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CONTINUOUS SOBOLEV FUNCTIONS WITH SINGULARITY
ON ARBITRARY REAL-ANALYTIC SETS

YIFEI PAN AND YUAN ZHANG

Near every point of a real-analytic set in Rn, we make use of Hironaka’s
resolution of singularities theorem to construct a family of continuous func-
tions in W 1,1

loc such that their weak derivatives have (removable) singularities
precisely on that set.

1. Introduction

Given a domain U in Rn, n ≥ 1, denote by W k,p
loc (U ) the Sobolev space consisting

of functions on U whose k-th order weak derivatives exist and belong to L p
loc(U ),

k ∈ Z+, p ≥ 1. We investigate a Sobolev property for the reciprocals of logarithms
of the modulus of real-analytic functions near their zero sets. Namely, given a
real-analytic nonconstant function f on U , consider

(1-1) v :=
1

ln | f |
on U.

As we are solely interested in the Sobolev behavior of v near f = 0, and additional
singularities would be introduced near | f | = 1, we further assume, say, | f | < 1

2
on U . Consequently v is continuous on U . Letting f −1(0) be the zero set of f
in U , we have v| f −1(0) = 0, and v is differentiable on U \ f −1(0). Note that
codimR f −1(0)≥ 1 in general.

According to a classical result of Stein [1993, pp. 71], ln | f | ∈ BMO for any
polynomial f . On the other hand, Shi and Zhang [2022] showed that for a real-
analytic f on U , if codimR f −1(0) ≥ 2, then ln | f | ∈ W 1,1

loc (U ). It is important
to note that this codimension assumption is essential and cannot be dropped. In
comparison to this result, although v in (1-1) exhibits slightly greater regularity
than ln | f |, our first main theorem shows that v belongs to W 1,1

loc (U ) regardless of
the codimension of f −1(0).
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Theorem 1.1. Let U be a domain in Rn, n ≥ 1. Let f be a real-analytic nonconstant
function on U and | f |< 1

2 on U. Then:

(1) 1
ln | f |

∈ W 1,1
loc (U ).

(2) If codimR f −1(0)= 1, then 1
ln | f |

/∈ W 1,p
loc (U ) for any p > 1.

The main idea of the proof is to use the coarea formula to transform the integrals
under consideration into new ones along level sets of the function f . The L1-
integrability and the L p-nonintegrability for p > 1 that we seek are thus conse-
quences of certain quantitative properties of the level sets of f , which can be
conveniently established by utilizing the powerful Hironaka’s resolution of singular-
ities theorem and the Łojasiewicz gradient inequality. A novelty of Theorem 1.1 is
to provide ample W 1,1

loc functions. For instance, 1
ln |P(x)| ∈ W 1,1

loc for any polynomial P
near its zeros. It is also interesting to point out that Theorem 1.1 indicates that
Sobolev spaces in general do not satisfy an openness property, in the sense that
there exists a class of functions in W k,p

loc (U ) for some p ≥ 1 but not in W k,q
loc (U ) for

any q > p.
Unfortunately our method cannot be applied directly in the smooth category, due

to the absence of a Hironaka-type resolution property for smooth functions. It is
natural to wonder if there is an easy way to verify the optimal Sobolev property
of v, say, for any finitely vanishing smooth function f . For instance, consider
the function f (x, y) := y2

− sin(e1/xπ)e−1/x2
, which is smooth near 0 ⊂ R2 and

vanishes to second order at 0. It turns out, with a straightforward computation, that
1

ln | f |
∈ W 1,1 near 0.

As a consequence of Theorem 1.1, the weak derivative ∇v exists on U . Specif-
ically, this implies that the singularity set f −1(0) of ∇v in the classical sense is
actually a removable singularity in the weak sense. In other words, Theorem 1.1
allows us to construct, for any given real-analytic set, a continuous function in W 1,1

loc
such that its weak derivative has a removable singularity precisely on that set.

Corollary 1.2. Let A be a real-analytic set in Rn . For every p ∈ A, there exists an
open neighborhood V of p and a continuous function u ∈ W 1,1

loc (V ), such that the
set of removable singularities of ∇u is A ∩ V .

Finally, we study the Sobolev property of v in the special case when f is a
holomorphic function on U ⊂ Cn . Note that in this case codimR f −1(0)= 2 unless
f ̸= 0 on U .

Theorem 1.3. Let U be a domain in Cn . Let f be a holomorphic nonconstant
function on U and | f |< 1

2 on U. Then:
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(1) 1
ln | f |

∈ W 1,2
loc (U ).

(2) If f −1(0) ̸= ∅, then 1
ln | f |

/∈ W 1,p
loc (U ) for any p > 2.

Corollary 1.4. Let A be a complex analytic set in Cn . For every p ∈ A, there exists
an open neighborhood V of p and a continuous function u ∈ W 1,2

loc (V ), such that
the set of removable singularities of ∇u is A ∩ V .

In view of Theorems 1.1 and 1.3, it seems to have suggested a correlation between
the codimension of the level sets and the Sobolev integrability index. Thus, one may
ask whether v ∈ W 1,d

loc (U ) if codimR f −1(0)= d for some 0 ≤ d ≤ n. Unfortunately
we do not have an answer to this question in general.

2. Proof of Theorem 1.1

Recall that the coarea formula states that, given φ ∈ L1(U ) and a real-valued
Lipschitz function f on U ,

(2-1)
∫

U
φ(x)|∇ f (x)| dVx =

∫
∞

−∞

∫
f −1(t)

φ(x) d Sx dt.

Here given t ∈ R, Sx is the (n−1)-dimensional Hausdorff measure of the level
set f −1(t) of f defined by

f −1(t) := {x ∈ U : f (x)= t}.

Towards the proof of the main theorems, we shall fix the real-analytic (or holo-
morphic) function f and use the following notation: two quantities A and B are
said to satisfy A ≲ B if A ≤ CB for some constant C > 0 which depends only on
the f under consideration. We say A ≳ B if and only if B ≲ A, and A ≈ B if and
only if A ≲ B and B ≲ A at the same time.

Given a set A ⊂ Rn , denote by m(A) the Hausdorff measure of A at its Hausdorff
dimension. We first utilize Hironaka’s resolution of singularities theorem to show the
Hausdorff measure of level sets of real-analytic functions is bounded (from above).
This will be essential in proving a Harvey–Polking type removable singularity
lemma for the weak derivatives of v.

Theorem 2.1 [Atiyah 1970]. Let f be a real-analytic nonconstant function defined
near a neighborhood of 0 ∈ Rn . Then there exists an open set U ⊂ Rn near 0, a
real-analytic manifold Ũ of dimension n and a proper real-analytic map φ : Ũ → U
such that:

(1) The function φ : Ũ \
∼

f −1(0)→ U \ f −1(0) is an isomorphism, where
∼

f −1(0) :=
{p ∈ Ũ : φ(p) ∈ f −1(0)}.



264 YIFEI PAN AND YUAN ZHANG

(2) For each p ∈ Ũ , there exist local real-analytic coordinates (y1, . . . , yn) centered
at p, such that near p one has

f ◦φ(y)= u(y) ·
n∏

i=1

yki
i ,

where u is real-analytic and u ̸= 0, ki ∈ Z+
∪ {0}.

Lemma 2.2. Let f be a real-analytic nonconstant function on U. Then

m( f −1(t))≲ 1 for all |t | ≪ 1.

Proof. Without loss of generality, assume 0 ∈ U and f (0)= 0. Under the setup of
Hironaka’s resolution Theorem 2.1, for every p ∈

∼

f −1(0), let (Ṽ , ψ) be a coordinate
chart near p in Ũ such that, for y ∈ ψ(Ṽ )⊂ Rn ,

f ◦8(y) := f ◦φ ◦ψ−1(y)= u(y) ·
n∏

i=1

yki
i .

By properness of φ, V := φ(Ṽ ) is an open subset of U near φ(p). Since φ is
smooth on Ũ , by shrinking U if necessary, 8 : ψ(Ṽ ) → V is smooth up to the
boundary of ψ(Ṽ ). By change of coordinates formula,

m( f −1(t)∩ V )=

∫
{ f (x)=t}∩φ(Ṽ )

d Sx

=

∫
{ f ◦8(y)=t}∩ψ(Ṽ )

8∗ d Sx ≲
∫

{ f ◦8(y)=t}∩ψ(Ṽ )
d Sy .

Thus, in view of this and the fact that u ̸= 0 on Ũ , the proof boils down to showing
that the (n−1)-dimensional Hausdorff measure satisfies

(2-2) m(An(t))≲ 1 for all 0< t ≪ 1,

where

(2-3) An(t)=

{
y ∈ Rn

:

n∏
i=1

yki
i = t, 0< yi < 1, i = 1, . . . , n

}
.

Here the constant multiple for “≲” in (2-2) is only dependent on ki , i = 1, . . . , n.
Clearly, one only needs to prove the case when all ki > 0. Let k :=

∑n
i=1 ki .

We shall employ the mathematical induction on the dimension n to prove (2-2)
for all level sets in the form of (2-3). The n = 1 case is trivial. Assume the n = l
case holds. Namely, for every level set Al(t) in Rl defined by (2-3), m(Al(t))≲ 1
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for 0< t ≪ 1. When the dimension n equals l + 1, one first has

Al+1(t)⊂

l+1⋃
j=1

Al+1
j (t),

where, for each j = 1, . . . , l + 1,

Al+1
j (t) :=

{
y ∈ Rl+1

: t1/k
≤ y j < 1, 0< yi < 1 if i ̸= j, and

∏
1≤i≤l+1

i ̸= j

yki
i = t y−k j

j

}
.

Since Al+1
j (t) is a finite union of smooth hypersurfaces in Rl+1 away from a set of

dimension l −1, by Fubini’s theorem, the l-dimensional Hausdorff measure satisfies

m(Al+1
j (t))=

∫ 1

t1/k

∫
∏

1≤i≤l+1,i ̸= j y
ki
i =t y

−k j
j ,0<yi<1,i ̸= j

d Sŷ j dy j ,

and thus

(2-4) m(Al+1(t))≤

l+1∑
j=1

∫ 1

t1/k

∫
∏

1≤i≤l+1,i ̸= j y
ki
i =t y

−k j
j ,0<yi<1,i ̸= j

d Sŷ j dy j .

Further denote ŷ j := (y1, . . . , y j−1, y j+1, . . . , yl+1) ∈ Rl ,

t ′
:= t y−k j

j ,

and

Al
j (t

′) :=

{
ŷ j ∈ Rl

: 0< yi < 1, i ̸= j, and
∏

1≤i≤l+1
i ̸= j

l

yki
i = t ′

}
.

Noting that t ′ < t1−k j/k when y j > t1/k , we obtain from (2-4)

m(Al+1(t))≤ (1 − t1/k)

l+1∑
j=1

sup
0<t ′<t1−k j /k

m(Al
j (t

′)).

On the other hand, since k j < k, one has t1−k j/k
≪ 1 when t ≪ 1. By the induction

assumption and the fact that Al
j (t

′) is in Rl ,

sup
0<t ′<t1−k j /k

m(Al
j (t

′))≲ 1 for all 0< t ≪ 1.

This finally gives
m(Al+1(t))≲ 1 for all 0< t ≪ 1.

The lemma is proved. □
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Lemma 2.3. Given a real-analytic nonconstant function f on U with | f |< 1
2 on U ,

let v be defined in (1-1), and

(2-5) g :=
∇ f

f · (ln | f |)2
on U.

Then g ∈ L1
loc(U ). One has

∇v = g on U

in the sense of distributions.

Proof. First, we show that g ∈ L1
loc(U ). Since f is real-analytic on U , shrinking U

if necessary, one can assume f to be (globally) Lipschitz on U . Making use of the
coarea formula (2-1), one gets∫

U
|g(x)| dVx =

∫
U

|∇ f (x)|
| f (x)|(ln | f (x)|)2

dVx

≤

∫ 1
2

−
1
2

∫
f −1(t)

1
| f (x)|(ln | f (x)|)2

d Sx dt =

∫ 1
2

−
1
2

m( f −1(t))
|t |(ln |t |)2

dt.

Lemma 2.2 further allows us to infer∫
U
|g(x)| dVx ≲

∫ 1
2

0

1
t (ln t)2

dt =

∫
∞

ln 2

1
s2 ds <∞.

Next, we show that, given any testing function η ∈ C∞
c (U ),

(2-6) −

∫
U
v∇η =

∫
U
ηg.

Since v is differentiable away from f −1(0), a direct computation gives

(2-7) ∇v = g on U \ f −1(0).

In particular, (2-6) is trivially true if K := f −1(0)∩ supp η = ∅.
If K ̸= ∅, given ϵ > 0 let

Kϵ := {x ∈ U : dist(x, K )≤ ϵ},

where dist(x, K ) is the distance function from x to the set K . Let ρϵ ∈ C∞(U ) be
such that ρϵ = 0 in Kϵ , ρϵ = 1 in U \ K3ϵ and |∇ρϵ | ≲

1
ϵ

on U . See, for instance,
[Hörmander 2003, Theorem 1.2.1-2]. Then ρϵη ∈ C∞

c (U \ f −1(0)). Using (2-7)
we immediately have

−

∫
U
v∇(ρϵη)=

∫
U
ρϵηg,
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or equivalently,

(2-8) −

∫
U
vη∇ρϵ −

∫
U
vρϵ∇η =

∫
U
ρϵηg.

We shall prove

(2-9) lim
ϵ→0

∫
U
vη∇ρϵ = 0.

If so, then passing ϵ → 0 in (2-8), we obtain the desired equality (2-6) as a
consequence of Lebesgue’s dominated convergence theorem.

To prove (2-9), first by the assumption on ρϵ ,

(2-10)
∣∣∣∣∫

U
vη∇ρϵ

∣∣∣∣ =

∣∣∣∣∫
K3ϵ\Kϵ

vη∇ρϵ

∣∣∣∣ ≲ C
ϵ

∫
K3ϵ\Kϵ

|v|

for some constant C dependent only on η. Since f is Lipschitz on U , for any
x0 ∈ f −1(0), | f (x)| = | f (x)− f (x0)| ≲ |x − x0|. In particular,

| f (x)| ≲ dist(x, f −1(0)).

Thus for all x ∈ K3ϵ \ Kϵ (equivalently, ϵ < dist(x, f −1(0)) < 3ϵ), one has

|v(x)| =
1∣∣ln | f (x)|

∣∣ ≲ 1∣∣ln dist(x, f −1(0))
∣∣ ≈

1
|ln ϵ|

for all ϵ small enough. Hence by (2-10)

(2-11)
∣∣∣∣∫

U
vη∇ρϵ

∣∣∣∣ ≲ Cm(K3ϵ)

ϵ |ln ϵ|
.

On the other hand, according to a nontrivial result of Loeser [1986, Theorem 1.1]
and its consequent remarks,

m(K3ϵ)≲ ϵ
codimR f −1(0) ≲ ϵ.

Here the last inequality has used the fact that codimR f −1(0)≥ 1 due to the real-
analyticity of f . The equality (2-9) follows by combining the above with (2-11). □

Proof of Theorem 1.1. Since | f | < 1
2 , we have

∣∣ln | f |
∣∣ > ln 2 and so |v| < 1

ln 2 ∈

L∞(U ). Part (1) follows from this and Lemma 2.3. For part (2), we only need to
show that the function g defined in (2-5) does not belong to L p

loc for any p> 1 near
any neighborhood of f −1(0).

First, according to the Łojasiewicz inequality, by shrinking U if necessary, there
exists some constant β ∈ (0, 1) such that

(2-12) |∇ f (x)| ≳ | f (x)|β, x ∈ U.
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As a consequence of this,∫
U
|∇v(x)|p dVx =

∫
U

|∇ f (x)|

|∇ f (x)|−(p−1)| f (x)|p
∣∣ln | f (x)|

∣∣2p dVx

≳
∫

U

|∇ f (x)|

| f (x)|p−(p−1)β
∣∣ln | f (x)|

∣∣2p dVx .

Utilizing the coarea formula, we have, for some ϵ0 > 0,∫
U
|∇v(x)|p dVx ≳

∫ ϵ0

−ϵ0

∫
f −1(t)

1

| f (x)|p−(p−1)β
∣∣ln | f (x)|

∣∣2p d Sx dt

=

∫ ϵ0

−ϵ0

m( f −1(t))

|t |p−(p−1)β
∣∣ln |t |

∣∣2p dt.

Since codimR f −1(0)= 1, there is some x0 ∈ f −1(0)∩U , such that |∇ f (x0)| ̸= 0.
Let V be a neighborhood of x0 in U such that |∇ f | ≳ 1 on V . Then for all t small
enough, m( f −1(t)∩ V )≳ 1. Consequently, m( f −1(t))≳ 1 for 0< t ≪ 1. Thus∫

U
|∇v(x)|p dVx ≳

∫ ϵ0

0

1
t p−(p−1)β |ln t |2p dt.

Note that p − (p −1)β > 1 necessarily when p > 1 and β < 1. Hence the last term
is unbounded. The proof is complete. □

Proof of Corollary 1.2. Since A is real-analytic, there exists an open neighborhood
V ⊂Rn of p and a real-analytic function f on V such that A∩V ={x ∈ V : f (x)=0}.
Then u =

1
ln | f |

is the desired function satisfying the assumptions. □

For functions (such as ln | f |) with singularities, its composition with another
logarithm typically exhibits reduced singularities. The following theorem shows
that composing extra logarithms does not improve Sobolev regularity in general.

Theorem 2.4. Let U be a domain in Rn, n ≥ 1. Let f be a real-analytic nonconstant
function on U and | f |< 1

10 on U. Then:

(1) 1
ln ln | f |

∈ W 1,1
loc (U ).

(2) If codimR f −1(0)= 1, then 1
ln ln | f |

/∈ W 1,p
loc (U ) for any p > 1.

Proof. Applying a similar approach as in the proof of Lemma 2.3, we first have

∇

(
1

ln
∣∣ln | f |

∣∣
)

=
∇ f

f · ln | f | ·
(
ln

∣∣ln | f |
∣∣)2 on U
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in the sense of distributions. Making use of the coarea formula and Lemma 2.2,∫
U

∣∣∣∣∇(
1

ln
∣∣ln | f |

∣∣
)∣∣∣∣ ≤

∫ 1
10

−
1

10

∫
f −1(t)

1

| f (x)|
∣∣ln | f (x)|

∣∣(ln
∣∣ln | f (x)|

∣∣)2 d Sx dt

≲
∫ 1

10

0

1
t | ln t |(ln | ln t |)2

dt

=

∫
∞

ln 10

1
t (|ln t |)2

dt =

∫
∞

ln ln 10

1
t2 dt ≲ 1.

In the case when p > 1, there exists some 0< β < 1 by (2-12), and some small
ϵ0 > 0 such that∫

U

∣∣∣∣∇(
1

ln
∣∣ln | f |

∣∣
)∣∣∣∣p

≳
∫

U

|∇ f (x)|

| f (x)|p−(p−1)β
∣∣ln | f (x)|

∣∣p(ln
∣∣ln | f (x)|

∣∣)2p dVx

≳
∫ ϵ0

0

1
t p−(p−1)β |ln t |(ln |ln t |)2

dt.

Since p − (p − 1)β > 1, the last term is divergent. This completes the proof of the
theorem. □

3. Proof of Theorem 1.3

To prove Theorem 1.3 for holomorphic functions, we shall need the following
well-known complex version Hironaka’s resolution of singularities theorem. See,
for instance, [Smith 2016].

Theorem 3.1. Let f be a holomorphic function defined near a neighborhood of
0 ∈ Cn . Then there exists an open set U ⊂ Cn near 0, a complex manifold Ũ of
dimension n and a proper holomorphic map φ : Ũ → U such that:

(1) The function φ :Ũ\
∼

f −1(0)→U\ f −1(0) is a biholomorphism, where
∼

f −1(0) :=
{p ∈ Ũ : φ(p) ∈ f −1(0)}.

(2) For each p ∈ Ũ , there exist local holomorphic coordinates (w1, . . . , wn) cen-
tered at p, such that near p one has

f ◦φ(w)= u(w) ·
n∏

i=1

w
ki
i ,

where u is holomorphic and u ̸= 0, ki ∈ Z+
∪ {0}.

Proof of Theorem 1.3. (1) Since ∂̄ f = 0, and according to Lemma 2.3,

∂v =
∂ f

2 f · (ln | f |)2
∈ L1

loc(U )
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in the sense of distributions, we only need to show that

∂ f
f · (ln | f |)2

∈ L2
loc(U ).

On the other hand, making use of Hironaka’s resolution of singularities Theorem 3.1
for holomorphic functions, for every p ∈

∼

f −1(0), let (Ṽ , ψ) be a coordinate chart
near p in Ũ such that, for w ∈ ψ(Ṽ )⊂

{
w ∈ Cn

: |w j |<
1
2

}
,

f̃ (w) := f ◦φ ◦ψ−1(w)= u(w) ·
n∏

i=1

w
ki
i ,

where u ̸= 0 on ψ(Ṽ ) and ki ∈ Z+
∪ {0}. Let V := φ(Ṽ ), 8 := φ ◦ ψ−1, and

Jac8 be the complex Jacobian of the holomorphic map 8. Note that the inverse
matrix (Jac8)−1 is smooth on ψ(Ṽ \

∼

f −1(0)), and

|(Jac8)−1(w) · det(Jac8)(w)| ≲ 1 for all w ∈ ψ(Ṽ \
∼

f −1(0)).

By change of variables formula,∫
V

|∂z f (z)|2

| f (z)|2(ln | f (z)|)4
dVz

=

∫
8−1(V \ f −1(0))

8∗

(
|∂z f (z)|2

| f (z)|2(ln | f (z)|)4
dVz

)

≲
∫
ψ(Ṽ \
∼

f −1(0))

|∂w f̃ (w)|2|(Jac8)−1(w)|2

| f̃ (w)|2(ln | f̃ (w)|)4
∣∣det(Jac8(w))

∣∣2 dVw

≲
∫
ψ(Ṽ )

|∂w f̃ (w)|2

| f̃ (w)|2(ln | f̃ (w)|)4
dVw.

Thus, the proof boils down to showing that, for j = 1, . . . , n,

(3-1)
∫
ψ(Ṽ )

|∂w j f̃ (w)|2

| f̃ (w)|2(ln | f̃ (w)|)4
dVw ≲ 1.

For simplicity, let j = 1 in (3-1). If k1 = 0, then

∂w1 f̃ (w)= ∂w1u(w) ·
n∏

i=1

w
ki
i .

Since 1
(ln | f̃ (w)|)4

≲ 1 and u ̸= 0, when w is near 0,

|∂w1 f̃ (w)|2

| f̃ (w)|2(ln | f̃ (w)|)4
=

|∂w1u(w)|2

|u(w)|2(ln | f̃ (w)|)4
≲ 1.
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So (3-1) holds. If k1 > 0, then

∂w1 f̃ (w)= ∂w1u(w) ·
n∏

i=1

w
ki
i + k1u(w) ·wk1−1

1 ·

n∏
i=2

w
ki
i .

Hence

|∂w1 f̃ (w)|2

| f̃ (w)|2(ln | f̃ (w)|)4
≲

|∂w1u(w)|2

|u(w)|2(ln | f̃ (w)|)4
+

k2
1

|w1|2(ln | f̃ (w)|)4

≲ 1 +
1

|w1|2(ln | f̃ (w)|)4
.

Note that when w is close to 0,

(3-2)
∣∣ln | f̃ (w)|

∣∣ =

∣∣∣∣ln |u(w)| +
n∑

i=1

ki ln |wi |

∣∣∣∣ ≳ −ln |w1|.

This leads to∫
ψ(Ṽ )

|∂w1 f̃ (w)|2

| f̃ (w)|2(ln | f̃ (w)|)4
dVw ≲ 1 +

∫
ψ(Ṽ )

1

|w1|2
∣∣ln |w1|

∣∣4 dVw

≲ 1 +

∫ 1
2

0

1
s(ln s)4

ds ≲ 1.

Equation (3-1) and thus part (1) are proved.

(2) Let U1 be an open subset of U such that f −1(0)∩ U1 is regular. Then there
exists a holomorphic coordinate change on U1 such that under the new coordinates
(w1, . . . , wn), one has wn = f (z). As a consequence of this,∫

U

∣∣∣∣ ∂z f
f · (ln | f |)2

∣∣∣∣p

dVz ≥

∫
U1

∣∣∣∣ ∂z f
f · (ln | f |)2

∣∣∣∣p

dVz

≈

∫
U1

1

|wn|
p
∣∣ln |wn|

∣∣2p dVw ≳
∫ ϵ0

0

1
s p−1|ln s|2p ds

for some ϵ0 > 0. Since p > 2, the last term is unbounded. This proves part (2). □

Proof of Corollary 1.4. The proof is similar to that of Corollary 1.2, with Theorem 1.1
substituted by Theorem 1.3, and is omitted. □

An application of Theorem 1.3 is to provide ample data to the ∂̄ problem in
complex analysis, in particular, within the framework of Hörmander’s classical L2

theory for ∂̄-closed forms with L2
loc coefficients. Normally, generating smooth data

is straightforward. In the following, we construct data with singularity on complex
analytic varieties, where Hörmander’s theory can still be applied.



272 YIFEI PAN AND YUAN ZHANG

Example 1. Let � be a pseudoconvex domain in Cn . Let f be a nonconstant
holomorphic function on � such that f −1(0) ̸= ∅. Choose a monotone increasing
function χ ∈ C∞([0,∞)) such that χ(t) = t if 0 ≤ t ≤

1
4 , and χ(t) =

1
3 if t ≥ 1.

Then g =
1

lnχ(| f |)
∈ W 1,2

loc (�) by Theorem 1.3. Furthermore, u := ∂̄g is a ∂̄-closed
(0, 1) form with L2

loc coefficients with singularities precisely on f −1(0).
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