
Pacific
Journal of
Mathematics

HECKE EIGENVALUES
AND FOURIER–JACOBI COEFFICIENTS
OF SIEGEL CUSP FORMS OF DEGREE 2

MURUGESAN MANICKAM, KARAM DEO SHANKHADHAR

AND VASUDEVAN SRIVATSA

Volume 332 No. 2 October 2024



PACIFIC JOURNAL OF MATHEMATICS
Vol. 332, No. 2, 2024

https://doi.org/10.2140/pjm.2024.332.243

HECKE EIGENVALUES
AND FOURIER–JACOBI COEFFICIENTS
OF SIEGEL CUSP FORMS OF DEGREE 2

MURUGESAN MANICKAM, KARAM DEO SHANKHADHAR

AND VASUDEVAN SRIVATSA

The nonvanishing of the first Fourier–Jacobi coefficient of a Siegel eigen-
form F gives us that the vanishing of its m-th Fourier–Jacobi coefficient F |ρm

implies the vanishing of its m-th eigenvalue λF(m). Conversely, we prove
that for any odd, squarefree m if λF(m) is zero then F |ρm vanishes. While
investigating this converse question and its important consequences, we
generalize certain existing results of Kohnen and Skoruppa (1989) for index 1
Jacobi cusp forms to any arbitrary index, which are also of independent
interest.

1. Introduction

In [6], Kohnen and Skoruppa introduced a novel Dirichlet series attached to any
two Siegel cusp forms of degree 2 involving their Fourier–Jacobi coefficients. More
importantly they could connect the Dirichlet series attached to a Siegel eigenform
and any Siegel cusp form in the Maass space to the spinor zeta function of the Siegel
eigenform. In particular, this connection gives us that the image of the m-th Fourier–
Jacobi coefficient under certain adjoint operator is same as the m-th eigenvalue
times the first Fourier–Jacobi coefficient of the Siegel eigenform (see (1)). Formally
this could be viewed as an analogue of the relation between Fourier coefficients and
eigenvalues of the Hecke eigenforms in the degree 1 case. Therefore it is natural to
explore the relation between Fourier–Jacobi coefficients and eigenvalues further. In
this paper, we take up this problem and investigate it in detail.

To state our results precisely, let us first introduce some notation. Throughout this
article, k stands for an even integer and k ⩾ 4. Let Sk(02) be the space of Siegel cusp
forms of weight k for the symplectic group 02 := Sp4(Z). Let J cusp

k,m denote the space
of Jacobi cusp forms of weight k and index m for the group SL2(Z)⋉ (Z × Z). For
any l ⩾ 1, let Vm,l : J cusp

k,m → J cusp
k,ml be the linear operator defined by [3, page 41, (2)]
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and let TJ,l : J cusp
k,m → J cusp

k,m be the l-th Hecke operator on Jacobi forms defined by
[3, page 41, (3)]. For m = 1, Kohnen and Skoruppa [6, page 549, Proposition (i)]
calculated the Fourier coefficients of the adjoint operator V ∗

1,l of the operator V1,l .
For any l ⩾ 1, let Ts,l denote the l-th Hecke operator on Sk(02) and let ρl denote
the l-th projection of any element in Sk(02) to its l-th Fourier–Jacobi coefficient
in J cusp

k,l . By using a result of Kohnen and Skoruppa [6, page 541, Theorem 2], one
gets the following interesting identity [7, Lemma 2.1]. For any F ∈ Sk(02) and
l ⩾ 1, we have

(1) F |Ts,l |ρ1 = F |ρℓ |V ∗

1,l .

Note that the above identity gives the first Fourier–Jacobi coefficient of the image of
the l-th Hecke operator Ts,l . Manickam [7] used this identity crucially to establish
the nonvanishing of the first Fourier–Jacobi coefficient of any Siegel eigenform
in Sk(02). By using this nonvanishing result, the identity (1) gives us the following
result. For any Siegel eigenform F ∈ Sk(02) and any l ⩾ 1, we have

(2) F |ρl = 0 =⇒ λF (l)= 0,

where F |Ts,l = λF (l)F . In this article, we investigate the converse of (2) and its
interesting consequences through certain important generalizations.

We first calculate the Fourier coefficients of the adjoint operator V ∗

m,l , which
generalizes the above mentioned result of Kohnen and Skoruppa [6, page 549,
Proposition (i)] to any index m ⩾ 1. Our approach is quite different from the one
taken in the literature.

Proposition 1.1. Let φ ∈ J cusp
k,ml be a Jacobi cusp form with the Fourier series

expansion

φ(τ, z)=

∑
n,r∈Z

r2<4lmn

cφ(n, r) qn ξ r , q = e2π iτ , ξ = e2π i z.

Then we have
φ |V ∗

m,l(τ, z)=

∑
n,r∈Z

r2<4mn

cφ |V ∗

m,l
(n, r) qn ξ r ,

where

cφ |V ∗

m,l
(n, r) :=

∑
d |l

dk−2
d−1∑
s=0

d |(ms2+rs+n)

cφ

(
(ms2

+ rs + n) l
d2 ,

(r + 2ms) l
d

)
.

Let J cusp, new
k,m denote the space of Jacobi cusp newforms of weight k and in-

dex m, considered and studied extensively in [11, page 138]. As a consequence of
Proposition 1.1 we derive the following identity of the operators on J cusp, new

k,m which
generalizes the result of Kohnen and Skoruppa [6, page 549, Proposition (ii)] in the
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index 1 case to any arbitrary index m ⩾ 1. We follow the steps of the proof sketched
in the index 1 case with appropriate modifications. For the sake of completion and
for the benefit of the readers we provide the proof in Section 3 highlighting the
main steps.

Proposition 1.2. Let φ ∈ J cusp, new
k,m and l be any positive integer coprime to m. Then

φ |Vm,l V ∗

m,l = φ

∣∣∣∑
d |l

dk−2ψ(d) TJ,(l/d),

where ψ(d)= d
∏

p |d

(
1 +

1
p

)
.

Now, we generalize the identity (1) to get the m-th Fourier–Jacobi coefficient of
the image of Siegel cusp forms under the Hecke operator Ts,pδ , where p is a prime
and δ is a positive integer.

Theorem 1.3. Let F ∈ Sk(02) and p be any prime. Then for any two positive
integers δ and m with p ∤ m, we have

(3) F |Ts,pδ |ρm = F |ρmpδ |V
∗

m,pδ .

Also, we have the following two identities:

(4) F |Ts,p |ρp = F |ρp2 |V ∗

p,p + pk−2 F |ρ1 |V1,p

and

(5) F |Ts,p2 |ρp = F |ρp3 |V ∗

p,p2 + pk−2 F |ρp |TJ,p + p2k−4 F |ρp.

Note that the algebra of the Hecke operators acting on the space Sk(02) is
generated by Ts,p and Ts,p2 , where p varies over primes. Using the fact that the
operator V1,p : J cusp

k,1 → J cusp
k,p is injective together with the identity (4), we have:

Corollary 1.4. Let p be any prime. For any Siegel eigenform F ∈ Sk(02) at least
one of the Fourier–Jacobi coefficients F |ρp and F |ρp2 is nonzero.

For any Siegel eigenform F ∈ Sk(02), we have F |ρp2 |V ∗

1,p2 = λF (p2)F |ρ1

from (1). On the other hand, by applying V ∗

1,p on both sides of the identity (4) and
then by using (1) together with Proposition 1.2, we get:

Corollary 1.5. Let F ∈ Sk(02) and p be any prime such that F |Ts,p = λF (p)F.
Then we have F |ρp2 |V ∗

p,pV ∗

1,p = (λ2
F (p)− p2k−3

− p2k−4)F |ρ1− pk−2 F |ρ1 |TJ,p.

Our next result shows that any nonzero Fourier–Jacobi coefficient of odd, square-
free index of a Siegel cusp form cannot be a newform. In particular, we prove the
following theorem.

Theorem 1.6. Let F ∈ Sk(02) and m ⩾ 3 be any odd, squarefree integer. If
F |ρm ∈ J cusp, new

k,m then F |ρm = 0.
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Our next result shows that the converse of (2) is also true for l odd, squarefree.
More precisely, we prove:

Theorem 1.7. Let F ∈ Sk(02) be a Siegel eigenform with n-th eigenvalue λF (n).
Then for any odd, squarefree positive integer m, we have

λF (m)= 0 ⇐⇒ F |ρm = 0.

Remark 1.8. The reverse direction ⇐ of Theorem 1.7 follows from [7] (see (2))
and that only direction ⇒ is proved here. To establish =⇒ part for a given odd,
squarefree positive integer m we require the Siegel cusp form to be eigenvector
only for the Hecke operators Ts,l with l |m. Also, we only need Proposition 1.1,
the identity (3) of Theorem 1.3 and Theorem 1.6, not any other result stated above.

By using the multiplicative property of the eigenvalues of a Siegel eigenform
together with Theorem 1.7, we get:

Corollary 1.9. Let F ∈ Sk(02) be a Siegel eigenform. Then for any odd prime p,
we have

F |ρp = 0 =⇒ F |ρm = 0

for any odd, squarefree positive integers m with p |m.

If m is any positive integer such that λF (m) ̸= 0 then (2) implies the existence
of infinitely many symmetric, half-integral, positive definite matrices T such that
the quadratic form T represents m and aF (T ) ̸= 0. Conversely, we establish the
following two corollaries of Theorem 1.7 assuring the nonvanishing of certain
eigenvalues.

Corollary 1.10. Let F ∈ Sk(02) be a Siegel eigenform with n-th eigenvalue λF (n)
and T be a symmetric, half-integral, positive definite matrix such that the T -th
Fourier coefficient aF (T ) ̸= 0. If m is any odd, squarefree, positive integer repre-
sented by the quadratic form T then λF (m) ̸= 0.

Corollary 1.11. Let F ∈ Sk(02) be a Siegel eigenform with n-th eigenvalue λF (n).
Then there exists a positive integer 1 ⩽ n ⩽ k

2 − 2 such that for any odd, squarefree,
positive integer m of the form x2

+ ny2 we have λF (m) ̸= 0.

Remark (concluding remark). One may ask more generally about the nonvanishing
of the m-th eigenvalue λF (m) of a Siegel eigenform F if its m-th Fourier–Jacobi
coefficient F |ρm is nonzero. In this paper, we answer it affirmatively for any odd,
squarefree m but could not address this question for arbitrary m. However, the
intermediate results obtained by us while addressing the question highlight the
importance of the theory of Jacobi forms and provide better understanding of certain
Hecke-type operators on Jacobi forms.

The question of nonvanishing of Fourier–Jacobi coefficients of Siegel cusp
forms of arbitrary degree and eigenvalues of Siegel eigenforms of degree 2 is also
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considered in [2]. However, the results obtained there are of different nature and
do not address the question asked here in this paper.

2. Prerequisites

We refer to [1], [3] and [10] for definitions and basic properties of Jacobi and Siegel
modular forms. In this section we fix notation and recall certain results.

Jacobi forms. Let G J be the group of triplets [M, X, ξ ], M ∈ SL2(R), X ∈ R2,
ξ ∈ C with |ξ | = 1, via the multiplication

[M, X, ξ ][M ′, X ′, ξ ′
] = [MM ′, XM ′

+ X ′, ξξ ′e2π i det
(

X M ′

X ′

)
].

The group G J acts on the set of functions {φ : H × C → C} as

φ|k,m

[(
a b
c d

)
, (λ, µ), ξ

]
(τ, z)

= ξm(cτ + d)−ke2π im
(
−

c(z+λτ+µ)2
cτ+d +λ2τ+2λz+λµ

)
φ

(
aτ + b
cτ + d

,
z + λτ +µ

cτ + d

)
.

We consider the action of the discrete subgroup SL2(Z)⋉ (Z × Z) of G J on the
set of functions on H × C by fixing ξ = 1. Let Jk,m (resp. J cusp

k,m ) denote the space
of Jacobi forms (resp. Jacobi cusp forms) of weight k and index m for the group
SL2(Z)⋉(Z×Z). For any l ⩾ 1, let Ul, Vl and Tl be the operators acting on Jk,m de-
fined and studied systematically in [3, Section 4]. We are denoting them respectively
by Um,l , Vm,l and TJ,l throughout the paper to avoid certain potential confusions.
The operator TJ,l : Jk,m → Jk,m is called the l-th Hecke operator on Jacobi forms.

Any φ(τ, z) ∈ J cusp
k,m with Fourier series expansion

φ(τ, z)=
∑

n,r∈Z, r2<4mn
cφ(n, r) qn ξ r , q = e2π iτ , ξ = e2π i z,

admits the following theta decomposition [3, pages 58–59]:

(6) φ(τ, z)=

2m−1∑
µ=0

hµ(τ ) θm,µ(τ, z),

where

hµ(τ ) :=
∑
N⩾1

N≡−µ2(mod4m)

cφ
(N +µ2

4m
, µ
)

q N/4m, θm,µ(τ, z) :=
∑
r∈Z

r≡µ(mod2m)

qr2/4m ξ r .

By using the transformation law of the Jacobi form φ and the Jacobi theta func-
tions θm,µ with respect to the inversion (τ, z)→

(
−

1
τ
, z
τ

)
, we get

(7) hµ
(
−1
τ

)
=

τ k
√

2mτ/ i

2m−1∑
ν=0

eπ iµν/m hν(τ ).



248 M. MANICKAM, K. D. SHANKHADHAR AND V. SRIVATSA

Let J cusp, new
k,m be the space of Jacobi cusp newforms considered in [11, page 138]

giving the direct sum decomposition

(8) J cusp
k,m = J cusp, new

k,m

⊥⊕( ⊕
l⩾1, d⩾1

ld2 |m, ld2>1

J cusp, new
k,(m/ ld2)

|Um/ ld2, d Vm/ l, l

)
.

Note that the first direct sum in the above decomposition is orthogonal. If m is
squarefree, then for any divisor l > 1 of m there is only one copy of the newforms
space of index m/ l given by J cusp, new

k,(m/ l) |V(m/ l),l in the oldforms direct sum decom-
position. By using the Shimura correspondence and the Atkin–Lehner theory for
modular forms on the congruence subgroups 00(N ), we get that for squarefree
index m all the direct sums in the above decomposition (8) are orthogonal with
respect to the Petersson inner product. For a detailed proof of this fact we refer to [5,
Lemma 4]. In [8, Section 5.1], the space of Jacobi cusp newforms has been defined
differently but in [7, page 406] it is observed that this newforms space is same as the
one considered earlier in [11]. To prove Theorem 1.6, we use an important property
of newforms [8, Corollary 5.3] saying that the (n, r)-th Fourier coefficient cφ(n, r)
of a Jacobi cusp form φ ∈ J cusp, new

k,m depends only on the discriminant r2
− 4mn

and not on r(mod 2m).

Siegel modular forms. The real symplectic unimodular group of degree 2 is de-
fined by

Sp4(R)= {M ∈ GL4(R) : MJ tM = J },

where J =
( 02

−I2

I2
02

)
, tM denotes the transpose matrix of the matrix M , 02 is the

2 × 2 zero matrix and I2 is the 2 × 2 identity matrix. Let 02 := Sp4(Z) be the
subgroup of Sp4(R) consisting of matrices with integer entries. Let

H2 := {Z ∈ M2(C) : Z =
tZ , Im(Z) > 0}

be the Siegel upper half-space of degree 2. We denote the space of Siegel mod-
ular forms (resp. cusp forms) on H2 of weight k for the group 02 by Mk(02)

(resp. Sk(02)). There is an algebra of Hecke operators acting on the space Mk(02)

which preserves Sk(02). For any l ⩾ 1, let Ts,l denote the l-th Hecke operator
on Sk(02). An element in Sk(02) is called a Siegel eigenform if it is a common
eigenvector of all the Hecke operators Ts,l , l ⩾ 1. Note that the space Sk(02) is a
Hilbert space under the Petersson inner product.

Any F ∈ Sk(02) has the Fourier series expansion of the form

F(Z)=

∑
T

aF (T ) e2π i trace(TZ),

where the sum varies over the set of symmetric, half-integral, positive definite
2 × 2 matrices. Writing Z =

(
τ
z

z
τ ′

)
∈ H2, where τ, τ ′ are in the complex upper
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half-plane H and z ∈ C, we get the following Fourier–Jacobi decomposition [3,
Theorem 6.1]:

F(Z)= F(τ, z, τ ′)=

∑
m⩾1

φm(τ, z) e2π imτ ′

,

where

φm(τ, z) :=

∑
n,r∈Z

r2<4nm

AF

(
n r/2

r/2 m

)
qn ξ r

belongs to the space J cusp
k,m and is called the m-th Fourier–Jacobi coefficient of F .

3. Proof of Propositions 1.1 and 1.2

Proof of Proposition 1.1. Let l,m be any two positive integers. Let 0 := SL2(Z).
On the space J cusp

k,m , the index changing Hecke operator Vm,l is defined by

φ |Vm,l(τ, z) := lk−1
∑

(
a
c

b
d
)
∈0\M2(Z)

ad−bc=l

(cτ + d)−k eml( −cz2
cτ+d )φ

(
aτ + b
cτ + d

,
lz

cτ + d

)

= l(k/2)−1
∑

(
a
0

b
d
)
∈M2(Z)

ad=l,b (mod d)

φ√
l

∣∣∣∣
k,ml

[
1

√
l

(
a b
0 d

)
, (0, 0), 1

]
(τ, z),

where φ√
l(τ, z) := φ(τ,

√
l z). To prove our claim, first we calculate the image of

Jacobi Poincaré series Pk,m;n,r , n, r ∈ Z with r2
−4mn< 0, under the operator Vm,l .

By using the definition of Jacobi Poincaré series, we have

Pk,m;n,r |Vm,l

=

∑
(
α
0
β
δ

)
∈M2(Z)

αδ=l,β(modδ)

l(k/2)−1
( ∑

(
a
c

b
d
)
∈0∞\0

λ∈Z

e(nτ + r z)
∣∣∣∣
k,m

[(
a b
c d

)
, (λa, λb), 1

])
√

l

∣∣∣∣
k,ml[

1
√

l

(
α β

0 δ

)
, (0, 0), 1

]
.

Using the definition of φ√
l(τ, z)=φ(τ,

√
l z) and then adjusting the stroke operators

in the inner sum, we obtain

Pk,m;n,r |Vm,l =

∑
(
α
0
β
δ

)
∈M2(Z)

αδ=l, β (modδ)

l(k/2)−1
∑

(
a
c

b
d

)
∈0∞\0, λ∈Z

e(nτ + r
√

lz)
∣∣∣∣
k,ml[(

a b
c d

)
,

(
λa
√

l
,
λb
√

l

)
, 1
][

1
√

l

(
α β

0 δ

)
, (0, 0), 1

]
.
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In the Jacobi group SL2(R)⋉ (R2
× S1), where S1

:= {z ∈ C : |z| = 1}, we have[(
a b
c d

)
,

(
λa
√

l
,
λb
√

l

)
, 1
][

1
√

l

(
α β

0 δ

)
, (0, 0), 1

]
=

[
1

√
l

(
α′ β ′

0 δ′

)
,

(
λα′

l
,
λβ ′

l

)
, 1
][(

a′ b′

c′ d ′

)
, (0, 0), 1

]

for some
(
α′

0
β ′

δ′

)
∈ M2(Z) with α′δ′ = l and

(a′

c′

b′

d ′

)
∈ 0 with the following crucial

property. These matrices vary over a complete set of representatives of the indexing
sets in the above summation as the matrices

(
α
0
β
δ

)
and

(a
c

b
d

)
vary over the same,

respectively. Using this and interchanging the order of the summations, we get

Pk,m;n,r |Vm,l =

∑
(

a′

c′
b′

d′

)
∈0∞\0

λ∈Z

l(k/2)−1
∑

(
α′

0
β′

δ′

)
∈M2(Z)

α′δ′=l,β′ (mod δ)′

e(nτ + r
√

lz)
∣∣∣∣
k,ml

[
1

√
l

(
α′ β ′

0 δ′

)
,

(
λα′

l
,
λβ ′

l

)
, 1
][(

a′ b′

c′ d ′

)
, (0, 0), 1

]
.

For any λ ∈ Z, we write λ= λ′δ′ + s with s (mod δ)′. Then λ′ varies over Z and s
varies over a complete residue system mod δ′. Therefore, we have

Pk,m;n,r |Vm,l =

∑
(

a′

c′
b′

d′

)
∈0∞\0

λ′∈Z

l(k/2)−1
∑

δ′ |l,β′ (mod δ)′
s (mod δ)′

e(nτ+r
√

lz)
∣∣∣∣
k,ml

[
1

√
l

(
l/δ′ β ′

0 δ′

)
,

(
s
δ′
,
(s+λ′δ′)β ′

l

)
,1
][(

a′ b′

c′ d ′

)
,(λ′a′,λ′b′),1

]
.

Let us first simplify the inner sum. We set

Ik,m;l :=

∑
δ|l,β(mod δ)

s(mod δ)

e(nτ + r
√
ℓz)
∣∣∣∣
k,ml

[
1

√
l

(
l/δ β
0 δ

)
,

(
s
δ
,
(s + λ′δ)β

l

)
, 1
]

= lk/2
∑
δ |l

s(mod δ)

δ−ke
((

l
δ2 (ms2

+ rs + n) τ
)

+

(
l
δ
(r + 2sm) z

))
∑

β(mod δ)

e
(
β

δ
(ms2

+ rs + n)
)

= lk/2
∑

δ |l,s(mod δ)
δ |(ms2

+rs+n)

δ−k+1e
((

l
δ2 (ms2

+ rs + n) τ
)

+

(
l
δ
(r + 2sm) z

))
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Therefore, we have

Pk,m;n,r |Vm,l

=

∑
δ |l

(
l
δ

)k−1 ∑
s(mod δ)

δ |(ms2
+rs+n)

∑
(

a
c

b
d
)
∈0∞\0

λ∈Z

e
((

l
δ2 (ms2

+ rs + n) τ
)

+

(
l
δ
(r + 2sm) z

))∣∣∣∣
k,ml

[(
a b
c d

)
, (λa, λb), 1

]
=

∑
δ |l

(
l
δ

)k−1 ∑
s(mod δ)

δ |(ms2
+rs+n)

P
k,ml; (ms2+rs+n) l

δ2
,
(r+2sm) l

δ

.

Next, we have

cφ |V ∗

m,l
(n, r)

=
(2π(4mn − r2))k−3/2

2k−5/20(k − 3/2)mk−2 ⟨φ |V ∗

m,l, Pk,m;n,r ⟩

=
(2π(4mn − r2))k−3/2

2k−5/20(k − 3/2)mk−2

〈
φ,
∑
δ |l

(
l
δ

)k−1 ∑
s(mod δ)

δ |(ms2
+rs+n)

P
k,ml; (ms2+rs+n) l

δ2
,
(r+2sm) l

δ

〉

=

∑
d |l

dk−2
∑

s(mod d)
d |(ms2

+rs+n)

cφ

(
(ms2

+ rs + n) l
d2 ,

(r + 2sm) l
d

)
. □

Proof of Proposition 1.2. For all the facts used in this proof about the operators
TJ,l , Vm,l and the space J cusp, new

k,m , we refer to [3; 11]. Since l and m are coprime,
the right-hand side operator

TJ,l :=

∑
d |l

dk−2ψ(d)TJ,(l/d)

is multiplicative. Moreover, the operator Vm,l is multiplicative and the Hecke
operator TJ,n commutes with the operator Vm,l if gcd(n, lm) = 1. Therefore it is
enough to establish the identity for prime powers, that is, l = pα, where p is
a prime and α is any positive integer. Since the space J cusp, new

k,m has a basis of
simultaneous eigenfunctions of all the Hecke operators TJ,n with gcd(n,m) = 1,
it is enough to check the identity for such eigenforms. Let ϕ ∈ J cusp, new

k,m be any
such eigenform. The Hecke operators TJ,n with gcd(n,m)= 1 are hermitian and
commute with TJ,l ′ and Vm,t for gcd(nl ′,m)= 1 and gcd(n,mt)= 1. Therefore the
Jacobi forms ϕ |Vm,l V ∗

m,l and ϕ |Tl are again simultaneous eigenfunctions of all the
Hecke operators TJ,n for gcd(n, lm)= 1 with eigenvalues same as of ϕ. By using
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multiplicity one result, we get that the Jacobi forms ϕ |Vm,l V ∗

m,l and ϕ |Tl both are
constant multiples of ϕ. To show that both are same we compare their (n, r)-th
Fourier coefficients with the condition that r2

− 4mn is a fundamental discriminant
and prove that they are equal. We have

(9) cϕ |Vm,l V ∗

m,l
(n, r)=

∑
t |l

tk−1
(∑

d |t

1
d

d−1∑
s=0

d |ms2+rs+n

1
)

cϕ

(
n l2

t2 , r
l
t

)
.

The cardinality of the set

{s (mod d) : ms2
+ rs + n ≡ 0 (mod d)}

is same as the cardinality of the set {x(mod 2d) : x2
≡ (r2

− 4mn) (mod 4d)}. Let
us denote this cardinality by Nd(r2

− 4mn). By using [3, page 50, (16)], we have

cϕ

(
n l2

t2 , r
l
t

)
=

∑
δ |(l/t)

µ(δ)χD(δ) δ
k−2 cϕ |TJ,(l/δt)(n, r),

where D = r2
− 4mn and χD denotes the Dirichlet character

( D
·

)
. By using the

above observations in (9), we see that it is sufficient to prove the following formal
identity of the operators:

(10)
∑
t |l

tk−1
∑
d |t

Nd(D)
d

∑
δ |(l/t)

µ(δ)χD(δ) δ
k−2 TJ,(l/δt) =

∑
t |l

tk−2ψ(t)TJ,(l/t).

Since D is a fundamental discriminant, by using [3, page 21, (6)] we get that

Np(D)= (1 +χD(p)) and Npa (D)= Np(D)

for any prime p, positive integer a. By using these facts we get that the coefficients
of TJ,pa , 1 ⩽ a ⩽ α, in both sides of (10) are equal. □

4. Proof of Theorem 1.3

We prove the identities by equating the Fourier coefficients on both sides. First
let us write down the Fourier coefficients of F |Ts,pδ , where p is a prime and δ is a
positive integer [9, Corollaries 2.2, 2.4 and 2.5]. For any positive integer l and any
finite sequence of integers {a1, a2, . . . , an}, we use the notation δl(a1, a2, . . . , an)

defined to be 1 if l | gcd(a1, a2, . . . , an) and 0 otherwise. Let

F(Z)=

∑
T =

(
n

r/2
r/2
m

)
>0

AF (n, r,m) e2π i trace(TZ),
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where T > 0 indicates that T is positive definite. Then we have

(11) AF |Ts,p(n, r,m)= AF (pn, pr, pm)

+ pk−2
( p−1∑

α=0
p|(n+rα+mα2)

AF

(
n + rα+ mα2

p
, r + 2mα,mp

)
+ δp(m) AF

(
np, r,

m
p

))
+ p2k−3 δp(n, r,m) AF

(
n
p
,

r
p
,

m
p

)
.

Also, we have

(12) AF |Ts,p2 (n, r,m)

= AF (p2n, p2r, p2m)+ p2k−3δp(n, r,m) AF (n, r,m)

+ p4k−6δp2(n, r,m)AF

(
n
p2 ,

r
p2 ,

m
p2

)
+ pk−2

( p−1∑
α=0

p|(n+rα+mα2)

AF

(
p
(

n + rα+ mα2

p
, r + 2mα,mp

))
+ δp(m) AF

(
p
(

np, r,
m
p

)))

+ p2k−4

( p2
−1∑

α=0
p2 |(n+rα+mα2)

AF

(
n + rα+ mα2

p2 , r + 2mα,mp2
)

+

p−1∑
β=0

p2 |(r pβ+m)

AF

(
np2, r + 2npβ, nβ2

+
r pβ + m

p2

))

+ p3k−5

( p−1∑
α=0

p2 |(n+rα+mα2),p |r,p |m

AF

(
n + rα+ mα2

p2 ,
r + 2mα

p
,m
)

+ δp(n, r) δp2(m) AF

(
n,

r
2p
,

m
p2

))
.

If p ∤ m then we have

(13) AF |Ts,pδ
(n, r,m)

= AF (pδ(n, r,m))

+

δ∑
β=1

p(k−2)β
( pβ−1∑

α=0
pβ |(n+rα+mα2)

AF
(

pδ−β((n+rα+mα2)p−β, r+2mα,mpβ)
))
.

First we compare the coefficients of both sides of (3). Let (n, r) be any pair of
integers with r2 < 4mn. By using (13), we have
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(14) cF |Ts,pδ |ρm (n, r)

= AF |Ts,pδ
(n, r,m)

= AF (pδ(n, r,m))

+

δ∑
β=1

p(k –2)β
( pβ –1∑

α=0
pβ |(n+rα+mα2)

AF
(
(n+rα+mα2)pδ–2β, (r+2mα)pδ–β,mpδ

))
.

By using Proposition 1.1, we get

(15) cF |ρmpδ |V
∗

m,pδ
(n, r)

= cF |ρmpδ
(pδn, pδr)

+

δ∑
β=1

p(k−2)β
( pβ−1∑

s=0
pβ |(n+rs+ms2)

cF |ρmpδ

(
(n+rs+ms2)pδ−2β, (r +2ms)pδ−β

))
.

Now by comparing (14) and (15) we get that F |Ts,pδ |ρm = F |ρmpδ |V ∗

m,pδ .
Next we compare the coefficients of both sides of (4) and then of (5). By

using (11), we have

(16) cF |Ts,p |ρp(n, r)

= AF |Ts,p(n, r, p)

= AF (pn, pr, p2)

+ pk−2
( p−1∑

α=0
p|(n+rα)

AF

(
n + rα+ pα2

p
, r + 2pα, p2

)
+ AF (np, r, 1)

)
+ p2k−3δp(n, r) AF

(
n
p
,

r
p
, 1
)
.

By using Proposition 1.1, we have

(17) cF |ρp2 |V ∗
p,p
(n, r)=

∑
d | p

dk−2
d−1∑
s=0

d |(ps2+rs+n)

cF |ρp2

(
(ps2

+ rs + n)p
d2 , (r+2ps)

p
d

)
.

By using [3, Theorem 4.2, 7], we have

(18) cF |ρ1|V1,p(n, r)=

∑
d |(n,r,p)

dk−1cF |ρ1

(
np
d2 ,

r
d

)
.

Comparing (16), (17) and (18), we get that

F |Ts,p |ρp = F |ρp2 |V ∗

p,p + pk−2 F |ρ1 |V1,p.
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By using (12), we have

(19) cF |Ts,p2 |ρp(n, r)

= AF |Ts,p2 (n, r, p)

= AF (p2n, p2r, p3)+ p2k−3δp(n, r) AF (n, r, p)

+ pk−2
( p−1∑

α=0
p|(n+rα)

AF
(
n + rα+ pα2, (r + 2pα)p, p3)

+ AF (np2, r p, p)
)

+ p2k−4
( p2

−1∑
α=0

p2 |(n+rα+pα2)

AF

(
n + rα+ pα2

p2 , r + 2pα, p3
)

+

p−1∑
β=0

p|(rβ+1)

AF

(
np2, r + 2npβ, nβ2

+
rβ + 1

p

))

+ p3k−5
( p−1∑

α=0
p2 |(n+rα+pα2),p |r

AF

(
n + rα+ pα2

p2 ,
r + 2pα

p
, p
))
.

By using Proposition 1.1, we have

(20) cF |ρp3 |V ∗

p,p2
(n, r)

=

∑
d | p2

dk−2
d−1∑
s=0

d |(ps2+rs+n)

cF |ρp3

(
(ps2

+ rs + n)p2

d2 , (r + 2ps)
p2

d

)
.

By using [3, page 56, (24)], we have

(21) cF |ρp |Tp(n, r)

=


cF |ρp(p

2n, pr) if p ∤ r,
cF |ρp(p

2n, pr)− pk−2cF |ρp(n, r) if p |r, p ∤ n,
cF |ρp(p

2n, pr)+ pk−2(p − 1) cF |ρp(n, r)
+ p2k−3∑p−1

α=0, p2 |(n+rα+pα2)
cF |ρp

( n+rα+pα2

p2 ,
r+2pα

p

)
if p |r, p |n.

Suppose p ∤ r . Then there exists unique β ∈ {0, 1, . . . p − 1} such that p |rβ + 1.
Suppose that rβ + 1 = lp for some l ∈ Z. Then we have

(22)
(

−p r
−β l

)(
n r/2

r/2 m

)(
−p −β

r l

)
=

(
np2 (r + 2npβ)/2

(r + 2npβ)/2 nβ2
+ (rβ + 1)/p

)
.

By comparing the three equations (19), (20), (21) and also using (22), we get that

F |Ts,p2 |ρp = F |ρp3 |V ∗

p,p2 + pk−2 F |ρp |TJ,p + p2k−4 F |ρp.
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5. Proof of Theorem 1.6

Suppose F |ρm = ϕm ∈ J cusp, new
k,m . By using the Eichler–Zagier isomorphism Zm

given in [8, Theorem 5.4], we get that ϕm | Zm is in the space

S+,m,new
k−1/2 (4m) :=

{
f ∈ S+, new

k−1/2 (4m) : a f (n)= 0 unless (−1)k−1n ≡□ (mod 4m)
}
,

where S+, new
k−1/2 (4m) is the subspace of newforms inside the Kohnen’s plus space

S+

k−1/2(4m) studied in [4]. Moreover, we have

aϕm | Zm (|D|)= cϕm

(r2
−D

4m
, r
)

for any 0> D, r ∈ Z with D ≡ r2 (mod 4m). Let p be an odd prime dividing m
and let Up2 be the level dividing operator

∑
n⩾1 a(n) qn

7→
∑

n⩾1 a(p2n) qn . Since
ϕm | Zm ∈ S+, new

k−1/2 (4m), by using [4, Theorem 1] we get that

ϕm | Zm |(Up2 + pk−2wp)= 0,

where wp is the involution operator wm
p,k−1/2 defined in [4, Section 2, page 39].

From [8, Lemma 5.9] we know that wp acts as the identity operator on S+,m
k−1/2(4m).

Therefore we have ϕm | Zm |(Up2 + pk−2) = 0. Hence for any 0 > D, r ∈ Z,
D ≡ r2 (mod 4m), we have

cϕm

(
p2 r2

−D
4m

, pr
)

+ pk−2cϕm

(r2
−D

4m
, r
)

= 0.

For any n ⩾ 1, r ∈ Z with r2 < 4mn, by taking D = r2
− 4mn we have

(23) cϕm (p
2n, pr)+ pk−2 cϕm (n, r)= 0.

Suppose F |Ts,p = G ∈ Sk(02). By using (11), we write down
(
np, r, m

p

)
-th

coefficients of F |Ts,p to get

pk−2
∑

ν (mod p),p |(rν+ν2 m
p )

AF

(
n +

rν+ ν2(m/p)
p

, r + 2νm
p
,m
)

+ AF (p2n, pr,m)

= AG

(
np, r, m

p

)
.

Suppose p ∤ r . Then there are exactly two choices for ν (mod p) in the left-hand
side sum namely ν = 0 and ν = −r(m/p), where m/p denotes the inverse of m/p
modulo p. Assume that (m/p)(m/p)= 1 + lp for some l ∈ Z. Then we have

pk−2(cϕm (n, r)+cϕm (n +r2l(m/p),−r −2rlp)
)
+cϕm (p

2n, pr)= cG |ρm/p(np, r).

Since (r +2rlp)2 −4m(n +r2l(m/p))= r2
−4mn and ϕm is in the space J cusp, new

k,m ,
by using [8, Corollary 5.3] we get that cϕm (n + r2l(m/p),−r − 2rlp)= cϕm (n, r).
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Hence we have

(24) 2pk−2 cϕm (n, r)+ cϕm (p
2n, pr)= cG |ρm/p(np, r).

From (23) and (24), we get that cϕm (n, r) = cG |ρm/p(np, r) for any n ⩾ 1, r ∈ Z

with p ∤ r , r2 < 4mn. But by using [3, Theorem 4.2, (7)] we get that

cG |ρm/p(np,r) = cG |ρm/p |Vm/p,p(n, r).

But φm ∈ J cusp, new
k,m , therefore by using [11, Lemma 3.1] we get that ϕm = F |ρm = 0.

6. Proof of Theorem 1.7 and its corollaries

Proof of Theorem 1.7. We prove the theorem by induction on the number of prime
factors of m.

Let p be any odd prime such that λF (p)= 0. By using the decomposition given
by (8), we have the following orthogonal decomposition F |ρp = φ1 |V1,p + φp,
where φ1 ∈ J cusp, new

k,1 and φp ∈ J cusp, new
k,p . Note that J cusp, new

k,1 = J cusp
k,1 . By using the

identity (1) and the fact that λF (p)= 0 we get that F |ρp |V ∗

1,p = 0. Then we have

⟨φ1 |V1,p, φ1 |V1,p⟩ = ⟨F |ρp, φ1 |V1,p⟩ = ⟨F |ρp |V ∗

1,p, φ1⟩ = 0.

Therefore we have F |ρp = φp ∈ J cusp, new
k,p . By applying Theorem 1.6, we get that

F |ρp = 0.
Let m be any odd, squarefree, positive integer which is a multiple of at least 2

primes. Then again by using the decomposition (8), we have

F |ρm ∈ J cusp
k,m =

⊕
l |m,l ̸=m

J cusp, new
k,l |Vl,(m/ l) ⊕ J cusp, new

k,m .

Note that all the direct sums in the above decomposition are orthogonal. We write

F |ρm =

∑
l |m,l ̸=m

ϕl |Vl,(m/ l) +ϕm,

where ϕl ∈ J cusp, new
k,l and ϕm ∈ J cusp, new

k,m . Suppose λF (m)= 0. First, by using the
identity (1) we deduce that ϕ1 |V1,m = 0. Next, by using the multiplicative property
of λF (m) we get that λF (p) = 0 for some odd prime p |m. For any l |m, l ̸= m
with p ∤ l, by using the fact that Vl,(m/ l) = Vl,(m/ lp)V(m/p), p we have

⟨ϕl |Vl,(m/ l), ϕl |Vl,(m/ l)⟩ = ⟨F |ρm, ϕl |Vl,(m/ l)⟩

= ⟨F |ρm |V ∗

l,(m/ l), ϕl⟩ = ⟨F |ρm |V ∗

(m/p), pV ∗

l,(m/ lp), ϕl⟩.

By using the identity (3) for δ=1, we have F |ρm |V ∗

(m/p), p =λF (p)F |ρm/p =0. On
the other hand, for any l |m, l ̸= m with p |l, let p′ be any odd prime dividing m/ l.
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Again, by using the fact that Vl,(m/ l) = Vl,(m/ lp′)V(m/p′), p′ and the identity (3), we
have

⟨ϕl |Vl,(m/ l), ϕl |Vl,(m/ l)⟩ = ⟨F |ρm |V ∗

l,(m/ l), ϕl⟩

= ⟨F |ρm |V ∗

(m/p′), p′ V ∗

l,(m/ lp′), ϕl⟩

= λF (p′)⟨F |ρm/p′ |V ∗

l,(m/ lp′), ϕl⟩.

Since λF (m/p′)= λF (p) λF (m/pp′)= 0 and m/p′ has fewer prime factors than m,
by using the induction hypothesis we get that F |ρm/p′ = 0. Hence we get that
F |ρm = ϕm ∈ J cusp, new

k,m . Now, by using Theorem 1.6 we get that F |ρm = 0. □

Proof of Corollary 1.10. Let T =
( a

b/2
b/2

c

)
and m = ax2

0 + bx0 y0 + cy2
0 for some

x0, y0 ∈Z. Since m is squarefree, we have gcd(x0, y0)=1. Let A =
( x1

y1

x0
y0

)
∈SL2(Z)

and S =
tAT A, where tA denotes the transpose of A. Then the lower right entry

of S would be m. We have aF (S)= aF (
tAT A)= aF (T ) ̸= 0 and hence F |ρm ̸= 0.

Using Theorem 1.7, we get the corollary. □

Proof of Corollary 1.11. Since F is a Siegel eigenform, we have the nonvanishing of
the first Fourier–Jacobi coefficient of F [7], that is, F |ρ1 ̸= 0. Since F |ρ1 ∈ J cusp

k,1 ,
by using (6) we have the following theta decomposition F |ρ1 = h0 θ1,0 + h1θ1,1.
Since F |ρ1 ̸= 0, by using (7) we get that h0 ̸= 0. Since h0 ∈ Sk−1/2(4) and
dim Sk−1/2(4)= k/2 − 2 for k even, there exists an n0 with 1 ⩽ n0 ⩽ k/2 − 2 such
that the n0-th Fourier coefficient ah0(n0) of h0 is nonzero. Then we have

ah0(n0)= aF

(
n0 0
0 1

)
̸= 0.

Now by using Corollary 1.10, we conclude the proof. □
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