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A NEW CONVERGENCE THEOREM
FOR MEAN CURVATURE FLOW OF HYPERSURFACES

IN QUATERNIONIC PROJECTIVE SPACES

SHIYANG LI, HONGWEI XU AND ENTAO ZHAO

We investigate the smooth convergence of the mean curvature flow of hy-
persurfaces in the quaternionic projective spaces. We prove that if the
initial hypersurface satisfies a new nonlinear curvature pinching condition,
then the mean curvature flow converges smoothly to a round point in finite
time. Our result improves a smooth convergence theorem due to Pipoli
and Sinestrari (2017).

1. Introduction

There are many famous geometric evolution equations, such as the Ricci flow,
the mean curvature flow and others. Huisken [9] studied the mean curvature flow
from the perspective of partial differential equations, and he proved that convex
hypersurface in the Euclidean space converges to a round point along the flow.
Afterwards, Huisken [10; 11] obtained convergence results for mean curvature flow
of convex hypersurfaces in Riemannian manifolds and pinched hypersurfaces in
spheres. Following the argument of Huisken [9], Andrews and Baker [1] proved a
convergence theorem for the mean curvature flow of closed submanifolds satisfying
a suitable pinching condition in the Euclidean space. Later, Baker [2], Liu et al. [20]
proved sharp convergence theorems for the mean curvature flow in the spheres
and the hyperbolic spaces, respectively. Liu, Xu and Zhao [19] studied the mean
curvature flow of arbitrary codimensional submanifolds in the Riemannian manifold
and proved a smooth convergence theorem. Lei and Xu [15] verified an optimal con-
vergence theorem for the mean curvature flow of submanifolds in hyperbolic spaces,
which implies the first optimal differentiable sphere theorem for submanifolds with
positive Ricci curvature. It should be remarked that an optimal topological sphere
theorem for complete submanifolds with positive Ricci curvature in a space form
with nonnegative curvature has been proved previously by Shiohama and Xu [26].
Lei and Xu [15] also proved sharp convergence theorems for the mean curvature
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flow of submanifolds in the sphere [13; 14], which also improve the convergence
theorems due to Huisken [10] and Baker [2]. See [16; 18; 21] for recent progress in
the smooth convergence theory for mean curvature flow of arbitrary codimensions.
As consequences of these smooth convergence theorems, the submanifolds satisfying
the initial curvature conditions are diffeomorphic to the standard sphere. We remark
that some of these differentiable sphere theorems are also proved by using the Ricci
flow, which has proven to be a very useful tool in understanding the topology of
Riemannian manifolds, see [3; 4; 6; 7; 8; 22; 23; 24; 27; 28].

Pipoli and Sinestrari [25] obtained a convergence theorem for mean curvature
flow of small codimension in the complex projective spaces. Later, Lei and Xu [17]
investigated the smooth convergence of mean curvature flow of arbitrary codi-
mensional submanifolds in the complex projective spaces, which improved and
extended the convergence theorem due to Pipoli and Sinestrari [25]. In this paper,
we investigate the mean curvature flow in the quaternionic projective spaces. We
mainly consider the codimension-one case.

Let M be an n-dimensional closed manifold, and let F : Mn
× [0, T ) → N n+1

be a one-parameter family of smooth hypersurfaces immersed in a Riemannian
manifold (N , h). We say that Mt = Ft(M) is a solution to the mean curvature flow
if Ft satisfies

(1-1)
{

∂
∂t F = −Hν,

F( · , 0) = F0( · ),

where Ft( · ) = F( · , t), H and ν are the mean curvature of M and the unit outward
normal vector of M respectively, such that H⃗ = −Hν is the mean curvature vector
of M .

Pipoli and Sinestrari [25] obtained a convergence theorem for the mean curvature
flow of hypersurfaces in the quaternionic projective spaces, and the proof is the
same as their convergence theorem for mean curvature flow of hypersurfaces in the
complex projective spaces.

Theorem 1.1 [25]. Let Mn (n ⩾ 11) be a closed real hypersurface in quaternionic
projective space QP(n+1)/4(4), and Mt be the mean curvature flow starting from M.
Assume that M satisfies the following pinching condition:

|h|
2 <

1
n − 1

H 2
+ 2.

Then the flow has a smooth solution on the maximal time interval [0, T ) with T <∞.
Moreover, the pinching condition is preserved and Mt collapses to a round point as
t → T .

We note that here and in the remaining part of the paper, n = 4m − 1 for m ⩾ 2.
The aim of the present paper is to prove the following refinement of Theorem 1.1.
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Theorem 1.2. Let Mn be an n(⩾ 7)-dimensional closed real hypersurface in quater-
nionic projective space QP(n+1)/4(4), and Mt be the mean curvature flow starting
from M. Assume that M satisfies the following pinching condition:

|h|
2 < ϕ(H 2).

Then the flow has a smooth solution on the maximal time interval [0, T ) with T <∞.
Moreover, the pinching condition is preserved and Mt collapses to a round point as
t → T .

In Theorem 1.2, ϕ(H 2) is given by

(1-2) ϕ(H 2) = 2 + an +

(
bn +

1
n − 1

)
H 2

−

√
b2

n H 4 + 2an bn H 2,

where

an =

√
8(n − 5)(n − 1) bn, bn = min

{
n − 5

8(n − 1)
,

2n − 5
(n + 2)(n − 1)

}
.

Remark 1.3. By a computation, we have ϕ(x)> x
n−1 +2 for x ⩾0. So, Theorem 1.2

is an improvement of Theorem 1.1. Furthermore, we have ϕ(x) ⩾ 4
√

n − 1 − 6 for
7 ⩽ n ⩽ 17, and ϕ(x) > 2 +

8
√

2
5

√
n − 5 for n ⩾ 18.

It is well known that QP1 is just the round sphere. By [11; 14], the similar
smooth convergence theorem holds for mean curvature flow of closed hypersurfaces
in QP1.

By Theorem 1.2, we have:

Corollary 1.4. Let Mn be an n(⩾ 7)-dimensional closed real hypersurface in
quaternionic projective space QP(n+1)/4(4). If |h|

2 < ϕ(H 2), then M is diffeomor-
phic to the standard sphere.

The rest of the paper is organized as follows. In Section 2, we introduce some
notations, formulas and basic equations in submanifold theory, and prove a gradient
inequality involving the second fundamental form and the mean curvature for
hypersurfaces in the quaternionic projective spaces. We also recall some evolution
equations along the mean curvature flow in this section. In Section 3, we show that
the pinching condition |h|

2 < ϕ(H 2) is preserved along the mean curvature flow.
We also derive an evolution inequality of

fσ =
|h̊|

2

(ϕ − H 2/n)1−σ
.

A pinching estimate for the traceless second fundamental form is obtained in
Section 4. We give an estimate of the gradient of the mean curvature in Section 5,
which is used to compare the mean curvature at different points. In Section 6, we
show that the hypersurface shrinks to a single round point in finite time.
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2. Notations and formulas

Let QPm be the m-dimensional quaternionic projective space with the Fubini–Study
metric gFS. Let Jk0 , k0 = 1, 2, 3 be complex structures on QPm . We denote by ∇

the Levi–Civita connection of (QPm, gFS). Since the Fubini–Study metric is a
Kähler metric, we have ∇ Jk0 = 0 for k0 = 1, 2, 3. The curvature tensor R of QPm

can be written as

R(X, Y, Z , W )

= ⟨X, Z⟩⟨Y, W ⟩ − ⟨X, W ⟩⟨Y, Z⟩

+

3∑
k0=1

(
⟨X, Jk0 Z⟩⟨Y, Jk0 W ⟩ − ⟨X, Jk0 W ⟩⟨Y, Jk0 Z⟩ + 2⟨X, Jk0Y ⟩⟨Z , Jk0 W ⟩

)
and Jk0 , k0 = 1, 2, 3 satisfies

J 2
k0

=− Id, J1 J2 =−J2 J1 = J3, J1 J3 =−J3 J1 =−J2, J2 J3 =−J2 J3 = J1.

Let (Mn, g) be an n-dimensional Riemannian submanifold in (QPm, gFS). Let q
be its codimension, i.e., n + q = 4m. At a point p ∈ M , let Tp M and Np M be the
tangent space and normal space, respectively. For a vector in Tp M ⊕ Np M , we
denote by ( · )T and ( · )N its projections onto Tp M and Np M , respectively. We
use the symbols ∇ and ∇

⊥ to represent the connections of tangent bundle TM
and normal bundle NM . Denote by 0(E) the space of smooth sections of a vector
bundle E . For X, Y ∈ 0(T M), ξ ∈ 0(NM), the connections ∇ and ∇

⊥ are given
by ∇X Y = (∇X Y )T and ∇

⊥

X ξ = (∇X ξ)N . The second fundamental form of M is
defined as h(X, Y ) = (∇X Y )N .

We mainly consider the codimension-one case. Throughout this paper, we shall
make the following convention on indices:

1 ⩽ A, B, C, · · · ⩽ n + 1, 1 ⩽ i, j, k, · · · ⩽ n.

We choose a local orthonormal frame {ei } for the tangent bundle and let ν = en+1

be the unit normal vector field. Denote by {ωi
} the dual frame of {ei }. Let h and H

denote the second fundamental form and the mean curvature given by

h =
∑
i, j

hi j ωi
⊗ ω j and H =

∑
i

hi i .

Let h̊ = h −
1
n Hg be the traceless second fundamental form. We have the relations

|h̊|
2
= |h|

2
−

1
n

H 2, |∇h̊|
2
= |∇h|

2
−

1
n
|∇ H |

2.

Setting J (k0)
AB = ⟨eA, Jk0eB⟩ for k0 = 1, 2, 3, we have

J (k0)
AB = −J (k0)

B A ,
∑
B

J (k0)
AB J (k0)

BC = J (k0)
AC ,

∑
B

J (1)
AB J (2)

BC = J (3)
AC .
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Similarly, we have ∑
B

J (1)
AB J (3)

BC = −J (2)
AC ,

∑
B

J (2)
AB J (3)

BC = J (1)
AC .

Also, J (k0)
AA = 0 for any A and k0.

Let hi jk and Hi denote the components of ∇h and ∇H , the covariant differenti-
ations of h and H , respectively. We have the following sharp gradient inequality
(see Remark 2.2).

Lemma 2.1. For a hypersurface in QP(n+1)/4, we have

|∇h|
2 ⩾ 3

n+2
|∇ H |

2
+ 6(n − 3).

Proof. Set S =
∑

Si jk ωi
⊗ω j

⊗ωk , where Si jk =
1
3(hi jk + h jki + hki j ). Then Si jk

is totally symmetric for i, j, k. Using the same technique as in Lemma 2.2 in [9],
we have

|S|
2 ⩾ 3

n+2

∑
i

(∑
k

Skki

)2
.

By the Codazzi equation, we have∑
k

Skki =
1
3

∑
k

(hikk + hkki + hkik)

=
1
3

∑
k

(hkki + 2hkik)

=
1
3

∑
k

(hkki + 2hkki − 2Rn+1kik) = Hi −
2
3

∑
k

Rn+1kik .

As
Rn+1kik =

3∑
k0=1

(J (k0)
n+1i J (k0)

kk − J (k0)
n+1k J (k0)

ki + 2J (k0)
n+1k J (k0)

ik ),

one has

−
2
3

∑
k

Rn+1kik = −
2
3

∑
k

3∑
k0=1

(J (k0)
n+1i J (k0)

kk − J (k0)
n+1k J (k0)

ki + 2J (k0)
n+1k J (k0)

ik )

= −
2
3

∑
k

3∑
k0=1

(−J (k0)
n+1k J (k0)

ki − 2J (k0)
n+1k J (k0)

ki )

= 2
3∑

k0=1

∑
k

(J (k0)
n+1k J (k0)

ki ).

Then we get ∑
k

Skki = Hi + 2
3∑

k0=1

∑
k

(J (k0)
n+1k J (k0)

ki ).

This implies(∑
k

Skki

)2
= (Hi )

2
+ 4

3∑
k0=1

∑
k

Hi (J (k0)
n+1k J (k0)

ki ) + 4
[ 3∑

k0=1

∑
k

(J (k0)
n+1k J (k0)

ki )
]2

.
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Since

4
3∑

k0=1

[∑
i,k

Hi J (k0)
n+1k J (k0)

ki

]
+ 4

∑
i

[ 3∑
k0=1

∑
k

J (k0)
n+1k J (k0)

ki

]2

= 4
3∑

k0=1

[∑
i

Hi
∑
A

J (k0)
n+1A J (k0)

Ai

]
+ 4

∑
i

[ 3∑
k0=1

∑
A

J (k0)
n+1A J (k0)

Ai

]2

= 4
3∑

k0=1

[∑
i

Hi δn+1i

]
+ 4

∑
i

[ 3∑
k0=1

δn+1i

]2
= 0,

one has

(2-1) |S|
2 ⩾ 3

n+2
|∇ H |

2.

On the other hand, by the Codazzi equation, we have

|S|
2
=

∑
(Si jk)

2
=

1
9

∑
(hikk + hkki + hkik)

2

=
1
3

∑
(hi jk)

2
+

2
3

∑
hi jk hik j

=
1
3

∑
(hi jk)

2
+

2
3

∑
hi jk(hi jk + Rn+1i jk)

=
∑

(hi jk)
2
+

2
3

∑
Rn+1 jki Rn+1i jk

= |∇h|
2
+

2
3

∑
Rn+1 jki Rn+1i jk .

Since

R ABC D = δAC δB D − δAD δBC +

3∑
k0=1

(J (k0)
AC J (k0)

B D − J (k0)
AD J (k0)

BC + 2J (k0)
AB J (k0)

C D ),

one has∑
Rn+1 jki Rn+1i jk =

∑
i, j,k

[ 3∑
k0=1

(J (k0)
n+1k J (k0)

j i − J (k0)
n+1i J (k0)

jk + 2J (k0)
n+1 j J (k0)

ki )
]

×

[ 3∑
l0=1

(J (l0)
n+1 j J (l0)

ik − J (l0)
n+1k J (l0)

i j + 2J (l0)
n+1i J (l0)

jk )
]
.

For each k0, according to the special property of matrix (J (k0)
AB ), by direct com-

putation we have∑
k

(J (k0)
n+1k)

2
= −

∑
k

J (k0)
n+1k J (k0)

kn+1 = −
∑
A

J (k0)
n+1A J (k0)

An+1 = δ(n+1)(n+1) = 1,

and ∑
k

J (k0)
n+1k J (l0)

Bk = −
∑
k

J (k0)
n+1k J (l0)

k B = −
∑
A

J (k0)
n+1A J (l0)

AB = ±J ( j0)
n+1B,

where ± depends on j0, k0, l0. By some computations, we obtain∑
Rn+1 jki Rn+1i jk = −9(n − 3).

Hence
|S|

2
= |∇h|

2
+

2
3(−9(n − 3)) = |∇h|

2
− 6(n − 3).
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Combining this with (2-1) implies

|∇h|
2 ⩾ 3

n+2
|∇ H |

2
+ 6(n − 3). □

Remark 2.2. For hypersurface M4m−1 in QPm , one has

|∇h|
2 ⩾ 3

4m+1
|∇ H |

2
+ 24(m − 1).

In particular, one has |∇h|
2 ⩾ 24(m − 1), which has been proved previously by

Dong [5]. Dong also proved that a real hypersurface satisfying |∇h|
2
= 24(m−1) is

one of the generalized equators M Q
p,q . See, e.g., [5; 12] for the detailed construction

of generalized equators. From this we see that our gradient inequality is sharp.

Let F : M ×[0, T ) → QP(n+1)/4 be a mean curvature flow of hypersurface in the
quaternionic projective space QP(n+1)/4. Set Mt = Ft(M), where Ft( · ) = F( · , t).
Following [1; 25], we have the evolution equations.

Lemma 2.3. For mean curvature flow F : M × [0, T ) → QP(n+1)/4, we have

∂

∂t
|h|

2
= 1|h|

2
− 2|∇h|

2
− 2n|h|

2
+ 2|h|

4
+ 18|h|

2
+ 4H 2

+ 12S1,

∂

∂t
H 2

= 1H 2
− 2|∇ H |

2
+ 2H 2(|h|

2
+ n + 9),

where
S1 =

3∑
k0=1

∑
i, j,k,l

(h̊i j h̊kl J (k0)
il J (k0)

jk − h̊ik h̊ jk J (k0)
il J (k0)

jl ).

To do computations involving (J (k0)
AB ) for k0 = 1, 2, 3, the following well-known

property of skew-symmetric matrix will be important.

Proposition 2.4. Let A be a real skew-symmetric matrix. Then there exists an
orthogonal matrix C , such that C−1 AC takes the following form:

(2-2)



0 λ1

−λ1 0
0 λ3

−λ3 0
0 λ5

−λ5 0
. . .

. . .


.

We use a notation

ĩ =

{
i + 1, i is odd,

i − 1, i is even.

If a matrix (ai j ) takes the form as (2-2), then ai j = 0, for all j ̸= ĩ .
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3. Preservation of curvature pinching

For each fixed k0 ∈ {1, 2, 3}, we choose a local orthonormal frame {ei } such that
the matrix (J (k0)

i j ) takes the form of (2-2). In fact, let {ϵ1, . . . , ϵn, ϵn+1} be a local
orthonormal frame on QP(n+1)/4 such that ϵ1, . . . , ϵn are tangent to M and ϵn+1 is
normal to M . Let J̃ (k0)

AB = ⟨ϵA, J (k0)ϵB⟩. Since ( J̃i j )n×n is antisymmetric and n is
odd, there is an orthonormal matrix C = (ci j )n×n , where ci j ’s are local functions,
such that

(c−1
i j J̃ (k0)

jk ckl)n×n =


0 λ1

−λ1 0
. . .

0

.

Here (c−1
i j )n×n = (ci j )

−1
n×n . Set ei =

∑n
j=1 c−1

i j ϵ j , en+1 = ϵn+1. Then

J (k0)
i j = ⟨ei , J (k0) e j ⟩

=

〈∑
k

c−1
ik ϵk, J (k0)

(∑
l

c−1
jl ϵl

)〉
=

∑
k,l

c−1
ik J̃ (k0)

kl c−1
jl =

∑
k,l

c−1
ik J̃ (k0)

kl cl j .

This implies

(J (k0)
i j )n×n =


0 λ1

−λ1 0
. . .

0

.

Thus we have∑
i, j,k,l

(h̊i j h̊kl J (k0)
il J (k0)

jk − h̊ik h̊k j J (k0)
il J (k0)

jl ) =
∑
i,k

(
−h̊i k̃ h̊kĩ J (k0)

i ĩ
J (k0)

kk̃
− (h̊ ĩ k J (k0)

i ĩ
)2)

= −
1
2

∑
i,k

(h̊ ĩ k J (k0)

i ĩ
+ h̊i k̃ J (k0)

kk̃
)2

⩽ 0.

Therefore,

S1 =

3∑
k0=1

[ ∑
i, j,k,l

(h̊i j h̊kl J (k0)
il J (k0)

jk − h̊ik h̊ jk J (k0)
il J (k0)

jl )
]
⩽ 0.

So we get from Lemma 2.3 that

(3-1) ∂

∂t
|h̊|

2 ⩽ 1|h̊|
2
− 2|∇h̊|

2
+ 2|h̊|

2(|h|
2
− n + 9).

For a real number ε ∈ (0, 1), by the definition of ϕ, we define ϕε : [0, +∞) → R by

(3-2) ϕε(x) = dε + cε x −

√
b2x2 + 2abx + e,

where a =
√

8(n − 5)(n − 1) b, b = min
{ n−5

8(n−1)
, 2n−5

(n+2)(n−1)

}
, cε = b +

1
n−1+ε

,
dε = 2 − 2ε + a, e =

√
ε. We define ϕ = ϕ0.
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Lemma 3.1. The function ϕ has the following property.

(i) x
n−1 + 2 < ϕ(x) < x

n−1 + n,

(ii) ϕ(x) > 4
√

n − 1−6 if n = 7, 11, 15 and ϕ(x) > 2+
8
√

2
5

√
n − 5 if n = 4m −1,

m ⩾ 5.

Proof. By direct computations, we get

ϕ′(x) = c0 −
bx + a√

x2 + 2ax/b
, ϕ′′(x) =

a2

b(x2 + 2ax/b)3/2 .

Since
(
ϕ(x)−

x
n−1

)′′
= ϕ(x)′′ > 0 and limx→∞ ϕ′(x) =

1
n−1 , we have ϕ′(x) < 1

n−1 .
Hence we get

2 = lim
x→∞

(
ϕ(x) −

x
n − 1

)
< ϕ(x) −

x
n − 1

⩽ ϕ(0) = 2 + a < n.

We figure out that

min
x⩾0

ϕ(x) = ϕ

(
ac0

b
√

c2
0 − b2

−
a
b

)
= d0 −

ac0

b
+

a
b

√
c2

0 − b2.

If n = 7, 11, 15, we have minx⩾0 ϕ(x) = 4
√

n − 1 − 6. If n = 4m − 1, m ⩾ 5, then
we have

min
x⩾0

ϕ(x) = 2 +

√
8(n − 5)

2n − 5
(
√

5n − 8 −
√

n + 2) > 2 +
8
√

2
5

√
n − 5. □

Let ϕ̊ε = ϕε −
1
n x . We will prove the following lemma.

Lemma 3.2. For sufficiently small ε, the function ϕ̊ε satisfies

(i) ϕ̊′
ε + 2x ϕ̊′′

ε < 2(n−1)
n(n+2)

,

(ii) ϕ̊ε(x)(ϕε(x) − n + 9) − x ϕ̊′
ε(x)(ϕε(x) + n + 9) < 6(n − 3),

(iii) ϕ̊ε(x) − x ϕ̊′
ε(x) > 1.

Proof. By direct computations, we have

ϕ̊′

ε = cε −
1
n

−
b2x + ab

√
b2x2 + 2abx + e

,

ϕ̊′′

ε =
(b2x + ab)2

− b2(b2x2
+ 2abx + e)

(b2x2 + 2abx + e)3/2 ,

ϕ̊′′′

ε = −
3b3(a2

− e)(bx + a)

(b2x2 + 2abx + e)5/2 .
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Then we have

ϕ̊′

ε + 2x ϕ̊′′

ε = cε −
1
n

−
b3x2(bx + 3a) + eb(3bx + a)

(b2x2 + 2abx + e)3/2

< b +
1

n − 1 + ε
−

1
n

<
2(n − 1)

n(n + 2)
,

as b = min
{ n−5

8(n−1)
, 2n−5

(n+2)(n−1)

}
, so we get the inequality (i).

Setting
f (x) = ϕ̊ε(ϕε − n + 9) − x ϕ̊′

ε(ϕε + n + 9).

Then
f (x) = dε(dε −n +9)+eε + (2+ab+cε(dε −2n)) x

− (b2x2
+2abx +e)−1/2

×
[
b((dε −2n) b+ac) x2

+ (3(dε −n +3) ab+ec) x +e(2dε −n +9)
]
.

Then for ε small enough we get

lim
x→+∞

f (x) =
a2cε

b
+ dε(dε − n + 9)+ a(n − 2dε − 9)+ e

(
1 −

cε

b

)
= 6(n − 3)+

2ε(n2
− (18 − 3ε) n + 33 − 15ε + 2ε2)

n − 1 + ε
+ e

(
1 −

cε

b

)
= 6(n − 3)+

2ε(n2
− (18 − 3ε) n + 33 − 15ε + 2ε2)

n − 1 + ε
−

√
ε

(n − 1 + ε) b
< 6(n − 3),

and

f ′(x)

= 2 + ab + cε(dε − 2n)

−
1

(b2x2 + 2abx + e)3/2

[
b3((dε −2n) b +acε) x3

+3ab2((dε −2n) b +acε) x2

+ [3a2b2(dε − n + 3) − 3eb2(n + 3) + 3abcε e] x
+ eab(dε − 2n) + e2cε

]
.

Then we have

lim
x→+∞

f ′(x) = 2 + ab + cε(dε − 2n) − (acε + b(dε − 2n)) = 0

and

f ′′(x) =
3b2(a2

− e)
(b2x2 + 2abx + e)5/2

×
[
b(b(dε + 6) − acε) x2

+ (ab(dε − n + 3) − ecε) x − e(n + 3)
]
.

For b = min
{ n−5

8(n−1)
, 2n−5

(n+2)(n−1)

}
, we obtain

b(dε + 6) − acε < 0 and ab(dε − n + 3) − ecε < 0.
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So f ′′(x) < 0. Then we have f ′(x) > 0. From this we deduce that

f (x) < lim
x→+∞

f (x) < 6(n − 3).

Thus, inequality (ii) is proved.
We have

ϕ̊ε − x ϕ̊′

ε = dε −
abx + e

√
b2x2 + 2abx + e

> dε −
abx

√
b2x2

−
e

√
e

= 2 − 2ε −
4
√

ε.

This implies inequality (iii). □

Suppose that M0 is an n(⩾ 7)-dimensional closed hypersurface in QP(n+1)/4

satisfying |h|
2 < ϕ(H 2). Let

F : Mn
× [0, T ) → QP(n+1)/4

be a mean curvature flow with initial value M0. We will show that the pinching
condition is preserved along the flow. For convenience, we denote ϕ̊ε(H 2), ϕ̊′

ε(H 2),
ϕ̊′′

ε (H 2) by ϕ̊ε, ϕ̊′
ε, ϕ̊′′

ε , respectively.

Theorem 3.3. If the initial value M0 satisfies |h|
2 <ϕ(H 2), then there exists a small

positive number ε, such that for all t ∈ [0, T ), we have |h|
2 < ϕ(H 2) − εH 2

− ε.

Proof. Since M0 is closed, there exists a small positive number ε1, such that M0

satisfies |h̊|
2 < ϕ̊ε1 .

From Lemma 3.2(i), we have

(3-3)
(

∂

∂t
− 1

)
ϕ̊ε1 = −2(ϕ̊′

ε1
+ 2H 2

· ϕ̊′′

ε1
)|∇ H |

2
+ 2H 2

· ϕ̊′

ε1
(ϕε1 + n + 9)

⩾ −
4(n − 1)

n(n + 2)
|∇ H |

2
+ 2H 2

· ϕ̊′

ε1
(ϕε1 + n + 9).

Let U = |h̊|
2
− ϕ̊ε1 . We get

1
2

(
∂

∂t
− 1

)
U

⩽ −|∇h̊|
2
+

2(n − 1)

n(n + 2)
|∇ H |

2
+ |h̊|

2(|h|
2
− n + 9) − H 2

· ϕ̊′

ε1
(|h|

2
+ n + 9).

By Lemma 2.1, we have

−|∇ h̊|
2
+

2(n − 1)

n(n + 2)
|∇ H |

2 < −6(n − 3).

At the point where U = 0, we get

1
2

(
∂

∂t
− 1

)
U ⩽ −6(n − 3) + ϕ̊ε1(ϕε1 − n + 9) − H 2

· ϕ̊′

ε1
(ϕε1 + n + 9) < 0.
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Applying the maximum principle, we obtain U < 0 for all t ∈ [0, T ). Choose a
suitable small positive number ε, we complete the proof of Theorem 3.3. □

Let

fσ =
|h̊|

2

(ϕ̊)1−σ
,

where σ ∈ (0, ε2) is a positive constant. The following lemma is very useful for
deriving the pinching estimate for |h̊|

2.

Lemma 3.4. If M0 satisfies |h|
2 < ϕ(H 2), then there exists a small positive num-

ber ε, such that the following inequality holds along the mean curvature flow:

∂

∂t
fσ ⩽ 1 fσ +

2
ϕ̊

|∇ fσ | |∇ϕ̊| −
2ε fσ
n|h̊|2

|∇ h̊|
2
+ 2σ |h|

2 fσ −
ε

n
fσ .

Proof. By a straightforward computation, we have(
∂

∂t
− 1

)
fσ = fσ

[
1

|h̊|2

(
∂

∂t
− 1

)
|h̊|

2
−

1 − σ

ϕ̊

(
∂

∂t
− 1

)
ϕ̊

]
+ 2(1 − σ)

⟨∇ fσ , ∇ϕ̊⟩

ϕ̊
− σ(1 − σ) fσ

|∇ϕ̊|
2

|ϕ̊|2
.

Using (3-1) and (3-3), we have

(3-4)
(

∂

∂t
− 1

)
fσ ⩽ 2 fσ

[
−

|∇ h̊|
2

|h̊|2
+

2(n − 1)

n(n + 2)

|∇ H |
2

ϕ̊

]
+ 2 fσ

[
|h|

2
+ 9 − n − (1 − σ)

H 2
· ϕ̊′

ϕ̊
(|h|

2
+ n + 9)

]
+

2
ϕ̊

|∇ fσ | |∇ϕ̊|.

From Lemma 3.2 and Theorem 3.3, we have

−
|∇h̊|

2

|h̊|2
+

2(n − 1)

n(n + 2)

|∇ H |
2

ϕ̊
⩽ −

|∇h̊|
2

|h̊|2
+

|∇ h̊|
2
− 6(n − 3)

ϕ̊

⩽
|h̊|

2
− ϕ̊

|h̊|2ϕ̊
|∇ h̊|

2
−

6(n − 3)

ϕ̊

⩽ −ε
|H |

2
+ 1

|h̊|2ϕ̊
|∇h̊|

2
−

6(n − 3)

ϕ̊

⩽ −
ε

n|h̊|2
|∇ h̊|

2
−

6(n − 3)

ϕ̊
.
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From (ii) and (iii) of Lemma 3.2, we have

|h|
2
+ 9 − n − (1 − σ)

H 2
· ϕ̊′

ϕ̊
(|h|

2
+ n + 9)

=
1 − σ

ϕ̊
[(ϕ̊ − H 2

· ϕ̊′)|h|
2
− H 2

· ϕ̊′(n + 9)] − n + 9 + σ |h|
2

⩽
1 − σ

ϕ̊
[(ϕ̊ − H 2

· ϕ̊′)(ϕ − εH 2
− ε) − H 2

· ϕ̊′(n + 9)] − n + 9 + σ |h|
2

=
1 − σ

ϕ̊
[(ϕ̊ − H 2

· ϕ̊′)ϕ − H 2
· ϕ̊′(n + 9)] − n + 9 + σ |h|

2

−
(1 − σ) ε

ϕ̊
(ϕ̊ − H 2

· ϕ̊′)(H 2
+ 1)

⩽ (1 − σ)

[
n − 9 +

6(n − 3)

ϕ̊

]
− n + 9 + σ |h|

2
−

(1 − σ) ε

ϕ̊
(H 2

+ 1)

⩽ σ |h|
2
+

6(n − 3)

ϕ̊
−

ε

2n
.

Inserting these two estimates into (3-4) will complete the proof. □

4. An estimate for traceless second fundamental form

Suppose that the initial value M0 satisfies the condition in Theorem 1.2. For
convenience, we put W = ϕ̊. By the conclusion of the previous section, there exists
a sufficiently small positive number ε, such that for all t ∈ [0, T ), the following
pinching condition holds:

(4-1) |h̊|
2 < W − εH 2.

From this inequality and the definition of W , we have W < H2

n(n−1)
+ n.

We consider the auxiliary function

fσ =
|h̊|

2

W 1−σ
.

In this section, we will show that fσ decays exponentially.

Lemma 4.1. There exist positive numbers ε and C1 depending only on M0, such that

(4-2)
∂

∂t
fσ ⩽ 1 fσ +

2C1

|h̊|
|∇ fσ | |∇h̊| −

ε fσ
n|h̊|2

|∇h̊|
2
+ 2σ |h|

2 fσ −
ε

n
fσ .

Proof. According to Lemma 3.4, we have the following inequality with some
suitable small ε > 0:

∂

∂t
fσ ⩽ 1 fσ +

2
W

|∇ fσ | |∇W | −
2ε fσ
n|h̊|2

|∇ h̊|
2
+ 2σ |h|

2 fσ −
ε

n
fσ .
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By the definition of W , there exists a constant B1, such that |∇W | < B1|∇ H 2
|

and |H | < B1
√

W . Let C1 be a constant such that 2B2
1 |∇ H | ⩽ C1|∇h̊|. From

Lemma 2.1, we have

(4-3)
|∇W |

W
⩽

2B1|H | |∇H |
√

W |h̊|
⩽

2B2
1 |∇ H |

|h̊|
⩽

C1|∇h̊|

|h̊|
. □

We need the following estimate for the Laplacian of |h̊|
2.

Lemma 4.2. 1|h̊|
2 ⩾ 2⟨h̊, ∇2 H⟩ + 2|h̊|

2(ε|h|
2
− 2n2) − 18|h̊| |H |.

Proof. We have

1|h̊|
2
= 2|∇ h̊|

2
+ 2h̊ · 1h̊ = 2|∇ h̊|

2
+ 2

∑
i, j

h̊i j · 1hi j

and∑
i, j

h̊i j · 1hi j = ⟨h̊, ∇2 H⟩ +
∑

i,p, j
Hhi p h pj hi j − |h|

4

+ 3H
∑
i, j

3∑
k0=1

J (k0)
in+1 J (k0)

jn+1 h̊i j − (n + 9)|h̊|
2
+ 2n|h̊|

2
− 6S1

⩾ ⟨h̊, ∇2 H⟩ +
∑

i,p, j
Hhi ph pj hi j − |h|

4
+ (n − 9)|h̊|

2
− 9|h̊| |H |.

It follows from the proof of the Lemma 4.2 in [17], we choose a local orthonormal
frame such that

H = |H | en+1 and h̊ = diag{λ̊1, . . . , λ̊n}.

So we have∑
i,p, j

Hhi p h pj hi j − |h|
4

= H
∑

i
λ̊3

i +
1
n

H 2
|h̊|

2
− |h̊|

4

⩾ −|H |
n − 2

√
n(n − 1)

|h̊|
3
+

1
n

H 2
|h̊|

2
− |h̊|

4

= |h̊|
2
(

1
n

H 2
− |h̊|

2
−

n − 2
√

n(n − 1)
|h̊| |H |

)
⩾ |h̊|

2
[

1
n

H 2
−

(
H 2

n(n − 1)
+ n − εH 2

)
− (n − 2)

(
H 2

n(n − 1)
+ n

)]
= |h̊|

2(εH 2
− n(n − 1))

> |h̊|
2(ε|h|

2
− n2),

where we have used |h̊|
2 < W − εH 2 and W < H2

n(n−1)
+ n. □
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From (4-3) and Lemma 4.2, we have

1 fσ = fσ

(
1|h̊|

2

|h̊|2
−(1−σ)

1W
W

)
−2(1−σ)

⟨∇ fσ , ∇W ⟩

W
+σ(1−σ) fσ

|∇W |
2

W 2

⩾ fσ
1|h̊|

2

|h̊|2
−(1−σ) fσ

1W
W

−
2C1|∇ fσ | |∇h̊|

|h̊|

⩾
2⟨h̊,∇2 H⟩

W̊ 1–σ
+2 fσ (ε|h|

2 –2n2)–(1–σ)
fσ1W

W
–

2C1|∇ fσ ||∇ h̊|

|h̊|
–

18 fσ |H |

|h̊|
.

Multiplying both sides of the above inequality by f p−1
σ , we get

(4-4) 2ε f p
σ |h|

2 ⩽ f p−1
σ 1 fσ + (1 − σ)

f p
σ 1W

W
−

2 f p−1
σ ⟨h̊, ∇2 H⟩

W 1−σ

+
2C1 f p−1

σ |∇ fσ | |∇h̊|

|h̊|
+ 4n2 f p

σ +
18 fσ |H |

|h̊|
.

Then integrate both sides of (4-4) over Mt . By the divergence theorem, we get

(4-5)
∫

Mt

f p−1
σ 1 fσ dµt = −(p − 1)

∫
Mt

f p−2
σ |∇ fσ |

2 dµt .

From (4-4), we have

(4-6)
∫

Mt

f p
σ

W
1W dµt = −

∫
Mt

〈
∇

(
f p
σ

W

)
, ∇W

〉
dµt

=

∫
Mt

(
−

p f p−1
σ

W
⟨∇ fσ , ∇W ⟩ +

f p
σ

W 2 |∇W |
2
)

dµt

⩽
∫

Mt

(
C1 p f p−1

σ

|h̊|
|∇ fσ | |∇h̊| +

C2
1 f p

σ

|h̊|2
|∇h̊|

2
)

dµt .

We also have

−

∫
Mt

f p−1
σ ⟨h̊, ∇2 H⟩

W 1−σ
dµt(4-7)

=

∫
Mt

∇i

(
f p−1
σ

W 1−σ
h̊i j

)
∇ j H dµt

=

∫
Mt

[
(p–1) f p−2

σ

W 1−σ
h̊i j∇i fσ –

(1–σ) f p−1
σ

W 2−σ
h̊i j∇i W+

f p−1
σ

W 1−σ
∇i h̊i j

]
∇ j H dµt

⩽
∫

Mt

[
(p − 1) f p−1

σ

|h̊|
|∇ fσ | +

f p−1
σ

W 2−σ
|h̊| |∇W | +

f p−1
σ

W 1−σ
n|∇h̊|

]
|∇ H | dµt
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⩽
∫

Mt

[
(p − 1) f p−1

σ

|h̊|
|∇ fσ | +

C1 f p−1
σ

W 1−σ
|∇h̊| +

f p−1
σ

W 1−σ
n|∇ h̊|

]
n|∇h̊| dµt

⩽
∫

Mt

[
n(p − 1) f p−1

σ

|h̊|
|∇ fσ | |∇h̊| +

(C1n + n2) f p
σ

|h̊|2
|∇h̊|

2
]

dµt .

Putting (4-4)–(4-7) together, we get∫
Mt

|h|
2 f p

σ dµt ⩽ C2

∫
Mt

[
p f p−1

σ

|h̊|
|∇ fσ | |∇h̊| +

f p
σ

|h̊|2
|∇ h̊|

2
+ f p

σ +
f p
σ |H |

|h̊|

]
dµt ,

where C2 is a positive constant depending only on M0.
Combining Lemma 4.2 and (4-2), we get

(4-8)
∂

∂t

∫
Mt

f p
σ dµt

= p
∫

Mt

f p−1
σ

∂

∂t
fσ dµt −

∫
Mt

f p
σ H 2 dµt

⩽ p
∫

Mt

f p−2
σ

[
−(p − 1)|∇ fσ |

2
+ (2C1 + 2σC2 p)

fσ
|h̊|

|∇ fσ | |∇h̊|

−

(
ε

2n
− 2σC2

)
f 2
σ

|h̊|2
|∇h̊|

2
]

dµt

− p
∫

Mt

f p
σ

(
ε

n
−2σC2+

6(n − 3) ε

2n|h̊|2
−

2σC2|H |

|h̊|
+

|H |
2

p

)
dµt .

Now we will show that the L p-form of fσ decays exponentially.

Lemma 4.3. There exist positive constants C3, p0, σ0 depending only on M0, such
that for all p ⩾ p0 and σ ⩽ σ0/

√
p, we have(∫

Mt

f p
σ dµt

)1/p

< C3 e−εt .

Proof. The expression in the square bracket of the right side of (4-8) is a quadratic
polynomial. With p0 large enough and σ0 small enough, its discriminant satisfies

(2C1 + 2σC2 p)2
− 4(p − 1)

(
ε

2n
− 2σC2

)
< 0 and 12ε

7
⩾ pσ 2C2

2 .

We have

ε

n
− 2σC2 +

6(n − 3) ε

2n|h̊|2
−

2σC2|H |

|h̊|
+

|H |
2

p
⩾

ε

n
− 2σC2 +

12ε

7|h̊|2
−

pσ 2C2
2

|h̊|2

⩾
ε

n
− 2σC2 >

ε

2n
.
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Here we have used the inequality ε
2n − 2σC2 > 0, which is implied by the choices

of p0 and σ0. Then we get

d
dt

∫
Mt

f p
σ dµt ⩽ −

pε

2n

∫
Mt

f p
σ dµt .

So we get
∫

Mt
f p
σ dµt ⩽ e−pε/2n

∫
M0

f p
σ dµ0, which completes the proof. □

Let gσ = fσ eεt/2. By the Sobolev inequality on submanifolds and a Stampacchia
iteration procedure, we obtain that gσ is uniformly bounded for all t (see [9] or [14]
for the details). Then we obtain the following theorem.

Theorem 4.4. There exist positive constants ε, σ and C0 depending only on M0,
such that for all t ∈ [0, T ), we have

|h̊|
2 ⩽ C0(H 2

+ 1)1−σ e−εt/2.

5. A gradient estimate

We derive an estimate for |∇ H |
2 along the mean curvature flow. Firstly, the same

as Proposition 4.3 in [25], we have:

Lemma 5.1. There exists a positive constants C4 > 1 depending only on n, such that

∂

∂t
|∇ H |

2 ⩽ 1|∇ H |
2
+ C4(H 2

+ 1) |∇h|
2.

Secondly, we need the following estimates.

Lemma 5.2. Along the mean curvature flow, we have

(i) ∂
∂t H 4 ⩾ 1H 4

− 12nH 2
|∇h|

2
+

4
n H 6,

(ii) ∂
∂t |h̊|

2 ⩽ 1|h̊|
2
−

1
3 |∇h|

2
+ C5|h̊|

2(H 2
+ 1),

(iii) ∂
∂t (H 2

|h̊|
2) ⩽ 1(H 2

|h̊|
2) −

1
6 H 2

|∇h|
2
+ C6(H 2

+ 1)2
|h̊|

2
+ C7|∇h|

2,

where C5, C6, C7 are sufficiently large constants.

Proof. (i) From Lemma 2.3, we derive that

∂

∂t
H 4

= 1H 4
− 12H 2

|∇ H |
2
+ 4H 4(|h|

2
+ n + 9).

From Lemma 2.1, we have 12H 2
|∇ H |

2 ⩽ 12nH 2
|∇h|

2. Obviously, inequality (i)
holds.

(ii) We have

∂

∂t
|h̊|

2
= 1|h̊|

2
− 2|∇h̊|

2
+ 2|h|

2
|h̊|

2
+ 18|h̊|

2
− 2n|h̊|

2
+ 12S1.

From Lemma 2.1, we get |∇h̊|
2 ⩾ 1

6 |∇h|
2. Choose a large constant C5, we obtain

inequality (ii).
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(iii) It follows the evolution equation that

∂

∂t
(H 2

|h̊|
2) = 1(H 2

|h̊|
2) − 2⟨∇ H 2, ∇|h̊|

2
⟩ + 4|h̊|

2 H 2
|h|

2
− 2|h̊|

2
|∇ H |

2

− 2H 2
|∇h̊|

2
+ 36H 2

|h̊|
2
+ 12S1 H 2.

From Lemma 2.1, we get −2H 2
|∇h̊|

2 ⩽−
1
3 H 2

|∇h|
2. From the preserved pinching

condition |h̊|
2 < W , we have

4|h̊|
2 H 2

|h|
2
+ 36H 2

|h̊|
2 ⩽ C6(H 2

+ 1)2
|h̊|

2.

Using Theorem 4.4, we have

−2⟨∇ H 2, ∇|h̊|
2
⟩ ⩽ 8|H | |∇H | |h̊| |∇h| ⩽ 8n

√
C0 |H |(H 2

+ 1)(1−σ)/2
|∇h|

2.

By Young’s inequality, there exists a positive constant C7, such that

−2⟨∇ H 2, ∇|h̊|
2
⟩ ⩽

(
C7 +

1
6 H 2)

|∇h|
2. □

Now we prove a gradient estimate for mean curvature.

Theorem 5.3. For any η ∈ (0,
√

ε/4πn), there exists a number 9(η) depending
only on η and M0, such that

|∇ H |
2 < [(ηH)4

+ 92(η)] e−εt/4.

Proof. Define a scalar function

f = (|∇ H |
2
+ B1|h̊|

2
+ B2 H 2

|h̊|
2) eεt/4

− (ηH)4,

where B1, B2 are two positive constants.
From Lemmas 5.1 and 5.2, we obtain(
∂

∂t
− 1

)
f

=
ε

4
(|∇ H |

2
+ B1|h̊|

2
+ B2 H 2

|h̊|
2) eεt/4

+ eεt/4
(

∂

∂t
− 1

)
(|∇ H |

2
+ B1|h̊|

2
+ B2 H 2

|h̊|
2) − η4

(
∂

∂t
− 1

)
H 4

⩽
ε

4
(|∇ H |

2
+ B1|h̊|

2
+ B2 H 2

|h̊|
2) eεt/4

+ eεt/4{(C4(H 2
+ 1)|∇h|

2)
+ B1

(
−

1
3 |∇h|

2
+ C5(H 2

+ 1)|h̊|
2)

+ B2
(
−

1
6 H 2

|∇h|
2
+ C7|∇h|

2
+ C6(H 2

+ 1)2
|h̊|

2)}
− η4

(
−12nH 2

|∇h|
2
+

4
n

H 6
)

= H 2
|∇h|

2
[
eεt/4

(
C4−

B2

6

)
+24nη4

]
+eεt/4

[
|∇h|

2
(

C4−
B1

3
+C7 B2

)
+

ε

4
|∇ H |

2
]

+ eεt/4
|h̊|

2
[

B1C5(H 2
+ 1)+ B2C6(H 2

+ 1)2
+

ε

4
(B1 + B2 H 2)

]
−

4η4

n
|H |

6.
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Choose constants B1 and B2, such that C4 −
B2
6 < −1 and C4 −

B1
3 +C7 B2 < −1.

Then applying Theorem 4.4, we get

(5-1)
(

∂

∂t
− 1

)
f ⩽ e−εt/4

[
B3(H 2

+ 1)2(H 2
+ 1)1−σ

−
4η4

n
H 6

]
.

Consider the expression in the bracket of (5-1). Since the coefficient of H 6 is
negative, it has a upper bound 92(η). Then we have

(
∂
∂t − 1

)
f ⩽ e−εt/4 92(η). It

follows from the maximum principle that f is bounded. This completes the proof
of Theorem 5.3. □

6. Convergence

In order to estimate the diameter of Mt , we need the well-known Myers’s theorem:

Theorem 6.1 (Myers’s theorem). Let 0 be a geodesic of length at least π/
√

K
on M. If the Ricci curvature satisfies Ric(X) ⩾ (n − 1)K for each unit vector
X ∈ Tx M , at any point x ∈ 0, then 0 has conjugate points.

Now we show that under the assumption of Theorem 1.2, the mean curvature
flow converges to a round point.

Theorem 6.2. If M0 satisfies |h̊|
2 < ϕ̊, then T < ∞ and Mt converges to a round

point as t → T .

Proof. Assume T = ∞. Let |H |min(t) = minMt |H |, |H |max(t) = maxMt |H |.
We claim that H 2

·eεt/8 is uniformly bounded on [0, ∞). Suppose not, then there is
a time τ such that |H |

2
max(τ )·eετ/8 >9/η2. By Theorem 5.3, for every small positive

number η, there exists a positive number 9, such that |∇ H | < [(ηH)2
+9]e−εt/8.

Then we have |∇ H | < 2η2
|H |

2
max on Mτ .

From Lemma 4.1 in [27], the sectional curvature K of M satisfies

(6-1) K ⩾ 1
2

(
2 +

1
n − 1

H 2
− |h|

2
)

.

By Theorem 4.4, we obtain

K ⩾ 1
2

(
2 +

1
n(n − 1)

H 2
− C0(H 2

+ 1)1−σ e−εt/2
)

.

Hence, we can pick τ large enough such that K ⩾ (1/2n2) H 2 on Mτ .
Let x be a point on Mτ where |H | achieves its maximum. Consider all the

geodesics of length at most (4η|H |max)
−1 starting from x . As |∇ H 2

| < 4η2
|H |

3
max,

we have

H 2 ⩾ |H |
2
max − 4η2

|H |
3
max · (4η|H |max)

−1
= (1 − η)|H |

2
max
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along such geodesics. Since |∇ H | < 2η2
|H |

2
max and K ⩾ (1/2n2) H 2 on Mτ , one

has
K ⩾

1
2n2 (1 − η)|H |

2
max

along such geodesics provided

η ∈

(
0, min

{
1

32πn
,

√
ε

4πn

})
.

By Myers’s theorem, these geodesics can reach any point of Mτ . This implies

H 2 ⩾ (1 − η)|H |
2
max on Mτ .

Combining this inequality with |H |
2
max(τ ) · eετ/8 > 9/η2 and Theorem 5.3, we get

|∇ H |
2 < (ηH)4

+
η4

(1 − η)2 |H |
4
min(τ ), t ⩾ τ.

From the evolution equation of H 2, we have that for t ⩾ τ ,

(6-2)
(

∂

∂t
− 1

)
H 2 ⩾ −2|∇ H |

2
+

2
n

H 4 ⩾
1
n

H 4
−

1
2n

|H |
4
min(τ )

for η > 0 sufficiently small. By the maximum principle, we get H 2 ⩾ |H |
2
min(τ )

for t ⩾ τ . Then (6-2) yields(
∂

∂t
− 1

)
H 2 ⩾

1
2n

H 4, t ⩾ τ.

By the maximum principle, H 2 blows up in finite time. This contradicts the infinity
of T . Therefore, we obtain H 2 ⩽ Ce−εt/8 for t ∈ [0, ∞) for a uniform positive
constant C . By Theorem 4.4, |h|

2
= |h̊|

2
+

1
n |H |

2 ⩽ Ce−εt/8 for t ∈ [0, ∞), which
implies that Mt converges to a closed totally geodesic hypersurface M∞ as t → ∞.
However, there is no closed totally geodesic hypersurface in QP(n+1)/4, see, e.g.,
Corollary 7.2 in [25]. Therefore, we get a contradiction, and hence T < ∞.

So T is finite, and maxMt |h|
2 blows up as t → T . From the preserved pinch-

ing condition, |H |max(t) also blows up as t → T . By Theorem 5.3, for any
η ∈ (0,

√
ε/4nπ), there exists a positive number 9 = 9(η) > 1, such that

|∇ H | < (ηH)2
+ 9 for t ∈ [0, T ).

Since |H |max(t) blows up as t → T , there exists a time τ1 depending on η, such that

|H |
2
max ⩾ max

{
29

η2 ,
8n
ε

}
on Mτ1,
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where ε > 0 is as in (4-1). Then we get |∇ H | ⩽ 2η2
|H |

2
max on Mτ1 . Similarly as

above, we obtain

(6-3) |H |
2
min ⩾ (1 − η)|H |

2
max on Mτ1 .

By (4-1) and (6-1), one has K ⩾ 1
2(εH 2

− n) for all t ∈ [0, T ). Hence for small
η > 0, we have the following estimate at t = τ1:

K ⩾ 1
4εH 2

+
1
4 [ε(1 − η)|H |

2
max − 2n] ⩾ 1

4εH 2
+

1
8(ε|H |

2
max − 4n) ⩾ 1

16ε|H |
2
max.

This implies diam(Mτ1) ⩽ 4π/(
√

ε|H |max).
Furthermore, by Theorem 5.3 and (6-3) one has that for t ⩾ τ1,

|∇ H |
2 < 2(ηH)4

+ 292 ⩽ 2(ηH)4
+

1
4η4

|H |
2
max(τ1) ⩽ 2(ηH)4

+
1
2η4

|H |
2
min(τ1).

Hence for t ⩾ τ1, we have

(6-4)
(

∂

∂t
− 1

)
H 2 ⩾ −2|∇ H |

2
+

2
n

H 4 ⩾
1
n

H 4
−

1
2n

|H |
4
min(τ1)

provided that η > 0 is sufficiently small. By the maximum principle, we get
H 2 ⩾ |H |

2
min(τ1) for t ⩾ τ1. Then (6-4) yields(

∂

∂t
− 1

)
H 2 ⩾

1
2n

H 4, t ⩾ τ1.

By the maximum principle, |H |
2
min(t) is increasing on [τ1, T ). So

|H |
2
max(t) ⩾ |H |

2
min(t) ⩾ |H |

2
min(τ1) ⩾

1
2 |H |

2
max(τ1) ⩾ max

{
9

η2 ,
4n
ε

}
for all t ⩾ τ1 and for every η > 0 sufficiently small. Hence |∇ H | ⩽ 2η2

|H |
2
max

for all t ⩾ τ1. By a similar argument, we get |H |
2
min ⩾ (1 − η)|H |

2
max for all η

sufficiently small and all t ⩾ τ1. This implies |H |min/|H |max → 1 as t → T .
Since for t ⩾ τ1,

K ⩾ 1
4εH 2

+
1
8(ε|H |

2
max − 4n) ⩾ 1

16ε|H |
2
max,

we have
diam(Mt) ⩽

4π
√

ε|H |max(t)

for all t ⩾ τ1. So diam(Mt) → 0, and by a similar argument as in [10], Mt shrinks
to a single point as t → T .

Now we dilate the metric of the ambient space such that the hypersurface main-
tains its volume along the flow. Using the same method as in [19], we can prove
that the sequence of time-slices of rescaled flow corresponding to any sequence
of times that tends to infinity has a subsequence that converges to a round sphere.
This proves that the limit point of the mean curvature flow is round. □



240 SHIYANG LI, HONGWEI XU AND ENTAO ZHAO

Acknowledgements

The authors would like to thank the referees for valuable comments and suggestions.
The research was supported by the National Natural Science Foundation of China,
grants 12071424, 12171423, 12471051.

References

[1] B. Andrews and C. Baker, “Mean curvature flow of pinched submanifolds to spheres”, J.
Differential Geom. 85:3 (2010), 357–395. MR Zbl

[2] C. Baker, “The mean curvature flow of submanifolds of high codimension”, preprint, 2011.
arXiv

[3] S. Brendle, “A general convergence result for the Ricci flow in higher dimensions”, Duke Math.
J. 145:3 (2008), 585–601. MR Zbl

[4] S. Brendle and R. Schoen, “Manifolds with 1/4-pinched curvature are space forms”, J. Amer.
Math. Soc. 22:1 (2009), 287–307. MR Zbl

[5] Y. X. Dong, “Real hypersurfaces of a quaternionic projective space”, Chinese Ann. Math. Ser. A
14:1 (1993), 75–80. MR Zbl

[6] J.-R. Gu and H.-W. Xu, “The sphere theorems for manifolds with positive scalar curvature”, J.
Differential Geom. 92:3 (2012), 507–545. MR Zbl

[7] R. S. Hamilton, “Three-manifolds with positive Ricci curvature”, J. Differential Geometry 17:2
(1982), 255–306. MR Zbl

[8] R. S. Hamilton, “The formation of singularities in the Ricci flow”, pp. 7–136 in Surveys in
differential geometry, II (Cambridge, MA, 1993), Int. Press, Cambridge, MA, 1995. MR Zbl

[9] G. Huisken, “Flow by mean curvature of convex surfaces into spheres”, J. Differential Geom.
20:1 (1984), 237–266. MR Zbl

[10] G. Huisken, “Contracting convex hypersurfaces in Riemannian manifolds by their mean curva-
ture”, Invent. Math. 84:3 (1986), 463–480. MR Zbl

[11] G. Huisken, “Deforming hypersurfaces of the sphere by their mean curvature”, Math. Z. 195:2
(1987), 205–219. MR Zbl

[12] H. B. Lawson, Jr., “Rigidity theorems in rank-1 symmetric spaces”, J. Differential Geometry 4
(1970), 349–357. MR Zbl

[13] L. Lei and H. Xu, “Mean curvature flow of arbitrary codimension in spheres and sharp differen-
tiable sphere theorem”, preprint, 2015. arXiv

[14] L. Lei and H. Xu, “A new version of Huisken’s convergence theorem for mean curvature flow in
spheres”, preprint, 2015. arXiv

[15] L. Lei and H. Xu, “An optimal convergence theorem for mean curvature flow of arbitrary
codimension in hyperbolic spaces”, preprint, 2015. arXiv

[16] L. Lei and H.-W. Xu, “New developments in mean curvature flow of arbitrary codimension
inspired by Yau rigidity theory”, pp. 327–348 in Proceedings of the Seventh International
Congress of Chinese Mathematicians, I, Adv. Lect. Math. (ALM) 43, Int. Press, Somerville,
MA, 2019. MR Zbl

[17] L. Lei and H. Xu, “Mean curvature flow of arbitrary codimension in complex projective spaces”,
Chinese Ann. Math. Ser. B 44:6 (2023), 857–892. MR Zbl

http://projecteuclid.org/euclid.jdg/1292940688
http://msp.org/idx/mr/2739807
http://msp.org/idx/zbl/1241.53054
http://msp.org/idx/arx/1104.4409
https://doi.org/10.1215/00127094-2008-059
http://msp.org/idx/mr/2462114
http://msp.org/idx/zbl/1161.53052
https://doi.org/10.1090/S0894-0347-08-00613-9
http://msp.org/idx/mr/2449060
http://msp.org/idx/zbl/1251.53021
http://msp.org/idx/mr/1222107
http://msp.org/idx/zbl/0785.53044
http://projecteuclid.org/euclid.jdg/1354110198
http://msp.org/idx/mr/3005061
http://msp.org/idx/zbl/1315.53029
http://projecteuclid.org/euclid.jdg/1214436922
http://msp.org/idx/mr/664497
http://msp.org/idx/zbl/0504.53034
http://msp.org/idx/mr/1375255
http://msp.org/idx/zbl/0867.53030
http://projecteuclid.org/euclid.jdg/1214438998
http://msp.org/idx/mr/772132
http://msp.org/idx/zbl/0556.53001
https://doi.org/10.1007/BF01388742
https://doi.org/10.1007/BF01388742
http://msp.org/idx/mr/837523
http://msp.org/idx/zbl/0589.53058
https://doi.org/10.1007/BF01166458
http://msp.org/idx/mr/892052
http://msp.org/idx/zbl/0626.53039
http://projecteuclid.org/euclid.jdg/1214429508
http://msp.org/idx/mr/267492
http://msp.org/idx/zbl/0199.56401
http://msp.org/idx/arx/1506.06371v2
http://msp.org/idx/arx/1505.07217
http://msp.org/idx/arx/1503.06747
http://msp.org/idx/mr/3971877
http://msp.org/idx/zbl/1428.53053
https://doi.org/10.1007/s11401-023-0049-2
http://msp.org/idx/mr/4672223
http://msp.org/idx/zbl/1530.53088


MEAN CURVATURE FLOW IN QUATERNIONIC PROJECTIVE SPACES 241

[18] K. Liu, H. Xu, and E. Zhao, “Deforming submanifolds of arbitrary codimension in a sphere”,
preprint, 2012. arXiv

[19] K. Liu, H. Xu, and E. Zhao, “Mean curvature flow of higher codimension in Riemannian
manifolds”, preprint, 2012. arXiv

[20] K. Liu, H. Xu, F. Ye, and E. Zhao, “Mean curvature flow of higher codimension in hyperbolic
spaces”, Comm. Anal. Geom. 21:3 (2013), 651–669. MR Zbl

[21] K. Liu, H. Xu, F. Ye, and E. Zhao, “The extension and convergence of mean curvature flow in
higher codimension”, Trans. Amer. Math. Soc. 370:3 (2018), 2231–2262. MR Zbl

[22] G. Perelman, “The entropy formula for the Ricci flow and its geometric applications”, preprint,
2002. arXiv

[23] G. Perelman, “Finite extinction time for the solutions to the Ricci flow on certain three-
manifolds”, preprint, 2003. arXiv

[24] G. Perelman, “Ricci flow with surgery on three-manifolds”, preprint, 2003. arXiv

[25] G. Pipoli and C. Sinestrari, “Mean curvature flow of pinched submanifolds of CPn”, Comm.
Anal. Geom. 25:4 (2017), 799–846. MR Zbl

[26] K. Shiohama and H. Xu, “The topological sphere theorem for complete submanifolds”, Compo-
sitio Math. 107:2 (1997), 221–232. MR Zbl

[27] H.-W. Xu and J.-R. Gu, “An optimal differentiable sphere theorem for complete manifolds”,
Math. Res. Lett. 17:6 (2010), 1111–1124. MR Zbl

[28] H.-W. Xu and E.-T. Zhao, “Topological and differentiable sphere theorems for complete sub-
manifolds”, Comm. Anal. Geom. 17:3 (2009), 565–585. MR Zbl

Received March 18, 2024. Revised July 16, 2024.

SHIYANG LI

CENTER OF MATHEMATICAL SCIENCES

ZHEJIANG UNIVERSITY

HANGZHOU

CHINA

lisycms@zju.edu.cn

HONGWEI XU

CENTER OF MATHEMATICAL SCIENCES

ZHEJIANG UNIVERSITY

HANGZHOU

CHINA

xuhw@zju.edu.cn

ENTAO ZHAO

CENTER OF MATHEMATICAL SCIENCES

ZHEJIANG UNIVERSITY

HANGZHOU

CHINA

zhaoet@zju.edu.cn

http://msp.org/idx/arx/1204.0106v1
http://msp.org/idx/arx/1204.0107v1
https://doi.org/10.4310/CAG.2013.v21.n3.a8
https://doi.org/10.4310/CAG.2013.v21.n3.a8
http://msp.org/idx/mr/3078951
http://msp.org/idx/zbl/1288.53061
https://doi.org/10.1090/tran/7281
https://doi.org/10.1090/tran/7281
http://msp.org/idx/mr/3739208
http://msp.org/idx/zbl/1380.53076
http://msp.org/idx/arx/math/0211159v1
http://msp.org/idx/arx/math/0307245v1
http://msp.org/idx/arx/math/0303109v1
https://doi.org/10.4310/CAG.2017.v25.n4.a3
http://msp.org/idx/mr/3731642
http://msp.org/idx/zbl/1380.53077
https://doi.org/10.1023/A:1000189116072
http://msp.org/idx/mr/1458750
http://msp.org/idx/zbl/0905.53038
https://doi.org/10.4310/MRL.2010.v17.n6.a10
http://msp.org/idx/mr/2729635
http://msp.org/idx/zbl/1221.53068
https://doi.org/10.4310/CAG.2009.v17.n3.a6
https://doi.org/10.4310/CAG.2009.v17.n3.a6
http://msp.org/idx/mr/2550209
http://msp.org/idx/zbl/1185.53033
mailto:lisycms@zju.edu.cn
mailto:xuhw@zju.edu.cn
mailto:zhaoet@zju.edu.cn


PACIFIC JOURNAL OF MATHEMATICS
Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Matthias Aschenbrenner
Fakultät für Mathematik

Universität Wien
Vienna, Austria

matthias.aschenbrenner@univie.ac.at

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Atsushi Ichino
Department of Mathematics

Kyoto University
Kyoto 606-8502, Japan

atsushi.ichino@gmail.com

Robert Lipshitz
Department of Mathematics

University of Oregon
Eugene, OR 97403

lipshitz@uoregon.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Dimitri Shlyakhtenko
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

shlyakht@ipam.ucla.edu

Ruixiang Zhang
Department of Mathematics

University of California
Berkeley, CA 94720-3840

ruixiang@berkeley.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2024 is US $645/year for the electronic version, and $875/year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 1945-5844 electronic, 0030-8730 printed) at the University of California, c/o Department
of Mathematics, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at
Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O.
Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2024 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:matthias.aschenbrenner@univie.ac.at
mailto:chari@math.ucr.edu
mailto:atsushi.ichino@gmail.com
mailto:lipshitz@uoregon.edu
mailto:liu@math.ucla.edu
mailto:shlyakht@ipam.ucla.edu
mailto:ruixiang@berkeley.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 332 No. 2 October 2024

195Homotopy versus isotopy: 2-spheres in 5-manifolds
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