematic picture of the images under ψ1 of some
horizontal slices of S2

× I .

First we define ψs on S2
× t1 as the sum of two local bump functions of height

s(t2 − t1) in the positive I -direction centered at (x, t1) and (y, t1) (see Figure 2.8,
right). More specifically, let x ∈ dx ⊂ Dx ⊂ S2 and y ∈ dy ⊂ Dy ⊂ S2 be small
concentric pairs of nested disks around x and y, respectively. Then

ψs(z, t1)=


(z, t1) if z /∈ Dx ∪ Dy,

(z, t1 + s(t2 − t1)) if z ∈ dx ∪ dy,

(z, t1 + sig(z) s(t2 − t1)) if z ∈ (Dx \ int(dx))∪ (Dy \ int(dy)).

Here the sigmoid function sig(z) smoothly interpolates between sig(z) = 0 for
z ∈ ∂Dx ∪ ∂Dy and sig(z)= 1 for z ∈ ∂dx ∪ ∂dy .

Now extend ψs to all of S2
× I by tapering the bump functions down to zero as t

moves away from t1, so that ψs(z, 0)= (z, 0) and ψs(z, 1)= (z, 1) for all s. See
Figure 2.9 for an illustration of the extended ψ1 : S2

× I → S2
× I .

Next we check that H ′
:= H ◦ψ1 has the desired properties. Observe that sinceψs

restricts to the identity map on the complement of (Dx ∪ Dy)× I , we have H ′
= H

when restricted to (S2
\ (Dx ∪ Dy))× I . In particular, H ′((S2

\ (Dx ∪ Dy))× I )
has only the single transverse self-intersection point p ∈ H ⋔ H which occurs at t1.
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Now consider the restriction of H ′ to (Dx ∪ Dy)× I . We have that by con-
struction, H ′((Dx ∪ Dy)× I ) has just the single transverse self-intersection such
that q ′

= H ′(dx , t1) ∩ H ′(dy, t1), which is the image of the projection to Nt1 of
q ∈ H ⋔ H .

Now it remains to check that there are no transverse intersections between
H ′((Dx ∪ Dy)× I ) and H ′((S2

\ (Dx ∪ Dy))× I ). For each t ∈ I , suppose that
projt : N×I → Nt is the projection map. By general position, for each t ∈ I the image
projt ◦H(a ∪ b)⊂ Nt is an embedded arc γt . Since the image H ′((Dx ∪ Dy)× I )
in the 6-manifold N × I can be arranged to be contained in an arbitrarily small
neighborhood of the 2-dimensional union ∪t∈I γt , it follows by general position
that H ′((Dx ∪ Dy)× I ) has no transverse intersections with the 3-dimensional
H ′((S2

\ (Dx ∪ Dy))× I ).

General case. Since by general position any number of self-intersections can be
assumed to have preimages projecting to distinct points in S2, the above construction
moving q ∈ Ht2 ∩ Ht2 to q ′

∈ H ′
t1 ∩ H ′

t1 for t1 < t2 can be carried out iteratively (or
even simultaneously) for any chosen subset of self-intersections while fixing the
complementary subset. □

2.5. Based self-homotopies. Recall from Section 1.2 of the introduction that, for
a fixed based embedding U∗ : S2 ↪→ N , we denote by A[U∗] the quotient of A

by the image of the indeterminacy homomorphism φ[U∗] : π3 N → A defined by
A 7→ µ3(A)+ [λN (A, [U∗])].

The following lemma will be used to show that our invariants are well defined.

Lemma 2.10. If J∗ : S2
× I ↬ N × I is a generic track of a based self-homotopy

of U∗, then
µ3(J∗)= 0 ∈ A[U∗].

Proof. Since J∗ is a based self-homotopy, it agrees with U∗ × I on the 2-skeleton
S2

× {0, 1} ∪ e × I of S2
× I , with e ∈ S2 the basepoint. So they only differ on

the 3-cell, where U∗ × I is represented by BU := U∗(D2) × I (here D2 is the
complement in S2 of a small disk around e) and J∗ is represented by a generic
3-ball BJ : D3 ↬ (N × I )∖ν(U∗(e)× I ). By construction, the boundaries of these
two 3-balls are parallel copies of an embedded 2-sphere in the boundary of a small
neighborhood of U∗ × {0, 1} ∪ (U∗(e)× I ).

Gluing BU and BJ together along a small embedded cylinder S2
× I between

their boundaries yields a map of a 3-sphere A := BJ ∪ (−BU ) : S3
→ N × I .

To prove the lemma we will show that µ3(J∗)= φ[U∗](A).
First note that on one hand, all contributions to µ3(J∗) come from the self-

intersections of the immersed 3-ball BJ . On the other hand, contributions to µ3(A)
come from the self-intersections of BJ and the intersections between BJ and
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the embedded 3-ball −BU . The latter intersections are precisely counted by
−λ3(J∗,U∗ × I ), see (2.1). Therefore,

µ3(J∗)−µ3(A)= λ3(J∗,U∗ × I ),

and since λN (A,U∗)= λ3(A,U∗ × I )= λ3(J∗,U∗ × I ), we obtain

µ3(J∗)= µ3(A)+ λN (A,U∗)= φ[U∗](A). □

2.6. From homotopy to isotopy by adding 3-spheres. The following lemma will
be used to show that our invariants are injective.

Lemma 2.11. Suppose H : S2
× I ↬ N × I is a generic track of a homotopy

between embeddings R : S2 ↪→ N and R′
: S2 ↪→ N such that the homotopy restricts

to an embedding U : S2 ↪→ N for some point t0 ∈ I . Then R is isotopic to R′ if
µ3(H)= 0 ∈ A[U∗]. Moreover, if H is a based homotopy, then the resulting isotopy
may be taken to be based.

Proof. Since µ3(H)= 0 ∈ A[U∗], there exists A ∈ π3 N such that µ3(H)= φ[U∗](A).
By using a small ambient isotopy we may assume that H restricts to a product
U ×[t0 − ϵ, t0 + ϵ] on a small interval around t0. Represent A by a generic regular
homotopy ft : S2

× [t0 − ϵ, t0 + ϵ] → N from a local trivial sphere ft0−ϵ = ft0+ϵ

in N to itself via the isomorphism π3 N ∼= π1(Map∗(S
2, N )). Taking a smooth

family of ambient connected sums of ft with U × t ⊂ U × [t0 − ϵ, t0 + ϵ] yields
a self-homotopy J A of U . We can assume the guiding paths for these connected
sums have interiors disjoint from every ft and U × t , so that µ3(J A)= φ[U∗](A).
Reversing the t-parameter of J A yields the track −J A of a self-homotopy of U
with µ3(−J A)= −φ[U∗](A).

Now, deleting H ×[t0−ϵ, t0+ϵ] from H × I and gluing in −J A yields a based ho-
motopy H 0 between R and R′ with µ3(H 0)= 0 ∈ A. It follows from Proposition 2.5
that H 0 is homotopic rel boundary to an isotopy R between R′. If H is a based
homotopy, then this resulting isotopy inherits the extended whiskers from H . □

3. Homotopy versus isotopy

In Section 3.1 we recall the statement of Theorem 1.7 describing the based setting,
and give a proof. In Section 3.2 we clarify and prove Theorem 1.11, describing the
free setting.

Our convention is to write concatenations of homotopies as unions from left
to right, with a minus sign indicating that the orientation of the I -factor has been
reversed. Recall (Section 2.2) that for the purposes of computing the self-intersection
invariant µ3(H) of a homotopy H the whisker on the track of H will be assumed
to be taken at the “start” H(S2

× 0)⊂ N × 0 ⊂ N × I unless otherwise explicitly
specified.
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3.1. The based setting. Theorem 1.7 states that for a fixed based embedding U∗ :

S2 ↪→ N 5 the map

p−1
∗

[U∗] → A[U∗], R∗ 7→ fq[U∗]
(R∗) := [µ3(H∗)]

for H∗ any based homotopy from U∗ to R∗, is a bijection.
Here we have p−1

∗
[U∗] the set of based isotopy classes of embedded spheres

R∗ : S2 ↪→ N 5 that are based homotopic to U∗. Moreover, the group A[U∗] is the quo-
tient of A := Zπ1 N/⟨g +g−1, 1⟩ by the image of the indeterminacy homomorphism
φ[U∗] : π3 N → A defined by

A 7→ µ3(A)+ [λN (A, [U∗])].

fq[U∗]
is well defined. It suffices to show that fq[U∗]

(R∗) ∈ A[U∗] is independent of
the choice of H∗.

Taking the union along R∗ of any two based homotopies H∗, H ′
∗

from U∗ to R∗

gives a based self-homotopy J∗ = H∗ ∪R∗
−H ′

∗
of U∗ such that

µ3(J∗)= µ3(H∗ ∪R∗
−H ′

∗
)= µ3(H∗)−µ3(H ′

∗
),

where we are using that µ3 is additive under concatenations of based homotopies
and changes sign under reversing the orientation of the time parameter. Sinceµ3(J∗)

lies in the image of φ[U∗] by Lemma 2.10, we have [µ3(H∗)] = [µ3(H ′
∗
)] ∈ A[U∗].

fq[U∗]
is injective. If fq[U∗]

(R∗)= fq[U∗]
(R′

∗
), then there exist based homotopies H∗

and H ′
∗

from U∗ to R∗ and R′
∗
, such that µ3(H∗) = µ3(H ′

∗
) ∈ A[U∗]. Taking the

union of these homotopies along U∗ gives a based homotopy H ′′
∗

:= H∗ ∪U∗
−H ′

∗

from R∗ to R′
∗

with µ3(H ′′
∗
) = µ3(H∗)− µ3(H ′

∗
) = 0 ∈ A[U∗]. It follows from

Lemma 2.11 that R∗ is based isotopic to R′
∗
.

fq[U∗]
is surjective. Surjectivity follows directly from Lemma 2.4.

3.2. The free setting. This section clarifies the target of the invariants in the free
setting, and proves Theorem 1.11, which we recall here for the reader’s convenience:
For U∗ a fixed basing of an embedding U : S2 ↪→ N 5, the map

p−1
[U ] → AU∗

, R 7→ fqU∗
(R) := [µ3(H)],

where H is any free homotopy from U to R, is a bijection.
Here p−1

[U ] is the set of isotopy classes of embedded spheres R : S2 ↪→ N 5

that are freely homotopic to U . Moreover, the group AU∗
is the quotient set of the

based target A[U∗] of Theorem 1.7 by the affine action of Stab[U∗]< π1 N given by
sa = Us +sas−1 for all a ∈ A[U∗] and s ∈ Stab[U∗], with the definition of Us ∈ A[U∗]

given just after Lemma 3.1 in the next subsection.
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The affine action of Stab[U∗] on A[U∗]. For each s ∈ Stab[U∗] there is a track

Js : S2
× I → N × I

of a free self-homotopy of U∗ such that the projection of Js(e,−) represents s,
where the basepoint e ∈ S2 is the preimage of the basepoint of U∗. For instance,
such a Js can be taken to be a (level-preserving) subset of the track of any based
homotopy between s ·U∗ and U∗. We say that Js represents s ∈ Stab[U∗], and call s
the core of Js , frequently using the subscript notation to indicate this representation.

Note the following three properties of core elements:

(1) Any self-homotopy whose core is the trivial element of π1 N is homotopic rel
boundary to a based self-homotopy.

(2) Concatenating self-homotopies multiplies the core elements: Jsr = Js ∪ Jr .

(3) Reversing a self-homotopy inverts its core: −Js = Js−1 .

It follows from these three properties that given two free self-homotopies Js and
J ′

s of U∗ representing the same element s ∈ Stab[U∗], we can form a based self-
homotopy J1 = Jss−1 := Js ∪−J ′

s of U∗ representing the trivial element 1 ∈ Stab[U∗],
with µ3(J1)= µ3(Js)−µ3(J ′

s). Together with Lemma 2.10 we immediately get:

Lemma 3.1. If Js and J ′
s are two free self-homotopies of U∗ representing the same

element s ∈ Stab[U∗], then µ3(Js)−µ3(J ′
s)= 0 ∈ A[U∗]. □

As a result of Lemma 3.1, the element

Us := [µ3(Js)] ∈ A[U∗]

is well defined, and hence so is the affine action sa := Us + sas−1 of Stab[U∗]

on A[U∗]. This clarifies Definition 1.10 of the target of the free isotopy invariant
fqU∗

∈ AU∗
as the quotient set of the based isotopy target fq[U∗]

∈ A[U∗] under this
action.

The following lemma illustrates how the affine action describes the effect of free
self-homotopies on the self-intersection invariant.

Lemma 3.2. If H is a homotopy from U∗ to an embedding R, and Js is a free
self-homotopy of U∗ representing s ∈ Stab[U∗], then the free homotopy Js ∪ H from
U to R satisfies

µ3(Js ∪ H)= µ3(Js)+ sµ3(H) s−1
∈ A[U∗].

Proof. It is clear that each double point of the track of Js ∪ H is either a double
point of Js or H . By our convention, the computation of µ3(Js ∪ H) uses the
whisker for U∗ at the start of Js . Thus, double point loops of H get conjugated by
representatives of s while traversing Js , so all the double-point group elements of
µ3(H) get conjugated by s. □
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fqU∗
is well defined. It suffices to show that fqU∗

(R)=[µ3(H)]∈AU∗
is independent

of the choice of H . For H and H ′ two choices of free homotopies from U∗ to
R, the concatenation Js := H ∪ −H ′ is a self-homotopy of U∗ representing some
s ∈ Stab[U∗], and by Lemma 3.2 we have

µ3(Js)= µ3(H)− sµ3(H ′) s−1
∈ A.

So
µ3(H)= µ3(Js)+ sµ3(H ′) s−1

=
s(µ3(H ′)) ∈ A[U∗],

which implies [µ3(H)] = [µ3(H ′)] ∈ AU∗
, and hence fqU∗

(R) is well defined.

fqU∗
is injective. If fqU∗

(R) = fqU∗
(R′), then by the definition of the target AU∗

there exist homotopies H and H ′ from U∗ to R and R′, respectively, such that

µ3(H ′)= Us + sµ3(H) s−1
∈ A[U∗]

for some s ∈ Stab[U∗].
Consider the homotopy H ′′

:= −H ′
∪ Js ∪ H from R′ to R, where Js is any

self-homotopy of U∗ representing s. Using the whisker on U∗ in −H ′
∩ Js ⊂ H ′′

we have the following computation in A[U∗]:

µ3(H ′′)= µ3(−H ′)+µ3(Js)+ sµ3(H) s−1

= −µ3(H ′)+ Us + sµ3(H) s−1

= −(Us + sµ3(H) s−1)+ Us + sµ3(H) s−1

= 0.

It follows from Lemma 2.11 that R is isotopic to R′.

fqU∗
is surjective. Surjectivity follows directly from Lemma 2.4.

3.3. Examples. Recall that Corollary 1.12 states that free isotopy classes of null-
homotopic 2-spheres in N are in bijection with AU∗

= A[U∗]/π1 N , where the action
is by conjugation.

Here we examine some examples of free isotopy classes of essential 2-spheres:

Example. Consider U∗ = S2
× {p} ⊂ N = S2

× M3.
Then Us = 0 for all s ∈ Stab[U∗] = π1 N , because any self-homotopy Js can

be chosen to be a self-isotopy which moves p around a loop representing s while
fixing the S2-factor.

So the affine action has trivial translations (see Section 1.3) and free isotopy
classes of spheres homotopic to U∗ are in bijection with AU∗

= A[U∗]/π1 M (with
conjugation action).

Example. Consider again U∗ = S2
× {p} ⊂ N = S2

× M3.
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Assume [g, h] ̸= 1 ∈ π1 M ∼= π1 N . If U g
∗ is the result of doing a g-finger move

on U∗, then U g
s = g − sgs−1 for each s ∈ Stab[U g

∗ ] = π1 N . Here U g
s = µ3(Js)

where Js is a self-homotopy of U g
∗ that undoes the g-finger move, then moves p

around a loop representing s while fixing S2, and then redoes the g-finger move. In
particular,

U g
h = g − hgh−1

̸= 0 ∈ A[U g
∗ ] = A[U∗]

if π3 M = 0. (To see that A[U g
∗ ] = A[U∗] if π3 M = 0, observe that any representative

of a generator of π3(S2
×M)∼=π3S2 is homotopic to a generic immersion contained

in the product of S2 with a 3-ball, and hence has only double points with trivial
group element, implying that µ3 vanishes.)

So in this case the affine action ha = (g − hgh−1)+ hah−1 defining AU g
∗

as
a quotient of A[U g

∗ ] = A[U∗] has nontrivial translations, illustrating how the target
of the free isotopy invariant depends in general on the isotopy class of the fixed
embedding, and not just on its homotopy class.

This suggests the following questions: When does a homotopy class of 2-spheres
in N contain an isotopy class such that the corresponding affine action has trivial
translations? Are stabilizers of elements of π2 N always represented by some
embedded S2

× S1
⊂ N × S1?

4. A space level approach following Dax

In this section we reprove our two main results, Theorems 1.7 and 1.11, using a
space level approach given in [Dax 1972] and [Kosanović et al. ≥ 2024].

4.1. The relative homotopy group. Following [Kosanović and Teichner 2024b]
and [Dax 1972], we compute in [Kosanović et al. ≥ 2024] the relative homotopy
group πd−2ℓ(Map(V, X),Emb(V, X),U ) for any ℓ-manifold V and d-manifold X ,
and a fixed embedding U : V ↪→ X taken as the basepoint. In our case of interest,
V = S2 and X = N of dimension d = 5, the relevant result is as follows.

Theorem 4.1 [Kosanović et al. ≥ 2024]. Let N be an oriented connected 5-manifold
and U∗ : S2 ↪→ N a smooth based embedding. Then there are bijections

Dax : π1(Map∗(S
2, N ),Emb∗(S2, N ),U∗)

π1(Map(S2, N ),Emb(S2, N ),U )

A

i rel∼=

∼=

given on a class [H ] as the sum over double points of the associated group elements
of the track of H : I → Map(S2, N ), defined by I ×S2

→ I ×N , (t, v) 7→ (t, Ht(v)).
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In other words, Dax([H ]) = µ3(H) is precisely the self-intersection invariant
from (2.2).

Remark 4.2. Using Lemma 2.4 one can define an explicit inverse of Dax. This is
completely analogous to the realization map r in [Kosanović and Teichner 2024b;
Kosanović et al. ≥ 2024].

Our main square from Section 1.1 extends to a commutative diagram:

(4.3)

π1(Map∗(S
2, N ),U∗) π1(Map(S2, N ),U )

π1(Map∗,Emb∗,U∗) π1(Map,Emb,U )

π0 Emb∗(S2, N ) π0 Emb(S2, N )

π0 Map∗(S
2, N ) π0 Map(S2, N )

i

j∗ j

i rel

p∗ p

The left column is the final part of the long exact sequence of the pair in the based
case,

(Map∗,Emb∗) := (Map∗(S
2, N ),Emb∗(S2, N )),

whereas the right column is from the long exact sequence of the pair in the corre-
sponding free case.

We use the following standard facts about homotopy groups of mapping spaces,
see [Kosanović et al. ≥ 2024] for details.

Lemma 4.4. There are isomorphisms

πk(Map∗(S
2, N ),U∗)→ πk+2(N )

for k ≥ 0, and a bijection

π0 Map(S2, N )∼= π2 N/{α− gα}

for the usual action of g ∈ π1 N on α ∈ π2 N. For any β ∈ Map∗(S
2, N ) there is an

exact sequence

π3 N ∼= π1(Map∗(S
2, N ), β) π1(Map(S2, N ), β) Stabβ,i eve

where
Stabβ := {g ∈ π1 N : gβ = β ∈ π2 N },

and eve is induced by the map Map(S2, N )→ N given by f 7→ f (e).
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Combining (4.3) and Lemma 4.4 with Theorem 4.1, and denoting by [U∗] the
class of U∗ in π3 N ∼= π1 Map∗(S

2, N ), we have the commutative diagram:

(4.5)

π3 N π1(Map(S2, N ),U ) Stab[U∗]

π1(Map∗,Emb∗,U∗) π1(Map,Emb,U ) A

π0 Emb∗(S2, N ) π0 Emb(S2, N )

π2 N π0 Map(S2, N )

j∗

i

j

eve

i rel

∼=

Dax
∼=

p∗
p

which will imply desired results, as explained next.

4.2. The proofs. The following recovers Theorem 1.7.

Theorem 4.6. There is a short exact sequence of sets

A/(Dax ◦ i rel
◦ j∗(π3 N )) π0 Emb∗(S2, N ) π0 Map∗(S

2, N )∼= π2 N
p∗

and Dax ◦ i rel
◦ j∗ = φ[U∗] from (1.4) of Section 1.2.

Proof. From diagram (4.5) we have ker(p∗)= coker( j∗)∼= coker(Dax◦ i rel
◦ j∗), so

it only remains to identify the last homomorphism. And indeed, for a class A ∈π3 N
the element j∗(A) : I → Map∗ is a self-homotopy of U that represents A and
Dax( j∗(A))=µ3( j∗(A)) by definition. Now, arguing as in the proof of Lemma 2.10
we see that the track of j∗(A) has µ3( j∗(A)) = µ3(A) + λN (A,U∗), therefore
Dax ◦ i rel

◦ j∗(A)= φ[U∗](A) as desired. □

Similarly, the following recovers Theorem 1.11.

Theorem 4.7. There is a short exact sequence of sets(
A/(φ[U∗](π3 N ))

)
s 7→sa π0 Emb(S2, N ) π0 Map(S2, N ),

p

where on the left we take the quotient by the action s 7→
sa of Stab[U∗] from (aff)

of Section 1.3.

Proof. From diagram (4.5) we have ker(p)= coker( j)∼= coker(Dax◦ j). Using the
leftmost column we can compute coker(Dax ◦ j) in two steps:

(1) First take the cokernel of Dax ◦ j ◦ i .

(2) Then mod out the induced action of Stab[U∗], using any section of eve.
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Note that the action in (2) is well defined, and the set of coinvariants is independent
of the section, since in coker( j ◦ i) we have modded out ker(eve).

For (1), we simply note that Dax ◦ j ◦ i = Dax ◦ i rel
◦ j∗ by the commutativity of

the leftmost square in (4.5), and this is equal to φ[U∗] by Theorem 4.6.
For (2), to compute the action, we pick any section; by definition, this sends

s ∈ Stab[U∗] to any
Js ∈ π1(Map(S2, N ),U ),

which we view as a free self-homotopy of U∗, for which eve(Js)= Js(−, e) repre-
sents s.

Then s ∈ Stab[U∗] acts by sending a = Dax(H) to Dax(Js ∪ H). Since we have
Dax(Js ∪ H) = Dax(Js)+ sDax(H) s−1 by Lemma 3.2 (where µ3 notation was
used in place of Dax), we see that the action of s on a is given as claimed by

Dax(Js)+ sas−1
= µ3(Js)+ sas−1

=
sa. □
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A NEW CONVERGENCE THEOREM
FOR MEAN CURVATURE FLOW OF HYPERSURFACES

IN QUATERNIONIC PROJECTIVE SPACES

SHIYANG LI, HONGWEI XU AND ENTAO ZHAO

We investigate the smooth convergence of the mean curvature flow of hy-
persurfaces in the quaternionic projective spaces. We prove that if the
initial hypersurface satisfies a new nonlinear curvature pinching condition,
then the mean curvature flow converges smoothly to a round point in finite
time. Our result improves a smooth convergence theorem due to Pipoli
and Sinestrari (2017).

1. Introduction

There are many famous geometric evolution equations, such as the Ricci flow,
the mean curvature flow and others. Huisken [9] studied the mean curvature flow
from the perspective of partial differential equations, and he proved that convex
hypersurface in the Euclidean space converges to a round point along the flow.
Afterwards, Huisken [10; 11] obtained convergence results for mean curvature flow
of convex hypersurfaces in Riemannian manifolds and pinched hypersurfaces in
spheres. Following the argument of Huisken [9], Andrews and Baker [1] proved a
convergence theorem for the mean curvature flow of closed submanifolds satisfying
a suitable pinching condition in the Euclidean space. Later, Baker [2], Liu et al. [20]
proved sharp convergence theorems for the mean curvature flow in the spheres
and the hyperbolic spaces, respectively. Liu, Xu and Zhao [19] studied the mean
curvature flow of arbitrary codimensional submanifolds in the Riemannian manifold
and proved a smooth convergence theorem. Lei and Xu [15] verified an optimal con-
vergence theorem for the mean curvature flow of submanifolds in hyperbolic spaces,
which implies the first optimal differentiable sphere theorem for submanifolds with
positive Ricci curvature. It should be remarked that an optimal topological sphere
theorem for complete submanifolds with positive Ricci curvature in a space form
with nonnegative curvature has been proved previously by Shiohama and Xu [26].
Lei and Xu [15] also proved sharp convergence theorems for the mean curvature
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flow of submanifolds in the sphere [13; 14], which also improve the convergence
theorems due to Huisken [10] and Baker [2]. See [16; 18; 21] for recent progress in
the smooth convergence theory for mean curvature flow of arbitrary codimensions.
As consequences of these smooth convergence theorems, the submanifolds satisfying
the initial curvature conditions are diffeomorphic to the standard sphere. We remark
that some of these differentiable sphere theorems are also proved by using the Ricci
flow, which has proven to be a very useful tool in understanding the topology of
Riemannian manifolds, see [3; 4; 6; 7; 8; 22; 23; 24; 27; 28].

Pipoli and Sinestrari [25] obtained a convergence theorem for mean curvature
flow of small codimension in the complex projective spaces. Later, Lei and Xu [17]
investigated the smooth convergence of mean curvature flow of arbitrary codi-
mensional submanifolds in the complex projective spaces, which improved and
extended the convergence theorem due to Pipoli and Sinestrari [25]. In this paper,
we investigate the mean curvature flow in the quaternionic projective spaces. We
mainly consider the codimension-one case.

Let M be an n-dimensional closed manifold, and let F : Mn
× [0, T ) → N n+1

be a one-parameter family of smooth hypersurfaces immersed in a Riemannian
manifold (N , h). We say that Mt = Ft(M) is a solution to the mean curvature flow
if Ft satisfies

(1-1)
{

∂
∂t F = −Hν,

F( · , 0) = F0( · ),

where Ft( · ) = F( · , t), H and ν are the mean curvature of M and the unit outward
normal vector of M respectively, such that H⃗ = −Hν is the mean curvature vector
of M .

Pipoli and Sinestrari [25] obtained a convergence theorem for the mean curvature
flow of hypersurfaces in the quaternionic projective spaces, and the proof is the
same as their convergence theorem for mean curvature flow of hypersurfaces in the
complex projective spaces.

Theorem 1.1 [25]. Let Mn (n ⩾ 11) be a closed real hypersurface in quaternionic
projective space QP(n+1)/4(4), and Mt be the mean curvature flow starting from M.
Assume that M satisfies the following pinching condition:

|h|
2 <

1
n − 1

H 2
+ 2.

Then the flow has a smooth solution on the maximal time interval [0, T ) with T <∞.
Moreover, the pinching condition is preserved and Mt collapses to a round point as
t → T .

We note that here and in the remaining part of the paper, n = 4m − 1 for m ⩾ 2.
The aim of the present paper is to prove the following refinement of Theorem 1.1.
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Theorem 1.2. Let Mn be an n(⩾ 7)-dimensional closed real hypersurface in quater-
nionic projective space QP(n+1)/4(4), and Mt be the mean curvature flow starting
from M. Assume that M satisfies the following pinching condition:

|h|
2 < ϕ(H 2).

Then the flow has a smooth solution on the maximal time interval [0, T ) with T <∞.
Moreover, the pinching condition is preserved and Mt collapses to a round point as
t → T .

In Theorem 1.2, ϕ(H 2) is given by

(1-2) ϕ(H 2) = 2 + an +

(
bn +

1
n − 1

)
H 2

−

√
b2

n H 4 + 2an bn H 2,

where

an =

√
8(n − 5)(n − 1) bn, bn = min

{
n − 5

8(n − 1)
,

2n − 5
(n + 2)(n − 1)

}
.

Remark 1.3. By a computation, we have ϕ(x)> x
n−1 +2 for x ⩾0. So, Theorem 1.2

is an improvement of Theorem 1.1. Furthermore, we have ϕ(x) ⩾ 4
√

n − 1 − 6 for
7 ⩽ n ⩽ 17, and ϕ(x) > 2 +

8
√

2
5

√
n − 5 for n ⩾ 18.

It is well known that QP1 is just the round sphere. By [11; 14], the similar
smooth convergence theorem holds for mean curvature flow of closed hypersurfaces
in QP1.

By Theorem 1.2, we have:

Corollary 1.4. Let Mn be an n(⩾ 7)-dimensional closed real hypersurface in
quaternionic projective space QP(n+1)/4(4). If |h|

2 < ϕ(H 2), then M is diffeomor-
phic to the standard sphere.

The rest of the paper is organized as follows. In Section 2, we introduce some
notations, formulas and basic equations in submanifold theory, and prove a gradient
inequality involving the second fundamental form and the mean curvature for
hypersurfaces in the quaternionic projective spaces. We also recall some evolution
equations along the mean curvature flow in this section. In Section 3, we show that
the pinching condition |h|

2 < ϕ(H 2) is preserved along the mean curvature flow.
We also derive an evolution inequality of

fσ =
|h̊|

2

(ϕ − H 2/n)1−σ
.

A pinching estimate for the traceless second fundamental form is obtained in
Section 4. We give an estimate of the gradient of the mean curvature in Section 5,
which is used to compare the mean curvature at different points. In Section 6, we
show that the hypersurface shrinks to a single round point in finite time.
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2. Notations and formulas

Let QPm be the m-dimensional quaternionic projective space with the Fubini–Study
metric gFS. Let Jk0 , k0 = 1, 2, 3 be complex structures on QPm . We denote by ∇

the Levi–Civita connection of (QPm, gFS). Since the Fubini–Study metric is a
Kähler metric, we have ∇ Jk0 = 0 for k0 = 1, 2, 3. The curvature tensor R of QPm

can be written as

R(X, Y, Z , W )

= ⟨X, Z⟩⟨Y, W ⟩ − ⟨X, W ⟩⟨Y, Z⟩

+

3∑
k0=1

(
⟨X, Jk0 Z⟩⟨Y, Jk0 W ⟩ − ⟨X, Jk0 W ⟩⟨Y, Jk0 Z⟩ + 2⟨X, Jk0Y ⟩⟨Z , Jk0 W ⟩

)
and Jk0 , k0 = 1, 2, 3 satisfies

J 2
k0

=− Id, J1 J2 =−J2 J1 = J3, J1 J3 =−J3 J1 =−J2, J2 J3 =−J2 J3 = J1.

Let (Mn, g) be an n-dimensional Riemannian submanifold in (QPm, gFS). Let q
be its codimension, i.e., n + q = 4m. At a point p ∈ M , let Tp M and Np M be the
tangent space and normal space, respectively. For a vector in Tp M ⊕ Np M , we
denote by ( · )T and ( · )N its projections onto Tp M and Np M , respectively. We
use the symbols ∇ and ∇

⊥ to represent the connections of tangent bundle TM
and normal bundle NM . Denote by 0(E) the space of smooth sections of a vector
bundle E . For X, Y ∈ 0(T M), ξ ∈ 0(NM), the connections ∇ and ∇

⊥ are given
by ∇X Y = (∇X Y )T and ∇

⊥

X ξ = (∇X ξ)N . The second fundamental form of M is
defined as h(X, Y ) = (∇X Y )N .

We mainly consider the codimension-one case. Throughout this paper, we shall
make the following convention on indices:

1 ⩽ A, B, C, · · · ⩽ n + 1, 1 ⩽ i, j, k, · · · ⩽ n.

We choose a local orthonormal frame {ei } for the tangent bundle and let ν = en+1

be the unit normal vector field. Denote by {ωi
} the dual frame of {ei }. Let h and H

denote the second fundamental form and the mean curvature given by

h =
∑
i, j

hi j ωi
⊗ ω j and H =

∑
i

hi i .

Let h̊ = h −
1
n Hg be the traceless second fundamental form. We have the relations

|h̊|
2
= |h|

2
−

1
n

H 2, |∇ h̊|
2
= |∇h|

2
−

1
n
|∇ H |

2.

Setting J (k0)
AB = ⟨eA, Jk0eB⟩ for k0 = 1, 2, 3, we have

J (k0)
AB = −J (k0)

B A ,
∑
B

J (k0)
AB J (k0)

BC = J (k0)
AC ,

∑
B

J (1)
AB J (2)

BC = J (3)
AC .
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Similarly, we have ∑
B

J (1)
AB J (3)

BC = −J (2)
AC ,

∑
B

J (2)
AB J (3)

BC = J (1)
AC .

Also, J (k0)
AA = 0 for any A and k0.

Let hi jk and Hi denote the components of ∇h and ∇H , the covariant differenti-
ations of h and H , respectively. We have the following sharp gradient inequality
(see Remark 2.2).

Lemma 2.1. For a hypersurface in QP(n+1)/4, we have

|∇h|
2 ⩾ 3

n+2
|∇ H |

2
+ 6(n − 3).

Proof. Set S =
∑

Si jk ωi
⊗ω j

⊗ωk , where Si jk =
1
3(hi jk + h jki + hki j ). Then Si jk

is totally symmetric for i, j, k. Using the same technique as in Lemma 2.2 in [9],
we have

|S|
2 ⩾ 3

n+2

∑
i

(∑
k

Skki

)2
.

By the Codazzi equation, we have∑
k

Skki =
1
3

∑
k

(hikk + hkki + hkik)

=
1
3

∑
k

(hkki + 2hkik)

=
1
3

∑
k

(hkki + 2hkki − 2Rn+1kik) = Hi −
2
3

∑
k

Rn+1kik .

As
Rn+1kik =

3∑
k0=1

(J (k0)
n+1i J (k0)

kk − J (k0)
n+1k J (k0)

ki + 2J (k0)
n+1k J (k0)

ik ),

one has

−
2
3

∑
k

Rn+1kik = −
2
3

∑
k

3∑
k0=1

(J (k0)
n+1i J (k0)

kk − J (k0)
n+1k J (k0)

ki + 2J (k0)
n+1k J (k0)

ik )

= −
2
3

∑
k

3∑
k0=1

(−J (k0)
n+1k J (k0)

ki − 2J (k0)
n+1k J (k0)

ki )

= 2
3∑

k0=1

∑
k

(J (k0)
n+1k J (k0)

ki ).

Then we get ∑
k

Skki = Hi + 2
3∑

k0=1

∑
k

(J (k0)
n+1k J (k0)

ki ).

This implies(∑
k

Skki

)2
= (Hi )

2
+ 4

3∑
k0=1

∑
k

Hi (J (k0)
n+1k J (k0)

ki ) + 4
[ 3∑

k0=1

∑
k

(J (k0)
n+1k J (k0)

ki )
]2

.
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Since

4
3∑

k0=1

[∑
i,k

Hi J (k0)
n+1k J (k0)

ki

]
+ 4

∑
i

[ 3∑
k0=1

∑
k

J (k0)
n+1k J (k0)

ki

]2

= 4
3∑

k0=1

[∑
i

Hi
∑
A

J (k0)
n+1A J (k0)

Ai

]
+ 4

∑
i

[ 3∑
k0=1

∑
A

J (k0)
n+1A J (k0)

Ai

]2

= 4
3∑

k0=1

[∑
i

Hi δn+1i

]
+ 4

∑
i

[ 3∑
k0=1

δn+1i

]2
= 0,

one has

(2-1) |S|
2 ⩾ 3

n+2
|∇ H |

2.

On the other hand, by the Codazzi equation, we have

|S|
2
=

∑
(Si jk)

2
=

1
9

∑
(hikk + hkki + hkik)

2

=
1
3

∑
(hi jk)

2
+

2
3

∑
hi jk hik j

=
1
3

∑
(hi jk)

2
+

2
3

∑
hi jk(hi jk + Rn+1i jk)

=
∑

(hi jk)
2
+

2
3

∑
Rn+1 jki Rn+1i jk

= |∇h|
2
+

2
3

∑
Rn+1 jki Rn+1i jk .

Since

R ABC D = δAC δB D − δAD δBC +

3∑
k0=1

(J (k0)
AC J (k0)

B D − J (k0)
AD J (k0)

BC + 2J (k0)
AB J (k0)

C D ),

one has∑
Rn+1 jki Rn+1i jk =

∑
i, j,k

[ 3∑
k0=1

(J (k0)
n+1k J (k0)

j i − J (k0)
n+1i J (k0)

jk + 2J (k0)
n+1 j J (k0)

ki )
]

×

[ 3∑
l0=1

(J (l0)
n+1 j J (l0)

ik − J (l0)
n+1k J (l0)

i j + 2J (l0)
n+1i J (l0)

jk )
]
.

For each k0, according to the special property of matrix (J (k0)
AB ), by direct com-

putation we have∑
k

(J (k0)
n+1k)

2
= −

∑
k

J (k0)
n+1k J (k0)

kn+1 = −
∑
A

J (k0)
n+1A J (k0)

An+1 = δ(n+1)(n+1) = 1,

and ∑
k

J (k0)
n+1k J (l0)

Bk = −
∑
k

J (k0)
n+1k J (l0)

k B = −
∑
A

J (k0)
n+1A J (l0)

AB = ±J ( j0)
n+1B,

where ± depends on j0, k0, l0. By some computations, we obtain∑
Rn+1 jki Rn+1i jk = −9(n − 3).

Hence
|S|

2
= |∇h|

2
+

2
3(−9(n − 3)) = |∇h|

2
− 6(n − 3).
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Combining this with (2-1) implies

|∇h|
2 ⩾ 3

n+2
|∇ H |

2
+ 6(n − 3). □

Remark 2.2. For hypersurface M4m−1 in QPm , one has

|∇h|
2 ⩾ 3

4m+1
|∇ H |

2
+ 24(m − 1).

In particular, one has |∇h|
2 ⩾ 24(m − 1), which has been proved previously by

Dong [5]. Dong also proved that a real hypersurface satisfying |∇h|
2
= 24(m−1) is

one of the generalized equators M Q
p,q . See, e.g., [5; 12] for the detailed construction

of generalized equators. From this we see that our gradient inequality is sharp.

Let F : M ×[0, T ) → QP(n+1)/4 be a mean curvature flow of hypersurface in the
quaternionic projective space QP(n+1)/4. Set Mt = Ft(M), where Ft( · ) = F( · , t).
Following [1; 25], we have the evolution equations.

Lemma 2.3. For mean curvature flow F : M × [0, T ) → QP(n+1)/4, we have

∂

∂t
|h|

2
= 1|h|

2
− 2|∇h|

2
− 2n|h|

2
+ 2|h|

4
+ 18|h|

2
+ 4H 2

+ 12S1,

∂

∂t
H 2

= 1H 2
− 2|∇ H |

2
+ 2H 2(|h|

2
+ n + 9),

where
S1 =

3∑
k0=1

∑
i, j,k,l

(h̊i j h̊kl J (k0)
il J (k0)

jk − h̊ik h̊ jk J (k0)
il J (k0)

jl ).

To do computations involving (J (k0)
AB ) for k0 = 1, 2, 3, the following well-known

property of skew-symmetric matrix will be important.

Proposition 2.4. Let A be a real skew-symmetric matrix. Then there exists an
orthogonal matrix C , such that C−1 AC takes the following form:

(2-2)



0 λ1

−λ1 0
0 λ3

−λ3 0
0 λ5

−λ5 0
. . .

. . .


.

We use a notation

ĩ =

{
i + 1, i is odd,

i − 1, i is even.

If a matrix (ai j ) takes the form as (2-2), then ai j = 0, for all j ̸= ĩ .
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3. Preservation of curvature pinching

For each fixed k0 ∈ {1, 2, 3}, we choose a local orthonormal frame {ei } such that
the matrix (J (k0)

i j ) takes the form of (2-2). In fact, let {ϵ1, . . . , ϵn, ϵn+1} be a local
orthonormal frame on QP(n+1)/4 such that ϵ1, . . . , ϵn are tangent to M and ϵn+1 is
normal to M . Let J̃ (k0)

AB = ⟨ϵA, J (k0)ϵB⟩. Since ( J̃i j )n×n is antisymmetric and n is
odd, there is an orthonormal matrix C = (ci j )n×n , where ci j ’s are local functions,
such that

(c−1
i j J̃ (k0)

jk ckl)n×n =


0 λ1

−λ1 0
. . .

0

.

Here (c−1
i j )n×n = (ci j )

−1
n×n . Set ei =

∑n
j=1 c−1

i j ϵ j , en+1 = ϵn+1. Then

J (k0)
i j = ⟨ei , J (k0) e j ⟩

=

〈∑
k

c−1
ik ϵk, J (k0)

(∑
l

c−1
jl ϵl

)〉
=

∑
k,l

c−1
ik J̃ (k0)

kl c−1
jl =

∑
k,l

c−1
ik J̃ (k0)

kl cl j .

This implies

(J (k0)
i j )n×n =


0 λ1

−λ1 0
. . .

0

.

Thus we have∑
i, j,k,l

(h̊i j h̊kl J (k0)
il J (k0)

jk − h̊ik h̊k j J (k0)
il J (k0)

jl ) =
∑
i,k

(
−h̊i k̃ h̊kĩ J (k0)

i ĩ
J (k0)

kk̃
− (h̊ ĩ k J (k0)

i ĩ
)2)

= −
1
2

∑
i,k

(h̊ ĩ k J (k0)

i ĩ
+ h̊i k̃ J (k0)

kk̃
)2

⩽ 0.

Therefore,

S1 =

3∑
k0=1

[ ∑
i, j,k,l

(h̊i j h̊kl J (k0)
il J (k0)

jk − h̊ik h̊ jk J (k0)
il J (k0)

jl )
]
⩽ 0.

So we get from Lemma 2.3 that

(3-1) ∂

∂t
|h̊|

2 ⩽ 1|h̊|
2
− 2|∇ h̊|

2
+ 2|h̊|

2(|h|
2
− n + 9).

For a real number ε ∈ (0, 1), by the definition of ϕ, we define ϕε : [0, +∞) → R by

(3-2) ϕε(x) = dε + cε x −

√
b2x2 + 2abx + e,

where a =
√

8(n − 5)(n − 1) b, b = min
{ n−5

8(n−1)
, 2n−5

(n+2)(n−1)

}
, cε = b +

1
n−1+ε

,
dε = 2 − 2ε + a, e =

√
ε. We define ϕ = ϕ0.
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Lemma 3.1. The function ϕ has the following property.

(i) x
n−1 + 2 < ϕ(x) < x

n−1 + n,

(ii) ϕ(x) > 4
√

n − 1−6 if n = 7, 11, 15 and ϕ(x) > 2+
8
√

2
5

√
n − 5 if n = 4m −1,

m ⩾ 5.

Proof. By direct computations, we get

ϕ′(x) = c0 −
bx + a√

x2 + 2ax/b
, ϕ′′(x) =

a2

b(x2 + 2ax/b)3/2 .

Since
(
ϕ(x)−

x
n−1

)′′
= ϕ(x)′′ > 0 and limx→∞ ϕ′(x) =

1
n−1 , we have ϕ′(x) < 1

n−1 .
Hence we get

2 = lim
x→∞

(
ϕ(x) −

x
n − 1

)
< ϕ(x) −

x
n − 1

⩽ ϕ(0) = 2 + a < n.

We figure out that

min
x⩾0

ϕ(x) = ϕ

(
ac0

b
√

c2
0 − b2

−
a
b

)
= d0 −

ac0

b
+

a
b

√
c2

0 − b2.

If n = 7, 11, 15, we have minx⩾0 ϕ(x) = 4
√

n − 1 − 6. If n = 4m − 1, m ⩾ 5, then
we have

min
x⩾0

ϕ(x) = 2 +

√
8(n − 5)

2n − 5
(
√

5n − 8 −
√

n + 2) > 2 +
8
√

2
5

√
n − 5. □

Let ϕ̊ε = ϕε −
1
n x . We will prove the following lemma.

Lemma 3.2. For sufficiently small ε, the function ϕ̊ε satisfies

(i) ϕ̊′
ε + 2x ϕ̊′′

ε < 2(n−1)
n(n+2)

,

(ii) ϕ̊ε(x)(ϕε(x) − n + 9) − x ϕ̊′
ε(x)(ϕε(x) + n + 9) < 6(n − 3),

(iii) ϕ̊ε(x) − x ϕ̊′
ε(x) > 1.

Proof. By direct computations, we have

ϕ̊′

ε = cε −
1
n

−
b2x + ab

√
b2x2 + 2abx + e

,

ϕ̊′′

ε =
(b2x + ab)2

− b2(b2x2
+ 2abx + e)

(b2x2 + 2abx + e)3/2 ,

ϕ̊′′′

ε = −
3b3(a2

− e)(bx + a)

(b2x2 + 2abx + e)5/2 .
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Then we have

ϕ̊′

ε + 2x ϕ̊′′

ε = cε −
1
n

−
b3x2(bx + 3a) + eb(3bx + a)

(b2x2 + 2abx + e)3/2

< b +
1

n − 1 + ε
−

1
n

<
2(n − 1)

n(n + 2)
,

as b = min
{ n−5

8(n−1)
, 2n−5

(n+2)(n−1)

}
, so we get the inequality (i).

Setting
f (x) = ϕ̊ε(ϕε − n + 9) − x ϕ̊′

ε(ϕε + n + 9).

Then
f (x) = dε(dε −n +9)+eε + (2+ab+cε(dε −2n)) x

− (b2x2
+2abx +e)−1/2

×
[
b((dε −2n) b+ac) x2

+ (3(dε −n +3) ab+ec) x +e(2dε −n +9)
]
.

Then for ε small enough we get

lim
x→+∞

f (x) =
a2cε

b
+ dε(dε − n + 9)+ a(n − 2dε − 9)+ e

(
1 −

cε

b

)
= 6(n − 3)+

2ε(n2
− (18 − 3ε) n + 33 − 15ε + 2ε2)

n − 1 + ε
+ e

(
1 −

cε

b

)
= 6(n − 3)+

2ε(n2
− (18 − 3ε) n + 33 − 15ε + 2ε2)

n − 1 + ε
−

√
ε

(n − 1 + ε) b
< 6(n − 3),

and

f ′(x)

= 2 + ab + cε(dε − 2n)

−
1

(b2x2 + 2abx + e)3/2

[
b3((dε −2n) b +acε) x3

+3ab2((dε −2n) b +acε) x2

+ [3a2b2(dε − n + 3) − 3eb2(n + 3) + 3abcε e] x
+ eab(dε − 2n) + e2cε

]
.

Then we have

lim
x→+∞

f ′(x) = 2 + ab + cε(dε − 2n) − (acε + b(dε − 2n)) = 0

and

f ′′(x) =
3b2(a2

− e)
(b2x2 + 2abx + e)5/2

×
[
b(b(dε + 6) − acε) x2

+ (ab(dε − n + 3) − ecε) x − e(n + 3)
]
.

For b = min
{ n−5

8(n−1)
, 2n−5

(n+2)(n−1)

}
, we obtain

b(dε + 6) − acε < 0 and ab(dε − n + 3) − ecε < 0.
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So f ′′(x) < 0. Then we have f ′(x) > 0. From this we deduce that

f (x) < lim
x→+∞

f (x) < 6(n − 3).

Thus, inequality (ii) is proved.
We have

ϕ̊ε − x ϕ̊′

ε = dε −
abx + e

√
b2x2 + 2abx + e

> dε −
abx

√
b2x2

−
e

√
e

= 2 − 2ε −
4
√

ε.

This implies inequality (iii). □

Suppose that M0 is an n(⩾ 7)-dimensional closed hypersurface in QP(n+1)/4

satisfying |h|
2 < ϕ(H 2). Let

F : Mn
× [0, T ) → QP(n+1)/4

be a mean curvature flow with initial value M0. We will show that the pinching
condition is preserved along the flow. For convenience, we denote ϕ̊ε(H 2), ϕ̊′

ε(H 2),
ϕ̊′′

ε (H 2) by ϕ̊ε, ϕ̊′
ε, ϕ̊′′

ε , respectively.

Theorem 3.3. If the initial value M0 satisfies |h|
2 <ϕ(H 2), then there exists a small

positive number ε, such that for all t ∈ [0, T ), we have |h|
2 < ϕ(H 2) − εH 2

− ε.

Proof. Since M0 is closed, there exists a small positive number ε1, such that M0

satisfies |h̊|
2 < ϕ̊ε1 .

From Lemma 3.2(i), we have

(3-3)
(

∂

∂t
− 1

)
ϕ̊ε1 = −2(ϕ̊′

ε1
+ 2H 2

· ϕ̊′′

ε1
)|∇ H |

2
+ 2H 2

· ϕ̊′

ε1
(ϕε1 + n + 9)

⩾ −
4(n − 1)

n(n + 2)
|∇ H |

2
+ 2H 2

· ϕ̊′

ε1
(ϕε1 + n + 9).

Let U = |h̊|
2
− ϕ̊ε1 . We get

1
2

(
∂

∂t
− 1

)
U

⩽ −|∇ h̊|
2
+

2(n − 1)

n(n + 2)
|∇ H |

2
+ |h̊|

2(|h|
2
− n + 9) − H 2

· ϕ̊′

ε1
(|h|

2
+ n + 9).

By Lemma 2.1, we have

−|∇ h̊|
2
+

2(n − 1)

n(n + 2)
|∇ H |

2 < −6(n − 3).

At the point where U = 0, we get

1
2

(
∂

∂t
− 1

)
U ⩽ −6(n − 3) + ϕ̊ε1(ϕε1 − n + 9) − H 2

· ϕ̊′

ε1
(ϕε1 + n + 9) < 0.
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Applying the maximum principle, we obtain U < 0 for all t ∈ [0, T ). Choose a
suitable small positive number ε, we complete the proof of Theorem 3.3. □

Let

fσ =
|h̊|

2

(ϕ̊)1−σ
,

where σ ∈ (0, ε2) is a positive constant. The following lemma is very useful for
deriving the pinching estimate for |h̊|

2.

Lemma 3.4. If M0 satisfies |h|
2 < ϕ(H 2), then there exists a small positive num-

ber ε, such that the following inequality holds along the mean curvature flow:

∂

∂t
fσ ⩽ 1 fσ +

2
ϕ̊

|∇ fσ | |∇ϕ̊| −
2ε fσ
n|h̊|2

|∇h̊|
2
+ 2σ |h|

2 fσ −
ε

n
fσ .

Proof. By a straightforward computation, we have(
∂

∂t
− 1

)
fσ = fσ

[
1

|h̊|2

(
∂

∂t
− 1

)
|h̊|

2
−

1 − σ

ϕ̊

(
∂

∂t
− 1

)
ϕ̊

]
+ 2(1 − σ)

⟨∇ fσ , ∇ϕ̊⟩

ϕ̊
− σ(1 − σ) fσ

|∇ϕ̊|
2

|ϕ̊|2
.

Using (3-1) and (3-3), we have

(3-4)
(

∂

∂t
− 1

)
fσ ⩽ 2 fσ

[
−

|∇h̊|
2

|h̊|2
+

2(n − 1)

n(n + 2)

|∇ H |
2

ϕ̊

]
+ 2 fσ

[
|h|

2
+ 9 − n − (1 − σ)

H 2
· ϕ̊′

ϕ̊
(|h|

2
+ n + 9)

]
+

2
ϕ̊

|∇ fσ | |∇ϕ̊|.

From Lemma 3.2 and Theorem 3.3, we have

−
|∇ h̊|

2

|h̊|2
+

2(n − 1)

n(n + 2)

|∇ H |
2

ϕ̊
⩽ −

|∇h̊|
2

|h̊|2
+

|∇h̊|
2
− 6(n − 3)

ϕ̊

⩽
|h̊|

2
− ϕ̊

|h̊|2ϕ̊
|∇h̊|

2
−

6(n − 3)

ϕ̊

⩽ −ε
|H |

2
+ 1

|h̊|2ϕ̊
|∇ h̊|

2
−

6(n − 3)

ϕ̊

⩽ −
ε

n|h̊|2
|∇h̊|

2
−

6(n − 3)

ϕ̊
.
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From (ii) and (iii) of Lemma 3.2, we have

|h|
2
+ 9 − n − (1 − σ)

H 2
· ϕ̊′

ϕ̊
(|h|

2
+ n + 9)

=
1 − σ

ϕ̊
[(ϕ̊ − H 2

· ϕ̊′)|h|
2
− H 2

· ϕ̊′(n + 9)] − n + 9 + σ |h|
2

⩽
1 − σ

ϕ̊
[(ϕ̊ − H 2

· ϕ̊′)(ϕ − εH 2
− ε) − H 2

· ϕ̊′(n + 9)] − n + 9 + σ |h|
2

=
1 − σ

ϕ̊
[(ϕ̊ − H 2

· ϕ̊′)ϕ − H 2
· ϕ̊′(n + 9)] − n + 9 + σ |h|

2

−
(1 − σ) ε

ϕ̊
(ϕ̊ − H 2

· ϕ̊′)(H 2
+ 1)

⩽ (1 − σ)

[
n − 9 +

6(n − 3)

ϕ̊

]
− n + 9 + σ |h|

2
−

(1 − σ) ε

ϕ̊
(H 2

+ 1)

⩽ σ |h|
2
+

6(n − 3)

ϕ̊
−

ε

2n
.

Inserting these two estimates into (3-4) will complete the proof. □

4. An estimate for traceless second fundamental form

Suppose that the initial value M0 satisfies the condition in Theorem 1.2. For
convenience, we put W = ϕ̊. By the conclusion of the previous section, there exists
a sufficiently small positive number ε, such that for all t ∈ [0, T ), the following
pinching condition holds:

(4-1) |h̊|
2 < W − εH 2.

From this inequality and the definition of W , we have W < H2

n(n−1)
+ n.

We consider the auxiliary function

fσ =
|h̊|

2

W 1−σ
.

In this section, we will show that fσ decays exponentially.

Lemma 4.1. There exist positive numbers ε and C1 depending only on M0, such that

(4-2)
∂

∂t
fσ ⩽ 1 fσ +

2C1

|h̊|
|∇ fσ | |∇h̊| −

ε fσ
n|h̊|2

|∇ h̊|
2
+ 2σ |h|

2 fσ −
ε

n
fσ .

Proof. According to Lemma 3.4, we have the following inequality with some
suitable small ε > 0:

∂

∂t
fσ ⩽ 1 fσ +

2
W

|∇ fσ | |∇W | −
2ε fσ
n|h̊|2

|∇h̊|
2
+ 2σ |h|

2 fσ −
ε

n
fσ .
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By the definition of W , there exists a constant B1, such that |∇W | < B1|∇ H 2
|

and |H | < B1
√

W . Let C1 be a constant such that 2B2
1 |∇ H | ⩽ C1|∇ h̊|. From

Lemma 2.1, we have

(4-3)
|∇W |

W
⩽

2B1|H | |∇H |
√

W |h̊|
⩽

2B2
1 |∇ H |

|h̊|
⩽

C1|∇h̊|

|h̊|
. □

We need the following estimate for the Laplacian of |h̊|
2.

Lemma 4.2. 1|h̊|
2 ⩾ 2⟨h̊, ∇2 H⟩ + 2|h̊|

2(ε|h|
2
− 2n2) − 18|h̊| |H |.

Proof. We have

1|h̊|
2
= 2|∇h̊|

2
+ 2h̊ · 1h̊ = 2|∇h̊|

2
+ 2

∑
i, j

h̊i j · 1hi j

and∑
i, j

h̊i j · 1hi j = ⟨h̊, ∇2 H⟩ +
∑

i,p, j
Hhi p h pj hi j − |h|

4

+ 3H
∑
i, j

3∑
k0=1

J (k0)
in+1 J (k0)

jn+1 h̊i j − (n + 9)|h̊|
2
+ 2n|h̊|

2
− 6S1

⩾ ⟨h̊, ∇2 H⟩ +
∑

i,p, j
Hhi ph pj hi j − |h|

4
+ (n − 9)|h̊|

2
− 9|h̊| |H |.

It follows from the proof of the Lemma 4.2 in [17], we choose a local orthonormal
frame such that

H = |H | en+1 and h̊ = diag{λ̊1, . . . , λ̊n}.

So we have∑
i,p, j

Hhi p h pj hi j − |h|
4

= H
∑

i
λ̊3

i +
1
n

H 2
|h̊|

2
− |h̊|

4

⩾ −|H |
n − 2

√
n(n − 1)

|h̊|
3
+

1
n

H 2
|h̊|

2
− |h̊|

4

= |h̊|
2
(

1
n

H 2
− |h̊|

2
−

n − 2
√

n(n − 1)
|h̊| |H |

)
⩾ |h̊|

2
[

1
n

H 2
−

(
H 2

n(n − 1)
+ n − εH 2

)
− (n − 2)

(
H 2

n(n − 1)
+ n

)]
= |h̊|

2(εH 2
− n(n − 1))

> |h̊|
2(ε|h|

2
− n2),

where we have used |h̊|
2 < W − εH 2 and W < H2

n(n−1)
+ n. □
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From (4-3) and Lemma 4.2, we have

1 fσ = fσ

(
1|h̊|

2

|h̊|2
−(1−σ)

1W
W

)
−2(1−σ)

⟨∇ fσ , ∇W ⟩

W
+σ(1−σ) fσ

|∇W |
2

W 2

⩾ fσ
1|h̊|

2

|h̊|2
−(1−σ) fσ

1W
W

−
2C1|∇ fσ | |∇h̊|

|h̊|

⩾
2⟨h̊,∇2 H⟩

W̊ 1–σ
+2 fσ (ε|h|

2 –2n2)–(1–σ)
fσ1W

W
–

2C1|∇ fσ ||∇ h̊|

|h̊|
–

18 fσ |H |

|h̊|
.

Multiplying both sides of the above inequality by f p−1
σ , we get

(4-4) 2ε f p
σ |h|

2 ⩽ f p−1
σ 1 fσ + (1 − σ)

f p
σ 1W

W
−

2 f p−1
σ ⟨h̊, ∇2 H⟩

W 1−σ

+
2C1 f p−1

σ |∇ fσ | |∇h̊|

|h̊|
+ 4n2 f p

σ +
18 fσ |H |

|h̊|
.

Then integrate both sides of (4-4) over Mt . By the divergence theorem, we get

(4-5)
∫

Mt

f p−1
σ 1 fσ dµt = −(p − 1)

∫
Mt

f p−2
σ |∇ fσ |

2 dµt .

From (4-4), we have

(4-6)
∫

Mt

f p
σ

W
1W dµt = −

∫
Mt

〈
∇

(
f p
σ

W

)
, ∇W

〉
dµt

=

∫
Mt

(
−

p f p−1
σ

W
⟨∇ fσ , ∇W ⟩ +

f p
σ

W 2 |∇W |
2
)

dµt

⩽
∫

Mt

(
C1 p f p−1

σ

|h̊|
|∇ fσ | |∇h̊| +

C2
1 f p

σ

|h̊|2
|∇h̊|

2
)

dµt .

We also have

−

∫
Mt

f p−1
σ ⟨h̊, ∇2 H⟩

W 1−σ
dµt(4-7)

=

∫
Mt

∇i

(
f p−1
σ

W 1−σ
h̊i j

)
∇ j H dµt

=

∫
Mt

[
(p–1) f p−2

σ

W 1−σ
h̊i j∇i fσ –

(1–σ) f p−1
σ

W 2−σ
h̊i j∇i W+

f p−1
σ

W 1−σ
∇i h̊i j

]
∇ j H dµt

⩽
∫

Mt

[
(p − 1) f p−1

σ

|h̊|
|∇ fσ | +

f p−1
σ

W 2−σ
|h̊| |∇W | +

f p−1
σ

W 1−σ
n|∇ h̊|

]
|∇ H | dµt
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⩽
∫

Mt

[
(p − 1) f p−1

σ

|h̊|
|∇ fσ | +

C1 f p−1
σ

W 1−σ
|∇ h̊| +

f p−1
σ

W 1−σ
n|∇h̊|

]
n|∇ h̊| dµt

⩽
∫

Mt

[
n(p − 1) f p−1

σ

|h̊|
|∇ fσ | |∇h̊| +

(C1n + n2) f p
σ

|h̊|2
|∇ h̊|

2
]

dµt .

Putting (4-4)–(4-7) together, we get∫
Mt

|h|
2 f p

σ dµt ⩽ C2

∫
Mt

[
p f p−1

σ

|h̊|
|∇ fσ | |∇h̊| +

f p
σ

|h̊|2
|∇h̊|

2
+ f p

σ +
f p
σ |H |

|h̊|

]
dµt ,

where C2 is a positive constant depending only on M0.
Combining Lemma 4.2 and (4-2), we get

(4-8)
∂

∂t

∫
Mt

f p
σ dµt

= p
∫

Mt

f p−1
σ

∂

∂t
fσ dµt −

∫
Mt

f p
σ H 2 dµt

⩽ p
∫

Mt

f p−2
σ

[
−(p − 1)|∇ fσ |

2
+ (2C1 + 2σC2 p)

fσ
|h̊|

|∇ fσ | |∇h̊|

−

(
ε

2n
− 2σC2

)
f 2
σ

|h̊|2
|∇h̊|

2
]

dµt

− p
∫

Mt

f p
σ

(
ε

n
−2σC2+

6(n − 3) ε

2n|h̊|2
−

2σC2|H |

|h̊|
+

|H |
2

p

)
dµt .

Now we will show that the L p-form of fσ decays exponentially.

Lemma 4.3. There exist positive constants C3, p0, σ0 depending only on M0, such
that for all p ⩾ p0 and σ ⩽ σ0/

√
p, we have(∫

Mt

f p
σ dµt

)1/p

< C3 e−εt .

Proof. The expression in the square bracket of the right side of (4-8) is a quadratic
polynomial. With p0 large enough and σ0 small enough, its discriminant satisfies

(2C1 + 2σC2 p)2
− 4(p − 1)

(
ε

2n
− 2σC2

)
< 0 and 12ε

7
⩾ pσ 2C2

2 .

We have

ε

n
− 2σC2 +

6(n − 3) ε

2n|h̊|2
−

2σC2|H |

|h̊|
+

|H |
2

p
⩾

ε

n
− 2σC2 +

12ε

7|h̊|2
−

pσ 2C2
2

|h̊|2

⩾
ε

n
− 2σC2 >

ε

2n
.
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Here we have used the inequality ε
2n − 2σC2 > 0, which is implied by the choices

of p0 and σ0. Then we get

d
dt

∫
Mt

f p
σ dµt ⩽ −

pε

2n

∫
Mt

f p
σ dµt .

So we get
∫

Mt
f p
σ dµt ⩽ e−pε/2n

∫
M0

f p
σ dµ0, which completes the proof. □

Let gσ = fσ eεt/2. By the Sobolev inequality on submanifolds and a Stampacchia
iteration procedure, we obtain that gσ is uniformly bounded for all t (see [9] or [14]
for the details). Then we obtain the following theorem.

Theorem 4.4. There exist positive constants ε, σ and C0 depending only on M0,
such that for all t ∈ [0, T ), we have

|h̊|
2 ⩽ C0(H 2

+ 1)1−σ e−εt/2.

5. A gradient estimate

We derive an estimate for |∇ H |
2 along the mean curvature flow. Firstly, the same

as Proposition 4.3 in [25], we have:

Lemma 5.1. There exists a positive constants C4 > 1 depending only on n, such that

∂

∂t
|∇ H |

2 ⩽ 1|∇ H |
2
+ C4(H 2

+ 1) |∇h|
2.

Secondly, we need the following estimates.

Lemma 5.2. Along the mean curvature flow, we have

(i) ∂
∂t H 4 ⩾ 1H 4

− 12nH 2
|∇h|

2
+

4
n H 6,

(ii) ∂
∂t |h̊|

2 ⩽ 1|h̊|
2
−

1
3 |∇h|

2
+ C5|h̊|

2(H 2
+ 1),

(iii) ∂
∂t (H 2

|h̊|
2) ⩽ 1(H 2

|h̊|
2) −

1
6 H 2

|∇h|
2
+ C6(H 2

+ 1)2
|h̊|

2
+ C7|∇h|

2,

where C5, C6, C7 are sufficiently large constants.

Proof. (i) From Lemma 2.3, we derive that

∂

∂t
H 4

= 1H 4
− 12H 2

|∇ H |
2
+ 4H 4(|h|

2
+ n + 9).

From Lemma 2.1, we have 12H 2
|∇ H |

2 ⩽ 12nH 2
|∇h|

2. Obviously, inequality (i)
holds.

(ii) We have

∂

∂t
|h̊|

2
= 1|h̊|

2
− 2|∇ h̊|

2
+ 2|h|

2
|h̊|

2
+ 18|h̊|

2
− 2n|h̊|

2
+ 12S1.

From Lemma 2.1, we get |∇ h̊|
2 ⩾ 1

6 |∇h|
2. Choose a large constant C5, we obtain

inequality (ii).
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(iii) It follows the evolution equation that

∂

∂t
(H 2

|h̊|
2) = 1(H 2

|h̊|
2) − 2⟨∇ H 2, ∇|h̊|

2
⟩ + 4|h̊|

2 H 2
|h|

2
− 2|h̊|

2
|∇ H |

2

− 2H 2
|∇ h̊|

2
+ 36H 2

|h̊|
2
+ 12S1 H 2.

From Lemma 2.1, we get −2H 2
|∇ h̊|

2 ⩽−
1
3 H 2

|∇h|
2. From the preserved pinching

condition |h̊|
2 < W , we have

4|h̊|
2 H 2

|h|
2
+ 36H 2

|h̊|
2 ⩽ C6(H 2

+ 1)2
|h̊|

2.

Using Theorem 4.4, we have

−2⟨∇ H 2, ∇|h̊|
2
⟩ ⩽ 8|H | |∇H | |h̊| |∇h| ⩽ 8n

√
C0 |H |(H 2

+ 1)(1−σ)/2
|∇h|

2.

By Young’s inequality, there exists a positive constant C7, such that

−2⟨∇ H 2, ∇|h̊|
2
⟩ ⩽

(
C7 +

1
6 H 2)

|∇h|
2. □

Now we prove a gradient estimate for mean curvature.

Theorem 5.3. For any η ∈ (0,
√

ε/4πn), there exists a number 9(η) depending
only on η and M0, such that

|∇ H |
2 < [(ηH)4

+ 92(η)] e−εt/4.

Proof. Define a scalar function

f = (|∇ H |
2
+ B1|h̊|

2
+ B2 H 2

|h̊|
2) eεt/4

− (ηH)4,

where B1, B2 are two positive constants.
From Lemmas 5.1 and 5.2, we obtain(
∂

∂t
− 1

)
f

=
ε

4
(|∇ H |

2
+ B1|h̊|

2
+ B2 H 2

|h̊|
2) eεt/4

+ eεt/4
(

∂

∂t
− 1

)
(|∇ H |

2
+ B1|h̊|

2
+ B2 H 2

|h̊|
2) − η4

(
∂

∂t
− 1

)
H 4

⩽
ε

4
(|∇ H |

2
+ B1|h̊|

2
+ B2 H 2

|h̊|
2) eεt/4

+ eεt/4{(C4(H 2
+ 1)|∇h|

2)
+ B1

(
−

1
3 |∇h|

2
+ C5(H 2

+ 1)|h̊|
2)

+ B2
(
−

1
6 H 2

|∇h|
2
+ C7|∇h|

2
+ C6(H 2

+ 1)2
|h̊|

2)}
− η4

(
−12nH 2

|∇h|
2
+

4
n

H 6
)

= H 2
|∇h|

2
[
eεt/4

(
C4−

B2

6

)
+24nη4

]
+eεt/4

[
|∇h|

2
(

C4−
B1

3
+C7 B2

)
+

ε

4
|∇ H |

2
]

+ eεt/4
|h̊|

2
[

B1C5(H 2
+ 1)+ B2C6(H 2

+ 1)2
+

ε

4
(B1 + B2 H 2)

]
−

4η4

n
|H |

6.
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Choose constants B1 and B2, such that C4 −
B2
6 < −1 and C4 −

B1
3 +C7 B2 < −1.

Then applying Theorem 4.4, we get

(5-1)
(

∂

∂t
− 1

)
f ⩽ e−εt/4

[
B3(H 2

+ 1)2(H 2
+ 1)1−σ

−
4η4

n
H 6

]
.

Consider the expression in the bracket of (5-1). Since the coefficient of H 6 is
negative, it has a upper bound 92(η). Then we have

(
∂
∂t − 1

)
f ⩽ e−εt/4 92(η). It

follows from the maximum principle that f is bounded. This completes the proof
of Theorem 5.3. □

6. Convergence

In order to estimate the diameter of Mt , we need the well-known Myers’s theorem:

Theorem 6.1 (Myers’s theorem). Let 0 be a geodesic of length at least π/
√

K
on M. If the Ricci curvature satisfies Ric(X) ⩾ (n − 1)K for each unit vector
X ∈ Tx M , at any point x ∈ 0, then 0 has conjugate points.

Now we show that under the assumption of Theorem 1.2, the mean curvature
flow converges to a round point.

Theorem 6.2. If M0 satisfies |h̊|
2 < ϕ̊, then T < ∞ and Mt converges to a round

point as t → T .

Proof. Assume T = ∞. Let |H |min(t) = minMt |H |, |H |max(t) = maxMt |H |.
We claim that H 2

·eεt/8 is uniformly bounded on [0, ∞). Suppose not, then there is
a time τ such that |H |

2
max(τ )·eετ/8 >9/η2. By Theorem 5.3, for every small positive

number η, there exists a positive number 9, such that |∇ H | < [(ηH)2
+9]e−εt/8.

Then we have |∇ H | < 2η2
|H |

2
max on Mτ .

From Lemma 4.1 in [27], the sectional curvature K of M satisfies

(6-1) K ⩾ 1
2

(
2 +

1
n − 1

H 2
− |h|

2
)

.

By Theorem 4.4, we obtain

K ⩾ 1
2

(
2 +

1
n(n − 1)

H 2
− C0(H 2

+ 1)1−σ e−εt/2
)

.

Hence, we can pick τ large enough such that K ⩾ (1/2n2) H 2 on Mτ .
Let x be a point on Mτ where |H | achieves its maximum. Consider all the

geodesics of length at most (4η|H |max)
−1 starting from x . As |∇ H 2

| < 4η2
|H |

3
max,

we have

H 2 ⩾ |H |
2
max − 4η2

|H |
3
max · (4η|H |max)

−1
= (1 − η)|H |

2
max
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along such geodesics. Since |∇ H | < 2η2
|H |

2
max and K ⩾ (1/2n2) H 2 on Mτ , one

has
K ⩾

1
2n2 (1 − η)|H |

2
max

along such geodesics provided

η ∈

(
0, min

{
1

32πn
,

√
ε

4πn

})
.

By Myers’s theorem, these geodesics can reach any point of Mτ . This implies

H 2 ⩾ (1 − η)|H |
2
max on Mτ .

Combining this inequality with |H |
2
max(τ ) · eετ/8 > 9/η2 and Theorem 5.3, we get

|∇ H |
2 < (ηH)4

+
η4

(1 − η)2 |H |
4
min(τ ), t ⩾ τ.

From the evolution equation of H 2, we have that for t ⩾ τ ,

(6-2)
(

∂

∂t
− 1

)
H 2 ⩾ −2|∇ H |

2
+

2
n

H 4 ⩾
1
n

H 4
−

1
2n

|H |
4
min(τ )

for η > 0 sufficiently small. By the maximum principle, we get H 2 ⩾ |H |
2
min(τ )

for t ⩾ τ . Then (6-2) yields(
∂

∂t
− 1

)
H 2 ⩾

1
2n

H 4, t ⩾ τ.

By the maximum principle, H 2 blows up in finite time. This contradicts the infinity
of T . Therefore, we obtain H 2 ⩽ Ce−εt/8 for t ∈ [0, ∞) for a uniform positive
constant C . By Theorem 4.4, |h|

2
= |h̊|

2
+

1
n |H |

2 ⩽ Ce−εt/8 for t ∈ [0, ∞), which
implies that Mt converges to a closed totally geodesic hypersurface M∞ as t → ∞.
However, there is no closed totally geodesic hypersurface in QP(n+1)/4, see, e.g.,
Corollary 7.2 in [25]. Therefore, we get a contradiction, and hence T < ∞.

So T is finite, and maxMt |h|
2 blows up as t → T . From the preserved pinch-

ing condition, |H |max(t) also blows up as t → T . By Theorem 5.3, for any
η ∈ (0,

√
ε/4nπ), there exists a positive number 9 = 9(η) > 1, such that

|∇ H | < (ηH)2
+ 9 for t ∈ [0, T ).

Since |H |max(t) blows up as t → T , there exists a time τ1 depending on η, such that

|H |
2
max ⩾ max

{
29

η2 ,
8n
ε

}
on Mτ1,
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where ε > 0 is as in (4-1). Then we get |∇ H | ⩽ 2η2
|H |

2
max on Mτ1 . Similarly as

above, we obtain

(6-3) |H |
2
min ⩾ (1 − η)|H |

2
max on Mτ1 .

By (4-1) and (6-1), one has K ⩾ 1
2(εH 2

− n) for all t ∈ [0, T ). Hence for small
η > 0, we have the following estimate at t = τ1:

K ⩾ 1
4εH 2

+
1
4 [ε(1 − η)|H |

2
max − 2n] ⩾ 1

4εH 2
+

1
8(ε|H |

2
max − 4n) ⩾ 1

16ε|H |
2
max.

This implies diam(Mτ1) ⩽ 4π/(
√

ε|H |max).
Furthermore, by Theorem 5.3 and (6-3) one has that for t ⩾ τ1,

|∇ H |
2 < 2(ηH)4

+ 292 ⩽ 2(ηH)4
+

1
4η4

|H |
2
max(τ1) ⩽ 2(ηH)4

+
1
2η4

|H |
2
min(τ1).

Hence for t ⩾ τ1, we have

(6-4)
(

∂

∂t
− 1

)
H 2 ⩾ −2|∇ H |

2
+

2
n

H 4 ⩾
1
n

H 4
−

1
2n

|H |
4
min(τ1)

provided that η > 0 is sufficiently small. By the maximum principle, we get
H 2 ⩾ |H |

2
min(τ1) for t ⩾ τ1. Then (6-4) yields(

∂

∂t
− 1

)
H 2 ⩾

1
2n

H 4, t ⩾ τ1.

By the maximum principle, |H |
2
min(t) is increasing on [τ1, T ). So

|H |
2
max(t) ⩾ |H |

2
min(t) ⩾ |H |

2
min(τ1) ⩾

1
2 |H |

2
max(τ1) ⩾ max

{
9

η2 ,
4n
ε

}
for all t ⩾ τ1 and for every η > 0 sufficiently small. Hence |∇ H | ⩽ 2η2

|H |
2
max

for all t ⩾ τ1. By a similar argument, we get |H |
2
min ⩾ (1 − η)|H |

2
max for all η

sufficiently small and all t ⩾ τ1. This implies |H |min/|H |max → 1 as t → T .
Since for t ⩾ τ1,

K ⩾ 1
4εH 2

+
1
8(ε|H |

2
max − 4n) ⩾ 1

16ε|H |
2
max,

we have
diam(Mt) ⩽

4π
√

ε|H |max(t)

for all t ⩾ τ1. So diam(Mt) → 0, and by a similar argument as in [10], Mt shrinks
to a single point as t → T .

Now we dilate the metric of the ambient space such that the hypersurface main-
tains its volume along the flow. Using the same method as in [19], we can prove
that the sequence of time-slices of rescaled flow corresponding to any sequence
of times that tends to infinity has a subsequence that converges to a round sphere.
This proves that the limit point of the mean curvature flow is round. □
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AND FOURIER–JACOBI COEFFICIENTS
OF SIEGEL CUSP FORMS OF DEGREE 2

MURUGESAN MANICKAM, KARAM DEO SHANKHADHAR

AND VASUDEVAN SRIVATSA

The nonvanishing of the first Fourier–Jacobi coefficient of a Siegel eigen-
form F gives us that the vanishing of its m-th Fourier–Jacobi coefficient F |ρm

implies the vanishing of its m-th eigenvalue λF(m). Conversely, we prove
that for any odd, squarefree m if λF(m) is zero then F |ρm vanishes. While
investigating this converse question and its important consequences, we
generalize certain existing results of Kohnen and Skoruppa (1989) for index 1
Jacobi cusp forms to any arbitrary index, which are also of independent
interest.

1. Introduction

In [6], Kohnen and Skoruppa introduced a novel Dirichlet series attached to any
two Siegel cusp forms of degree 2 involving their Fourier–Jacobi coefficients. More
importantly they could connect the Dirichlet series attached to a Siegel eigenform
and any Siegel cusp form in the Maass space to the spinor zeta function of the Siegel
eigenform. In particular, this connection gives us that the image of the m-th Fourier–
Jacobi coefficient under certain adjoint operator is same as the m-th eigenvalue
times the first Fourier–Jacobi coefficient of the Siegel eigenform (see (1)). Formally
this could be viewed as an analogue of the relation between Fourier coefficients and
eigenvalues of the Hecke eigenforms in the degree 1 case. Therefore it is natural to
explore the relation between Fourier–Jacobi coefficients and eigenvalues further. In
this paper, we take up this problem and investigate it in detail.

To state our results precisely, let us first introduce some notation. Throughout this
article, k stands for an even integer and k ⩾ 4. Let Sk(02) be the space of Siegel cusp
forms of weight k for the symplectic group 02 := Sp4(Z). Let J cusp

k,m denote the space
of Jacobi cusp forms of weight k and index m for the group SL2(Z)⋉ (Z × Z). For
any l ⩾ 1, let Vm,l : J cusp

k,m → J cusp
k,ml be the linear operator defined by [3, page 41, (2)]
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and let TJ,l : J cusp
k,m → J cusp

k,m be the l-th Hecke operator on Jacobi forms defined by
[3, page 41, (3)]. For m = 1, Kohnen and Skoruppa [6, page 549, Proposition (i)]
calculated the Fourier coefficients of the adjoint operator V ∗

1,l of the operator V1,l .
For any l ⩾ 1, let Ts,l denote the l-th Hecke operator on Sk(02) and let ρl denote
the l-th projection of any element in Sk(02) to its l-th Fourier–Jacobi coefficient
in J cusp

k,l . By using a result of Kohnen and Skoruppa [6, page 541, Theorem 2], one
gets the following interesting identity [7, Lemma 2.1]. For any F ∈ Sk(02) and
l ⩾ 1, we have

(1) F |Ts,l |ρ1 = F |ρℓ |V ∗

1,l .

Note that the above identity gives the first Fourier–Jacobi coefficient of the image of
the l-th Hecke operator Ts,l . Manickam [7] used this identity crucially to establish
the nonvanishing of the first Fourier–Jacobi coefficient of any Siegel eigenform
in Sk(02). By using this nonvanishing result, the identity (1) gives us the following
result. For any Siegel eigenform F ∈ Sk(02) and any l ⩾ 1, we have

(2) F |ρl = 0 =⇒ λF (l)= 0,

where F |Ts,l = λF (l)F . In this article, we investigate the converse of (2) and its
interesting consequences through certain important generalizations.

We first calculate the Fourier coefficients of the adjoint operator V ∗

m,l , which
generalizes the above mentioned result of Kohnen and Skoruppa [6, page 549,
Proposition (i)] to any index m ⩾ 1. Our approach is quite different from the one
taken in the literature.

Proposition 1.1. Let φ ∈ J cusp
k,ml be a Jacobi cusp form with the Fourier series

expansion

φ(τ, z)=

∑
n,r∈Z

r2<4lmn

cφ(n, r) qn ξ r , q = e2π iτ , ξ = e2π i z.

Then we have
φ |V ∗

m,l(τ, z)=

∑
n,r∈Z

r2<4mn

cφ |V ∗

m,l
(n, r) qn ξ r ,

where

cφ |V ∗

m,l
(n, r) :=

∑
d |l

dk−2
d−1∑
s=0

d |(ms2+rs+n)

cφ

(
(ms2

+ rs + n) l
d2 ,

(r + 2ms) l
d

)
.

Let J cusp, new
k,m denote the space of Jacobi cusp newforms of weight k and in-

dex m, considered and studied extensively in [11, page 138]. As a consequence of
Proposition 1.1 we derive the following identity of the operators on J cusp, new

k,m which
generalizes the result of Kohnen and Skoruppa [6, page 549, Proposition (ii)] in the
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index 1 case to any arbitrary index m ⩾ 1. We follow the steps of the proof sketched
in the index 1 case with appropriate modifications. For the sake of completion and
for the benefit of the readers we provide the proof in Section 3 highlighting the
main steps.

Proposition 1.2. Let φ ∈ J cusp, new
k,m and l be any positive integer coprime to m. Then

φ |Vm,l V ∗

m,l = φ

∣∣∣∑
d |l

dk−2ψ(d) TJ,(l/d),

where ψ(d)= d
∏

p |d

(
1 +

1
p

)
.

Now, we generalize the identity (1) to get the m-th Fourier–Jacobi coefficient of
the image of Siegel cusp forms under the Hecke operator Ts,pδ , where p is a prime
and δ is a positive integer.

Theorem 1.3. Let F ∈ Sk(02) and p be any prime. Then for any two positive
integers δ and m with p ∤ m, we have

(3) F |Ts,pδ |ρm = F |ρmpδ |V
∗

m,pδ .

Also, we have the following two identities:

(4) F |Ts,p |ρp = F |ρp2 |V ∗

p,p + pk−2 F |ρ1 |V1,p

and

(5) F |Ts,p2 |ρp = F |ρp3 |V ∗

p,p2 + pk−2 F |ρp |TJ,p + p2k−4 F |ρp.

Note that the algebra of the Hecke operators acting on the space Sk(02) is
generated by Ts,p and Ts,p2 , where p varies over primes. Using the fact that the
operator V1,p : J cusp

k,1 → J cusp
k,p is injective together with the identity (4), we have:

Corollary 1.4. Let p be any prime. For any Siegel eigenform F ∈ Sk(02) at least
one of the Fourier–Jacobi coefficients F |ρp and F |ρp2 is nonzero.

For any Siegel eigenform F ∈ Sk(02), we have F |ρp2 |V ∗

1,p2 = λF (p2)F |ρ1

from (1). On the other hand, by applying V ∗

1,p on both sides of the identity (4) and
then by using (1) together with Proposition 1.2, we get:

Corollary 1.5. Let F ∈ Sk(02) and p be any prime such that F |Ts,p = λF (p)F.
Then we have F |ρp2 |V ∗

p,pV ∗

1,p = (λ2
F (p)− p2k−3

− p2k−4)F |ρ1− pk−2 F |ρ1 |TJ,p.

Our next result shows that any nonzero Fourier–Jacobi coefficient of odd, square-
free index of a Siegel cusp form cannot be a newform. In particular, we prove the
following theorem.

Theorem 1.6. Let F ∈ Sk(02) and m ⩾ 3 be any odd, squarefree integer. If
F |ρm ∈ J cusp, new

k,m then F |ρm = 0.
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Our next result shows that the converse of (2) is also true for l odd, squarefree.
More precisely, we prove:

Theorem 1.7. Let F ∈ Sk(02) be a Siegel eigenform with n-th eigenvalue λF (n).
Then for any odd, squarefree positive integer m, we have

λF (m)= 0 ⇐⇒ F |ρm = 0.

Remark 1.8. The reverse direction ⇐ of Theorem 1.7 follows from [7] (see (2))
and that only direction ⇒ is proved here. To establish =⇒ part for a given odd,
squarefree positive integer m we require the Siegel cusp form to be eigenvector
only for the Hecke operators Ts,l with l |m. Also, we only need Proposition 1.1,
the identity (3) of Theorem 1.3 and Theorem 1.6, not any other result stated above.

By using the multiplicative property of the eigenvalues of a Siegel eigenform
together with Theorem 1.7, we get:

Corollary 1.9. Let F ∈ Sk(02) be a Siegel eigenform. Then for any odd prime p,
we have

F |ρp = 0 =⇒ F |ρm = 0

for any odd, squarefree positive integers m with p |m.

If m is any positive integer such that λF (m) ̸= 0 then (2) implies the existence
of infinitely many symmetric, half-integral, positive definite matrices T such that
the quadratic form T represents m and aF (T ) ̸= 0. Conversely, we establish the
following two corollaries of Theorem 1.7 assuring the nonvanishing of certain
eigenvalues.

Corollary 1.10. Let F ∈ Sk(02) be a Siegel eigenform with n-th eigenvalue λF (n)
and T be a symmetric, half-integral, positive definite matrix such that the T -th
Fourier coefficient aF (T ) ̸= 0. If m is any odd, squarefree, positive integer repre-
sented by the quadratic form T then λF (m) ̸= 0.

Corollary 1.11. Let F ∈ Sk(02) be a Siegel eigenform with n-th eigenvalue λF (n).
Then there exists a positive integer 1 ⩽ n ⩽ k

2 − 2 such that for any odd, squarefree,
positive integer m of the form x2

+ ny2 we have λF (m) ̸= 0.

Remark (concluding remark). One may ask more generally about the nonvanishing
of the m-th eigenvalue λF (m) of a Siegel eigenform F if its m-th Fourier–Jacobi
coefficient F |ρm is nonzero. In this paper, we answer it affirmatively for any odd,
squarefree m but could not address this question for arbitrary m. However, the
intermediate results obtained by us while addressing the question highlight the
importance of the theory of Jacobi forms and provide better understanding of certain
Hecke-type operators on Jacobi forms.

The question of nonvanishing of Fourier–Jacobi coefficients of Siegel cusp
forms of arbitrary degree and eigenvalues of Siegel eigenforms of degree 2 is also
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considered in [2]. However, the results obtained there are of different nature and
do not address the question asked here in this paper.

2. Prerequisites

We refer to [1], [3] and [10] for definitions and basic properties of Jacobi and Siegel
modular forms. In this section we fix notation and recall certain results.

Jacobi forms. Let G J be the group of triplets [M, X, ξ ], M ∈ SL2(R), X ∈ R2,
ξ ∈ C with |ξ | = 1, via the multiplication

[M, X, ξ ][M ′, X ′, ξ ′
] = [MM ′, XM ′

+ X ′, ξξ ′e2π i det
(

X M ′

X ′

)
].

The group G J acts on the set of functions {φ : H × C → C} as

φ|k,m

[(
a b
c d

)
, (λ, µ), ξ

]
(τ, z)

= ξm(cτ + d)−ke2π im
(
−

c(z+λτ+µ)2
cτ+d +λ2τ+2λz+λµ

)
φ

(
aτ + b
cτ + d

,
z + λτ +µ

cτ + d

)
.

We consider the action of the discrete subgroup SL2(Z)⋉ (Z × Z) of G J on the
set of functions on H × C by fixing ξ = 1. Let Jk,m (resp. J cusp

k,m ) denote the space
of Jacobi forms (resp. Jacobi cusp forms) of weight k and index m for the group
SL2(Z)⋉(Z×Z). For any l ⩾ 1, let Ul, Vl and Tl be the operators acting on Jk,m de-
fined and studied systematically in [3, Section 4]. We are denoting them respectively
by Um,l , Vm,l and TJ,l throughout the paper to avoid certain potential confusions.
The operator TJ,l : Jk,m → Jk,m is called the l-th Hecke operator on Jacobi forms.

Any φ(τ, z) ∈ J cusp
k,m with Fourier series expansion

φ(τ, z)=
∑

n,r∈Z, r2<4mn
cφ(n, r) qn ξ r , q = e2π iτ , ξ = e2π i z,

admits the following theta decomposition [3, pages 58–59]:

(6) φ(τ, z)=

2m−1∑
µ=0

hµ(τ ) θm,µ(τ, z),

where

hµ(τ ) :=
∑
N⩾1

N≡−µ2(mod4m)

cφ
(N +µ2

4m
, µ
)

q N/4m, θm,µ(τ, z) :=
∑
r∈Z

r≡µ(mod2m)

qr2/4m ξ r .

By using the transformation law of the Jacobi form φ and the Jacobi theta func-
tions θm,µ with respect to the inversion (τ, z)→

(
−

1
τ
, z
τ

)
, we get

(7) hµ
(
−1
τ

)
=

τ k
√

2mτ/ i

2m−1∑
ν=0

eπ iµν/m hν(τ ).
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Let J cusp, new
k,m be the space of Jacobi cusp newforms considered in [11, page 138]

giving the direct sum decomposition

(8) J cusp
k,m = J cusp, new

k,m

⊥⊕( ⊕
l⩾1, d⩾1

ld2 |m, ld2>1

J cusp, new
k,(m/ ld2)

|Um/ ld2, d Vm/ l, l

)
.

Note that the first direct sum in the above decomposition is orthogonal. If m is
squarefree, then for any divisor l > 1 of m there is only one copy of the newforms
space of index m/ l given by J cusp, new

k,(m/ l) |V(m/ l),l in the oldforms direct sum decom-
position. By using the Shimura correspondence and the Atkin–Lehner theory for
modular forms on the congruence subgroups 00(N ), we get that for squarefree
index m all the direct sums in the above decomposition (8) are orthogonal with
respect to the Petersson inner product. For a detailed proof of this fact we refer to [5,
Lemma 4]. In [8, Section 5.1], the space of Jacobi cusp newforms has been defined
differently but in [7, page 406] it is observed that this newforms space is same as the
one considered earlier in [11]. To prove Theorem 1.6, we use an important property
of newforms [8, Corollary 5.3] saying that the (n, r)-th Fourier coefficient cφ(n, r)
of a Jacobi cusp form φ ∈ J cusp, new

k,m depends only on the discriminant r2
− 4mn

and not on r(mod 2m).

Siegel modular forms. The real symplectic unimodular group of degree 2 is de-
fined by

Sp4(R)= {M ∈ GL4(R) : MJ tM = J },

where J =
( 02

−I2

I2
02

)
, tM denotes the transpose matrix of the matrix M , 02 is the

2 × 2 zero matrix and I2 is the 2 × 2 identity matrix. Let 02 := Sp4(Z) be the
subgroup of Sp4(R) consisting of matrices with integer entries. Let

H2 := {Z ∈ M2(C) : Z =
tZ , Im(Z) > 0}

be the Siegel upper half-space of degree 2. We denote the space of Siegel mod-
ular forms (resp. cusp forms) on H2 of weight k for the group 02 by Mk(02)

(resp. Sk(02)). There is an algebra of Hecke operators acting on the space Mk(02)

which preserves Sk(02). For any l ⩾ 1, let Ts,l denote the l-th Hecke operator
on Sk(02). An element in Sk(02) is called a Siegel eigenform if it is a common
eigenvector of all the Hecke operators Ts,l , l ⩾ 1. Note that the space Sk(02) is a
Hilbert space under the Petersson inner product.

Any F ∈ Sk(02) has the Fourier series expansion of the form

F(Z)=

∑
T

aF (T ) e2π i trace(TZ),

where the sum varies over the set of symmetric, half-integral, positive definite
2 × 2 matrices. Writing Z =

(
τ
z

z
τ ′

)
∈ H2, where τ, τ ′ are in the complex upper
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half-plane H and z ∈ C, we get the following Fourier–Jacobi decomposition [3,
Theorem 6.1]:

F(Z)= F(τ, z, τ ′)=

∑
m⩾1

φm(τ, z) e2π imτ ′

,

where

φm(τ, z) :=

∑
n,r∈Z

r2<4nm

AF

(
n r/2

r/2 m

)
qn ξ r

belongs to the space J cusp
k,m and is called the m-th Fourier–Jacobi coefficient of F .

3. Proof of Propositions 1.1 and 1.2

Proof of Proposition 1.1. Let l,m be any two positive integers. Let 0 := SL2(Z).
On the space J cusp

k,m , the index changing Hecke operator Vm,l is defined by

φ |Vm,l(τ, z) := lk−1
∑

(
a
c

b
d
)
∈0\M2(Z)

ad−bc=l

(cτ + d)−k eml( −cz2
cτ+d )φ

(
aτ + b
cτ + d

,
lz

cτ + d

)

= l(k/2)−1
∑

(
a
0

b
d
)
∈M2(Z)

ad=l,b (mod d)

φ√
l

∣∣∣∣
k,ml

[
1

√
l

(
a b
0 d

)
, (0, 0), 1

]
(τ, z),

where φ√
l(τ, z) := φ(τ,

√
l z). To prove our claim, first we calculate the image of

Jacobi Poincaré series Pk,m;n,r , n, r ∈ Z with r2
−4mn< 0, under the operator Vm,l .

By using the definition of Jacobi Poincaré series, we have

Pk,m;n,r |Vm,l

=

∑
(
α
0
β
δ

)
∈M2(Z)

αδ=l,β(modδ)

l(k/2)−1
( ∑

(
a
c

b
d
)
∈0∞\0

λ∈Z

e(nτ + r z)
∣∣∣∣
k,m

[(
a b
c d

)
, (λa, λb), 1

])
√

l

∣∣∣∣
k,ml[

1
√

l

(
α β

0 δ

)
, (0, 0), 1

]
.

Using the definition of φ√
l(τ, z)=φ(τ,

√
l z) and then adjusting the stroke operators

in the inner sum, we obtain

Pk,m;n,r |Vm,l =

∑
(
α
0
β
δ

)
∈M2(Z)

αδ=l, β (modδ)

l(k/2)−1
∑

(
a
c

b
d

)
∈0∞\0, λ∈Z

e(nτ + r
√

lz)
∣∣∣∣
k,ml[(

a b
c d

)
,

(
λa
√

l
,
λb
√

l

)
, 1
][

1
√

l

(
α β

0 δ

)
, (0, 0), 1

]
.
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In the Jacobi group SL2(R)⋉ (R2
× S1), where S1

:= {z ∈ C : |z| = 1}, we have[(
a b
c d

)
,

(
λa
√

l
,
λb
√

l

)
, 1
][

1
√

l

(
α β

0 δ

)
, (0, 0), 1

]
=

[
1

√
l

(
α′ β ′

0 δ′

)
,

(
λα′

l
,
λβ ′

l

)
, 1
][(

a′ b′

c′ d ′

)
, (0, 0), 1

]

for some
(
α′

0
β ′

δ′

)
∈ M2(Z) with α′δ′ = l and

(a′

c′

b′

d ′

)
∈ 0 with the following crucial

property. These matrices vary over a complete set of representatives of the indexing
sets in the above summation as the matrices

(
α
0
β
δ

)
and

(a
c

b
d

)
vary over the same,

respectively. Using this and interchanging the order of the summations, we get

Pk,m;n,r |Vm,l =

∑
(

a′

c′
b′

d′

)
∈0∞\0

λ∈Z

l(k/2)−1
∑

(
α′

0
β′

δ′

)
∈M2(Z)

α′δ′=l,β′ (mod δ)′

e(nτ + r
√

lz)
∣∣∣∣
k,ml

[
1

√
l

(
α′ β ′

0 δ′

)
,

(
λα′

l
,
λβ ′

l

)
, 1
][(

a′ b′

c′ d ′

)
, (0, 0), 1

]
.

For any λ ∈ Z, we write λ= λ′δ′ + s with s (mod δ)′. Then λ′ varies over Z and s
varies over a complete residue system mod δ′. Therefore, we have

Pk,m;n,r |Vm,l =

∑
(

a′

c′
b′

d′

)
∈0∞\0

λ′∈Z

l(k/2)−1
∑

δ′ |l,β′ (mod δ)′
s (mod δ)′

e(nτ+r
√

lz)
∣∣∣∣
k,ml

[
1

√
l

(
l/δ′ β ′

0 δ′

)
,

(
s
δ′
,
(s+λ′δ′)β ′

l

)
,1
][(

a′ b′

c′ d ′

)
,(λ′a′,λ′b′),1

]
.

Let us first simplify the inner sum. We set

Ik,m;l :=

∑
δ|l,β(mod δ)

s(mod δ)

e(nτ + r
√
ℓz)
∣∣∣∣
k,ml

[
1

√
l

(
l/δ β
0 δ

)
,

(
s
δ
,
(s + λ′δ)β

l

)
, 1
]

= lk/2
∑
δ |l

s(mod δ)

δ−ke
((

l
δ2 (ms2

+ rs + n) τ
)

+

(
l
δ
(r + 2sm) z

))
∑

β(mod δ)

e
(
β

δ
(ms2

+ rs + n)
)

= lk/2
∑

δ |l,s(mod δ)
δ |(ms2

+rs+n)

δ−k+1e
((

l
δ2 (ms2

+ rs + n) τ
)

+

(
l
δ
(r + 2sm) z

))
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Therefore, we have

Pk,m;n,r |Vm,l

=

∑
δ |l

(
l
δ

)k−1 ∑
s(mod δ)

δ |(ms2
+rs+n)

∑
(

a
c

b
d
)
∈0∞\0

λ∈Z

e
((

l
δ2 (ms2

+ rs + n) τ
)

+

(
l
δ
(r + 2sm) z

))∣∣∣∣
k,ml

[(
a b
c d

)
, (λa, λb), 1

]
=

∑
δ |l

(
l
δ

)k−1 ∑
s(mod δ)

δ |(ms2
+rs+n)

P
k,ml; (ms2+rs+n) l

δ2
,
(r+2sm) l

δ

.

Next, we have

cφ |V ∗

m,l
(n, r)

=
(2π(4mn − r2))k−3/2

2k−5/20(k − 3/2)mk−2 ⟨φ |V ∗

m,l, Pk,m;n,r ⟩

=
(2π(4mn − r2))k−3/2

2k−5/20(k − 3/2)mk−2

〈
φ,
∑
δ |l

(
l
δ

)k−1 ∑
s(mod δ)

δ |(ms2
+rs+n)

P
k,ml; (ms2+rs+n) l

δ2
,
(r+2sm) l

δ

〉

=

∑
d |l

dk−2
∑

s(mod d)
d |(ms2

+rs+n)

cφ

(
(ms2

+ rs + n) l
d2 ,

(r + 2sm) l
d

)
. □

Proof of Proposition 1.2. For all the facts used in this proof about the operators
TJ,l , Vm,l and the space J cusp, new

k,m , we refer to [3; 11]. Since l and m are coprime,
the right-hand side operator

TJ,l :=

∑
d |l

dk−2ψ(d)TJ,(l/d)

is multiplicative. Moreover, the operator Vm,l is multiplicative and the Hecke
operator TJ,n commutes with the operator Vm,l if gcd(n, lm) = 1. Therefore it is
enough to establish the identity for prime powers, that is, l = pα, where p is
a prime and α is any positive integer. Since the space J cusp, new

k,m has a basis of
simultaneous eigenfunctions of all the Hecke operators TJ,n with gcd(n,m) = 1,
it is enough to check the identity for such eigenforms. Let ϕ ∈ J cusp, new

k,m be any
such eigenform. The Hecke operators TJ,n with gcd(n,m)= 1 are hermitian and
commute with TJ,l ′ and Vm,t for gcd(nl ′,m)= 1 and gcd(n,mt)= 1. Therefore the
Jacobi forms ϕ |Vm,l V ∗

m,l and ϕ |Tl are again simultaneous eigenfunctions of all the
Hecke operators TJ,n for gcd(n, lm)= 1 with eigenvalues same as of ϕ. By using
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multiplicity one result, we get that the Jacobi forms ϕ |Vm,l V ∗

m,l and ϕ |Tl both are
constant multiples of ϕ. To show that both are same we compare their (n, r)-th
Fourier coefficients with the condition that r2

− 4mn is a fundamental discriminant
and prove that they are equal. We have

(9) cϕ |Vm,l V ∗

m,l
(n, r)=

∑
t |l

tk−1
(∑

d |t

1
d

d−1∑
s=0

d |ms2+rs+n

1
)

cϕ

(
n l2

t2 , r
l
t

)
.

The cardinality of the set

{s (mod d) : ms2
+ rs + n ≡ 0 (mod d)}

is same as the cardinality of the set {x(mod 2d) : x2
≡ (r2

− 4mn) (mod 4d)}. Let
us denote this cardinality by Nd(r2

− 4mn). By using [3, page 50, (16)], we have

cϕ

(
n l2

t2 , r
l
t

)
=

∑
δ |(l/t)

µ(δ)χD(δ) δ
k−2 cϕ |TJ,(l/δt)(n, r),

where D = r2
− 4mn and χD denotes the Dirichlet character

( D
·

)
. By using the

above observations in (9), we see that it is sufficient to prove the following formal
identity of the operators:

(10)
∑
t |l

tk−1
∑
d |t

Nd(D)
d

∑
δ |(l/t)

µ(δ)χD(δ) δ
k−2 TJ,(l/δt) =

∑
t |l

tk−2ψ(t)TJ,(l/t).

Since D is a fundamental discriminant, by using [3, page 21, (6)] we get that

Np(D)= (1 +χD(p)) and Npa (D)= Np(D)

for any prime p, positive integer a. By using these facts we get that the coefficients
of TJ,pa , 1 ⩽ a ⩽ α, in both sides of (10) are equal. □

4. Proof of Theorem 1.3

We prove the identities by equating the Fourier coefficients on both sides. First
let us write down the Fourier coefficients of F |Ts,pδ , where p is a prime and δ is a
positive integer [9, Corollaries 2.2, 2.4 and 2.5]. For any positive integer l and any
finite sequence of integers {a1, a2, . . . , an}, we use the notation δl(a1, a2, . . . , an)

defined to be 1 if l | gcd(a1, a2, . . . , an) and 0 otherwise. Let

F(Z)=

∑
T =

(
n

r/2
r/2
m

)
>0

AF (n, r,m) e2π i trace(TZ),
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where T > 0 indicates that T is positive definite. Then we have

(11) AF |Ts,p(n, r,m)= AF (pn, pr, pm)

+ pk−2
( p−1∑

α=0
p|(n+rα+mα2)

AF

(
n + rα+ mα2

p
, r + 2mα,mp

)
+ δp(m) AF

(
np, r,

m
p

))
+ p2k−3δp(n, r,m) AF

(
n
p
,

r
p
,

m
p

)
.

Also, we have

(12) AF |Ts,p2 (n, r,m)

= AF (p2n, p2r, p2m)+ p2k−3 δp(n, r,m) AF (n, r,m)

+ p4k−6δp2(n, r,m)AF

(
n
p2 ,

r
p2 ,

m
p2

)
+ pk−2

( p−1∑
α=0

p|(n+rα+mα2)

AF

(
p
(

n + rα+ mα2

p
, r + 2mα,mp

))
+ δp(m) AF

(
p
(

np, r,
m
p

)))

+ p2k−4

( p2
−1∑

α=0
p2 |(n+rα+mα2)

AF

(
n + rα+ mα2

p2 , r + 2mα,mp2
)

+

p−1∑
β=0

p2 |(r pβ+m)

AF

(
np2, r + 2npβ, nβ2

+
r pβ + m

p2

))

+ p3k−5

( p−1∑
α=0

p2 |(n+rα+mα2),p |r,p |m

AF

(
n + rα+ mα2

p2 ,
r + 2mα

p
,m
)

+ δp(n, r) δp2(m) AF

(
n,

r
2p
,

m
p2

))
.

If p ∤ m then we have

(13) AF |Ts,pδ
(n, r,m)

= AF (pδ(n, r,m))

+

δ∑
β=1

p(k−2)β
( pβ−1∑

α=0
pβ |(n+rα+mα2)

AF
(

pδ−β((n+rα+mα2)p−β, r+2mα,mpβ)
))
.

First we compare the coefficients of both sides of (3). Let (n, r) be any pair of
integers with r2 < 4mn. By using (13), we have
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(14) cF |Ts,pδ |ρm (n, r)

= AF |Ts,pδ
(n, r,m)

= AF (pδ(n, r,m))

+

δ∑
β=1

p(k –2)β
( pβ –1∑

α=0
pβ |(n+rα+mα2)

AF
(
(n+rα+mα2)pδ–2β, (r+2mα)pδ–β,mpδ

))
.

By using Proposition 1.1, we get

(15) cF |ρmpδ |V
∗

m,pδ
(n, r)

= cF |ρmpδ
(pδn, pδr)

+

δ∑
β=1

p(k−2)β
( pβ−1∑

s=0
pβ |(n+rs+ms2)

cF |ρmpδ

(
(n+rs+ms2)pδ−2β, (r +2ms)pδ−β

))
.

Now by comparing (14) and (15) we get that F |Ts,pδ |ρm = F |ρmpδ |V ∗

m,pδ .
Next we compare the coefficients of both sides of (4) and then of (5). By

using (11), we have

(16) cF |Ts,p |ρp(n, r)

= AF |Ts,p(n, r, p)

= AF (pn, pr, p2)

+ pk−2
( p−1∑

α=0
p|(n+rα)

AF

(
n + rα+ pα2

p
, r + 2pα, p2

)
+ AF (np, r, 1)

)
+ p2k−3 δp(n, r) AF

(
n
p
,

r
p
, 1
)
.

By using Proposition 1.1, we have

(17) cF |ρp2 |V ∗
p,p
(n, r)=

∑
d | p

dk−2
d−1∑
s=0

d |(ps2+rs+n)

cF |ρp2

(
(ps2

+ rs + n)p
d2 , (r+2ps)

p
d

)
.

By using [3, Theorem 4.2, 7], we have

(18) cF |ρ1|V1,p(n, r)=

∑
d |(n,r,p)

dk−1cF |ρ1

(
np
d2 ,

r
d

)
.

Comparing (16), (17) and (18), we get that

F |Ts,p |ρp = F |ρp2 |V ∗

p,p + pk−2 F |ρ1 |V1,p.
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By using (12), we have

(19) cF |Ts,p2 |ρp(n, r)

= AF |Ts,p2 (n, r, p)

= AF (p2n, p2r, p3)+ p2k−3δp(n, r) AF (n, r, p)

+ pk−2
( p−1∑

α=0
p|(n+rα)

AF
(
n + rα+ pα2, (r + 2pα)p, p3)

+ AF (np2, r p, p)
)

+ p2k−4
( p2

−1∑
α=0

p2 |(n+rα+pα2)

AF

(
n + rα+ pα2

p2 , r + 2pα, p3
)

+

p−1∑
β=0

p|(rβ+1)

AF

(
np2, r + 2npβ, nβ2

+
rβ + 1

p

))

+ p3k−5
( p−1∑

α=0
p2 |(n+rα+pα2),p |r

AF

(
n + rα+ pα2

p2 ,
r + 2pα

p
, p
))
.

By using Proposition 1.1, we have

(20) cF |ρp3 |V ∗

p,p2
(n, r)

=

∑
d | p2

dk−2
d−1∑
s=0

d |(ps2+rs+n)

cF |ρp3

(
(ps2

+ rs + n)p2

d2 , (r + 2ps)
p2

d

)
.

By using [3, page 56, (24)], we have

(21) cF |ρp |Tp(n, r)

=


cF |ρp(p

2n, pr) if p ∤ r,
cF |ρp(p

2n, pr)− pk−2cF |ρp(n, r) if p |r, p ∤ n,
cF |ρp(p

2n, pr)+ pk−2(p − 1) cF |ρp(n, r)
+ p2k−3∑p−1

α=0, p2 |(n+rα+pα2)
cF |ρp

(n+rα+pα2

p2 ,
r+2pα

p

)
if p |r, p |n.

Suppose p ∤ r . Then there exists unique β ∈ {0, 1, . . . p − 1} such that p |rβ + 1.
Suppose that rβ + 1 = lp for some l ∈ Z. Then we have

(22)
(

−p r
−β l

)(
n r/2

r/2 m

)(
−p −β

r l

)
=

(
np2 (r + 2npβ)/2

(r + 2npβ)/2 nβ2
+ (rβ + 1)/p

)
.

By comparing the three equations (19), (20), (21) and also using (22), we get that

F |Ts,p2 |ρp = F |ρp3 |V ∗

p,p2 + pk−2 F |ρp |TJ,p + p2k−4 F |ρp.
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5. Proof of Theorem 1.6

Suppose F |ρm = ϕm ∈ J cusp, new
k,m . By using the Eichler–Zagier isomorphism Zm

given in [8, Theorem 5.4], we get that ϕm | Zm is in the space

S+,m,new
k−1/2 (4m) :=

{
f ∈ S+, new

k−1/2 (4m) : a f (n)= 0 unless (−1)k−1n ≡□ (mod 4m)
}
,

where S+, new
k−1/2 (4m) is the subspace of newforms inside the Kohnen’s plus space

S+

k−1/2(4m) studied in [4]. Moreover, we have

aϕm | Zm (|D|)= cϕm

(r2
−D

4m
, r
)

for any 0> D, r ∈ Z with D ≡ r2 (mod 4m). Let p be an odd prime dividing m
and let Up2 be the level dividing operator

∑
n⩾1 a(n) qn

7→
∑

n⩾1 a(p2n) qn . Since
ϕm | Zm ∈ S+, new

k−1/2 (4m), by using [4, Theorem 1] we get that

ϕm | Zm |(Up2 + pk−2wp)= 0,

where wp is the involution operator wm
p,k−1/2 defined in [4, Section 2, page 39].

From [8, Lemma 5.9] we know that wp acts as the identity operator on S+,m
k−1/2(4m).

Therefore we have ϕm | Zm |(Up2 + pk−2) = 0. Hence for any 0 > D, r ∈ Z,
D ≡ r2 (mod 4m), we have

cϕm

(
p2 r2

−D
4m

, pr
)

+ pk−2cϕm

(r2
−D

4m
, r
)

= 0.

For any n ⩾ 1, r ∈ Z with r2 < 4mn, by taking D = r2
− 4mn we have

(23) cϕm (p
2n, pr)+ pk−2 cϕm (n, r)= 0.

Suppose F |Ts,p = G ∈ Sk(02). By using (11), we write down
(
np, r, m

p

)
-th

coefficients of F |Ts,p to get

pk−2
∑

ν (mod p),p |(rν+ν2 m
p )

AF

(
n +

rν+ ν2(m/p)
p

, r + 2νm
p
,m
)

+ AF (p2n, pr,m)

= AG

(
np, r, m

p

)
.

Suppose p ∤ r . Then there are exactly two choices for ν (mod p) in the left-hand
side sum namely ν = 0 and ν = −r(m/p), where m/p denotes the inverse of m/p
modulo p. Assume that (m/p)(m/p)= 1 + lp for some l ∈ Z. Then we have

pk−2(cϕm (n, r)+cϕm (n +r2l(m/p),−r −2rlp)
)
+cϕm (p

2n, pr)= cG |ρm/p(np, r).

Since (r +2rlp)2 −4m(n +r2l(m/p))= r2
−4mn and ϕm is in the space J cusp, new

k,m ,
by using [8, Corollary 5.3] we get that cϕm (n + r2l(m/p),−r − 2rlp)= cϕm (n, r).
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Hence we have

(24) 2pk−2 cϕm (n, r)+ cϕm (p
2n, pr)= cG |ρm/p(np, r).

From (23) and (24), we get that cϕm (n, r) = cG |ρm/p(np, r) for any n ⩾ 1, r ∈ Z

with p ∤ r , r2 < 4mn. But by using [3, Theorem 4.2, (7)] we get that

cG |ρm/p(np,r) = cG |ρm/p |Vm/p,p(n, r).

But φm ∈ J cusp, new
k,m , therefore by using [11, Lemma 3.1] we get that ϕm = F |ρm = 0.

6. Proof of Theorem 1.7 and its corollaries

Proof of Theorem 1.7. We prove the theorem by induction on the number of prime
factors of m.

Let p be any odd prime such that λF (p)= 0. By using the decomposition given
by (8), we have the following orthogonal decomposition F |ρp = φ1 |V1,p + φp,
where φ1 ∈ J cusp, new

k,1 and φp ∈ J cusp, new
k,p . Note that J cusp, new

k,1 = J cusp
k,1 . By using the

identity (1) and the fact that λF (p)= 0 we get that F |ρp |V ∗

1,p = 0. Then we have

⟨φ1 |V1,p, φ1 |V1,p⟩ = ⟨F |ρp, φ1 |V1,p⟩ = ⟨F |ρp |V ∗

1,p, φ1⟩ = 0.

Therefore we have F |ρp = φp ∈ J cusp, new
k,p . By applying Theorem 1.6, we get that

F |ρp = 0.
Let m be any odd, squarefree, positive integer which is a multiple of at least 2

primes. Then again by using the decomposition (8), we have

F |ρm ∈ J cusp
k,m =

⊕
l |m,l ̸=m

J cusp, new
k,l |Vl,(m/ l) ⊕ J cusp, new

k,m .

Note that all the direct sums in the above decomposition are orthogonal. We write

F |ρm =

∑
l |m,l ̸=m

ϕl |Vl,(m/ l) +ϕm,

where ϕl ∈ J cusp, new
k,l and ϕm ∈ J cusp, new

k,m . Suppose λF (m)= 0. First, by using the
identity (1) we deduce that ϕ1 |V1,m = 0. Next, by using the multiplicative property
of λF (m) we get that λF (p) = 0 for some odd prime p |m. For any l |m, l ̸= m
with p ∤ l, by using the fact that Vl,(m/ l) = Vl,(m/ lp)V(m/p), p we have

⟨ϕl |Vl,(m/ l), ϕl |Vl,(m/ l)⟩ = ⟨F |ρm, ϕl |Vl,(m/ l)⟩

= ⟨F |ρm |V ∗

l,(m/ l), ϕl⟩ = ⟨F |ρm |V ∗

(m/p), pV ∗

l,(m/ lp), ϕl⟩.

By using the identity (3) for δ=1, we have F |ρm |V ∗

(m/p), p =λF (p)F |ρm/p =0. On
the other hand, for any l |m, l ̸= m with p |l, let p′ be any odd prime dividing m/ l.



258 M. MANICKAM, K. D. SHANKHADHAR AND V. SRIVATSA

Again, by using the fact that Vl,(m/ l) = Vl,(m/ lp′)V(m/p′), p′ and the identity (3), we
have

⟨ϕl |Vl,(m/ l), ϕl |Vl,(m/ l)⟩ = ⟨F |ρm |V ∗

l,(m/ l), ϕl⟩

= ⟨F |ρm |V ∗

(m/p′), p′ V ∗

l,(m/ lp′), ϕl⟩

= λF (p′)⟨F |ρm/p′ |V ∗

l,(m/ lp′), ϕl⟩.

Since λF (m/p′)= λF (p) λF (m/pp′)= 0 and m/p′ has fewer prime factors than m,
by using the induction hypothesis we get that F |ρm/p′ = 0. Hence we get that
F |ρm = ϕm ∈ J cusp, new

k,m . Now, by using Theorem 1.6 we get that F |ρm = 0. □

Proof of Corollary 1.10. Let T =
( a

b/2
b/2

c

)
and m = ax2

0 + bx0 y0 + cy2
0 for some

x0, y0 ∈Z. Since m is squarefree, we have gcd(x0, y0)=1. Let A =
( x1

y1

x0
y0

)
∈SL2(Z)

and S =
tAT A, where tA denotes the transpose of A. Then the lower right entry

of S would be m. We have aF (S)= aF (
tAT A)= aF (T ) ̸= 0 and hence F |ρm ̸= 0.

Using Theorem 1.7, we get the corollary. □

Proof of Corollary 1.11. Since F is a Siegel eigenform, we have the nonvanishing of
the first Fourier–Jacobi coefficient of F [7], that is, F |ρ1 ̸= 0. Since F |ρ1 ∈ J cusp

k,1 ,
by using (6) we have the following theta decomposition F |ρ1 = h0 θ1,0 + h1θ1,1.
Since F |ρ1 ̸= 0, by using (7) we get that h0 ̸= 0. Since h0 ∈ Sk−1/2(4) and
dim Sk−1/2(4)= k/2 − 2 for k even, there exists an n0 with 1 ⩽ n0 ⩽ k/2 − 2 such
that the n0-th Fourier coefficient ah0(n0) of h0 is nonzero. Then we have

ah0(n0)= aF

(
n0 0
0 1

)
̸= 0.

Now by using Corollary 1.10, we conclude the proof. □
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CONTINUOUS SOBOLEV FUNCTIONS WITH SINGULARITY
ON ARBITRARY REAL-ANALYTIC SETS

YIFEI PAN AND YUAN ZHANG

Near every point of a real-analytic set in Rn, we make use of Hironaka’s
resolution of singularities theorem to construct a family of continuous func-
tions in W 1,1

loc such that their weak derivatives have (removable) singularities
precisely on that set.

1. Introduction

Given a domain U in Rn, n ≥ 1, denote by W k,p
loc (U ) the Sobolev space consisting

of functions on U whose k-th order weak derivatives exist and belong to L p
loc(U ),

k ∈ Z+, p ≥ 1. We investigate a Sobolev property for the reciprocals of logarithms
of the modulus of real-analytic functions near their zero sets. Namely, given a
real-analytic nonconstant function f on U , consider

(1-1) v :=
1

ln | f |
on U.

As we are solely interested in the Sobolev behavior of v near f = 0, and additional
singularities would be introduced near | f | = 1, we further assume, say, | f | < 1

2
on U . Consequently v is continuous on U . Letting f −1(0) be the zero set of f
in U , we have v| f −1(0) = 0, and v is differentiable on U \ f −1(0). Note that
codimR f −1(0)≥ 1 in general.

According to a classical result of Stein [1993, pp. 71], ln | f | ∈ BMO for any
polynomial f . On the other hand, Shi and Zhang [2022] showed that for a real-
analytic f on U , if codimR f −1(0) ≥ 2, then ln | f | ∈ W 1,1

loc (U ). It is important
to note that this codimension assumption is essential and cannot be dropped. In
comparison to this result, although v in (1-1) exhibits slightly greater regularity
than ln | f |, our first main theorem shows that v belongs to W 1,1

loc (U ) regardless of
the codimension of f −1(0).
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Theorem 1.1. Let U be a domain in Rn, n ≥ 1. Let f be a real-analytic nonconstant
function on U and | f |< 1

2 on U. Then:

(1) 1
ln | f |

∈ W 1,1
loc (U ).

(2) If codimR f −1(0)= 1, then 1
ln | f |

/∈ W 1,p
loc (U ) for any p > 1.

The main idea of the proof is to use the coarea formula to transform the integrals
under consideration into new ones along level sets of the function f . The L1-
integrability and the L p-nonintegrability for p > 1 that we seek are thus conse-
quences of certain quantitative properties of the level sets of f , which can be
conveniently established by utilizing the powerful Hironaka’s resolution of singular-
ities theorem and the Łojasiewicz gradient inequality. A novelty of Theorem 1.1 is
to provide ample W 1,1

loc functions. For instance, 1
ln |P(x)| ∈ W 1,1

loc for any polynomial P
near its zeros. It is also interesting to point out that Theorem 1.1 indicates that
Sobolev spaces in general do not satisfy an openness property, in the sense that
there exists a class of functions in W k,p

loc (U ) for some p ≥ 1 but not in W k,q
loc (U ) for

any q > p.
Unfortunately our method cannot be applied directly in the smooth category, due

to the absence of a Hironaka-type resolution property for smooth functions. It is
natural to wonder if there is an easy way to verify the optimal Sobolev property
of v, say, for any finitely vanishing smooth function f . For instance, consider
the function f (x, y) := y2

− sin(e1/xπ)e−1/x2
, which is smooth near 0 ⊂ R2 and

vanishes to second order at 0. It turns out, with a straightforward computation, that
1

ln | f |
∈ W 1,1 near 0.

As a consequence of Theorem 1.1, the weak derivative ∇v exists on U . Specif-
ically, this implies that the singularity set f −1(0) of ∇v in the classical sense is
actually a removable singularity in the weak sense. In other words, Theorem 1.1
allows us to construct, for any given real-analytic set, a continuous function in W 1,1

loc
such that its weak derivative has a removable singularity precisely on that set.

Corollary 1.2. Let A be a real-analytic set in Rn . For every p ∈ A, there exists an
open neighborhood V of p and a continuous function u ∈ W 1,1

loc (V ), such that the
set of removable singularities of ∇u is A ∩ V .

Finally, we study the Sobolev property of v in the special case when f is a
holomorphic function on U ⊂ Cn . Note that in this case codimR f −1(0)= 2 unless
f ̸= 0 on U .

Theorem 1.3. Let U be a domain in Cn . Let f be a holomorphic nonconstant
function on U and | f |< 1

2 on U. Then:
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(1) 1
ln | f |

∈ W 1,2
loc (U ).

(2) If f −1(0) ̸= ∅, then 1
ln | f |

/∈ W 1,p
loc (U ) for any p > 2.

Corollary 1.4. Let A be a complex analytic set in Cn . For every p ∈ A, there exists
an open neighborhood V of p and a continuous function u ∈ W 1,2

loc (V ), such that
the set of removable singularities of ∇u is A ∩ V .

In view of Theorems 1.1 and 1.3, it seems to have suggested a correlation between
the codimension of the level sets and the Sobolev integrability index. Thus, one may
ask whether v ∈ W 1,d

loc (U ) if codimR f −1(0)= d for some 0 ≤ d ≤ n. Unfortunately
we do not have an answer to this question in general.

2. Proof of Theorem 1.1

Recall that the coarea formula states that, given φ ∈ L1(U ) and a real-valued
Lipschitz function f on U ,

(2-1)
∫

U
φ(x)|∇ f (x)| dVx =

∫
∞

−∞

∫
f −1(t)

φ(x) d Sx dt.

Here given t ∈ R, Sx is the (n−1)-dimensional Hausdorff measure of the level
set f −1(t) of f defined by

f −1(t) := {x ∈ U : f (x)= t}.

Towards the proof of the main theorems, we shall fix the real-analytic (or holo-
morphic) function f and use the following notation: two quantities A and B are
said to satisfy A ≲ B if A ≤ CB for some constant C > 0 which depends only on
the f under consideration. We say A ≳ B if and only if B ≲ A, and A ≈ B if and
only if A ≲ B and B ≲ A at the same time.

Given a set A ⊂ Rn , denote by m(A) the Hausdorff measure of A at its Hausdorff
dimension. We first utilize Hironaka’s resolution of singularities theorem to show the
Hausdorff measure of level sets of real-analytic functions is bounded (from above).
This will be essential in proving a Harvey–Polking type removable singularity
lemma for the weak derivatives of v.

Theorem 2.1 [Atiyah 1970]. Let f be a real-analytic nonconstant function defined
near a neighborhood of 0 ∈ Rn . Then there exists an open set U ⊂ Rn near 0, a
real-analytic manifold Ũ of dimension n and a proper real-analytic map φ : Ũ → U
such that:

(1) The function φ : Ũ \
∼

f −1(0)→ U \ f −1(0) is an isomorphism, where
∼

f −1(0) :=
{p ∈ Ũ : φ(p) ∈ f −1(0)}.
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(2) For each p ∈ Ũ , there exist local real-analytic coordinates (y1, . . . , yn) centered
at p, such that near p one has

f ◦φ(y)= u(y) ·
n∏

i=1

yki
i ,

where u is real-analytic and u ̸= 0, ki ∈ Z+
∪ {0}.

Lemma 2.2. Let f be a real-analytic nonconstant function on U. Then

m( f −1(t))≲ 1 for all |t | ≪ 1.

Proof. Without loss of generality, assume 0 ∈ U and f (0)= 0. Under the setup of
Hironaka’s resolution Theorem 2.1, for every p ∈

∼

f −1(0), let (Ṽ , ψ) be a coordinate
chart near p in Ũ such that, for y ∈ ψ(Ṽ )⊂ Rn ,

f ◦8(y) := f ◦φ ◦ψ−1(y)= u(y) ·
n∏

i=1

yki
i .

By properness of φ, V := φ(Ṽ ) is an open subset of U near φ(p). Since φ is
smooth on Ũ , by shrinking U if necessary, 8 : ψ(Ṽ ) → V is smooth up to the
boundary of ψ(Ṽ ). By change of coordinates formula,

m( f −1(t)∩ V )=

∫
{ f (x)=t}∩φ(Ṽ )

d Sx

=

∫
{ f ◦8(y)=t}∩ψ(Ṽ )

8∗ d Sx ≲
∫

{ f ◦8(y)=t}∩ψ(Ṽ )
d Sy .

Thus, in view of this and the fact that u ̸= 0 on Ũ , the proof boils down to showing
that the (n−1)-dimensional Hausdorff measure satisfies

(2-2) m(An(t))≲ 1 for all 0< t ≪ 1,

where

(2-3) An(t)=

{
y ∈ Rn

:

n∏
i=1

yki
i = t, 0< yi < 1, i = 1, . . . , n

}
.

Here the constant multiple for “≲” in (2-2) is only dependent on ki , i = 1, . . . , n.
Clearly, one only needs to prove the case when all ki > 0. Let k :=

∑n
i=1 ki .

We shall employ the mathematical induction on the dimension n to prove (2-2)
for all level sets in the form of (2-3). The n = 1 case is trivial. Assume the n = l
case holds. Namely, for every level set Al(t) in Rl defined by (2-3), m(Al(t))≲ 1
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for 0< t ≪ 1. When the dimension n equals l + 1, one first has

Al+1(t)⊂

l+1⋃
j=1

Al+1
j (t),

where, for each j = 1, . . . , l + 1,

Al+1
j (t) :=

{
y ∈ Rl+1

: t1/k
≤ y j < 1, 0< yi < 1 if i ̸= j, and

∏
1≤i≤l+1

i ̸= j

yki
i = t y−k j

j

}
.

Since Al+1
j (t) is a finite union of smooth hypersurfaces in Rl+1 away from a set of

dimension l −1, by Fubini’s theorem, the l-dimensional Hausdorff measure satisfies

m(Al+1
j (t))=

∫ 1

t1/k

∫
∏

1≤i≤l+1,i ̸= j y
ki
i =t y

−k j
j ,0<yi<1,i ̸= j

d Sŷ j dy j ,

and thus

(2-4) m(Al+1(t))≤

l+1∑
j=1

∫ 1

t1/k

∫
∏

1≤i≤l+1,i ̸= j y
ki
i =t y

−k j
j ,0<yi<1,i ̸= j

d Sŷ j dy j .

Further denote ŷ j := (y1, . . . , y j−1, y j+1, . . . , yl+1) ∈ Rl ,

t ′
:= t y−k j

j ,

and

Al
j (t

′) :=

{
ŷ j ∈ Rl

: 0< yi < 1, i ̸= j, and
∏

1≤i≤l+1
i ̸= j

l

yki
i = t ′

}
.

Noting that t ′ < t1−k j/k when y j > t1/k , we obtain from (2-4)

m(Al+1(t))≤ (1 − t1/k)

l+1∑
j=1

sup
0<t ′<t1−k j /k

m(Al
j (t

′)).

On the other hand, since k j < k, one has t1−k j/k
≪ 1 when t ≪ 1. By the induction

assumption and the fact that Al
j (t

′) is in Rl ,

sup
0<t ′<t1−k j /k

m(Al
j (t

′))≲ 1 for all 0< t ≪ 1.

This finally gives
m(Al+1(t))≲ 1 for all 0< t ≪ 1.

The lemma is proved. □
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Lemma 2.3. Given a real-analytic nonconstant function f on U with | f |< 1
2 on U ,

let v be defined in (1-1), and

(2-5) g :=
∇ f

f · (ln | f |)2
on U.

Then g ∈ L1
loc(U ). One has

∇v = g on U

in the sense of distributions.

Proof. First, we show that g ∈ L1
loc(U ). Since f is real-analytic on U , shrinking U

if necessary, one can assume f to be (globally) Lipschitz on U . Making use of the
coarea formula (2-1), one gets∫

U
|g(x)| dVx =

∫
U

|∇ f (x)|
| f (x)|(ln | f (x)|)2

dVx

≤

∫ 1
2

−
1
2

∫
f −1(t)

1
| f (x)|(ln | f (x)|)2

d Sx dt =

∫ 1
2

−
1
2

m( f −1(t))
|t |(ln |t |)2

dt.

Lemma 2.2 further allows us to infer∫
U
|g(x)| dVx ≲

∫ 1
2

0

1
t (ln t)2

dt =

∫
∞

ln 2

1
s2 ds <∞.

Next, we show that, given any testing function η ∈ C∞
c (U ),

(2-6) −

∫
U
v∇η =

∫
U
ηg.

Since v is differentiable away from f −1(0), a direct computation gives

(2-7) ∇v = g on U \ f −1(0).

In particular, (2-6) is trivially true if K := f −1(0)∩ supp η = ∅.
If K ̸= ∅, given ϵ > 0 let

Kϵ := {x ∈ U : dist(x, K )≤ ϵ},

where dist(x, K ) is the distance function from x to the set K . Let ρϵ ∈ C∞(U ) be
such that ρϵ = 0 in Kϵ , ρϵ = 1 in U \ K3ϵ and |∇ρϵ | ≲

1
ϵ

on U . See, for instance,
[Hörmander 2003, Theorem 1.2.1-2]. Then ρϵη ∈ C∞

c (U \ f −1(0)). Using (2-7)
we immediately have

−

∫
U
v∇(ρϵη)=

∫
U
ρϵηg,
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or equivalently,

(2-8) −

∫
U
vη∇ρϵ −

∫
U
vρϵ∇η =

∫
U
ρϵηg.

We shall prove

(2-9) lim
ϵ→0

∫
U
vη∇ρϵ = 0.

If so, then passing ϵ → 0 in (2-8), we obtain the desired equality (2-6) as a
consequence of Lebesgue’s dominated convergence theorem.

To prove (2-9), first by the assumption on ρϵ ,

(2-10)
∣∣∣∣∫

U
vη∇ρϵ

∣∣∣∣ =

∣∣∣∣∫
K3ϵ\Kϵ

vη∇ρϵ

∣∣∣∣ ≲ C
ϵ

∫
K3ϵ\Kϵ

|v|

for some constant C dependent only on η. Since f is Lipschitz on U , for any
x0 ∈ f −1(0), | f (x)| = | f (x)− f (x0)| ≲ |x − x0|. In particular,

| f (x)| ≲ dist(x, f −1(0)).

Thus for all x ∈ K3ϵ \ Kϵ (equivalently, ϵ < dist(x, f −1(0)) < 3ϵ), one has

|v(x)| =
1∣∣ln | f (x)|

∣∣ ≲ 1∣∣ln dist(x, f −1(0))
∣∣ ≈

1
|ln ϵ|

for all ϵ small enough. Hence by (2-10)

(2-11)
∣∣∣∣∫

U
vη∇ρϵ

∣∣∣∣ ≲ Cm(K3ϵ)

ϵ |ln ϵ|
.

On the other hand, according to a nontrivial result of Loeser [1986, Theorem 1.1]
and its consequent remarks,

m(K3ϵ)≲ ϵ
codimR f −1(0) ≲ ϵ.

Here the last inequality has used the fact that codimR f −1(0)≥ 1 due to the real-
analyticity of f . The equality (2-9) follows by combining the above with (2-11). □

Proof of Theorem 1.1. Since | f | < 1
2 , we have

∣∣ln | f |
∣∣ > ln 2 and so |v| < 1

ln 2 ∈

L∞(U ). Part (1) follows from this and Lemma 2.3. For part (2), we only need to
show that the function g defined in (2-5) does not belong to L p

loc for any p> 1 near
any neighborhood of f −1(0).

First, according to the Łojasiewicz inequality, by shrinking U if necessary, there
exists some constant β ∈ (0, 1) such that

(2-12) |∇ f (x)| ≳ | f (x)|β, x ∈ U.
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As a consequence of this,∫
U
|∇v(x)|p dVx =

∫
U

|∇ f (x)|

|∇ f (x)|−(p−1)| f (x)|p
∣∣ln | f (x)|

∣∣2p dVx

≳
∫

U

|∇ f (x)|

| f (x)|p−(p−1)β
∣∣ln | f (x)|

∣∣2p dVx .

Utilizing the coarea formula, we have, for some ϵ0 > 0,∫
U
|∇v(x)|p dVx ≳

∫ ϵ0

−ϵ0

∫
f −1(t)

1

| f (x)|p−(p−1)β
∣∣ln | f (x)|

∣∣2p d Sx dt

=

∫ ϵ0

−ϵ0

m( f −1(t))

|t |p−(p−1)β
∣∣ln |t |

∣∣2p dt.

Since codimR f −1(0)= 1, there is some x0 ∈ f −1(0)∩U , such that |∇ f (x0)| ̸= 0.
Let V be a neighborhood of x0 in U such that |∇ f | ≳ 1 on V . Then for all t small
enough, m( f −1(t)∩ V )≳ 1. Consequently, m( f −1(t))≳ 1 for 0< t ≪ 1. Thus∫

U
|∇v(x)|p dVx ≳

∫ ϵ0

0

1
t p−(p−1)β |ln t |2p dt.

Note that p − (p −1)β > 1 necessarily when p > 1 and β < 1. Hence the last term
is unbounded. The proof is complete. □

Proof of Corollary 1.2. Since A is real-analytic, there exists an open neighborhood
V ⊂Rn of p and a real-analytic function f on V such that A∩V ={x ∈ V : f (x)=0}.
Then u =

1
ln | f |

is the desired function satisfying the assumptions. □

For functions (such as ln | f |) with singularities, its composition with another
logarithm typically exhibits reduced singularities. The following theorem shows
that composing extra logarithms does not improve Sobolev regularity in general.

Theorem 2.4. Let U be a domain in Rn, n ≥ 1. Let f be a real-analytic nonconstant
function on U and | f |< 1

10 on U. Then:

(1) 1
ln ln | f |

∈ W 1,1
loc (U ).

(2) If codimR f −1(0)= 1, then 1
ln ln | f |

/∈ W 1,p
loc (U ) for any p > 1.

Proof. Applying a similar approach as in the proof of Lemma 2.3, we first have

∇

(
1

ln
∣∣ln | f |

∣∣
)

=
∇ f

f · ln | f | ·
(
ln

∣∣ln | f |
∣∣)2 on U
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in the sense of distributions. Making use of the coarea formula and Lemma 2.2,∫
U

∣∣∣∣∇(
1

ln
∣∣ln | f |

∣∣
)∣∣∣∣ ≤

∫ 1
10

−
1
10

∫
f −1(t)

1

| f (x)|
∣∣ln | f (x)|

∣∣(ln
∣∣ln | f (x)|

∣∣)2 d Sx dt

≲
∫ 1

10

0

1
t | ln t |(ln | ln t |)2

dt

=

∫
∞

ln 10

1
t (|ln t |)2

dt =

∫
∞

ln ln 10

1
t2 dt ≲ 1.

In the case when p > 1, there exists some 0< β < 1 by (2-12), and some small
ϵ0 > 0 such that∫

U

∣∣∣∣∇(
1

ln
∣∣ln | f |

∣∣
)∣∣∣∣p

≳
∫

U

|∇ f (x)|

| f (x)|p−(p−1)β
∣∣ln | f (x)|

∣∣p(ln
∣∣ln | f (x)|

∣∣)2p dVx

≳
∫ ϵ0

0

1
t p−(p−1)β |ln t |(ln |ln t |)2

dt.

Since p − (p − 1)β > 1, the last term is divergent. This completes the proof of the
theorem. □

3. Proof of Theorem 1.3

To prove Theorem 1.3 for holomorphic functions, we shall need the following
well-known complex version Hironaka’s resolution of singularities theorem. See,
for instance, [Smith 2016].

Theorem 3.1. Let f be a holomorphic function defined near a neighborhood of
0 ∈ Cn . Then there exists an open set U ⊂ Cn near 0, a complex manifold Ũ of
dimension n and a proper holomorphic map φ : Ũ → U such that:

(1) The function φ :Ũ\
∼

f −1(0)→U\ f −1(0) is a biholomorphism, where
∼

f −1(0) :=
{p ∈ Ũ : φ(p) ∈ f −1(0)}.

(2) For each p ∈ Ũ , there exist local holomorphic coordinates (w1, . . . , wn) cen-
tered at p, such that near p one has

f ◦φ(w)= u(w) ·
n∏

i=1

w
ki
i ,

where u is holomorphic and u ̸= 0, ki ∈ Z+
∪ {0}.

Proof of Theorem 1.3. (1) Since ∂̄ f = 0, and according to Lemma 2.3,

∂v =
∂ f

2 f · (ln | f |)2
∈ L1

loc(U )
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in the sense of distributions, we only need to show that

∂ f
f · (ln | f |)2

∈ L2
loc(U ).

On the other hand, making use of Hironaka’s resolution of singularities Theorem 3.1
for holomorphic functions, for every p ∈

∼

f −1(0), let (Ṽ , ψ) be a coordinate chart
near p in Ũ such that, for w ∈ ψ(Ṽ )⊂

{
w ∈ Cn

: |w j |<
1
2

}
,

f̃ (w) := f ◦φ ◦ψ−1(w)= u(w) ·
n∏

i=1

w
ki
i ,

where u ̸= 0 on ψ(Ṽ ) and ki ∈ Z+
∪ {0}. Let V := φ(Ṽ ), 8 := φ ◦ ψ−1, and

Jac8 be the complex Jacobian of the holomorphic map 8. Note that the inverse
matrix (Jac8)−1 is smooth on ψ(Ṽ \

∼

f −1(0)), and

|(Jac8)−1(w) · det(Jac8)(w)| ≲ 1 for all w ∈ ψ(Ṽ \
∼

f −1(0)).

By change of variables formula,∫
V

|∂z f (z)|2

| f (z)|2(ln | f (z)|)4
dVz

=

∫
8−1(V \ f −1(0))

8∗

(
|∂z f (z)|2

| f (z)|2(ln | f (z)|)4
dVz

)

≲
∫
ψ(Ṽ \
∼

f −1(0))

|∂w f̃ (w)|2|(Jac8)−1(w)|2

| f̃ (w)|2(ln | f̃ (w)|)4
∣∣det(Jac8(w))

∣∣2 dVw

≲
∫
ψ(Ṽ )

|∂w f̃ (w)|2

| f̃ (w)|2(ln | f̃ (w)|)4
dVw.

Thus, the proof boils down to showing that, for j = 1, . . . , n,

(3-1)
∫
ψ(Ṽ )

|∂w j f̃ (w)|2

| f̃ (w)|2(ln | f̃ (w)|)4
dVw ≲ 1.

For simplicity, let j = 1 in (3-1). If k1 = 0, then

∂w1 f̃ (w)= ∂w1u(w) ·
n∏

i=1

w
ki
i .

Since 1
(ln | f̃ (w)|)4

≲ 1 and u ̸= 0, when w is near 0,

|∂w1 f̃ (w)|2

| f̃ (w)|2(ln | f̃ (w)|)4
=

|∂w1u(w)|2

|u(w)|2(ln | f̃ (w)|)4
≲ 1.
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So (3-1) holds. If k1 > 0, then

∂w1 f̃ (w)= ∂w1u(w) ·
n∏

i=1

w
ki
i + k1u(w) ·wk1−1

1 ·

n∏
i=2

w
ki
i .

Hence

|∂w1 f̃ (w)|2

| f̃ (w)|2(ln | f̃ (w)|)4
≲

|∂w1u(w)|2

|u(w)|2(ln | f̃ (w)|)4
+

k2
1

|w1|2(ln | f̃ (w)|)4

≲ 1 +
1

|w1|2(ln | f̃ (w)|)4
.

Note that when w is close to 0,

(3-2)
∣∣ln | f̃ (w)|

∣∣ =

∣∣∣∣ln |u(w)| +
n∑

i=1

ki ln |wi |

∣∣∣∣ ≳ −ln |w1|.

This leads to∫
ψ(Ṽ )

|∂w1 f̃ (w)|2

| f̃ (w)|2(ln | f̃ (w)|)4
dVw ≲ 1 +

∫
ψ(Ṽ )

1

|w1|2
∣∣ln |w1|

∣∣4 dVw

≲ 1 +

∫ 1
2

0

1
s(ln s)4

ds ≲ 1.

Equation (3-1) and thus part (1) are proved.

(2) Let U1 be an open subset of U such that f −1(0)∩ U1 is regular. Then there
exists a holomorphic coordinate change on U1 such that under the new coordinates
(w1, . . . , wn), one has wn = f (z). As a consequence of this,∫

U

∣∣∣∣ ∂z f
f · (ln | f |)2

∣∣∣∣p

dVz ≥

∫
U1

∣∣∣∣ ∂z f
f · (ln | f |)2

∣∣∣∣p

dVz

≈

∫
U1

1

|wn|
p
∣∣ln |wn|

∣∣2p dVw ≳
∫ ϵ0

0

1
s p−1|ln s|2p ds

for some ϵ0 > 0. Since p > 2, the last term is unbounded. This proves part (2). □

Proof of Corollary 1.4. The proof is similar to that of Corollary 1.2, with Theorem 1.1
substituted by Theorem 1.3, and is omitted. □

An application of Theorem 1.3 is to provide ample data to the ∂̄ problem in
complex analysis, in particular, within the framework of Hörmander’s classical L2

theory for ∂̄-closed forms with L2
loc coefficients. Normally, generating smooth data

is straightforward. In the following, we construct data with singularity on complex
analytic varieties, where Hörmander’s theory can still be applied.
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Example 1. Let � be a pseudoconvex domain in Cn . Let f be a nonconstant
holomorphic function on � such that f −1(0) ̸= ∅. Choose a monotone increasing
function χ ∈ C∞([0,∞)) such that χ(t) = t if 0 ≤ t ≤

1
4 , and χ(t) =

1
3 if t ≥ 1.

Then g =
1

lnχ(| f |)
∈ W 1,2

loc (�) by Theorem 1.3. Furthermore, u := ∂̄g is a ∂̄-closed
(0, 1) form with L2

loc coefficients with singularities precisely on f −1(0).
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For any Kac–Moody root datum D, D. Muthiah and D. Orr have defined a
partial order on the semidirect product W a

+ of the integral Tits cone with the
vectorial Weyl group of D, and a compatible length function. We classify
covers for this order and show that this length function defines a Z-grading
of W a

+, generalizing the case of affine ADE root systems and giving a positive
answer to a conjecture of Muthiah and Orr.
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be its vectorial Weyl group and Y be its coweight lattice: Y = Hom(Gm, T ). The
action of W on T induces an action of W on Y and allows us to form the semidirect
product W a

= Y ⋊ W . This group, called the extended affinized Weyl group of G,
appears naturally in the geometry and the representation theory of G over discretely
valued fields. A foundational work in this regard was done by N. Iwahori and
H. Matsumoto [1965], when they exhibited a Bruhat decomposition of G(Qp)

indexed by W a .
Let K be a nonarchimedean local field with ring of integers OK ⊂K, uniformizer

π ∈ OK and residue field kK = OK/π . Let G = G(K), let K = G(OK) be its
integral points and let I be its Iwahori subgroup, defined as

I = {g ∈ K | g ∈ B(kK) mod π}.

The extended affinized Weyl group can be understood as NG(T (K))/T (OK), so
it admits a lift in G. Then, G admits a decomposition in I -double cosets indexed
by W a , the Iwahori–Matsumoto–Bruhat decomposition:

(0.1) G =
⊔

πλw∈W a
Iπλw I.

The group W a is a finite extension of a Coxeter group and thus admits a Bruhat
order which arises from the geometry of the homogeneous space G/I : for any
πλw ∈ W a , Iπλw I is a subvariety of pure dimension ℓ(πλw) in G/I , and its
closure admits a disjoint decomposition in I orbits:

(0.2) Iπλw I =
⊔

πµv≤πλw

Iπµv I,

which extends the Iwahori–Matsumoto decomposition. The connection between the
geometry of G/I and the combinatorial structure of W a is deeper. In particular, R-
Kazhdan–Lusztig polynomials introduced by Kazhdan and Lusztig [1980], defined
as the number of points of certain intersections in G/I , are also given by a recursive
formula based on the Bruhat order and the Bruhat length of W a .

These polynomials appear in many topics around reductive groups over local
fields, we aim to develop analogous polynomials when G is replaced by a general
Kac–Moody group.

Extension to Kac–Moody groups. Replace G by a general split Kac–Moody group.
Kac–Moody group functors are entirely defined by the underlying Kac–Moody root
datum D, as defined in [Rémy 2002, §2], and reductive groups correspond to root
data of finite type. Then the Iwahori–Matsumoto decomposition no longer holds
on G = G(K). However there is a partial Iwahori–Matsumoto decomposition: there
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exists a subsemigroup G+ of G such that

(0.3) G+
=

⊔
πλw∈W a

+

Iπλw I.

The indexing set for this decomposition W a
+

is a subsemigroup of W a
= Y ⋊W , and

it appears naturally in other related contexts, for example, when trying to construct
an Iwahori–Hecke algebra for G [Braverman et al. 2016; Bardy-Panse et al. 2016].
Let us briefly explain how W a

+
is defined.

Let 8 be the real root system of the root datum D. It is an infinite set (unless D is
reductive) of linear forms on Y coming with a subset of positive roots 8+ ⊂ 8 such
that 8 = 8+ ⊔−8+. Let Y ++

= {λ ∈ Y | ∀α ∈ 8+, α(λ) ≥ 0} and Y +
= W ·Y ++.

Then W a
+

is defined as Y + ⋊ W . In the reductive case, Y + coincides with Y and
thus W a

+
= W a . However, W a can no longer be conceived as a finite extension of a

Coxeter system, hence there is a priori no Bruhat order on W a
+

, let alone on W a . A
well-behaved topology on G+/I would allow us to define an order on W a

+
through

the analog of decomposition (0.2), but G+/I does not seem to have a natural variety,
nor even an ind-variety structure.

An order and two lengths on W a
+

. In Appendix B2 of their article on the construction
of an Iwahori–Hecke algebra for G an affine Kac–Moody group over a p-adic field
[Braverman et al. 2016], A. Braverman, D. Kazhdan and M. Patnaik propose the
definition of a preorder on W a

+
which would replace the Bruhat order of W a and they

conjecture that it is a partial order. In [2018], D. Muthiah extends the definition of
this preorder to any Kac–Moody group G, defines a Z⊕εZ-valued length compatible
with this preorder and hence shows that it is an order. In [2019], D. Muthiah and
D. Orr then show that this length can be evaluated at ε = 1 to obtain a Z-valued
length strictly compatible with the order on W a

+
.

In order to build a Kazhdan–Lusztig theory of p-adic Kac–Moody groups, we
want to understand how close this order is to the Bruhat order of an affine Coxeter
group, which properties still hold and which do not. The definition of a Z-length is
already a significant step, but many important properties, which are known to hold
for Bruhat orders, remain unknown in this context. Several were proved only for
Kac–Moody root systems of affine simply laced type using the specific structure of
an affinized Weyl group of W in this context.

Choice of vocabulary. The order on W a
+

is often mentioned in the literature as “the
double affine Bruhat order” and the associated length as “the double affine Bruhat
length” because it is most studied in the case of G a Kac–Moody group of affine
type (in which case W is an affine Weyl group). We refer to it as “the affinized
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Bruhat order” and “the affinized Bruhat length”, denoted by ℓa , because we do not
suppose that W is an affine Weyl group. Note that, if W is finite, then the affinized
Bruhat length and order on W a

+
are just the ones induced by its Coxeter group

structure.

Main result. Our main result is a positive answer to [Muthiah and Orr 2019, Con-
jecture 1.5] in full generality.

For any partial order ≤ on a set X , we say that y covers x if x ̸= y and
{z ∈ X | x ≤ z ≤ y} = {x, y}. A grading of X is a length function ℓ on X strictly
compatible with ≤ and such that y covers x if and only if x ≤ y and ℓ( y)−ℓ(x)= 1.
Gradings thus give an easy classification of covers and more generally of saturated
chains in X . The Bruhat length for a Coxeter group equipped with the Bruhat order
is the prototypical example of a grading.

Muthiah and Orr [2019] prove that if 8 is of affine ADE type, the affinized
Bruhat length gives a Z-grading of W a

+
for the affinized Bruhat order and conjecture

this to be true in general. Our main result is a positive answer to this conjecture:

Theorem A. Let D be any Kac–Moody root datum. Then the affinized length ℓa

on W a
+

defines a Z-grading of W a
+

strictly compatible with the affinized Bruhat
order. Otherwise said, let x, y ∈ W a

+
be such that x ≤ y. Then

(0.4) y covers x if and only if ℓa( y) − ℓa(x) = 1.

Along the way, we obtain several geometric properties of covers for the affinized
Bruhat order which we expect to be insightful even if the root datum is reductive (so
W is finite and W a

+
is an affine Weyl group) as they only rely on the Coxeter structure

of W . In particular, we obtain in Proposition 3.20 a classification of covers which
generalize results obtained using quantum Bruhat graphs, in the reductive setting by
T. Lam and M. Shimozono [2010, Proposition 4.4] and F. Schremmer [2024, Propo-
sition 4.5], and in the affine simply laced setting by A. Welch [2022, Theorem 2].

Further directions. In an upcoming joint work with A. Hébert, we prove that any
element of W a

+
admits a finite number of covers for the affinized Bruhat order.

We use this finiteness in the context of masures to define R-Kazhdan–Lusztig
polynomials, following Muthiah’s strategy exposed in [2019] and the work on twin
masures of N. Bardy-Panse, A. Hébert and G. Rousseau [Bardy-Panse et al. 2022].
Our understanding of covers is useful to compute these R-polynomials and we
intend to use R-polynomials to define P-Kazhdan–Lusztig polynomials.

Another interesting (but quite long reach) question is the following: W a
+

appears
as the affinization of W , which may be taken as an affinized version of a finite
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Coxeter group. Can we iterate the affinization process, e.g., to obtain a valid theory
for reductive or Kac–Moody groups on valued fields of higher dimensions?

Lastly, little is known on the preorder defined on the whole semidirect product W a;
it could be insightful to study it and to connect it to the failure of the full Iwahori–
Matsumoto decomposition of G.

Organization of the paper.

Proof strategy. The global strategy is to construct a nontrivial chain from x to y
every time y ≥ x satisfies ℓa( y) − ℓa(x) > 1. Let projY

+

denote the projection
W a

+
= Y + ⋊ W → Y +. We distinguish two cases which depend on the form of x

and y: The first case is when projY
+

( y) lies in the orbit of projY
+

(x), we call such
covers the vectorial covers. The other case is when projY

+

( y) /∈ W · projY
+

(x), we
call such covers the properly affine covers.

For vectorial covers we show that the affinized Bruhat order on the set {z ∈ W a
+

|

x ≤ z ≤ y} is, in some sense, a lift of several Bruhat-like orders on W . We are then
able to construct chains between x and y from chains in W , and we deduce a classi-
fication of vectorial covers. The characterization of properly affine covers is, at first
glance, more involved. Through a careful study of the relation between the vectorial
chamber containing projY

+

(x) and the vectorial chamber containing projY
+

( y), we
show that the length difference ℓa( y)− ℓa(x) can be rewritten in a more workable
form, making clear the conditions for which it is equal to one. Then the difficulty is to
build, explicitly, a nontrivial chain every time one of these conditions is not satisfied.

Organization. Section 1 consists of preliminaries. In Section 1.1 we formally define
everything we mentioned in this introduction. In particular we give the definition
of the affinized Bruhat order and the two affinized Bruhat lengths as they are given
in [Muthiah and Orr 2019]. To be more flexible, we chose to define the affinized
Bruhat preorder on the whole affinized Weyl group W a

= Y ⋊ W , on which it may
not be an order.

We show, amongst other preliminary results, that we indeed recover the affinized
Bruhat order on W a

+
from this preorder in Section 1.3.

We also give, in Section 1.2, a geometric interpretation of W a
+

and its affinized
Bruhat order, which is to be compared with the interpretation of the Bruhat order in
the Coxeter complex of a Coxeter group. Even though it is not clearly mentioned
in the rest of the paper, this geometric interpretation was very useful to construct
chains and understand W a

+
.

In Section 2, we prove Theorem A for vectorial covers. We define relative
versions of the Bruhat order on W in Section 2.1 and we connect these relative
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Bruhat orders to the affinized Bruhat length in Section 2.2. This is enough to prove
Theorem A when projY

+

( y) = projY
+

(x) (see Theorem 2.13). Using finer results
on parabolic quotients in Section 2.3, we extend it to vectorial covers such that
projY

+

( y) ∈ W · projY
+

(x) \ {projY
+

(x)} (see Theorem 2.18).
In Section 3, we deal with properly affine covers. We first show in Section 3.1

that these covers are of a very specific form. Namely, if x = πv(λ)w with v, w ∈ W
and λ ∈ Y ++, then y needs to be of the form πv(λ+β∨)sv(β)w or πvsβ (λ+β∨)sv(β)w

for some β ∈ 8+.
The strategy is then to get enough necessary conditions on v, w, λ, β for y to

cover x, in order to obtain a simplified expression for ℓa( y)−ℓa(x). Proposition 3.3
gives a first result in this direction. In Section 3.2 we fully exploit this strategy to
obtain (3.14) for the length difference.

Finally, in Sections 3.3 and 3.4, we construct various chains from x to y to prove
that the quantities appearing in (3.14) need to be minimal when y covers x, which
allows us to conclude the argument in Section 3.5.

1. Preliminaries

1.1. Definitions and notation. Let D=(A, X,Y, (αi )i∈I , (α
∨

i )i∈I ) be a Kac–Moody
root datum as defined in [Rémy 2002, §8]. It is a quintuplet such that:

(1) I is a finite indexing set and A = (ai j )(i, j)∈I×I is a generalized Cartan matrix.

(2) X and Y are two dual free Z-modules of finite rank, and we write ⟨ · , · ⟩ for
the duality bracket.

(3) (αi )i∈I (resp. (α∨

i )i∈I ) is a family of linearly independent elements of X
(resp. Y ): the simple roots (resp. simple coroots).

(4) For all (i, j) ∈ I 2 we have ⟨α∨

i , α j ⟩ = ai j .

1.1.1. Vectorial Weyl group. For every i ∈ I set si ∈ AutZ(X) : x 7→ x −⟨α∨

i , x⟩αi .
The generated group W = ⟨si | i ∈ I ⟩ is the vectorial Weyl group of the Kac–Moody
root datum.

The duality bracket ⟨ · , · ⟩ induces a contragredient action of W on Y , explicitly
si (y) = y − ⟨y, αi ⟩α

∨

i . The bracket is then W -invariant.
The vectorial Weyl group W is a Coxeter group with set of simple reflections

S = {si | i ∈ I }; in particular it has a Bruhat order < and a length function ℓ

compatible with the Bruhat order. We refer to [Björner and Brenti 2005] for general
definitions and properties of Coxeter groups. A reflection in a Coxeter group is any
element conjugated to a simple reflection.
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1.1.2. Real roots. Let 8 = W · {αi | i ∈ I } be the set of real roots of D. It
is a root system in the classical sense, but possibly infinite. In particular let
8+ =

⊕
i∈I Nαi ∩8 be the set of positive real roots. Then 8 = 8+ ⊔−8+, and

we write 8− = −8+ for the set of negative roots.
The set 8∨

= W · {α∨

i | i ∈ I } is the set of coroots, and its subset 8∨
+

=⊕
i∈I Nα∨

i ∩ 8∨ is the set of positive coroots.
To each root β corresponds a unique coroot β∨: if β = w(αi ) then β∨

= w(α∨

i ).
This map β 7→ β∨ is well defined, bijective between 8 and 8∨ and sends positive
roots to positive coroots. Note that ⟨β∨, β⟩ = 2 for all β ∈ 8.

To each root β we associate a reflection sβ ∈W : if β =w(±αi ) then sβ :=wsiw
−1.

Explicitly it is the map X → X defined by sβ(x) = x − ⟨β∨, x⟩β. For any β ∈ 8

we have sβ = s−β and the map β 7→ sβ forms a bijection between the set of positive
roots and the set {wsiw

−1
| (w, i) ∈ W × I } of reflections of W .

1.1.3. Inversion sets. For any w ∈ W , let

Inv(w) = 8+ ∩ w−1(8−) = {α ∈ 8+ | w(α) ∈ 8−}.

These sets are strongly connected to the Bruhat order, as by [Kumar 2002, 1.3.13],
for all α ∈ 8+

(1.1) α ∈ Inv(w) ⇐⇒ wsα < w ⇐⇒ sαw−1 < w−1.

They are related to the Bruhat length: ℓ(w) = |Inv(w)| [Kumar 2002, 1.3.14].

1.1.4. Fundamental chamber and Tits cone. We define the (closed) integral funda-
mental chamber by Y ++

= {λ ∈ Y | ⟨λ, αi ⟩ ≥ 0 ∀i ∈ I }. If λ ∈ Y ++, we say that it
is a dominant coweight. Then, the integral Tits cone is Y +

:=
⋃

w∈W w(Y ++). It is
a convex cone of Y ; in particular it is a semigroup for the group operation of Y ,
and it is equal to Y if and only if W is finite, if and only if 8 is finite, if and only
if A is of finite type (see [Kumar 2002, 1.4.2]).

The integral fundamental chamber Y ++ is a fundamental domain for the action
of W on Y +, and for any λ ∈ Y + we define λ++ to be the unique element of Y ++

in its W -orbit.
There is a height function on Y +, defined as follows:

Definition 1.1. Let (3i )i∈I be a set of fundamental weights, that is to say ⟨α∨

i , 3i ⟩=

δi j for any i, j ∈ I . We fix it once and for all. Let ρ =
∑

i∈I 3i . Then for any
λ ∈ Y define the height of λ as

(1.2) ht(λ) = ⟨λ, ρ⟩.
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The height depends on the choice of fundamental weights, but its restriction to
Q∨

=
⊕

i∈I Zα∨

i do not:

ht
( ∑

i∈I
niα

∨

i

)
=

∑
i∈I

ni .

Remark 1.2. The height function takes integral values on Q∨, but not necessarily
on Y . In general, one can choose the fundamental weights such that ht(Y ) ⊂

1
Nht

Z

for some Nht ∈ Z>0. As noted by D. Muthiah and A. Puskás [2024, Remark 2.13],
if D is of finite or affine type then the fundamental weights may be chosen such
that Nht ∈ {1, 2}, but for more general Kac–Moody root systems the optimal choice
for Nht may be arbitrarily large.

1.1.5. Parabolic subgroups, minimal coset representatives. For λ ∈ Y +, let 8λ

denote the set {α ∈ 8 | ⟨λ, α⟩ = 0} and Wλ = StabW (λ). We say that λ is regular
if 8λ = 0, or equivalently if Wλ = 1W . More generally we say that λ is spherical
if Wλ is finite.

Let v ∈ W be such that λ = vλ++. Then Wλv = vWλ++ and, since λ++ is
dominant, Wλ++ is a standard parabolic subgroup, that is, a group of the form
WJ = ⟨s | s ∈ J ⟩ where J ⊂ S is a set of simple reflections. More precisely,
J = {s ∈ S | s(λ++) = λ++

}.
By standard Coxeter group theory (see, for instance, [Björner and Brenti 2005,

Section 2.2]), for any u ∈ W , the left coset uWλ++ =uWJ has a unique representative
of minimal length which we denote by u J , and one has a decomposition u = u J u J

with u J ∈ WJ such that

(1.3) ℓ(u) = ℓ(u J ) + ℓ(u J ).

Notation 1.3. (1) For any J ⊂ S, we denote by W J the set of minimal length
representatives for WJ -cosets in W :

(1.4) w ∈ W J
⇐⇒ ∀w̃ ∈ WJ , ℓ(ww̃) > ℓ(w) ⇐⇒ ∀s ∈ J, ℓ(ws) > ℓ(w).

If λ ∈ Y ++ is such that Wλ = WJ , then we may use W λ as an alternative notation
for W J .

(2) For any λ ∈ Y + (not necessarily dominant), we denote by vλ the minimal length
element in W which satisfies λ = vλλ++:

(1.5) vλ
= min{v ∈ W | λ = vλ++

}.

In other words, for any u ∈ W such that λ = uλ++, we have vλ
= u J , where J is

the set of simple reflections such that WJ = Wλ++ .
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1.1.6. Affinized Weyl semigroup. The action of W on Y allows us to form the
semidirect product Y ⋊ W , which we denote by W a . We denote its elements
by πλw with λ ∈ Y , w ∈ W .

By definition, Y +
⊂ Y is stable by the action of W on Y ; therefore we can form

W a
+

= Y + ⋊ W which is a subsemigroup of W a . This semigroup is called the
affinized Weyl semigroup. Muthiah and Orr [2019] define a Bruhat order and an
associated length function on W a

+
which we aim to study in this article.

Denote by projY
+

: W a
+

→ Y + the canonical projection, which sends πλw onto λ.
Denote by projY

++

:W a
+

→Y ++ the projection to Y ++: projY
++

(x)=(projY
+

(x))++.
Let us call projY

+

(x) the coweight of x, and projY
++

(x) its dominance class.

1.1.7. Affinized roots. Let 8a
= 8 × Z be the set of affinized roots and denote

by β +nπ the affinized root (β, n). The affinized root β +nπ is said to be positive
if n > 0 or (n = 0 and β ∈ 8+) and we write 8a

+
for the set of positive affinized

roots. We have 8a
= 8a

+
⊔ −8a

+
.

The semidirect product W a acts on 8a by

(1.6) πλw(β + nπ) = w(β) +
(
n + ⟨λ, w(β)⟩

)
π.

For any n ∈ Z, its sign is denoted sgn(n) ∈ {−1, +1}, with the convention that
sgn(0) = +1. Note that |n| = sgn(n)n. We also define the sign of an affinized root:
sgn(β + nπ) ∈ {−1, +1} and sgn(β + nπ) = +1 if and only if β + nπ ∈ 8a

+
.

For n ∈ Z and β ∈ 8+, set

β[n] = sgn(n)β + |n|π ∈ 8a
+
,(1.7)

sβ[n] = πnβ∨

sβ .(1.8)

We also define β[n] ∈ 8a
+

for β ∈ 8− by β[n] = (−β)[−n], and sβ[n] = s−β[−n] =

πnβ∨

sβ . The affinized root β[n] is therefore the positive affinized root within the
pair {β + nπ, −(β + nπ)}. Note that sβ[0] is the vectorial reflection sβ .

1.1.8. Bruhat order on W a
+

. Recall Braverman, Kazhdan and Patnaik’s definition
of the Bruhat order < introduced in [Braverman et al. 2016, Section B.2]: Let
x ∈ W a

+
and let β[n] ∈ 8a

+
be such that xsβ[n] ∈ W a

+
. Then,

(1.9) x < xsβ[n] ⇐⇒ sgn(β + nπ) = sgn(x(β + nπ)) ⇐⇒ x(β[n]) ∈ 8a
+
.

Explicitly, if x = πλw ∈ W a
+

, the right-hand side condition can be written as

sgn(n)
(
n + ⟨λ, w(β)⟩

)
> 0 or n = −⟨λ, w(β)⟩ and sgn(n)w(β) > 0.

Then we extend this relation by transitivity, which makes it a preorder on W a
+

.
Originally, Braverman, Kazhdan and Patnaik defined it only for affine vectorial
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Weyl groups, but the definition extends to any vectorial Weyl group and Muthiah
[2018] showed that it is an order on W a

+
in general.

1.1.9. Extension to W a . As the whole semidirect product W a acts on 8a
+

, (1.9)
makes sense for any x ∈ W a , and we define < on W a as the closure by transitivity
of the relation defined through (1.9) for x ∈ W a . We show in the next section
that if x < y and y ∈ W a

+
, then x ∈ W a

+
. This ensures that the restriction of the

W a-preorder to W a
+

coincides with Braverman, Kazhdan, Patnaik’s order on W a
+

.
However < may not be an order on W a .

1.1.10. Bruhat order through a right action. We consider multiplication by reflec-
tions on the left. To switch between the right and left actions note that

(1.10) sβ[n]π
λw =π sβλ+nβ∨

sβw =πλ+(n−⟨λ,β⟩)β∨

wsw−1(β) =πλwsw−1(β)[n−⟨λ,β⟩].

In particular,

(1.11) sβ[0]π
λw= sβπλw=π sβλsβw and sβ[⟨λ,β⟩]π

λw=πλsβw=πλwsw−1(β).

Using (1.10), the affinized Bruhat order can be recovered using a right action
of W a on 8a

+
.

Proposition 1.4. Let πλw ∈ W a and (β, n) ∈ (8 × Z) \ (8− × {0}). Then

(1.12) sβ[n]π
λw > πλw ⇐⇒ sgn(n)w−1(β) + (|n| − sgn(n)⟨λ, β⟩)π ∈ 8a

+
.

Remark 1.5. The root appearing in the right-hand side of (1.12) is the affinized
root (πλw)−1(β[n]).

Proof. Let πλw ∈ W a and β + nπ ∈ 8a . Then by (1.9) and (1.10),

sβ[n]π
λw > πλw ⇐⇒ sgn(β + nπ) = sgn

(
w−1(β) + (n − ⟨λ, β⟩)π

)
.

If (β, n) /∈ 8− × {0}, then β[n] = sgn(n)(β + nπ) so this is equivalent to

sgn(n)
(
w−1(β) + (n − ⟨λ, β⟩)π

)
∈ 8a

+
,

which is (1.12). □

Note that (1.12) is no longer correct if β ∈ 8− and n = 0, in which case it needs
to be applied to (−β)[0]. Applying reflections on the left is better suited for the
geometric interpretation we will give in Section 1.2.

1.1.11. Terminology on partially ordered sets. For p ≤ q ∈ Z, we denote by [[p, q]]

the set {r ∈ Z | p ≤ r ≤ q}. If p > q, then [[p, q]] is another notation for [[q, p]].
We also write ]]p, q[[ for [[p, q]] \ {p, q}.

Let (P, ≤) be a partially ordered set. For x, y ∈ P , we say that x and y are
comparable if x ≤ y or y ≤ x. We say that y covers x, written as x◁ y, if x ̸= y and
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{z | x ≤ z ≤ y}={x, y}. If P = W +
a , covers x◁ y such that projY

++

( y)=projY
++

(x)

are called vectorial covers and covers which are not vectorial covers are called
properly affine covers.

A chain from x to y is a finite sequence (x0, . . . , xn) such that x0 = x, xn = y
and xk ≤ xk+1 for all k ∈ [[0, n − 1]]. If P = W a

+
(resp. if P is a Coxeter group),

we add the condition that xk+1x−1
k is an affinized reflection (resp. a reflection). A

chain is saturated if xk ◁ xk+1 for all k ∈ [[0, n − 1]]. We say that a subset C of P
is convex if, for all x, y ∈ C and z ∈ P ,

(1.13) x ≤ z ≤ y =⇒ z ∈ C.

Equivalently, C is convex if and only if any chain from one element of C to another
is contained in C.

Let ℓ : P → A be a function with values in a totally ordered set (A, ≤A). We
say that it is order-preserving if, for all x, y ∈ P ,

(1.14) x ≤ y =⇒ ℓ(x) ≤A ℓ( y).

We say that ℓ is a strictly compatible (A-valued) length function if

(1.15) x < y ⇐⇒ x, y are comparable and ℓ(x) <A ℓ( y).

We say that a strictly compatible R-valued length function ℓ defines a Z-grading
of P if

(1.16) x ◁ y ⇐⇒ x ≤ y and ℓ( y) = ℓ(x) + 1.

For instance, the Bruhat length on a Coxeter group W is strictly compatible with
the Bruhat order, and defines a N-valued grading of W . Muthiah and Orr associated
length functions strictly compatible with the Bruhat order on W a

+
, generalizing the

classical Bruhat length on Coxeter groups. We now formally introduce these lengths.

1.1.12. Length functions on W a
+

.

Definition 1.6. The affinized length function is the map W a
+

→ R ⊕ εZ defined by

ℓa
ε (π

λw)=2ht(λ++)+ε
(∣∣{α∈Inv(w−1)|⟨λ,α⟩≥0}

∣∣−∣∣{α∈Inv(w−1)|⟨λ,α⟩<0}
∣∣).

The affinized length with real values is the affinized length function on which we
set ε = 1:

ℓa(πλw)=2ht(λ++)+
(∣∣{α∈Inv(w−1) |⟨λ,α⟩≥0}

∣∣−∣∣{α∈Inv(w−1) |⟨λ,α⟩<0}
∣∣).

Theorem 1.7 [Muthiah 2018, Theorem 4.24; Muthiah and Orr 2019, Theorem 3.6].
The affinized length function and the affinized length function with real values are
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strictly compatible with the affinized Bruhat order on W a
+

. In other words, for any
x ∈ W a

+
and β[n] ∈ 8a

+
,

(1.17) xsβ[n] > x ⇐⇒ ℓa
ε (xsβ[n]) > ℓa

ε (x) ⇐⇒ ℓa(xsβ[n]) > ℓa(x).

In particular the affinized Bruhat order is a partial order.

Remark 1.8. The affinized length functions depend on the choice made for the
height function. However since projY

++

(sβ[n]x) ∈ projY
++

(x)+ Q∨ for any x ∈ W a
+

and β[n] ∈ 8a
+

such that sβ[n]x ∈ W a
+

(this is a consequence of Corollary 1.12
below and of (1.10)), by Remark 1.2 the length difference between two comparable
elements do not depend on the choice of height function. By the same remark
if D is of finite or affine type, then the height function may be chosen such that
ℓa takes integral values; therefore it was first introduced by Muthiah and Orr as
“the affinized length with integral values”. In general type, ℓa may take nonintegral
values for every choice of height function but this could be artificially fixed: one
could also define a strictly compatible length with integral values ℓa

Z by setting
ℓa

Z(x) = ⌊ℓa(x)⌋ (where ⌊ · ⌋ : R → Z denotes any Z-equivariant function).

In what follows we will mostly use ℓa and rarely mention ℓa
ε . We now refer to ℓa

as the affinized Bruhat length.

1.2. Geometric interpretation. We introduced everything in a very algebraic way,
but there is a strong geometric intuition behind root systems, vectorial Weyl groups
and the vectorial Bruhat order, developed, for instance, in the context of buildings in
[Ronan 1989]. There is also a geometrical interpretation of the Bruhat order on W a

+

which we develop in this paragraph; it takes place in the standard apartment of the
masure associated to a Kac–Moody group with underlying Kac–Moody datum D.

Let V = Y ⊗Z R. The lattice X embeds in its dual V ∨ and the vectorial Weyl
group W acts naturally on it. Inside V we have the (closed) fundamental chamber
Cv

f = {v ∈ V | ⟨v, αi ⟩ ≥ 0} and the Tits cone T = W · Cv
f . A vectorial chamber is

a set of the form w · Cv
f for w ∈ W . Since the interior of Cv

f has trivial stabilizer
in W , the set of chambers is in natural bijection with W by w 7→ Cv

w := w · Cv
f .

To each root β ∈ 8+ let Mβ = {x ∈ V | ⟨x, β⟩ = 0}; it is a hyperplane of V and,
if β = w(αi ) with αi a simple root, then Cv

w ∩ Cv
wsi

⊂ Mβ ∩ T . The intersection
Cv

w ∩ Cv
wsi

is called the panel of type si of w.
We can put a structure of simplicial complex on T , for which chambers are the

cells of maximal rank and panels are the cells of maximal rank within nonchambers.
This simplicial complex is a realization of the Coxeter complex of (W, S). Each wall
splits the Tits cone in two parts, and separate the set of vectorial chambers in two: say
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Figure 1. The Tits cone for a root system of Cartan Matrix
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that Cv
w is on the positive side of Mβ if w−1(β)>0. In particular since β is a positive

root, the positive side is always the one which contains the dominant chamber.
Then the vectorial Bruhat order can be interpreted by sβw > w if and only if,

when we split T along Mβ , the chambers Cv
w and Cv

f are in the same connected
component of T , that is to say Cv

w is on the positive side of Mβ .
The inversion set of w−1, Inv(w−1), can be interpreted as the set of walls

separating the chamber Cv
w = w · Cv

f from the fundamental chamber Cv
f .

In Figure 1 we represent the Tits cone and its structure for a root system of rank 2
with Cartan matrix

( 2
−2

−3
2

)
, which is of indefinite type. The Tits cone is colored in

blue, and the vectorial chamber Cv
w is labeled by w. It is an approximation since

W is infinite.
Let us now turn to the interpretation of the W a

+
-Bruhat order. Let A be a real

affine space with direction V , we call A the (standard) affine apartment associated
to D. The tangent space of A is canonically isomorphic to T A = A × V , with, for
any x ∈ A, Tx A = {x} × V .

The semigroup W a
+

has an affine action on A, given by πλw(x) = −λ+w(x),
which induces an action on T A given by πλw((x, v)) = (−λ + w(x), w(v)). To
any positive affinized root β[n] ∈ 8a

+
corresponds an affine hyperplane

(1.18) Mβ[n] = {x ∈ A | ⟨x, β⟩ + n = 0},
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Figure 2. The affine apartment for a root system of Cartan Matrix
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.

the affine wall associated to the affinized root β[n]. For any x ∈ Mβ[n] we have
Tx Mβ[n] = {x} × Mβ ⊂ Tx A.

For any πλw ∈ W a
+

let

(1.19) Cπλw = {−λ} × Cv
w ⊂ T−λA ⊂ T A,

we call it the alcove of type πλw. Mirroring the classical situation, C0 = {0}× Cv
f

is a fundamental domain for the action of W a
+

on Y +
× T ⊂ T A and W a

+
acts on

{Cx | x ∈ W a
+
} simply transitively. Affine walls separate naturally the set of alcoves

in two and we call the side containing C0 the positive side.
Then the W a

+
-Bruhat order can be interpreted geometrically:

(1.20) sβ[n]π
λw > πλw ⇐⇒ Cπλw is on the positive side of Mβ[n].

We give an illustration of the affine apartment in Figure 2.
In Figure 2 we represent the affine apartment for the same root datum as in

Figure 1. The blue polygons represent the local Tits cones at three different points:
the origin, −λ ∈ −Y + and −µ, which is the image of −λ by the reflection along
the wall Ms1(α2)[2] (represented in yellow).

We have highlighted three alcoves: In green the alcove C0; in red the alcove
C = Cπλs1s2 and in yellow D = Cπµs1 which is the image of C by ss1(α2)[2]. We
see that D is on the same side of Ms1(α2)[2] as the fundamental alcove C0; thus
πλs1s2 = ss1(α2)[2](π

µs1) > πµs1.
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Note that −λ lies in the negative vectorial chamber −s2Cv
f , that is to say that

s2λ is dominant. Therefore πλs2 is the minimal length element of πλW . We will
make this more explicit in Section 2.2.

1.2.1. Notation for segments. For any two elements x, y ∈ V = Y ⊗Z R, we define

[x, y] = {t x + (1 − t)y | 0 ≤ t ≤ 1} and ]x, y[ = {t x + (1 − t)y | 0 < t < 1}.

Note in particular that, if x ∈ Y and y = x +nβ∨ for n ∈ Z and β ∈ 8, then for any
m ∈ [[0, n]] we have x + mβ∨

∈ [x, y] ∩ Y .

1.3. Preliminary results. Since the affinized Bruhat order is generated on W a
+

by the relations sβ[n]x > x ⇐⇒ ℓa(sβ[n]x) > ℓa(x) for affinized roots β[n] ∈ 8a
+

,
covers are always of this form. In the rest of the paper, we always apply affinized
reflections on the left.

Lemma 1.9. Let πλw ∈ W a and β[n] ∈ 8a
+

. Write πµw′ for sβ[n]π
λw and suppose

that (πλw)−1(β[n]) ∈ 8a
+

. Then λ ∈ [µ, sβµ]. In particular

(1.21) µ ∈ Y +
=⇒ λ ∈ Y +.

Proof. Explicitly,

πµw′
= πnβ∨

sβ .πλw = π sβλ+nβ∨

sβw.

Thus

µ = sβλ + nβ∨
= λ + (n − ⟨λ, β⟩)β∨ and sβµ = λ − nβ∨.

Moreover, since (πλw)−1(β[n]) ∈ 8a
+

, by (1.12),

|n| − sgn(n)⟨λ, β⟩ = sgn(n)(n − ⟨λ, β⟩) ≥ 0.

Therefore, unless n − ⟨λ, β⟩ = 0, n and n − ⟨λ, β⟩ have same sign, and thus
λ = sβµ+nβ∨

= µ− (n −⟨λ, β⟩)β∨ lies in [sβµ, µ]. If n −⟨λ, β⟩ = 0 then µ = λ

and the result remains true.
The Tits cone T is convex [Kumar 2002, Proposition 1.4.2c)] and W -stable,

so if µ ∈ T , then [µ, sβµ] is contained in T for any β ∈ 8. Therefore in the
situation above, if µ ∈ Y +

= T ∩Y , then λ ∈ [µ, sβµ]∩Y ⊂ T ∩Y = Y +, and thus
µ ∈ Y +

=⇒ λ ∈ Y +. □

We directly obtain from Lemma 1.9 the following result.

Proposition 1.10. The affinized Bruhat order defined on W a
+

coincides with the
restriction of the preorder defined through (1.9) on the whole semidirect product W a .
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1.3.1. Properties of the height function. We give here a few elementary results on
the height function, which will be useful in our study of the affinized Bruhat length.
They are also used in [Muthiah and Orr 2019, Section 3].

Proposition 1.11. For any w ∈ W ,

(1.22) ρ − w−1(ρ) =
∑

γ∈Inv(w)

γ.

Proof. This is [Kumar 2002, 1.3.22, Corollary 3], we prove it by induction on the
length of w.

(1) If w is a simple reflection sα then Inv(sα) = {α} and ρ − sα(ρ) = ⟨α∨, ρ⟩α = α

since ⟨α∨, ρ⟩ = 1 by definition of ρ.

(2) Suppose the result is true for elements of length n, and suppose that ℓ(w)=n+1.
Then write w = w1sα for α a simple root and w1 an element of length n. Then

ρ − w(ρ) = ρ − w1(ρ) + w1(ρ − sα(ρ)) =
∑

γ∈Inv(w−1
1 )

γ + w1(α)

and since Inv(w−1) = Inv(w−1
1 ) ⊔ {w1(α)} we get the result for w. □

Corollary 1.12. For any positive root β ∈ 8+ we have

(1.23) 2 ht(β∨) =
∑

γ∈Inv(sβ )

⟨β∨, γ ⟩.

All the terms in the sum are positive.

Proof. Let β ∈ 8+ be a positive root. Note that −sβ(β∨) = β∨ and thus ⟨β∨, ρ⟩ =

⟨−sβ(β∨), ρ⟩ = ⟨β∨, −sβ(ρ)⟩. Therefore by Proposition 1.11,

2 ht(β∨) = 2⟨β∨, ρ⟩ = ⟨β∨, ρ − sβ(ρ)⟩ =
∑

γ∈Inv(sβ )

⟨β∨, γ ⟩.

Also for any γ ∈ Inv(sβ), by definition γ ∈ 8+ and sβ(γ ) = γ − ⟨β∨, γ ⟩β∨
∈ 8−

so, since β is a positive root, the coefficient ⟨β∨, γ ⟩ is necessarily positive. □

Corollary 1.13. Let µ ∈ Y + and u ∈ W be such that µ = u(µ++). Then

(1.24) ht(µ++) = ht(µ) −
∑

τ∈Inv(u−1)

⟨µ, τ ⟩.

The terms in this sum are nonpositive integers and

(1.25) ht(µ) ≤ ht(µ++).

The inequality is strict unless µ is dominant.
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Proof. By definition ht(µ++) = ⟨u−1(µ), ρ⟩ = ⟨µ, u(ρ)⟩, and, by Proposition 1.11,

ht(µ++) = ⟨µ, u(ρ)⟩ =

〈
µ, ρ −

∑
τ∈Inv(u−1)

τ
〉
= ht(µ) −

∑
τ∈Inv(u−1)

⟨µ, τ ⟩.

Moreover, for any τ ∈ 8, we have ⟨µ, τ ⟩ = ⟨µ++, u−1(τ )⟩, so τ ∈ Inv(u−1) =⇒

⟨µ, τ ⟩ ≤ 0 and the terms of the above sum are all nonpositive; we deduce (1.25). If
µ is not dominant, then there exists τ ∈ 8+ such that ⟨µ, τ ⟩ < 0, and thus

ht(µ) < ht(sτµ) ≤ ht(µ++). □

Amongst other things, Corollary 1.13 directly implies the following result, which
was first indicated to the author by Hébert and Muthiah.

Lemma 1.14. Let λ ∈ Y + and β ∈ 8+ such that sβλ ̸= λ. Suppose that µ ∈ ]λ, sβλ[.
Then ht(µ++) < ht(λ++).

Proof. Note that we do not suppose µ ∈ Y . The height function is extended to
V = Y ⊗Z R linearly. Let t ∈ ]0, 1[ be such that µ = tλ+ (1− t)sβλ, and let v ∈ W
be such that µ++

= vµ. Then ht(µ++) = ht(vµ) = t ht(vλ)+ (1 − t) ht(vsβλ). By
Corollary 1.13, ht(vλ) ≤ ht(λ++) and ht(vsβλ) ≤ ht(λ++) and, since sβλ ̸= λ, at
least one of the two inequality is strict. We deduce ht(µ++) < ht(λ++). □

Proposition 1.15. Let x ∈ W a
+

and β[n] ∈ 8a
+

such that sβ[n]x ∈ W a
+

. Then

(1.26) projY
++

(sβ[n]x) = projY
++

(x) ⇐⇒ n ∈
{
0, ⟨projY

+

(x), β⟩
}
.

Proof. To simplify notation, let λ ∈ Y + denote projY
+

(x). If n ∈ {0, ⟨λ, β⟩} then by
(1.11), projY

+

(sβ[n]x) ∈ {sβ(λ), λ} and therefore it has same dominance class.
Conversely, if n ∈ ]]0, ⟨λ, β⟩[[ then

projY
+

(sβ[n]x) = sβ(λ) + nβ∨
∈ ]λ, sβ(λ)[,

and if n /∈ [[0, ⟨λ, β⟩]] then

λ ∈ ]sβ(λ) + nβ∨, λ− nβ∨
[ =

]
projY

+

(sβ[n]x), sβ(projY
+

(sβ[n]x))
[
.

Either way by Lemma 1.14, ht(projY
++

(sβ[n]x)) ̸= ht(projY
++

(x)) and in partic-
ular projY

++

(sβ[n]x) ̸= projY
++

(x). □

Remark 1.16. If n = ⟨λ, β⟩, then by (1.11), sβ[n]π
λw = πλwsw−1(β). Therefore

Proposition 1.15 indicates that, if y = sβ[n]x, then projY
++

( y) = projY
++

(x) if and
only if y is obtained from x by applying a vectorial reflection either on the left-hand
side (if n = 0) or on the right-hand side (if n =⟨λ, β⟩). This justifies the terminology
for vectorial covers and properly affine covers.
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Proposition 1.17. Let x, y ∈ W a
+

and suppose that x ≤ y. Then

(1.27) ht(projY
++

(x)) ≤ ht(projY
++

( y)),

with equality if and only if projY
++

(x) = projY
++

( y).
In particular the function ht ◦ projY

++

: W a
+

→ R is order-preserving.

Proof. It is enough to prove it for cover relations, if y = sβ[n]x for some β[n] ∈ 8a
+

.
In that case, by Lemma 1.9 we have projY

+

(x) ∈
[
projY

+

( y), sβ(projY
+

( y))
]
. If

projY
+

(x) ∈ {projY
+

( y), sβ projY
+

( y)} then they have the same dominance class:
projY

++

(x) = projY
++

( y) and we obtain the equality case.
Otherwise, projY

+

(x)∈
]
projY

+

( y), sβ(projY
+

( y))
[
, necessarily sβ(projY

+

( y)) ̸=
projY

+

( y) and by Lemma 1.14 we deduce ht(projY
++

(x)) < ht(projY
++

( y)). □

Corollary 1.18. For any λ++
∈ Y ++, the set {x ∈ W a

+
| projY

++

(x) = λ++
} is

convex for the affinized Bruhat order.

Proof. By Proposition 1.17 the function W a
+

→ R : x 7→ ht ◦ projY
++

is compatible
with the affinized Bruhat order. Suppose that x, y ∈ W a

+
satisfy projY

++

(x) =

projY
++

( y) and x ≤ y. Let z ∈ W a
+

be such that x ≤ z ≤ y. Then by Proposition 1.17,
ht(projY

++

(x)) ≤ ht(projY
++

(z)) ≤ ht(projY
++

( y)) = ht(projY
++

(x)). By the equal-
ity case in Proposition 1.17, we deduce projY

++

(z) = projY
++

(x). □

Remark 1.19. Note that, for λ ∈ Y +, the set {x ∈ W a
+

| projY
++

(x) = λ++
} is the

double W -orbit of πλ:

(1.28) {x ∈ W a
+

| projY
++

(x) = λ++
} = WπλW.

We show in Section 2 that the right W -orbits πλW are also convex for the
affinized Bruhat order.

We end this section with several metric properties of Coxeter groups, the results
stated are proved in the context of Coxeter complexes and buildings in [Ronan
1989].

1.3.2. Metric properties of Coxeter groups. On any Coxeter group (W0, S0) we
define a map d : W0 × W0 → W0 by d(v, w) = v−1w, called the vectorial distance
of W0. It is W0-invariant: d(uv, uw) = d(v, w) for any u, v, w ∈ W0. We also
define dN

= ℓ ◦ d where ℓ is the Bruhat length on (W0, S0) (note that ℓ and dN

depend on the set of simple reflections S0, but the vectorial distance does not). These
maps have properties analogous to the standard distance axioms, which justify the
name (see [Ronan 1989, Chapter 3, §1]).

An unfolded gallery (resp. a gallery) in W0 from w to v is a sequence w =

w0, . . . , wn = v such that dN(wi , wi+1) = 1 (resp. dN(wi , wi+1) ∈ {0, 1}) for all
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i ∈ [[0, n −1]]. A gallery is said to be minimal if its length n is equal to dN(w1, wn),
and a minimal gallery is necessarily unfolded. We refer to [Ronan 1989, Chapter 2]
for properties of minimal galleries, but note that if (w0, . . . , wn) is a minimal gallery
then dN(w0, wi ) = i and thus (w0, . . . , wi ) is a minimal gallery from w0 to wi .
Since the distance is W0 invariant, (vw0, . . . , vwn) is also a minimal gallery for
any v ∈ W0. The next lemma is a reformulation of [Ronan 1989, Proposition 2.8].

Lemma 1.20. Let (W0, S0) be a Coxeter system and let v1, v2, w ∈ W0 be such that
v2 is not on a minimal gallery from v1 to w. Then there is a reflection r ∈ W0 such
that d(v1, rw) > d(v1, w) and d(v2, rw) < d(v2, w).

Proof. If v2 is not on a minimal gallery from v1 to w, by [Ronan 1989, Proposi-
tion 2.8] there is a root α — seen as a half-apartment: α ={u ∈ W0 |ℓ(u)<ℓ(sαu)} —
such that v1, w ∈ α and v2 /∈ α. Then consider the folding along α, defined by

∀u ∈ W0, ρα(u) =

{
sαu if u /∈ α,

u otherwise.

It reduces the vectorial distance (see [Ronan 1989, §2]); hence

d(v1, w) = d(ρα(v1), ρα(sαw)) < d(v1, sαw),

d(v2, sαw) = d(sαv2, w) = d(ρα(v2), ρα(w)) < d(v2, w). □

Recall that for J ⊂ S, WJ is the subgroup generated by the set of simple
reflections J . The Coxeter system (WJ , J ) is an example of Coxeter system for
which we will use Lemma 1.20. For any w ∈ W , the coset wWJ is convex, in the
sense that, if w1, w2 ∈ wWJ , then any minimal gallery from w1 to w2 lies in wWJ

(see [Ronan 1989, Lemma 2.10]).

Definition 1.21. For any J ⊂ S and v, w ∈ W , the projection of w on vWJ is
the unique element of vWJ which reaches minṽ∈vWJ dN(w, ṽ). It is denoted by
projvWJ

(w). Any minimal gallery from v to an element of wWJ goes through
projvWJ

(w) (see [Ronan 1989, Theorem 2.10]).

2. Restriction to constant dominance classes

We study the affinized Bruhat order restricted to a dominance class, that is to say, for
a given λ++

∈Y ++, we study the restriction of the affinized Bruhat order to the subset
(projY

++

)−1(λ++) = Wπλ++

W . By Corollary 1.18 these are convex subsets for the
affinized Bruhat order. We start by showing that, for any λ ∈ Y +, the subset πλW =

(projY
+

)−1(λ) of (projY
++

)−1(λ++) is also convex for the affinized Bruhat order.
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Lemma 2.1. Let λ ∈ Y +, recall Notation 1.3 for vλ. Then Inv((vλ)−1) ∩ 8λ = ∅.
In particular for any β ∈ 8+,

(2.1) ht(λ) < ht(sβλ) ⇐⇒ ⟨λ, β⟩ < 0 ⇐⇒ sβvλ < vλ.

Proof. Let λ ∈ Y + and α ∈ Inv((vλ)−1)∩8λ. Then since α ∈ 8λ, sα fixes λ, that is,
sα ∈ Wλ. Moreover (vλ)−1(α) < 0 so sαvλ < vλ, which contradicts the minimality
of vλ (note that, as Wλv

λ
= vλWλ++ , vλ is also the minimal representative for the

right coset Wλv
λ). Hence Inv((vλ)−1)∩8λ =∅, and therefore any β ∈ Inv((vλ)−1)

satisfies ⟨λ, β⟩ ̸= 0.
For β ∈ 8+, ⟨λ, β⟩ = ⟨λ++, (vλ)−1(β)⟩. Since λ++ is dominant, if this is

negative then β ∈ Inv((vλ)−1), and since Inv((vλ)−1) and 8λ are disjoint, the
converse is also true. Since β ∈ Inv((vλ)−1) ⇐⇒ sβvλ < vλ we deduce the second
equivalence in (2.1). Moreover ht(sβλ) = ht(λ) − ⟨λ, β⟩ ht(β∨) by linearity of the
height function, and since ht(β∨) > 0, the first equivalence in (2.1) is clear. □

Remark 2.2. The fact that Inv((vλ)−1) ∩ 8λ = ∅ is visible geometrically in the
Coxeter complex of W , in which 8λ is the set of walls containing λ and Inv(v−1)

is the set of walls separating Cv
f and Cv

v . The chamber Cv
vλ is the closest chamber

from the fundamental chamber amongst the chambers containing λ in their closure,
in other words, vλ

= projWλ
(1W ).

Proposition 2.3. Suppose that πλw ∈ W a
+

and r ∈ W is a reflection such that
rλ ̸= λ. Then

(2.2) πrλrw > πλw ⇐⇒ rvλ < vλ.

For any λ++
∈ Y ++, the restriction of the function ht ◦ projY

+

to (projY
++

)−1(λ++)

is order-preserving.

Proof. Suppose that r ∈ W is a reflection which does not fix λ. By definition there
exists a positive root β ∈ 8+ such that r = sβ and, since r does not fix λ, ⟨λ, β⟩ ̸= 0.
Note that πrλrw = sβ[0]π

λw so, using (1.12), we have

πrλrw > πλw ⇐⇒ −⟨λ, β⟩ > 0 ⇐⇒ ⟨λ, β⟩ < 0.

By Lemma 2.1 this is equivalent to rvλ < vλ, and to ht(λ) < ht(rλ). This is enough
to obtain (2.2). Moreover by convexity of (projY

++

)−1(λ++) (see Corollary 1.18)
and by Proposition 1.15 it also implies that ht ◦ projY

+

: (projY
++

)−1(λ++) → R is
order-preserving. □

Note that the function ht ◦ projY
+

is not order-preserving on the whole semi-
group W a

+
. For example suppose that λ∈Y ++ and β ∈8+ are such that λ+β∨ is also
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dominant. Then we can check that π sβ (λ) < π sβ (λ)−β∨

sβ whereas ht(sβ(λ)−β∨) <

ht(sβ(λ)).
Proposition 2.3 implies the convexity of left W -cosets:

Corollary 2.4. Let λ ∈ Y +. Then the set πλW = {x ∈ W a
+

| projY
+

(x) = λ} is
convex for the affinized Bruhat order.

Proof. Let x, y ∈ πλW such that x < y and let x = x0 < x1 < · · · < xn = y be
a chain from x to y; in particular for all k ∈ [[0, n − 1]], let βk[nk] ∈ 8a

+
be such

that xk+1 = sβk [nk ]xk . For k ∈ [[0, n]], write xk = πλk wk with λk ∈ Y +, wk ∈ W .
By convexity of (projY

++

)−1(λ++), projY
++

is constant along the chain, therefore
by Proposition 1.15, for all k ∈ [[0, n − 1]] we have λk+1 ∈ {λk, sβk (λk)}. From
Proposition 2.3 we deduce that vλk+1 ≤ vλk . Since λ0 = λn = λ, vλ0 = vλn = vλ,
and thus vλk = vλ, so λk = λ for all k ∈ [[0, n]]. Hence πλW is convex. □

2.1. Relative length on W. We define a relative length and a relative Bruhat order
on W , which naturally arises in the study of the affinized length ℓa on W a

+
. This

connection was already observed by Muthiah and Orr [2018].

Definition 2.5. For any v, w ∈ W let

(2.3) ℓv(w) = |Inv(w−1) \ Inv(v−1)| − |Inv(w−1) ∩ Inv(v−1)|.

This is a signed version of the Bruhat length, in particular ℓ1 = ℓ.
We associate an order to ℓv by setting, for any element w ∈ W and any reflection

r ∈ W , w <v wr if and only if ℓv(w) < ℓv(wr), and then let <v be the order
generated by these relations. It is strictly compatible with ℓv. In particular <1 is
the classical Bruhat order.

As does the Bruhat length, the lengths ℓv have a geometric interpretation in the
Coxeter complex associated to (W, S). For M a wall of the Coxeter complex and
w ∈ W , let εw(M) = −1 if M separates Cv

f and Cv
w, and εw(M) = +1 otherwise.

Then

(2.4) ℓv(w) =
∑

M∈ε−1
w (−1)

εv−1(M).

We will use this relative length to give an alternative definition of the affinized
length. Let us first give an explicit formula for ℓv depending only on the classical
length ℓ = ℓ1.

Lemma 2.6. If sv > v with v ∈ W and s a simple reflection then for any w ∈ W ,
ℓsv(w) = ℓv(sw) − 1.
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Proof. For any w ∈ W , the map γ 7→ sγ defines a bijection:

Inv(w−1) \ {αs} ∼= Inv(w−1s) \ {αs}.

Moreover because sv > v, αs ∈ Inv(v−1s) and αs /∈ Inv(v−1).
Therefore

|Inv(w−1) ∩ Inv(v−1s) \ {αs}| = |Inv(w−1s) ∩ Inv(v−1)|

and
|Inv(w−1) \ Inv(v−1s)| =

∣∣Inv(w−1s) \ (Inv(v−1) ∪ {αs})
∣∣.

(1) If αs ∈ Inv(w−1) then αs /∈ Inv(w−1s) and

ℓsv(w) = |Inv(w−1s) \ Inv(v−1)| −
(
|Inv(w−1s) ∩ Inv(v−1)| + 1

)
= ℓv(sw) − 1.

(2) If αs /∈ Inv(w−1) then αs ∈ Inv(w−1s) and

ℓsv(w) =
(
|Inv(w−1s) \ Inv(v−1)| − 1

)
− |Inv(w−1s) ∩ Inv(v−1)|

= ℓv(sw) − 1. □

Proposition 2.7. For all v, w ∈ W the relative length ℓv(w) is given by

(2.5) ℓv(w) = ℓ(v−1w) − ℓ(v).

Proof. Since ℓ = ℓ1, we take a reduced expression for v and apply Lemma 2.6
recursively to get the result. □

Corollary 2.8. For any v ∈ W , the relative length ℓv is a grading of (W, <v).

Proof. Let v, w,w′
∈ W . By Proposition 2.7, ℓv(w

′)−ℓv(w)= ℓ(v−1w′)−ℓ(v−1w)

and w′ covers w for <v if and only if v−1w′ covers v−1w for the (standard) Bruhat
order. Since the Bruhat length is a grading of (W, <1) (see [Björner and Brenti
2005, Theorem 2.2.6]), v−1w′ covers v−1w if and only if ℓ(v−1w′)− ℓ(v−1w) = 1
and v−1w′

= v−1wr for some reflection r ∈ W . Hence w′ covers w for <v if and
only if ℓv(w

′)− ℓv(w) = 1 and w′
= wr for some reflection r ∈ W : ℓv is a grading

of (W, <v). □

The order <v also has a geometric interpretation which will be important later
on; it is given by the following corollary.

Corollary 2.9. For any root α ∈ 8 and elements w, v ∈ W , we have that w <v sαw

if and only if , in the Coxeter complex of W , Cv
w and Cv

v are on the same side of the
wall Mα.
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Proof. We have ℓv(sαw)−ℓv(w)= ℓ(v−1sαw)−ℓ(v−1w)=dN(v, sαw)−dN(v, w).
By the definition of the Coxeter complex this is positive if and only if Cv

v and Cv
w

are on the same side of the wall Mα. □

Therefore <v can be interpreted as a shift of the classical Bruhat order, correspond-
ing geometrically to taking Cv

v as the fundamental chamber in the Coxeter complex.

2.2. Relation with the affinized Bruhat length. We relate the affinized Bruhat
order and the relative order defined in Section 2.1. We start with an alternative
expression for the affinized Bruhat length.

Proposition 2.10. For any coweight λ = vλ++
∈ Y +, for any w ∈ W ,

(2.6)
∣∣{α ∈ Inv(w−1) | ⟨λ, α⟩ ≥ 0}

∣∣ − ∣∣{α ∈ Inv(w−1) | ⟨λ, α⟩ < 0}
∣∣ = ℓvλ(w).

Therefore

ℓa
ε (π

λw) = 2 ht(λ++) + εℓvλ(w),(2.7)

ℓa(πλw) = 2 ht(λ++) + ℓvλ(w).(2.8)

Proof. For λ ∈ Y + and v ∈ W such that λ = vλ++, α ∈ 8+ satisfies ⟨λ, α⟩ ≥ 0 if
and only if α ∈ 8λ ∪ (8+ \ Inv(v−1)). Hence,

{α ∈ Inv(w−1) | ⟨λ, α⟩ ≥ 0} = (Inv(w−1)\Inv(v−1))
⊔

(Inv(w−1)∩Inv(v−1)∩8λ)

and

Inv(w−1)∩ Inv(v−1) = {α ∈ Inv(w−1) | ⟨λ, α⟩ < 0}
⊔

(Inv(w−1)∩ Inv(v−1)∩8λ).

Therefore∣∣{α ∈ Inv(w−1) | ⟨λ, α⟩ ≥ 0}
∣∣ − ∣∣{α ∈ Inv(w−1) | ⟨λ, α⟩ < 0}

∣∣
= ℓv(w) + 2|Inv(w−1) ∩ Inv(v−1) ∩ 8λ|

By Lemma 2.1 we deduce (2.6). □

Remark 2.11. By combining Corollary 1.13 with Proposition 2.10, we obtain the
formulas already given by Muthiah and Orr [2019, Proposition 3.10].

Corollary 2.12. Let λ ∈ Y + and w ∈ W . Suppose that πµw′′
= sβ[n]π

λw for some
affinized root β[n] ∈ 8a such that µ++

= λ++. Then

(2.9) πµw′′ > πλw ⇐⇒ ℓvµ(w′′) > ℓvλ(w).

For any λ ∈ Y + and w, w′′
∈ W ,

(2.10) πλw < πλw′′
⇐⇒ w <vλ w′′.

In particular, πλvλ is the minimal element of πλW .
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Proof. Equivalence (2.9) is a direct consequence of (2.8) and strict compatibility of
the affinized Bruhat length and the affinized Bruhat order. It implies by iteration that
a chain for the relative order <vλ from w to w′′ lifts to a chain for the affinized Bruhat
order from πλw to πλw′′. Conversely, by Corollary 2.4 projY

+

is constant along
any chain from πλw to πλw′′, and therefore the projection on W of a chain from
πλw to πλw′′ induces a chain for the relative Bruhat order <vλ from w to w′′. □

We deduce a partial version of Theorem A, for vectorial covers with constant
coweight.

Theorem 2.13. Let x, y ∈ W a
+

be such that projY
+

(x)= projY
+

( y) and x ≤ y. Then

(2.11) x ◁ y ⇐⇒ ℓa( y) = ℓa(x) + 1.

More precisely, if x = πλw then y = πλrw for some reflection r ∈ W such that rw

covers w for the relative Bruhat order <vλ .

Proof. By (2.10), πλw′ covers πλw if and only if w′ covers w for the relative
Bruhat order <vλ . By Corollary 2.8, this is equivalent to ℓvλ(w′) = ℓvλ(w) + 1.
Therefore by (2.8) we deduce that x ◁ y =⇒ ℓa( y) = ℓa(x) + 1. The converse is
immediate by strict compatibility of the affinized Bruhat length (Theorem 1.7). □

2.3. Vectorial covers with nonconstant coweight. Here, we prove Theorem A for
vectorial covers with nonconstant coweight.

Beforehand, we need a few results on parabolic decomposition. The first lemma
is an adaptation of a standard result on minimal coset representatives (see [Björner
and Brenti 2005, Theorem 2.5.5]), and the second is proved by P-E. Chaput, L.
Fresse and T. Gobet in [Chaput et al. 2021].

Lemma 2.14. Let J be a subset of S, and recall Notation 1.3 for W J . Let v be an
element of W J and u be any element of W such that u < v. Then, there is, for the
Bruhat order, a saturated chain

(2.12) u = u0 ◁ u1 ◁ · · ·◁ uN = v

such that, for any i ∈ [[1, N ]], u−1
i−1ui does not belong to WJ .

Proof. If v covers u, it is clear since u < v is a saturated chain, and as v is a
minimal coset representative, u−1v /∈ WJ . By induction it thus suffices, for a
general pair (u, v), to construct u1 ∈ W such that u1 covers u, u−1u1 /∈ WJ and
u1 < v; the rest of the chain is obtained by induction. Let s1 . . . sn be a reduced
expression of v. Since u < v, there exists a reduced expression of u obtained from
s1 . . . sn by deleting letters si1, . . . , siN . Choose one such that iN is minimal. Then
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let t ∈ W be the reflection defined by t = sn . . . siN +1siN siN +1 . . . sn . We show that
u1 = ut satisfies the desired properties.

(1) By construction, an expression of ut is obtained from s1 . . . sn by deleting the
N − 1 letters si1, . . . , siN−1 . Therefore ut < v.

(2) Since an expression of vt is obtained from s1 . . . sn by deleting siN , vt < v, and
since v is the minimal coset representative of vWJ , t does not belong to WJ .

(3) It remains to show that ut covers u. By the first point, we have that ℓ(ut) ≤

ℓ(u)+ 1, so it suffices to show that ut ̸< u. Suppose by contradiction that ut < u.
Then, by the strong exchange property, an expression of ut is obtained from u by
deleting one letter sp of the reduced expression s1 . . . ši1 . . . šiN . . . sn (where ši

denotes a letter si taken away from the expression s1 . . . sn).

(a) Suppose that p > iN . Then t can also be written as sn . . . sp+1spsp+1 . . . sn ,
and v = (vt)t = s1 . . . ˇsiN . . . šp . . . sn , which contradicts the hypothesis that
s1 . . . sn is reduced.

(b) Suppose now that there is d ≤ N−1 such that id < p < id+1 (with the convention
that i0 =−1). Then t = sn . . . šiN . . . šid+1 . . . sp . . . šid+1 . . . šiN . . . sn , and u =

(ut)t can be written from s1 . . . sn by deleting the terms of indices i1, . . . , iN−1

and p < iN , but not iN . This contradicts the minimality of iN . □

Definition 2.15. For v, w ∈ W , we write

(2.13) v ≤R w ⇐⇒ ℓ(w) = ℓ(v) + ℓ(wv−1).

Remark 2.16. The relation ≤R is called the weak Bruhat order and it is related to
minimal galleries: v ≤R w if and only if there is a minimal gallery from 1 to w−1

going through v−1.

Recall that for J ⊂ S and x ∈ W , (x J , x J ) denotes the unique pair of W J
× WJ

such that x = x J .x J .

Lemma 2.17 [Chaput et al. 2021, Lemma 8.11]. Let J ⊂ S be a subset of simple
reflections. Let u be an element of W and t be a reflection of W \ WJ such that ut
covers u. Then (ut)J ≤R u J . In other words ((ut)J )

−1 lies on a minimal gallery
from 1 to (u J )

−1.

Theorem 2.18. Let x, y ∈ W a
+

be such that projY
++

( y) = projY
++

(x) and x ≤ y.
Then

(2.14) x ◁ y ⇐⇒ ℓa( y) = ℓa(x) + 1.
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More precisely, write x = πλw. Let J be the set of simple reflections stabilizing
λ++ and let v ∈ W J be such that λ = vλ++ (so v = vλ with Notation 1.3). Then, if
x ◁ y and projY

+

( y) ̸= projY
+

(x), there exists a unique reflection r ∈ W such that:

(1) The reflection r does not stabilize λ and y = πrλrw.

(2) For the Bruhat order on W , v covers rv.

(3) Set u = rv, so u J ∈ WJ denotes the element (rv)J and rvu−1
J ∈ W J . Then

vu−1
J is on a minimal gallery from v to w in W .

Proof. If projY
+

( y) = projY
+

(x) then (2.14) is given by Theorem 2.13. Moreover
if ℓa( y) = ℓa(x) + 1 and y ≥ x then, by strict compatibility of ℓa , y covers x.
We are thus reduced to prove that, if y covers x with projY

+

( y) ̸= projY
+

(x) and
projY

++

( y) = projY
++

(x), then ℓa( y) = ℓa(x) + 1.
Write x = πλw and v = vλ. By definition of the affinized Bruhat order, if x ◁ y

then y is of the form sβ[n]x for some β[n] ∈ 8a
+

.
Let y = sβ[n]x ∈ W a

+
with projY

++

( y) = λ++ and projY
+

( y) ̸= λ, in particular
n ̸= ⟨λ, β⟩. By Proposition 1.15, n = 0 so y = πrλrw for the reflection r = sβ

which does not stabilize λ. Let us write u = rv, and note that u J
= vrλ. By (2.8),

(2.15) ℓa( y) − ℓa(x) = ℓu J (rw) − ℓv(w).

By definition, rv = u J u J with, by (1.3), ℓ(rv) = ℓ(u J ) + ℓ(u J ). We compute

(2.16) ℓu J (rw)−ℓv(w) = ℓ((rv(u J )
−1)−1rw)−ℓ(v−1w)+ℓ(v)−ℓ(u J )

= ℓ(u J v
−1w)−ℓ(v−1w)+ℓ(v)+ℓ(u J )−ℓ(u)

= (ℓ(v)−ℓ(u))+
(
ℓ(u J )−(dN(v, w)−dN(vu−1

J , w))
)
.

From (2.15) and (2.16), we deduce

(2.17) ℓa( y) − ℓa(x) = (ℓ(v) − ℓ(u)) +
(
ℓ(u J ) − (dN(v, w)− dN(vu−1

J , w))
)
.

In (2.17), by the triangle inequality and since dN(v, vu−1
J ) = ℓ(u J ), the second term

ℓ(u J ) − (dN(v, w)− dN(vu−1
J , w)) is nonnegative, and it is equal to 0 if and only

if dN(v, w) = dN(v, vu−1
J ) + dN(vu−1

J , w), so if and only if vu−1
J is on a minimal

gallery from v to w.
Recall Definition 1.21 of projvWJ

(w). Since vu−1
J lies in vWJ , a minimal gallery

from vu−1
J to w goes through projvWJ

(w). Thus ℓ(u J )−(dN(v, w)−dN(vu−1
J , w))

is equal to zero if and only if u−1
J is on a minimal gallery from 1 to v−1projvWJ

(w)

in WJ .
Let us first suppose that u−1

J is not on a minimal gallery from 1 to v−1projvWJ
(w).

We want to deduce that y does not cover x. We thus want to produce a nontrivial
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chain from πλw to πrλrw. By Lemma 1.20, there is a reflection t ∈ WJ such that

dWJ (1, tv−1projvWJ
(w)) > dWJ (1, v−1projvWJ

(w)),

dWJ (u−1
J , tv−1projvWJ

(w)) < dWJ (u−1
J , v−1projvWJ

(w)).

In W , this implies d(vt, w) > d(v, w) and d(vtu−1
J , w) < d(vu−1

J , w).
Let w̃ = vtv−1w. We compute

ℓv(w̃) − ℓv(w) = dN(vt, w)− dN(v, w) > 0,

ℓu J (rw) − ℓu J (rw̃) = dN(vu−1
J , w)− dN(vtu−1

J , w) > 0,

ℓu J (rw̃) − ℓv(w̃) = ℓ(v) − ℓ(u) + ℓ(u J ) − (dN(v, w̃) − dN(vu, w̃)) > 0.

Hence by Proposition 2.3 and Corollary 2.12,

(2.18) πλw < πλw̃ < πrλrw̃ < πrλrw.

Suppose now that vu−1
J is on a minimal gallery from v to w. Then by (2.17),

ℓa( y) − ℓa(x) = ℓ(v) − ℓ(rv). Suppose that ℓ(v) − ℓ(rv) = N > 1. Let

(2.19) rv = u0 ◁ u1 ◁ · · ·◁ uN = v

be a saturated chain in W from rv to v given by Lemma 2.14 and, for i ∈ [[1, N ]], let
βi ∈ 8+ be such that ui = sβi ui−1, so ui = sβi . . . sβ1u ≥ rv. Note in particular that

(2.20) ℓ(ui ) = ℓ(rv) + i = ℓ(v) − N + i.

Let us show that it induces a chain for the affinized Bruhat order

(2.21) πλw = sβN [0] . . . sβ1[0]π
rλrw < sβN−1[0] . . . sβ1[0]π

rλrw < · · · < πrλrw.

Since sβi [0] . . . sβ1[0]π
rλrw = πui λ

++

sβi . . . sβ1rw, by (2.9) it is enough to verify

(2.22) ∀i ∈ [[0, n]], ℓu J
i
(sβi . . . sβ1rw) = ℓv(w) + N − i.

We compute

(2.23) ℓu J
i
(sβi . . . sβ1rw) = ℓ

(
(ui (ui )

−1
J )−1sβi . . . sβ1rw

)
− ℓ(u J

i )

= ℓ((ui )J v
−1w) − ℓ(u J

i ).

Since the saturated chain u0 < u1 < · · · < uN is obtained from Lemma 2.14, ui

covers ui−1 such that the reflection u−1
i−1ui does not belong to WJ , so by Lemma 2.17,

(ui )J ≤R (ui−1)J and by iteration we have (ui )J ≤R (u0)J = u J . Otherwise said,
(ui )

−1
J is on a minimal gallery from 1 to u−1

J . Therefore v(ui )
−1
J is on a minimal

gallery from v to vu−1
J , and hence on a minimal gallery from v to w. We deduce

(2.24) ℓ((ui )J v
−1w) = ℓ(v−1w) − ℓ((ui )J ).
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Combining (2.23) and (2.24) we obtain

(2.25) ℓu J
i
(sβi . . . sβ1rw) = ℓ(v−1w) − ℓ((ui )J ) − ℓ(u J

i ).

Moreover,

(2.26) ℓ((ui )J ) + ℓ(u J
i ) = ℓ(ui ) = ℓ(v) − (N − i)

by (1.3) and (2.20). Combining (2.25) and (2.26), we deduce (2.22). □

3. Properly affine covers

3.1. A few properties of properly affine covers. We now turn to the case of covers
πλw <πµw′ in W a

+
with µ++

̸=λ++. Such covers are called properly affine covers.
By (1.12), if πµsβw = sβ[n]π

λw >πλw with β[n] ∈8a
+

, then n ∈ Z\]]0, ⟨λ, β⟩[[.
Conversely, if n ∈ Z\[[0, ⟨λ, β⟩]] then sβ[n]π

λw > πλw, however sβ[n]π
λw may not

be in W a
+

as λ+Zβ∨
̸⊂Y +. The limit cases n ∈{0, ⟨λ, β⟩} correspond to λ++

=µ++

dealt with in the previous section.
We first show that properly affine covers occur only for minimal n, in the

following sense.

Proposition 3.1. Let λ ∈ Y + and w ∈ W , and let β ∈ 8 and n ∈ Z. Let us define
σ = sgn(⟨λ, β⟩) ∈ {1, −1}. If πµw′

= sβ[n]π
λw▷πλw is a cover with λ++

̸= µ++,
then n ∈ {−σ, ⟨λ, β⟩ + σ }.

Proof. For any ν ∈Y + if we identify the Coxeter complex of W with the positive Tits
cone T ⊂ A, Cv

vν is the closest vectorial chamber, from the fundamental chamber,
containing ν in its closure. All the elements of λ + σZ>0β

∨ are on the same side
of Mβ ; hence by Corollary 2.9, for any two such ν, ν ′

∈λ+σZ>0β
∨ and any w ∈ W ,

(3.1) w <vν sβw ⇐⇒ w <vν′ sβw.

Suppose first that n ∈ ⟨λ, β⟩ + σZ>1 and let µ = λ + (n − ⟨λ, β⟩)β∨. Then:

(1) If w <vµ sβw, we have the chain

(3.2) πλw < sβ[⟨λ,β⟩+σ ]π
λw = πλ+σβ∨

sβw < πµw < πµsβw.

The second inequality comes from πµw = sβ[n+σ ]π
λ+σβ∨

sβw and (1.12), and the
third comes from (2.10).

(2) Else sβw <vµ w, so by (3.1), sβw <vλ+σβ∨ w and we have the chain

(3.3) πλw < sβ[⟨λ,β⟩+σ ]π
λw = πλ+σβ∨

sβw < πλ+σβ∨

w < πµsβw.

Here the second inequality comes from (2.10). The third comes from πµsβw =

sβ[n+σ ]π
λ+σβ∨

w and (1.12).
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Either way, for n ∈ ⟨λ, β⟩+ σZ>1, sβ[n]π
λw does not cover πλw. For n ∈ −σZ>1

the argument is similar, because all the elements of sβλ−σZ>0β
∨ are on the same

side of Mβ , in particular on the side of µ = sβλ + nβ∨.

(1) If w <vµ sβw, we have a chain

(3.4) πλw < sβ[−σ ]π
λw = π sβ (λ+σβ∨)sβw < πµw < πµsβw.

(2) Else sβw <vµ w so sβw <
v

sβ (λ+σβ∨) w and we have a chain

(3.5) πλw < sβ[−σ ]π
λw = π sβ (λ+σβ∨)sβw < π sβ (λ+σβ∨)w < πµsβw.

So the only possible covers (with varying coweights) are for n ∈{−σ, ⟨λ, β⟩+σ }. □

Remark 3.2. To follow up on Remark 1.16, by (1.10), we have sβ[σ+⟨λ,β⟩]π
λw =

πλwsw−1(β)[σ ], where σ = sgn(⟨λ, β⟩). Therefore Proposition 3.1 tells us that, if
y covers x in W a

+
, then y is obtained from x applying an affinized reflection sβ̃[n]

either on the left (for sβ[0] and sβ[−σ ]) or on the right (for sβ[⟨λ,β⟩] and sβ[⟨λ,β⟩+σ ]),
with n ∈ {−1, 0, 1}.

This is still far from a sufficient condition and many cases of potential covers can
still be eliminated. We give another necessary condition for πµsβw = sβ[n]π

λw >

πλw to be a cover; this is a generalization of the chains produced in the proof of
Theorem 2.18:

Proposition 3.3. Let πµsβw = sβ[n]π
λw > πλw with µ++

̸= λ++. Suppose that
sβvµ is not on a minimal gallery from w to vλ. Then πµsβw > πλw is not a cover.

Proof. We express the difference of ε-length using (2.7):

(3.6) ℓa
ε (π

µsβw) − ℓa
ε (π

λw) = 2 ht(µ++
− λ++) + ε(ℓvµ(sβw) − ℓvλ(w)).

If there exists a reflection r ∈ W such that ℓvλ(rw) > ℓvλ(w) and ℓvµ(sβrw) <

ℓvµ(sβw) then using (2.7) to compute the length ℓa
ε , we have a chain

(3.7) πλw < πλrw < πµsβrw < πµsβw.

Since ℓv(rw) − ℓv(w) = ℓ(v−1rw) − ℓ(v−1w) for v, r, w ∈ W , Lemma 1.20 guar-
anties the existence of r , which proves the proposition. □

In Figure 3 below, we give an example of a chain constructed this way in the
A1-affine case, with Cartan matrix

( 2
−2

−2
2

)
.

In this example, α and β are the simple roots of an A1-affinized root system,
and we have chosen λ,w and β[n] such that vλ

= sα , vµ
= sαsβ and w = sβ . πλw

corresponds to the alcove C1 in light blue, and its image πµsβw by sβ[6] corresponds
to C4. Since r = sβsαsβ satisfies d(vλ, rw) = sαsβsα > d(vλ, w) = sαsβ , and
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− m
− l

C0

0

C1C2C3C4 C1C2C3

sb
M (a)[7]

bM [6]

aM [− 5]

aM [0] bM [0]

Figure 3. Example of a chain constructed as in Proposition 3.3.

d(sβvµ, rw)= sβ < sβsα = d(sβvµ, w), there is a chain πλw <πλrw <πµsβrw <

πµsβw which corresponds to the sequence of alcoves (C1, C2, C3, C4) in Figure 3.

Remark 3.4. Let v0, w0 ∈ W , µ0 ∈ Y and α0 ∈ 8. To produce chains, note that
(1.12) applied with the affinized reflection sv0(α0)[m+⟨µ0,α0⟩] to πv0(µ0)w0 gives

(3.8) ∀m ∈ Z \ [[−⟨µ0, α0⟩, 0]], πv0(µ0+mα∨

0 )sv0(α0)w0 > πv0(µ0)w0.

Applying the affinized reflection sv0(α0)[−m] to πv0(µ0)w0 instead we obtain

(3.9) ∀m ∈ Z \ [[−⟨µ0, α0⟩, 0]], πv0sα0 (µ0+mα∨

0 )sv0(α0)w0 > πv0(µ0)w0.

For m ∈ ]]−⟨µ0, α0⟩, 0[[ the inequalities are reversed. The cases m ∈ {−⟨µ0, α0⟩, 0}

need to be treated more carefully since they depend on the sign of the root v0(α0)

(because (1.12) holds for the affinized reflection sv0(α0)[0] only if v0(α0) ∈ 8+), on
the sign of ⟨µ0, α0⟩ and on the vectorial element w0.

3.2. Another expression for the affinized length difference. Outside of the case of
vectorial covers dealt with in Theorems 2.13 and 2.18, if we write x = πvλw with
λ ∈ Y ++, v, w ∈ W with v of minimal length in vWλ, by Proposition 3.1 the only
covers are of the form y ∈ {πv(λ+β∨)sv(β)w, πvsβ (λ+β∨)sv(β)w} for some β ∈ 8+,
so the rest of this paper is dedicated to covers of this sort.

Notation 3.5. From now on, unless stated otherwise, we use the following notation:

(1) λ ∈ Y ++ is a dominant coweight.
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(2) β ∈ 8+ is a positive root.

(3) v ∈ W λ is the minimal representative of a Wλ-coset.

(4) w ∈ W is any element of W .

(5) x = πv(λ)w and y ∈ {πv(λ+β∨)sv(β)w, πvsβ (λ+β∨)sv(β)w} are elements of W +.

The choice to denote by λ a dominant coweight is made in order to avoid the
heavier notation λ++. Recall from Notation 1.3 that W λ is the set of minimal
coset representatives of W/Wλ, where Wλ is the standard parabolic subgroup
{w ∈ W | w(λ) = λ}.

In this subsection, we give another expression for ℓa( y) − ℓa(x).
The next two lemmas give information on the vectorial chamber of v(λ + β∨).

Lemma 3.6. Let λ ∈ Y ++ be a dominant coweight and let β ∈ 8+ be a positive
root such that λ+β∨

∈ Y +. Let u ∈ W be such that λ+β∨ belongs to the vectorial
chamber Cv

u , that is to say u−1(λ + β∨) ∈ Y ++. Then

(3.10) ℓ(sβu) = ℓ(sβ) + ℓ(u).

Proof. Let sτ1 . . . sτn be a reduced expression of u, so that ℓ(u) = n and

Inv(u−1) = {τ1, sτ1(τ2), . . . , sτ1 . . . sτn−1(τn)}.

We show that sτk+1 . . . sτ1sβ > sτk . . . sτ1sβ for all k ∈ [[0, n − 1]].
For any α ∈ Inv(u−1) we have ⟨λ + β∨, α⟩ ≤ 0 (because λ + β∨

∈ Cv
u ). Since λ

is dominant this implies ⟨β∨, α⟩ ≤ 0.
Let k ∈ [[0, n − 1]]. Then ⟨β∨, sτ1 . . . sτk (τk+1)⟩ ≤ 0 so

sβ(sτ1 . . . sτk (τk+1)) = sτ1 . . . sτk (τk+1) − ⟨β∨, sτ1 . . . sτk (τk+1)⟩β

is a positive root as a sum of positive roots. Thus sτk+1 . . . sτ1sβ > sτk . . . sτ1sβ for
any k ∈ [[0, n −1]] and therefore ℓ(sβu) = ℓ(u−1sβ) = n +ℓ(sβ) = ℓ(sβ)+ℓ(u). □

Lemma 3.7. Let λ ∈ Y ++ be a dominant coweight and let β ∈ 8+ be a positive root
such that λ + β∨

∈ Y +. Let v ∈ W λ, w ∈ W and let u denote the element vλ+β∨

.
Then, if πv(λ+β∨)sv(β)w (resp. πvsβ (λ+β∨)sv(β)w) covers x = πv(λ)w,

ℓ(vu) = ℓ(v)+ℓ(u) (resp. ℓ(vsβu) = ℓ(v)+ℓ(sβu) and ℓ(vsβ) = ℓ(v)+ℓ(sβ)).

Proof. To simplify the notation, write WJ for W(λ+β∨)++ . Note that, with the
notation of Definition 1.21, vu = projvuWJ

(v) since u is the element of minimal
length in uWJ .

Suppose by contradiction that πv(λ+β∨)sv(β)w covers x with ℓ(vu) < ℓ(v)+ℓ(u).
Then dN(1, vu) = ℓ(vu) < dN(1, v) + dN(v, vu) = ℓ(v) + ℓ(u), so v is not on a
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minimal gallery from 1 to vu. Therefore by Lemma 1.20, there is a reflection r ∈ W
such that d(1, rvu) > d(1, vu) and d(1, rv) < d(1, v), that is to say rv < v and
rvu > vu.

By minimality of u, r is not in vuWJ (vu)−1: otherwise rvu ∈ vuWJ satisfies
d(v, rvu) = d(rv, vu) < d(v, vu), because foldings reduce the vectorial distance
and v, vu are on different sides of the wall Mr associated to r .

Since vu is the projection of v on vuWJ which is convex (see [Ronan 1989,
Lemma 2.10]), and since the wall Mr separates v and vu, any element of vuWJ is
on the same side of the wall Mr as vu, so rvuũ > vuũ for any ũ ∈ WJ . In particular,
let ũ ∈ WJ be such that rvuũ is the minimal coset representative of rvuWJ . Then
by Proposition 2.3, since rvuũ > vuũ, we have

(3.11) πrv(λ+β∨)rsv(β)w = πrvuũ((λ+β∨)++)rsv(β)w

< πvuũ((λ+β∨)++)sv(β)w = πv(λ+β∨)sv(β)w.

Therefore by Proposition 2.3 for the left- and right-hand side inequalities and
(3.8) applied with (µ0, α0, v0, w0, m) = (λ, β, rv, rw, 1) for the middle one, we
have a chain

(3.12) πv(λ)w < πrv(λ)rw < πrv(λ+β∨)srv(β)rw

= πrv(λ+β∨)rsv(β)w < πv(λ+β∨)sv(β)w.

Therefore if πv(λ+β∨)sv(β)w covers x then ℓ(vu) = ℓ(v) + ℓ(u).
Now assume by contradiction that πvsβ (λ+β∨)sv(β)w covers πλw with ℓ(vsβu) <

ℓ(v) + ℓ(sβu). Then, similarly there is a reflection r ∈ W such that rv < v and
rvsβuũ > vsβuũ. By Proposition 2.3 for the left- and right-hand side inequalities
and (3.9) applied with (µ0, α0, v0, w0, m) = (λ, β, rv, rw, 1) for the middle one,
we have a chain

(3.13) πv(λ)w < πrv(λ)rw < πrvsβ (λ+β∨)srv(β)rw

= πrvsβ (λ+β∨)rsv(β)w < πvsβ (λ+β∨)sv(β)w.

We deduce that if πvsβ (λ+β∨)sv(β)w covers x then

ℓ(vsβu) = ℓ(v) + ℓ(sβu).

By Lemma 3.6 this is ℓ(v)+ℓ(sβ)+ℓ(u), by the triangle inequality we deduce that

ℓ(v) + ℓ(sβ) ≥ ℓ(vsβ) ≥ ℓ(vsβu) − ℓ(u) = ℓ(v) + ℓ(sβ)

and we obtain the second equality in this case. □
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Proposition 3.8. Let λ ∈ Y ++, v ∈ W λ, w ∈ W . Let β ∈ 8+ be a positive root such
that λ + β∨

∈ Y + and let u denote vλ+β∨

∈ W (λ+β∨)++

.
Suppose that y ∈ {πv(λ+β∨)sv(β)w, πvsβ (λ+β∨)sv(β)w} covers x = πv(λ)w. Then

(3.14) ℓa( y) − ℓa(x) = (2 ht(β∨) − ℓ(sβ)) − 2
(
ℓ(u) +

∑
τ∈Inv(u−1)

⟨λ + β∨, τ ⟩

)
.

Proof. Let WJ denote the standard parabolic subgroup W(λ+β∨)++ . Recall that
u = vλ+β∨

is the minimal element of W such that u((λ + β∨)++) = λ + β∨, so it
is the minimal representative of the coset uWJ . By Proposition 2.10 we have

ℓa(πv(λ+β∨)sv(β)w) − ℓa(πv(λ)w)(3.15)

= 2 ht((λ + β∨)++) − 2 ht(λ) + ℓvv(λ+β∨)(sv(β)w) − ℓv(w),

ℓa(πvsβ (λ+β∨)sv(β)w) − ℓa(πv(λ)w)(3.16)

= 2 ht((λ + β∨)++) − 2 ht(λ) + ℓ
v

vsβ (λ+β∨)(sv(β)w) − ℓv(w).

We unwrap these formulas with the help of previous results.

(1) In the case y =πv(λ+β∨)sv(β)w, let ũ ∈ WJ be such that vuũ = (vu)J
=vv(λ+β∨).

The term ℓvv(λ+β∨)(sv(β)w) − ℓv(w) rewrites as

ℓ((uũ)−1sβv−1w) − ℓ(vuũ) − ℓ(v−1w) + ℓ(v).

Since y > x is a covering, by Proposition 3.3, vsβuũ = sv(β)(vu)J is on a mini-
mal gallery from v to w, so ℓ(v−1w) = ℓ((vsβuũ)−1w) + ℓ(sβuũ). Moreover by
Lemma 3.6, ℓ(sβuũ) = ℓ(sβ) + ℓ(uũ) and, by Lemma 3.7, ℓ(vu) = ℓ(v) + ℓ(u).
Finally, by (1.3), since u = u J

= vλ+β∨

and vuũ = (vu)J
= vv(λ+β∨), we have

ℓ(uũ) = ℓ(u) + ℓ(ũ) and ℓ(vu) = ℓ(vuũ) + ℓ(ũ). Thus

(3.17) ℓvv(λ+β∨)(sv(β)w)−ℓv(w) = ℓ((uũ)−1sβv−1w)−ℓ(v−1w)−ℓ(vuũ)+ℓ(v)

= −ℓ(sβuũ)−ℓ(vu)+ℓ(ũ)+ℓ(v)

= −ℓ(sβ)−ℓ(uũ)−ℓ(u)+ℓ(ũ)

= −ℓ(sβ)−2ℓ(u).

(2) In the second case, let ũ ∈ WJ be such that vsβuũ = (vsβu)J
= vvsβ (λ+β∨). Then

ℓ
v

vsβ (λ+β∨)(sv(β)w)−ℓv(w) rewrites as ℓ((uũ)−1v−1w)−ℓ(vsβuũ)−ℓ(v−1w)+ℓ(v).
By Proposition 3.3, ℓ((uũ)−1v−1w) = ℓ(v−1w) − ℓ(uũ). By (1.3),

ℓ(uũ) = ℓ(u) + ℓ(ũ) and ℓ(vsβuũ) = ℓ(vsβu) − ℓ(ũ).

By Lemmas 3.7 and 3.6,

ℓ(vsβu) = ℓ(v) + ℓ(sβu) = ℓ(v) + ℓ(sβ) + ℓ(u).
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Thus, in this case,

(3.18) ℓ
v

vsβ (λ+β∨)(sv(β)w) − ℓv(w)

= ℓ((uũ)−1v−1w) − ℓ(vsβuũ) − ℓ(v−1w) + ℓ(v)

= ℓ(v−1w) − ℓ(uũ) − (ℓ(vsβu) − ℓ(ũ)) − ℓ(v−1w) + ℓ(v)

= −ℓ(sβ) − 2ℓ(u).

(3) By Lemma 1.13 we have

(3.19) 2 ht((λ + β∨)++) = 2
(

ht(λ + β∨) −
∑

τ∈Inv(u−1)

⟨λ + β∨, τ ⟩

)
= 2

(
ht(λ) + ht(β∨) −

∑
τ∈Inv(u−1)

⟨λ + β∨, τ ⟩

)
.

By plugging (3.17), (3.19) into (3.15), and (3.18), (3.19) into (3.16) we obtain,
either way,

ℓa( y)−ℓa(x) = 2 ht(λ)+2 ht(β∨)−2
∑

τ∈Inv(u−1)

⟨λ+β∨, τ ⟩−2 ht(λ)−ℓ(sβ)−2ℓ(u)

= (2 ht(β∨)−ℓ(sβ))−2
(
ℓ(u)+

∑
τ∈Inv(u−1)

⟨λ+β∨, τ ⟩

)
. □

Using Corollary 1.12, it is easy to see that 2 ht(β∨) − ℓ(sβ) is always positive
and that, on the contrary, ℓ(u) +

∑
τ∈Inv(u−1)⟨λ + β∨, τ ⟩ is always nonpositive.

Therefore, the length difference is equal to 1 if and only if in the right-hand side
of (3.14), the first term is equal to 1 and the second term cancels out. This motivates
the following definitions.

Definition 3.9. A coweight µ ∈ Y + is almost dominant if and only if

(3.20) ∀τ ∈ 8+, ⟨µ, τ ⟩ ≥ −1.

A root β ∈ 8+ is a quantum root if and only if

(3.21) ℓ(sβ) = 2 ht(β∨) − 1.

The notion of quantum roots comes from the definition of quantum Bruhat graphs,
(see [Lenart et al. 2015, §4.1]). With Notation 3.5, in Section 3.3 we prove that if y
covers x then λ + β∨ is almost dominant and we prove in Section 3.4 that β needs
to be a quantum root.

Remark 3.10. If λ + β∨ is dominant, then the second term in the right-hand side
of (3.14) immediately cancels out, since in this case u = 1W . In the reductive case,
8 is finite and therefore if λ is far enough in the fundamental chamber (meaning
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that ⟨λ, αi ⟩ is large for all i ∈ I , we say that λ is superregular), then λ+β∨ is always
dominant. Accordingly, covers of πv(λ)w for λ superregular are easier to classify
(see [Lam and Shimozono 2010, Proposition 4.4; Milićević 2021, Proposition 4.4]).

3.3. Almost-dominance in properly affine covers. We prove that the second term
of the right-hand side of (3.14) need to be zero when y covers x (with Notation 3.5),
through the following proposition:

Proposition 3.11. Let λ ∈ Y ++, v ∈ W λ and w ∈ W . Let β ∈ 8+ be a positive
root such that λ + β∨

∈ Y + and suppose that πv(λ+β∨)sv(β)w or πvsβ (λ+β∨)sv(β)w

covers πv(λ)w. Then λ + β∨ is almost dominant, that is to say

(3.22) ∀τ ∈ 8+, ⟨λ + β∨, τ ⟩ ≥ −1.

It is deduced from the following two technical lemmas; we give their proofs after
the proof of Proposition 3.11.

Lemma 3.12. Let λ ∈ Y ++, v ∈ W λ, w ∈ W, β ∈ 8+. Suppose that there exists a
pair (τ, n) ∈ 8+ × Z such that

(i) n > 0,

(ii) ⟨λ + nτ∨, β⟩ ≥ −1,

(iii) n < −⟨λ + β∨, τ ⟩.

Then, πv(λ+β∨)sv(β)w and πvsβ (λ+β∨)sv(β)w do not cover πv(λ)w.

Lemma 3.13. Let λ ∈ Y ++ and β ∈ 8+ be such that λ+β∨ lies in Y +. Let τ ∈ 8+

be such that ⟨λ + β∨, τ ⟩ ≤ −2 and suppose that ⟨τ∨, β⟩ ≤ −2. Then

⟨λ + β∨, sτ (β)⟩ ≥ −1.

Proof of Proposition 3.11. We prove the contrapositive: Let τ ∈ 8+ be a pos-
itive root such that ⟨λ + β∨, τ ⟩ ≤ −2. We will produce nontrivial chains from
πv(λ)w to πv(λ+β∨)sv(β)w and πvsβ (λ+β∨)sv(β)w. In particular since λ is dominant,
⟨β∨, τ ⟩ ≤ −2.

The numbers ⟨τ∨,β⟩ and ⟨β∨,τ ⟩ have the same sign [Bardy 1996, Lemma 1.1.10],
and therefore we have that ⟨τ∨, β⟩ ≤ −1.

Suppose first that ⟨τ∨, β⟩ ≤ −2. Then
(
τ, −(⟨λ + β∨, τ ⟩ + 1)

)
is a pair which

satisfy the conditions of Lemma 3.12:

(i) This is true since ⟨λ + β∨, τ ⟩ ≤ −2, and −(⟨λ + β∨, τ ⟩ + 1) ≥ 1 > 0.
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(ii) By Lemma 3.13, ⟨λ + β∨, sτ (β)⟩ ≥ −1; thus〈
λ − (⟨λ + β∨, τ ⟩ + 1)τ∨, β

〉
= ⟨sτ (λ + β∨) − β∨

− τ∨, β⟩

= ⟨λ + β∨, sτ (β)⟩ − 2 − ⟨τ∨, β⟩

≥ ⟨λ + β∨, sτ (β)⟩ ≥ −1.

(iii) Clearly −(⟨β∨, τ ⟩ + 1) < −⟨β∨, τ ⟩.

Suppose now that ⟨τ∨, β⟩ = −1. We show that (τ, 1) is a pair satisfying the
conditions of Lemma 3.12:

(i) The first point is trivially verified.

(ii) Since ⟨τ∨, β⟩ = −1 and λ is dominant, ⟨λ + τ∨, β⟩ ≥ −1.

(iii) Since ⟨λ + β∨, τ ⟩ ≤ −2 we obtain 1 < −⟨λ + β∨, τ ⟩.

Hence, either way, if such a τ ∈ 8+ exists, then by Lemma 3.12 πv(λ+β∨)sv(β)w

and πvsβ (λ+β∨)sv(β)w do not cover πv(λ)w. □

Proof of Lemma 3.12. We use conditions (i), (ii), (iii) in the statement to produce
chains from πv(λ)w to πv(λ+β∨)sv(β)w and πvsβ (λ+β∨)sv(β)w.

Suppose first that (ii) is strict. Then we show that we have the chains

πv(λ)w < πvsτ (λ+nτ∨)sv(τ)w < πvsτ (λ+β∨
+nτ∨)sv(τ)sv(β)w < πv(λ+β∨)sv(β)w,(3.23)

πv(λ)w < πv(λ+nτ∨)sv(τ)w < πvsβ (λ+β∨
+nτ)sv(β)sv(τ)w < πvsβ (λ+β∨)sv(β)w.(3.24)

(a) By (i), since λ is dominant and τ is a positive root, applying (3.8) with
(µ0, α0, v0, w0, m) = (λ, τ, v, w, n), we have

(3.25) πv(λ)w < πv(λ+nτ∨)sv(τ)w.

Using (3.9) with the same parameters gives

(3.26) πv(λ)w < πvsτ (λ+nτ∨)sv(τ)w.

(b) Since ⟨τ∨, τ ⟩ = 2, (iii) is equivalent to −n < −⟨λ + β∨
+ nτ∨, τ ⟩, so, using

(3.9) for (µ0, α0, v0, w0, m) = (λ + β∨
+ nτ∨, τ, vsτ , sv(τ)sv(β)w, −n), we get

(3.27) πvsτ (λ+β∨
+nτ∨)sv(τ)sv(β)w < πv(λ+β∨)sv(β)w.

Using (3.8) for (µ0, α0, v0, w0, m) = (λ + β∨
+ nτ∨, τ, vsβ, sv(β)sv(τ)w, −n),

(3.28) πvsβ (λ+β∨
+nτ)sv(β)sv(τ)w < πvsβ (λ+β∨)sv(β)w.

We now split the argument in two cases, according to whether (ii) is strict.
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(1) Suppose that (ii) is strict, so ⟨λ + nτ∨, β⟩ ≥ 0. Then by (3.8) applied with
(µ0, α0, v0, w0, m) = (λ + nτ∨, β, vsτ , sv(τ)w, 1), we get

(3.29) πvsτ (λ+nτ∨)sv(τ)w < πvsτ (λ+β∨
+nτ∨)sv(τ)sv(β)w.

Moreover by (3.9) applied with (µ0, α0, v0, w0, m) = (λ+ nτ∨, β, v, sv(τ)w, 1),

(3.30) πv(λ+nτ∨)sv(τ)w < πvsβ (λ+β∨
+nτ∨)sv(β)sv(τ)w.

Thus, if (ii) is strict, combining (3.25), (3.30) and (3.28) we obtain the chain (3.24).
Moreover combining (3.26), (3.29) and (3.27) we obtain the chain (3.23). This
proves Lemma 3.12 in this case.

(2) Suppose now that ⟨λ+nτ∨, β⟩=−1. Then note that λ+nτ∨
+β∨

= sβ(λ+nτ∨),
and (3.8), (3.9) cannot be used for the middle inequalities of chains (3.24) and (3.23)
anymore.

(a) Case of πv(λ+β∨)sv(β)w.

(i) If vsτ (β) ∈ 8+ then we can apply (1.12) to the element πvsτ (λ+nτ∨)sv(τ)w

and the positive affinized root vsτ (β)[0], and since ⟨λ+nτ∨, β⟩ = −1 < 0,
we still have

(3.31) πvsτ (λ+nτ∨)sv(τ)w<svsτ (β)[0]π
vsτ (λ+nτ∨)sv(τ)w=πvsτ (λ+β∨

+nτ∨)sv(τ)sv(β)w

and the chain (3.23) still holds by (3.26), (3.31) and (3.27).
(ii) If vsτ (β) ∈ 8− note that, since ⟨λ + nτ∨, β⟩ < 0, ⟨τ∨, β⟩ < 0, so sτ (β)

is a positive root. Therefore vsτ (β) ∈ 8− is equivalent to sτ (β) ∈ Inv(v).
Since v ∈ W λ, by minimality of v we have ⟨λ, sτ (β)⟩ ̸= 0. Then, by
Proposition 2.3,

(3.32) πv(λ)w < πvssτ (β)(λ)svsτ (β)w

and by (3.9) applied with (µ0, α0, v0, w0, m) = (λ, τ, vssτ (β), svsτ (β)w, 1)

we get

(3.33) πvssτ (β)(λ)svsτ (β)w < πvsτ sβ (λ+nτ∨)sv(τ)sv(β)w = πvsτ (λ+β∨
+nτ∨)sv(τ)sv(β)w.

For the vectorial elements, we used the fact that svsτ (β) = sv(τ)sv(β)sv(τ) =

vsτ sβsτv
−1 and svssτ (β)(τ ) = vsτ sβsτ sβsτv

−1, and hence svssτ (β)(τ )svsτ (β) =

vsτ sβv−1
= sv(τ)sv(β).

Combining (3.32), (3.33) and (3.27) we obtain the chain

πv(λ)w<πvsτ sβsτ (λ)sv(τ)sv(β)sv(τ)w<πv(sτ (λ+β∨
+nτ∨))sv(τ)sv(β)w<πv(λ+β∨)sv(β)w

which replaces the chain (3.23).
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(b) Case of πvsβ (λ+β∨)sv(β)w.

(i) If w−1vsτ (β) ∈ 8−, by (1.12) applied to πv(λ+nτ∨)sv(τ)w and the affinized
root v(β)[⟨λ + nτ∨, β⟩], since ⟨λ + nτ∨, β⟩ < 0,

(3.34) πv(λ+nτ∨)sv(τ)w < πv(λ+nτ∨)sv(β)sv(τ)w = πvsβ (λ+β∨
+nτ∨)sv(β)sv(τ)w.

Therefore the chain (3.24) still holds by (3.25), (3.34) and (3.28).
(ii) If w−1vsτ (β) ∈ 8+, then using (1.12) with πv(λ)w and the affinized root

vsτ (β)
[
⟨λ, sτ (β)⟩

]
(which is always possible because if ⟨λ, sτ (β)⟩ = 0

then by minimality of v, vsτ (β) ∈ 8+), we obtain

(3.35) πv(λ)w < πv(λ)sv(τ)sv(β)sv(τ)w.

Moreover, by (3.8) applied with (µ0, α0, v0, w0, m)=(λ, τ, v, svsτ (β)w, n),
we get

(3.36) πv(λ)sv(τ)sv(β)sv(τ)w < πv(λ+nτ∨)sv(β)sv(τ)w.

Hence combining (3.35), (3.36) and (3.28) we obtain a chain

πv(λ)w < πv(λ)sv(τ)sv(β)sv(τ)w < πvsβ (λ+β∨
+nτ∨)sv(β)sv(τ)w < πvsβ (λ+β∨)sv(β)w.

Therefore, in all cases, if such a pair (τ, n) exists, then πv(λ+β∨)sv(β)w and
πvsβ (λ+β∨)sv(β)w do not cover πv(λ)w. □

Proof of Lemma 3.13. The proof relies on the assumption that λ + β∨ lies in the
Tits cone, which is equivalent to saying that there is only a finite number of positive
roots α such that ⟨λ + β∨, α⟩ < 0.

We will show that ⟨λ + β∨, (sτ sβ)n(τ )⟩ ≥ 0 for n large enough implies

(3.37) ⟨λ + β∨, sτ (β)⟩ ≥ −1,

which implies the lemma. To shorten the computation, let us write a = −⟨β∨, τ ⟩

and a∨
= −⟨τ∨, β⟩. So the assumptions ⟨λ + β∨, τ ⟩ ≤ −2 and ⟨τ∨, β⟩ ≤ −2

imply that a ≥ 2 + ⟨λ, τ ⟩ and a∨
≥ 2. In the basis (β, τ ) of Rβ ⊕ Rτ , the matrix

of sτ sβ is M =
(

−1
−a∨

a
aa∨−1

)
. We have χM = X2

+ (2 − aa∨)X + 1; thus, since
aa∨

≥ 4, M2
= (aa∨

−2)M − I2. Write Mn
= µn M +νn I2 for n ∈ N. Then an easy

computation shows that νn = −µn−1 and µn+1 = (aa∨
−2)µn −µn−1. In particular

since aa∨
− 2 ≥ 2 and µ0 = 0 < µ1, by iteration (µn)n∈N is strictly increasing.

Let x = ⟨λ, β⟩ ≥ 0 and y = ⟨λ, τ ⟩ ∈ [[0, a − 2]]. Then

⟨λ + β∨, (sτ sβ)n(τ )⟩ =
〈
λ + β∨, aµnβ + ((aa∨

− 1)µn − µn−1)τ
〉

(3.38)

= (x + 2)µna + ((aa∨
− 1)µn − µn−1)(y − a).
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Since λ + β∨ lies in the Tits cone, ⟨λ + β∨, (sτ sβ)n(τ )⟩ is nonnegative for n large
enough. Moreover, µn−1 < µn for all n ∈ N and a − y > 0. Therefore we deduce
from (3.38) that, for n large enough,

(x + 2)µna ≥ (a − y)((aa∨
− 1)µn − µn−1) > (a − y)µn(aa∨

− 2).

Hence
(x + 2) > (a − y)

(
a∨

−
2
a

)
= aa∨

− a∨y − 2 + 2 y
a
.

Therefore ⟨λ + β∨, sτ (β)⟩ = x + 2 + a∨y − aa∨ > −2 + 2 y
a and, since it is an

integer, we deduce ⟨λ + β∨, sτ (β)⟩ ≥ −1 ≥ 1 − a∨, which proves the result. □

Corollary 3.14. Let λ ∈ Y ++, v ∈ W λ, w ∈ W . Let β ∈ 8+ be a positive root such
that λ + β∨

∈ Y +. Suppose that y ∈ {πv(λ+β∨)sv(β)w, πvsβ (λ+β∨)sv(β)w} covers
x = πv(λ)w.

Then

(3.39) ℓa( y) − ℓa(x) = 2 ht(β∨) − ℓ(sβ).

Proof. Let u = vλ+β∨

∈ W . Then for any τ ∈ Inv(u−1), by Lemma 2.1, ⟨λ+β∨, τ ⟩

is negative. By Proposition 3.11, ⟨λ + β∨, τ ⟩ = −1 for any such τ . Therefore

(3.40)
∑

τ∈Inv(u−1)

⟨λ + β∨, τ ⟩ = −|Inv(u−1)| = −ℓ(u).

We then directly obtain (3.39) from (3.14) and (3.40). □

3.4. Properly affine covers and quantum roots. We now prove in Proposition 3.19
that, with Notation 3.5, if β is not a quantum root, then y does not cover x. This is
enough, together with Corollary 3.14, to conclude that ℓa( y) − ℓa(x) = 1. There
is a subtlety if the root β lies in a subsystem of 8 of type G2; we suppose that
this is not the case in Lemmas 3.16 and 3.17, and we deal with the G2 case in
Lemma 3.18. Let us first give another characterization of quantum roots.

Lemma 3.15. A root β ∈ 8+ is a quantum root if and only if ⟨β∨, γ ⟩ = 1 for all
γ ∈ Inv(sβ) \ {β}.

Proof. Recall that a quantum root is a root β ∈ 8+ such that 2 ht(β∨) = ℓ(sβ)+ 1.
By Corollary 1.12, this is equivalent to

(3.41)
∑

γ∈Inv(sβ )

⟨β∨, γ ⟩ = ℓ(sβ) + 1.

For any γ ∈ Inv(sβ), γ is a positive root and sβ(γ )= γ −⟨β∨, γ ⟩β is a negative root,
and therefore ⟨β∨, γ ⟩ ≥ 1. Moreover, ⟨β∨, β⟩ = 2 and |Inv(sβ)| = ℓ(sβ). Therefore
(3.41) is satisfied if and only if ⟨β∨, γ ⟩ is exactly one for all γ ∈ Inv(sβ) \ {β}. □



312 PAUL PHILIPPE

Lemma 3.16. Let λ ∈ Y ++, v ∈ W λ, w ∈ W and β ∈ 8+. Let γ ∈ Inv(sβ) \ {β}

be such that ⟨β∨, γ ⟩ ≥ 2 and suppose that β /∈ Inv(sγ ). Then πv(λ+β∨)sv(β)w and
πv(λ+β∨)sv(β)w do not cover πvsβ (λ)w.

Proof. By the contrapositive of Proposition 3.11, we can suppose that ⟨λ+β∨, τ ⟩ ≥

−1 for any τ ∈ 8+. Let γ be as in the statement and write α = sγ (β) ∈ 8+. We
will construct nontrivial chains in the same fashion as in the proof of Lemma 3.12.
Beforehand, we show by computation that ⟨λ + γ ∨, α⟩ ≥ −1. If ⟨γ ∨, β⟩ = 1 =

−⟨γ ∨, α⟩ this is clear since λ is dominant. If ⟨γ ∨, β⟩ ≥ 2,

⟨λ + γ ∨, α⟩ =
〈
λ + β∨

− α∨
+ (1 − ⟨β∨, γ ⟩)γ ∨, α

〉
= ⟨λ + β∨, α⟩ + (1 − ⟨β∨, γ ⟩)⟨γ ∨, α⟩ − 2

= ⟨λ + β∨, α⟩ + (⟨β∨, γ ⟩ − 1)⟨γ ∨, β⟩ − 2.

Since ⟨β∨, γ ⟩ ≥ 2 and ⟨γ ∨, β⟩ ≥ 2, (⟨β∨, γ ⟩ − 1)⟨γ ∨, β⟩ ≥ 2, and by assumption
⟨λ + β∨, α⟩ ≥ −1. Thus, ⟨λ + γ ∨, α⟩ ≥ −1 either way.

We construct chains which are slight modifications of the ones constructed in
the proof of Lemma 3.12. We prove that, except in a few particular cases, we have
the chains

πv(λ)w < πv(λ+γ ∨)sv(γ )w <πv(λ+γ ∨
+α∨)sv(α)sv(γ )w <πv(λ+β∨)sv(β)w,(3.42)

πv(λ)w < πvsγ (λ+γ ∨)sv(γ )w <πvsγ sα(λ+γ ∨
+α∨)sv(γ )sv(α)w <πvsβ (λ+β∨)sv(β)w.(3.43)

Indeed:

(1) The coweight λ is dominant and γ ∈ 8+, so ⟨λ, γ ⟩ ≥ 0 and (3.8) (resp. (3.9))
applied with (µ0, α0, v0, w0, m) = (λ, γ, v, w, 1) proves the leftmost inequality in
the chain (3.42) (resp. (3.43)).

(2) Note that λ + β∨
= (λ + γ ∨

+ α∨) + (⟨β∨, γ ⟩ − 1)γ ∨. Moreover

(3.44) 0 < ⟨β∨, γ ⟩ − 1

and

(3.45) −⟨λ + γ ∨
+ α∨, γ ⟩ = ⟨β∨, γ ⟩ − ⟨λ, γ ⟩ − 2 < ⟨β∨, γ ⟩ − 1.

Therefore by applying (3.8) (resp. (3.9)) to

(µ0, α0, v0, w0, m) = (λ + γ ∨
+ α∨, γ, v, sv(α)sv(γ )w, ⟨β∨, γ ⟩ − 1)

(resp. (µ0, α0, v0, w0, m) = λ + γ ∨
+ α∨, γ, vsγ sα, sv(γ )sv(α)w, ⟨β∨, γ ⟩ − 1))

we obtain the rightmost inequality in the chain (3.42) (resp. (3.43)).
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Let us now split cases in order to either prove the second inequality in chains (3.42)
and (3.43) or provide alternative chains.

(1) Suppose first that ⟨λ + γ ∨, α⟩ ≥ 0. Then (3.8) (resp. (3.9)) applied with

(µ0, α0, v0, w0, m) = (λ + γ ∨, α, v, sv(γ )w, 1)(3.46)

(resp. (µ0, α0, v0, w0, m) = (λ + γ ∨, α, vsγ , sv(γ )w, 1))(3.47)

prove the middle inequality in the chain (3.42) (resp. (3.43)).

(2) Suppose that ⟨λ+γ ∨, α⟩ = −1. Then λ+γ ∨
+α∨

= sα(λ+γ ∨) and the above
chains do not always hold. We focus here on the case of πv(λ+β∨)sv(β)w.

(a) If v(α) ∈ 8+, since ⟨λ + γ ∨, α⟩ < 0, the inequality πvsα(λ+γ ∨)sv(α)sv(γ )w >

πv(λ+γ ∨)sv(γ )w still holds, by (1.12) applied with sv(α)[0]. Therefore the
chain (3.42) still holds.

(b) If v(α) ∈ 8−, then vsα < v, and we have a chain

(3.48) πv(λ)w < πvsα(λ)sv(α)w < πvsα(λ+γ ∨)sv(α)sv(γ )w

= πv(λ+γ ∨
+α∨)sv(α)sv(γ )w < πv(λ+β∨)sv(β)w.

The reflection used for the first inequality is s−v(α)[0], and it holds by (1.12)
because ⟨v(λ), −v(α)⟩ = −⟨λ, α⟩ < 0. Note that this is nonzero because v

is the minimal representative of vWλ and thus vsα < v implies sα /∈ Wλ so
⟨λ, α⟩ ̸= 0. By (3.44) and (3.45) we can use (3.8) with

(3.49) (µ0, α0, v0, w0, m) =

{
(λ, γ, vsα, sv(α)w, 1)

(λ + α∨
+ γ ∨, γ, v, sv(α)sv(γ )w, ⟨β∨, γ ⟩ − 1)

in order to obtain the second and third inequalities of chain (3.48), respectively.

(3) We suppose that ⟨λ+γ ∨, α⟩=−1. We deal with the case of πvsv(β)(λ+β∨)sv(β)w.
Then

(3.50) πvsγ sα(λ+γ ∨
+α∨)sv(γ )sv(α)w = πvsγ (λ+γ ∨)svsγ (α)sv(γ )w

= svsγ (α)[⟨λ+γ ∨,α⟩]π
vsγ (λ+γ ∨)sv(γ )w.

Moreover (sv(γ )w)−1(vsγ (α)) = w−1v(α). Thus, since ⟨λ + γ ∨, α⟩ < 0:

(a) If w−1v(α) ∈ 8−, by (1.12), πvsγ (λ+γ ∨)sv(γ )w < πvsγ sα(λ+γ ∨
+α∨)sv(γ )sv(α)w

and the chain (3.43) still holds.

(b) If w−1v(α) ∈ 8+, then, since ⟨λ, α⟩ = ⟨γ ∨, β⟩− 1 > 0, by (1.12), πv(λ)w <

sv(α)[⟨λ,α⟩]π
v(λ)w = πv(λ)sv(α)w. Then, by (3.9) with (µ0, α0, v0, w0, m) =
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(λ, γ, v, sv(α)w, 1), we have

πv(λ)sv(γ )sv(β)sv(γ )w < πvsγ (λ+γ ∨)sv(β)sv(γ )w = πvsγ sα(λ+γ ∨
+α∨)sv(γ )sv(α)w

and we have a chain

πv(λ)w < πv(λ)sv(α)w < πvsγ sα(λ+γ ∨
+α∨)sv(γ )sv(α)w < πvsβ (λ+β∨)sv(β)w. □

Lemma 3.17. Let β ∈ 8+ be a positive root and suppose that there exists γ ∈

Inv(sβ)\ {β} such that ⟨β∨, γ ⟩ ≥ 2 and ⟨β∨, γ ⟩⟨γ ∨, β⟩ ̸= 3. Then γ can be chosen
such that β /∈ Inv(sγ ).

Proof. Note that, by [Bardy 1996, Lemma 1.1.10], for any β, γ ∈ 8, ⟨β∨, γ ⟩

and ⟨γ ∨, β⟩ have the same sign, so if ⟨β∨, γ ⟩ ≥ 2 and ⟨β∨, γ ⟩⟨γ ∨, β⟩ ̸= 3, either
⟨β∨, γ ⟩⟨γ ∨

⟩ ≥ 4, either ⟨β∨, γ ⟩ = 2 and ⟨γ ∨, β⟩ = 1. We treat separately these
cases:

(1) Let us first suppose that there exists γ ∈ Inv(sβ) such that ⟨β∨, γ ⟩ = 2 and
⟨γ ∨, β⟩=1. Suppose that β ∈ Inv(sγ ), so sγ (β)=β−γ <0, and sβ(γ )=γ −2β <0.
Then we show that β /∈ Inv(sγ̃ ) for γ̃ = −sβ(γ ):

sγ̃ (β) = sβsγ sβ(β) = −sβ(β − γ ) = γ − β = −sγ (β) > 0.

Moreover sβ(γ̃ ) = −γ < 0 and ⟨β∨, γ̃ ⟩ = ⟨β∨, γ ⟩ = 2; therefore, γ can be chosen
such that β /∈ Inv(sγ ).

(2) Let us now suppose that there exists γ ∈ Inv(sβ) such that ⟨β∨, γ ⟩ ≥ 2 and
⟨β∨, γ ⟩⟨γ ∨, β⟩ ≥ 4. Write β = vβ(β0) = sα1 . . . sαn (β0) where the αi and β0 are
simple roots, and suppose that n is of minimal length amongst possible expressions
of β. Therefore sα1 . . . sαn sβ0sαn . . . sα1 is a reduced expression of sβ and

Inv(sβ)={sα1 . . . sαp−1(αp) | p ≤n}⊔{β}⊔{sα1 . . . sαn sβ0sαn . . . sαn+1−p(αn−p) | p ≤n}.

Let k be the smallest such that γk = sα1 . . . sαk−1(αk) satisfies ⟨β∨, γk⟩ ≥ 2 and
⟨β∨, γk⟩⟨γ

∨

k , β⟩ ≥ 4.
The expression sα1 . . . sαk−1sαk sαk−1 . . . sα1 is an expression of sγk ; thus

Inv(sγk ) ⊂ {sα1 . . . sαp−1(αp) | p ≤ k − 1} ⊔ {γk}

⊔ {sα1 . . . sαk sαk−1 . . . sαk+1−p(αk−p) | p ≤ k − 1}.

Suppose by contradiction that β ∈ Inv(sγk ). Since vβ is of minimal length, β is not in
the first set; thus there is p ∈[[1,k−1]] such that β = sα1 . . . sαk sαk−1 . . . sαk+1−p(αk−p).
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We show that γk−p = sα1 . . . sαk−p−1(αk−p) ∈ Inv(sβ) satisfies ⟨β∨, γk−p⟩ ≥ 2,
which contradicts the minimality of k. Note that β = −sγk (γk−p). We compute

⟨β∨, γk−p⟩ = ⟨−sγk (γ
∨

k−p), γk−p⟩

= −(2 − ⟨γ ∨

k−p, γk⟩⟨γ
∨

k , γk−p⟩)

= ⟨β∨, γk⟩⟨γ
∨

k , β⟩ − 2.

So since ⟨β∨, γk⟩⟨γ
∨

k , β⟩≥4, we get ⟨β∨, γk−p⟩≥2, and with a similar computation,
we find that ⟨γ ∨

k−p, β⟩ = ⟨β∨, γk−p⟩ ≥ 2 as well, so ⟨β∨, γk−p⟩⟨γ
∨

k−p, β⟩ ≥ 4. This
contradicts the minimality of k and thus β /∈ Inv(sγk ). □

Lemma 3.18. Let λ ∈ Y ++, v ∈ W λ and w ∈ W . Let β ∈ 8+ and let γ ∈ Inv(sβ)

be such that β ∈ Inv(sγ ) and ⟨β∨, γ ⟩ = 3, ⟨γ ∨, β⟩ = 1.
Then πv(λ+β∨)sv(β)w and πvsβ (λ+β∨)sv(β)w do not cover πv(λ)w.

Proof. We show that, with the assumptions of the statement, β and γ appear as
positive roots of a root subsystem of 8 isomorphic to G2, and we use this system
to construct chains replacing the ones in the proof of Lemma 3.16.

First, note that −sγ (β) lies in Inv(sβ) (so sβsγ (β) is positive). Indeed, we can
write, as in the proof of Lemma 3.17, β = sα1 . . . sαn (β0) for a minimal n, and
γ = sα1 . . . sαk−1(αk) for some k ≤ n. Then, since β ∈ Inv(sγ ), β is also of the form
sα1 . . . sαk sαk−1 . . . sαk−p+1(αk−p) for some p ≤ k − 1, and thus

−sγ (β) = sα1 . . . sαk−p−1(αk−p) ∈ Inv(sβ).

Therefore we have the following positive roots, and their associated coroots (the
notation will become clear afterwards):

(1) θ1 :=−sγ (β)=γ −β ∈8+, with associated coroot θ∨

1 =−sγ (β∨)=3γ ∨
−β∨.

(2) β̃ :=−sβ(γ )= 3β−γ ∈8+, with associated coroot β̃∨
=−sβ(γ ∨)=β∨

−γ ∨.

(3) γ̃ := sβsγ (β) = 2β − γ ∈ 8+, with associated coroot γ̃ ∨
= sβsγ (β∨) =

2β∨
− 3γ ∨.

Let us also define θ2 = sθ1(γ ) = 3β − 2γ , with associated coroot θ∨

2 = β∨
− 2γ ∨.

Then one can check that {θ1, θ2} form the positive simple roots of a G2 root
system (in the sense that ⟨θ∨

1 , θ2⟩ = −3 and ⟨θ∨

2 , θ1⟩ = −1), such that γ = sθ1(θ2),
β = sθ1sθ2(θ1), γ̃ = sθ2(θ1) and β̃ = sθ2sθ1(θ2). However, θ2 may not be a positive
root in 8, and we thus need to distinguish these two cases.

Let us first suppose that θ2 lies in 8+. Notice that

(3.51) θ∨

1 + β̃∨
+ θ∨

2 = (3γ ∨
− β∨) + (β∨

− γ ∨) + (β∨
− 2γ ∨) = β∨,
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and

(3.52) sθ1sβ̃sθ2 = sθ1(sθ2sθ1sθ2sθ1sθ2)sθ2 = sθ1sθ2sθ1sθ2sθ1 = sθ2sβ̃sθ1 = sβ .

Moreover, we have

⟨θ∨

2 , β̃⟩ = ⟨β∨
− 2γ ∨, 3β − γ ⟩ = 1 > 0,(3.53)

⟨θ∨

2 + β̃∨, θ1⟩ = ⟨2β∨
− 3γ ∨, γ − β⟩ = −1.(3.54)

(1) Suppose first that ⟨λ, θ1⟩ > 0. Since λ is dominant and by (3.53), (3.54),

−⟨λ + θ∨

2 , β̃⟩ < 0 and − ⟨λ + θ∨

2 + β̃∨, θ1⟩ ≤ 0.

Using (3.8) (resp. (3.9)) with (µ0, α0, m) = (λ, θ2, 1) for the first inequality,
(µ0, α0, m) = (λ+ θ∨

2 , β̃, 1) for the second and (µ0, α0, m) = (λ+ θ∨

2 + β̃∨, θ1, 1)

for the third (recall (3.51), (3.52)), we obtain the chain (3.55) (resp. (3.56))

πv(λ)w < πv(λ+θ∨

2 )sv(θ2)w < πv(λ+θ∨

2 +β̃∨)sv(β̃)sv(θ2)w < πv(λ+β∨)sv(β)w,(3.55)

πv(λ)w < πvsθ2 (λ+θ∨

2 )sv(θ2)w(3.56)

< π
vsθ2 sβ̃ (λ+θ∨

2 +β̃∨)sv(θ2)sv(β̃)w < πvsβ (λ+β∨)sv(β)w.

(2) If ⟨λ, θ1⟩ = 0, then −⟨λ + θ∨

2 + β̃∨, θ1⟩ = 1 so the last inequality in the
chains (3.55) and (3.56) do not always hold, we have the following case distinction,
which we already encountered in Lemmas 3.12 and 3.16:

(a) If v(θ1)∈8+, the chain (3.55) still holds, else vsθ1 <v, λ+β∨
= sθ1(λ+θ∨

2 +β̃)

and we instead have the chain

πv(λ)w < πvsθ1 (λ)sv(θ1)w < πvsθ1 (λ+θ∨

2 )sv(θ1)sv(θ2)w < πvsθ1 (λ+θ∨

2 +β̃∨)sv(θ1)sv(β̃)sv(θ2)w,

where the last term is actually equal to πv(λ+β∨)sv(β)w.

(b) If w−1v(θ1) ∈ 8−, then since ⟨λ + θ∨

2 + β̃∨, θ1⟩ < 0, by (1.12) applied
with the affinized root vsθ2sβ̃(θ1)[⟨λ + θ∨

2 + β̃∨, θ1⟩], the third inequality of
chain (3.56) still holds, and thus the whole chain remains correct. Otherwise
if w−1v(θ1) ∈ 8+ we instead have the chain

πv(λ)w<πv(λ)sv(θ1)w<πvsθ2 (λ+θ∨

2 )sv(θ2)sv(θ1)w<π
vsθ2 sβ̃ (λ+θ∨

2 +β̃∨)sv(θ2)sv(β̃)sv(θ1)w,

where the last term is actually equal to πvsβ (λ+β∨)sv(β)w since λ+ θ∨

2 + β̃∨
=

sθ1(λ + β∨).

We now turn to the case of θ2 ∈ 8−. Notice that β∨
= −θ∨

2 + γ̃ ∨
+ γ ∨ and

sβ = sγ sγ̃ sθ2 = sθ2sγ̃ sγ . Moreover, ⟨−θ∨

2 , γ̃ ⟩ = ⟨2γ ∨
− β∨, 2β − γ ⟩ = −1 and
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⟨−θ∨

2 + γ̃ ∨, γ ⟩ = ⟨β∨
− γ ∨, γ ⟩ = 1. Therefore, since λ is dominant and −θ2 is a

positive root:

(1) If ⟨λ, γ̃ ⟩ > 0, then using (3.8) (resp. (3.9)) with (µ0, α0, m) = (λ, −θ2, 1) for
the first inequality, (λ − θ∨

2 , γ̃ , 1) for the second and (λ − θ∨

2 + γ̃ ∨, γ, 1) for the
third, we obtain the chain (3.57) (resp. (3.58))

πv(λ)w < πv(λ−θ∨

2 )sv(θ2)w < πv(λ−θ∨

2 +γ̃ ∨)sv(γ̃ )sv(θ2)w < πv(λ+β∨)sv(β)w(3.57)

πv(λ)w < πvsθ2 (λ−θ∨

2 )sv(θ2)w(3.58)

< πvsθ2 sγ̃ (λ−θ∨

2 +γ̃ ∨)sv(θ2)sv(γ̃ )w < πvsβ (λ+β∨)sv(β)w.

(2) Suppose now that ⟨λ, γ̃ ⟩ = 0, so λ − θ∨

2 + γ̃ = sγ̃ (λ − θ∨

2 ). Then:

(a) If v(γ̃ ) ∈ 8+, the chain (3.57) still holds. Else, vsγ̃ < v and we instead have
the chain

(3.59) πv(λ)w < πvsγ̃ (λ)sv(γ̃ )w < πvsγ̃ (λ−θ∨

2 )sv(γ̃ )sv(θ2)w < πv(λ+β∨)sv(β)w,

where the first inequality comes from Proposition 2.3 and the two others
from (3.8).

(b) If w−1v(γ̃ ) ∈ 8−, then the chain (3.58) still holds. Else w−1v(γ̃ ) ∈ 8+ and
we instead have the chain

(3.60) πv(λ)w < πv(λ)sv(γ̃ )w < πvsθ2 (λ−θ∨

2 )sv(θ2)sv(γ̃ )w < πvsβ (λ+β∨)sv(β)w,

where the first inequality is deduced from (1.12) used with the affinized root
v(γ̃ )[⟨λ, γ̃ ⟩], and the two others from (3.9) as for the chain (3.58). □

Proposition 3.19. Let λ ∈ Y ++, v ∈ W λ and w ∈ W . Let β ∈ 8+ and suppose that
πv(λ+β∨)sv(β)w or πvsβ (λ+β∨)sv(β)w cover πv(λ)w. Then β is a quantum root.

Proof. We prove the contrapositive. Suppose that β is not a quantum root. By
Lemma 3.15, there is γ ∈ Inv(sβ) \ {β} such that ⟨β∨, γ ⟩ ≥ 2. If β /∈ Inv(sγ )

we apply Lemma 3.16. We can also apply it in case ⟨β∨, γ ⟩⟨γ ∨, β⟩ ̸= 3 by
Lemma 3.17. Finally if β ∈ Inv(sγ ) and ⟨β∨, γ ⟩⟨γ ∨, β⟩ = 3 we apply Lemma 3.18.
Therefore if β is not a quantum root then πv(λ+β∨)sv(β)w and πvsβ (λ+β∨)sv(β)w do
not cover πv(λ)w. □

3.5. Conclusion. We now have everything to prove Theorem A:

Theorem A. Suppose that y, x ∈ W a
+

are such that x ≤ y. Then

(3.61) x ◁ y ⇐⇒ ℓa( y) = ℓa(x) + 1.
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Proof. If x ≤ y with ℓa( y) = ℓa(x) + 1, then by strict compatibility of ℓa

(Theorem 1.7), y covers x. Conversely suppose that y covers x. If y and x
have same dominance class then Theorem 2.18 implies that ℓa( y) = ℓa(x)+1. Else,
if projY

+

( y) /∈ W · projY
+

(x), by Proposition 3.1, y is of the form πv(λ+β∨)sv(β)w

or πvsβ (λ+β∨)sv(β)w, for x = πv(λ)w with λ ∈ Y ++, v ∈ W λ, w ∈ W and β ∈ 8+.
Then, by Corollary 3.14, we have ℓa( y)− ℓa(x) = 2 ht(β∨)− ℓ(sβ). Moreover, by
Proposition 3.19, β is a quantum root and therefore, in this case as well,

ℓa( y) − ℓa(x) = 1. □

Along the way, we have obtained a classification of covers, which we summarize
in Proposition 3.20. This is to be compared with [Schremmer 2024, Proposition 4.5].

Proposition 3.20. Let x = πv(λ)w ∈ W a
+

with λ ∈ Y ++, v ∈ W λ and w ∈ W . Let
J ⊂ S be the set of simple reflections such that Wλ = WJ , and recall Notation 1.3
and Definition 3.9. Then covers of x are the elements of the following form:

(1) πv(λ)sv(β)w = xsw−1v(β)[0] for β ∈ 8 such that ℓ(sβv−1w) = ℓ(v−1w) + 1.

(2) πvsβ (λ)sv(β)w = sv(β)[0]x for β ∈ 8+ such that:

(a) ⟨λ, β⟩ ̸= 0.

(b) ℓ(vsβ) = ℓ(v) − 1.

(c) If u denotes vsβ and u J the maximal WJ -suffix of u, then vu−1
J is on a minimal

gallery from v to w.

(3) πv(λ+β∨)sv(β)w = sv(β)[⟨λ,β⟩+1]x = xsw−1v(β)[1] for β ∈ 8+ such that:

(a) β is a quantum root.

(b) λ + β∨ is an almost dominant coweight.

(c) For u = vλ+β∨

, v is on a minimal gallery from 1 to vu, that is to say ℓ(vu) =

ℓ(v) + ℓ(u).

(d) For ṽ = vv(λ+β∨), sv(β)ṽ is on a minimal gallery from v to w.

(4) πvsβ (λ+β∨)sv(β)w = sv(β)[−1]x for β ∈ 8+ such that:

(a) β is a quantum root.

(b) λ + β∨ is an almost dominant coweight.

(c) For u = vλ+β∨

, v is on a minimal gallery from 1 to vsβu.

(d) For ṽ = vvsβ (λ+β∨), sv(β)ṽ is on a minimal gallery from v to w.
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In particular, suppose that λ∈Y ++ is regular and is such that λ+β∨ is also regular
for any quantum root β ∈ 8+. We then say that λ is superregular. Proposition 3.20
can be simplified for superregular coweights. This is to be compared with [Lam
and Shimozono 2010, Proposition 4.4] and [Welch 2022, Theorem 2].

Proposition 3.21. Let x = πv(λ)w ∈ W a
+

with λ ∈ Y ++ a superregular coweight
and v, w ∈ W . Then covers of x are the elements of the following form:

(1) xsβ[0] = πv(λ)wsβ for β ∈ 8+ such that ℓ(v−1wsβ) = ℓ(v−1w) + 1.

(2) sβ[0]x = π sβv(λ)sβw for β ∈ 8+ such that ℓ(sβv) = ℓ(v) − 1.

(3) xsw−1v(β)[1] =πv(λ+β∨)sv(β)w for β ∈8+ a quantum root such that ℓ(v−1w)=

ℓ(sβ) + ℓ(sβv−1w) (otherwise said sβv−1w ≤R v−1w).

(4) sv(β)[−1]x = πvsβ (λ+β∨)sv(β)w for β ∈ 8+ a quantum root such that ℓ(vsβ) =

ℓ(v) + ℓ(sβ) (otherwise said sβ ≤R vsβ).

For Kac–Moody root systems, the existence of superregular coweights is not
clear a priori. However in an upcoming joint work with Hébert we prove that any
Kac–Moody root system admits a finite number of quantum roots, which ensures
the existence of superregular coweights. We also use this finiteness to deduce that
any element of W +

a admits a finite number of covers; in particular intervals in W +
a

are finite.
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X D
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curves X0(M, N )/Q and X1(M, N )/Q via a study of CM components of isogeny
graphs of elliptic curves over Q. For K an imaginary quadratic field and1= f 21K

the discriminant of the order o( f ) of conductor f in K , let j1 ∈ X (1)/Q denote the
closed point corresponding to elliptic curves with CM by the order of discriminant1.
The work of [Clark 2022; Clark and Saia 2022] results, for instance, in a description
of all points in the fiber of the natural map X0(M, N )/Q→ X (1)/Q over j1. This
description provides the list of residue fields of 1-CM points on the first curve,
along with a count of closed points in this fiber with each specified residue field.

We study the Shimura curves X D
0 (N )/Q and X D

1 (N )/Q parametrizing abelian
surfaces with quaternionic multiplication (QM) by the indefinite quaternion alge-
bra B over Q of discriminant D, along with certain specified level structure. Our
main result allows for a similar description of the CM loci on these curves.

In particular, we show that if x ∈ X D
0 (N )/Q has CM by the order o( f ) of

conductor f in the imaginary quadratic field K , then the residue field Q(x) is
either a ring class field K ( f ′) for some f ′ with f | f ′ | N f , or is isomorphic to an
index 2 subfield of such a field K ( f ′). The ramification index of x with respect
to the natural map from X D

0 (N ) to X D
0 (1) is always 1 when the CM order has

discriminant f 21K = 1 < −4. In general, this index is at most 3. The paper
culminates in a determination of the residue fields and ramification indices of all
CM points on X D

0 (N ), and putting together the casework based on the quaternion
discriminant, level and CM order gives a result of the following form.

Theorem 1.1. There exists an algorithm which, given as input

• an indefinite quaternion discriminant D over Q,

• a positive integer N coprime to D and

• an imaginary quadratic discriminant 1= f 21K ,

returns as output the complete list of tuples (is_fixed, f ′, e, c), consisting of

• a boolean is_fixed,

• a positive integer f ′ (necessarily with f | f ′),

• an integer e ∈ {1, 2, 3} and

• a positive integer c

such that there exist exactly c closed o-CM points x on X D
0 (N )/Q with the properties

• the residue field of x over K is K (x)∼= K ( f ′), the ring class field of conduc-
tor f ′ associated to K ,

• Q(x)∼= K ( f ′) if is_fixed is False,

• [K ( f ′) :Q(x)] = 2 if is_fixed is True and

• x has ramification index e with respect to the natural map to X D
0 (1)/Q.
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This algorithm, outlined in Algorithm 8.2, has been implemented, and is publicly
available at [Saia 2024], as is code for all other computations described. All
computations were performed in Magma [Bosma et al. 1997].

The outline towards developing this algorithm is as follows: in Section 2 we
provide relevant background and prior results on CM points on the Shimura curves
of interest. This includes results on concrete decompositions of QM abelian surfaces
with CM as products of CM elliptic curves. The main result here is Theorem 2.13.
In Sections 3 and 4, we then consider QM-equivariant isogenies and the QM-
equivariant ℓ-isogeny graph GD

ℓ . We prove in Theorem 4.5 that a CM component
of this graph for a prime ℓ and quaternion discriminant D has the structure of an
ℓ-volcano for CM discriminant 1<−4. We handle the slight deviation from the
structure of an ℓ-volcano in the 1 ∈ {−3,−4} case in Proposition 5.3.

We study the action of Gal(Q/Q) on such components in Section 5, allowing
for an enumeration of closed-point equivalence classes of paths in these graphs and
hence a description the CM locus on a prime-power level Shimura curve X D

0 (ℓ
a)/Q

as provided in Section 6. The algebraic results of Section 7 then feed into a
description of the CM locus on X D

0 (N )/Q for general level N coprime to D provided
in Section 8, which provides the algorithm mentioned in Theorem 1.1.

The ability to transition to information about the o-CM locus on X D
1 (N )/Q is

explained in Section 9, in which we prove the following result. While this does
not determine the list of residue fields of CM points on X D

1 (N ) in the vein of
Theorem 1.1, it allows us to count all CM points on X D

1 (N ) of specified degree and
list their corresponding CM orders. Otherwise put, this is enough data to determine,
for a fixed discriminant D and degree d, all levels N such that there exists a QM
abelian surface (A, ι) and a torsion point P ∈ A(Q) of order N such that the induced
point [A, ι, P] ∈ X D

1 (N ) has residue field of degree d .

Theorem 1.2. Suppose that x ∈ X D
0 (N )/Q is a point with CM by the imaginary

quadratic order of discriminant 1. Let π1 : X D
1 (N )/Q → X D

0 (N )/Q and π0 :

X D
0 (N )/Q denote the natural morphisms. Then:

(1) The scheme-theoretic fiber of π1 over x consists of a single closed point.

(2) The map π1 is unramified over x if any of the following hold:

• 1<−4,

• x is ramified with respect to π0 or

• N ≤ 3.

(3) If N ≥ 4 and x is unramified with respect to π0, then, in the 1 ∈ {−3,−4} case,

eπ1(x)=
{

2 if 1=−4,
3 if 1=−3,

and fπ1(x)=
{
φ(N )/4 if 1=−4,
φ(N )/6 if 1=−3,

are the ramification index and residue degree of x , respectively, with respect to π1.
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We define a primitive residue field (respectively, a primitive degree) of an o-CM
point on X D

0 (N )/Q to be one that does not properly contain (respectively, does not
properly divide) that of another o-CM point on the same curve. Our work allows for
a determination of all primitive residue fields and primitive degrees of o-CM points
on X D

0 (N )/Q, as discussed in Section 8.4. An abridged version of our main result
on primitive residue fields and degrees is as follows, with Theorem 8.3 providing
the complete result:

Theorem 1.3. Suppose that K splits B, let f be a positive integer, and let N be a
positive integer relatively prime to D with prime-power factorization N = ℓa1

1 · · · ℓ
ar
r .

One of the following occurs:

(1) There is a unique primitive residue field L of o( f )-CM points on X D
0 (N )/Q,

with L an index 2, totally complex subfield of a ring class field K (H f ) for
some H | N.

(2) There are exactly 2 primitive residue fields of such points, with one of the same
form as L in part (1) and the other being a ring class field of the form K (C f )
with C < H and C | N.

Knowledge of all primitive degrees provides the ability to compute the least
degree do,CM(X D

0 (N )) of an o-CM point on X D
0 (N )/Q for any imaginary quadratic

order o. In Section 10, we discuss minimizing over orders o to compute the least
degree dCM(X D

0 (N )) of a CM point on X D
0 (N )/Q, and Proposition 10.1 allows one

to transition from this to computations of least degrees of CM points on X D
1 (N )/Q.

A closed point x on a curve X/Q is said to be sporadic if there are finitely many
points y on X/Q with deg(y) ≤ deg(x). We apply our least degree computations
towards the existence of sporadic CM points on X D

0 (N )/Q with the following end
result (see Theorem 10.9).

Theorem 1.4. Let F be the set of all 393 pairs (D, N ) appearing in Table 1 or
Table 2. If (D, N ) ̸∈ F consists of a quaternion discriminant D > 1 over Q and a
positive integer N which is relatively prime to D, then X D

0 (N )/Q has a sporadic
CM point. If (D, N ) is such a pair with

(D, N ) ̸∈ F ∪ {(91, 5)},

then X D
1 (N )/Q has a sporadic CM point.

The appearance of the pair (91, 5) in this result comes down to the fact that while
X91

0 (5)/Q has a sporadic CM point of degree 2, the curve X91
1 (5)/Q has 4 as the

least degree of a CM point. See Theorem 10.9(4) for details.
Our work determining residue fields of CM points on X D

0 (N )/Q can be viewed
as a generalization of prior work on the Diophantine arithmetic of Shimura curves
via an alternate approach (specifically work of Jordan [1981] and González and
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Rotger [2006] — see Theorem 2.8). Of course, our results are aimed towards
better understanding the torsion of low-dimensional abelian varieties over number
fields, via restriction to a case with extra structure. On this point, the question of
which number fields admit abelian surfaces with certain specified rational torsion
subgroups is closely related to our results, just as in the classical modular curve
case. A result of Jordan (see Theorem 2.6) clarifies this relationship.

Unlike the modular curves X0(N )/Q, the curves X D
0 (N )/Q for D > 1 have no

cusps. For this reason, understanding the CM points on Shimura curves may be
of even greater interest, as they provide the most accessible examples of low-
degree points and could afford techniques (see, e.g., [Bayer and Travesa 2007]) for
computing models in the absence of techniques involving expansions around cusps.

Additionally, while our approach is in analogy to that of [Clark 2022] and [Clark
and Saia 2022] in the modular curve case, there are interesting deviations arising in
this work due to technical differences in the D > 1 case. Namely, while the field
of moduli Q(x) of any CM point x ∈ X (1)/Q has a real embedding, a result of
Shimura [1975, Theorem 0] states that X D(1)/Q has no real points for D > 1. This
fact also opens the door for the potential of Hasse principle violations by Shimura
curves, which has been a subject of significant study (see, e.g., [Clark 2009; Clark
and Stankewicz 2018; Rotger et al. 2005; Siksek and Skorobogatov 2003]). If one
aims to study the Hasse principle for Shimura curves over some fixed number field
(respectively, over a fixed degree), then studying the CM points rational over that
field (respectively, over number fields of that degree) seems to be a natural initial
point of investigation, and so our results may be of interest in that direction.

2. Background

2.1. Shimura curves. The main source here is the foundational work of Shimura
[1967], while for the background material on quaternion algebras and quaternion
orders we recommend the classic [Vignéras 1980] as well as the modern treatment
in [Voight 2021]. Throughout, we let B/Q denote the indefinite quaternion algebra
of discriminant D over Q. We denote by 9 an isomorphism

9 : B⊗Q R ∼
−→ M2(R).

As B is indefinite, the discriminant D is the product of an even number of distinct
rational primes, namely those at which B is ramified. We will let O denote a maximal
order in B, which is unique up to conjugation. We will also fix, following [Voight
2021, §43.1], an element µ ∈O, satisfying µ2

=−D, which induces the involution

α 7→ α∗ := µ−1αµ

on O. We refer to µ as a principal polarization on O.
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We start by defining the moduli spaces we are considering and discussing the
moduli interpretations of those families of particular interest to us in this study.
Let O1 denote the units of reduced norm 1 in O, which we realize as embedded
in SL2(R) via 9. The subgroup 0D(1) := 9(O1) ⊂ SL2(R) is discrete, and it is
cocompact if and only if D > 1. Via the action of this subgroup on the upper-half
plane H we define over C the Shimura curve

X D(1) := 0D(1)\H.

For D = 1 we have B ∼= M2(Q), which recovers the familiar modular curve setting.
We are interested in the D>1 case, and so moving forward we make this assumption
on D. This implies that X D(1) is a compact Riemann surface. For any z ∈H, we get
a rank-4 lattice 3z via the action of O on (z, 1) ∈ C2 via the embedding 9 above:

3z :=O ·
( z

1

)
⊆ C2.

From this we obtain a complex torus

Az := C2/3z

of dimension 2, which comes equipped with an O-action ιz :O ↪→ End(Az). We
require some rigidification data, namely a Riemann form, in order to recognize Az as
an abelian surface. It turns out that we always obtain such data in this setting [Voight
2021, Lemma 43.6.23]; there is a unique principal polarization λz,µ on Az such
that the Rosati involution on End0(A) := End(A)⊗Q agrees with the involution
induced by the polarization µ on 9(O).

Definition 2.1. An (O, µ)-QM abelian surface over F is a triple (A, ι, λ) consisting
of an abelian surface A over F , an embedding ι :O ↪→ End(A) which we will refer
to as the quaternionic multiplication (QM) structure, and a polarization λ on A
such that the following diagram is commutative:

B End0(A)

B End0(A)

ι

∗ †

ι

where † denotes the Rosati involution corresponding to λ. An isomorphism of QM
abelian surfaces (A, ι, λ) and (A′, ι′, λ′) is an isomorphism f : A→ A′ of abelian
surfaces such that f ◦ ι= ι′ ◦ f and such that f ∗λ′ = λ.

With this definition, we have [Voight 2021, Main Theorem 43.6.14] that X D(1) is
the coarse moduli space of (O, µ)-QM abelian surfaces over C, with the association
z 7→ [(Az, ιz, λz,µ)].
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Remark 2.2. For an abelian variety A over a field F , by End(A) we mean the ring
of endomorphisms defined over F . For an extension F ⊆ L , we will write AL for
the base change of A to L and End(AL) for the ring of endomorphisms rational
over L .

More generally, if 0 ≤ 0D(1) ⊆ SL2(R) is an arithmetic Fuchsian group,
we can consider the curve 0\H, and for 0′ ≤ 0 there is a corresponding cov-
ering of curves 0′\H → 0\H. Our focus will be on the families of Shimura
curves X D

0 (N ) and X D
1 (N ), for N a positive integer with gcd(D, N ) = 1, with

X D(1)= X D
0 (1)= X D

1 (1) being a special case of each.
With setup following the careful exposition of [Buzzard 1997, §1], let

R := lim
←−−

gcd(m,D)=1
Z/mZ

and fix an isomorphism κ : B⊗Z R→ M2(R). This map κ induces, for m relatively
prime to D, a map

O⊗ Ẑ→ M2(Zm).

We get from here a map
um :O1

→ GL2(Zm).

The curve X D
0 (N ) can then be described as the Shimura curve corresponding to the

compact, open subgroup

0D
0 (N ) :=9

(
u−1

N

({(a
c

b
d

)
∈ GL2(ZN ) | c ≡ 0 (mod N )

}))
≤ 0D(1).

That is, X D
0 (N )(C)= 0

D
0 (N )\H. Equivalently, fixing a level N Eichler order ON

in B, the curve X0(N ) can be described, in the manner mentioned above, as that
associated to the arithmetic group of units of reduced norm 1 in ON . The Shimura
curve X D

1 (N ) corresponds to the compact, open subgroup

0D
1 (N ) :=9

(
u−1

N

({(a
c

b
d

)
∈ GL2(ZN ) | c ≡ 0 and d ≡ 1 (mod N )

}))
≤ 0D(1).

It follows from a celebrated result of Shimura [1967, Main Theorem I] that the
curve X D

0 (N ) has a canonical model X D
0 (N )/Q, i.e., such that

X D
0 (N )/Q⊗Q C∼= X D

0 (N ),

and similarly for the curve X D
1 (N ).

Because we are assuming that N is relatively prime to D, the notion of “level N
structure” is group-theoretically just as in the modular curve case. In particular, the
natural modular map X D

1 (N )/Q→ X D
0 (N )/Q is a (Z/NZ)×/{±1}-cover. Hence, it

is an isomorphism for N ≤ 2 and it has degree φ(N )/2 for N ≥ 3, where φ denotes
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the Euler totient function. We now recall moduli interpretations for these families
of Shimura curves as provided in, for example, [Buzzard 1997, §3].

Definition 2.3. Suppose that (A, ι, λ) and (A′, ι′, λ′) are (O, µ)-QM abelian sur-
faces over F . We will call an isogeny ϕ : A→ A′ of the underlying abelian surfaces
a QM-cyclic N-isogeny if ϕ∗(λ′)= λ and both of the following hold:

• The isogeny ϕ is QM-equivariant. That is, for all α ∈O we have

ι′(α) ◦ϕ = ϕ ◦ ι(α).

• The kernel ker(ϕ) is a cyclic O-module with

ker(ϕ)∼= Z/NZ×Z/NZ.

For example, a QM-cyclic 1-isogeny is the same as an isomorphism of QM
abelian surfaces.

Proposition 2.4. The Shimura curve X D
0 (N )/Q is isomorphic to the coarse moduli

scheme associated to any of the following moduli problems:

(1) Tuples (A, ι, λ, Q), where (A, ι, λ) is an (O, µ)-QM abelian surface and
Q ≤ A[N ] is an order N 2 subgroup of the N-torsion subgroup of A which is
also a cyclic O-module.

(2) QM-cyclic N-isogenies ϕ : (A, ι, λ)→ (A, ι′, λ′) of (O, µ)-QM abelian sur-
faces.

The curve X D
1 (N )/Q has the following moduli interpretation: triples (A, ι, λ, P),

where (A, ι, λ) is a QM abelian surface and P ∈ A[N ] is a point of order N.

These interpretations hold for any choice of principal polarization µ of O. That
is, if µ and µ′ are two such polarizations then they both induce the same coarse
moduli scheme X D

0 (N )/Q up to isomorphism (as discussed, for example, in [Rotger
2004, §6]). Of course, the exact moduli interpretation does depend on µ, and
we refer to [Rotger 2004, Proposition 4.3] for more on how the corresponding
spaces fit into the moduli space of principally polarized abelian surfaces. Because
a principal polarization λ on a pair (A, ι) is canonically determined from a fixed µ,
moving forward we will suppress polarizations and refer simply to QM abelian
surfaces (A, ι). By the same point, the condition on the polarizations in the defini-
tion of a QM-cyclic N -isogeny is redundant; it follows from the QM-equivariant
condition.

Letting ON denote an Eichler order of level N in B, the curve X D
0 (N )/Q has

the equivalent interpretation of parametrizing pairs (A, ι) where A/C is a QM
abelian surface and ι : ON ↪→ End(A). (We just stated that we would no longer
remark on polarizations, but we note that the polarization corresponding to such
an ι will not be principally polarized, but (1, N )-polarized in general.) That said,
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interpretations (1) and (2) in Proposition 2.4 will be the primary ones used in our
study — see Remark 2.9 for related comments. Thus, we will mainly speak of QM
by maximal quaternion orders, and it will benefit us to spell out the connection
between interpretations (1) and (2) here. Let (A, ι) be a QM abelian surface. The
N -torsion of A is acted on by ι(O), and the corresponding representation factors
through O⊗Z Z/NZ∼= M2(Z/NZ). The resulting map must then be equivalent to

M2(Z/NZ)→ End(A[N ])∼= M4(Z/NZ),

(
a b
c d

)
7→


a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d

.
This can be viewed as a case of Morita equivalence, but it is worth being explicit
here: let e1 and e2 denote the standard idempotents in M2(Z/NZ),

e1 =

(
1 0
0 0

)
and e2 =

(
0 0
0 1

)
.

We then have A[N ] = e1 · A[N ] ⊕ e2 · A[N ], and M2(Z/NZ) acts on this direct
sum in precisely the way noted by the above map.

Any proper, nontrivial, O-stable subgroup Q ≤ A[N ] must then have order N 2

(this justifies our definition of QM-cyclic isogenies, along with the equivalence
of the moduli interpretations presented above). Further, such a subgroup Q is
determined by a cyclic order N subgroup of A[N ]: we have Q = e1(Q)⊕ e2(Q)
where each summand is cyclic of order N , and conversely Q=O ·ei (Q) for i = 1, 2.

For our applications in Section 10, the genera of our Shimura curves of interest
will be of use. Let ψ denote the Dedekind psi function. The derivations are
standard — for example, the formula for X D

0 (N ) can be found in [Voight 2021,
Theorem 39.4.20]:

Proposition 2.5. We have

g(X D
0 (N ))= 1+

φ(D)ψ(N )
12

−
ϵ1(D, N )

4
−
ϵ3(D, N )

3
,

where

ϵ1(D, N )=


∏
p|D

(
1−

(
−4
p

)) ∏
p|N

(
1+

(
−4
p

))
if 4 ∤ N ,

0 if 4 | N ,

ϵ3(D, N )=


∏
p|D

(
1−

(
−3
p

)) ∏
p|N

(
1+

(
−3
p

))
if 9 ∤ N ,

0 if 9 | N ,
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are, respectively, the numbers of elliptic Z
[√
−1

]
-CM and elliptic Z

[ 1+
√
−3

2

]
-CM

points on X D
0 (N ). For N ≤ 2 we have

X D
1 (N )∼= X D

0 (N ),

and for N ≥ 3 we have

g(X D
1 (N ))= 1+

φ(N )φ(D)ψ(N )
24

.

2.2. CM points. Let (A, ι) be a QM abelian surface over a number field F , such that

End0(A)∼= B.

If A is nonsimple, such that A∼ E1×E2 is geometrically isogenous (i.e., isogenous
over Q) to a product of elliptic curves, then it must be the case that E1 and E2 are
isogenous elliptic curves with complex multiplication (CM). In this case, A ∼ E2

where E is a CM elliptic curve, say with corresponding imaginary quadratic CM
field K . Here it is forced that K splits the quaternion algebra B:

B⊗Q K ∼= M2(K ).

In this case in which A is nonsimple, we refer to (A, ι) as a QM abelian surface with
CM and we call the induced point [(A, ι)] ∈ X D(1)/Q(F) a CM point. We call a
point x on X D

0 (D)/Q or X D
1 (N )/Q a CM point if it lies over a CM point on X D(1)/Q.

Generalizing our definition for isogenies, we call an endomorphism α ∈ End(A)
QM-equivariant if α ◦ ι(γ )= ι(γ ) ◦α for all γ ∈O. If (A, ι) has K -CM, then the
ring EndQM(A) of QM-equivariant endomorphisms of A is an imaginary quadratic
order in K . This means that we have some f ∈ Z+ such that

EndQM(A)∼= o( f ),

where o( f ) denotes the unique order of conductor f in K . In other words, o( f ) is
the unique imaginary quadratic order of discriminant f 21K , where 1K denotes
the discriminant of K , i.e., that of the maximal order oK = o(1). We will call this
f the central conductor of (A, ι). We will refer to [(A, ι)] ∈ X D(1), or to any point
in the fiber over [A, ι] under some covering of Shimura curves X→ X D(1), as an
o( f )-CM point when we wish to make the CM order clear. Note that the QM on A
is by definition defined over F , so if A is isogenous to E2 over an extension L/F
then E necessarily has its CM defined over L .

2.3. The field of moduli of a QM-cyclic isogeny.

2.3.1. The field of moduli. The field of moduli of a QM abelian surface (A, ι)
defined over Q is the fixed field of those automorphisms σ ∈ Gal(Q/Q) such
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that (A, ι)σ := (Aσ , ισ ) is isomorphic to (A, ι) over Q. The conjugate abelian
surface Aσ is defined as the fiber product A⊗Spec Q Spec Q over σ :

Aσ A

Spec Q Spec Q
σ

and ισ is defined via the action of σ on endomorphisms of A. (We are suppressing
polarizations at this point, but recall this is justified as there is a unique principal
polarization on Aσ compatible with ισ .) Equivalently, the field of moduli of (A, ι)
is the residue field Q(x) of the corresponding point x = [(A, ι)] on X D(1)/Q.

More generally, for a QM-cyclic isogeny ϕ : (A, ι)→ (A′, ι′) defined over Q,
the field of moduli of ϕ is the fixed field of the group

H(ϕ) :=

{
σ ∈ Gal(Q/Q)

∣∣∣∣ (Aσ , ισ ) ((A′)σ , (ι′)σ )

(A, ι) (A′, ι′)

ϕσ

ϕ

commutes,

and the vertical maps are isomorphisms

}
.

For clarity: the vertical maps above are those induced by σ and membership
of σ in H(ϕ) means that both (A, ι) and (A′, ι′) are isomorphic to their conjugates
by σ . In other words, the field of moduli of ϕ is the minimal field over which ϕ is
isomorphic to all of its Gal(Q/Q)-conjugates. Equivalently, it is the residue field
of the corresponding point [ϕ] on X D

0 (N )/Q (which follows from the much more
general theory of [Shimura 1966, Theorem 5.1], as exposited more specifically
towards our case in [Shimura 1967, p. 60]).

We call a field F a field of definition for a QM-cyclic isogeny ϕ as above, or say
that ϕ is defined or rational over F , if ϕ and both (A, ι) and (A′, ι′) can be given
by equations defined over F . We then have a model ϕ′ over F so that ϕ′⊗F Q= ϕ.
It follows that if x ∈ X D

0 (N )/Q is induced by ϕ, then any field of definition for ϕ
contains the field of moduli Q(x).

It is not generally the case that fields of moduli are fields of definition for
(polarized) abelian varieties of dimension bigger than 1, and this is a source of
difficulty and interest in the study of their arithmetic. For instance, Shimura [1972]
proved that the generic principally polarized even-dimension abelian variety does
not have a model defined over its field of moduli. Particular towards our interests
here, a QM abelian surface (or, more generally, a QM-cyclic isogeny) need not
have a model over its field of moduli. However, we have the following result of
Jordan [1981, Theorem 2.1.3]:
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Theorem 2.6 (Jordan). Suppose that (A, ι)/Q is a QM abelian surface with QM
by B and with AutQM(A) = {±1} (equivalently, (A, ι) does not have CM by 1 ∈
{−3,−4}). Let x = [(A, ι)] ∈ X D

0 (1)/Q be the corresponding point. Then a field L
containing Q(x) is a field of definition for (A, ι) if and only if L splits B.

2.3.2. The field of moduli in the CM case. Our attention in this study will primarily
be aimed at determining fields of moduli, particularly in the presence of CM. We
now recall prior work determining the field of moduli of a CM point on X D(1)/Q.

The answer begins with a fundamental theorem of Shimura [1967, Main The-
orem 1]. Fixing an imaginary quadratic field K and a positive integer f , we let
o( f ) denote the order in K of conductor f and K ( f ) denote the ring class field
corresponding to o( f ).

Theorem 2.7 (Shimura). Let x ∈ X D(1)/Q be an o( f )-CM point with residue
field Q(x). Then

K ·Q(x)= K ( f )

This tells us that in this setting there are two possibilities: either Q(x) is the ring
class field K ( f ), or it is an index 2 subfield thereof. Jordan [1981, §3] proved when
each possibility occurs in the case where x has CM by the maximal order of K (the
f = 1 case). Work of González and Rotger [2006, §5] allows for a generalization
of Jordan’s result to arbitrary CM orders.

To state their result, we first set the following notation: for D a quaternion
discriminant over Q and K an imaginary quadratic field splitting the quaternion
algebra B of discriminant D over Q, let

D(K ) :=
∏
p|D

( K
p )=−1

p.

The assumption that K splits B is exactly the assumption that no prime divisor of D
splits in K . From this we see that D(K )= 1 if and only if all primes dividing D
ramify in K , while D(K ) > 1 exactly when some prime dividing D is inert in K .

Theorem 2.8 (Jordan, González–Rotger). Let x ∈ X D(1)/Q be an o( f )-CM point.

(1) If D(K )= 1, then we have Q(x)= K ( f ).

(2) Otherwise, [K ( f ) :Q(x)] = 2. In this case, Q(x)⊊ K ( f ) is the subfield fixed
by

σ = τ ◦ σa ∈ Gal(K ( f )/Q),

where τ denotes complex conjugation and σa ∈Gal(K ( f )/K ) is the automorphism
associated via the Artin map to a certain fractional ideal a of o( f ) with the property
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that

B ∼=
(
1K , NK/Q(a)

Q

)
.

More specifically, a is such that

ωD(K )(xσa)= τ(x),

where ωD(K ) denotes the Atkin–Lehner involution on X D(1)/Q corresponding
to D(K ).

Remark 2.9. González and Rotger provide a generalization of Jordan’s result to
all CM points on X D

0 (N )/Q for squarefree N . We state their result only for trivial
level N = 1 in part because it is all we will need, but also because some translation
would be needed for the statement of their result as in their work to the conventions
of this work. In comparing our work to [González and Rotger 2006], the definition
of an o-CM point on X D

0 (N )/Q that they work with is different from ours; whereas
our definition is that a CM point has o-CM for an imaginary quadratic order o if
it lies over an o-CM point on X D(1)/Q, their definition is that x ∈ X D

0 (N )/Q has
o-CM if it corresponds to a normalized optimal embedding of o into an Eichler
order of level N in B. The definition used in [González and Rotger 2006] provides
a pleasantly uniform result similar to Jordan’s N = 1 case, with every o( f )-CM
point x ∈ X D

0 (N )/Q having field of moduli Q(x) with K ·Q(x)∼= K ( f ). It will not
be the case in our work, for level N > 1, that all o-CM points have the same residue
field. While our set of K -CM points on X D

0 (N ) is the same as that as defined in
[González and Rotger 2006], the specific orders we attach may not agree.

The convention used by González and Rotger is common in the literature, ap-
pearing in the work of Rotger and his collaborators and also in work of Padurariu
and Schembri [2023] in which the authors compute rational points on all Atkin–
Lehner quotients of geometrically hyperelliptic Shimura curves. The difference in
convention one takes is motivated by which moduli problem one chooses for the
course moduli scheme X D

0 (N ): our choice of working with maximal orders results
in having natural modular maps from X D

0 (N ) to X D
0 (1) for all N , while working

with Eichler orders of level N naturally situates X D
0 (N ) as the base Shimura curve.

Because we want to work with general level, we work with maximal orders. A
main difference between our work and that of [González and Rotger 2006], beyond
the generalization from squarefree N to all positive integers N , is that we consider
not just the CM points on a fixed curve X D

0 (N ) but the fiber of the covering
X D

0 (N )/Q→ X D(1)/Q over any CM point.

2.4. Decompositions of QM abelian surfaces with CM. Restricting to the case of
a QM abelian surface (A, ι) with CM over C, we have seen that A is isogenous to a
square of an elliptic curve with CM. Through a correspondence between QM abelian
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surfaces with CM and equivalence classes of certain binary quadratic forms, Shioda
and Mitani [1974, Theorem 4.1] proved the following strengthening of this fact:

Theorem 2.10 (Shioda–Mitani). If (A, ι)/C is a QM abelian surface with K -CM
for an imaginary quadratic field K , then there exist K -CM elliptic curves E1, E2

over C such that
A ∼= E1× E2.

The number of distinct decompositions of a given A as above is finite, resulting
from finiteness of the class number of any imaginary quadratic order in K . This
theorem was generalized to higher-dimensional complex abelian varieties isogenous
to a power of a CM elliptic curve independently by Katsura [1975, Theorem] and
Lange [1975], and Schoen [1992, Satz 2.4] later provided a simple proof as well. A
generalization from C to an arbitrary field of definition F is a result of Kani [2011,
Theorem 2]:

Theorem 2.11 (Kani). If A/F is an abelian variety which is isogenous to En

over F , where E/F is an elliptic curve with CM over F , then there exist CM elliptic
curves E1/F, . . . , En/F such that we have an isomorphism

A ∼= E1× · · · En

over the base field F.

Kani [2011, Theorem 67] says more, which is relevant in the case of QM abelian
surfaces with CM: fixing a K -CM elliptic curve E/F with endomorphism ring of
conductor fE , there is a bijection between the set of F-isomorphism classes [E ′]
of elliptic curves E ′ isogenous to E with CM conductor fE ′ | fE , and the set of F-
isomorphism classes of abelian surfaces A/F isogenous to E2 with corresponding
central conductor f A = fE . Explicitly, this bijection sends an F-isomorphism
class [E ′] to the F-isomorphism class [E × E ′].

In order to obtain concrete decompositions of QM abelian surfaces with CM,
the remaining task is to identify which such products of CM elliptic curves have
potential quaternionic multiplication (that is, which can be given QM structures),
and to further describe the classes of QM abelian surfaces with CM. The following
result provides the number of such classes ([Alsina and Bayer 2004, Theorem 6.13]
interprets this count as a certain class number, or equivalently as an embedding
number, and [Vignéras 1980, Corollary 5.12] provides a formula for these class
numbers which we use in the N = 1 case).

Proposition 2.12. Let K be an imaginary quadratic field splitting B, and let f ∈Z+.
Let b denote the number of primes dividing D that are inert in K . The number of
geometric o( f )-CM points on X D(1) is then 2b

· h(o( f )), where h(o( f )) denotes
the class number of the order o( f ).
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Ufer [2010] touches on this topic of taking QM structures into account. In
particular, he proves the following [Ufer 2010, Theorem 2.7.12]: with the notation
of Proposition 2.12, there exists a 2b-to-1 correspondence

{K -CM points in X D(1)(C} → {K -CM elliptic curves over C}/∼= .

Based on the proof therein, it seems that Ufer could have said more, and so we
do that here with reference to his argument. As above, let b denote the number of
primes dividing D which are inert in K .

Theorem 2.13. Let (A, ι)/C be a QM abelian surface with CM by o( f ). There is
then a unique o( f )-CM curve E A/C, up to isomorphism, such that

A ∼= C/o( f )× E A.

There is a 2b-to-1 correspondence

{o( f )-CM points on X D(1)} → {o( f )-CM elliptic curves over C}/∼=

sending a point [(A, ι)] ∈ X D(1) to the class of E A.

Proof. Part (2) of the proof of [Ufer 2010, Theorem 2.7.12] details the construction
of a QM-structure by a maximal order O in B on E × E ′ for E and E ′ both o( f )-
CM elliptic curves. The product E × E ′ with the constructed QM structure then
corresponds to a CM point on X D(1) with central conductor f .

Let E, E ′ be K -CM elliptic curves. Part (3) of Ufer’s proof explains that if the
abelian surface E×E ′ has potential quaternionic multiplication then in fact it has 2b

nonisomorphic QM structures. Put differently but equivalently to therein: let W be
the group generated by the Atkin–Lehner involutions ωp on X D(1) for p | D inert
in K . The group W×Pic(o( f )) then acts simply transitively on the set of o( f )-CM
points on X D(1). If [(A, ι)] ∈ X D(1) is such a point, then the action of any element
w ∈W leaves [A] unchanged, providing the claim (this is proved by Jordan [1981]
in the f = 1 case, and extended to the general case by González and Rotger [2006,
Proposition 5.6]). By the count of Proposition 2.12, Theorem 2.10 and the fact that
C/o( f )× E ∼= C/o( f )× E ′ implies E ∼= E ′, the claimed result follows. □

Corollary 2.14. Let (A, ι)/F be a QM abelian surface with CM by o⊆oK . Suppose
that we have an F-rational isogeny A ∼ E2 to the square of an elliptic curve. Fix
E1/F any elliptic curve with o-CM. There then exists an o-CM elliptic curve E2/F ,
unique up to isomorphism over F , such that A ∼= E1× E2 over F.

Proof. Let f be the central conductor of A (i.e., such that o = o( f )). By
Theorem 2.11 and the discussion of Kani’s results following this theorem statement,
there exists a CM elliptic curve E2/F , with endomorphism ring of conductor fE2
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satisfying fE2 | f , such that A ∼= E1× E2 over F . This curve E2 is unique up to
isomorphism over F . Base changing this entire picture to C, we have

A/C ∼= E1/C× E2/C.

Now because A/C (and hence E1/C× E2/C, by transport of structure through our
isomorphism) has QM and E1/C has CM conductor f , Theorem 2.13 implies that
fE2 = f as well. □

3. QM-equivariant isogenies

Our goal in the following section will be to determine the residue field of a CM
point on X D

0 (N )/Q for any N coprime to D, generalizing Theorem 2.8. A main
component in accomplishing this is the study of the structure of, and the action of
automorphisms on, components of certain isogeny graphs. Paths in these graphs
of consideration will be in correspondence with isogenies of QM abelian surfaces
which commute with their QM structures.

Here, we prove facts about QM-equivariant isogenies needed in the proceeding
section. Much of what we do in both this section and the next is in strong analogy
to the case of isogenies of elliptic curves over Q studied in work of Clark [2022]
and Clark and Saia [2022]. We provide proofs here for completeness and for clarity
of said analogy.

Lemma 3.1. Let F be a field of characteristic zero, and let (A, ι) be a QM abelian
surface over F which does not have CM by an order of discriminant 1 ∈ {−3,−4}.
For ℓ a prime number, the number of QM-cyclic ℓ-isogenies with domain (A, ι)
which are Gal(F/F)-stable, up to isomorphism, is either 0, 1, 2, or ℓ+ 1.

Proof. Note that ℓ being prime means we are counting isomorphism classes of
QM-cyclic ℓ-isogenies. The hypotheses on A are equivalent to Aut(A, ι)= {±1}.
In this case, we have a bijective correspondence between isomorphism classes
of QM-cyclic ℓ-isogenies and nontrivial, proper cyclic O-submodules of A[ℓ].
Under this correspondence, the isogenies which are Gal(F/F)-stable correspond
to Gal(F/F)-stable submodules.

Now we have that e1(Q)≤ e1(A[ℓ])∼= (Z/ℓZ)2 is a cyclic subgroup of order ℓ,
and in this way we have a bijective correspondence between the nontrivial proper
QM-stable subgroups of A[ℓ] and cyclic order ℓ subgroups of e1(A[ℓ]). This
correspondence preserves the property of being Gal(F/F)-stable. We have thus
reduced to the situation of the elliptic curve case, and may proceed as such: We are
counting Gal(F/F)-stable cyclic order ℓ subgroups of (Z/ℓZ)2. The total number
of cyclic order ℓ subgroups is ℓ+ 1, and if more than 2 such subgroups are fixed
then Gal(F/F) is forced to act by scalar matrices on (Z/ℓZ)2. □
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3.1. Compositions of QM-cyclic isogenies. The following result is in analogy with
[Clark 2022, Proposition 3.2].

Proposition 3.2. Suppose that ϕ = ϕ2 ◦ ϕ1 is a QM-cyclic isogeny, where ϕi :

(Ai , ιi )→ (Ai+1, ιi+1) is a QM-cyclic isogeny for i = 1, 2.

(1) We have
Q(ϕ)⊆Q(ϕ1) ·Q(ϕ2).

(2) If (A2, ι2) does not have CM by 1 ∈ {−3,−4}, then

Q(ϕ)=Q(ϕ1) ·Q(ϕ2).

Proof. The containment of part (1) is clear. The assumption that (A2, ι2) does
not have −3 or −4 CM is equivalent to Aut((A2, ι2))= {±1}, and in this case the
reverse containment in part (2) follows by the same argument as in [Clark 2022,
Proposition 3.2]. □

3.2. Reduction to prime power degrees. First, let us say something about rationality.
Let ϕ : (A, ι)→ (A′, ι′) be a QM-cyclic N -isogeny which is rational over F , where
N has prime-power decomposition N =ℓa1

1 · · · ℓ
ar
r . Letting Q=ker(ϕ) be the kernel

of this isogeny, we have that ϕ is isomorphic to the quotient (A, ι)→ (A/Q, ι).
(The latter pair indeed provides an O-QM abelian surface, as Q is stable under ι(O)
and O is maximal, though we are abusing notation by referring to the QM-structure
on the quotient as ι.) We have a decomposition Q = C ⊕ D with each of C and
D cyclic of order N , such that O ·C = O · D = Q. This cyclic subgroup C then
decomposes as

C =
r⊕

i=1

Ci ,

where Ci ≤ C is the unique subgroup of order ℓai
i . Letting Qi =O ·Ci , each Qi is

QM stable and isomorphic to (Z/ℓi
ai Z)2.

From the uniqueness of Ci ≤ C , and hence of the corresponding O-cyclic
subgroup Qi ≤ Q, we get that each Qi is F-rational, resulting in F-rational QM-
cyclic ℓai

i -isogenies ϕi : (A, ι)→ (A/Qi , ι) for each i . On the other hand, given
a collection of F-rational QM-cyclic ℓai

i -isogenies with kernels Qi , we get an
F-rational QM-cyclic N -isogeny (A, ι)→ (A/Q, ι) where Q =

⊕r
i=1 Qi .

As for fields of moduli, more towards our needs for the following section, we
have the following:

Proposition 3.3. Let N1, . . . , Nr ∈ Z+ be pairwise coprime, let k be a field of
characteristic zero, and let x ∈ X D(1)/k be a closed point which does not have CM
by discriminant 1 ∈ {−3,−4}. For each i , let πi : X D

0 (Ni )/k → X D(1)/k be the
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natural map, let Fi = π
−1
i (x), and let F be the fiber over x of π : X D

0 (N )/k →

X D(1)/k where N = N1 · · · Nr . Then

F = F1⊗Spec k(x) · · · ⊗Spec k(x) Fr .

Proof. This follows as in the D = 1 case of [Clark 2022, Proposition 3.5], using
that X D

0 (N ) for D > 1 is a cover of X D(1) with the same corresponding subgroup
of GL2(Z/NZ)/{±1} as in the case of X0(N )→ X (1). □

It follows that if x ∈ X D
0 (N )/Q is a point which does not have −3 or −4-CM

and N =
∏r

i=1 ℓ
ai
i , with πi : X D

0 (N )/Q→ X D
0 (ℓ

ai
i )/Q the natural maps, then

Q(x)=Q(π1(x)) · · ·Q(πr (x)).

4. QM-equivariant isogeny volcanoes

Fixing a prime ℓ, we describe CM components of ℓ-isogeny graphs of QM abelian
surfaces over Q. We will use this work to study CM points on the curves X D

0 (ℓ
a)/Q

for a ∈ Z+ and D > 1, in analogy to the D = 1 modular curve case of [Clark 2022;
Clark and Saia 2022].

This study, like that of [Clark 2022; Clark and Saia 2022], is motivated by the
foundational work on isogeny volcanoes over finite fields by Kohel [1996] and by
Fouquet [2001] and Fouquet and Morain [2002]. We also recommend, and will
refer to, a more recent, expository account of isogeny volcanoes in the finite field
setting by Sutherland [2013].

4.1. The isogeny graph of QM abelian surfaces. Fix a prime number ℓ and an
imaginary quadratic field K . In [Clark 2022] and [Clark and Saia 2022], the authors
consider the multigraph with vertex set that of j -invariants of K -CM elliptic curves,
and with edges corresponding to C-isomorphism classes of cyclic ℓ-isogenies.

Here, we seek an analog for abelian surfaces with QM by a fixed maximal
order O of the indefinite quaternion algebra B of discriminant D over Q, with ℓ ∤ D.
We let GD

ℓ denote the directed multigraph with

• vertex set consisting of C-isomorphism classes of O-QM abelian surfaces, and

• edges from v1 = [(A1, ι1)] to v2 = [(A2, ι2)] corresponding to C-isomorphism
classes of QM-cyclic ℓ-isogenies ϕ : (A1, ι1)→ (A2, ι2).

A given vertex v has ℓ+1 edges emanating from it, via the correspondence of QM-
stable subgroups of A1[ℓ] with cyclic order ℓ subgroups of e1(A1[ℓ])∼= (Z/ℓZ)

2

discussed in Lemma 3.1.
Because a QM structure ι determines a unique principal polarization, we have

dual edges via dual isogenies as in the elliptic curve case. As long as the source
vertex v1 corresponds to an isomorphism class [(A, ι)] having only the single
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nontrivial automorphism [−1], we obtain a bijection between the edges from v1

to v2 and those from v2 to v1; in this case, outward edges from v1 are in bijective
correspondence with QM-stable subgroups of A1[ℓ] of order ℓ2. This occurs
precisely when [(A, ι)] does not have CM by discriminant 1=−3 or 1=−4.

Our attention will be to vertices in GD
ℓ corresponding to QM abelian surfaces

with CM. For an abelian variety (A, ι) with QM by O and K -CM, recall from
Section 2.2 that the central conductor of (A, ι) is defined to be the positive integer f
such that EndQM(A)∼= o( f )⊆ oK .

Lemma 4.1. Suppose ϕ : (A, ι)→ (A′, ι′) is a QM-cyclic N-isogeny, with (A, ι) a
QM abelian surface with K -CM. Then:

(1) The QM abelian surface (A′, ι′) also has K -CM.

(2) Let f and f ′ denote the central conductors of (A, ι) and (A′, ι′), respectively.
Then f and f ′ differ by at most a factor of N :

f | N f ′ and f ′ | N f.

Proof. The argument is similar to that of the elliptic curve case. In our context,
we need only remember that we care specifically about those endomorphisms
commuting with the QM.

Consider the homomorphism

F : End(A, ι)→ End(A′, ι′), ψ 7→ ϕ ◦ψ ◦ ϕ̂.

Because ϕ is assumed to be QM-equivariant, this restricts to a homomorphism

EndQM(A, ι)→ EndQM(A′, ι′).

As in the argument in the elliptic curves case, the algebras of endomorphisms
commuting with the quaternionic multiplication are isomorphic by the multiple 1

N F
of the map above. That is,

K ∼= EndQM(A, ι)⊗Q∼= EndQM(A′, ι′)⊗Q.

This completes part (a). Moreover, that

1
N

F : EndQM(A, ι)⊗Q→ EndQM(A′, ι′)

is an isomorphism tells us that

N ·EndQM(A, ι)⊆ EndQM(A′, ι′),

yielding f ′ | N f . Via the dual argument, we obtain f | N f ′. □
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For an imaginary quadratic field K , we are therefore justified in defining GD
K ,ℓ to

be the subgraph of GD
ℓ consisting of vertices corresponding to QM abelian surfaces

with K -CM. An edge in GD
K ,ℓ corresponds to a class of QM-cyclic ℓ-isogenies

[ϕ : (A, ι)→ (A′, ι′)] between QM abelian surfaces with K -CM, and the above
lemma tells us that as we move along paths in GD

K ,ℓ, the central conductors of
vertices met have the same prime-to-ℓ part. It follows that GD

K ,ℓ has a decomposition

GD
K ,ℓ =

⊔
( f0,ℓ)=1

GD
K ,ℓ, f0

,

where GD
K ,ℓ, f0

denotes the subgraph of GD
K ,ℓ with vertices having corresponding

central conductors of the form f0ℓ
a for some a ∈ N.

Any edge in GK ,ℓ, f0 has vertices with corresponding central conductors f and f ′

satisfying f/ f ′ ∈ {1, ℓ, ℓ−1
}. Defining the level of a vertex in GD

K ,ℓ, f0
having central

conductor f to be ordℓ( f ), we note that a directed edge can do one of three things:

• increase the level by one, in which case we will call the edge ascending,

• decrease the level by one, in which case we will call the edge descending, or

• leave the level unchanged, in which case we will call the edge horizontal.

We will refer to ascending and descending edges collectively as vertical edges.
For a connected component of GD

K ,ℓ, f0
, we refer to the subgraph consisting of level 0

vertices and horizontal edges between them as the surface of that component. In
other words, the vertex set of the surface consists of vertices with corresponding
central conductor f0. This choice of terminology is reflective of the fact that we
cannot have an ascending isogeny starting at level 0, and of the fact that horizontal
edges can only occur between surface vertices, as the following lemma states.

Lemma 4.2. Suppose that there is a horizontal edge in GD
K ,ℓ, f0

connecting ver-
tices v1 and v2. Letting fi denote the central conductor corresponding to vi for
i = 1, 2, we then have f1 = f2 = f0. The number of horizontal edges emanating
from a given surface vertex in GD

K ,ℓ, f0
is 1+

(
1K
ℓ

)
, hence is

• 0 if ℓ is inert in K ,

• 1 if ℓ ramified in K , and

• 2 if ℓ is split in K .

Proof. That f1 = f2 is part of our definition of horizontal edges. What we must
prove is that ℓ does not divide f := f1 = f2.

The given edge corresponds to a QM-cyclic ℓ-isogeny

ϕ : (A1, ι1)→ (A2, ι2),
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where (Ai , ιi ) has central conductor f for i = 1, 2. By Theorem 2.13, we have
a decomposition of these two QM abelian surfaces resulting in an isomorphic
isogeny ψ as below:

(A1, ι1) (A2, ι2)

(E1× E ′1, ι1) (E2× E ′2, ι2)

ϕ

∼= ∼=

ψ

where each Ei and each E ′i is an elliptic curve with K -CM by conductor f for
i = 1, 2. Restricting ψ to E1 and to E ′1, respectively, yields isogenies of K -CM
elliptic curves

(1)
E1→ ψ(E1)=: E ⊆ E2× E ′2,

E ′1→ ψ(E ′1)=: E
′
⊆ E2× E ′2.

This provides the decomposition

E2× E ′2 ∼= E × E ′.

The conductors of the endomorphism rings of E and E ′, each of which must
divide f and have the same coprime to ℓ part as f , must then have least common
multiple f . This provides that either E or E ′ must have CM conductor f .

The conductors of the endomorphism rings of E and E ′ must each be in the set{
f, ℓ f, 1

ℓ
f
}
, and must have least common multiple f . This provides that either E

or E ′ must have CM conductor f .
We now consider the corresponding isogeny of K -CM elliptic curves of conduc-

tor f from (1). In doing so, [Clark and Saia 2022, Lemma 4.1] tells us that we must
have ℓ ∤ f . There, the result is reached using the correspondence between horizontal
ℓ-isogenies of o( f0)-CM elliptic curves over C with proper o( f0)-ideals of norm ℓ.
This also gives us the count of horizontal isogenies mentioned; we have the count
in the elliptic curve case as in [Clark and Saia 2022], and from a horizontal isogeny
of elliptic curves as in (1) we generate a QM-cyclic isogeny of our QM abelian
surfaces via the QM action. □

Each surface vertex has 1+
(
1K
ℓ

)
horizontal edges emanating from it, and therefore

has ℓ−
(
1K
ℓ

)
descending edges to level 1 vertices. For vertices away from the surface,

we have the following:

Lemma 4.3. If v is a vertex in GD
K ,ℓ, f0

at level L > 0. then there is one ascending
vertex from v to a vertex in level L − 1, and the remaining ℓ edges from v are
descending edges to distinct vertices in level L + 1.

Proof. We will use the same type of counting argument one may use in the elliptic
curve case, as in [Sutherland 2013, Lemma 6]. The action of Gal(Q/Q) on GD

K ,ℓ, f0
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preserves the level of a given vertex, and hence preserves the notions of horizon-
tal, ascending, and descending for edges. As a result, the number of ascending,
respectively descending, edges out of v must be the same as for any other vertex at
level L by transitivity of this action on vertices at each level.

For L = 1, there are(
ℓ−

(
1K

ℓ

))
2bh(o( f0))= 2bh(o(ℓ f0))

total descending vertices from surface vertices (where b is as in Proposition 2.12).
The equality above states that this is equal to the total number of level 1 vertices,
and so the edges must all be to distinct level 1 vertices. For L > 1, the result follows
inductively using the same counting argument along with the fact that

h(o(ℓL f0))= ℓ · h(o(ℓL−1 f0)). □

4.2. QM-equivariant isogeny volcanoes. For a prime number ℓ, we define here
the notion of an ℓ-volcano. This notion for the most part agrees with that in the
existing literature, with the only caveat being that in the original context of isogeny
volcanoes over a finite field one has volcanoes of finite depth. In our case, working
over an algebraically closed field as in [Clark 2022; Clark and Saia 2022], we adjust
the definition to allow for infinite depth volcanoes.

Definition 4.4. Let V be a connected graph with vertices partitioned into levels

V =
⊔
i≥0

Vi ,

such that if Vd = ∅ for some d, then Vi = ∅ for all i ≥ d. If such a d exists, we
will refer to the smallest such d as the depth of V and to Vd for d the depth as the
floor of V , and otherwise we will say that the depth of V is infinite.

Fixing a prime number ℓ, the graph V with its partitioning is an ℓ-volcano if the
following properties hold:

(1) Each vertex not in the floor of V has degree ℓ+ 1, while any floor vertex has
degree 1.

(2) The subgraph V0, which we call the surface, is regular of degree 0, 1 or 2.

(3) For 0< i <d (colloquially: “below the surface” and “above the floor”), a vertex
in Vi has one ascending edge to a vertex in Vi−1, and ℓ descending edges to dis-
tinct vertices in Vi+1. This accounts for all edges of V which are not horizontal,
by which we mean edges which are not between two surface vertices.

The results of the previous section immediately imply the following theorem,
declaring that in most cases connected components of the subgraphs GD

K ,ℓ, f0
of GD

K ,ℓ
are isogeny volcanoes. In such a case, we will refer to this graph as a QM-equivariant
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isogeny volcano. This justifies our use of terminology regarding edges and vertices
in these subgraphs.

Theorem 4.5. Fix an imaginary quadratic field K , a prime ℓ and a natural
number f0 with (ℓ, f0) = 1 and f 2

01K < −4. Consider the graph GD
K ,ℓ, f0

as
an undirected graph by identifying edges with their dual edges as described above.
Each connected component of this graph has the structure of an ℓ-volcano of infinite
depth.

A path in GD
K ,ℓ, f0

refers to a finite sequence of directed edges, say e1, . . . , er ,
such that the terminal vertex of ei is the initial vertex of ei+1 for all 1≤ i ≤ r−1. In
the f 2

01K <−4 case, because the edges in GD
K ,ℓ, f0

all have canonical inverse edges
we are justified in using the following terminology: we call an edge backtracking
if ei+1 is inverse to ei for some edge ei in the path. Note that in the case of ℓ
ramified in K , a path consisting of two surface edges always is backtracking. If ℓ is
split in K , then there is a horizontal cycle at the surface. In this case, concatenation
of this cycle with itself any number of times does not result in backtracking.

Our definitions and the results of this section lead us to the following correspon-
dence:

Lemma 4.6. Suppose that f 2
01K <−4. We then have a bijective correspondence

between the set of geometric isomorphism classes of QM-cyclic ℓa-isogenies of QM
abelian surfaces with K -CM and central conductor with prime-to-ℓ part f0, and
the set of length a nonbacktracking paths in GD

K ,ℓ, f0
. This associates to an isogeny

its corresponding path in this isogeny graph.

Proof. This result is in exact analogy to [Clark 2022, Lemma 4.2], and the proof is
as therein. □

In Section 6, we will describe the Galois orbits of such paths in order to describe
the K -CM locus on X D

0 (ℓ
a) via the above correspondence. For this, the following

observation will be of use: any nonbacktracking length a path in GD
K ,ℓ, f0

for f 2
01K <

−4 can be written as a concatenation of paths P1, P2 and P3, where P1 is strictly as-
cending, P2 is strictly horizontal and hence consists entirely of surface edges, and P3

is strictly descending, such that the lengths of these paths (which may be 0) sum to a.

4.3. The field of moduli of a QM-cyclic ℓ-isogeny. A QM-cyclic ℓ-isogeny ϕ
of K -CM abelian surfaces with ℓ ∤ D corresponds to an edge e in GD

K ,ℓ, f0
, say

between vertices v and v′ in levels L and L ′, respectively. Assume that the path is
nondescending (L ≥ L ′), so either it is horizontal (L= L ′) or ascending (L= L ′+1).

An automorphism fixing e must fix both v and v′, and so by Theorems 2.7 and 2.8
we have that either Q(ϕ)= K (ℓL f0), or [K (ℓL f0) :Q(ϕ)] = 2. In the latter case,
there exists an involution σ ∈ Gal(K (ℓL f0)/Q) fixing v, and we know precisely
when this occurs by Theorem 2.8 — that is, when D(K )= 1.
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Assume that f 2
01K <−4, such that GD

K ,ℓ, f0
has the structure of an ℓ-volcano.

(We will deal with the case of f 2
01K ∈ {−3,−4} in the remarks leading up to

Proposition 5.3.) If e is the unique edge between v and a vertex in level L ′, then e is
fixed by σ if and only if v is. This is the case unless L = L ′= 0 and ℓ splits in K , in
which case there are two edges from v to surface vertices (which are not necessarily
unique, or distinct from v). In either of these cases, consider [(E × E ′, ι)], with E
having CM by o( f0), a decomposition of our QM abelian surface corresponding
to v1. The two outward edges from v then have corresponding kernels ι(O) · E[p]
and ι(O) · E[p̄], with p a prime ideal in o( f0) of norm ℓ.

We claim that, in this situation, the involution σ ∈Gal(K ( f0)/Q) fixing v cannot
fix p, and hence cannot fix our edge e. Indeed, the exact statement of Theorem 2.8
says that σ = τσa for a certain ideal a of o( f0), so to fix e it would have to be the
case that σa acts on e and hence on v by complex conjugation. It follows from
[González and Rotger 2006, Lemma 5.10] that this cannot be the case, as ωD(K )

acts nontrivially on v. From this discussion, we reach the following result regarding
fields of moduli corresponding to our edges.

Proposition 4.7. Let ϕ be a QM-cyclic ℓ-isogeny corresponding to an edge e from
v to v′ in GD

K ,ℓ, f0
as above, with f 2

01K <−4.

• If D(K ) ̸= 1, i.e., if there is a prime p | D which is inert in K , then Q(ϕ) =

K (ℓL f0).

• Suppose that D(K )= 1.

– If ϕ is a QM-cyclic isogeny of QM abelian surfaces with CM by o( f0) and ℓ
splits in K , then Q(ϕ)= K ( f0).

– Otherwise, [K (ℓL f0) : Q(ϕ)] = 2, with Q(ϕ) equal to the field of moduli
corresponding to v as described in Theorem 2.8.

5. The action of Galois on GD
K,ℓ, f0

5.1. Action of Gal(Q/Q). We have an action of Aut(C) on GD
K ,ℓ, f0

: an automor-
phism σ maps a vertex v corresponding to an isomorphism class of QM abelian sur-
faces [(A, ι)] to the vertex corresponding to [(σ (A), σ (ι))], and edges are mapped
to edges via the action on the corresponding isomorphism classes of isogenies. This
action factors through Gal(Q/Q), and preserves the level of a vertex. It follows
that it also preserves the notions of ascending, descending and horizontal for paths.

For a fixed level L ≥ 0, let GD
K ,ℓ, f0,L denote the portion of GD

K ,ℓ, f0
from the surface

(level 0) to level L:

GD
K ,ℓ, f0,L :=

L⊔
i=0

Vi ⊆ GD
K ,ℓ, f0

.



CM POINTS ON SHIMURA CURVES VIA ISOGENY VOLCANOES 345

By Theorem 2.7, the action of Gal(Q/Q) on the graph GD
K ,ℓ, f0,L factors through

Gal(K (ℓL f0)/Q). If D(K ) ̸= 1, i.e., if there is some prime p | D which is inert
in K , then Theorem 2.8 says that the action of this group on VL is free. Otherwise,
each vertex v in level L is fixed by some involution σ , and the class of QM abelian
surfaces corresponding to v has field of moduli isomorphic to K (ℓL f0)

σ .
We now fix a vertex v in level L in GD

K ,ℓ, f0
, and suppose that σ ∈Gal(K (ℓL f0)/Q)

is an involution fixing v. (This forces D(K )= 1.) In the following two sections,
we provide an explicit description of the action of σ on GD

K ,ℓ, f0,L in all cases. First,
we note here the number of vertices at each level fixed by σ .

Proposition 5.1. Let x ∈ X D(1)/Q be an o(ℓL f0)-CM point fixed by an involution
σ ∈ Gal(K (ℓL f0)/Q). Let b denote the number of prime divisors of D which are
inert in K . For 0≤ L ′ ≤ L , the number of vertices of GD

K ,ℓ, f0
in level L ′ fixed by σ is

2b
· #Pic(o(ℓL ′ f0))[2].

Proof. By Theorem 2.8, the involution σ is of the form σ = τ ◦ σ0 for some σ0 ∈

Pic(o(ℓL f0)), where τ denotes complex conjugation. The set of vertices of GD
K ,ℓ, f0

at level L ′ has cardinality 2b
·h(o(ℓL ′ f0)), consisting of 2b orbits under the action of

Pic(o(ℓL ′ f0)). Each orbit is a Pic(o(ℓL ′ f0))-torsor, and σ0 yields a bijection on each.
As a result, we have that the number of level L ′ vertices in a given orbit which

are fixed by σ is the same as the number of elements of Pic(o(ℓL ′ f0)) fixed by τ .
As shown in [Clark 2022, Proposition 2.6], this count is equal to #Pic(o(ℓL ′ f0))[2],
as τ acts on Pic(o(ℓL ′ f0)) by inverting ideals. □

Regarding this count, by [Cox 2013, Proposition 3.11] we have the following:

Lemma 5.2. Let r denote the number of distinct odd prime divisors of a fixed
imaginary quadratic discriminant 1. Then Pic(o1)[2] ∼= (Z/2Z)µ, where

µ=


r − 1 if 1≡ 1 (mod 4) or 1≡ 4 (mod 16),
r if 1≡ 8, 12 (mod 16) or 1≡ 16 (mod 32),
r + 1 if 1≡ 0 (mod 32).

5.2. The field of moduli of a QM-cyclic ℓa-isogeny. Let ϕ be a QM-cyclic ℓa-
isogeny of K -CM abelian surfaces inducing a 1= f 21K -CM point on X D

0 (ℓ
a)/Q,

with ℓ ∤ D and D > 1. Let P be the length a nonbacktracking path in GD
K ,ℓ, f0

corresponding to ϕ, via Lemma 4.6, for the appropriate f0 ∈Z+. The ordered edges
in P correspond to a decomposition

ϕ = ϕ1 ◦ · · · ◦ϕa,

where each ϕi is a QM-cyclic ℓ-isogeny. If 1<−4, then Proposition 3.2 provides

Q(ϕ)=Q(ϕ1) · · ·Q(ϕa),
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and for f 2
01K <−4 Proposition 4.7 determines Q(ϕi ) for each i . Note that if Q(ϕi )

is a ring class field for any i , then Q(ϕ) must contain K
For f 2

01K ∈ {−3,−4}, it is impossible to have D(K ) = 1, as 1K has only a
single prime divisor while D has at least 2. This is of course consistent with, and
can be seen from, the general fact that Shimura curves have no real points; the
residue field of a −3-CM or −4-CM point on X D(1)/Q must be K in this situation.
By these observations and the discussion of the Galois action in the previous section,
we have the following proposition.

Proposition 5.3. Let ϕ : (A, ι)→ (A′, ι′) be a QM-cyclic ℓa-isogeny. Suppose that
(A, ι) has K -CM with central conductor f A = ℓ

a f0 and that (A′, ι′) has central
conductor f A′ = ℓ

a′ f0. Let L =max{a, a′}. Let P be the path corresponding to ϕ
in GD

K ,ℓ, f0,L .

• If D(K ) ̸= 1, i.e., if there is a prime p | D which is inert in K , then Q(ϕ) =

K (ℓL f0).

• Suppose that D(K )= 1.

– If ℓ splits in K and ϕ factors through an ℓ-isogeny of QM abelian surfaces
with f 2

01K -CM, then Q(ϕ)= K (ℓL f0).

– Suppose that we are not in the previous case. Let σ ∈ Gal(K (ℓL f0)/Q) be
an involution fixing the class of (A, ι) or (A′, ι′). If σ fixes the path P , then
Q(ϕ)= K (ℓL f0)

σ . Otherwise, Q(ϕ)= K (ℓL f0).

We now explicitly analyze the Galois action in all cases as done in [Clark 2022,
§5.3] and [Clark and Saia 2022, §4.2] in the D = 1 case. Borrowing the notation
therein, for a specified K , f0, and ℓ we let

τL := #Pic(o(ℓL f0))[2].

By Proposition 5.1, the number of vertices in level L ′ in GD
K ,ℓ, f0

that are fixed by
an involution σ ∈ Pic(ℓL f0) of the type we are studying is 2b

· τL ′ .

5.3. Explicit description, I: f 2
0 1K < −4. Here, we assume f 2

01K < −4, such
that each component of GD

K ,ℓ, f0
has the structure of an ℓ-volcano of infinite depth.

This is in exact parallel to [Clark 2022, §5.3], bearing the same structure of results.
Let 0≤ L ′≤ L , and let σ ∈Pic(ℓL f0) be an involution fixing a vertex v in GD

K ,ℓ, f0

in level L . In the following lemmas, we describe the action of σ on GD
K ,ℓ, f0,L . In

each case, we provide example figures (Figures 1–9) of a component of GD
K ,ℓ, f0

(up
to some finite level). In these graphs, vertices and edges colored purple (gray) are
fixed by the action of the designated involution σ , while black edges and vertices
are acted on nontrivially by σ . Without loss of generality based on the symmetry
of our graph components, we will always take v to be the left-most vertex in level
L in our figures.
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Figure 1. ℓ= 3 inert in K with L = 2.

Lemma 5.4. Let ℓ > 2 be a prime which is unramified in K and f0 ∈ Z+ with
f 2
01K <−4. Let v, L and σ be as above with L≥1, and consider the action of σ on

L⊔
i=0

Vi ⊆ GD
K ,ℓ, f0

.

Each surface vertex has two descendants fixed by σ in level 1. For 1≤ L ′ < L , each
fixed vertex in level L ′ has a unique fixed descendent in level L ′+ 1.

Proof. By Lemma 5.2 we have τ1 = 2τ0, while τL ′ = τL ′+1 for 1 ≤ L ′ < L . The
number of edges descending from a given vertex in level L ′ ≥ 1 is ℓ, hence is odd,
and so we immediately see that each fixed vertex in level L ′ with 1≤ L ′ ≤ L must
have at least one fixed descendant in level L ′+ 1, hence exactly one by our count.

The number of descending edges from a given surface vertex is either ℓ+ 1 or
ℓ− 1 depending on whether ℓ is inert or split in K , hence is even in both cases.
With our involution being of the form σ = τσ0, a translated version of the argument
of [Clark and Saia 2022, Corollary 5.5] gives that each fixed surface vertex has at
least one fixed descendant in level 1. Therefore, each fixed surface vertex must
have at least two fixed descendants in level 1 by parity, giving the result. □

Lemma 5.5. Let ℓ> 2 be a prime that ramifies in K and f0 ∈Z+ with f 2
01K <−4.

Let v, L and σ be as above, and consider the action of σ on

L⊔
i=0

Vi ⊆ GD
K ,ℓ, f0

.

Figure 2. ℓ= 3 split in K with L = 2.
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Figure 3. ℓ= 3 ramified in K with |V0| = 1 and L = 2.

Any vertex v′ in level L ′ with 0 ≤ L ′ < L which is fixed by σ has exactly one
descendant in level L ′+ 1 fixed by σ .

Proof. Each vertex in level L ′ has ℓ descendants in level L ′+1. A descendant of v′

must be sent to another descendant of v′ by σ , by virtue of v′ being fixed by σ . At
least one descendant must be fixed by σ by the assumption that ℓ is odd. Lemma 5.2
gives that τL ′ = τL ′+1, and so there must be exactly one fixed descendant of v′. □

Lemma 5.6. Suppose that ℓ= 2 is unramified in K and that f 2
01K ̸= −3. Let v, L

and σ be as above with L ≥ 1, and consider the action of σ on

L⊔
i=0

Vi ⊆ GD
K ,2, f0

.

(1) Every surface vertex fixed by σ has a unique fixed descendant in level 1.

(2) Suppose L ≥ 2. Each vertex in level 1 which is fixed by σ has all of its
descendants in levels 2 to min(L , 3) fixed by σ .

(3) Let 3 ≤ L ′ < L. If v′ is a vertex in level L ′ fixed by σ , then the vertex w in
level L ′ which shares a neighbor in level L ′− 1 with v′ is also fixed by σ , and
exactly one of v′ and w has its two descendants in level L ′+ 1 fixed by σ .

Proof. (1) Lemma 5.2 provides τ1 = τ0. If 2 is inert in K , then each fixed surface
vertex has three neighbors in level 1, and hence at least one must be fixed. The count

Figure 4. ℓ= 3 ramified in K with |V0| = 2 and L = 2.
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Figure 5. ℓ= 2 inert with L = 4.

then implies exactly one of these neighbors must be fixed. If 2 splits in K , then each
fixed surface vertex has exactly one neighbor in level 1 which then must be fixed.

(2) Lemma 5.2 provides τ3 = 2τ2 and τ2 = 2τ1. As each nonsurface vertex has two
immediate descendants in the next level, the claim follows.

(3) For 3≤ L ′< L , we have τL ′+1= τL . Let vL ′ be a fixed vertex in level L ′ having a
fixed neighbor vertex in level L ′−1. By a parity argument, there must then be another
fixed vertex wL ′ in level L ′ with the same neighbor in level L ′− 1 as vL ′ . By the
count, it suffices to show that vL ′ and wL ′ cannot both have descendants fixed by σ .

Suppose to the contrary that vL ′+1 andwL ′+1 are σ -fixed neighbors of vL ′ andwL ′ ,
respectively, in level L ′+ 1. We find that this cannot be the case as in [Clark 2022,
Lemma 5.6c)]; this would imply that we have a QM-cyclic 24-isogeny which, upon
restriction, would provide a cyclic, real 24-isogeny of elliptic curves with CM by
1 = 22L+2 f 2

01K . This in turn implies the existence of a primitive, proper real
o(2L+1 f0)-ideal of index 16, which does not exist. □

In the case of ℓ= 2 ramifying in K , the discriminant of K must be of the form
1K = 4m for m ≡ 2 or 3 (mod 4), and so 1K ≡ 8 or 12 (mod 16). Hence, the
discriminant of the order o( f0) corresponding to the surface of GD

K ,2, f0
will also

lie in one of these congruence classes mod 16. Whether these components have a
surface loop is answered by the following lemma.

Lemma 5.7. Consider a component of GD
K ,2, f0

with 2 ramified in K . The surface V0

of this component consists of a single vertex with a single self-loop if and only if
1K ∈ {−4,−8} and f0 = 1.

Figure 6. ℓ= 2 split with L = 4.
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Figure 7. f 2
01K =−8 and ℓ= 2 with L = 3.

Proof. This proof comes down to a simple argument about ideals of norm 2 in o( f0),
as in [Clark 2022, Lemma 5.7] □

The following lemmas therefore cover all possible cases.

Lemma 5.8. Let 1K =−8 and ℓ= 2, and let v, L and σ be as above with L ≥ 1.
Consider the action of σ on

L⊔
i=0

Vi ⊆ GD
K ,2,1.

(1) The two descendants in level 1 of the single surface vertex are fixed by σ .

(2) For 1 < L ′ < L , there are two vertices in level L ′ fixed by σ and they have
a common neighbor vertex in level L ′ − 1. One of these must have both
descendants in level L ′+1 fixed by σ , while the other has its direct descendants
swapped by σ .

Proof. There is a single vertex on the surface, as the class number of K is 1.
Lemma 5.2 tells us that τ1 = 2τ0 in this case, so both descendants of the surface
vertex are fixed by σ . For 1≤ L ′ < L , we have

τL ′+1 = τL ′ = 2,

so one of the fixed vertices in level L ′ must have both descendants in level L ′+ 1
fixed by σ , while the other has its vertices swapped by σ . □

Figure 8. 1K ̸= −4 with ℓ= 2, ord2(1K )= 2 and L = 3.



CM POINTS ON SHIMURA CURVES VIA ISOGENY VOLCANOES 351

Figure 9. 1K <−8 with ℓ= 2, ord2(1K )= 3 and L = 3.

Lemma 5.9. Suppose that 1K ≡ 12 (mod 16) and f 2
01K ̸= −4 with ℓ= 2. Let v,

L and σ be as above with L ≥ 1. Consider the action of σ on

L⊔
i=0

Vi ⊆ GD
K ,2, f0

.

(1) There are two surface vertices, both fixed by σ . One surface vertex, which we
will denote by v0, has both descendants in level 1 fixed by σ , while the other has its
level 1 descendants swapped by σ .

(2) If L ≥ 2 (such that the action of σ is defined at level 2), then each of the four
vertices in level 2 which descend from v0 are fixed by σ .

(3) For 2≤ L ′ < L and for a vertex v′ in level L ′ fixed by σ , let w denote the other
level L ′ vertex sharing a neighbor vertex in level L ′− 1 with v′ (which must also be
fixed by σ ). Exactly one of v′ or w has both descendants in level L ′+ 1 fixed by σ ,
while the other vertex has its direct descendants swapped by σ .

Proof. In this case the surface has two σ -fixed vertices with a single edge between
them. We have

τ1 = τ0 and τ2 = 2τ1

by Lemma 5.2, giving parts (1) and (2). For 2≤ L ′ < L , we have

τL ′ = τL ′−1,

so half of the σ -fixed vertices in level L ′−1 must have both descendants in level L ′

fixed by σ , while the other half have their descendants in level L ′ swapped by σ .
That there must be exactly one pair of fixed vertices in level L ′ descending from a
given fixed vertex in level L ′− 2 follows as in part (3) of Lemma 5.6. □

Lemma 5.10. Suppose that 1K ≡ 8 (mod 16) with 1K <−8 and ℓ= 2. Let v, L
and σ be as above with L ≥ 1. Consider the action of σ on

L⊔
i=0

Vi ⊆ GD
K ,2, f0

.



352 FREDERICK SAIA

Figure 10. f 2
01K =−4, ℓ= 2 up to level 3.

(1) There are two surface vertices, both fixed by σ , and all four vertices in level 1
are fixed by σ .

(2) For 1≤ L ′ < L and for a vertex v′ in level L ′ fixed by σ , let w denote the other
level L ′ vertex sharing a neighbor vertex in level L ′− 1 with v′. Exactly one
of v′ or w has both descendants in level L ′ + 1 fixed by σ , while the other
vertex has its direct descendants swapped by σ .

Proof. In this case again we have two σ -fixed vertices comprising our surface. Here
Lemma 5.2 gives τ1=2τ0, providing part (1). For 1≤ L ′< L , Lemma 5.2 gives τL ′=

τL ′−1. The same argument as in part (3) of Lemma 5.9 then provides part (2). □

5.4. Explicit description, II: f 2
0 1K ∈ {−3, −4}. Keeping our notation from the

previous section, we now assume f0= 1 and 1K ∈ {−3,−4}. As mentioned earlier,
we always have D(K ) ̸= 1 in this case. Therefore, the action of Gal(K (ℓL f )/Q)
on VL is free for all L≥0. This is splendid news for us; while the CM fields Q(i) and
Q

(√
−3

)
require extra attention at other points in this study, they cause absolutely

no difficulties as far as determining the explicit Galois action on GD
K ,ℓ,1. This is

to be compared with the D = 1 case of [Clark and Saia 2022, §4], wherein much

Figure 11. f 2
01K =−4, ℓ split (ℓ= 5, left) and inert (ℓ= 3, right)

up to level 2.
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Figure 12. f 2
01K =−3, ℓ= 3 up to level 2 (left) and ℓ= 2 up to

level 3 (right).

Figure 13. f 2
01K =−3, ℓ split (ℓ= 7, left) and inert (ℓ= 5, right)

up to level 2.

care goes into defining and explicitly describing a meaningful action of complex
conjugation on CM components of isogeny graphs in these cases.

Still, we provide here example figures (Figures 10–13) of components of GK ,ℓ,1

(up to finite level L) for each case as reference for the reader for the path-type
analysis and enumeration done in Section 6. In these cases, edges from level 0 to 1
have multiplicity as exposited in [Clark and Saia 2022, §3] due to the presence of
automorphisms that do not fix kernels of isogenies. We therefore do not have a
one-to-one identification between edges and “dual” edges in this case, and so as
in the referenced study we clearly denote edges with orientation and multiplicity
between levels 0 and 1.

6. CM points on X D
0 (ℓa)/Q

We fix ℓa a prime power and 1 = f 21K = ℓ
2L f 2

01K , with gcd( f0, ℓ) = 1, an
imaginary quadratic discriminant. We describe the 1-CM locus on X D

0 (ℓ
a)/Q. To

this aim, we fully classify all closed-point equivalence classes, by which we mean
Gal(Q/Q) orbits, of nonbacktracking, length a paths in GD

K ,ℓ, f0
. We record the

number of classes of each type with each possible residue field (up to isomorphism).
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In the f 2
01K ∈ {−3,−4} cases, the notion of backtracking in GD

K ,ℓ,1 has subtlety
between levels 0 and 1 that is not present in isogeny volcanoes. We address this
now: traversing any edge from a vertex v in level 0 to a vertex w in level 1 followed
by the single edge from w to v corresponds to a composition of dual isogenies, and
thus is backtracking. On the other hand, for a given isogeny ϕ corresponding to the
edge e from w to v, there is a single edge from v to w corresponding to its dual ϕ̂.
Therefore, traversing e followed by the other edge (respectively, either of the two
other edges) from v to w does not count as backtracking in the case of f 2

01K =−4
(respectively, f 2

01K =−3).
With b denoting the number of prime divisors of D which are inert in K , we have

2b closed 1-CM points on X D(1)/Q, with the fibers over each under the natural
map from X D

0 (ℓ
a)/Q to X D(1)/Q being isomorphic via Atkin–Lehner involutions.

In all cases, we then have∑
C(ϕ)

eϕdϕ = 2bdeg(X0(ℓ
a)→ X (1))= 2bψ(ℓa)= 2b(ℓa

+ ℓa−1),

where our sum is over closed-point equivalence classes C(ϕ) of QM-cyclic ℓa-
isogenies ϕ with corresponding CM discriminant 1.

The map X D
0 (ℓ

a)/Q→ X D(1)/Q has nontrivial ramification over a closed 1-CM
point if and only if1∈ {−3,−4}. For1∈ {−3,−4} and path length a, we have that
a closed-point equivalence class has ramification, of index 2 or 3 in the respective
cases of 1=−4 and −3, if and only if the paths in the class include a descending
edge from level 0 to level 1. This allows for a check on the classifications and
counts that we provide.

If D(K )= 1, then the path types showing up in our analysis of each GD
K ,ℓ, f0

are
exactly those appearing in [Clark 2022] and [Clark and Saia 2022]. In this case,
each graph GD

K ,ℓ, f0
consists of 2b copies of the analogous graph GK ,ℓ, f0 from the

D = 1 modular curve case. We have shown that the action of relevant involutions
on each component is identical to the action of complex conjugation in the D = 1
case, up to symmetry of our graphs. In each place where the isomorphism class
of a residue field in the referenced D = 1 analysis is a rational ring class field, we
have in its place here some totally complex, index 2 subfield of a ring class field as
described in Theorem 2.8.

If at least one prime dividing D is inert in K , i.e., if D(K ) > 1, then all of the
residue fields of 1-CM points on X D(1)/Q, and hence on X D

0 (ℓ
a)/Q, are ring class

fields. The path types showing up are exactly those in [Clark and Saia 2022], but the
counts will in general differ from the case of the previous paragraph. Specifically, a
given path type in our analysis in the case of D(K )= 1 consists of m classes with
corresponding residue field K ( f ′) and n classes with corresponding residue field an
index 2 subfield of K ( f ′) for some f ′ ∈Z+ and m, n ≥ 0. In the case of D(K ) > 1,
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the same path type then consists of 2m+n classes, each with corresponding residue
field K ( f ′).

Example 6.1. Suppose that K =Q(i) splits B, and consider the case of1=−4 and
ℓa
= 2. We have 2b+1 closed-point equivalence classes of QM-cyclic 2-isogenies

of QM abelian surfaces with −4-CM. Each corresponding point on X D
0 (2)/Q has

residue degree 1 over its image on X D(1)/Q, having residue field K . Half of these
classes, corresponding to self-loop edges at the surface, have no ramification, while
each of the 2b classes C(ϕ) corresponding to a pair of descending edges to level 1
has eϕ = 2.

A nonbacktracking length a path in GK ,ℓ,1 starting in level L consists of c
ascending edges, followed by h horizontal edges, followed by d descending edges
for some c, h, d ≥ 0 with c+ h+ d = a. We denote this decomposition type of the
path with the ordered triple (c, h, d).

6.1. Path-type analysis: general case. We begin here by considering the portion
of the path-type analysis that is independent of ℓ and 1K .

I. There are classes consisting of strictly descending paths, i.e., with (c, h, d) =
(0, 0, a). If D(K ) ̸=1, then there are 2b such classes, each with residue field K (ℓa f ).
Otherwise, there are 2b such classes, each with corresponding residue field an index 2
subfield of K (ℓa f ).

II. If a ≤ L , there are classes of strictly ascending paths, that is, with (c, h, d)=
(a, 0, 0). If D(K ) ̸= 1, then there are 2b such classes, each with corresponding
residue field K ( f ). Otherwise, there are 2b such classes, each with corresponding
residue field an index 2 subfield of K ( f ).

III. If L=0 and
(
1K
ℓ

)
=0, then there are classes of paths with (c, h, d)= (0, 1, a−1).

If D(K ) ̸= 1, then there are 2b such classes, each with corresponding residue
field K (ℓa−1 f ). Otherwise, there are 2b such classes, each with corresponding
residue field an index 2 subfield of K (ℓa−1 f ).

IV. If L = 0 and
(
1K
ℓ

)
= 1, then for each h with 1 ≤ h ≤ a there are classes of

paths with (c, h, d) = (0, h, a − h) and residue field K (ℓa−h f ). There are 2b+1

such classes if D(K ) ̸= 1, and there are 2b such classes otherwise.

X. If a > L ≥ 1 and
(
1K
ℓ

)
= 1, then there are classes of paths with (c, h, d) =

(L , a − L , 0) and residue field K ( f ). There are 2b+1 such classes if D(K ) ̸= 1,
and there are 2b such classes otherwise.

6.2. Path-type analysis: ℓ > 2. Here we assume that ℓ is an odd prime.

V. If L ≥ 2, then for each c with 1≤ c ≤min{a− 1, L − 1} there are paths which
ascend at least one edge but not all the way to the surface, and then immediately
descend at least one edge, with (c, h, d) = (c, 0, a − c). Each such class has
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corresponding residue field K (ℓmax{a−2c,0} f ). There are 2b(ℓ − 1)ℓmin{c,a−c}−1

such paths if D(K ) ̸= 1, and 2b−1(ℓ− 1)ℓmin{c,a−c}−1 such paths otherwise.

VI. If a≥ L+1≥ 2 and
(
1K
ℓ

)
=−1, then there are paths which ascend to the surface

and then immediately descend at least one edge, with (c, h, d)= (L , 0, a− L). If
D(K ) ̸= 1, then there are 2bℓmin{L ,a−L} classes of such paths with corresponding
residue field K (ℓmax{a−2L ,0} f ). Otherwise, there are 2b−1(ℓmin{L ,a−L}

− 1) classes
of such paths with corresponding residue field K (ℓmax{a−2L ,0} f ), and 2b classes of
such paths with corresponding residue field an index 2 subfield of K (ℓmax{a−2L ,0} f ).

VII. If a ≥ L+1≥ 2 and
(
1K
ℓ

)
= 0, then there are paths which ascend to the surface

and then immediately descend at least one edge, with (c, h, d) = (L , 0, a − L).
Each such path has corresponding residue field K (ℓmax{a−2L ,0} f ). If D(K ) ̸= 1,
then there are 2b(ℓ− 1)ℓmin{L ,a−L}−1 classes of such paths. Otherwise, there are
2b−1(ℓ− 1)ℓmin{L ,a−L}−1 classes.

VIII. If a≥ L+1≥ 2 and
(
1K
ℓ

)
= 0, then there are paths which ascend to the surface,

follow one surface edge, and then possibly descend, with (c, h, d)= (L , 1, a−L−1).
If D(K ) ̸=1, then there are 2bℓmin{L ,a−L−1} classes of such paths with corresponding
residue field K (ℓmax{a−2L−1,0} f ). Otherwise, there are 2b−1(ℓmin{L ,a−L−1}

− 1)
classes of such paths with corresponding residue field K (ℓmax{a−2L−1,0} f ), and
2b classes of such paths with corresponding residue field an index 2 subfield of
K (ℓmax{a−2L−1,0} f ).

IX. If a ≥ L + 1 ≥ 2 and
(
1K
ℓ

)
= 1, then there are paths which ascend to

the surface and then immediately descend at least one edge, with (c, h, d) =
(L , 0, a− L). If D(K ) ̸= 1, then there are 2b(ℓ− 2)ℓmin{L ,a−L}−1 classes of such
paths with corresponding residue field K (ℓmax{a−2L ,0} f ). Otherwise, there are
2b−1((ℓ− 2)ℓmin{L ,a−L}−1

− 1) classes of such paths with corresponding residue
field K (ℓmax{a−2L ,0} f ), and 2b classes of such paths with corresponding residue
field an index 2 subfield of K (ℓmax{a−2L ,0} f ).

XI. If a≥ L+2≥3 and
(
1K
ℓ

)
=1, then for each 1≤h≤a−L−1 there are paths which

ascend to the surface, traverse h edges on the surface, and then descend at least one
edge, with (c, h, d)= (L , h, a− L−h). Each such path has corresponding residue
field K (ℓmax{a−2L−h,0} f ). If D(K ) ̸= 1, then there are 2b+1(ℓ− 1)ℓmin{L ,a−L−h}−1

classes of such paths. Otherwise, there are 2b(ℓ− 1)ℓmin{L ,a−L−h}−1 classes.

6.3. Path-type analysis: ℓ = 2,
(
1K

2
)
̸= 0. Here we assume that ℓ= 2 with1K odd.

V. If L ≥ 2, we have classes consisting of paths which ascend at least one edge but
not all the way to the surface, and then immediately descend at least one edge. We
have the following types:

V1. If a≥2, then there are classes with (c, h, d)= (1, 0, a−1). If D(K ) ̸=1, then
there are 2b such classes, each with corresponding residue field K (2a−2 f ).
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Otherwise, there are 2b such classes, each with corresponding residue field
an index 2 subfield of K (2a−2 f ).

V2. If L ≥ a ≥ 3, then there are classes with (c, h, d)= (a− 1, 0, 1). If D(K ) ̸=
1, then there are 2b such classes, each with corresponding residue field
K (2a−2 f ). Otherwise, there are 2b such classes, each with corresponding
residue field an index 2 subfield of K (2a−2 f ).

V3. If a ≥ L + 1 ≥ 4, then there are paths with (c, h, d) = (L − 1, 0, a −
L + 1). If D(K ) ̸= 1, there are 2min{a−L+1,L−1}+b−1 classes of such paths
with corresponding residue field K (2max{a−2L+2,0} f ). Otherwise, there are
2b(2min{a−L+1,L−1}−2

− 1) classes of such paths with corresponding residue
field K (2max{a−2L+2,0} f ), and 2b+1 classes of such paths with corresponding
residue field an index 2 subfield of K (2max{a−2L+2,0} f ).

V4. For each c with 2≤ c ≤min{L − 2, a− 2}, there are paths with (c, h, d)=
(c, 0, a−c). Each such path has corresponding residue field K (2max{a−2c,0} f ).
There are 2min{c,a−c}+b−1 equivalence classes of such paths if D(K ) ̸= 1.
Otherwise, there are 2min{c,a−c}+b−2 such classes.

VI. If a ≥ L + 1≥ 2 and
(
1K

2

)
=−1, there are paths that ascend to the surface and

then immediately descend at least one edge, with (c, h, d)= (L , 0, a− L). Each
such class has corresponding residue field K (2max{a−2L ,0} f ). If D(K ) ̸= 1, then
there are 2min{L ,a−L}+b classes of such paths. Otherwise, there are 2min{L ,a−L}−1+b

such classes.

XI. If a ≥ L + 2≥ 3 and
(
1K

2

)
= 1, then for all 1≤ h ≤ a− L − 1 there are paths

which ascend to the surface, traverse h horizontal edges, and then descend at least
once, with (c, h, d)= (L , h, a− L−h). Each such class has corresponding residue
field K (2max{a−2L−h,0} f ). If D(K ) ̸= 1, then there are 2min{L ,a−L−h}+b classes of
such paths. Otherwise, there are 2min{L ,a−L−h}+b−1 such classes.

6.4. Path-type analysis: ℓ = 2, ord2(1K ) = 2. Here we assume that ℓ = 2 with
ord2(1K )= 2.

V. If L ≥ 2, we have classes consisting of paths which ascend at least one edge but
not all the way to the surface, and then immediately descend at least one edge. We
have the following types:

V1. If a≥2, then there are classes with (c, h, d)= (1, 0, a−1). If D(K ) ̸=1, then
there are 2b such classes, each with corresponding residue field K (2a−2 f ).
Otherwise, there are 2b such classes, each with corresponding residue field
an index 2 subfield of K (2a−2 f ).

V2. If L ≥ a≥ 3, then there are classes with (c, h, d)= (a−1, 0, 1). If D(K ) ̸= 1,
then there are 2b classes of such paths, each with corresponding residue
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field K ( f ). Otherwise, there are 2b classes of such paths, each with corre-
sponding residue field an index 2 subfield of K ( f ).

V3. For each c with 2 ≤ c ≤ min{L − 1, a − 2}, there are paths (c, h, d) =
(c, 0, a−c). Each such class has corresponding residue field K (2max{a−2c,0} f ).
If D(K ) ̸= 1, then there are 2min{c,a−c}+b−1 classes of such paths. Otherwise,
there are 2min{c,a−c}+b−2 such classes.

VI. If L≥1, then we have paths which ascend to the surface and then immediately de-
scend at least one edge, with (c, h, d)= (L , 0, a−L). We have the following cases:

VI1. Suppose L = 1 and a ≥ 2. If D(K ) ̸= 1, then there are 2b classes of such
paths, each with corresponding residue field K (2a−2 f ). Otherwise, there are
2b such classes, each with corresponding residue field an index 2 subfield of
K (2a−2 f ).

VI2. Suppose a = L+1≥ 3. If D(K ) ̸= 1, then there are 2b classes of such paths,
each with corresponding residue field K ( f ). Otherwise, there are 2b such
classes, each with corresponding residue field an index 2 subfield of K ( f ).

VI3. Suppose a≥ L+2≥4. If D(K ) ̸=1, then there are 2min{L ,a−L}+b−1 classes of
such paths, each with corresponding residue field K (2max{a−2L ,0} f ). Other-
wise, there are 2b(2min{L ,a−L}−2

−1) classes of such paths with corresponding
residue field K (2max{a−2L ,0} f ), and 2b+1 classes of such paths with corre-
sponding residue field an index 2 subfield of K (2max{a−2L ,0} f ).

VIII. If a ≥ L + 1 ≥ 2, then we have paths which ascend to the surface, and
then traverse the unique surface edge, and then possibly descend, with (c, h, d)=
(L , 1, a− L − 1). We have the following cases:

VIII1. Suppose a = L + 1. If D(K ) ̸= 1, then there are 2b classes of such paths,
each with corresponding residue field K ( f ). Otherwise, there are 2b such
classes, each with corresponding residue field an index 2 subfield of K ( f ).

VIII2. Suppose a ≥ L + 2. Each such path has corresponding residue field
K (2max{a−2L−1,0} f ). If D(K ) ̸= 1, then there are 2min{L ,a−1−L}+b classes
of such paths. Otherwise, there are 2min{L ,a−1−L}+b−1 such classes.

6.5. Path-type analysis: ℓ = 2, ord2(1K ) = 3. Here we assume that ℓ = 2 with
ord2(1K )= 3. The types of paths occurring here are the same as in the previous
section, owing to the fact that the structure of GD

K ,ℓ, f0
here is the same as therein. The

corresponding residue field counts may differ, though, as the Galois action differs.

V. The analysis of this type is exactly as in Section 6.4.

VI. If L≥1, then we have paths which ascend to the surface and then immediately de-
scend at least one edge, with (c, h, d)= (L , 0, a−L). We have the following cases:
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VI1. Suppose L = 1 and a ≥ 2. If D(K ) ̸= 1, then there are 2b classes of such
paths, each with corresponding residue field K (2a-2 f ). Otherwise, there are
2b such classes, each with corresponding residue field an index 2 subfield
of K (2a-2 f ).

VI2. Suppose a = L+1≥ 3. If D(K ) ̸= 1, then there are 2b classes of such paths,
each with corresponding residue field K ( f ). Otherwise, there are 2b such
classes, each with corresponding residue field an index 2 subfield of K ( f ).

VI3. If a ≥ L + 2 ≥ 4, then each such class has corresponding residue field
K (2max{a−2L ,0} f ). If D(K ) ̸= 1, then there are 2min{L ,a−L}+b−1 such classes.
Otherwise, there are 2min{L ,a−L}+b−2 such classes.

VIII. If a ≥ L + 1 ≥ 2, then we have paths which ascend to the surface, and
then traverse the unique surface edge, and then possibly descend, with (c, h, d)=
(L , 1, a− L − 1). We have the following cases:

VIII1. Suppose a = L + 1. If D(K ) ̸= 1, then there are 2b classes of such paths,
each with corresponding residue field K ( f ). Otherwise, there are 2b such
classes, each with corresponding residue field an index 2 subfield of K ( f ).

VIII2. Suppose that a ≥ L + 2. If D(K ) ̸= −1, there are 2min{L ,a−1−L}+b classes
of such paths, each with corresponding residue field K (2max{a−2L−1,0} f ).
Otherwise, there are 2b(2min{L ,a−1−L}−1

− 1) classes of such paths with
corresponding residue field K (2max{a−2L−1,0} f ), and 2b+1 classes with
corresponding residue field an index 2 subfield of K (2max{a−2L−1,0} f ).

6.6. Primitive residue fields of CM points on X D
0 (ℓa)/Q. Fixing 1 an imaginary

quadratic discriminant and N ∈ Z+ relatively prime to D, we say that a field F is a
primitive residue field of a 1-CM point on X D

0 (N )/Q if

• there is a 1-CM point x ∈ X D
0 (N )/Q with Q(x)∼= F , and

• there does not exists a 1-CM point y ∈ X D
0 (N )/Q with Q(y)∼= L with L ⊊ F .

The preceding path-type analysis in this section allows us to determine primitive
residue fields for prime-power levels N = ℓa . It follows from this analysis that,
in all cases, there are at most two primitive residue fields, and that each primitive
residue field is either a ring class field or an index 2 subfield of a ring class field.

The cases occurring here are in line with those in [Clark 2022] and [Clark and
Saia 2022], though here the primitive residue fields depend on whether D(K )= 1.
In particular, if some prime dividing D is inert in K , then all residue fields of CM
points on X D

0 (ℓ
a) are ring class fields, and hence there can only be one primitive

residue field. This necessarily happens, for instance, if the class number of K is
odd. We provide Case 1.5b with the alternative title of “the dreaded case,” in [Clark
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2022], to warn the reader that it will have an important role in later results on
primitive residue fields and degrees.

Case 1.1. Suppose ℓa
= 2.

Case 1.1a. Suppose
(
1
2

)
̸= −1. If D(K )= 1, then the only primitive residue field

is an index 2 subfield of K ( f ). Otherwise, the only primitive residue
field is K ( f ).

Case 1.1b. Suppose
(
1
2

)
=−1. If D(K )= 1, then the only primitive residue field

is an index 2 subfield of K (2 f ). Otherwise, the only primitive residue
field is K (2 f ).

Case 1.2. Suppose ℓa > 2, L = 0 and
(
1
ℓ

)
= 1. If D(K ) = 1, then the primitive

residue fields are K ( f ) and an index 2 subfield of K (ℓa f ). Otherwise, the only
primitive residue field is K ( f ).

Case 1.3. Suppose ℓa > 2, L = 0 and
(
1
ℓ

)
= −1. If D(K ) = 1, then the only

primitive residue field is an index 2 subfield of K (ℓa f ). Otherwise, the only
primitive residue field is K (ℓa f ).

Case 1.4. Suppose ℓa > 2, L = 0 and
(
1
ℓ

)
= 0. If D(K )= 1, then the only primitive

residue field is an index 2 subfield of K (ℓa−1 f ). Otherwise, the only primitive
residue field is K (ℓa−1 f ).

Case 1.5. Suppose ℓ > 2, L ≥ 1 and
(
1K
ℓ

)
= 1.

Case 1.5a. Suppose a ≤ 2L . If D(K )= 1, then the only primitive residue field
is an index 2 subfield of K ( f ). Otherwise, the only primitive residue
field is K ( f ).

Case 1.5b (the dreaded case). Suppose a ≥ 2L+ 1. If D(K )= 1, then the prim-
itive residue fields are K ( f ) and an index 2 subfield of K (ℓa−2L f ).
Otherwise, the only primitive residue field is K ( f ).

Case 1.6. Suppose ℓ > 2, L ≥ 1 and
(
1K
ℓ

)
=−1.

Case 1.6a. Suppose a ≤ 2L . If D(K )= 1, then the only primitive residue field
is an index 2 subfield of K ( f ). Otherwise, the only primitive residue
field is K ( f ).

Case 1.6b. Suppose a≥ 2L+1. If D(K )= 1, then the only primitive residue field
is an index 2 subfield of K (ℓa−2L f ). Otherwise, the only primitive
residue field is K (ℓa−2L f ).

Case 1.7. Suppose ℓ > 2, L ≥ 1 and
(
1K
ℓ

)
= 0.

Case 1.7a. Suppose a ≤ 2L + 1. If D(K ) = 1, then the only primitive residue
field is an index 2 subfield of K ( f ). Otherwise, the only primitive
residue field is K ( f ).
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Case 1.7b. Suppose a ≥ 2L + 2. If D(K ) = 1, then the only primitive residue
field is an index 2 subfield of K (ℓa−2L−1 f ). Otherwise, the only
primitive residue field is K (ℓa−2L−1 f ).

Case 1.8. Suppose ℓ= 2, a ≥ 2, L ≥ 1 and
(
1K

2

)
= 1.

Case 1.8a. Suppose L = 1. If D(K ) = 1, then the primitive residue fields
are K ( f ) and an index 2 subfield of K (2a f ). Otherwise, the only
primitive residue field is K ( f ).

Case 1.8b. Suppose L ≥ 2 and a ≤ 2L−2. If D(K )= 1, then the only primitive
residue field is an index 2 subfield of K ( f ). Otherwise, the only
primitive residue field is K ( f ).

Case 1.8c. Suppose L ≥ 2 and a ≥ 2L − 1. If D(K ) = 1, then the primitive
residue fields are K ( f ) and an index 2 subfield of K (2a−2L+2 f ).
Otherwise, the only primitive residue field is K ( f ).

Case 1.9. Suppose ℓ= 2, a ≥ 2, L ≥ 1 and
(
1K

2

)
=−1.

Case 1.9a. Suppose L = 1. If D(K ) = 1, then the primitive residue fields are
K (2a−2 f ) and an index 2 subfield of K (2a f ). Otherwise, the only
primitive residue field is K (2a−2 f ).

Case 1.9b. Suppose L ≥ 2 and a ≤ 2L−2. If D(K )= 1, then the only primitive
residue field is an index 2 subfield of K ( f ). Otherwise, the only
primitive residue field is K ( f ).

Case 1.9c. Suppose L≥2 and a≥2L−1. If D(K ) ̸=1, then the primitive residue
fields are K (2max{a−2L ,0} f ) and an index 2 subfield of K (2a−2L+2 f ).
Otherwise, the only primitive residue field is K (2max{a−2L ,0} f ).

Case 1.10. Suppose ℓ= 2, a ≥ 2, L ≥ 1,
(
1K

2

)
= 0 and ord2(1K )= 2.

Case 1.10a. Suppose a ≤ 2L . If D(K ) ̸= 1, then the only primitive residue field
is an index 2 subfield of K ( f ). Otherwise, the only primitive residue
field is K ( f ).

Case 1.10b. Suppose a ≥ 2L + 1. If D(K ) ̸= 1, then the primitive residue fields
are K (2a−2L−1 f ) and an index 2 subfield of K (2a−2L f ). Otherwise,
the only primitive residue field is K (2a−2L−1 f ).

Case 1.11. Suppose ℓ= 2, a ≥ 2, L ≥ 1,
(
1K

2

)
= 0 and ord2(1K )= 3.

Case 1.11a. Suppose a ≤ 2L + 1. If D(K )= 1, then the only primitive residue
field is an index 2 subfield of K ( f ). Otherwise, the only primitive
residue field is K ( f ).

Case 1.11b. Suppose a ≥ 2L + 2. If D(K )= 1, then the only primitive residue
field is an index 2 subfield of K (2a−2L−1 f ). Otherwise, the only
primitive residue field is K (2a−2L−1 f ).



362 FREDERICK SAIA

6.7. Primitive degrees of CM points on X D
0 (ℓa)/Q. A positive integer d is a prim-

itive degree for a 1-CM point on X D
0 (N )/Q if

• there is a 1-CM point of degree d on X D
0 (N )/Q, and

• there does not exist a 1-CM point on X D
0 (N )/Q of degree properly dividing d .

If d is such a degree, then the residue field of a degree d point on X D
0 (N )/Q is a

primitive residue field of a 1-CM point on X D
0 (N )/Q. For N = ℓa a prime power,

we then have from the previous section that there are at most two primitive degrees.
Although there are several cases that admit two primitive residue fields when

D(K )= 1, the only case admitting two primitive degrees is Case 1.5b (the dreaded
case). In Case 1.5b, our two primitive residue fields are K ( f ) and an index 2
subfield L of K (ℓa−2L f ), with degrees [K ( f ) : Q] = 2h(o( f )) and [L : Q] =

ℓa−2Lh(o( f )), respectively. As ℓ is odd, we indeed have two primitive degrees in
this case.

7. Algebraic results on residue fields of CM points on X D(1)/Q

We develop here algebraic number-theoretic results on fields which arise as residue
fields of CM points on X D(1)/Q which will feed into our main results. In particular,
a determination of composita and tensor products of such fields will be needed
in determining information about the CM locus on X D

0 (N )/Q for general N from
information at prime-power levels.

For an imaginary quadratic field K , we let K ( f ) denote the ring class field
corresponding to the imaginary quadratic order o( f ) of conductor f in K , i.e., that
of discriminant f 21K .

Proposition 7.1. Let K denote an imaginary quadratic field of discriminant 1K .

(1) If 1K ̸∈ {−3,−4}, then for any f1, f2 ∈ Z+ we have

K ( f1) · K ( f2)= K (lcm( f1, f2)).

(2) Suppose 1K ∈ {−3,−4}.

(a) For any f1, f2 ∈ Z+ with gcd( f1, f2) > 1, we have

K ( f1) · K ( f2)= K (lcm( f1, f2)).

(b) If the class number of the order of discriminant f 2
11K is 1, that is, if f 2

11K ∈

S = {−3,−4,−12,−16,−27}, then

K ( f1) · K ( f2)= K ( f2).

(c) Suppose we have positive integers f1, . . . , fr which are all pairwise relatively
prime and not in the S defined above. Then K ( f1) · · · K ( fr ) ⊊ K ( f1 · · · fr ),
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with

[K ( f1 · · · fr ) : K ( f1) · · · K ( fr )] =

{
2r−1 if 1K =−4,
3r−1 if 1K =−3.

(3) In all cases, K ( f1) and K ( f2) are linearly disjoint over K (gcd( f1, f2)).

Proof. Part (1) is [Clark 2022, Proposition 2.10], while part (2) is [Clark and Saia
2022, Proposition 2.1] and part (3) follows from the combination of these two
propositions. □

We now use Proposition 7.1 to get analogs of [Clark 2022, Proposition 2.10]
and [Clark and Saia 2022, Proposition 2.2], in which “rational ring class fields” are
exchanged for those index 2 subfields of rings class fields which arise as residue
fields of CM points on X D(1)/Q.

Corollary 7.2. Suppose that x1 ∈ X D
0 (N1)/Q and x2 ∈ X D

0 (N2)/Q are o( f )-CM
points, where o( f ) is an imaginary quadratic order in K . For i = 1, 2, let fi ∈ Z+

such that
K ·Q(xi )∼= K ( fi ).

Let M = gcd(N1, N2) and m = lcm(N1, N2), and suppose that x ∈ X D
0 (M) is a

point lying above x1 and x2 which is fixed by an involution σ ∈Gal(K (M)/K ). Let
π : X D

0 (M)/Q→ X D(1)/Q denote the natural map. Then:

(1) The fields Q(x1) and Q(x2) are linearly disjoint over Q(π(x)).

(2) We have
Q(x1)⊗Q(π(x)) Q(x2)∼=Q(x).

(3) We have
Q(x1)⊗Q(π(x)) K (x2)∼= K (x).

Proof. The ring class fields K ( f1) and K ( f2) are linearly disjoint over K (m) by
Proposition 7.1. That Q(x1) and Q(x2) are linearly disjoint over Q(π(x)), and that

[Q(x) :Q(x1) ·Q(x2)] = [K (x) : K (x1) · K (x2] = [K (m) : K ( f1) · K ( f2)],

follow by the same type of arguments as in the analogous case of rational ring class
fields in [Clark 2022, Proposition 2.10] and [Clark and Saia 2022, Proposition 2.2],
using that K (x)∼= K (x1) ·K (x2)∼= K ( f1) ·K ( f2) via Proposition 3.3 (note that the
assumption that x is fixed by σ forces f 21K <−4, so this proposition applies.).

Part (2) now follows from the preceding remarks, combined with Proposition 7.1.
As for part (3), first note that the fact that Q(x) is fixed by some involution σ ∈
Gal(K (M)/K ) immediately implies that h(o( f )) > 1 (as X D(1)/Q has no real
points). We note that the map

Q(x1)× K (x2)→ K (x1) · K (x2), (x1, x2) 7→ x1 · x2,
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is Q(π(x))-bilinear, and the induced map on the tensor product over Q(π(x)) must
be an isomorphism

Q(x1)⊗Q(π(x)) K (x2)∼= K (x1) · K (x2)

as the two finite Q( f )-algebras here have the same dimension. The result then
follows as K (x1) · K (x2)∼= K (x). □

Corollary 7.3. Suppose that x1, x2, . . . , xr are o( f )-CM points with xi ∈ X D
0 (Ni )/Q

for each i = 1, . . . , r , where o( f ) is an imaginary quadratic order in K . For each
i = 1, . . . , r , let fi ∈ Z+ such that

K ·Q(xi )∼= K ( fi ).

Let M = gcd(N1, . . . , Nr ) and m = lcm(N1, . . . , Nr ). Let π : X D
0 (M)/Q →

X D(1)/Q denote the natural map. Let S = {−3,−4,−12,−16,−27} be the set of
discriminants of imaginary quadratic orders of class number 1 with1K ∈ {−3,−4}.

(1) Suppose that r = 2. If f1 ∈ S, then we have

K (x1)⊗Q(π(x)) K (x2)∼= K (x2)× K (x2).

Now assuming f1, f2 ̸∈ S, if 1K <−4 or if gcd( f1, f2) > 1 then

K (x1)⊗Q(π(x)) K (x2)∼= K (M)× K (M).

(2) Suppose that 1K ∈ {−3,−4}, that f1, . . . , fr ̸∈ S, and that f1, . . . , fr are all
pairwise relatively prime. We then have

Q(x1)⊗Q(π(x)) · · · ⊗Q(π(x)) Q(xr )∼= K (x1)⊗Q(π(x)) · · · ⊗Q(π(x)) K (xr )∼= Lr ,

with L a subfield of K (M) of index 2r−1 if 1K =−4 and index 3r−1 if 1K =−3.

Proof. (1) Using part (3) of Corollary 7.2, we have

K (x1)⊗Q(π(x)) K (x2)∼= (Q(x1)⊗Q(π(x)) K (x))⊗Q(π(x)) (Q(x2)⊗Q(π(x)) K (x))
∼= (Q(x1)⊗Q(π(x)) Q(x2))⊗Q(π(x)) (K (x)⊗Q(π(x)) K (x))
∼= (Q(x1)⊗Q(π(x)) Q(x2))⊗Q(π(x)) (K (x)× K (x))
∼= (Q(x1)⊗Q(π(x)) K (x2))× (Q(x1)⊗Q(π(x)) K (x2)).

The stated result then follows from another use of Corollary 7.2 part (3) if Q(x1)

properly embeds in the ring class field K ( f1). Otherwise, Q(xi )∼= K ( fi ) for i =1, 2
and Q(π(x))∼= K ( f ). The case of f1 ∈ S is then clear, so assume f1, f2 ̸∈ S and
at least one of 1K <−4 or gcd( f1, f2) > 1 holds. Then, by Proposition 7.1,

K (x1)⊗Q(π(x)) K (x2)∼= (K ( f1)⊗K ( f ) K ( f2))× (K (x1)⊗K ( f ) K ( f2))

∼= K (M)× K (M).
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(2) This result follows similarly to the above argument using Proposition 7.1 once
more. Our assumption that the fi are relatively prime forces Q(xi ) to be a ring class
field for each i ; this assumption gives K ·Q(π(x))∼= K (1)= K as 1K ∈ {−3,−4},
and our Shimura curves have no real points so indeed Q(π(x))∼= K . □

8. CM points on X D
0 (N)/Q

We describe the 1-CM locus on X D
0 (N )/Q for any N ∈ Z+ relatively prime to D

and any imaginary quadratic discriminant 1. For 1 < −4, this description is
possible using the foundations we have built thus far, specifically Propositions 3.3
and 5.3, along with the path-type analysis in Section 6. For 1=1K ∈ {−3,−4},
however, Proposition 3.3 does not apply.

We first elaborate on the description in the former case, and then provide a result
for compiling across prime powers in the case of 1 ∈ {−3,−4}. Following this,
we discuss primitive residue fields and degrees of 1-CM points on X D

0 (N )/Q.

8.1. Compiling across prime powers: 1 < −4. For a fixed prime ℓ relatively
prime to D, let 1 = ℓ2L f 2

01K with gcd( f0, ℓ) = 1 be an imaginary quadratic
discriminant. Fixing a ∈ Z+, consider the natural map π : X D

0 (ℓ
a)/Q→ X D(1)/Q

and the fiber π−1(x) over a 1-CM point x ∈ X D
0 (1)/Q. There are 2b such fibers by

Theorem 2.13, and any two are isomorphic via an Atkin–Lehner involution wp for
some prime p | D which is inert in K . We then have π−1(x)∼= Spec A with

(2) A =
a∏

j=0

L j
b j ×

a∏
k=0

K (ℓk f )ck

for some nonnegative integers b j , ck , where L j is an index 2 subfield of K (ℓ j f )
for all 0≤ j ≤ a. The explicit values b j and ck , based on ℓa and 1, are determined
by our path-type analysis in Section 6.

Next assume 1<−4, let N denote a positive integer relatively prime to D, and
consider the fiber π−1(x) of the map π : X D

0 (N )/Q→ X (1)/Q over a 1-CM point
x ∈ X D(1)/Q. Let N = ℓa1

1 · · · ℓ
ar
r be the prime-power factorization of N , and for

each 1≤ i ≤ r consider the fiber π−1
i (x) of πi : X D

0 (ℓ
ai
i )Q→ X D(1)/Q over x . We

then have
π−1

i (x)∼= Spec Ai ,

with each Ai of the form given in (2). Proposition 3.3 then provides that π−1(x)∼=
Spec A with

A = A1⊗Q(x) · · · ⊗Q(x) Ar .

It follows that A is a direct sum of terms of the form

M = M1⊗Q(x) · · · ⊗Q(x) Mr ,
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where for each 1 ≤ i ≤ r we have that Mi is isomorphic to K (ℓ ji
i f ), or a totally

complex, index 2 subfield thereof, for some 0≤ ji ≤ ai .
Let s be the number of indices 1 ≤ i ≤ r such that K is contained in Mi , i.e.,

such that Mi ∼= K (ℓ ji
i ) is a ring class field. The results of Section 7 then tell us that

M ∼=
{

L if s = 0,
K (ℓ j1

1 · · · ℓ
jr
r f )2

s−1
otherwise,

where L ⊊ K (ℓ j1
1 · · · ℓ

jr
r ) is a totally complex, index 2 subfield in the s = 0 case.

(Note that ℓ ji
i 1 ∈ {−12,−16,−27} can only occur, due to the 1<−4 assumption,

if ji = 0, so these possibilities do not require special attention here.)

8.2. Compiling across prime powers: 1 ∈ {−3, −4}. Here, we determine how
to compile residue field information across prime-power level for 1 ∈ {−3,−4}.
Our result here should be compared to [Clark and Saia 2022, Proposition 8.2 and
Theorem 8.3], wherein more work is required due to the fact that residue fields
of −3 and −4-CM points on X0(N )/Q do not always contain the CM field K .

Theorem 8.1. Let N ∈ Z+ be coprime to D with prime-power factorization N =
ℓ

a1
1 · · · ℓ

ar
r , and suppose x ∈ X D

0 (N )/Q is a 1-CM point with 1 ∈ {−3,−4}. Let
πi : X D

0 (N )/Q→ X D
0 (ℓ

a1
1 )/Q denote the natural map and let xi = πi (x) for each

1≤ i ≤ r . Let Pi be any path in the closed-point equivalence class of paths in GD
K ,ℓi ,1

corresponding to xi , and let di ≥ 0 be the number of descending edges in Pi (which
is independent of the representative path). We then have

Q(x)∼= K (ℓd1
1 · · · ℓ

dr
r ).

Proof. Because 1 ∈ {−3,−4}, we know that the residue field of the image of x
under the natural map to X D(1)/Q is necessarily K . Therefore, K ⊆ Q(xi ) for
each i , and hence Q(xi )∼= K (ℓdi

i ) for each 1≤ i ≤ r .
Let ϕ : (A, ι) → (A′, ι′) be a QM-cyclic N -isogeny over Q(x) inducing x

(necessarily there is such an isogeny, as K ⊆Q(x)). Let Q= ker(ϕ), let C = e1(Q),
and for each 1≤ i ≤ r let Ci ≤C be the Sylow ℓi subgroup of C . Let ϕi : (A, ι)→
(A/(O ·Ci ), ιi ) be the ℓi -primary part of ϕ, and let fi denote the central conductor
of (A/(O ·Ci ), ι) (where by ι here we really mean the induced QM structure on
the quotient). Put

I := {i | di > 0} = {i | ordℓi ( fi ) > 0} ⊆ {1, . . . , r}

and
Q′ := ⟨{O ·Ci }i∈I⟩ ≤ Q.

Our original isogeny ϕ then factors as ϕ=ϕ′′◦ϕ′ where ϕ′ : (A, ι)→ (A/Q′, ι). Be-
cause a QM-cyclic ℓi -isogeny preserves the prime-to-ℓi part of the central conductor,
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the central conductor of (A/Q′, ι) must be divisible by ℓd1
1 · · · ℓ

dr
r . We then have

K (ℓd1
1 · · · ℓ

dr
r )⊆Q(ϕ′)⊆Q(ϕ),

and it remains to show the reverse containment. If the central conductor of (A′, ι′) is
also 1, then (up to isomorphism on the target) ϕ is a QM-equivariant endomorphism
of (A, ι), and therefore Q(ϕ) ⊆ K as desired. Otherwise, the dual isogeny ϕ∨

induces a 1′-CM point x ′ ∈ X D
0 (N )/Q with 1′ <−4. We have Q(x)∼=Q(x ′), and

the claim then holds via an application of Proposition 3.3 to x ′. □

8.3. The main algorithm. We have now built up all we need to prove our main
result, Theorem 1.1.

Proof of Theorem 1.1. The existence and structure of this algorithm follows from our
prior results. We summarize the steps of the algorithm with appropriate references
for individual steps here:

Algorithm 8.2 (the o-CM locus on X D
0 (N )/Q).

Input: an indefinite quaternion discriminant D over Q, a positive integer N coprime
to D, an imaginary quadratic discriminant 1K and a positive integer f .

Output: the complete list of tuples (is_fixed, f ′, e, c), consisting of a boolean
is_fixed, a positive integer f ′, an integer e∈{1, 2, 3} and a positive integer c, such
that there exist exactly c closed f 21K -CM points x on X D

0 (N )/Q with K (x) ∼=
K ( f ′), with Q(x) ∼= K ( f ′) if is_fixed is False and with [K ( f ′) : Q(x)] = 2
otherwise and with ramification index e with respect to the natural map to X D(1)/Q.

Steps:

• Compute the prime-power factorization N = ℓa1
1 · · · ℓ

ar
r of N .

• For each index i ∈ {1, . . . , r}, compute using the path-type enumeration results
of Section 6 information on all f 21K -CM points on X D

0 (ℓ
ai
i )/Q. This information

is stored as a list of lists (is_fixedi , fi , ei , ci ) as in our desired output at general
level. (If D = 1, this information is originally obtained in the path-type analysis at
prime-power level given in [Clark 2022] and [Clark and Saia 2022].)

• For each tuple (P1, . . . , Pr ), in which each Pi is the information of an f 21K -
CM point on X D

0 (ℓ
ai
i )/Q of the form (is_fixedi , fi , ei , ci ) as computed in the

previous part, compute the information (is_fixed, f ′, e, c) of all f 21K -CM
points on X D

0 (N )/Q with image a point with information given by Pi under the
natural map to X D

0 (ℓ
ai
i )/Q for all i ∈ {1, . . . , r}. This is done as follows:

– The boolean is_fixed is true if and only if the boolean is_fixedi is true
for all i ∈ {1, . . . , r} by Proposition 3.3 and the results of Section 7.
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– The CM conductor f ′ of such a point is equal to the least common multiple of
the conductors f1, . . . , fr at each prime-power level. This is by Proposition 3.3
and the results of Section 7, as also spelled out at the start of Section 8.1, if
1K <−4, and is Theorem 8.1 in the case of 1K ∈ {−3,−4}.

– The ramification index e is equal to the maximum among the indices ei (so in
particular is 2 or 3 if and only if f 2

01K ∈ {−3,−4} and at least one of the Pi

has ei = 2 or ei = 3).

– If 1 < −4, then the count c is given by the results of Section 8.1. If 1 ∈
{−3,−4}, then this count is given by the results of Section 8.2 if D > 1 and is
given by the results of [Clark and Saia 2022] if D = 1. □

This algorithm has been implemented, and is the function CM_points_XD0 in
the file shimura_curve_CM_locus.m in [Saia 2024].

8.4. Primitive residue fields of CM points on X D
0 (N)/Q. The preceding results

imply that the residue field of any 1-CM point on X D
0 (N )/Q is isomorphic to either

a ring class field or a totally complex, index 2 subfield of a ring class field as
described in Theorem 2.8. As a result, there are at most two primitive residue fields
of1-CM points on X D

0 (N )/Q. There exists a positive integer C such that an index 2
subfield of K (C f ) is a primitive residue field of a 1-CM point on X D

0 (N )/Q if and
only if for each 1 ≤ i ≤ r there exists a positive integer Ci such that an index 2
subfield of K (Ci f ) is a primitive residue field of a 1-CM point on X D

0 (ℓ
ai
i ).

We begin by investigating the cases in which we do have such a field as a primitive
residue field, determining when we have two primitive residue fields and, if so,
whether we have two primitive degrees of residue fields. Note that this assumption
requires D(K )= 1, and hence 1<−4. Let Hi = ℓ

hi
i | ℓ

ai
i be the unique positive

integer such that an index 2 subfield L i of K (Hi f ) is a primitive residue field of a
1-CM point on X D

0 (ℓ
ai
i )/Q for each 1≤ i ≤ r . Setting

H = H1 · · · Hr ,

we have that a totally complex, index 2 subfield L of K (H f ) is a primitive residue
field of a 1-CM point on X D

0 (N )/Q by the results of Section 8.1.
If L i is the unique primitive residue field of a1-CM point on X D

0 (ℓ
ai
i )/Q for each

1 ≤ i ≤ r , then L is the unique primitive residue field for X D
0 (N )/Q. Otherwise,

let Ci = ℓ
ci
i | ℓ

ai
i be the smallest positive integer such that there is a 1-CM point

on X D
0 (ℓ

ai
i )/Q with residue field isomorphic to either K (Ci f ) or an index 2 subfield

thereof for each 1≤ i ≤ r . Setting

C = C1 · · ·Cr ,

we then have that K (C f ) is also a primitive residue field for X D
0 (N )/Q.
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Now assume that we have two primitive residue fields, L ⊊ K (H f ) with
[K (H f ) : L] = 2 and K (C f ), of 1-CM points on X D

0 (N )/Q. Set

d1 := [L :Q] and d2 := [K (C f ) :Q].

We note Ci ≤ Hi for each 1≤ i ≤ r by the definitions of these quantities. Further, by
assumption we have at least one value of i such that K (Ci f ) is a primitive residue
field for X D

0 (ℓ
ai
i )/Q, and thus

[K (Ci f ) :Q] ≤ 1
2 [K (Hi ) :Q] = [L i :Q].

It follows that d2 ≤ d1. Therefore, we have a unique primitive degree of a 1-CM
point on X D

0 (N )/Q if and only if d2 | d1, in which case d2 is the unique primitive
degree. The following result determines when this occurs:

Theorem 8.3. With the setup and notation as above, let s be the number of indices
1≤ i ≤ r such that K (Hi f ) is a primitive residue field of a1-CM point on X D

0 (ℓ
ai
i )

(or equivalently, such that Ci < Hi ).

(1) If s = 0, then L is the unique primitive residue field of a 1-CM point on
X D

0 (N )/Q, and d1 is the unique primitive degree.

(2) Suppose that s ≥ 1 and that for some 1 ≤ i ≤ r with Ci < Hi we are not in
Case 1.5b (the dreaded case) with respect to 1 and the prime power ℓai

i . We
then have that L and K (C f ) are the two primitive residue fields of 1-CM
points on X D

0 (N )/Q, while d2 is the unique primitive degree.

(3) Suppose that s ≥ 1 and that for all 1≤ i ≤ r with Ci < Hi we are in Case 1.5b
(the dreaded case) with respect to1 and the prime power ℓai

i . We then have that
L and K (C f ) are the two primitive residue fields of1-CM points on X D

0 (N )/Q,
and that d1 and d2 are the two primitive degrees of such points.

Proof. The proof follows exactly as in [Clark 2022, Theorem 9.2]; the main inputs
here are the degrees of our residue fields, which are the same for our totally complex,
index 2 subfields of ring class fields as they are for the rational ring class fields
appearing in the D = 1 modular curve study. □

9. CM points on X D
1 (N)/Q

We prove Theorem 1.2, showing that there is a very close relationship between
CM points on the Shimura curves X D

0 (N )/Q and X D
1 (N )/Q. This is a generalization

of [Clark and Saia 2022, Theorem 1.2], which was specific to the D = 1 case,
and allows us to go from our understanding of the 1-CM locus on X D

0 (N )/Q
based on Section 8 to an understanding of, at the very least, degrees of CM points
on X D

1 (N )/Q.
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Proof of Theorem 1.2. We first recall some relevant facts about ramification under
the natural map π : X D

1 (N )/Q→ X D
0 (N )/Q. All points on X D

1 (N )/Q not having
CM by discriminant 1 ∈ {−3,−4} are unramified over their image on X D(1)/Q.
For N ≥ 4, just as in the D= 1 case, the curve X D

1 (N ) over C has no elliptic points
of periods 2 or 3, from which it follows that all−4 and−3-CM points on X D

1 (N )/Q
are ramified with ramification index 2 or 3, respectively. The curve X D

1 (2)/Q has a
single elliptic point of period 2, unramified with respect to π , lying over each of
the 2b points on X D(1)/Q with −4-CM. The curve X D

1 (3)/Q has a single elliptic
point of period 3, unramified with respect to π , lying over each of the 2b points
on X D(1)/Q with −3-CM. (One can see these claims regarding elliptic points and
ramification from elementary arguments involving congruence subgroups. For
example, for D = 1 this is [Diamond and Shurman 2005, Exercise 2.3.7].)

First, suppose that 1 < −4. If N ≤ 2 then the map π is an isomorphism, so
assume N ≥ 3 in which case it is a (Z/NZ)∗/{±1}-Galois covering, and hence has
degree φ(N )/2. Let f be the conductor of 1, such that 1= f 21K , and consider
a point x̃ ∈ π−1(x). It suffices to show that [K (x̃) : K (x)] = φ(N )

2 , viewing π as a
morphism over K .

Take ϕ : (A, ι)→ (A′, ι′) to be a QM-cyclic N -isogeny over K (x) inducing
x ∈ X D

0 (N )/K . We know such an isogeny exists over K (x) by Theorem 2.6,
because K (x) contains Q(x) and splits B. By Theorem 2.7 we have K (x)= K ( f ).
We have a well-defined ±1 Galois representation

ρN : Gal(K/K ( f ))→ GL2(Z/NZ)/{±1}

not depending on our choice of representative for x , as Aut(A, ι) = {±1}. Let
Q = ker(ϕ)≤ A[N ] and let P ∈ Q be a choice of generator (of e1(Q) as an abelian
group, or equivalently of Q as an O-module). The action of Gal(K/K ( f )) on P is
then tracked by an isogeny character

λ : Gal(K/K ( f ))→ (Z/NZ)/{±1}.

Theorem 2.13 gives that AC := A⊗Spec K (x)Spec C has a decomposition ψ : AC
∼
−→

C/o( f )× E A, where E A is a 1-CM elliptic curve over C. The elliptic curves in
this decomposition both have models over K ( f ), as they both have models over
Q( f ) ∼= Q( j1) where j1 is the j-invariant of a 1-CM elliptic curve. Hence, a
K ( f )-rational model for this product is a twist of A.

It then suffices, as our representation is independent of the choice of K ( f )-
rational model, to consider the case A= E×E ′ with E and E ′ being 1-CM elliptic
curves over K ( f ). Here, our QM-stable subgroup Q≤ A[N ] corresponds to a cyclic
subgroup of E[N ], and λ is induced by the Galois action on this cyclic subgroup.
This ±1 character λ is surjective by [Bourdon and Clark 2020, Theorem 1.4] (in
which the authors state a result of [Stevenhagen 2001] in this form). Therefore,
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if {P,−P} is stable over an extension L of K ( f ), such that Gal(Q/L) is in the
kernel of λ, we have

1
2φ(N ) | [L : K ( f )],

and so indeed we have [K (x̃) : K (x)] = φ(N )/2.
We next tackle case (2)(a), assuming that x is a ramified point of the map

X D
0 (N )/Q→ X D(1)/Q. In this case, we have that a representative (A, ι, Q)/K (x)

inducing x , where Q ≤ A[N ] is a QM-cyclic subgroup, is well-defined up to
quadratic twist, as all models for (A, ι) are defined over K (x). This is because,
working geometrically for a second, a −3 or −4 CM point x ∈ X D

0 (N ) over C is
ramified with respect to the natural map to X D(1) if and only if it is nonelliptic; it
has the trivial stabilizer {±1}, while its image is an elliptic point of order 3 or 4.
The same argument as in the 1<−4 case above then applies.

We now assume that x is a 1-CM point on X D
0 (N )/Q with 1 ∈ {−3,−4}

which is unramified with respect to the map to X D(1)/Q. If N = 2, then π is an
isomorphism, so the claim is trivial. If N = 3, the fact mentioned above that there
is one point lying over each elliptic point on X D(1) is exactly the inertness claim.
For N ≥ 4, we know that every point in π−1(x) is ramified with respect to the map
X D

1 (N )/Q→ X D(1)/Q, giving the claimed ramification index. The residue degree
is therefore at most the claimed residue degree in each case.

To provide the lower bound on the residue degree, we modify the argument of
the 1 < −4 case slightly in a predictable way. If 1 = −4, then a representative
for x is well-defined up to quartic twist. We consider a representative of the form
(E1× E2, ι,O ·C) where E1, E2 are o( f )-CM elliptic curves and C ≤ E1[N ] is
a cyclic order N subgroup (again, via the type of argument as in the 1 < −4
case using Theorem 2.13). Let qN : oK → oK /NoK denote the quotient map. By
tracking the action of Galois on a generator P of C we get a well-defined reduced
mod N Galois representation

ρN : Gal(Q(x)/Q)→ (oK /NoK )
×/qN (o

×

K ),

which is surjective (see [Bourdon and Clark 2020, §1.3]). As {P,−P, i P,−i P} is
stable under the action of Gal(Q(x̃)/Q) for x̃ ∈ π−1(x), we must have

1
4φ(N )= #

(
ρN (Gal(Q(x̃)/Q))

)
| [Q(x̃) :Q(x)],

giving the result for 1=−4. For 1=−3, exchanging “quartic” for “cubic” and
µ4 for µ3 results in the required divisibility 1

6φ(N ) | fπ (x). □

10. Sporadic CM points on Shimura curves

Fix D> 1 an indefinite quaternion discriminant over Q and N ∈Z+ relatively prime
to D. In analogy to prior work on degrees of CM points on certain classical families
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of modular curves [Clark et al. 2022], we may consider the least degree dCM(X) of
a CM point on a Shimura curve X for the modular Shimura curves X = X D

0 (N )/Q
and X = X D

1 (N )/Q. For an imaginary quadratic order o, the results of Section 8.4
allow us to compute all primitive residue fields and degrees of o-CM points
on X D

0 (N )/Q, and hence to compute the least degree do,CM(X D
0 (N )) of an o-CM

point on X D
0 (N )/Q. The least degree of an o-CM point on X D

0 (N )/Q always satisfies

h(o) | do,CM(X D
0 (N )).

Using a complete list of all imaginary quadratic orders o of class number up to 100,
it then follows that if we have some order o0 with

do0,CM(X D
0 (N ))≤ 100,

then we can solve the minimization over orders problem to compute the least degree
of a CM point on X D

0 (N )/Q:

dCM(X D
0 (N ))=min{do,CM(X D

0 (N )) | h(o)≤ 100}.

We have implemented an algorithm to compute least degrees over specified orders
and, when possible, to compute do,CM(X D

0 (N )) exactly as described above. The
relevant code, along with all other code used for the computational tasks described
in this section, can be found at the repository [Saia 2024]. One may also find there a
list of computed exact values of dCM(X D

0 (N )), along with an order minimizing the
degree, for all relevant pairs (D, N ) with DN < 105. All computations described
in this section are performed using [Bosma et al. 1997].

Theorem 1.2 provides all of the information we need to go from least degrees
of CM points on X D

0 (N )/Q to least degrees of CM points on X D
1 (N )/Q. For ease

of the relevant statement, we first generalize some terminology from [Clark et al.
2022]: we will call a pair (D, N ) with N ≥ 4

• type I if D splits Q
(√
−3

)
, we have ord3(N ) ≤ 1, and N is not divisible by

any prime ℓ≡ 2 (mod 3), and

• type II if D splits Q
(√
−1

)
, we have ord2(N )≤ 1, and N is not divisible by

any prime ℓ≡ 3 (mod 4).

Proposition 10.1. Let D > 1 be a quaternion discriminant over Q and N ∈ Z+ be
coprime to D.

(1) If (D, N ) is type I, then

dCM(X D
1 (N ))=

1
3φ(N ).

(2) If (D, N ) is not type I and is type II, then

dCM(X D
1 (N ))=

1
2φ(N ).
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(3) If (D, N ) is not type I or type II, then

dCM(X D
1 (N ))=

1
2φ(N ) · dCM(X D

0 (N )).

Proof. The natural map X D
1 (N )/Q→ X D

0 (N )/Q has nontrivial ramification exactly
when (D, N ) is either type I or type II. In these cases, we have dCM(X D

0 (N ))= 2,
which is as small as possible as the D > 1 assumption implies these curves have no
rational points. The statements then follow immediately from the residue degrees
with respect to this map provided by Theorem 1.2. □

For a curve X/Q, let δ(X) denote the least positive integer d such that X has
infinitely many points of degree d. We call a point x ∈ X sporadic if

deg(x) := [Q(x) :Q]< δ(X).

That is, x is a sporadic point if there are only finitely many points y ∈ X with
deg(y)≤ deg(x). Sporadic points on modular curves have been objects of interest
in several recent works, including [Najman 2016; Bourdon and Najman 2021; Clark
et al. 2022; Smith 2023; Bourdon et al. 2019; 2024].

In the rest of this section, we apply our least degree computations towards the
question of whether the curves X D

0 (N )/Q and X D
1 (N )/Q have sporadic CM points.

10.1. An explicit upper bound on dCM(X D
0 (N)). In analogy to the Heegner hy-

pothesis of the modular curve case, we make the following definition:

Definition 10.2. Let D be an indefinite quaternion discriminant and N a positive
integer relatively prime to D. We will say that an imaginary quadratic discriminant1
satisfies the (D, N )-Heegner hypothesis if

(1) for all primes ℓ | D, we have
(
1
ℓ

)
=−1, and

(2) for all primes ℓ | N , we have
(
1
ℓ

)
= 1.

If 1 satisfies the (D, N )-Heegner hypothesis, this implies the existence of a
1-CM point on X D

0 (N )/Q which is rational over K ( f ), the ring class field of
conductor f where 1= f 21K . This point therefore has degree at most 2 ·h(o( f )).

We provide an upper bound on the least degree of a CM point on X D
0 (N )/Q as

follows: Let L be the least positive integer such that

•

(L
p

)
=−1 for all odd primes p | D,

•

(L
p

)
= 1 for all odd primes p | N , and

• we have

L ≡

{
5 (mod 8) if 2 | D,
1 (mod 8) otherwise.
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Then 0< L < 8DN , and so d0= L−16DN is an imaginary quadratic discriminant
satisfying the (D, N )-Heegner hypothesis with −16DN < d0 <−8DN . It follows
that there exists a fundamental discriminant 1K of an imaginary quadratic field K
satisfying the (D, N )-Heegner hypothesis with |1K |< 16DN ; take K such that d0

corresponds to an order in K , and hence d0 = f 21K for some positive integer f .
For an imaginary quadratic field K of discriminant 1K <−4, we have

hK = h(o(1K ))≤
e

2π

√
|d| log |d|

(see, e.g., [Clark et al. 2013, Appendix]), such that the above provides

(3) dCM(X D
0 (N ))≤ 2 · hK ≤

4e
π

√
DN log(16DN ).

10.2. Shimura curves with infinitely many points of degree 2. If δ(X D
0 (N ))= 2,

then as X D
0 (N )/Q has no real points it certainly does not have a sporadic point.

We mention here all pairs (D, N ) for which we know δ(X D
0 (N ))= 2 based on the

existing literature.
All genus 0 and 1 cases necessarily have δ(X D

0 (N ))= 2, as we have no degree 1
points. Voight [2009] lists all (D, N ) for which X D

0 (N )/Q has genus zero:

{(6, 1), (10, 1), (22, 1)},

and genus one:{
(6, 5), (6, 7), (6, 13), (10, 3), (10, 7), (14, 1),

(15, 1), (21, 1), (33, 1), (34, 1), (46, 1)
}
.

By a result of Abramovich and Harris [1991], a nice curve X defined over Q of
genus at least 2 with δ(X)= 2 is either hyperelliptic over Q, or is bielliptic and emits
a degree 2 map to an elliptic curve over Q with positive rank. The pairs (D, N )
for which X D

0 (N )/Q is hyperelliptic of genus at least 2 were determined by Ogg1

[1983]:{
(6, 11), (6, 19), (6, 29), (6, 31), (6, 37), (10, 11), (10, 23), (14, 5), (15, 2),

(22, 3), (22, 5), (26, 1), (35, 1), (38, 1), (39, 1), (39, 2), (51, 1), (55, 1), (58, 1),

(62, 1), (69, 1), (74, 1), (86, 1), (87, 1), (94, 1), (95, 1), (111, 1), (119, 1),

(134, 1), (146, 1), (159, 1), (194, 1), (206, 1)
}
.

As for the bielliptic case, Rotger [2002] has determined all discriminants D such that
X D(1)= X D

0 (1) is bielliptic, and further determined those for which X D(1)/Q is

1Actually, for the pairs (10, 19) and (14, 5), the referenced work of Ogg says that the corresponding
curves are hyperelliptic over R. Ogg does not say whether that is the case over Q, but Guo and Yang
[2017] answer negatively for the former pair and positively for the latter.
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bielliptic over Q and maps to a positive rank elliptic curve. All such discriminants D
with g(X D

0 (1))≥ 2 and with X D
0 (1)/Q not hyperelliptic are

{57, 65, 77, 82, 106, 118, 122, 129, 143, 166, 210, 215, 314, 330, 390, 510, 546}.

10.3. Sporadic CM points. In order to declare the existence of a sporadic CM
point on a Shimura curve X D

0 (N )/Q, a main tool for us will be the following result
of Frey [1994, Proposition 2] on the least degree δ(X) over which a nice curve X/F

has infinitely many closed points:

Theorem 10.3 [Frey 1994]. For a nice curve X defined over a number field F ,

1
2γF (X)≤ δ(X)≤ γF (X),

where γF (X) denotes the F-gonality of X , i.e., is the least degree of a nonconstant
F-rational map to the projective line.

It follows from Theorem 10.3 that if

(4) dCM(X D
0 (N )) <

1
2γQ(X D

0 (N )),

then there exists a sporadic CM point on X D
0 (N )/Q. To complement this, a result of

Abramovich provides a lower bound on the gonality of a Shimura curve. Our cases
of interest in applying this result are X D

0 (N )= X0D
0 (N )

and X D
1 (N )= X0D

1 (N )
(or,

equivalently, X D
0 (N )= XO1

N
, where ON is an Eichler order of level N in B, for the

former curve).

Theorem 10.4 [Abramovich 1996]. Let X0 be the Shimura curve corresponding to
0 ≤O1 a subgroup of the units of norm 1 in an order O of B. Then

975
8192(g(X0)− 1)≤ γC(X0)≤ γQ(X0).

Proof. This is a version of [Abramovich 1996, Theorem 1.1], where the constant has
been improved using the best known progress due to Kim and Sarnak on Selberg’s
eigenvalue conjecture [Kim 2003, p. 176]. □

The following result will allow us to transfer information about the existence of
sporadic points on X D

0 (N )/Q to those on X D
1 (N )/Q:

Proposition 10.5. Let π : X D
1 (N )/Q→ X D

0 (N )/Q denote the natural modular map.
Suppose that P0 ∈ X D

0 (N )/Q satisfies

deg(P0)≤
975

16384

(
g(X D

0 (N ))− 1
)
.

Then any P ∈ X D
1 (N )/Q with π(P)= P0 is sporadic.
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Proof. For such a P ∈ X D
1 (1)/Q, using the notation and results of Proposition 2.5,

deg(P)≤ deg(P0) · deg(π)

= deg(P0) ·
1
2φ(N )

≤
975

16384

( 1
12φ(D)ψ(N )−

1
4ϵ1(D, N )− 1

3ϵ3(D, N )
)
·

1
2φ(N )

≤
975

16384

( 1
24φ(N )φ(D)ψ(N )

)
=

975
16384(g(X

D
1 (N )− 1).

It then follows from Theorem 10.4 that P is sporadic. □

We now obtain a lower bound on the genus of X D
0 (N ) that will be amenable to

our arguments:

Lemma 10.6. For D > 1 an indefinite quaternion discriminant over Q and N ∈ Z+

relatively prime to D, we have

g(X D
0 (N ))− 1>

DN
12

(
1

eγ log log D+ 3
log log D

)
−

7
√

DN
3

≥
DN
12

(
1

eγ log log (DN )+ 3
log log 6

)
−

7
√

DN
3

.

Proof. We make use of the trivial bound ψ(N )≥ N , and the lower bound

φ(D) >
D

eγ log log D+ 3
log log D

.

For M ∈Z+, let ω(M) and d(M) denote, respectively, the number of distinct prime
divisors of M and the number of divisors of M . We then have

ϵ1(D, N ), ϵ3(D, N )≤ 2ω(DN )
≤ d(DN )≤ d(D) · d(N )≤ 4

√
DN .

Using these bounds along with the fact that D ≥ 6 and N ≥ 1, we arrive at the
stated inequalities from the genus formula given in Proposition 2.5. □

The combination of this lemma with (3) and (4) guarantees a sporadic CM point
on X D

0 (N )/Q if

4e
π

√
DN log(16DN )≤

325DN
65536

(
1

eγ log log(DN )+ 3
log log 6

)
−

2275
√

DN
16384

.

This inequality holds for all pairs (D, N ) with DN ≥ 4.27512 · 1010.
Ranging through pairs (D, N ) with DN below this bound, we attempt to deter-

mine the fundamental imaginary quadratic discriminant 1K of smallest absolute
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value satisfying the (D, N )-Heegner hypothesis. If found, we check whether we
have a 1K -CM point of degree at most half γQ(X D

0 (N )) via the inequality

(5) hK <
325φ(D)ψ(N )

65536
−

2275
√

DN
16384

.

We confirm that (5) holds, and thus a sporadic CM point on X D
0 (N )/Q is ensured,

for all pairs (D, N ) with DN > 14982 aside from the 20 pairs comprising the
following set F1:

F1 =
{
(101959, 210), (111397, 210), (141427, 210), (154583, 210),

(164749, 210), (165053, 330), (174629, 330), (190619, 210),

(192907, 210), (194051, 210), (199801, 330), (208351, 210),

(218569, 210), (233519, 210), (240097, 210), (272459, 210),

(287419, 210), (296153, 210), (304513, 210), (307241, 210)
}
.

For each pair (D, N ) ∈ F1, it is not that (5) does not hold. Rather, there is
no imaginary quadratic discriminant of class number at most 100 satisfying the
(D, N )-Heegner hypothesis, such that we fail to perform the check using only such
discriminants. For each of these pairs, we compute dCM(X D

0 (N )) exactly and find
that for each the inequality

dCM(X D
0 (N )) <

325φ(D)ψ(N )
32768

−
2275
√

DN
8192

holds. By the preceding remarks, this confirms that the curve X D
0 (N )/Q has a

sporadic CM point for all (D, N ) ∈ F1.
There are exactly 4392 pairs (D, N ), each with DN ≤ 14982, for which (5) does

not hold. These are listed in the file bads_list.m in [Saia 2024]. For each of
these, we perform an exact computation of dCM(X D

0 (N )). By the above, a sporadic
CM point on X D

0 (N )/Q is guaranteed if

(6) dCM(X D
0 (N )) <

975
16384

( 1
12φ(D)ψ(N )−

1
4 e1(D, N )− 1

3 e3(D, N )
)
.

Lemma 10.7. There are exactly 574 pairs (D, N ) consisting of a quaternion dis-
criminant D > 1 over Q and a positive integer N coprime to D such that (6) does
not hold. For all such pairs we have dCM(X D

0 (1)) ∈ {2, 4, 6}, and the largest value
of D occurring among such pairs is D = 1590.

Proof. This follows from direct computation. The 574 referenced pairs are listed in
the file fail_dcm_check.m in [Saia 2024]. □
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Lemma 10.8. Set

D :=
{
85, 91, 93, 115, 123, 133, 141, 142, 145, 155, 158, 161, 177, 178, 183,

185, 187, 201, 202, 203, 205, 209, 213, 214, 217, 218, 219, 221, 226, 235,

237, 247, 249, 253, 254, 259, 262, 265, 267, 274, 278, 287, 291, 295, 298,

299, 301, 302, 303, 305, 309, 319, 321, 323, 326, 327, 329, 334, 335, 339,

341, 346, 355, 358, 362, 365, 371, 377, 381, 382, 386, 391, 393, 394, 395,

398, 403, 407, 411, 413, 415, 417, 422, 427, 437, 445, 446, 447, 451, 453,

454, 458, 462, 466, 469, 471, 478, 482, 485, 489, 501, 502, 505, 514, 519,

526, 537, 538, 542, 543, 554, 562, 566, 570, 573, 579, 586, 591, 597, 614,

622, 626, 634, 662, 674, 690, 694, 698, 706, 714, 718, 734, 746, 758, 766,

770, 778, 794, 798, 802, 838, 858, 870, 910, 930, 966, 1110, 1122, 1190,

1218, 1230, 1254, 1290, 1302, 1326, 1410, 1518, 1590
}
.

and

E :=
{
(85, 2), (85, 3), (85, 4), (91, 2), (91, 3), (93, 2), (93, 4), (93, 5), (115, 2),

(115, 3), (123, 2), (133, 2), (141, 2), (142, 3), (145, 2), (155, 2), (158, 3),

(161, 2), (177, 2), (178, 3), (183, 2), (201, 2), (202, 3)
}
.

For each of the 181 pairs (D, N ) with either D ∈D and N = 1 or with (D, N ) ∈ E ,
the curve X D

0 (N )/Q has a sporadic CM point.

Proof. For each such pair (D, N ), we know from Section 10.2 that X D
0 (1)/Q

does not have infinitely many degree 2 points, and hence X D
0 (N )/Q does not have

infinitely many degree 2 points. At the same time, we compute that this curve has a
CM point of degree 2, which is therefore necessarily sporadic. □

We are now prepared to end with the main result of this section:

Theorem 10.9. (1) For each of the 64 pairs (D, N ) in Table 1, the Shimura curve
X D

0 (N )/Q has no sporadic points, and we have dCM(X D
0 (N ))= 2.

(2) For each of the 64 pairs (D, N ) in Table 1 except for possibly the 10 in the set

{(6, 5), (6, 7), (6, 13), (6, 19), (6, 29), (6, 31), (6, 37), (10, 7), (14, 5), (22, 5)},

the Shimura curve X D
1 (N )/Q has no sporadic CM points.

(3) There are at most 329 pairs (D, N ), consisting of an indefinite quaternion
discriminant D > 1 over Q and a positive integer N coprime to D, which do not
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(6, 1) (6, 5) (6, 7) (6, 11) (6, 13) (6, 19) (6, 29) (6, 31)

(6, 37) (10, 1) (10, 3) (10, 7) (10, 11) (10, 23) (14, 1) (14, 5)

(15, 1) (15, 2) (21, 1) (22, 1) (22, 3) (22, 5) (26, 1) (33, 1)

(34, 1) (35, 1) (38, 1) (39, 1) (39, 2) (46, 1) (51, 1) (55, 1)

(57, 1) (58, 1) (62, 1) (65, 1) (69, 1) (74, 1) (77, 1) (82, 1)

(86, 1) (87, 1) (94, 1) (95, 1) (106, 1) (111, 1) (118, 1) (119, 1)

(122, 1) (129, 1) (134, 1) (143, 1) (146, 1) (159, 1) (166, 1) (194, 1)

(206, 1) (210, 1) (215, 1) (314, 1) (330, 1) (390, 1) (510, 1) (546, 1)

Table 1. 64 pairs (D, N ) with gcd(D, N ) = 1 for which
δ(X D

0 (N ))= 2, and hence X D
0 (N )/Q has no sporadic points.

appear among the 64 listed in Table 1 and for which the Shimura curve X D
0 (N )/Q

does not have a sporadic CM point. These are listed in Table 2.

(4) Let (D, N ) be a pair consisting of an indefinite quaternion discriminant D > 1
over Q and a positive integer N coprime to D. If (D, N ) is not listed in Table 1 or
Table 2 and is not equal to (91, 5), then the Shimura curve X D

1 (N )/Q has a sporadic
CM point.

Proof. (1) These Shimura curves X D
0 (N )/Q are exactly those for which we know

that δ(X D
0 (N )) = 2 via Section 10.2. That each such curve has a CM point of

degree 2 follows from direct computation.

(2) For each pair in this table, we have

δ(X D
1 (N ))≤ 2 · deg(X D

1 (N )→ X D
0 (N ))=max{2, φ(N )}.

For each pair in this table other than the 10 listed pairs, we compute that

max{2, φ(N )} ≤ dCM(X D
1 (N )).

(3) This is an immediate consequence of the preceding discussion, including Lem-
mas 10.7 and 10.8.

(4) By Proposition 10.5, we have that X D
1 (N )/Q has a sporadic CM point for all

pairs (D, N ) aside from possibly the 574 referred to in Lemma 10.7. Of the 181 pairs
listed in Lemma 10.8, we compute that each pair except for (D, N )= (91, 5) satisfies

dCM(X D
1 (N ))= 2< δ(X D

0 (1))≤ δ(X
D
1 (N )),

and hence we have a sporadic CM point on X D
1 (N )/Q for all such pairs. The result

then follows from part (2). □

Remark 10.10. For all 329 pairs (D, N ) listed in Table 2, we have dCM(X D
0 (N ))∈

{2, 4, 6}. For all but 56 of these pairs, we have dCM(X D
0 (N ))= 2. For such pairs,
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(6, 17) (6, 23) (6, 25) (6, 35) (6, 41) (6, 43) (6, 47)

(6, 49) (6, 53) (6, 55) (6, 59) (6, 61) (6, 65) (6, 67)

(6, 71) (6, 73) (6, 77) (6, 79) (6, 83) (6, 85) (6, 89)

(6, 91) (6, 95) (6, 97) (6, 101) (6, 103) (6, 107) (6, 109)

(6, 113) (6, 115) (6, 119) (6, 121) (6, 125) (6, 127) (6, 131)

(6, 133) (6, 137) (6, 139) (6, 143) (6, 145) (6, 149) (6, 151)

(6, 155) (6, 157) (6, 161) (6, 163) (6, 167) (6, 169) (6, 173)

(6, 179) (6, 181) (6, 191) (6, 193) (6, 197) (6, 199) (6, 203)

(6, 287) (6, 295) (6, 319) (10, 9) (10, 13) (10, 17) (10, 19)

(10, 21) (10, 27) (10, 29) (10, 31) (10, 33) (10, 37) (10, 39)

(10, 41) (10, 43) (10, 47) (10, 49) (10, 51) (10, 53) (10, 57)

(10, 59) (10, 61) (10, 63) (10, 67) (10, 69) (10, 71) (10, 73)

(10, 77) (10, 79) (10, 83) (10, 87) (10, 89) (10, 91) (10, 97)

(10, 103) (10, 119) (10, 141) (10, 161) (10, 191) (14, 3) (14, 9)

(14, 11) (14, 13) (14, 15) (14, 17) (14, 19) (14, 23) (14, 25)

(14, 27) (14, 29) (14, 31) (14, 33) (14, 37) (14, 39) (14, 41)

(14, 43) (14, 47) (14, 53) (14, 59) (14, 61) (14, 87) (14, 95)

(15, 4) (15, 7) (15, 8) (15, 11) (15, 13) (15, 14) (15, 16)

(15, 17) (15, 19) (15, 22) (15, 23) (15, 26) (15, 28) (15, 29)

(15, 31) (15, 32) (15, 34) (15, 37) (15, 41) (15, 43) (15, 47)

(21, 2) (21, 4) (21, 5) (21, 8) (21, 10) (21, 11) (21, 13)

(21, 16) (21, 17) (21, 19) (21, 23) (21, 25) (21, 29) (21, 31)

(21, 38) (22, 7) (22, 9) (22, 13) (22, 15) (22, 17) (22, 19)

(22, 21) (22, 23) (22, 25) (22, 27) (22, 29) (22, 31) (22, 35)

(22, 37) (22, 51) (26, 3) (26, 5) (26, 7) (26, 9) (26, 11)

(26, 15) (26, 17) (26, 19) (26, 21) (26, 23) (26, 25) (26, 29)

(26, 31) (33, 2) (33, 4) (33, 5) (33, 7) (33, 8) (33, 10)

(33, 13) (33, 16) (33, 17) (33, 19) (34, 3) (34, 5) (34, 7)

(34, 9) (34, 11) (34, 13) (34, 15) (34, 19) (34, 23) (34, 29)

(34, 35) (35, 2) (35, 3) (35, 4) (35, 6) (35, 8) (35, 9)

(35, 11) (35, 12) (35, 13) (38, 3) (38, 5) (38, 7) (38, 9)

(38, 11) (38, 13) (38, 17) (38, 21) (39, 4) (39, 5) (39, 7)

(39, 8) (39, 10) (39, 11) (39, 31) (46, 3) (46, 5) (46, 7)

(46, 9) (46, 11) (46, 13) (46, 15) (46, 17) (51, 2) (51, 4)

Table 2. All 329 pairs (D, N ) with D > 1 for which we remain
unsure whether X D

0 (N )/Q has a sporadic CM point (continued below).
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(51, 5) (51, 7) (51, 8) (51, 10) (51, 11) (51, 20) (55, 2)
(55, 3) (55, 4) (55, 7) (55, 8) (57, 2) (57, 4) (57, 5)
(57, 7) (58, 3) (58, 5) (58, 7) (58, 9) (58, 11) (58, 13)
(62, 3) (62, 5) (62, 7) (62, 9) (62, 11) (62, 15) (65, 2)
(65, 3) (65, 4) (65, 7) (69, 2) (69, 4) (69, 5) (69, 7)
(69, 11) (74, 3) (74, 5) (74, 7) (77, 2) (77, 3) (77, 4)
(77, 5) (77, 6) (82, 3) (82, 5) (82, 7) (86, 3) (86, 5)
(86, 7) (87, 2) (87, 4) (87, 5) (87, 8) (94, 3) (94, 5)
(94, 7) (95, 2) (95, 3) (106, 3) (106, 5) (106, 7) (111, 2)
(111, 4) (118, 3) (118, 5) (119, 2) (119, 3) (119, 6) (122, 3)
(122, 5) (122, 7) (129, 2) (129, 7) (134, 3) (134, 5) (134, 9)
(143, 2) (143, 4) (146, 3) (146, 7) (159, 2) (166, 3) (183, 5)
(194, 3) (215, 2) (215, 3) (326, 3) (327, 2) (335, 2) (390, 7)

Table 2. (continued).

it follows that the curve X D
0 (N )/Q has a sporadic (CM) point if and only if it is

not bielliptic with a degree 2 map to an elliptic curve over Q of positive rank. An
extension of the results of [Rotger 2002] mentioned in Section 10.2 to general
level N would then allow us to determine whether X D

0 (N )/Q has a sporadic CM
point for all but at most 56 pairs (D, N ) with D > 1. Such an extension will appear
in work of the author and Oana Padurariu [2024].
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STRATIFICATION OF THE MODULI SPACE
OF VECTOR BUNDLES

MONTSERRAT TEIXIDOR I BIGAS

We show that on a generic curve, a bundle obtained by generic successive
extensions is stable, so long as the slopes satisfy natural conditions. We
compute the dimension of the set of such extensions. We use degeneration
methods specializing the curve to a chain of elliptic components. This extends
our previous work (1998, 2000).

Take a generic (compact, nonsingular) curve C of genus g defined over the
complex numbers. A vector bundle E on C of rank r and degree d is said to
be stable (resp. semistable) if for every vector subbundle E1 of E of rank r1 and
degree d1, the inequality d1

r1
< d

r (resp. ≤) is satisfied. The moduli space U(r, d)(C)

parametrizes isomorphism classes of stable vector bundles of rank r and degree d
on C . It is a nonsingular variety of dimension r2(g−1)+1 which can be compactified
by equivalence classes of semistable vector bundles.

Fix E ∈ U(r, d)(C) and an integer r1 < r . Define sr1(E) = r1d − r max{deg E1}

where E1 moves in the set of subbundles of E of rank r1. As E is stable, sr1(E) > 0
for all r1. On the other hand, for a generic E , sr1(E) is the smallest integer greater
than or equal to r1(r−r1)(g−1) and congruent with r1d modulo r [Lange 1983, Satz,
p. 448; Lange and Narasimhan 1983]. Fix then s such that 0 < s ≤ r1(r −r1)(g −1).
The (proper) subset of the moduli space of vector bundles given as

U s(r, d)(C) = {E ∈ U(r, d)(C) such that sr1(E) = s}

generically coincides with the space of stable bundles Er,d that fit in an exact
sequence

0 → Er1,d1 → Er,d → Er−r1,d−d1 → 0.

Lange conjectured that a generic choice of the two bundles Er1,d1, Er−r1,d−d1 to-
gether with a generic choice of the extension would give rise to a stable Er,d and
therefore U s(r, d)(C) would be nonempty and of the expected dimension. Lange’s
conjecture was proved in full generality in [Russo and Teixidor 1999].
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Our goal here is to extend this result to the case of several successive extensions.
We show the following:

Theorem 0.1. Let C be a generic curve of genus g. Fix a rank r and degree d.
Choose a collection of integers r1 < r2 < · · · < rk = r and degrees d1, . . . , dk = d
such that

d1

r1
<

d2

r2
< · · · <

dk

rk

and
r1d2 − r2d1 ≤ r1(r2 − r1)(g − 1),

r2d3 − r3d2 ≤ r2(r3 − r2)(g − 1),

. . . ,

rk−1dk − rkdk−1 ≤ rk−1(rk − rk−1)(g − 1).

Define U(r1, . . . , rk; d1, . . . , dk)(C) ⊆ U(r, d)(C) as the set of stable Er,d obtained
after a sequence of extensions

0 → Er1,d1 → Er2,d2 → Er2−r1,d2−d1 → 0,

0 → Er2,d2 → Er3,d3 → Er3−r2,d3−d2 → 0,

. . . ,

0 → Erk−1,dk−1 → Er,d → Er−rk−1,d−dk−1 → 0.

Then, U(r1, . . . , rk; d1, . . . , dk)(C) is nonempty, irreducible and of codimension (in
U(r, d)(C))

(r1(r2 − r1) + r2(r3 − r2) + · · · + rk(rk − rk−1))(g − 1)

− (r1d2 − r2d1 + r2d3 − r3d2 + · · · + rk−1dk − rkdk−1)

Following the ideas in [Teixidor 1998; 2000], we will use a degeneration ar-
gument. We first prove the result for a particular reducible nodal curve and then
we extend it to the generic curve. The condition on the curve being generic is a
by-product of our method of proof. It is unlikely to be necessary. On the other hand,
the genericity of the extensions seems essential. This was already the case when
we considered a single extension. Then, we were able to give geometric conditions
identifying the nonstable extensions (see [Russo and Teixidor 1999]).

We became interested in this question while studying families of rational curves
in the moduli space of vector bundles on a fixed curve. The stability of a successive
extension is crucial for the construction of families of rational curves in the moduli
space (see [Mustopa and Teixidor 2024]).
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The result in the case of a single extension has found applications to a variety of
other topics, in particular to the study of Brill–Noether theory for vector bundles (see,
for instance, [Casalaina-Martin and Teixidor 2011; Hitching et al. 2021; Kopper
and Mandal 2023]) and to the existence of Ulrich bundles on ruled surfaces (see
[Aprodu et al. 2020]). We expect that this more general result will find similar
applications.

1. The problem on the reducible curve

Tensoring with line bundles results in isomorphisms between U(r, d)(C) and
U(r, d + tr)(C), so there are only, up to isomorphism, at most r nonisomorphic
moduli spaces of vector bundles on a curve (in fact, about half of that if you consider
also dualization, but this is irrelevant to us now). Without loss of generality, we
will assume that 0 ≤ d < r .

We will be using bundles on reducible, nodal curves as limits of vector bundles
on nonsingular curves. More specifically, we will consider chains of elliptic curves
defined as follows: Let C1, . . . , Cg be g elliptic curves, Pi ̸= Qi arbitrary points
on Ci . Glue Qi to Pi+1, i = 1, . . . , g − 1, to form a nodal curve C of genus g that
we call a chain of elliptic curves.

On a reducible curve, stability for a bundle depends on a choice of polarization.
A polarization is usually defined as the choice of a line bundle on the variety. For
our goal of defining stability of a vector bundle, what matters is the relative degree
of the restriction of this line bundle to each component, that is, the numbers

ai =
deg L |Ci

deg L
, i = 1, . . . , g, 0 < ai < 1,

∑
ai = 1.

Then, a vector bundle E on C of constant rank r is said to be ai -stable if for every
subsheaf F of E

χ(F)∑
ai rank(F|Ci )

<
χ(E)

r
.

Fixing a polarization, there is a moduli space of (ai )-stable vector bundles on the
chain of elliptic curves (see [Seshadri 1982]). Stability forces the degree of the
restriction of the vector bundle to each component of the curve to vary in certain
intervals that depend on the (a j ). The moduli space of (a j )-stable vector bundles on
the chain is reducible, each component M(d j ) corresponding to a choice of allowable
degrees di on the component Ci . Let us look now at the particular case in which
the components of C are elliptic

From results of Atiyah [1957], a vector bundle on an elliptic curve is stable if and
only if it is indecomposable (not a direct sum of other bundles) of coprime rank and
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degree. The indecomposable vector bundles that are not of coprime rank and degree
are semistably equivalent to a direct sum of stable (and therefore indecomposable)
vector bundles all of the same rank and degree. This is similar to what happens
for vector bundle on a rational curve, where each vector bundle is a direct sum of
line bundles. On rational curves, vector bundles appearing in families tend to be
balanced, that is, most of the time they have degrees that differ in just one unit. An
analogous result holds for families of vector bundles on reducible curves whose
components are elliptic; we describe these known results below.

Fix a collection (d j ) in the range of degrees allowed by stability and denote
by M(d j ) the component of the moduli space of vector bundles on C associated
to this choice. Write hi for the greatest common divisor of di , r , d ′

i =
di
hi

and
rank r ′

i =
r
hi

. Then, a vector bundle corresponding to a generic point in M(d j )

restricts to Ci to a direct sum of hi indecomposable bundles of degree d ′

i and rank r ′

i .
That is, a vector bundle corresponding to a generic point in Mdi restricts to Ci to a
direct sum of stable vector bundles all of the same rank and degree (see [Teixidor
1991, Theorem; 1995, Theorem 3.2]).

Our goal is to use results from the chain of elliptic curves to deduce similar
conditions for nonsingular curves. When dealing with a family of curves in which
the general member is nonsingular and the special member is the chain of elliptic
curves, we can modify a vector bundle in the family tensoring with a line bundle
with support on the special fiber. This action leaves the vector bundle on the general
fiber unchanged but moves the degree on the various components of the special
fiber by multiples of the rank. This allows us to choose the distribution of degrees
among the components up to multiples of r and ignore the actual distribution of
degrees among components of the curve imposed by the polarization, focusing
instead on the remaining conditions needed for stability.

Proposition 1.1. Let C be a chain of elliptic curves of genus g. Fix a rank r and
degree d, 0 ≤ d < r , and a collection of integers r1 < r2 < · · · < rk = r . Choose
degrees d1, . . . , dk = d with dk−1 the largest degree such that dk−1

rk−1
< dk

rk
, dk−2 the

largest degree such that dk−2
rk−2

<
dk−1
rk−1

, . . . , d1 the largest degree such that d1
r1

< d2
r2

.
Then, there exists a stable bundle E that contains a chain of subbundles

Er1,d1 ⊆ Er2,d2 ⊆ · · · ⊆ Erk ,dk = E

with Eri ,di stable of degree di and rank ri . This E contains at most a finite number
of such chains.

Proof. On the moduli space of vector bundles on the chain of elliptic curves, we
focus on the component whose restriction have degree d < r on C1 and degree zero
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on the remaining components. Write h for the greatest common divisor of d, r .
Define d ′, r ′ by d = hd ′, r = hr ′. As explained above, on the chosen component of
the moduli space of vector bundles, the generic vector bundle restricts to a direct
sum of h indecomposable bundles of degree d ′ and rank r ′ on C1 and as a direct
sum of line bundles of degree zero on C2, . . . , Cg.

More generally and in keeping with the discussion above, for any ri , di , we will
say that Eri ,di is a generic vector bundle of degree di and rank ri if it is a direct
sum of hi indecomposable vector bundles of coprime rank and degree:

Eri ,di =

hi⊕
j=1

F j
i , hi = gcd(ri , di ), ri = hir ′

i , di = hi d ′

i , deg Fi = r ′

i , rank Fi = r ′

i .

On C1, choose a generic vector bundle E1
r1,d1

of degree d1 and rank r1, a generic
vector bundle E1

r2,d2
of degree d2 and rank r2, . . . , a generic vector bundle E1

rk ,dk
of

degree dk and rank rk .
The conditions d1

r1
< d2

r2
< · · · < dk

rk
guarantee (see [Teixidor 2000, Lemma 2.5])

that there exist inclusions

E1
r1,d1

⊆ E1
r2,d2

⊆ · · · ⊆ E1
rk ,dk

.

In fact, as E1
ri ,di

=
⊕hi

j=1 F j
i , E1

r,d = Erk ,dk =
⊕h

j=1 F j
k , Hom(E1

ri ,di
, E1

r,d) =⊕
j, j ′ Hom(F j

i , F j ′

k ). Then, from

d ′

i

r ′

i
=

di

ri
<

d
r

=
d ′

r ′
,

the space of morphisms of F j
i to F j ′

k has dimension r ′

i d
′
− r ′d ′

i . Therefore, the
space of morphisms of E1

ri ,di
to E1

r,d has dimension hhi (r ′

i d
′
−r ′d ′

i ) = ri d −rdi ≥ 0,
in particular, it is nonempty. We can choose the inclusions from E1

ri ,di
into Erk ,dk

so that the image does not coincide with any of the finite number of destabilizing
subsheaves of Erk ,dk (it is enough to make sure that none of the morphisms F j

i
to F j ′

k is zero).
We now describe a vector bundle on the chain by giving a vector bundle on each

component and the gluing at the nodes:
On the curve C1 take the vector bundle E1

rk ,dk
= E1

r,d we just described. On the
curves C2, . . . , Cg, choose a direct sum of r line bundles of degree zero. On each
of C2, . . . , Cg, select a first set of r1 among the r line bundles in the direct sum.
Select then a second set of r2 among the r line bundles containing the initial subset
of r1 already chosen, Select a third set of r3 line bundles containing the subset of r2

chosen in the previous step and so on. Form now a bundle on the chain of elliptic
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curves by gluing the bundles on each component so that when identifying Qi with
Pi+1, i = 2, . . . , g − 1, each of the sets of r j line bundles j = 1, . . . , k on Ci glues
with the set of r j line bundles on Ci+1, j = 1, . . . , k (but the gluings are otherwise
generic). At Q1, glue each set of r j line subbundles on C2 with the fiber of the
image of the E1

r j ,d j
(but the gluings are otherwise generic). In this way, we obtain

bundles of ranks r1 < r2 < · · · < rk and degrees d1, . . . , dk on the whole curve C
each contained in the next.

On a reducible nodal curve, gluing vector bundles that are semistable on each
of the components and of the degrees allowed by the polarization, one obtains a
semistable bundle on the whole curve. Moreover, if one of the bundles we are
gluing is stable or if none of the subbundles that contradict stability glue with each
other, the whole vector bundle on the reducible curve is stable (see [Teixidor 1991;
1995]).

By construction, the vector bundles on each Ci are semistable. On C1, the only
subbundles of the bundle E1

rk ,dk
=

⊕h
j=1 E j

r ′,d ′ =
⊕h

j=1 F j
k that contradict stability

are the h subsheaves F j
k of degree d ′ and rank r ′ and their direct sums. Our choice

of the inclusions of the subbundles in the bundle on C1 and the gluings at the nodes
guarantee that we have a stable overall bundle.

Note also that our choice of di means that ri di+1 − ri+1(di + 1) ≤ −1 or equiv-
alently ri di+1 − ri+1di ≤ ri+1 − 1. In the interval 1 ≤ ri ≤ ri+1 − 1, this implies
that ri di+1 − ri+1di ≤ ri (ri+1 − ri ). Therefore, given a subspace of dimension ri of
the fiber of E1

ri+1,di+1
at Q1, there is at most a finite number of subbundles E1

ri ,di

whose immersion in E1
ri+1,di+1

glue with that fixed subspace (see Proposition 2.8 of
[Teixidor 2000]). Therefore, the number of chains for a fixed Er,d on the reducible
curve is finite. □

2. Extending the result to the nonsingular curve

We start by using the results on the reducible curve to extend it to a generic,
nonsingular curve.

Proposition 2.1. Let C be a generic curve of genus g. Fix a rank r and degree d,
0 ≤ d < r , and a collection of integers r1 < r2 < · · · < rk = r . Choose degrees
d1, . . . , dk = d with dk−1 the largest degree such that dk−1

rk−1
< dk

rk
, dk−2 is the largest

degree such that dk−2
rk−2

<
dk−1
rk−1

, . . . , d1 the largest degree such that d1
r1

< d2
r2

. Then,
there exists a stable bundle E that contain a chain of subbundles

Er1,d1 ⊆ Er2,d2 ⊆ · · · ⊆ Erk ,dk = E

with Eri ,di stable of degree di and rank ri .
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Proof. Take a family of curves where the special fiber is a chain of elliptic curves
and the generic curve is nonsingular. Then, the result follows from Proposition 1.1
using the openness of the stability condition. □

We proved stability of the various steps of a chain of extensions under the harder
conditions on slopes. This implies the similar result when the slopes are not as close:

Proposition 2.2. Let C be a generic curve of genus g. Fix a rank r and degree d,
0 ≤ d < r , and two collections of integers r1 < r2 < · · · < rk = r , d1, . . . , dk = d
such that

d1

r1
<

d2

r2
< · · · <

dk

rk
.

Then, there exists a stable bundle E that contain a chain of subbundles

Er1,d1 ⊆ Er2,d2 ⊆ · · · ⊆ Erk ,dk = E

with Eri ,di stable of degree di and rank ri .

Proof. Fix integers r, d, r1, d1 with d1
r1

< d
r . The set of vector bundles of rank r and

degree d which contain a subbundle of rank r1 and degree d1 −1 is contained in the
closure of those vector bundles that contain a subbundle of rank r1 and degree d1

(see [Russo and Teixidor 1999] Corollary 1.12) Therefore, the result follows from
Proposition 2.1. □

Let us now look at dimension and irreducibility:

Proposition 2.3. Fix integers d1, d2, r1, r2 such that d1
r1

< d2
r2

. Let U1 be an irre-
ducible family of stable vector bundles of rank r1 and degree d1. Let U2 be an
irreducible family of stable vector bundles of rank r2 − r1 and degree d2 − d1. Then,
the family of extensions

0 → E1 → E → E2 → 0, E1 ∈ U1, E2 ∈ U2

is also irreducible of dimension

dim(U1) + dim(U2) + r1(r2 − r1)(g − 1) + r1d2 − r2d1 − 1.

Proof. For fixed E1, E2, the space of extensions as above is parameterized by
H 1(E2

∗
⊗ E1). We claim that H 0(E2

∗
⊗ E1) = 0. If this were not the case then

there would be a nonzero morphism of E2 → E1. Its image I would be both a
quotient of E2 and a subsheaf of E1. The stability of the two bundles implies that

d1

r1
= µ(E1) < µ(I ) < µ(E2) =

d2 − d1

r2 − r1
.
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This contradicts the assumption of our initial choice of ranks and degrees. It
follows that H 0(E2

∗
⊗ E1) = 0 and therefore H 1(E2

∗
⊗ E1) has dimension equal

to r1d2 −r2d1 +r1(r2 −r1)(g −1), irrespectively of the choice of E1, E2. Then the
statement about the dimension follows. □

Proof of Theorem 0.1. Denote by U1 the space of all vector bundles of degree d1 and
rank r1, U2 the space of all vector bundles of degree d2 −d1 and rank r2 −r1, . . . ,Uk

the space of all vector bundles of degree dk − dk−1 and rank rk − rk−1. From
Proposition 2.1, the set of bundles E that can be obtained by successive extensions
is nonempty. Proposition 2.3 allows us to compute successively the dimensions of
the space of extensions, starting with

dim(U1) = r2
1 (g − 1) + 1,

dim(U2) = (r2 − r1)
2(g − 1) + 1,

. . . ,

dim(Uk) = (rk − rk−1)
2(g − 1) + 1.

The last claim in Proposition 1.1 ensures that each vector bundle appears only a
finite number of times as an extension of the given form. □
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CORRECTION TO THE ARTICLE
LOCAL MAASS FORMS AND EICHLER–SELBERG

RELATIONS FOR NEGATIVE-WEIGHT VECTOR-VALUED
MOCK MODULAR FORMS

JOSHUA MALES AND ANDREAS MONO

Volume 322:2 (2023), 381–406

We correct two errors in our article titled “Local Maaß forms and Eichler–
Selberg relations for negative-weight vector-valued mock modular forms”.

1. Modifications to the published version

(1) Throughout the paper, we add the assumption that our homogeneous polyno-
mial p inside the Siegel theta function is equal to 1. Otherwise, the Siegel theta
function might not split into a positive definite and a negative definite part in general.
In particular, one has to add additional assumptions on the isometry ψ as well as on
the polynomial p to obtain such a splitting; see [5, Lemma 2.2] and the discussion
preceding it. Finding a preimage of 2P under the shadow operator ξ might not
be guaranteed for nonconstant polynomials p, and our Proposition 4.1 is wrong if
p ̸= 1 since the Laplacian depends on the given polynomial; see [4, Proposition 2.5]
for the correct version.

(2) In Theorem 1.2, we need to specialize the signature of the lattice L to (2, 1)
instead of (2, s). This is necessary, because the nature of the singularities of the lift
is different in higher dimensions; see [1]. In particular, the first condition in our
definition of a local Maaß form on page 389 simplifies to the usual scalar-valued
modularity condition; see Bringmann, Kane and Viazovska [2, Subsection 2.4] as
well. In general, the Siegel theta function is invariant under the discriminant kernel
of O(L) as a function of Z ∈ Gr(L); see [3, p. 40]. In the case of signature (2, 1),
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we have Gr(L) ∼= H, and choosing a particular lattice of that signature leads to
further identifications, which in turn yield the framework of [2]. This is described
in Section 5 of our paper.

Acknowledgements

The authors would like to thank Paul Kiefer for pointing out the aforementioned er-
rors and for many helpful conversations. We thank the referee for a helpful comment.

References

[1] C. Alfes, B. Depouilly, P. Kiefer, and M. Schwagenscheidt, “Cycle integrals of meromorphic
Hilbert modular forms”, preprint, 2024. arXiv 2406.03465

[2] K. Bringmann, B. Kane, and M. Viazovska, “Theta lifts and local Maass forms”, Math. Res. Lett.
20:2 (2013), 213–234. MR Zbl

[3] J. H. Bruinier, Borcherds products on O(2, l) and Chern classes of Heegner divisors, Lecture
Notes in Mathematics 1780, Springer, 2002. MR Zbl

[4] S. Zemel, “A Gross–Kohnen–Zagier type theorem for higher-codimensional Heegner cycles”,
Res. Number Theory 1 (2015), art. id. 23. MR Zbl

[5] S. Zemel, “Seesaw identities and theta contractions with generalized theta functions, and
restrictions of theta lifts”, Ramanujan J. 63:3 (2024), 749–771. MR Zbl

Received November 4, 2024. Revised November 13, 2024.

JOSHUA MALES

SCHOOL OF MATHEMATICS

UNIVERSITY OF BRISTOL

BRISTOL

UNITED KINGDOM

and

HEILBRONN INSTITUTE FOR MATHEMATICAL RESEARCH

BRISTOL

UNITED KINGDOM

joshua.males@bristol.ac.uk

ANDREAS MONO

DEPARTMENT OF MATHEMATICS

VANDERBILT UNIVERSITY

NASHVILLE, TN
UNITED STATES

andreas.mono@vanderbilt.edu

http://msp.org/idx/arx/2406.03465
https://doi.org/10.4310/MRL.2013.v20.n2.a2
http://msp.org/idx/mr/3151643
http://msp.org/idx/zbl/1296.11036
https://doi.org/10.1007/b83278
http://msp.org/idx/mr/1903920
http://msp.org/idx/zbl/1004.11021
https://doi.org/10.1007/s40993-015-0025-3
http://msp.org/idx/mr/3501007
http://msp.org/idx/zbl/1359.11066
https://doi.org/10.1007/s11139-023-00786-2
https://doi.org/10.1007/s11139-023-00786-2
http://msp.org/idx/mr/4707382
http://msp.org/idx/zbl/07812009
mailto:joshua.males@bristol.ac.uk
mailto:andreas.mono@vanderbilt.edu


Guidelines for Authors

Authors may submit articles at msp.org/pjm/about/journal/submissions.html and choose an
editor at that time. Exceptionally, a paper may be submitted in hard copy to one of the
editors; authors should keep a copy.

By submitting a manuscript you assert that it is original and is not under consideration
for publication elsewhere. Instructions on manuscript preparation are provided below. For
further information, visit the web address above or write to pacific@math.berkeley.edu or
to Pacific Journal of Mathematics, University of California, Los Angeles, CA 90095–1555.
Correspondence by email is requested for convenience and speed.

Manuscripts must be in English, French or German. A brief abstract of about 150 words or
less in English must be included. The abstract should be self-contained and not make any
reference to the bibliography. Also required are keywords and subject classification for the
article, and, for each author, postal address, affiliation (if appropriate) and email address if
available. A home-page URL is optional.

Authors are encouraged to use LATEX, but papers in other varieties of TEX, and exceptionally
in other formats, are acceptable. At submission time only a PDF file is required; follow
the instructions at the web address above. Carefully preserve all relevant files, such as
LATEX sources and individual files for each figure; you will be asked to submit them upon
acceptance of the paper.

Bibliographical references should be listed alphabetically at the end of the paper. All ref-
erences in the bibliography should be cited in the text. Use of BibTEX is preferred but not
required. Any bibliographical citation style may be used but tags will be converted to the
house format (see a current issue for examples).

Figures, whether prepared electronically or hand-drawn, must be of publication quality.
Figures prepared electronically should be submitted in Encapsulated PostScript (EPS) or
in a form that can be converted to EPS, such as GnuPlot, Maple or Mathematica. Many
drawing tools such as Adobe Illustrator and Aldus FreeHand can produce EPS output.
Figures containing bitmaps should be generated at the highest possible resolution. If there
is doubt whether a particular figure is in an acceptable format, the authors should check
with production by sending an email to pacific@math.berkeley.edu.

Each figure should be captioned and numbered, so that it can float. Small figures occupying
no more than three lines of vertical space can be kept in the text (“the curve looks like
this:”). It is acceptable to submit a manuscript will all figures at the end, if their placement
is specified in the text by means of comments such as “Place Figure 1 here”. The same
considerations apply to tables, which should be used sparingly.

Forced line breaks or page breaks should not be inserted in the document. There is no point
in your trying to optimize line and page breaks in the original manuscript. The manuscript
will be reformatted to use the journal’s preferred fonts and layout.

Page proofs will be made available to authors (or to the designated corresponding author)
at a website in PDF format. Failure to acknowledge the receipt of proofs or to return
corrections within the requested deadline may cause publication to be postponed.

http://msp.org/pjm/about/journal/submissions.html
mailto:pacific@math.berkeley.edu
mailto:pacific@math.berkeley.edu


PACIFIC JOURNAL OF MATHEMATICS

Volume 332 No. 2 October 2024

195Homotopy versus isotopy: 2-spheres in 5-manifolds
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