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A NEW CONVERGENCE THEOREM
FOR MEAN CURVATURE FLOW OF HYPERSURFACES
IN QUATERNIONIC PROJECTIVE SPACES

SHIYANG L1, HONGWEI XU AND ENTAO ZHAO

We investigate the smooth convergence of the mean curvature flow of hy-
persurfaces in the quaternionic projective spaces. We prove that if the
initial hypersurface satisfies a new nonlinear curvature pinching condition,
then the mean curvature flow converges smoothly to a round point in finite
time. Our result improves a smooth convergence theorem due to Pipoli
and Sinestrari (2017).

1. Introduction

There are many famous geometric evolution equations, such as the Ricci flow,
the mean curvature flow and others. Huisken [9] studied the mean curvature flow
from the perspective of partial differential equations, and he proved that convex
hypersurface in the Euclidean space converges to a round point along the flow.
Afterwards, Huisken [10; 11] obtained convergence results for mean curvature flow
of convex hypersurfaces in Riemannian manifolds and pinched hypersurfaces in
spheres. Following the argument of Huisken [9], Andrews and Baker [1] proved a
convergence theorem for the mean curvature flow of closed submanifolds satisfying
a suitable pinching condition in the Euclidean space. Later, Baker [2], Liu et al. [20]
proved sharp convergence theorems for the mean curvature flow in the spheres
and the hyperbolic spaces, respectively. Liu, Xu and Zhao [19] studied the mean
curvature flow of arbitrary codimensional submanifolds in the Riemannian manifold
and proved a smooth convergence theorem. Lei and Xu [15] verified an optimal con-
vergence theorem for the mean curvature flow of submanifolds in hyperbolic spaces,
which implies the first optimal differentiable sphere theorem for submanifolds with
positive Ricci curvature. It should be remarked that an optimal topological sphere
theorem for complete submanifolds with positive Ricci curvature in a space form
with nonnegative curvature has been proved previously by Shiohama and Xu [26].
Lei and Xu [15] also proved sharp convergence theorems for the mean curvature
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flow of submanifolds in the sphere [13; 14], which also improve the convergence
theorems due to Huisken [10] and Baker [2]. See [16; 18; 21] for recent progress in
the smooth convergence theory for mean curvature flow of arbitrary codimensions.
As consequences of these smooth convergence theorems, the submanifolds satisfying
the initial curvature conditions are diffeomorphic to the standard sphere. We remark
that some of these differentiable sphere theorems are also proved by using the Ricci
flow, which has proven to be a very useful tool in understanding the topology of
Riemannian manifolds, see [3; 4; 6; 7; 8; 22; 23; 24; 27; 28].

Pipoli and Sinestrari [25] obtained a convergence theorem for mean curvature
flow of small codimension in the complex projective spaces. Later, Lei and Xu [17]
investigated the smooth convergence of mean curvature flow of arbitrary codi-
mensional submanifolds in the complex projective spaces, which improved and
extended the convergence theorem due to Pipoli and Sinestrari [25]. In this paper,
we investigate the mean curvature flow in the quaternionic projective spaces. We
mainly consider the codimension-one case.

Let M be an n-dimensional closed manifold, and let F : M" x [0, T) — N™t!
be a one-parameter family of smooth hypersurfaces immersed in a Riemannian
manifold (N, k). We say that M; = F;(M) is a solution to the mean curvature flow
if F; satisfies

3

=F=—Hv,
(1-1) { ar "

F(-,0)=Fo(-),
where F;(-)= F(-,t), H and v are the mean curvature of M and the unit outward
normal vector of M respectively, such that H = — Hv is the mean curvature vector
of M.

Pipoli and Sinestrari [25] obtained a convergence theorem for the mean curvature
flow of hypersurfaces in the quaternionic projective spaces, and the proof is the
same as their convergence theorem for mean curvature flow of hypersurfaces in the
complex projective spaces.

Theorem 1.1 [25]. Let M" (n > 11) be a closed real hypersurface in quaternionic
projective space QP"V/4(4) and M, be the mean curvature flow starting from M.
Assume that M satisfies the following pinching condition:

|h|? < H>+2.

n [e—
Then the flow has a smooth solution on the maximal time interval [0, T)) with T < oo.

Moreover, the pinching condition is preserved and M, collapses to a round point as
t—T.

We note that here and in the remaining part of the paper, n =4m — 1 for m > 2.
The aim of the present paper is to prove the following refinement of Theorem 1.1.
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Theorem 1.2. Let M" be an n(= 7)-dimensional closed real hypersurface in quater-
nionic projective space QP"V/4(4), and M, be the mean curvature flow starting
Jfrom M. Assume that M satisfies the following pinching condition:

|h|* < @(H?).

Then the flow has a smooth solution on the maximal time interval [0, T') with T < oo.
Moreover, the pinching condition is preserved and M, collapses to a round point as
t—T.

In Theorem 1.2, ¢(H?) is given by

(1-2) e(H) =2+a,+ (bn+ )HZ—\/b,%H“—i—Zananz,

n—1

where

an = /81 —5)(n— 1) by, bn=min{ n=> 2n =5 }

8m—1)" n+2)(n—1)
Remark 1.3. By a computation, we have ¢(x) > nle +2 for x > 0. So, Theorem 1.2

is an improvement of Theorem 1.1. Furthermore, we have ¢(x) > 44/n — 1 — 6 for
7<n <17, and p(x) > 2+ 82 /n—5 for n > 18.

It is well known that QP! is just the round sphere. By [11; 14], the similar
smooth convergence theorem holds for mean curvature flow of closed hypersurfaces
in QP'.

By Theorem 1.2, we have:

Corollary 1.4. Let M" be an n(= 7)-dimensional closed real hypersurface in
quaternionic projective space QPe+D/4(4), If |h|? < o(H?), then M is diffeomor-
phic to the standard sphere.

The rest of the paper is organized as follows. In Section 2, we introduce some
notations, formulas and basic equations in submanifold theory, and prove a gradient
inequality involving the second fundamental form and the mean curvature for
hypersurfaces in the quaternionic projective spaces. We also recall some evolution
equations along the mean curvature flow in this section. In Section 3, we show that
the pinching condition ||?> < ¢(H?) is preserved along the mean curvature flow.
We also derive an evolution inequality of

A
(- HYnm)le
A pinching estimate for the traceless second fundamental form is obtained in
Section 4. We give an estimate of the gradient of the mean curvature in Section 5,
which is used to compare the mean curvature at different points. In Section 6, we
show that the hypersurface shrinks to a single round point in finite time.

fo
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2. Notations and formulas

Let QP™ be the m-dimensional quaternionic projective space with the Fubini—Study
metric ggs. Let Ji,, ko = 1, 2, 3 be complex structures on QP". We denote by V
the Levi—Civita connection of (QP"™, ggs). Since the Fubini—Study metric is a
Kéihler metric, we have §Jk0 =0 for ko = 1, 2, 3. The curvature tensor R of QP"
can be written as

R(X,Y,Z, W)
3
+ Z((X, Jk0Z>(Y’ Jk0W> - (Xa Jk0W><Y’ Jk0Z> +2<X’ Jk()Y)(Zs Jk0W>)
ko=1

and Ji,, ko =1, 2, 3 satisfies
szo=—Id, NWWh=—hlhi=Jh, Jhh=—hJi=—hh, hhx=—hhJ3=J.

Let (M", g) be an n-dimensional Riemannian submanifold in (QP", ggs). Let g
be its codimension, i.e., n +q = 4m. Ata point p € M, let T, M and N, M be the
tangent space and normal space, respectively. For a vector in T, M & N, M, we
denote by (-)” and (-)" its projections onto T, M and N, M, respectively. We
use the symbols V and V< to represent the connections of tangent bundle TM
and normal bundle NM. Denote by I'(E) the space of smooth sections of a vector
bundle E. For X, Y e I'(T M), & € T (NM), the connections V and V. are given
by VxY = (VxY)T and V5 & = (Vx&)V. The second fundamental form of M is
defined as h(X, Y) = (VxY)V.

We mainly consider the codimension-one case. Throughout this paper, we shall
make the following convention on indices:

1<AaB9C7<n+la lglv.]ykvgn

We choose a local orthonormal frame {e;} for the tangent bundle and let v =¢,,41
be the unit normal vector field. Denote by {'} the dual frame of {e;}. Let 4 and H
denote the second fundamental form and the mean curvature given by

h=Yhjjo' ®@w and H=Y h;.
iJj i
Leth=h— %H g be the traceless second fundamental form. We have the relations
A2 =1h? = H2, |V = VAP = L VH.
Setting Jf(‘];g) = (ea, Jiep) for ko =1, 2, 3, we have

(ko) (ko) (ko) 7 (ko) (ko) 1 ;2 3
JAlg =_JBX’ %ng JBO =JA((3)’ %JAB Jgc =Jac-
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Similarly, we have
1) 703) 2 2 73) _ (D)
%JAB Jpc = —J4c %JAB Jpe = Jac-

Also, Jf(‘kAO) =0 for any A and ko.

Let h;j; and H; denote the components of Vi and VH, the covariant differenti-
ations of & and H, respectively. We have the following sharp gradient inequality
(see Remark 2.2).

Lemma 2.1. For a hypersurface in QP"D/4 we have

\Vh|? > H%WHF £6(n—3).

Proof. Set S = ZSijk o' ®a)j ®a)k, where Sijk = %(hijk +hjki +hkij)- Then Sijk
is totally symmetric for i, j, k. Using the same technique as in Lemma 2.2 in [9],

we have )
|S| = Z(Zskkl) .

n+2

By the Codazzi equation, we have

> Siki = 5 2 (hikk + hiki + hiir)
K K

=1 Z(hkki +2hir)

=3 Z(hkkz + 2hiki — 2Rt 1kik) = ZRn+lkzk
As 3
= k k k k k k
Rovis = S, A8 = 180, 00 + 208, 10
0
one has
3
= k k k k k k
—F X Rurie = =32 X (i G = L G+ 200 T
k k ko=1
3
k k k k
=3 S oA -2 I
k ko=1
s ko) (ko)
=23 Z(‘]n-&?lk‘] ).
ko=1 k
Then we get

k
ZSkkz = H; + ZkZI S T,
0

This implies

(;Skki) = (H))> +4 Z > H; (J,fljf])kJ(kO))+4[ Z Z(J’fl_?])kj(k(’)] ,

ko=1 ko=1
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Since
3 ko) (ko) > ko) ]2
43 [ZHi otk Jii }"‘42[ > 2w ]
ko=1%1i,k i “ko=1
3 3 2
k k ki ki
=4 3 | Y H T, 0|+ 4 T s, ]
ko=1"% i A i “ko=1 A
3 3 2
=43 [ZHi5n+1i] +4Z[ Z5n+1i] =0,
ko=1"% i i “ko=1
one has
@2-1) 1S2> —_|VH|.

~ n42
On the other hand, by the Codazzi equation, we have
ISI2 = 22(Sij0)% = § - (hiwk + b + i)
=13 hij)* + 32 hij hik
= % S (hij)* + % > hijk(hijk + Rusije)
=Y (hije)* + % R jki Rutiji
= |Vh|* + % > Rout1jki Ruttiji-
Since

Runco = 8ac 850 —apdnc+ " L0 g) — a0 g8 1208 18,
ko=1
one has
SR R = 5 [ SO0 = 2180 40 +2013, 20
[ S0, 10 = g+ 208, 10

For each kg, according to the special property of matrix ( Jf\kg)), by direct com-
putation we have

(ko) 2 (ko) 7 (ko) (ko) (ko)
%:(Jn-‘flk) =" ;‘]n-i?lk ‘]kn(fl—l == ;Jn—flA JAnO-H =8+ =1,
and (ko) (o) (ko) y(lo) (ko) (o) (Jjo)
0 0) __ 0 0) __ 0 0) __ Jo
%Jn-i-lk Jpr = — %:Jn-i-lk Jyp =~ ;Jn—HA JaB = :l:']n-HB’
where + depends on jy, kg, [o. By some computations, we obtain
> Rut1jki Rugrije = —9(n —3).

Hence
S = VA + 3(=9(n — 3)) = |Vh|> — 6(n — 3).
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Combining this with (2-1) implies
IVh]> > ——|VHP +6(n —3). O
n+2
Remark 2.2. For hypersurface M*"~! in QP"™, one has
3 2
Vh|* > ——|VH*+24(m — 1).
(VAP > 2 |VH] + 24(m — 1)
In particular, one has |VA|?> > 24(m — 1), which has been proved previously by
Dong [5]. Dong also proved that a real hypersurface satisfying |VA|*> =24(m —1) is

one of the generalized equators M ;,%q. See, e.g., [5; 12] for the detailed construction
of generalized equators. From this we see that our gradient inequality is sharp.

Let F: M x [0, T) — QP"+D/% be a mean curvature flow of hypersurface in the
quaternionic projective space QPUH+D/A Set M, = F;(M), where F;(-)=F(-,1t).
Following [1; 25], we have the evolution equations.

Lemma 2.3. For mean curvature flow F : M x [0, T) — QP4 e have

%W = Alh|? = 2|Vh|® = 2n|h|> + 2|h|* + 18]h|> + 4H? + 125,

%HZ =AH?>=2|VH)?+2H*(|h|*+n+9),

where 3
Si= 3 % Chijhua T TR = hiwhje i T
ko=1i,j.k,!
To do computations involving (Jf(‘]jg)) for ko =1, 2, 3, the following well-known
property of skew-symmetric matrix will be important.

Proposition 2.4. Let A be a real skew-symmetric matrix. Then there exists an
orthogonal matrix C, such that C~'AC takes the following form:

0 X
—A1 0
0 X3
-3 0
(2-2) 0 As

—As 0

We use a notation )
~ i+1, 1iisodd,

1 = .
i—1, 1 1seven.

If a matrix (a;;) takes the form as (2-2), then a;; =0, for all j # i.
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3. Preservation of curvature pinching

For each fixed ko € {1, 2, 3}, we choose a local orthonormal frame {e;} such that
the matrix (J; (kO)) takes the form of (2-2). In fact, let {¢y, ..., €,, €,41} be a local
orthonormal frame on QP"*TD/4 guch that €1,...,€, are tangent to M and €, is
normal to M. Let Jf(xkg) = (€4, J% €p). Since (J,-j)nxn is antisymmetric and 7 is
odd, there is an orthonormal matrix C = (c;;j).xn, Where ¢;;’s are local functions,
such that
0 X
- -2 0
1 5k 1
(C,‘jl J;k()) CkDnxn =
0

Here (cl._.l),,xn = (c,-j)n_xln. Sete; = Z] 1 C ”16], eni1 = €,41. Then

J(ko) (6 J(ko) )

_ k k
=<ijcik ek,J(kO)<ZI: )> chklj(())cl _chli(O)clj.

This implies
0 A

—A1 0
ki 1
(J,'(j 0))n><n =

Thus we have
> l(h,, ha T T = hihi IS0 150 = Zk:(—fi”; I TEO T8 — (g, TE)?)
i,j, L,
=320 Ty 1502
L,

ik kk
<0.
Therefore,
3
S Z [ Z (htj hkl J(kO)J(kO) lk h]k J(kO)J(kO))] < 0
ko=1%1,j,k.1
So we get from Lemma 2.3 that
(3-1) L1 < AV = 20VAP + 20— 0 +9).
For a real number ¢ € (0, 1), by the definition of ¢, we define ¢, : [0, +00) — R by
(3-2) 0e(x) =d, + o x — v/ b2x2 + 2abx +e,
. -5 2n—5

where @ = 8 =35 (n— Db, b = min{g"=5, =F25 ), ¢ = b+

de =2—2c+a, e =./s. We define ¢ = ¢.
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Lemma 3.1. The function ¢ has the following property.
@ ;5 +2<9l) < I +n,
(1) p(x)>4v/n—1-6ifn="7,11,15 and ¢(x) > 2+%§«/n —Sifn=4m—1,
m>=5.

Proof. By direct computations, we get

a2

/(x)—c _bxi ”(x)—
v ° Vx2+2ax/b’ v b(x2 +2ax/b)3/?
Since ((p(x) — ﬁ)” =@(x)" >0 and lim,_, o, ¢'(x) = nlj, we have ¢'(x) < anl
Hence we get

2= 1im (@) — —— ) < p(x) = —— < p(0) =24a <n.
S n—1 n—1

X—>

We figure out that

. acy a acy a / 3
=l ——=— )| =do— — + V5 —b".
Iggw(x) w(b 7 b) 0= tva

Ifn="7,11, 15, we have min,>o ¢(x) =4+/n—1—6. If n =4m — 1, m > 5, then

we have
8(n—>5 842
m>i{)1(p(x)=2+ 2(n 5)(J5n—8—¢n+2)>2+TIVn—5. O
Xz n—

Let ¢, = ¢, — %x. We will prove the following lemma.

Lemma 3.2. For sufficiently small e, the function ¢, satisfies

e 2 _ 2—1)
() @, +2x¢; < 3052

(i) @e(X)(@s(x) —n+9) —x¢, (x) (e (x) +n+9) < 6(n —3),

(iii) @e(x) —x@L(x) > 1.
Proof. By direct computations, we have

o 1 b>x +ab

Qe =C— — — s

n /b2x242abx +e

., (b*x+ab)* —b*(b*x* + 2abx +e)
$e = (2% + 2abx + )32
n 3b(a*—e)(bx+a)
Yo = T X2 1 2abx + )32

’
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Then we have
1 b3x%(bx +3a) +eb(3bx +a)

o/ o/l
+2x¢, =ce—— —
Ye be =Ce ) (b2x2 +2abx + ¢€)3/2
1 1 2(n-1
< b + _———_—c b,
n—14¢e n nn+2)
as b =min{g &‘_51), a —l—ZZn)ZnS—l) }. so we get the inequality (i).
Setting

Fx) =@ (e —n+9) —x@, (g +n+9).
Then
fx)=d.(d; —n+9)+e.+2+ab+c.(d. —2n)) x

— (bzx2 +2abx +e)_1/2
x [b((de —2n) b+ac) x* + (3(d. —n+3) ab+ec) x +e(2d, —n+9)|.

Then for & small enough we get

2
lim f(x):aCS—|—dg(dg—n—i—9)—|—a(n—2d£—9)—i—e(l—C—g)
x——+o00 b b
2e(n®*— (18 -3 33 — 15¢ 4 2¢2
— 61 —3)+ e(n”—( e)n+ &+ e)+e | Ce
n—1+4e¢ b
:6(n_3)+28(n2—(18—38)n+33—158+282)_ Je
n—1+e¢ n—14+¢e)b
< 6(n—3),
and
f'(x)
=2+ab+c.(d; —2n)
1 3 3 2 2
~ P 2abr TP [6°((de —2n) b+ac,) x° +3ab*((ds —2n) b+ac,) x

+[3a*b*(d, — n + 3) — 3eb*(n + 3) + 3abc, €] x
+eab(d, —2n) + e’c).
Then we have

lir}rl f'(x)=2+4+ab+c.(d; —2n) — (ac; + b(d, —2n)) =0
X—>+00

and
£ = 3b%(a? —e)
(b2x2 +2abx + )5/

x [b(b(ds +6) —acs) x* + (ab(d; —n +3) — ece) x — e(n +3)].

s n—>5 2n—5 :
For b = mm{ So=D oD }, we obtain

b(d,+6)—ac, <0 and ab(d,—n+3)—ec, <O.
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So f”(x) < 0. Then we have f’(x) > 0. From this we deduce that
f(x) < lim f(x)<6(n—23).
x——+00

Thus, inequality (ii) is proved.

We have
. o abx +e abx e .
G —XQ, =dg — >di — ——— — —==2—2¢ — Je.
S U2t 2abx+e | NbIxI Je
This implies inequality (iii). O

Suppose that My is an n(> 7)-dimensional closed hypersurface in Qprth/4
satisfying |h|> < (H?). Let

F:M"x[0,T)— QPr+h/4
be a mean curvature flow with initial value My. We will show that the pinching
condition is preserved along the flow. For convenience, we denote ¢, (H?), ¢.(H 2,
@/ (H?) by @, ¢, ¢!, respectively.

Theorem 3.3. If the initial value My satisfies |h|> < @(H?), then there exists a small
positive number ¢, such that for all t € [0, T), we have |h|> < p(H?) —eH? —&.

Proof. Since M, is closed, there exists a small positive number ¢y, such that M
satisfies |h|? < Dg, -
From Lemma 3.2(i), we have

0 . . . .
(3-3) (5 — ) Be, = —2(¢,, +2H* @) IVHI* +2H* - ¢, (¢e, +1n+9)
4(n—1) .
> —m|VH|2+2H2-¢gl((pg, +n+9).

Let U = |i)? — @, . We get

li_ U
2\ ot

o 2(n —1 o
< —|Vh|2—|—¥|VH|2+|h|2(|h|2—n—|—9)—H2-¢’); (h)> +n+9).
nn+2) !
By Lemma 2.1, we have
, 20 —1)
—|Vh|> + =—|VH|?* < —6(n —3).
| |+n(n+2)| |~ < —6(n —3)

At the point where U = 0, we get

9 . .
%(5— )U<—6(n—3)+¢s.(<pg. —n+9)—H”- @ (¢, +1n+9) <0.
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Applying the maximum principle, we obtain U < O for all ¢ € [0, T'). Choose a

suitable small positive number ¢, we complete the proof of Theorem 3.3. U
Let o
PR L
S

where o € (0, £?) is a positive constant. The following lemma is very useful for
deriving the pinching estimate for |A|?.

Lemma 3.4. If My satisfies |h|? < @(H?), then there exists a small positive num-
ber ¢, such that the following inequality holds along the mean curvature flow:

fFIVhI +20|h|? fa__fa

3 2 ]
8—fa SAfe + IVl Vol —
f @ nlh

Proof. By a straightforward computation, we have
d d o l—o /0
N —— D
<8r >f" f“[|h|2< )' 7 <8r >¢]

Vs, V¢ V|
+2(1 =) Yo VO f@ ) _ o )f0||"|)2|.

Using (3-1) and (3-3), we have

3 VA2 2(n—1) |VH|2]
3-4 ——A) f <2/ | - ~
G4 ( )f I [ |h|? +n(n+2) ¢

ot
2
+2fa[|h| +9—n—(1—0) (Ihl +n +9)}
2 .
+ =Vl Vel
%

From Lemma 3.2 and Theorem 3.3, we have

_|sz|2 2(n—1)|VH|2< |vii|2+|vfl|2—6(n—3)

2 n(+2) ¢ P ¢
hW2P=¢ . 6(n—73
<=8y gjp S
7|2
HP?+1 . 6(n—73
<t gpp 003
|h|?¢
<——_ip_ =3
n|h|?
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From (ii) and (iii) of Lemma 3.2, we have

2
|h|? +9—n—(1—0) 3 (|h| +n+9)
]_
== —[(p—H*- @) h*—H* ¢ (n+9)]—n+9+alh

l-o . 2 of 2 Y 2
<7[(¢—H @ VNp—eH —e)—H"-¢'(n+9)]—n+9+0|h|

1_
——[(p—H* ¢ —H*-§'(n+9]—n+9+0olh|

1—
- %«b _HR ) H 4+ 1)

6(n—3 1—
<d —a)[ _gy S0 )] Cn40tolnt— LTy
@
6(n—3
<omp 2D _E
2n
Inserting these two estimates into (3-4) will complete the proof. U

4. An estimate for traceless second fundamental form

Suppose that the initial value M, satisfies the condition in Theorem 1.2. For
convenience, we put W = ¢. By the conclusion of the previous section, there exists
a sufficiently small positive number ¢, such that for all ¢ € [0, T), the following
pinching condition holds:

4-1) |h)> <W —eH?>.

. . o 2
From this inequality and the definition of W, we have W < % +n.
We consider the auxiliary function

A
Wlfa :

In this section, we will show that f, decays exponentially.

fa=

Lemma 4.1. There exist positive numbers ¢ and C| depending only on My, such that

fa
A2

Proof. According to Lemma 3.4, we have the following inequality with some
suitable small ¢ > 0:

d 2C o
(4-2) 5fo<Afa+|7ll|Vfo||Vh| VA2 + 20 |h|? fa——fa

9 2 2¢f.
— fo S Afy +—=|Vfs| VW] — "|Vh| + 20 |h|? fa——fa
ot w n| |
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By the definition of W, there exists a constant By, such that |[VW| < B||VH 2|
and |H| < Bi+~/W. Let C; be a constant such that 2Bl2|VH| < C1|Vi°z|. From
Lemma 2.1, we have

[VW| 2B||H||VH| 2B2|VH| C1|Vf°z|

(4_3) < \ \ S . Il
w VWih| || ||

We need the following estimate for the Laplacian of A2

Lemma 4.2. Alh|> > 2(h, VZH) +2|h*(e|h|> — 2n%) — 18|h| |H]|.
Proof. We have

AP =2|Vh* +2h- Ak =2|VA* 423 hij - Ahy;

~
and J

S hij- Ahi; = (h, VH) 4+ Y. Hhip hpj hi; — |h*
i,j ipj

+3HY Z T T30 iy — (n+9) |h[? + 20|k > — 68
i,j ko=1

> (h, V2 H)+ 3 Hhiphpihij = |h[* 4 (n = 9)|h> = 9lh| | H|.
le?.]

It follows from the proof of the Lemma 4.2 in [17], we choose a local orthonormal
frame such that

H=|H|eys1 and h=diag{X;,..., %)

So we have

> Hhiphpjhij —|h|*

iL,p.Jj R 1 o o
=HZA?+—H2|h|2—|h|4
> |1;| "2 P +1H2|h| it
g J(—l)

2 ) o n n—2 o
= |h| ;H —|h| —mlhllHl

> |l°z|2[lH2 - (H—2 tn —sH2> @ —2)(H—2 +n)}
n nn—1) nn—1)

=|hl*(eH? — n(n —1))

> |h*(e|h|* —n?),

where we have used |}°z|2 <W—gH?*>and W < n(llj—jl) +n. O



MEAN CURVATURE FLOW IN QUATERNIONIC PROJECTIVE SPACES 233

From (4-3) and Lemma 4.2, we have

L2 2
Af, =fa(A!,h' —(H)ﬂ)—z(l—wwwa—w £, YW

|h|? w2
Alh|? AW 2G|V f,||VA
> o —(1=0) fo
|| ||
2(h,V2H AW 2Ci|V £, Vi| 18f,|H
> 2V 1) >+2fa<e|h| 201 22 2O T8
Wi-o I |

Multiplying both sides of the above inequality by £/ _1, we get

)4 r—1,7 2
5 1 fo AW  2fs “(h,V°H)
@-4) 2efPIh* < fP A fo+(1—0) - ==

20, PNV £ | VA 18, |H
n 1 fo ||;°l|fa|| |+ Y J|’;|| |

Then integrate both sides of (4-4) over M,. By the divergence theorem, we get
(4-5) 70 o dp==(p =1 | fI2IV folPdpur.
M, M;

From (4-4), we have

(4-6) f—GAWd,u[ /< ( ) VW>dth
Mt
=/< VW>+f—"|VW|)dm

2
/( ”’f A+ vf |Vh|>dut.

We also have

2~ h, V2H)
M Wl—a

p—1
=V U—fz~~>V~Hdu
/Mt ’(Wl—(r ij Jj t

_2 p pP— 1

=D o (-o)fd

- [Whifvffo—TihlfVWW Vil |V H
M,

47 — dp

(p—1)fF i 2!
<f [T“Wgu SR VW 22l VAl | [VH  dp,
M;
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—1 ol 2 b .
\/ [%Wﬁyu L |Vh|+W1_on|Vh|}n|Vh|dut
M,

i)
n(p—1fF (Cin+n?) .
< [Mw&uvm—zﬁwa i
wl I i)

Putting (4-4)—(4-7) together, we get

o P\H
flhlszduz<C2/ [”f Ianl 17 fo ']dm,
" wl 1Al A2 1]

where C; is a positive constant depending only on M.
Combining Lemma 4.2 and (4-2), we get

0
4-8) — rd
( ) at\/l‘wtfg Ml‘
p—1 d P2
=P fo‘ —fodu — ng d
M, ot M,

< Pf fé’_z[—(P —DIVf >+ QC +2oCzp)f—f|VfaI Vi

fZ
— = —20Cy ) 22| VA* | d
<2n 2)| |2| |j| 2

P 6(n—3)e 20C,|H| |H|2)
- Pl ——20Cr+ ——————+ diiy.
”fM,f" (n 2 ol 1] p )

Now we will show that the L”-form of f, decays exponentially.

Lemma 4.3. There exist positive constants Cs, po, oo depending only on My, such
that for all p > po and o < 0¢/,/p, we have

1/p
(/ ffdm) <Cze .
M,

Proof. The expression in the square bracket of the right side of (4-8) is a quadratic
polynomial. With pg large enough and oy small enough, its discriminant satisfies

(2C1+20Cp)2 —4(p— (<= —20C,) <0 and @>pa2cz.
2n 7 2

We have

™

12¢ paZC%
TNh12 ||

> 250, > 2
n 2n

6(n —3 20C,|H| |H|)?
& 2eCot (no)8—03| ] |>__ 5Cyt
n 2n|h|? |h| P

™ 3
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Here we have used the inequality 5~ — 20 C, > 0, which is implied by the choices
of pp and og. Then we get

/f” <=2 pran.
M;

So we get fM, frdu, < e_pg/Z”fMO fF d o, which completes the proof. O

Let g5 = f,e®"/?. By the Sobolev inequality on submanifolds and a Stampacchia
iteration procedure, we obtain that g, is uniformly bounded for all # (see [9] or [14]
for the details). Then we obtain the following theorem.

Theorem 4.4. There exist positive constants €, o and Cy depending only on My,
such that for all t € [0, T), we have

|il|2 < CO(H2+ 1)1—06—81‘/2.

5. A gradient estimate
We derive an estimate for |V H |? along the mean curvature flow. Firstly, the same
as Proposition 4.3 in [25], we have:

Lemma 5.1. There exists a positive constants C4 > 1 depending only on n, such that
d
5|VH|2 < A|VH> +C4(H*+ 1) |Vh|2.

Secondly, we need the following estimates.

Lemma 5.2. Along the mean curvature flow, we have

() 2H*> AH*— 12nH?|Vh|* + 2 HS,

(i) #1A1* < AlhP = §IVAIP + Cslhl*(H? + 1),
(i) 4 (H*A17) < AHP|RP) — §HP VAP + Co(H? + 12 |h > + C1| VI,
where Cs, Cg, C7 are sufficiently large constants.
Proof. (i) From Lemma 2.3, we derive that
%H4 = AH*— 12H?*|VHP? +4H*(|h> +n +9).

From Lemma 2.1, we have 12H?|VH|*> < 12n H?|Vh|?. Obviously, inequality (i)
holds.

(i1) We have
9 . . , , , ,
—|h|2 = A|h)> =2|VA|? + 2|k |h|> + 18|i|> = 2n|h|* + 128,.

From Lemma 2.1, we get |Vh|2 > |Vh|2 Choose a large constant Cs, we obtain
inequality (ii).
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(iii) It follows the evolution equation that

B . . . . .

5(H2|h|2) = A(H?|h*) —2(VH?, V|h|*) +4|h* H?|h|* = 2|h*|VH|?
—2H?|\Vh|?> +36H?|h|* + 128, H>.

From Lemma 2.1, we get —2H2|Vh|? < —%H2|Vh |?. From the preserved pinching
condition |}°z|2 < W, we have

Ah1PH?|h)? 436 H?|h)? < Co(H? + 1) |h)%.
Using Theorem 4.4, we have
—2(VH?, Vi) <8|H||VH||h||Vh| < 8ny/Co|H|(H* + 1)V,
By Young’s inequality, there exists a positive constant C7, such that
—2(VH?, V|h|*) < (C7+ tH?)| VA 4
Now we prove a gradient estimate for mean curvature.

Theorem 5.3. For any n € (0, \/¢ /47 n), there exists a number V(n) depending
only on n and My, such that

IVH|? < [(nH)* + W2 ()] e~*"/4,
Proof. Define a scalar function
f=(VHP+Bi|hl* + ByH?|h?) e* — (nH)*,

where B, B, are two positive constants.
From Lemmas 5.1 and 5.2, we obtain

d
——A
(5:-2)7
& ° °
= Z(IVHIZ + Bi|h|* + By H?|h|?) &%
0 o o 0
+ et/ (5 - A)(IVH|2 + Bi|h|> + ByH?|h*) — n* (5 — A) g*
& ° °
< = (IVH[*+ Bi|h|* + ByH?|h|?) '/*

+ e (Ca(H? + 1) [VA) + By (= IVAP + Cs(H2 + 1) [ ?)
+ Ba(—§ H2 VA + G| VP + Co(H? + 1))

4
— n4<—12nH2|Vh|2 + —H6>
n
B B
=H2|Vh|2[e”/4(c4—§) +24m74]+€”/4[|Vh|2(C4—?1+C7Bz)+Z|VH|2]

o 8 4 4
+eez/4|h|2[31c5(yz + 1)+ ByCo(H* + 1)* + 1B+ Bsz)] - %IHI‘S-
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Choose constants B and B,, such that C4 — % <—land Cq4— % +C7By < —1.
Then applying Theorem 4.4, we get

0 —et/4 2 2172 -0 4n* 6
(5-1) = A) f < By(H? + D (H? + )77 = =L HE .
n

Consider the expression in the bracket of (5-1). Since the coefficient of H 6 is
negative, it has a upper bound W;(n). Then we have (& — A) f < e */* Wy (n). It
follows from the maximum principle that f is bounded. This completes the proof
of Theorem 5.3. O

6. Convergence
In order to estimate the diameter of M,, we need the well-known Myers’s theorem:

Theorem 6.1 (Myers’s theorem). Let I" be a geodesic of length at least 7/~ K
on M. If the Ricci curvature satisfies Ric(X) > (n — 1) K for each unit vector
X € T, M, at any point x € I', then I has conjugate points.

Now we show that under the assumption of Theorem 1.2, the mean curvature
flow converges to a round point.

Theorem 6.2. If M satisfies |f°z|2 < @, then T < 0o and M; converges to a round
pointast — T.

Proof. Assume T = 0o. Let | H |imin () = mingy, |H|, |H|max(t) = maxy, |H|.

We claim that H?2-¢%/% is uniformly bounded on [0, c0). Suppose not, then there is
atime t such that | H |12nax(r) /8 > W/n?. By Theorem 5.3, for every small positive
number 7, there exists a positive number W, such that |VH| < [(nH)*>+ W]e /8,
Then we have |[VH| < 2n?|H |2, on M.

From Lemma 4.1 in [27], the sectional curvature K of M satisfies

n—1

1
6-1) K > §<2+—H2— |h|2>.
By Theorem 4.4, we obtain
1
K>32+——H*—Co(H*+ 1) e /2],
nn—1)

Hence, we can pick 7 large enough such that K > (1/2n?) H? on M,.

Let x be a point on M; where |H| achieves its maximum. Consider all the
geodesics of length at most (41| H |max) ™! starting from x. As |[VH?| < 4n?|H|3,..
we have

H? > |H 2 — 40 HI - (401 H max) ™ = (1= ) |H |
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along such geodesics. Since |VH| < 2n%|H|?,. and K > (1/2n?) H? on M., one

max
has |
K 2 2(1_n)|H|maX

along such geodesics provided

1
€ {0, min ﬁ .
32nn 4mn

By Myers’s theorem, these geodesics can reach any point of M;. This implies

H>>(1—-n)|H?, on M,.

Combining this inequality with |H |max(r) -8 > W/n? and Theorem 5.3, we get

IVH|)? < (nH)*+ H2. (T), t>1.

ﬁ min
From the evolution equation of H2, we have that for r > t
d 2 2, 2 g ] 4
(6-2) E_A H” > —-2|VH| +r_1H >;H _E|H|min(r)

for n > 0 sufficiently small. By the maximum principle, we get H> > |H |12nm(f)
for t > t. Then (6-2) yields

( 9 ) 2o L
——A)H* " >2—H", t>r.
ot ~ 2n
By the maximum principle, H2 blows up in finite time. This contradicts the infinity
of T. Therefore, we obtain H> < Ce~*/3 for t € [0, 0o) for a uniform positive
constant C. By Theorem 4.4, |h|? = |[h|* + 1|H|? < Ce™®'/® for 1 € [0, 00), which
implies that M, converges to a closed totally geodesic hypersurface My, as t — oo.
However, there is no closed totally geodesic hypersurface in QP" D74 see, e.g.,
Corollary 7.2 in [25]. Therefore, we get a contradiction, and hence T < oo.

So T is finite, and maxy, ||? blows up as t — T. From the preserved pinch-
ing condition, |H |max(¢) also blows up as t — T. By Theorem 5.3, for any
n € (0, /¢/4nm), there exists a positive number ¥ = W(n) > 1, such that

IVH| < (nH)*>+ WU fort €0, T).

Since | H |max () blows up as t — T, there exists a time 7; depending on 7, such that
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where ¢ > 0 is as in (4-1). Then we get |[VH| < 2n%|H|?
above, we obtain

fax on My, . Similarly as

(6_3) IHlmln = (1 - 77) |H|max on MT]'

By (4-1) and (6-1), one has K > E(SHZ —n) for all t € [0, T). Hence for small
n > 0, we have the following estimate at t = 7:

K > 1eH?+ {[e(1—n) |H|} 0 —2n] > 16 H? + § (6| H o — 4n) > 26| HI;

max max-*

This implies diam(My,) < 47/ (/€| H |max)-
Furthermore, by Theorem 5.3 and (6-3) one has that for ¢ > 1,

\VH* <2(mH)* +2W> <2H)* + {0t |H o (7)) <20 ED* + In* H |2 (7).

Hence for t > t1, we have

d 2 1 1
(6-4) (5 — A) H?>> 2|VH|* + ;H“ > ;H“ — %|H|ﬁm<n>

provided that n > 0 is sufficiently small. By the maximum principle, we get
H? > |H|2. (1)) for t > 7. Then (6-4) yields

——A|H —H*, t>1.
ot 2n

By the maximum principle, |H|2. (¢) is increasing on [z1, T). So

min

’ 1 ) v 4dn
|H 2o () = | HI 5 (1) > IHImm(ﬁ)?nglmaX(ﬁ) max 2 e

for all ¢ > 7, and for every > 0 sufficiently small. Hence |VH| < 2n*|H |maX

for all ¢+ > 7;. By a similar argument, we get |H|mm =>0—-n) |H|max for all n

sufficiently small and all # > ;. This implies |H |min/|H |max — 1 ast — T.
Since for ¢t > 1,

K > yeH* + §(s|H o — 4n) > e|HI;
we have A
diam(M,) < —————
VS Vel H max (1)

for all ¢ > ;. So diam(M;) — 0, and by a similar argument as in [10], M, shrinks
to a single point as t — T'.

Now we dilate the metric of the ambient space such that the hypersurface main-
tains its volume along the flow. Using the same method as in [19], we can prove
that the sequence of time-slices of rescaled flow corresponding to any sequence

max max?’

of times that tends to infinity has a subsequence that converges to a round sphere.
This proves that the limit point of the mean curvature flow is round. (]
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