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For any Kac–Moody root datum D, D. Muthiah and D. Orr have defined a
partial order on the semidirect product W a

+ of the integral Tits cone with the
vectorial Weyl group of D, and a compatible length function. We classify
covers for this order and show that this length function defines a Z-grading
of W a

+, generalizing the case of affine ADE root systems and giving a positive
answer to a conjecture of Muthiah and Orr.
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Introduction

Motivation.

Reductive groups over p-adic fields. Let G be a split reductive group scheme with
the data of a Borel subgroup B containing a maximal torus T . Let W = NG(T )/T

MSC2020: primary 20F55, 20G44; secondary 20C08, 22E67.
Keywords: Kac–Moody groups, root systems, Coxeter groups, affine Weyl groups, affinized Bruhat

order.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC
BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org/pjm/
https://doi.org/10.2140/pjm.2024.332-2
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


274 PAUL PHILIPPE

be its vectorial Weyl group and Y be its coweight lattice: Y = Hom(Gm, T ). The
action of W on T induces an action of W on Y and allows us to form the semidirect
product W a

= Y ⋊ W . This group, called the extended affinized Weyl group of G,
appears naturally in the geometry and the representation theory of G over discretely
valued fields. A foundational work in this regard was done by N. Iwahori and
H. Matsumoto [1965], when they exhibited a Bruhat decomposition of G(Qp)

indexed by W a .
Let K be a nonarchimedean local field with ring of integers OK ⊂K, uniformizer

π ∈ OK and residue field kK = OK/π . Let G = G(K), let K = G(OK) be its
integral points and let I be its Iwahori subgroup, defined as

I = {g ∈ K | g ∈ B(kK) mod π}.

The extended affinized Weyl group can be understood as NG(T (K))/T (OK), so
it admits a lift in G. Then, G admits a decomposition in I -double cosets indexed
by W a , the Iwahori–Matsumoto–Bruhat decomposition:

(0.1) G =
⊔

πλw∈W a
Iπλw I.

The group W a is a finite extension of a Coxeter group and thus admits a Bruhat
order which arises from the geometry of the homogeneous space G/I : for any
πλw ∈ W a , Iπλw I is a subvariety of pure dimension ℓ(πλw) in G/I , and its
closure admits a disjoint decomposition in I orbits:

(0.2) Iπλw I =
⊔

πµv≤πλw

Iπµv I,

which extends the Iwahori–Matsumoto decomposition. The connection between the
geometry of G/I and the combinatorial structure of W a is deeper. In particular, R-
Kazhdan–Lusztig polynomials introduced by Kazhdan and Lusztig [1980], defined
as the number of points of certain intersections in G/I , are also given by a recursive
formula based on the Bruhat order and the Bruhat length of W a .

These polynomials appear in many topics around reductive groups over local
fields, we aim to develop analogous polynomials when G is replaced by a general
Kac–Moody group.

Extension to Kac–Moody groups. Replace G by a general split Kac–Moody group.
Kac–Moody group functors are entirely defined by the underlying Kac–Moody root
datum D, as defined in [Rémy 2002, §2], and reductive groups correspond to root
data of finite type. Then the Iwahori–Matsumoto decomposition no longer holds
on G = G(K). However there is a partial Iwahori–Matsumoto decomposition: there
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exists a subsemigroup G+ of G such that

(0.3) G+
=

⊔
πλw∈W a

+

Iπλw I.

The indexing set for this decomposition W a
+

is a subsemigroup of W a
= Y ⋊W , and

it appears naturally in other related contexts, for example, when trying to construct
an Iwahori–Hecke algebra for G [Braverman et al. 2016; Bardy-Panse et al. 2016].
Let us briefly explain how W a

+
is defined.

Let 8 be the real root system of the root datum D. It is an infinite set (unless D is
reductive) of linear forms on Y coming with a subset of positive roots 8+ ⊂ 8 such
that 8 = 8+ ⊔−8+. Let Y ++

= {λ ∈ Y | ∀α ∈ 8+, α(λ) ≥ 0} and Y +
= W ·Y ++.

Then W a
+

is defined as Y + ⋊ W . In the reductive case, Y + coincides with Y and
thus W a

+
= W a . However, W a can no longer be conceived as a finite extension of a

Coxeter system, hence there is a priori no Bruhat order on W a
+

, let alone on W a . A
well-behaved topology on G+/I would allow us to define an order on W a

+
through

the analog of decomposition (0.2), but G+/I does not seem to have a natural variety,
nor even an ind-variety structure.

An order and two lengths on W a
+

. In Appendix B2 of their article on the construction
of an Iwahori–Hecke algebra for G an affine Kac–Moody group over a p-adic field
[Braverman et al. 2016], A. Braverman, D. Kazhdan and M. Patnaik propose the
definition of a preorder on W a

+
which would replace the Bruhat order of W a and they

conjecture that it is a partial order. In [2018], D. Muthiah extends the definition of
this preorder to any Kac–Moody group G, defines a Z⊕εZ-valued length compatible
with this preorder and hence shows that it is an order. In [2019], D. Muthiah and
D. Orr then show that this length can be evaluated at ε = 1 to obtain a Z-valued
length strictly compatible with the order on W a

+
.

In order to build a Kazhdan–Lusztig theory of p-adic Kac–Moody groups, we
want to understand how close this order is to the Bruhat order of an affine Coxeter
group, which properties still hold and which do not. The definition of a Z-length is
already a significant step, but many important properties, which are known to hold
for Bruhat orders, remain unknown in this context. Several were proved only for
Kac–Moody root systems of affine simply laced type using the specific structure of
an affinized Weyl group of W in this context.

Choice of vocabulary. The order on W a
+

is often mentioned in the literature as “the
double affine Bruhat order” and the associated length as “the double affine Bruhat
length” because it is most studied in the case of G a Kac–Moody group of affine
type (in which case W is an affine Weyl group). We refer to it as “the affinized
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Bruhat order” and “the affinized Bruhat length”, denoted by ℓa , because we do not
suppose that W is an affine Weyl group. Note that, if W is finite, then the affinized
Bruhat length and order on W a

+
are just the ones induced by its Coxeter group

structure.

Main result. Our main result is a positive answer to [Muthiah and Orr 2019, Con-
jecture 1.5] in full generality.

For any partial order ≤ on a set X , we say that y covers x if x ̸= y and
{z ∈ X | x ≤ z ≤ y} = {x, y}. A grading of X is a length function ℓ on X strictly
compatible with ≤ and such that y covers x if and only if x ≤ y and ℓ( y)−ℓ(x)= 1.
Gradings thus give an easy classification of covers and more generally of saturated
chains in X . The Bruhat length for a Coxeter group equipped with the Bruhat order
is the prototypical example of a grading.

Muthiah and Orr [2019] prove that if 8 is of affine ADE type, the affinized
Bruhat length gives a Z-grading of W a

+
for the affinized Bruhat order and conjecture

this to be true in general. Our main result is a positive answer to this conjecture:

Theorem A. Let D be any Kac–Moody root datum. Then the affinized length ℓa

on W a
+

defines a Z-grading of W a
+

strictly compatible with the affinized Bruhat
order. Otherwise said, let x, y ∈ W a

+
be such that x ≤ y. Then

(0.4) y covers x if and only if ℓa( y) − ℓa(x) = 1.

Along the way, we obtain several geometric properties of covers for the affinized
Bruhat order which we expect to be insightful even if the root datum is reductive (so
W is finite and W a

+
is an affine Weyl group) as they only rely on the Coxeter structure

of W . In particular, we obtain in Proposition 3.20 a classification of covers which
generalize results obtained using quantum Bruhat graphs, in the reductive setting by
T. Lam and M. Shimozono [2010, Proposition 4.4] and F. Schremmer [2024, Propo-
sition 4.5], and in the affine simply laced setting by A. Welch [2022, Theorem 2].

Further directions. In an upcoming joint work with A. Hébert, we prove that any
element of W a

+
admits a finite number of covers for the affinized Bruhat order.

We use this finiteness in the context of masures to define R-Kazhdan–Lusztig
polynomials, following Muthiah’s strategy exposed in [2019] and the work on twin
masures of N. Bardy-Panse, A. Hébert and G. Rousseau [Bardy-Panse et al. 2022].
Our understanding of covers is useful to compute these R-polynomials and we
intend to use R-polynomials to define P-Kazhdan–Lusztig polynomials.

Another interesting (but quite long reach) question is the following: W a
+

appears
as the affinization of W , which may be taken as an affinized version of a finite
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Coxeter group. Can we iterate the affinization process, e.g., to obtain a valid theory
for reductive or Kac–Moody groups on valued fields of higher dimensions?

Lastly, little is known on the preorder defined on the whole semidirect product W a;
it could be insightful to study it and to connect it to the failure of the full Iwahori–
Matsumoto decomposition of G.

Organization of the paper.

Proof strategy. The global strategy is to construct a nontrivial chain from x to y
every time y ≥ x satisfies ℓa( y) − ℓa(x) > 1. Let projY

+

denote the projection
W a

+
= Y + ⋊ W → Y +. We distinguish two cases which depend on the form of x

and y: The first case is when projY
+

( y) lies in the orbit of projY
+

(x), we call such
covers the vectorial covers. The other case is when projY

+

( y) /∈ W · projY
+

(x), we
call such covers the properly affine covers.

For vectorial covers we show that the affinized Bruhat order on the set {z ∈ W a
+

|

x ≤ z ≤ y} is, in some sense, a lift of several Bruhat-like orders on W . We are then
able to construct chains between x and y from chains in W , and we deduce a classi-
fication of vectorial covers. The characterization of properly affine covers is, at first
glance, more involved. Through a careful study of the relation between the vectorial
chamber containing projY

+

(x) and the vectorial chamber containing projY
+

( y), we
show that the length difference ℓa( y)− ℓa(x) can be rewritten in a more workable
form, making clear the conditions for which it is equal to one. Then the difficulty is to
build, explicitly, a nontrivial chain every time one of these conditions is not satisfied.

Organization. Section 1 consists of preliminaries. In Section 1.1 we formally define
everything we mentioned in this introduction. In particular we give the definition
of the affinized Bruhat order and the two affinized Bruhat lengths as they are given
in [Muthiah and Orr 2019]. To be more flexible, we chose to define the affinized
Bruhat preorder on the whole affinized Weyl group W a

= Y ⋊ W , on which it may
not be an order.

We show, amongst other preliminary results, that we indeed recover the affinized
Bruhat order on W a

+
from this preorder in Section 1.3.

We also give, in Section 1.2, a geometric interpretation of W a
+

and its affinized
Bruhat order, which is to be compared with the interpretation of the Bruhat order in
the Coxeter complex of a Coxeter group. Even though it is not clearly mentioned
in the rest of the paper, this geometric interpretation was very useful to construct
chains and understand W a

+
.

In Section 2, we prove Theorem A for vectorial covers. We define relative
versions of the Bruhat order on W in Section 2.1 and we connect these relative
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Bruhat orders to the affinized Bruhat length in Section 2.2. This is enough to prove
Theorem A when projY

+

( y) = projY
+

(x) (see Theorem 2.13). Using finer results
on parabolic quotients in Section 2.3, we extend it to vectorial covers such that
projY

+

( y) ∈ W · projY
+

(x) \ {projY
+

(x)} (see Theorem 2.18).
In Section 3, we deal with properly affine covers. We first show in Section 3.1

that these covers are of a very specific form. Namely, if x = πv(λ)w with v, w ∈ W
and λ ∈ Y ++, then y needs to be of the form πv(λ+β∨)sv(β)w or πvsβ (λ+β∨)sv(β)w

for some β ∈ 8+.
The strategy is then to get enough necessary conditions on v, w, λ, β for y to

cover x, in order to obtain a simplified expression for ℓa( y)−ℓa(x). Proposition 3.3
gives a first result in this direction. In Section 3.2 we fully exploit this strategy to
obtain (3.14) for the length difference.

Finally, in Sections 3.3 and 3.4, we construct various chains from x to y to prove
that the quantities appearing in (3.14) need to be minimal when y covers x, which
allows us to conclude the argument in Section 3.5.

1. Preliminaries

1.1. Definitions and notation. Let D=(A, X,Y, (αi )i∈I , (α
∨

i )i∈I ) be a Kac–Moody
root datum as defined in [Rémy 2002, §8]. It is a quintuplet such that:

(1) I is a finite indexing set and A = (ai j )(i, j)∈I×I is a generalized Cartan matrix.

(2) X and Y are two dual free Z-modules of finite rank, and we write ⟨ · , · ⟩ for
the duality bracket.

(3) (αi )i∈I (resp. (α∨

i )i∈I ) is a family of linearly independent elements of X
(resp. Y ): the simple roots (resp. simple coroots).

(4) For all (i, j) ∈ I 2 we have ⟨α∨

i , α j ⟩ = ai j .

1.1.1. Vectorial Weyl group. For every i ∈ I set si ∈ AutZ(X) : x 7→ x −⟨α∨

i , x⟩αi .
The generated group W = ⟨si | i ∈ I ⟩ is the vectorial Weyl group of the Kac–Moody
root datum.

The duality bracket ⟨ · , · ⟩ induces a contragredient action of W on Y , explicitly
si (y) = y − ⟨y, αi ⟩α

∨

i . The bracket is then W -invariant.
The vectorial Weyl group W is a Coxeter group with set of simple reflections

S = {si | i ∈ I }; in particular it has a Bruhat order < and a length function ℓ

compatible with the Bruhat order. We refer to [Björner and Brenti 2005] for general
definitions and properties of Coxeter groups. A reflection in a Coxeter group is any
element conjugated to a simple reflection.
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1.1.2. Real roots. Let 8 = W · {αi | i ∈ I } be the set of real roots of D. It
is a root system in the classical sense, but possibly infinite. In particular let
8+ =

⊕
i∈I Nαi ∩8 be the set of positive real roots. Then 8 = 8+ ⊔−8+, and

we write 8− = −8+ for the set of negative roots.
The set 8∨

= W · {α∨

i | i ∈ I } is the set of coroots, and its subset 8∨
+

=⊕
i∈I Nα∨

i ∩ 8∨ is the set of positive coroots.
To each root β corresponds a unique coroot β∨: if β = w(αi ) then β∨

= w(α∨

i ).
This map β 7→ β∨ is well defined, bijective between 8 and 8∨ and sends positive
roots to positive coroots. Note that ⟨β∨, β⟩ = 2 for all β ∈ 8.

To each root β we associate a reflection sβ ∈W : if β =w(±αi ) then sβ :=wsiw
−1.

Explicitly it is the map X → X defined by sβ(x) = x − ⟨β∨, x⟩β. For any β ∈ 8

we have sβ = s−β and the map β 7→ sβ forms a bijection between the set of positive
roots and the set {wsiw

−1
| (w, i) ∈ W × I } of reflections of W .

1.1.3. Inversion sets. For any w ∈ W , let

Inv(w) = 8+ ∩ w−1(8−) = {α ∈ 8+ | w(α) ∈ 8−}.

These sets are strongly connected to the Bruhat order, as by [Kumar 2002, 1.3.13],
for all α ∈ 8+

(1.1) α ∈ Inv(w) ⇐⇒ wsα < w ⇐⇒ sαw−1 < w−1.

They are related to the Bruhat length: ℓ(w) = |Inv(w)| [Kumar 2002, 1.3.14].

1.1.4. Fundamental chamber and Tits cone. We define the (closed) integral funda-
mental chamber by Y ++

= {λ ∈ Y | ⟨λ, αi ⟩ ≥ 0 ∀i ∈ I }. If λ ∈ Y ++, we say that it
is a dominant coweight. Then, the integral Tits cone is Y +

:=
⋃

w∈W w(Y ++). It is
a convex cone of Y ; in particular it is a semigroup for the group operation of Y ,
and it is equal to Y if and only if W is finite, if and only if 8 is finite, if and only
if A is of finite type (see [Kumar 2002, 1.4.2]).

The integral fundamental chamber Y ++ is a fundamental domain for the action
of W on Y +, and for any λ ∈ Y + we define λ++ to be the unique element of Y ++

in its W -orbit.
There is a height function on Y +, defined as follows:

Definition 1.1. Let (3i )i∈I be a set of fundamental weights, that is to say ⟨α∨

i , 3i ⟩=

δi j for any i, j ∈ I . We fix it once and for all. Let ρ =
∑

i∈I 3i . Then for any
λ ∈ Y define the height of λ as

(1.2) ht(λ) = ⟨λ, ρ⟩.
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The height depends on the choice of fundamental weights, but its restriction to
Q∨

=
⊕

i∈I Zα∨

i do not:

ht
( ∑

i∈I
niα

∨

i

)
=

∑
i∈I

ni .

Remark 1.2. The height function takes integral values on Q∨, but not necessarily
on Y . In general, one can choose the fundamental weights such that ht(Y ) ⊂

1
Nht

Z

for some Nht ∈ Z>0. As noted by D. Muthiah and A. Puskás [2024, Remark 2.13],
if D is of finite or affine type then the fundamental weights may be chosen such
that Nht ∈ {1, 2}, but for more general Kac–Moody root systems the optimal choice
for Nht may be arbitrarily large.

1.1.5. Parabolic subgroups, minimal coset representatives. For λ ∈ Y +, let 8λ

denote the set {α ∈ 8 | ⟨λ, α⟩ = 0} and Wλ = StabW (λ). We say that λ is regular
if 8λ = 0, or equivalently if Wλ = 1W . More generally we say that λ is spherical
if Wλ is finite.

Let v ∈ W be such that λ = vλ++. Then Wλv = vWλ++ and, since λ++ is
dominant, Wλ++ is a standard parabolic subgroup, that is, a group of the form
WJ = ⟨s | s ∈ J ⟩ where J ⊂ S is a set of simple reflections. More precisely,
J = {s ∈ S | s(λ++) = λ++

}.
By standard Coxeter group theory (see, for instance, [Björner and Brenti 2005,

Section 2.2]), for any u ∈ W , the left coset uWλ++ =uWJ has a unique representative
of minimal length which we denote by u J , and one has a decomposition u = u J u J

with u J ∈ WJ such that

(1.3) ℓ(u) = ℓ(u J ) + ℓ(u J ).

Notation 1.3. (1) For any J ⊂ S, we denote by W J the set of minimal length
representatives for WJ -cosets in W :

(1.4) w ∈ W J
⇐⇒ ∀w̃ ∈ WJ , ℓ(ww̃) > ℓ(w) ⇐⇒ ∀s ∈ J, ℓ(ws) > ℓ(w).

If λ ∈ Y ++ is such that Wλ = WJ , then we may use W λ as an alternative notation
for W J .

(2) For any λ ∈ Y + (not necessarily dominant), we denote by vλ the minimal length
element in W which satisfies λ = vλλ++:

(1.5) vλ
= min{v ∈ W | λ = vλ++

}.

In other words, for any u ∈ W such that λ = uλ++, we have vλ
= u J , where J is

the set of simple reflections such that WJ = Wλ++ .
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1.1.6. Affinized Weyl semigroup. The action of W on Y allows us to form the
semidirect product Y ⋊ W , which we denote by W a . We denote its elements
by πλw with λ ∈ Y , w ∈ W .

By definition, Y +
⊂ Y is stable by the action of W on Y ; therefore we can form

W a
+

= Y + ⋊ W which is a subsemigroup of W a . This semigroup is called the
affinized Weyl semigroup. Muthiah and Orr [2019] define a Bruhat order and an
associated length function on W a

+
which we aim to study in this article.

Denote by projY
+

: W a
+

→ Y + the canonical projection, which sends πλw onto λ.
Denote by projY

++

:W a
+

→Y ++ the projection to Y ++: projY
++

(x)=(projY
+

(x))++.
Let us call projY

+

(x) the coweight of x, and projY
++

(x) its dominance class.

1.1.7. Affinized roots. Let 8a
= 8 × Z be the set of affinized roots and denote

by β +nπ the affinized root (β, n). The affinized root β +nπ is said to be positive
if n > 0 or (n = 0 and β ∈ 8+) and we write 8a

+
for the set of positive affinized

roots. We have 8a
= 8a

+
⊔ −8a

+
.

The semidirect product W a acts on 8a by

(1.6) πλw(β + nπ) = w(β) +
(
n + ⟨λ, w(β)⟩

)
π.

For any n ∈ Z, its sign is denoted sgn(n) ∈ {−1, +1}, with the convention that
sgn(0) = +1. Note that |n| = sgn(n)n. We also define the sign of an affinized root:
sgn(β + nπ) ∈ {−1, +1} and sgn(β + nπ) = +1 if and only if β + nπ ∈ 8a

+
.

For n ∈ Z and β ∈ 8+, set

β[n] = sgn(n)β + |n|π ∈ 8a
+
,(1.7)

sβ[n] = πnβ∨

sβ .(1.8)

We also define β[n] ∈ 8a
+

for β ∈ 8− by β[n] = (−β)[−n], and sβ[n] = s−β[−n] =

πnβ∨

sβ . The affinized root β[n] is therefore the positive affinized root within the
pair {β + nπ, −(β + nπ)}. Note that sβ[0] is the vectorial reflection sβ .

1.1.8. Bruhat order on W a
+

. Recall Braverman, Kazhdan and Patnaik’s definition
of the Bruhat order < introduced in [Braverman et al. 2016, Section B.2]: Let
x ∈ W a

+
and let β[n] ∈ 8a

+
be such that xsβ[n] ∈ W a

+
. Then,

(1.9) x < xsβ[n] ⇐⇒ sgn(β + nπ) = sgn(x(β + nπ)) ⇐⇒ x(β[n]) ∈ 8a
+
.

Explicitly, if x = πλw ∈ W a
+

, the right-hand side condition can be written as

sgn(n)
(
n + ⟨λ, w(β)⟩

)
> 0 or n = −⟨λ, w(β)⟩ and sgn(n)w(β) > 0.

Then we extend this relation by transitivity, which makes it a preorder on W a
+

.
Originally, Braverman, Kazhdan and Patnaik defined it only for affine vectorial
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Weyl groups, but the definition extends to any vectorial Weyl group and Muthiah
[2018] showed that it is an order on W a

+
in general.

1.1.9. Extension to W a . As the whole semidirect product W a acts on 8a
+

, (1.9)
makes sense for any x ∈ W a , and we define < on W a as the closure by transitivity
of the relation defined through (1.9) for x ∈ W a . We show in the next section
that if x < y and y ∈ W a

+
, then x ∈ W a

+
. This ensures that the restriction of the

W a-preorder to W a
+

coincides with Braverman, Kazhdan, Patnaik’s order on W a
+

.
However < may not be an order on W a .

1.1.10. Bruhat order through a right action. We consider multiplication by reflec-
tions on the left. To switch between the right and left actions note that

(1.10) sβ[n]π
λw =π sβλ+nβ∨

sβw =πλ+(n−⟨λ,β⟩)β∨

wsw−1(β) =πλwsw−1(β)[n−⟨λ,β⟩].

In particular,

(1.11) sβ[0]π
λw= sβπλw=π sβλsβw and sβ[⟨λ,β⟩]π

λw=πλsβw=πλwsw−1(β).

Using (1.10), the affinized Bruhat order can be recovered using a right action
of W a on 8a

+
.

Proposition 1.4. Let πλw ∈ W a and (β, n) ∈ (8 × Z) \ (8− × {0}). Then

(1.12) sβ[n]π
λw > πλw ⇐⇒ sgn(n)w−1(β) + (|n| − sgn(n)⟨λ, β⟩)π ∈ 8a

+
.

Remark 1.5. The root appearing in the right-hand side of (1.12) is the affinized
root (πλw)−1(β[n]).

Proof. Let πλw ∈ W a and β + nπ ∈ 8a . Then by (1.9) and (1.10),

sβ[n]π
λw > πλw ⇐⇒ sgn(β + nπ) = sgn

(
w−1(β) + (n − ⟨λ, β⟩)π

)
.

If (β, n) /∈ 8− × {0}, then β[n] = sgn(n)(β + nπ) so this is equivalent to

sgn(n)
(
w−1(β) + (n − ⟨λ, β⟩)π

)
∈ 8a

+
,

which is (1.12). □

Note that (1.12) is no longer correct if β ∈ 8− and n = 0, in which case it needs
to be applied to (−β)[0]. Applying reflections on the left is better suited for the
geometric interpretation we will give in Section 1.2.

1.1.11. Terminology on partially ordered sets. For p ≤ q ∈ Z, we denote by [[p, q]]

the set {r ∈ Z | p ≤ r ≤ q}. If p > q, then [[p, q]] is another notation for [[q, p]].
We also write ]]p, q[[ for [[p, q]] \ {p, q}.

Let (P, ≤) be a partially ordered set. For x, y ∈ P , we say that x and y are
comparable if x ≤ y or y ≤ x. We say that y covers x, written as x◁ y, if x ̸= y and
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{z | x ≤ z ≤ y}={x, y}. If P = W +
a , covers x◁ y such that projY

++

( y)=projY
++

(x)

are called vectorial covers and covers which are not vectorial covers are called
properly affine covers.

A chain from x to y is a finite sequence (x0, . . . , xn) such that x0 = x, xn = y
and xk ≤ xk+1 for all k ∈ [[0, n − 1]]. If P = W a

+
(resp. if P is a Coxeter group),

we add the condition that xk+1x−1
k is an affinized reflection (resp. a reflection). A

chain is saturated if xk ◁ xk+1 for all k ∈ [[0, n − 1]]. We say that a subset C of P
is convex if, for all x, y ∈ C and z ∈ P ,

(1.13) x ≤ z ≤ y =⇒ z ∈ C.

Equivalently, C is convex if and only if any chain from one element of C to another
is contained in C.

Let ℓ : P → A be a function with values in a totally ordered set (A, ≤A). We
say that it is order-preserving if, for all x, y ∈ P ,

(1.14) x ≤ y =⇒ ℓ(x) ≤A ℓ( y).

We say that ℓ is a strictly compatible (A-valued) length function if

(1.15) x < y ⇐⇒ x, y are comparable and ℓ(x) <A ℓ( y).

We say that a strictly compatible R-valued length function ℓ defines a Z-grading
of P if

(1.16) x ◁ y ⇐⇒ x ≤ y and ℓ( y) = ℓ(x) + 1.

For instance, the Bruhat length on a Coxeter group W is strictly compatible with
the Bruhat order, and defines a N-valued grading of W . Muthiah and Orr associated
length functions strictly compatible with the Bruhat order on W a

+
, generalizing the

classical Bruhat length on Coxeter groups. We now formally introduce these lengths.

1.1.12. Length functions on W a
+

.

Definition 1.6. The affinized length function is the map W a
+

→ R ⊕ εZ defined by

ℓa
ε (π

λw)=2ht(λ++)+ε
(∣∣{α∈Inv(w−1)|⟨λ,α⟩≥0}

∣∣−∣∣{α∈Inv(w−1)|⟨λ,α⟩<0}
∣∣).

The affinized length with real values is the affinized length function on which we
set ε = 1:

ℓa(πλw)=2ht(λ++)+
(∣∣{α∈Inv(w−1) |⟨λ,α⟩≥0}

∣∣−∣∣{α∈Inv(w−1) |⟨λ,α⟩<0}
∣∣).

Theorem 1.7 [Muthiah 2018, Theorem 4.24; Muthiah and Orr 2019, Theorem 3.6].
The affinized length function and the affinized length function with real values are
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strictly compatible with the affinized Bruhat order on W a
+

. In other words, for any
x ∈ W a

+
and β[n] ∈ 8a

+
,

(1.17) xsβ[n] > x ⇐⇒ ℓa
ε (xsβ[n]) > ℓa

ε (x) ⇐⇒ ℓa(xsβ[n]) > ℓa(x).

In particular the affinized Bruhat order is a partial order.

Remark 1.8. The affinized length functions depend on the choice made for the
height function. However since projY

++

(sβ[n]x) ∈ projY
++

(x)+ Q∨ for any x ∈ W a
+

and β[n] ∈ 8a
+

such that sβ[n]x ∈ W a
+

(this is a consequence of Corollary 1.12
below and of (1.10)), by Remark 1.2 the length difference between two comparable
elements do not depend on the choice of height function. By the same remark
if D is of finite or affine type, then the height function may be chosen such that
ℓa takes integral values; therefore it was first introduced by Muthiah and Orr as
“the affinized length with integral values”. In general type, ℓa may take nonintegral
values for every choice of height function but this could be artificially fixed: one
could also define a strictly compatible length with integral values ℓa

Z by setting
ℓa

Z(x) = ⌊ℓa(x)⌋ (where ⌊ · ⌋ : R → Z denotes any Z-equivariant function).

In what follows we will mostly use ℓa and rarely mention ℓa
ε . We now refer to ℓa

as the affinized Bruhat length.

1.2. Geometric interpretation. We introduced everything in a very algebraic way,
but there is a strong geometric intuition behind root systems, vectorial Weyl groups
and the vectorial Bruhat order, developed, for instance, in the context of buildings in
[Ronan 1989]. There is also a geometrical interpretation of the Bruhat order on W a

+

which we develop in this paragraph; it takes place in the standard apartment of the
masure associated to a Kac–Moody group with underlying Kac–Moody datum D.

Let V = Y ⊗Z R. The lattice X embeds in its dual V ∨ and the vectorial Weyl
group W acts naturally on it. Inside V we have the (closed) fundamental chamber
Cv

f = {v ∈ V | ⟨v, αi ⟩ ≥ 0} and the Tits cone T = W · Cv
f . A vectorial chamber is

a set of the form w · Cv
f for w ∈ W . Since the interior of Cv

f has trivial stabilizer
in W , the set of chambers is in natural bijection with W by w 7→ Cv

w := w · Cv
f .

To each root β ∈ 8+ let Mβ = {x ∈ V | ⟨x, β⟩ = 0}; it is a hyperplane of V and,
if β = w(αi ) with αi a simple root, then Cv

w ∩ Cv
wsi

⊂ Mβ ∩ T . The intersection
Cv

w ∩ Cv
wsi

is called the panel of type si of w.
We can put a structure of simplicial complex on T , for which chambers are the

cells of maximal rank and panels are the cells of maximal rank within nonchambers.
This simplicial complex is a realization of the Coxeter complex of (W, S). Each wall
splits the Tits cone in two parts, and separate the set of vectorial chambers in two: say
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Figure 1. The Tits cone for a root system of Cartan Matrix
( 2

−2
−3

2

)
.

that Cv
w is on the positive side of Mβ if w−1(β)>0. In particular since β is a positive

root, the positive side is always the one which contains the dominant chamber.
Then the vectorial Bruhat order can be interpreted by sβw > w if and only if,

when we split T along Mβ , the chambers Cv
w and Cv

f are in the same connected
component of T , that is to say Cv

w is on the positive side of Mβ .
The inversion set of w−1, Inv(w−1), can be interpreted as the set of walls

separating the chamber Cv
w = w · Cv

f from the fundamental chamber Cv
f .

In Figure 1 we represent the Tits cone and its structure for a root system of rank 2
with Cartan matrix

( 2
−2

−3
2

)
, which is of indefinite type. The Tits cone is colored in

blue, and the vectorial chamber Cv
w is labeled by w. It is an approximation since

W is infinite.
Let us now turn to the interpretation of the W a

+
-Bruhat order. Let A be a real

affine space with direction V , we call A the (standard) affine apartment associated
to D. The tangent space of A is canonically isomorphic to T A = A × V , with, for
any x ∈ A, Tx A = {x} × V .

The semigroup W a
+

has an affine action on A, given by πλw(x) = −λ+w(x),
which induces an action on T A given by πλw((x, v)) = (−λ + w(x), w(v)). To
any positive affinized root β[n] ∈ 8a

+
corresponds an affine hyperplane

(1.18) Mβ[n] = {x ∈ A | ⟨x, β⟩ + n = 0},
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Figure 2. The affine apartment for a root system of Cartan Matrix
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the affine wall associated to the affinized root β[n]. For any x ∈ Mβ[n] we have
Tx Mβ[n] = {x} × Mβ ⊂ Tx A.

For any πλw ∈ W a
+

let

(1.19) Cπλw = {−λ} × Cv
w ⊂ T−λA ⊂ T A,

we call it the alcove of type πλw. Mirroring the classical situation, C0 = {0}× Cv
f

is a fundamental domain for the action of W a
+

on Y +
× T ⊂ T A and W a

+
acts on

{Cx | x ∈ W a
+
} simply transitively. Affine walls separate naturally the set of alcoves

in two and we call the side containing C0 the positive side.
Then the W a

+
-Bruhat order can be interpreted geometrically:

(1.20) sβ[n]π
λw > πλw ⇐⇒ Cπλw is on the positive side of Mβ[n].

We give an illustration of the affine apartment in Figure 2.
In Figure 2 we represent the affine apartment for the same root datum as in

Figure 1. The blue polygons represent the local Tits cones at three different points:
the origin, −λ ∈ −Y + and −µ, which is the image of −λ by the reflection along
the wall Ms1(α2)[2] (represented in yellow).

We have highlighted three alcoves: In green the alcove C0; in red the alcove
C = Cπλs1s2 and in yellow D = Cπµs1 which is the image of C by ss1(α2)[2]. We
see that D is on the same side of Ms1(α2)[2] as the fundamental alcove C0; thus
πλs1s2 = ss1(α2)[2](π

µs1) > πµs1.
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Note that −λ lies in the negative vectorial chamber −s2Cv
f , that is to say that

s2λ is dominant. Therefore πλs2 is the minimal length element of πλW . We will
make this more explicit in Section 2.2.

1.2.1. Notation for segments. For any two elements x, y ∈ V = Y ⊗Z R, we define

[x, y] = {t x + (1 − t)y | 0 ≤ t ≤ 1} and ]x, y[ = {t x + (1 − t)y | 0 < t < 1}.

Note in particular that, if x ∈ Y and y = x +nβ∨ for n ∈ Z and β ∈ 8, then for any
m ∈ [[0, n]] we have x + mβ∨

∈ [x, y] ∩ Y .

1.3. Preliminary results. Since the affinized Bruhat order is generated on W a
+

by the relations sβ[n]x > x ⇐⇒ ℓa(sβ[n]x) > ℓa(x) for affinized roots β[n] ∈ 8a
+

,
covers are always of this form. In the rest of the paper, we always apply affinized
reflections on the left.

Lemma 1.9. Let πλw ∈ W a and β[n] ∈ 8a
+

. Write πµw′ for sβ[n]π
λw and suppose

that (πλw)−1(β[n]) ∈ 8a
+

. Then λ ∈ [µ, sβµ]. In particular

(1.21) µ ∈ Y +
=⇒ λ ∈ Y +.

Proof. Explicitly,

πµw′
= πnβ∨

sβ .πλw = π sβλ+nβ∨

sβw.

Thus

µ = sβλ + nβ∨
= λ + (n − ⟨λ, β⟩)β∨ and sβµ = λ − nβ∨.

Moreover, since (πλw)−1(β[n]) ∈ 8a
+

, by (1.12),

|n| − sgn(n)⟨λ, β⟩ = sgn(n)(n − ⟨λ, β⟩) ≥ 0.

Therefore, unless n − ⟨λ, β⟩ = 0, n and n − ⟨λ, β⟩ have same sign, and thus
λ = sβµ+nβ∨

= µ− (n −⟨λ, β⟩)β∨ lies in [sβµ, µ]. If n −⟨λ, β⟩ = 0 then µ = λ

and the result remains true.
The Tits cone T is convex [Kumar 2002, Proposition 1.4.2c)] and W -stable,

so if µ ∈ T , then [µ, sβµ] is contained in T for any β ∈ 8. Therefore in the
situation above, if µ ∈ Y +

= T ∩Y , then λ ∈ [µ, sβµ]∩Y ⊂ T ∩Y = Y +, and thus
µ ∈ Y +

=⇒ λ ∈ Y +. □

We directly obtain from Lemma 1.9 the following result.

Proposition 1.10. The affinized Bruhat order defined on W a
+

coincides with the
restriction of the preorder defined through (1.9) on the whole semidirect product W a .
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1.3.1. Properties of the height function. We give here a few elementary results on
the height function, which will be useful in our study of the affinized Bruhat length.
They are also used in [Muthiah and Orr 2019, Section 3].

Proposition 1.11. For any w ∈ W ,

(1.22) ρ − w−1(ρ) =
∑

γ∈Inv(w)

γ.

Proof. This is [Kumar 2002, 1.3.22, Corollary 3], we prove it by induction on the
length of w.

(1) If w is a simple reflection sα then Inv(sα) = {α} and ρ − sα(ρ) = ⟨α∨, ρ⟩α = α

since ⟨α∨, ρ⟩ = 1 by definition of ρ.

(2) Suppose the result is true for elements of length n, and suppose that ℓ(w)=n+1.
Then write w = w1sα for α a simple root and w1 an element of length n. Then

ρ − w(ρ) = ρ − w1(ρ) + w1(ρ − sα(ρ)) =
∑

γ∈Inv(w−1
1 )

γ + w1(α)

and since Inv(w−1) = Inv(w−1
1 ) ⊔ {w1(α)} we get the result for w. □

Corollary 1.12. For any positive root β ∈ 8+ we have

(1.23) 2 ht(β∨) =
∑

γ∈Inv(sβ )

⟨β∨, γ ⟩.

All the terms in the sum are positive.

Proof. Let β ∈ 8+ be a positive root. Note that −sβ(β∨) = β∨ and thus ⟨β∨, ρ⟩ =

⟨−sβ(β∨), ρ⟩ = ⟨β∨, −sβ(ρ)⟩. Therefore by Proposition 1.11,

2 ht(β∨) = 2⟨β∨, ρ⟩ = ⟨β∨, ρ − sβ(ρ)⟩ =
∑

γ∈Inv(sβ )

⟨β∨, γ ⟩.

Also for any γ ∈ Inv(sβ), by definition γ ∈ 8+ and sβ(γ ) = γ − ⟨β∨, γ ⟩β∨
∈ 8−

so, since β is a positive root, the coefficient ⟨β∨, γ ⟩ is necessarily positive. □

Corollary 1.13. Let µ ∈ Y + and u ∈ W be such that µ = u(µ++). Then

(1.24) ht(µ++) = ht(µ) −
∑

τ∈Inv(u−1)

⟨µ, τ ⟩.

The terms in this sum are nonpositive integers and

(1.25) ht(µ) ≤ ht(µ++).

The inequality is strict unless µ is dominant.
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Proof. By definition ht(µ++) = ⟨u−1(µ), ρ⟩ = ⟨µ, u(ρ)⟩, and, by Proposition 1.11,

ht(µ++) = ⟨µ, u(ρ)⟩ =

〈
µ, ρ −

∑
τ∈Inv(u−1)

τ
〉
= ht(µ) −

∑
τ∈Inv(u−1)

⟨µ, τ ⟩.

Moreover, for any τ ∈ 8, we have ⟨µ, τ ⟩ = ⟨µ++, u−1(τ )⟩, so τ ∈ Inv(u−1) =⇒

⟨µ, τ ⟩ ≤ 0 and the terms of the above sum are all nonpositive; we deduce (1.25). If
µ is not dominant, then there exists τ ∈ 8+ such that ⟨µ, τ ⟩ < 0, and thus

ht(µ) < ht(sτµ) ≤ ht(µ++). □

Amongst other things, Corollary 1.13 directly implies the following result, which
was first indicated to the author by Hébert and Muthiah.

Lemma 1.14. Let λ ∈ Y + and β ∈ 8+ such that sβλ ̸= λ. Suppose that µ ∈ ]λ, sβλ[.
Then ht(µ++) < ht(λ++).

Proof. Note that we do not suppose µ ∈ Y . The height function is extended to
V = Y ⊗Z R linearly. Let t ∈ ]0, 1[ be such that µ = tλ+ (1− t)sβλ, and let v ∈ W
be such that µ++

= vµ. Then ht(µ++) = ht(vµ) = t ht(vλ)+ (1 − t) ht(vsβλ). By
Corollary 1.13, ht(vλ) ≤ ht(λ++) and ht(vsβλ) ≤ ht(λ++) and, since sβλ ̸= λ, at
least one of the two inequality is strict. We deduce ht(µ++) < ht(λ++). □

Proposition 1.15. Let x ∈ W a
+

and β[n] ∈ 8a
+

such that sβ[n]x ∈ W a
+

. Then

(1.26) projY
++

(sβ[n]x) = projY
++

(x) ⇐⇒ n ∈
{
0, ⟨projY

+

(x), β⟩
}
.

Proof. To simplify notation, let λ ∈ Y + denote projY
+

(x). If n ∈ {0, ⟨λ, β⟩} then by
(1.11), projY

+

(sβ[n]x) ∈ {sβ(λ), λ} and therefore it has same dominance class.
Conversely, if n ∈ ]]0, ⟨λ, β⟩[[ then

projY
+

(sβ[n]x) = sβ(λ) + nβ∨
∈ ]λ, sβ(λ)[,

and if n /∈ [[0, ⟨λ, β⟩]] then

λ ∈ ]sβ(λ) + nβ∨, λ− nβ∨
[ =

]
projY

+

(sβ[n]x), sβ(projY
+

(sβ[n]x))
[
.

Either way by Lemma 1.14, ht(projY
++

(sβ[n]x)) ̸= ht(projY
++

(x)) and in partic-
ular projY

++

(sβ[n]x) ̸= projY
++

(x). □

Remark 1.16. If n = ⟨λ, β⟩, then by (1.11), sβ[n]π
λw = πλwsw−1(β). Therefore

Proposition 1.15 indicates that, if y = sβ[n]x, then projY
++

( y) = projY
++

(x) if and
only if y is obtained from x by applying a vectorial reflection either on the left-hand
side (if n = 0) or on the right-hand side (if n =⟨λ, β⟩). This justifies the terminology
for vectorial covers and properly affine covers.
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Proposition 1.17. Let x, y ∈ W a
+

and suppose that x ≤ y. Then

(1.27) ht(projY
++

(x)) ≤ ht(projY
++

( y)),

with equality if and only if projY
++

(x) = projY
++

( y).
In particular the function ht ◦ projY

++

: W a
+

→ R is order-preserving.

Proof. It is enough to prove it for cover relations, if y = sβ[n]x for some β[n] ∈ 8a
+

.
In that case, by Lemma 1.9 we have projY

+

(x) ∈
[
projY

+

( y), sβ(projY
+

( y))
]
. If

projY
+

(x) ∈ {projY
+

( y), sβ projY
+

( y)} then they have the same dominance class:
projY

++

(x) = projY
++

( y) and we obtain the equality case.
Otherwise, projY

+

(x)∈
]
projY

+

( y), sβ(projY
+

( y))
[
, necessarily sβ(projY

+

( y)) ̸=
projY

+

( y) and by Lemma 1.14 we deduce ht(projY
++

(x)) < ht(projY
++

( y)). □

Corollary 1.18. For any λ++
∈ Y ++, the set {x ∈ W a

+
| projY

++

(x) = λ++
} is

convex for the affinized Bruhat order.

Proof. By Proposition 1.17 the function W a
+

→ R : x 7→ ht ◦ projY
++

is compatible
with the affinized Bruhat order. Suppose that x, y ∈ W a

+
satisfy projY

++

(x) =

projY
++

( y) and x ≤ y. Let z ∈ W a
+

be such that x ≤ z ≤ y. Then by Proposition 1.17,
ht(projY

++

(x)) ≤ ht(projY
++

(z)) ≤ ht(projY
++

( y)) = ht(projY
++

(x)). By the equal-
ity case in Proposition 1.17, we deduce projY

++

(z) = projY
++

(x). □

Remark 1.19. Note that, for λ ∈ Y +, the set {x ∈ W a
+

| projY
++

(x) = λ++
} is the

double W -orbit of πλ:

(1.28) {x ∈ W a
+

| projY
++

(x) = λ++
} = WπλW.

We show in Section 2 that the right W -orbits πλW are also convex for the
affinized Bruhat order.

We end this section with several metric properties of Coxeter groups, the results
stated are proved in the context of Coxeter complexes and buildings in [Ronan
1989].

1.3.2. Metric properties of Coxeter groups. On any Coxeter group (W0, S0) we
define a map d : W0 × W0 → W0 by d(v, w) = v−1w, called the vectorial distance
of W0. It is W0-invariant: d(uv, uw) = d(v, w) for any u, v, w ∈ W0. We also
define dN

= ℓ ◦ d where ℓ is the Bruhat length on (W0, S0) (note that ℓ and dN

depend on the set of simple reflections S0, but the vectorial distance does not). These
maps have properties analogous to the standard distance axioms, which justify the
name (see [Ronan 1989, Chapter 3, §1]).

An unfolded gallery (resp. a gallery) in W0 from w to v is a sequence w =

w0, . . . , wn = v such that dN(wi , wi+1) = 1 (resp. dN(wi , wi+1) ∈ {0, 1}) for all
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i ∈ [[0, n −1]]. A gallery is said to be minimal if its length n is equal to dN(w1, wn),
and a minimal gallery is necessarily unfolded. We refer to [Ronan 1989, Chapter 2]
for properties of minimal galleries, but note that if (w0, . . . , wn) is a minimal gallery
then dN(w0, wi ) = i and thus (w0, . . . , wi ) is a minimal gallery from w0 to wi .
Since the distance is W0 invariant, (vw0, . . . , vwn) is also a minimal gallery for
any v ∈ W0. The next lemma is a reformulation of [Ronan 1989, Proposition 2.8].

Lemma 1.20. Let (W0, S0) be a Coxeter system and let v1, v2, w ∈ W0 be such that
v2 is not on a minimal gallery from v1 to w. Then there is a reflection r ∈ W0 such
that d(v1, rw) > d(v1, w) and d(v2, rw) < d(v2, w).

Proof. If v2 is not on a minimal gallery from v1 to w, by [Ronan 1989, Proposi-
tion 2.8] there is a root α — seen as a half-apartment: α ={u ∈ W0 |ℓ(u)<ℓ(sαu)} —
such that v1, w ∈ α and v2 /∈ α. Then consider the folding along α, defined by

∀u ∈ W0, ρα(u) =

{
sαu if u /∈ α,

u otherwise.

It reduces the vectorial distance (see [Ronan 1989, §2]); hence

d(v1, w) = d(ρα(v1), ρα(sαw)) < d(v1, sαw),

d(v2, sαw) = d(sαv2, w) = d(ρα(v2), ρα(w)) < d(v2, w). □

Recall that for J ⊂ S, WJ is the subgroup generated by the set of simple
reflections J . The Coxeter system (WJ , J ) is an example of Coxeter system for
which we will use Lemma 1.20. For any w ∈ W , the coset wWJ is convex, in the
sense that, if w1, w2 ∈ wWJ , then any minimal gallery from w1 to w2 lies in wWJ

(see [Ronan 1989, Lemma 2.10]).

Definition 1.21. For any J ⊂ S and v, w ∈ W , the projection of w on vWJ is
the unique element of vWJ which reaches minṽ∈vWJ dN(w, ṽ). It is denoted by
projvWJ

(w). Any minimal gallery from v to an element of wWJ goes through
projvWJ

(w) (see [Ronan 1989, Theorem 2.10]).

2. Restriction to constant dominance classes

We study the affinized Bruhat order restricted to a dominance class, that is to say, for
a given λ++

∈Y ++, we study the restriction of the affinized Bruhat order to the subset
(projY

++

)−1(λ++) = Wπλ++

W . By Corollary 1.18 these are convex subsets for the
affinized Bruhat order. We start by showing that, for any λ ∈ Y +, the subset πλW =

(projY
+

)−1(λ) of (projY
++

)−1(λ++) is also convex for the affinized Bruhat order.
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Lemma 2.1. Let λ ∈ Y +, recall Notation 1.3 for vλ. Then Inv((vλ)−1) ∩ 8λ = ∅.
In particular for any β ∈ 8+,

(2.1) ht(λ) < ht(sβλ) ⇐⇒ ⟨λ, β⟩ < 0 ⇐⇒ sβvλ < vλ.

Proof. Let λ ∈ Y + and α ∈ Inv((vλ)−1)∩8λ. Then since α ∈ 8λ, sα fixes λ, that is,
sα ∈ Wλ. Moreover (vλ)−1(α) < 0 so sαvλ < vλ, which contradicts the minimality
of vλ (note that, as Wλv

λ
= vλWλ++ , vλ is also the minimal representative for the

right coset Wλv
λ). Hence Inv((vλ)−1)∩8λ =∅, and therefore any β ∈ Inv((vλ)−1)

satisfies ⟨λ, β⟩ ̸= 0.
For β ∈ 8+, ⟨λ, β⟩ = ⟨λ++, (vλ)−1(β)⟩. Since λ++ is dominant, if this is

negative then β ∈ Inv((vλ)−1), and since Inv((vλ)−1) and 8λ are disjoint, the
converse is also true. Since β ∈ Inv((vλ)−1) ⇐⇒ sβvλ < vλ we deduce the second
equivalence in (2.1). Moreover ht(sβλ) = ht(λ) − ⟨λ, β⟩ ht(β∨) by linearity of the
height function, and since ht(β∨) > 0, the first equivalence in (2.1) is clear. □

Remark 2.2. The fact that Inv((vλ)−1) ∩ 8λ = ∅ is visible geometrically in the
Coxeter complex of W , in which 8λ is the set of walls containing λ and Inv(v−1)

is the set of walls separating Cv
f and Cv

v . The chamber Cv
vλ is the closest chamber

from the fundamental chamber amongst the chambers containing λ in their closure,
in other words, vλ

= projWλ
(1W ).

Proposition 2.3. Suppose that πλw ∈ W a
+

and r ∈ W is a reflection such that
rλ ̸= λ. Then

(2.2) πrλrw > πλw ⇐⇒ rvλ < vλ.

For any λ++
∈ Y ++, the restriction of the function ht ◦ projY

+

to (projY
++

)−1(λ++)

is order-preserving.

Proof. Suppose that r ∈ W is a reflection which does not fix λ. By definition there
exists a positive root β ∈ 8+ such that r = sβ and, since r does not fix λ, ⟨λ, β⟩ ̸= 0.
Note that πrλrw = sβ[0]π

λw so, using (1.12), we have

πrλrw > πλw ⇐⇒ −⟨λ, β⟩ > 0 ⇐⇒ ⟨λ, β⟩ < 0.

By Lemma 2.1 this is equivalent to rvλ < vλ, and to ht(λ) < ht(rλ). This is enough
to obtain (2.2). Moreover by convexity of (projY

++

)−1(λ++) (see Corollary 1.18)
and by Proposition 1.15 it also implies that ht ◦ projY

+

: (projY
++

)−1(λ++) → R is
order-preserving. □

Note that the function ht ◦ projY
+

is not order-preserving on the whole semi-
group W a

+
. For example suppose that λ∈Y ++ and β ∈8+ are such that λ+β∨ is also
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dominant. Then we can check that π sβ (λ) < π sβ (λ)−β∨

sβ whereas ht(sβ(λ)−β∨) <

ht(sβ(λ)).
Proposition 2.3 implies the convexity of left W -cosets:

Corollary 2.4. Let λ ∈ Y +. Then the set πλW = {x ∈ W a
+

| projY
+

(x) = λ} is
convex for the affinized Bruhat order.

Proof. Let x, y ∈ πλW such that x < y and let x = x0 < x1 < · · · < xn = y be
a chain from x to y; in particular for all k ∈ [[0, n − 1]], let βk[nk] ∈ 8a

+
be such

that xk+1 = sβk [nk ]xk . For k ∈ [[0, n]], write xk = πλk wk with λk ∈ Y +, wk ∈ W .
By convexity of (projY

++

)−1(λ++), projY
++

is constant along the chain, therefore
by Proposition 1.15, for all k ∈ [[0, n − 1]] we have λk+1 ∈ {λk, sβk (λk)}. From
Proposition 2.3 we deduce that vλk+1 ≤ vλk . Since λ0 = λn = λ, vλ0 = vλn = vλ,
and thus vλk = vλ, so λk = λ for all k ∈ [[0, n]]. Hence πλW is convex. □

2.1. Relative length on W. We define a relative length and a relative Bruhat order
on W , which naturally arises in the study of the affinized length ℓa on W a

+
. This

connection was already observed by Muthiah and Orr [2018].

Definition 2.5. For any v, w ∈ W let

(2.3) ℓv(w) = |Inv(w−1) \ Inv(v−1)| − |Inv(w−1) ∩ Inv(v−1)|.

This is a signed version of the Bruhat length, in particular ℓ1 = ℓ.
We associate an order to ℓv by setting, for any element w ∈ W and any reflection

r ∈ W , w <v wr if and only if ℓv(w) < ℓv(wr), and then let <v be the order
generated by these relations. It is strictly compatible with ℓv. In particular <1 is
the classical Bruhat order.

As does the Bruhat length, the lengths ℓv have a geometric interpretation in the
Coxeter complex associated to (W, S). For M a wall of the Coxeter complex and
w ∈ W , let εw(M) = −1 if M separates Cv

f and Cv
w, and εw(M) = +1 otherwise.

Then

(2.4) ℓv(w) =
∑

M∈ε−1
w (−1)

εv−1(M).

We will use this relative length to give an alternative definition of the affinized
length. Let us first give an explicit formula for ℓv depending only on the classical
length ℓ = ℓ1.

Lemma 2.6. If sv > v with v ∈ W and s a simple reflection then for any w ∈ W ,
ℓsv(w) = ℓv(sw) − 1.
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Proof. For any w ∈ W , the map γ 7→ sγ defines a bijection:

Inv(w−1) \ {αs} ∼= Inv(w−1s) \ {αs}.

Moreover because sv > v, αs ∈ Inv(v−1s) and αs /∈ Inv(v−1).
Therefore

|Inv(w−1) ∩ Inv(v−1s) \ {αs}| = |Inv(w−1s) ∩ Inv(v−1)|

and
|Inv(w−1) \ Inv(v−1s)| =

∣∣Inv(w−1s) \ (Inv(v−1) ∪ {αs})
∣∣.

(1) If αs ∈ Inv(w−1) then αs /∈ Inv(w−1s) and

ℓsv(w) = |Inv(w−1s) \ Inv(v−1)| −
(
|Inv(w−1s) ∩ Inv(v−1)| + 1

)
= ℓv(sw) − 1.

(2) If αs /∈ Inv(w−1) then αs ∈ Inv(w−1s) and

ℓsv(w) =
(
|Inv(w−1s) \ Inv(v−1)| − 1

)
− |Inv(w−1s) ∩ Inv(v−1)|

= ℓv(sw) − 1. □

Proposition 2.7. For all v, w ∈ W the relative length ℓv(w) is given by

(2.5) ℓv(w) = ℓ(v−1w) − ℓ(v).

Proof. Since ℓ = ℓ1, we take a reduced expression for v and apply Lemma 2.6
recursively to get the result. □

Corollary 2.8. For any v ∈ W , the relative length ℓv is a grading of (W, <v).

Proof. Let v, w,w′
∈ W . By Proposition 2.7, ℓv(w

′)−ℓv(w)= ℓ(v−1w′)−ℓ(v−1w)

and w′ covers w for <v if and only if v−1w′ covers v−1w for the (standard) Bruhat
order. Since the Bruhat length is a grading of (W, <1) (see [Björner and Brenti
2005, Theorem 2.2.6]), v−1w′ covers v−1w if and only if ℓ(v−1w′)− ℓ(v−1w) = 1
and v−1w′

= v−1wr for some reflection r ∈ W . Hence w′ covers w for <v if and
only if ℓv(w

′)− ℓv(w) = 1 and w′
= wr for some reflection r ∈ W : ℓv is a grading

of (W, <v). □

The order <v also has a geometric interpretation which will be important later
on; it is given by the following corollary.

Corollary 2.9. For any root α ∈ 8 and elements w, v ∈ W , we have that w <v sαw

if and only if , in the Coxeter complex of W , Cv
w and Cv

v are on the same side of the
wall Mα.
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Proof. We have ℓv(sαw)−ℓv(w)= ℓ(v−1sαw)−ℓ(v−1w)=dN(v, sαw)−dN(v, w).
By the definition of the Coxeter complex this is positive if and only if Cv

v and Cv
w

are on the same side of the wall Mα. □

Therefore <v can be interpreted as a shift of the classical Bruhat order, correspond-
ing geometrically to taking Cv

v as the fundamental chamber in the Coxeter complex.

2.2. Relation with the affinized Bruhat length. We relate the affinized Bruhat
order and the relative order defined in Section 2.1. We start with an alternative
expression for the affinized Bruhat length.

Proposition 2.10. For any coweight λ = vλ++
∈ Y +, for any w ∈ W ,

(2.6)
∣∣{α ∈ Inv(w−1) | ⟨λ, α⟩ ≥ 0}

∣∣ − ∣∣{α ∈ Inv(w−1) | ⟨λ, α⟩ < 0}
∣∣ = ℓvλ(w).

Therefore

ℓa
ε (π

λw) = 2 ht(λ++) + εℓvλ(w),(2.7)

ℓa(πλw) = 2 ht(λ++) + ℓvλ(w).(2.8)

Proof. For λ ∈ Y + and v ∈ W such that λ = vλ++, α ∈ 8+ satisfies ⟨λ, α⟩ ≥ 0 if
and only if α ∈ 8λ ∪ (8+ \ Inv(v−1)). Hence,

{α ∈ Inv(w−1) | ⟨λ, α⟩ ≥ 0} = (Inv(w−1)\Inv(v−1))
⊔

(Inv(w−1)∩Inv(v−1)∩8λ)

and

Inv(w−1)∩ Inv(v−1) = {α ∈ Inv(w−1) | ⟨λ, α⟩ < 0}
⊔

(Inv(w−1)∩ Inv(v−1)∩8λ).

Therefore∣∣{α ∈ Inv(w−1) | ⟨λ, α⟩ ≥ 0}
∣∣ − ∣∣{α ∈ Inv(w−1) | ⟨λ, α⟩ < 0}

∣∣
= ℓv(w) + 2|Inv(w−1) ∩ Inv(v−1) ∩ 8λ|

By Lemma 2.1 we deduce (2.6). □

Remark 2.11. By combining Corollary 1.13 with Proposition 2.10, we obtain the
formulas already given by Muthiah and Orr [2019, Proposition 3.10].

Corollary 2.12. Let λ ∈ Y + and w ∈ W . Suppose that πµw′′
= sβ[n]π

λw for some
affinized root β[n] ∈ 8a such that µ++

= λ++. Then

(2.9) πµw′′ > πλw ⇐⇒ ℓvµ(w′′) > ℓvλ(w).

For any λ ∈ Y + and w, w′′
∈ W ,

(2.10) πλw < πλw′′
⇐⇒ w <vλ w′′.

In particular, πλvλ is the minimal element of πλW .
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Proof. Equivalence (2.9) is a direct consequence of (2.8) and strict compatibility of
the affinized Bruhat length and the affinized Bruhat order. It implies by iteration that
a chain for the relative order <vλ from w to w′′ lifts to a chain for the affinized Bruhat
order from πλw to πλw′′. Conversely, by Corollary 2.4 projY

+

is constant along
any chain from πλw to πλw′′, and therefore the projection on W of a chain from
πλw to πλw′′ induces a chain for the relative Bruhat order <vλ from w to w′′. □

We deduce a partial version of Theorem A, for vectorial covers with constant
coweight.

Theorem 2.13. Let x, y ∈ W a
+

be such that projY
+

(x)= projY
+

( y) and x ≤ y. Then

(2.11) x ◁ y ⇐⇒ ℓa( y) = ℓa(x) + 1.

More precisely, if x = πλw then y = πλrw for some reflection r ∈ W such that rw

covers w for the relative Bruhat order <vλ .

Proof. By (2.10), πλw′ covers πλw if and only if w′ covers w for the relative
Bruhat order <vλ . By Corollary 2.8, this is equivalent to ℓvλ(w′) = ℓvλ(w) + 1.
Therefore by (2.8) we deduce that x ◁ y =⇒ ℓa( y) = ℓa(x) + 1. The converse is
immediate by strict compatibility of the affinized Bruhat length (Theorem 1.7). □

2.3. Vectorial covers with nonconstant coweight. Here, we prove Theorem A for
vectorial covers with nonconstant coweight.

Beforehand, we need a few results on parabolic decomposition. The first lemma
is an adaptation of a standard result on minimal coset representatives (see [Björner
and Brenti 2005, Theorem 2.5.5]), and the second is proved by P-E. Chaput, L.
Fresse and T. Gobet in [Chaput et al. 2021].

Lemma 2.14. Let J be a subset of S, and recall Notation 1.3 for W J . Let v be an
element of W J and u be any element of W such that u < v. Then, there is, for the
Bruhat order, a saturated chain

(2.12) u = u0 ◁ u1 ◁ · · ·◁ uN = v

such that, for any i ∈ [[1, N ]], u−1
i−1ui does not belong to WJ .

Proof. If v covers u, it is clear since u < v is a saturated chain, and as v is a
minimal coset representative, u−1v /∈ WJ . By induction it thus suffices, for a
general pair (u, v), to construct u1 ∈ W such that u1 covers u, u−1u1 /∈ WJ and
u1 < v; the rest of the chain is obtained by induction. Let s1 . . . sn be a reduced
expression of v. Since u < v, there exists a reduced expression of u obtained from
s1 . . . sn by deleting letters si1, . . . , siN . Choose one such that iN is minimal. Then
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let t ∈ W be the reflection defined by t = sn . . . siN +1siN siN +1 . . . sn . We show that
u1 = ut satisfies the desired properties.

(1) By construction, an expression of ut is obtained from s1 . . . sn by deleting the
N − 1 letters si1, . . . , siN−1 . Therefore ut < v.

(2) Since an expression of vt is obtained from s1 . . . sn by deleting siN , vt < v, and
since v is the minimal coset representative of vWJ , t does not belong to WJ .

(3) It remains to show that ut covers u. By the first point, we have that ℓ(ut) ≤

ℓ(u)+ 1, so it suffices to show that ut ̸< u. Suppose by contradiction that ut < u.
Then, by the strong exchange property, an expression of ut is obtained from u by
deleting one letter sp of the reduced expression s1 . . . ši1 . . . šiN . . . sn (where ši

denotes a letter si taken away from the expression s1 . . . sn).

(a) Suppose that p > iN . Then t can also be written as sn . . . sp+1spsp+1 . . . sn ,
and v = (vt)t = s1 . . . ˇsiN . . . šp . . . sn , which contradicts the hypothesis that
s1 . . . sn is reduced.

(b) Suppose now that there is d ≤ N−1 such that id < p < id+1 (with the convention
that i0 =−1). Then t = sn . . . šiN . . . šid+1 . . . sp . . . šid+1 . . . šiN . . . sn , and u =

(ut)t can be written from s1 . . . sn by deleting the terms of indices i1, . . . , iN−1

and p < iN , but not iN . This contradicts the minimality of iN . □

Definition 2.15. For v, w ∈ W , we write

(2.13) v ≤R w ⇐⇒ ℓ(w) = ℓ(v) + ℓ(wv−1).

Remark 2.16. The relation ≤R is called the weak Bruhat order and it is related to
minimal galleries: v ≤R w if and only if there is a minimal gallery from 1 to w−1

going through v−1.

Recall that for J ⊂ S and x ∈ W , (x J , x J ) denotes the unique pair of W J
× WJ

such that x = x J .x J .

Lemma 2.17 [Chaput et al. 2021, Lemma 8.11]. Let J ⊂ S be a subset of simple
reflections. Let u be an element of W and t be a reflection of W \ WJ such that ut
covers u. Then (ut)J ≤R u J . In other words ((ut)J )

−1 lies on a minimal gallery
from 1 to (u J )

−1.

Theorem 2.18. Let x, y ∈ W a
+

be such that projY
++

( y) = projY
++

(x) and x ≤ y.
Then

(2.14) x ◁ y ⇐⇒ ℓa( y) = ℓa(x) + 1.
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More precisely, write x = πλw. Let J be the set of simple reflections stabilizing
λ++ and let v ∈ W J be such that λ = vλ++ (so v = vλ with Notation 1.3). Then, if
x ◁ y and projY

+

( y) ̸= projY
+

(x), there exists a unique reflection r ∈ W such that:

(1) The reflection r does not stabilize λ and y = πrλrw.

(2) For the Bruhat order on W , v covers rv.

(3) Set u = rv, so u J ∈ WJ denotes the element (rv)J and rvu−1
J ∈ W J . Then

vu−1
J is on a minimal gallery from v to w in W .

Proof. If projY
+

( y) = projY
+

(x) then (2.14) is given by Theorem 2.13. Moreover
if ℓa( y) = ℓa(x) + 1 and y ≥ x then, by strict compatibility of ℓa , y covers x.
We are thus reduced to prove that, if y covers x with projY

+

( y) ̸= projY
+

(x) and
projY

++

( y) = projY
++

(x), then ℓa( y) = ℓa(x) + 1.
Write x = πλw and v = vλ. By definition of the affinized Bruhat order, if x ◁ y

then y is of the form sβ[n]x for some β[n] ∈ 8a
+

.
Let y = sβ[n]x ∈ W a

+
with projY

++

( y) = λ++ and projY
+

( y) ̸= λ, in particular
n ̸= ⟨λ, β⟩. By Proposition 1.15, n = 0 so y = πrλrw for the reflection r = sβ

which does not stabilize λ. Let us write u = rv, and note that u J
= vrλ. By (2.8),

(2.15) ℓa( y) − ℓa(x) = ℓu J (rw) − ℓv(w).

By definition, rv = u J u J with, by (1.3), ℓ(rv) = ℓ(u J ) + ℓ(u J ). We compute

(2.16) ℓu J (rw)−ℓv(w) = ℓ((rv(u J )
−1)−1rw)−ℓ(v−1w)+ℓ(v)−ℓ(u J )

= ℓ(u J v
−1w)−ℓ(v−1w)+ℓ(v)+ℓ(u J )−ℓ(u)

= (ℓ(v)−ℓ(u))+
(
ℓ(u J )−(dN(v, w)−dN(vu−1

J , w))
)
.

From (2.15) and (2.16), we deduce

(2.17) ℓa( y) − ℓa(x) = (ℓ(v) − ℓ(u)) +
(
ℓ(u J ) − (dN(v, w)− dN(vu−1

J , w))
)
.

In (2.17), by the triangle inequality and since dN(v, vu−1
J ) = ℓ(u J ), the second term

ℓ(u J ) − (dN(v, w)− dN(vu−1
J , w)) is nonnegative, and it is equal to 0 if and only

if dN(v, w) = dN(v, vu−1
J ) + dN(vu−1

J , w), so if and only if vu−1
J is on a minimal

gallery from v to w.
Recall Definition 1.21 of projvWJ

(w). Since vu−1
J lies in vWJ , a minimal gallery

from vu−1
J to w goes through projvWJ

(w). Thus ℓ(u J )−(dN(v, w)−dN(vu−1
J , w))

is equal to zero if and only if u−1
J is on a minimal gallery from 1 to v−1projvWJ

(w)

in WJ .
Let us first suppose that u−1

J is not on a minimal gallery from 1 to v−1projvWJ
(w).

We want to deduce that y does not cover x. We thus want to produce a nontrivial
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chain from πλw to πrλrw. By Lemma 1.20, there is a reflection t ∈ WJ such that

dWJ (1, tv−1projvWJ
(w)) > dWJ (1, v−1projvWJ

(w)),

dWJ (u−1
J , tv−1projvWJ

(w)) < dWJ (u−1
J , v−1projvWJ

(w)).

In W , this implies d(vt, w) > d(v, w) and d(vtu−1
J , w) < d(vu−1

J , w).
Let w̃ = vtv−1w. We compute

ℓv(w̃) − ℓv(w) = dN(vt, w)− dN(v, w) > 0,

ℓu J (rw) − ℓu J (rw̃) = dN(vu−1
J , w)− dN(vtu−1

J , w) > 0,

ℓu J (rw̃) − ℓv(w̃) = ℓ(v) − ℓ(u) + ℓ(u J ) − (dN(v, w̃) − dN(vu, w̃)) > 0.

Hence by Proposition 2.3 and Corollary 2.12,

(2.18) πλw < πλw̃ < πrλrw̃ < πrλrw.

Suppose now that vu−1
J is on a minimal gallery from v to w. Then by (2.17),

ℓa( y) − ℓa(x) = ℓ(v) − ℓ(rv). Suppose that ℓ(v) − ℓ(rv) = N > 1. Let

(2.19) rv = u0 ◁ u1 ◁ · · ·◁ uN = v

be a saturated chain in W from rv to v given by Lemma 2.14 and, for i ∈ [[1, N ]], let
βi ∈ 8+ be such that ui = sβi ui−1, so ui = sβi . . . sβ1u ≥ rv. Note in particular that

(2.20) ℓ(ui ) = ℓ(rv) + i = ℓ(v) − N + i.

Let us show that it induces a chain for the affinized Bruhat order

(2.21) πλw = sβN [0] . . . sβ1[0]π
rλrw < sβN−1[0] . . . sβ1[0]π

rλrw < · · · < πrλrw.

Since sβi [0] . . . sβ1[0]π
rλrw = πui λ

++

sβi . . . sβ1rw, by (2.9) it is enough to verify

(2.22) ∀i ∈ [[0, n]], ℓu J
i
(sβi . . . sβ1rw) = ℓv(w) + N − i.

We compute

(2.23) ℓu J
i
(sβi . . . sβ1rw) = ℓ

(
(ui (ui )

−1
J )−1sβi . . . sβ1rw

)
− ℓ(u J

i )

= ℓ((ui )J v
−1w) − ℓ(u J

i ).

Since the saturated chain u0 < u1 < · · · < uN is obtained from Lemma 2.14, ui

covers ui−1 such that the reflection u−1
i−1ui does not belong to WJ , so by Lemma 2.17,

(ui )J ≤R (ui−1)J and by iteration we have (ui )J ≤R (u0)J = u J . Otherwise said,
(ui )

−1
J is on a minimal gallery from 1 to u−1

J . Therefore v(ui )
−1
J is on a minimal

gallery from v to vu−1
J , and hence on a minimal gallery from v to w. We deduce

(2.24) ℓ((ui )J v
−1w) = ℓ(v−1w) − ℓ((ui )J ).
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Combining (2.23) and (2.24) we obtain

(2.25) ℓu J
i
(sβi . . . sβ1rw) = ℓ(v−1w) − ℓ((ui )J ) − ℓ(u J

i ).

Moreover,

(2.26) ℓ((ui )J ) + ℓ(u J
i ) = ℓ(ui ) = ℓ(v) − (N − i)

by (1.3) and (2.20). Combining (2.25) and (2.26), we deduce (2.22). □

3. Properly affine covers

3.1. A few properties of properly affine covers. We now turn to the case of covers
πλw <πµw′ in W a

+
with µ++

̸=λ++. Such covers are called properly affine covers.
By (1.12), if πµsβw = sβ[n]π

λw >πλw with β[n] ∈8a
+

, then n ∈ Z\]]0, ⟨λ, β⟩[[.
Conversely, if n ∈ Z\[[0, ⟨λ, β⟩]] then sβ[n]π

λw > πλw, however sβ[n]π
λw may not

be in W a
+

as λ+Zβ∨
̸⊂Y +. The limit cases n ∈{0, ⟨λ, β⟩} correspond to λ++

=µ++

dealt with in the previous section.
We first show that properly affine covers occur only for minimal n, in the

following sense.

Proposition 3.1. Let λ ∈ Y + and w ∈ W , and let β ∈ 8 and n ∈ Z. Let us define
σ = sgn(⟨λ, β⟩) ∈ {1, −1}. If πµw′

= sβ[n]π
λw▷πλw is a cover with λ++

̸= µ++,
then n ∈ {−σ, ⟨λ, β⟩ + σ }.

Proof. For any ν ∈Y + if we identify the Coxeter complex of W with the positive Tits
cone T ⊂ A, Cv

vν is the closest vectorial chamber, from the fundamental chamber,
containing ν in its closure. All the elements of λ + σZ>0β

∨ are on the same side
of Mβ ; hence by Corollary 2.9, for any two such ν, ν ′

∈λ+σZ>0β
∨ and any w ∈ W ,

(3.1) w <vν sβw ⇐⇒ w <vν′ sβw.

Suppose first that n ∈ ⟨λ, β⟩ + σZ>1 and let µ = λ + (n − ⟨λ, β⟩)β∨. Then:

(1) If w <vµ sβw, we have the chain

(3.2) πλw < sβ[⟨λ,β⟩+σ ]π
λw = πλ+σβ∨

sβw < πµw < πµsβw.

The second inequality comes from πµw = sβ[n+σ ]π
λ+σβ∨

sβw and (1.12), and the
third comes from (2.10).

(2) Else sβw <vµ w, so by (3.1), sβw <vλ+σβ∨ w and we have the chain

(3.3) πλw < sβ[⟨λ,β⟩+σ ]π
λw = πλ+σβ∨

sβw < πλ+σβ∨

w < πµsβw.

Here the second inequality comes from (2.10). The third comes from πµsβw =

sβ[n+σ ]π
λ+σβ∨

w and (1.12).
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Either way, for n ∈ ⟨λ, β⟩+ σZ>1, sβ[n]π
λw does not cover πλw. For n ∈ −σZ>1

the argument is similar, because all the elements of sβλ−σZ>0β
∨ are on the same

side of Mβ , in particular on the side of µ = sβλ + nβ∨.

(1) If w <vµ sβw, we have a chain

(3.4) πλw < sβ[−σ ]π
λw = π sβ (λ+σβ∨)sβw < πµw < πµsβw.

(2) Else sβw <vµ w so sβw <
v

sβ (λ+σβ∨) w and we have a chain

(3.5) πλw < sβ[−σ ]π
λw = π sβ (λ+σβ∨)sβw < π sβ (λ+σβ∨)w < πµsβw.

So the only possible covers (with varying coweights) are for n ∈{−σ, ⟨λ, β⟩+σ }. □

Remark 3.2. To follow up on Remark 1.16, by (1.10), we have sβ[σ+⟨λ,β⟩]π
λw =

πλwsw−1(β)[σ ], where σ = sgn(⟨λ, β⟩). Therefore Proposition 3.1 tells us that, if
y covers x in W a

+
, then y is obtained from x applying an affinized reflection sβ̃[n]

either on the left (for sβ[0] and sβ[−σ ]) or on the right (for sβ[⟨λ,β⟩] and sβ[⟨λ,β⟩+σ ]),
with n ∈ {−1, 0, 1}.

This is still far from a sufficient condition and many cases of potential covers can
still be eliminated. We give another necessary condition for πµsβw = sβ[n]π

λw >

πλw to be a cover; this is a generalization of the chains produced in the proof of
Theorem 2.18:

Proposition 3.3. Let πµsβw = sβ[n]π
λw > πλw with µ++

̸= λ++. Suppose that
sβvµ is not on a minimal gallery from w to vλ. Then πµsβw > πλw is not a cover.

Proof. We express the difference of ε-length using (2.7):

(3.6) ℓa
ε (π

µsβw) − ℓa
ε (π

λw) = 2 ht(µ++
− λ++) + ε(ℓvµ(sβw) − ℓvλ(w)).

If there exists a reflection r ∈ W such that ℓvλ(rw) > ℓvλ(w) and ℓvµ(sβrw) <

ℓvµ(sβw) then using (2.7) to compute the length ℓa
ε , we have a chain

(3.7) πλw < πλrw < πµsβrw < πµsβw.

Since ℓv(rw) − ℓv(w) = ℓ(v−1rw) − ℓ(v−1w) for v, r, w ∈ W , Lemma 1.20 guar-
anties the existence of r , which proves the proposition. □

In Figure 3 below, we give an example of a chain constructed this way in the
A1-affine case, with Cartan matrix

( 2
−2

−2
2

)
.

In this example, α and β are the simple roots of an A1-affinized root system,
and we have chosen λ,w and β[n] such that vλ

= sα , vµ
= sαsβ and w = sβ . πλw

corresponds to the alcove C1 in light blue, and its image πµsβw by sβ[6] corresponds
to C4. Since r = sβsαsβ satisfies d(vλ, rw) = sαsβsα > d(vλ, w) = sαsβ , and
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− m
− l

C0

0

C1C2C3C4 C1C2C3

sb
M (a)[7]

bM [6]

aM [− 5]

aM [0] bM [0]

Figure 3. Example of a chain constructed as in Proposition 3.3.

d(sβvµ, rw)= sβ < sβsα = d(sβvµ, w), there is a chain πλw <πλrw <πµsβrw <

πµsβw which corresponds to the sequence of alcoves (C1, C2, C3, C4) in Figure 3.

Remark 3.4. Let v0, w0 ∈ W , µ0 ∈ Y and α0 ∈ 8. To produce chains, note that
(1.12) applied with the affinized reflection sv0(α0)[m+⟨µ0,α0⟩] to πv0(µ0)w0 gives

(3.8) ∀m ∈ Z \ [[−⟨µ0, α0⟩, 0]], πv0(µ0+mα∨

0 )sv0(α0)w0 > πv0(µ0)w0.

Applying the affinized reflection sv0(α0)[−m] to πv0(µ0)w0 instead we obtain

(3.9) ∀m ∈ Z \ [[−⟨µ0, α0⟩, 0]], πv0sα0 (µ0+mα∨

0 )sv0(α0)w0 > πv0(µ0)w0.

For m ∈ ]]−⟨µ0, α0⟩, 0[[ the inequalities are reversed. The cases m ∈ {−⟨µ0, α0⟩, 0}

need to be treated more carefully since they depend on the sign of the root v0(α0)

(because (1.12) holds for the affinized reflection sv0(α0)[0] only if v0(α0) ∈ 8+), on
the sign of ⟨µ0, α0⟩ and on the vectorial element w0.

3.2. Another expression for the affinized length difference. Outside of the case of
vectorial covers dealt with in Theorems 2.13 and 2.18, if we write x = πvλw with
λ ∈ Y ++, v, w ∈ W with v of minimal length in vWλ, by Proposition 3.1 the only
covers are of the form y ∈ {πv(λ+β∨)sv(β)w, πvsβ (λ+β∨)sv(β)w} for some β ∈ 8+,
so the rest of this paper is dedicated to covers of this sort.

Notation 3.5. From now on, unless stated otherwise, we use the following notation:

(1) λ ∈ Y ++ is a dominant coweight.
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(2) β ∈ 8+ is a positive root.

(3) v ∈ W λ is the minimal representative of a Wλ-coset.

(4) w ∈ W is any element of W .

(5) x = πv(λ)w and y ∈ {πv(λ+β∨)sv(β)w, πvsβ (λ+β∨)sv(β)w} are elements of W +.

The choice to denote by λ a dominant coweight is made in order to avoid the
heavier notation λ++. Recall from Notation 1.3 that W λ is the set of minimal
coset representatives of W/Wλ, where Wλ is the standard parabolic subgroup
{w ∈ W | w(λ) = λ}.

In this subsection, we give another expression for ℓa( y) − ℓa(x).
The next two lemmas give information on the vectorial chamber of v(λ + β∨).

Lemma 3.6. Let λ ∈ Y ++ be a dominant coweight and let β ∈ 8+ be a positive
root such that λ+β∨

∈ Y +. Let u ∈ W be such that λ+β∨ belongs to the vectorial
chamber Cv

u , that is to say u−1(λ + β∨) ∈ Y ++. Then

(3.10) ℓ(sβu) = ℓ(sβ) + ℓ(u).

Proof. Let sτ1 . . . sτn be a reduced expression of u, so that ℓ(u) = n and

Inv(u−1) = {τ1, sτ1(τ2), . . . , sτ1 . . . sτn−1(τn)}.

We show that sτk+1 . . . sτ1sβ > sτk . . . sτ1sβ for all k ∈ [[0, n − 1]].
For any α ∈ Inv(u−1) we have ⟨λ + β∨, α⟩ ≤ 0 (because λ + β∨

∈ Cv
u ). Since λ

is dominant this implies ⟨β∨, α⟩ ≤ 0.
Let k ∈ [[0, n − 1]]. Then ⟨β∨, sτ1 . . . sτk (τk+1)⟩ ≤ 0 so

sβ(sτ1 . . . sτk (τk+1)) = sτ1 . . . sτk (τk+1) − ⟨β∨, sτ1 . . . sτk (τk+1)⟩β

is a positive root as a sum of positive roots. Thus sτk+1 . . . sτ1sβ > sτk . . . sτ1sβ for
any k ∈ [[0, n −1]] and therefore ℓ(sβu) = ℓ(u−1sβ) = n +ℓ(sβ) = ℓ(sβ)+ℓ(u). □

Lemma 3.7. Let λ ∈ Y ++ be a dominant coweight and let β ∈ 8+ be a positive root
such that λ + β∨

∈ Y +. Let v ∈ W λ, w ∈ W and let u denote the element vλ+β∨

.
Then, if πv(λ+β∨)sv(β)w (resp. πvsβ (λ+β∨)sv(β)w) covers x = πv(λ)w,

ℓ(vu) = ℓ(v)+ℓ(u) (resp. ℓ(vsβu) = ℓ(v)+ℓ(sβu) and ℓ(vsβ) = ℓ(v)+ℓ(sβ)).

Proof. To simplify the notation, write WJ for W(λ+β∨)++ . Note that, with the
notation of Definition 1.21, vu = projvuWJ

(v) since u is the element of minimal
length in uWJ .

Suppose by contradiction that πv(λ+β∨)sv(β)w covers x with ℓ(vu) < ℓ(v)+ℓ(u).
Then dN(1, vu) = ℓ(vu) < dN(1, v) + dN(v, vu) = ℓ(v) + ℓ(u), so v is not on a



304 PAUL PHILIPPE

minimal gallery from 1 to vu. Therefore by Lemma 1.20, there is a reflection r ∈ W
such that d(1, rvu) > d(1, vu) and d(1, rv) < d(1, v), that is to say rv < v and
rvu > vu.

By minimality of u, r is not in vuWJ (vu)−1: otherwise rvu ∈ vuWJ satisfies
d(v, rvu) = d(rv, vu) < d(v, vu), because foldings reduce the vectorial distance
and v, vu are on different sides of the wall Mr associated to r .

Since vu is the projection of v on vuWJ which is convex (see [Ronan 1989,
Lemma 2.10]), and since the wall Mr separates v and vu, any element of vuWJ is
on the same side of the wall Mr as vu, so rvuũ > vuũ for any ũ ∈ WJ . In particular,
let ũ ∈ WJ be such that rvuũ is the minimal coset representative of rvuWJ . Then
by Proposition 2.3, since rvuũ > vuũ, we have

(3.11) πrv(λ+β∨)rsv(β)w = πrvuũ((λ+β∨)++)rsv(β)w

< πvuũ((λ+β∨)++)sv(β)w = πv(λ+β∨)sv(β)w.

Therefore by Proposition 2.3 for the left- and right-hand side inequalities and
(3.8) applied with (µ0, α0, v0, w0, m) = (λ, β, rv, rw, 1) for the middle one, we
have a chain

(3.12) πv(λ)w < πrv(λ)rw < πrv(λ+β∨)srv(β)rw

= πrv(λ+β∨)rsv(β)w < πv(λ+β∨)sv(β)w.

Therefore if πv(λ+β∨)sv(β)w covers x then ℓ(vu) = ℓ(v) + ℓ(u).
Now assume by contradiction that πvsβ (λ+β∨)sv(β)w covers πλw with ℓ(vsβu) <

ℓ(v) + ℓ(sβu). Then, similarly there is a reflection r ∈ W such that rv < v and
rvsβuũ > vsβuũ. By Proposition 2.3 for the left- and right-hand side inequalities
and (3.9) applied with (µ0, α0, v0, w0, m) = (λ, β, rv, rw, 1) for the middle one,
we have a chain

(3.13) πv(λ)w < πrv(λ)rw < πrvsβ (λ+β∨)srv(β)rw

= πrvsβ (λ+β∨)rsv(β)w < πvsβ (λ+β∨)sv(β)w.

We deduce that if πvsβ (λ+β∨)sv(β)w covers x then

ℓ(vsβu) = ℓ(v) + ℓ(sβu).

By Lemma 3.6 this is ℓ(v)+ℓ(sβ)+ℓ(u), by the triangle inequality we deduce that

ℓ(v) + ℓ(sβ) ≥ ℓ(vsβ) ≥ ℓ(vsβu) − ℓ(u) = ℓ(v) + ℓ(sβ)

and we obtain the second equality in this case. □
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Proposition 3.8. Let λ ∈ Y ++, v ∈ W λ, w ∈ W . Let β ∈ 8+ be a positive root such
that λ + β∨

∈ Y + and let u denote vλ+β∨

∈ W (λ+β∨)++

.
Suppose that y ∈ {πv(λ+β∨)sv(β)w, πvsβ (λ+β∨)sv(β)w} covers x = πv(λ)w. Then

(3.14) ℓa( y) − ℓa(x) = (2 ht(β∨) − ℓ(sβ)) − 2
(
ℓ(u) +

∑
τ∈Inv(u−1)

⟨λ + β∨, τ ⟩

)
.

Proof. Let WJ denote the standard parabolic subgroup W(λ+β∨)++ . Recall that
u = vλ+β∨

is the minimal element of W such that u((λ + β∨)++) = λ + β∨, so it
is the minimal representative of the coset uWJ . By Proposition 2.10 we have

ℓa(πv(λ+β∨)sv(β)w) − ℓa(πv(λ)w)(3.15)

= 2 ht((λ + β∨)++) − 2 ht(λ) + ℓvv(λ+β∨)(sv(β)w) − ℓv(w),

ℓa(πvsβ (λ+β∨)sv(β)w) − ℓa(πv(λ)w)(3.16)

= 2 ht((λ + β∨)++) − 2 ht(λ) + ℓ
v

vsβ (λ+β∨)(sv(β)w) − ℓv(w).

We unwrap these formulas with the help of previous results.

(1) In the case y =πv(λ+β∨)sv(β)w, let ũ ∈ WJ be such that vuũ = (vu)J
=vv(λ+β∨).

The term ℓvv(λ+β∨)(sv(β)w) − ℓv(w) rewrites as

ℓ((uũ)−1sβv−1w) − ℓ(vuũ) − ℓ(v−1w) + ℓ(v).

Since y > x is a covering, by Proposition 3.3, vsβuũ = sv(β)(vu)J is on a mini-
mal gallery from v to w, so ℓ(v−1w) = ℓ((vsβuũ)−1w) + ℓ(sβuũ). Moreover by
Lemma 3.6, ℓ(sβuũ) = ℓ(sβ) + ℓ(uũ) and, by Lemma 3.7, ℓ(vu) = ℓ(v) + ℓ(u).
Finally, by (1.3), since u = u J

= vλ+β∨

and vuũ = (vu)J
= vv(λ+β∨), we have

ℓ(uũ) = ℓ(u) + ℓ(ũ) and ℓ(vu) = ℓ(vuũ) + ℓ(ũ). Thus

(3.17) ℓvv(λ+β∨)(sv(β)w)−ℓv(w) = ℓ((uũ)−1sβv−1w)−ℓ(v−1w)−ℓ(vuũ)+ℓ(v)

= −ℓ(sβuũ)−ℓ(vu)+ℓ(ũ)+ℓ(v)

= −ℓ(sβ)−ℓ(uũ)−ℓ(u)+ℓ(ũ)

= −ℓ(sβ)−2ℓ(u).

(2) In the second case, let ũ ∈ WJ be such that vsβuũ = (vsβu)J
= vvsβ (λ+β∨). Then

ℓ
v

vsβ (λ+β∨)(sv(β)w)−ℓv(w) rewrites as ℓ((uũ)−1v−1w)−ℓ(vsβuũ)−ℓ(v−1w)+ℓ(v).
By Proposition 3.3, ℓ((uũ)−1v−1w) = ℓ(v−1w) − ℓ(uũ). By (1.3),

ℓ(uũ) = ℓ(u) + ℓ(ũ) and ℓ(vsβuũ) = ℓ(vsβu) − ℓ(ũ).

By Lemmas 3.7 and 3.6,

ℓ(vsβu) = ℓ(v) + ℓ(sβu) = ℓ(v) + ℓ(sβ) + ℓ(u).
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Thus, in this case,

(3.18) ℓ
v

vsβ (λ+β∨)(sv(β)w) − ℓv(w)

= ℓ((uũ)−1v−1w) − ℓ(vsβuũ) − ℓ(v−1w) + ℓ(v)

= ℓ(v−1w) − ℓ(uũ) − (ℓ(vsβu) − ℓ(ũ)) − ℓ(v−1w) + ℓ(v)

= −ℓ(sβ) − 2ℓ(u).

(3) By Lemma 1.13 we have

(3.19) 2 ht((λ + β∨)++) = 2
(

ht(λ + β∨) −
∑

τ∈Inv(u−1)

⟨λ + β∨, τ ⟩

)
= 2

(
ht(λ) + ht(β∨) −

∑
τ∈Inv(u−1)

⟨λ + β∨, τ ⟩

)
.

By plugging (3.17), (3.19) into (3.15), and (3.18), (3.19) into (3.16) we obtain,
either way,

ℓa( y)−ℓa(x) = 2 ht(λ)+2 ht(β∨)−2
∑

τ∈Inv(u−1)

⟨λ+β∨, τ ⟩−2 ht(λ)−ℓ(sβ)−2ℓ(u)

= (2 ht(β∨)−ℓ(sβ))−2
(
ℓ(u)+

∑
τ∈Inv(u−1)

⟨λ+β∨, τ ⟩

)
. □

Using Corollary 1.12, it is easy to see that 2 ht(β∨) − ℓ(sβ) is always positive
and that, on the contrary, ℓ(u) +

∑
τ∈Inv(u−1)⟨λ + β∨, τ ⟩ is always nonpositive.

Therefore, the length difference is equal to 1 if and only if in the right-hand side
of (3.14), the first term is equal to 1 and the second term cancels out. This motivates
the following definitions.

Definition 3.9. A coweight µ ∈ Y + is almost dominant if and only if

(3.20) ∀τ ∈ 8+, ⟨µ, τ ⟩ ≥ −1.

A root β ∈ 8+ is a quantum root if and only if

(3.21) ℓ(sβ) = 2 ht(β∨) − 1.

The notion of quantum roots comes from the definition of quantum Bruhat graphs,
(see [Lenart et al. 2015, §4.1]). With Notation 3.5, in Section 3.3 we prove that if y
covers x then λ + β∨ is almost dominant and we prove in Section 3.4 that β needs
to be a quantum root.

Remark 3.10. If λ + β∨ is dominant, then the second term in the right-hand side
of (3.14) immediately cancels out, since in this case u = 1W . In the reductive case,
8 is finite and therefore if λ is far enough in the fundamental chamber (meaning
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that ⟨λ, αi ⟩ is large for all i ∈ I , we say that λ is superregular), then λ+β∨ is always
dominant. Accordingly, covers of πv(λ)w for λ superregular are easier to classify
(see [Lam and Shimozono 2010, Proposition 4.4; Milićević 2021, Proposition 4.4]).

3.3. Almost-dominance in properly affine covers. We prove that the second term
of the right-hand side of (3.14) need to be zero when y covers x (with Notation 3.5),
through the following proposition:

Proposition 3.11. Let λ ∈ Y ++, v ∈ W λ and w ∈ W . Let β ∈ 8+ be a positive
root such that λ + β∨

∈ Y + and suppose that πv(λ+β∨)sv(β)w or πvsβ (λ+β∨)sv(β)w

covers πv(λ)w. Then λ + β∨ is almost dominant, that is to say

(3.22) ∀τ ∈ 8+, ⟨λ + β∨, τ ⟩ ≥ −1.

It is deduced from the following two technical lemmas; we give their proofs after
the proof of Proposition 3.11.

Lemma 3.12. Let λ ∈ Y ++, v ∈ W λ, w ∈ W, β ∈ 8+. Suppose that there exists a
pair (τ, n) ∈ 8+ × Z such that

(i) n > 0,

(ii) ⟨λ + nτ∨, β⟩ ≥ −1,

(iii) n < −⟨λ + β∨, τ ⟩.

Then, πv(λ+β∨)sv(β)w and πvsβ (λ+β∨)sv(β)w do not cover πv(λ)w.

Lemma 3.13. Let λ ∈ Y ++ and β ∈ 8+ be such that λ+β∨ lies in Y +. Let τ ∈ 8+

be such that ⟨λ + β∨, τ ⟩ ≤ −2 and suppose that ⟨τ∨, β⟩ ≤ −2. Then

⟨λ + β∨, sτ (β)⟩ ≥ −1.

Proof of Proposition 3.11. We prove the contrapositive: Let τ ∈ 8+ be a pos-
itive root such that ⟨λ + β∨, τ ⟩ ≤ −2. We will produce nontrivial chains from
πv(λ)w to πv(λ+β∨)sv(β)w and πvsβ (λ+β∨)sv(β)w. In particular since λ is dominant,
⟨β∨, τ ⟩ ≤ −2.

The numbers ⟨τ∨,β⟩ and ⟨β∨,τ ⟩ have the same sign [Bardy 1996, Lemma 1.1.10],
and therefore we have that ⟨τ∨, β⟩ ≤ −1.

Suppose first that ⟨τ∨, β⟩ ≤ −2. Then
(
τ, −(⟨λ + β∨, τ ⟩ + 1)

)
is a pair which

satisfy the conditions of Lemma 3.12:

(i) This is true since ⟨λ + β∨, τ ⟩ ≤ −2, and −(⟨λ + β∨, τ ⟩ + 1) ≥ 1 > 0.
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(ii) By Lemma 3.13, ⟨λ + β∨, sτ (β)⟩ ≥ −1; thus〈
λ − (⟨λ + β∨, τ ⟩ + 1)τ∨, β

〉
= ⟨sτ (λ + β∨) − β∨

− τ∨, β⟩

= ⟨λ + β∨, sτ (β)⟩ − 2 − ⟨τ∨, β⟩

≥ ⟨λ + β∨, sτ (β)⟩ ≥ −1.

(iii) Clearly −(⟨β∨, τ ⟩ + 1) < −⟨β∨, τ ⟩.

Suppose now that ⟨τ∨, β⟩ = −1. We show that (τ, 1) is a pair satisfying the
conditions of Lemma 3.12:

(i) The first point is trivially verified.

(ii) Since ⟨τ∨, β⟩ = −1 and λ is dominant, ⟨λ + τ∨, β⟩ ≥ −1.

(iii) Since ⟨λ + β∨, τ ⟩ ≤ −2 we obtain 1 < −⟨λ + β∨, τ ⟩.

Hence, either way, if such a τ ∈ 8+ exists, then by Lemma 3.12 πv(λ+β∨)sv(β)w

and πvsβ (λ+β∨)sv(β)w do not cover πv(λ)w. □

Proof of Lemma 3.12. We use conditions (i), (ii), (iii) in the statement to produce
chains from πv(λ)w to πv(λ+β∨)sv(β)w and πvsβ (λ+β∨)sv(β)w.

Suppose first that (ii) is strict. Then we show that we have the chains

πv(λ)w < πvsτ (λ+nτ∨)sv(τ)w < πvsτ (λ+β∨
+nτ∨)sv(τ)sv(β)w < πv(λ+β∨)sv(β)w,(3.23)

πv(λ)w < πv(λ+nτ∨)sv(τ)w < πvsβ (λ+β∨
+nτ)sv(β)sv(τ)w < πvsβ (λ+β∨)sv(β)w.(3.24)

(a) By (i), since λ is dominant and τ is a positive root, applying (3.8) with
(µ0, α0, v0, w0, m) = (λ, τ, v, w, n), we have

(3.25) πv(λ)w < πv(λ+nτ∨)sv(τ)w.

Using (3.9) with the same parameters gives

(3.26) πv(λ)w < πvsτ (λ+nτ∨)sv(τ)w.

(b) Since ⟨τ∨, τ ⟩ = 2, (iii) is equivalent to −n < −⟨λ + β∨
+ nτ∨, τ ⟩, so, using

(3.9) for (µ0, α0, v0, w0, m) = (λ + β∨
+ nτ∨, τ, vsτ , sv(τ)sv(β)w, −n), we get

(3.27) πvsτ (λ+β∨
+nτ∨)sv(τ)sv(β)w < πv(λ+β∨)sv(β)w.

Using (3.8) for (µ0, α0, v0, w0, m) = (λ + β∨
+ nτ∨, τ, vsβ, sv(β)sv(τ)w, −n),

(3.28) πvsβ (λ+β∨
+nτ)sv(β)sv(τ)w < πvsβ (λ+β∨)sv(β)w.

We now split the argument in two cases, according to whether (ii) is strict.
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(1) Suppose that (ii) is strict, so ⟨λ + nτ∨, β⟩ ≥ 0. Then by (3.8) applied with
(µ0, α0, v0, w0, m) = (λ + nτ∨, β, vsτ , sv(τ)w, 1), we get

(3.29) πvsτ (λ+nτ∨)sv(τ)w < πvsτ (λ+β∨
+nτ∨)sv(τ)sv(β)w.

Moreover by (3.9) applied with (µ0, α0, v0, w0, m) = (λ+ nτ∨, β, v, sv(τ)w, 1),

(3.30) πv(λ+nτ∨)sv(τ)w < πvsβ (λ+β∨
+nτ∨)sv(β)sv(τ)w.

Thus, if (ii) is strict, combining (3.25), (3.30) and (3.28) we obtain the chain (3.24).
Moreover combining (3.26), (3.29) and (3.27) we obtain the chain (3.23). This
proves Lemma 3.12 in this case.

(2) Suppose now that ⟨λ+nτ∨, β⟩=−1. Then note that λ+nτ∨
+β∨

= sβ(λ+nτ∨),
and (3.8), (3.9) cannot be used for the middle inequalities of chains (3.24) and (3.23)
anymore.

(a) Case of πv(λ+β∨)sv(β)w.

(i) If vsτ (β) ∈ 8+ then we can apply (1.12) to the element πvsτ (λ+nτ∨)sv(τ)w

and the positive affinized root vsτ (β)[0], and since ⟨λ+nτ∨, β⟩ = −1 < 0,
we still have

(3.31) πvsτ (λ+nτ∨)sv(τ)w<svsτ (β)[0]π
vsτ (λ+nτ∨)sv(τ)w=πvsτ (λ+β∨

+nτ∨)sv(τ)sv(β)w

and the chain (3.23) still holds by (3.26), (3.31) and (3.27).
(ii) If vsτ (β) ∈ 8− note that, since ⟨λ + nτ∨, β⟩ < 0, ⟨τ∨, β⟩ < 0, so sτ (β)

is a positive root. Therefore vsτ (β) ∈ 8− is equivalent to sτ (β) ∈ Inv(v).
Since v ∈ W λ, by minimality of v we have ⟨λ, sτ (β)⟩ ̸= 0. Then, by
Proposition 2.3,

(3.32) πv(λ)w < πvssτ (β)(λ)svsτ (β)w

and by (3.9) applied with (µ0, α0, v0, w0, m) = (λ, τ, vssτ (β), svsτ (β)w, 1)

we get

(3.33) πvssτ (β)(λ)svsτ (β)w < πvsτ sβ (λ+nτ∨)sv(τ)sv(β)w = πvsτ (λ+β∨
+nτ∨)sv(τ)sv(β)w.

For the vectorial elements, we used the fact that svsτ (β) = sv(τ)sv(β)sv(τ) =

vsτ sβsτv
−1 and svssτ (β)(τ ) = vsτ sβsτ sβsτv

−1, and hence svssτ (β)(τ )svsτ (β) =

vsτ sβv−1
= sv(τ)sv(β).

Combining (3.32), (3.33) and (3.27) we obtain the chain

πv(λ)w<πvsτ sβsτ (λ)sv(τ)sv(β)sv(τ)w<πv(sτ (λ+β∨
+nτ∨))sv(τ)sv(β)w<πv(λ+β∨)sv(β)w

which replaces the chain (3.23).
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(b) Case of πvsβ (λ+β∨)sv(β)w.

(i) If w−1vsτ (β) ∈ 8−, by (1.12) applied to πv(λ+nτ∨)sv(τ)w and the affinized
root v(β)[⟨λ + nτ∨, β⟩], since ⟨λ + nτ∨, β⟩ < 0,

(3.34) πv(λ+nτ∨)sv(τ)w < πv(λ+nτ∨)sv(β)sv(τ)w = πvsβ (λ+β∨
+nτ∨)sv(β)sv(τ)w.

Therefore the chain (3.24) still holds by (3.25), (3.34) and (3.28).
(ii) If w−1vsτ (β) ∈ 8+, then using (1.12) with πv(λ)w and the affinized root

vsτ (β)
[
⟨λ, sτ (β)⟩

]
(which is always possible because if ⟨λ, sτ (β)⟩ = 0

then by minimality of v, vsτ (β) ∈ 8+), we obtain

(3.35) πv(λ)w < πv(λ)sv(τ)sv(β)sv(τ)w.

Moreover, by (3.8) applied with (µ0, α0, v0, w0, m)=(λ, τ, v, svsτ (β)w, n),
we get

(3.36) πv(λ)sv(τ)sv(β)sv(τ)w < πv(λ+nτ∨)sv(β)sv(τ)w.

Hence combining (3.35), (3.36) and (3.28) we obtain a chain

πv(λ)w < πv(λ)sv(τ)sv(β)sv(τ)w < πvsβ (λ+β∨
+nτ∨)sv(β)sv(τ)w < πvsβ (λ+β∨)sv(β)w.

Therefore, in all cases, if such a pair (τ, n) exists, then πv(λ+β∨)sv(β)w and
πvsβ (λ+β∨)sv(β)w do not cover πv(λ)w. □

Proof of Lemma 3.13. The proof relies on the assumption that λ + β∨ lies in the
Tits cone, which is equivalent to saying that there is only a finite number of positive
roots α such that ⟨λ + β∨, α⟩ < 0.

We will show that ⟨λ + β∨, (sτ sβ)n(τ )⟩ ≥ 0 for n large enough implies

(3.37) ⟨λ + β∨, sτ (β)⟩ ≥ −1,

which implies the lemma. To shorten the computation, let us write a = −⟨β∨, τ ⟩

and a∨
= −⟨τ∨, β⟩. So the assumptions ⟨λ + β∨, τ ⟩ ≤ −2 and ⟨τ∨, β⟩ ≤ −2

imply that a ≥ 2 + ⟨λ, τ ⟩ and a∨
≥ 2. In the basis (β, τ ) of Rβ ⊕ Rτ , the matrix

of sτ sβ is M =
(

−1
−a∨

a
aa∨−1

)
. We have χM = X2

+ (2 − aa∨)X + 1; thus, since
aa∨

≥ 4, M2
= (aa∨

−2)M − I2. Write Mn
= µn M +νn I2 for n ∈ N. Then an easy

computation shows that νn = −µn−1 and µn+1 = (aa∨
−2)µn −µn−1. In particular

since aa∨
− 2 ≥ 2 and µ0 = 0 < µ1, by iteration (µn)n∈N is strictly increasing.

Let x = ⟨λ, β⟩ ≥ 0 and y = ⟨λ, τ ⟩ ∈ [[0, a − 2]]. Then

⟨λ + β∨, (sτ sβ)n(τ )⟩ =
〈
λ + β∨, aµnβ + ((aa∨

− 1)µn − µn−1)τ
〉

(3.38)

= (x + 2)µna + ((aa∨
− 1)µn − µn−1)(y − a).
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Since λ + β∨ lies in the Tits cone, ⟨λ + β∨, (sτ sβ)n(τ )⟩ is nonnegative for n large
enough. Moreover, µn−1 < µn for all n ∈ N and a − y > 0. Therefore we deduce
from (3.38) that, for n large enough,

(x + 2)µna ≥ (a − y)((aa∨
− 1)µn − µn−1) > (a − y)µn(aa∨

− 2).

Hence
(x + 2) > (a − y)

(
a∨

−
2
a

)
= aa∨

− a∨y − 2 + 2 y
a
.

Therefore ⟨λ + β∨, sτ (β)⟩ = x + 2 + a∨y − aa∨ > −2 + 2 y
a and, since it is an

integer, we deduce ⟨λ + β∨, sτ (β)⟩ ≥ −1 ≥ 1 − a∨, which proves the result. □

Corollary 3.14. Let λ ∈ Y ++, v ∈ W λ, w ∈ W . Let β ∈ 8+ be a positive root such
that λ + β∨

∈ Y +. Suppose that y ∈ {πv(λ+β∨)sv(β)w, πvsβ (λ+β∨)sv(β)w} covers
x = πv(λ)w.

Then

(3.39) ℓa( y) − ℓa(x) = 2 ht(β∨) − ℓ(sβ).

Proof. Let u = vλ+β∨

∈ W . Then for any τ ∈ Inv(u−1), by Lemma 2.1, ⟨λ+β∨, τ ⟩

is negative. By Proposition 3.11, ⟨λ + β∨, τ ⟩ = −1 for any such τ . Therefore

(3.40)
∑

τ∈Inv(u−1)

⟨λ + β∨, τ ⟩ = −|Inv(u−1)| = −ℓ(u).

We then directly obtain (3.39) from (3.14) and (3.40). □

3.4. Properly affine covers and quantum roots. We now prove in Proposition 3.19
that, with Notation 3.5, if β is not a quantum root, then y does not cover x. This is
enough, together with Corollary 3.14, to conclude that ℓa( y) − ℓa(x) = 1. There
is a subtlety if the root β lies in a subsystem of 8 of type G2; we suppose that
this is not the case in Lemmas 3.16 and 3.17, and we deal with the G2 case in
Lemma 3.18. Let us first give another characterization of quantum roots.

Lemma 3.15. A root β ∈ 8+ is a quantum root if and only if ⟨β∨, γ ⟩ = 1 for all
γ ∈ Inv(sβ) \ {β}.

Proof. Recall that a quantum root is a root β ∈ 8+ such that 2 ht(β∨) = ℓ(sβ)+ 1.
By Corollary 1.12, this is equivalent to

(3.41)
∑

γ∈Inv(sβ )

⟨β∨, γ ⟩ = ℓ(sβ) + 1.

For any γ ∈ Inv(sβ), γ is a positive root and sβ(γ )= γ −⟨β∨, γ ⟩β is a negative root,
and therefore ⟨β∨, γ ⟩ ≥ 1. Moreover, ⟨β∨, β⟩ = 2 and |Inv(sβ)| = ℓ(sβ). Therefore
(3.41) is satisfied if and only if ⟨β∨, γ ⟩ is exactly one for all γ ∈ Inv(sβ) \ {β}. □
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Lemma 3.16. Let λ ∈ Y ++, v ∈ W λ, w ∈ W and β ∈ 8+. Let γ ∈ Inv(sβ) \ {β}

be such that ⟨β∨, γ ⟩ ≥ 2 and suppose that β /∈ Inv(sγ ). Then πv(λ+β∨)sv(β)w and
πv(λ+β∨)sv(β)w do not cover πvsβ (λ)w.

Proof. By the contrapositive of Proposition 3.11, we can suppose that ⟨λ+β∨, τ ⟩ ≥

−1 for any τ ∈ 8+. Let γ be as in the statement and write α = sγ (β) ∈ 8+. We
will construct nontrivial chains in the same fashion as in the proof of Lemma 3.12.
Beforehand, we show by computation that ⟨λ + γ ∨, α⟩ ≥ −1. If ⟨γ ∨, β⟩ = 1 =

−⟨γ ∨, α⟩ this is clear since λ is dominant. If ⟨γ ∨, β⟩ ≥ 2,

⟨λ + γ ∨, α⟩ =
〈
λ + β∨

− α∨
+ (1 − ⟨β∨, γ ⟩)γ ∨, α

〉
= ⟨λ + β∨, α⟩ + (1 − ⟨β∨, γ ⟩)⟨γ ∨, α⟩ − 2

= ⟨λ + β∨, α⟩ + (⟨β∨, γ ⟩ − 1)⟨γ ∨, β⟩ − 2.

Since ⟨β∨, γ ⟩ ≥ 2 and ⟨γ ∨, β⟩ ≥ 2, (⟨β∨, γ ⟩ − 1)⟨γ ∨, β⟩ ≥ 2, and by assumption
⟨λ + β∨, α⟩ ≥ −1. Thus, ⟨λ + γ ∨, α⟩ ≥ −1 either way.

We construct chains which are slight modifications of the ones constructed in
the proof of Lemma 3.12. We prove that, except in a few particular cases, we have
the chains

πv(λ)w < πv(λ+γ ∨)sv(γ )w <πv(λ+γ ∨
+α∨)sv(α)sv(γ )w <πv(λ+β∨)sv(β)w,(3.42)

πv(λ)w < πvsγ (λ+γ ∨)sv(γ )w <πvsγ sα(λ+γ ∨
+α∨)sv(γ )sv(α)w <πvsβ (λ+β∨)sv(β)w.(3.43)

Indeed:

(1) The coweight λ is dominant and γ ∈ 8+, so ⟨λ, γ ⟩ ≥ 0 and (3.8) (resp. (3.9))
applied with (µ0, α0, v0, w0, m) = (λ, γ, v, w, 1) proves the leftmost inequality in
the chain (3.42) (resp. (3.43)).

(2) Note that λ + β∨
= (λ + γ ∨

+ α∨) + (⟨β∨, γ ⟩ − 1)γ ∨. Moreover

(3.44) 0 < ⟨β∨, γ ⟩ − 1

and

(3.45) −⟨λ + γ ∨
+ α∨, γ ⟩ = ⟨β∨, γ ⟩ − ⟨λ, γ ⟩ − 2 < ⟨β∨, γ ⟩ − 1.

Therefore by applying (3.8) (resp. (3.9)) to

(µ0, α0, v0, w0, m) = (λ + γ ∨
+ α∨, γ, v, sv(α)sv(γ )w, ⟨β∨, γ ⟩ − 1)

(resp. (µ0, α0, v0, w0, m) = λ + γ ∨
+ α∨, γ, vsγ sα, sv(γ )sv(α)w, ⟨β∨, γ ⟩ − 1))

we obtain the rightmost inequality in the chain (3.42) (resp. (3.43)).
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Let us now split cases in order to either prove the second inequality in chains (3.42)
and (3.43) or provide alternative chains.

(1) Suppose first that ⟨λ + γ ∨, α⟩ ≥ 0. Then (3.8) (resp. (3.9)) applied with

(µ0, α0, v0, w0, m) = (λ + γ ∨, α, v, sv(γ )w, 1)(3.46)

(resp. (µ0, α0, v0, w0, m) = (λ + γ ∨, α, vsγ , sv(γ )w, 1))(3.47)

prove the middle inequality in the chain (3.42) (resp. (3.43)).

(2) Suppose that ⟨λ+γ ∨, α⟩ = −1. Then λ+γ ∨
+α∨

= sα(λ+γ ∨) and the above
chains do not always hold. We focus here on the case of πv(λ+β∨)sv(β)w.

(a) If v(α) ∈ 8+, since ⟨λ + γ ∨, α⟩ < 0, the inequality πvsα(λ+γ ∨)sv(α)sv(γ )w >

πv(λ+γ ∨)sv(γ )w still holds, by (1.12) applied with sv(α)[0]. Therefore the
chain (3.42) still holds.

(b) If v(α) ∈ 8−, then vsα < v, and we have a chain

(3.48) πv(λ)w < πvsα(λ)sv(α)w < πvsα(λ+γ ∨)sv(α)sv(γ )w

= πv(λ+γ ∨
+α∨)sv(α)sv(γ )w < πv(λ+β∨)sv(β)w.

The reflection used for the first inequality is s−v(α)[0], and it holds by (1.12)
because ⟨v(λ), −v(α)⟩ = −⟨λ, α⟩ < 0. Note that this is nonzero because v

is the minimal representative of vWλ and thus vsα < v implies sα /∈ Wλ so
⟨λ, α⟩ ̸= 0. By (3.44) and (3.45) we can use (3.8) with

(3.49) (µ0, α0, v0, w0, m) =

{
(λ, γ, vsα, sv(α)w, 1)

(λ + α∨
+ γ ∨, γ, v, sv(α)sv(γ )w, ⟨β∨, γ ⟩ − 1)

in order to obtain the second and third inequalities of chain (3.48), respectively.

(3) We suppose that ⟨λ+γ ∨, α⟩=−1. We deal with the case of πvsv(β)(λ+β∨)sv(β)w.
Then

(3.50) πvsγ sα(λ+γ ∨
+α∨)sv(γ )sv(α)w = πvsγ (λ+γ ∨)svsγ (α)sv(γ )w

= svsγ (α)[⟨λ+γ ∨,α⟩]π
vsγ (λ+γ ∨)sv(γ )w.

Moreover (sv(γ )w)−1(vsγ (α)) = w−1v(α). Thus, since ⟨λ + γ ∨, α⟩ < 0:

(a) If w−1v(α) ∈ 8−, by (1.12), πvsγ (λ+γ ∨)sv(γ )w < πvsγ sα(λ+γ ∨
+α∨)sv(γ )sv(α)w

and the chain (3.43) still holds.

(b) If w−1v(α) ∈ 8+, then, since ⟨λ, α⟩ = ⟨γ ∨, β⟩− 1 > 0, by (1.12), πv(λ)w <

sv(α)[⟨λ,α⟩]π
v(λ)w = πv(λ)sv(α)w. Then, by (3.9) with (µ0, α0, v0, w0, m) =
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(λ, γ, v, sv(α)w, 1), we have

πv(λ)sv(γ )sv(β)sv(γ )w < πvsγ (λ+γ ∨)sv(β)sv(γ )w = πvsγ sα(λ+γ ∨
+α∨)sv(γ )sv(α)w

and we have a chain

πv(λ)w < πv(λ)sv(α)w < πvsγ sα(λ+γ ∨
+α∨)sv(γ )sv(α)w < πvsβ (λ+β∨)sv(β)w. □

Lemma 3.17. Let β ∈ 8+ be a positive root and suppose that there exists γ ∈

Inv(sβ)\ {β} such that ⟨β∨, γ ⟩ ≥ 2 and ⟨β∨, γ ⟩⟨γ ∨, β⟩ ̸= 3. Then γ can be chosen
such that β /∈ Inv(sγ ).

Proof. Note that, by [Bardy 1996, Lemma 1.1.10], for any β, γ ∈ 8, ⟨β∨, γ ⟩

and ⟨γ ∨, β⟩ have the same sign, so if ⟨β∨, γ ⟩ ≥ 2 and ⟨β∨, γ ⟩⟨γ ∨, β⟩ ̸= 3, either
⟨β∨, γ ⟩⟨γ ∨

⟩ ≥ 4, either ⟨β∨, γ ⟩ = 2 and ⟨γ ∨, β⟩ = 1. We treat separately these
cases:

(1) Let us first suppose that there exists γ ∈ Inv(sβ) such that ⟨β∨, γ ⟩ = 2 and
⟨γ ∨, β⟩=1. Suppose that β ∈ Inv(sγ ), so sγ (β)=β−γ <0, and sβ(γ )=γ −2β <0.
Then we show that β /∈ Inv(sγ̃ ) for γ̃ = −sβ(γ ):

sγ̃ (β) = sβsγ sβ(β) = −sβ(β − γ ) = γ − β = −sγ (β) > 0.

Moreover sβ(γ̃ ) = −γ < 0 and ⟨β∨, γ̃ ⟩ = ⟨β∨, γ ⟩ = 2; therefore, γ can be chosen
such that β /∈ Inv(sγ ).

(2) Let us now suppose that there exists γ ∈ Inv(sβ) such that ⟨β∨, γ ⟩ ≥ 2 and
⟨β∨, γ ⟩⟨γ ∨, β⟩ ≥ 4. Write β = vβ(β0) = sα1 . . . sαn (β0) where the αi and β0 are
simple roots, and suppose that n is of minimal length amongst possible expressions
of β. Therefore sα1 . . . sαn sβ0sαn . . . sα1 is a reduced expression of sβ and

Inv(sβ)={sα1 . . . sαp−1(αp) | p ≤n}⊔{β}⊔{sα1 . . . sαn sβ0sαn . . . sαn+1−p(αn−p) | p ≤n}.

Let k be the smallest such that γk = sα1 . . . sαk−1(αk) satisfies ⟨β∨, γk⟩ ≥ 2 and
⟨β∨, γk⟩⟨γ

∨

k , β⟩ ≥ 4.
The expression sα1 . . . sαk−1sαk sαk−1 . . . sα1 is an expression of sγk ; thus

Inv(sγk ) ⊂ {sα1 . . . sαp−1(αp) | p ≤ k − 1} ⊔ {γk}

⊔ {sα1 . . . sαk sαk−1 . . . sαk+1−p(αk−p) | p ≤ k − 1}.

Suppose by contradiction that β ∈ Inv(sγk ). Since vβ is of minimal length, β is not in
the first set; thus there is p ∈[[1,k−1]] such that β = sα1 . . . sαk sαk−1 . . . sαk+1−p(αk−p).
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We show that γk−p = sα1 . . . sαk−p−1(αk−p) ∈ Inv(sβ) satisfies ⟨β∨, γk−p⟩ ≥ 2,
which contradicts the minimality of k. Note that β = −sγk (γk−p). We compute

⟨β∨, γk−p⟩ = ⟨−sγk (γ
∨

k−p), γk−p⟩

= −(2 − ⟨γ ∨

k−p, γk⟩⟨γ
∨

k , γk−p⟩)

= ⟨β∨, γk⟩⟨γ
∨

k , β⟩ − 2.

So since ⟨β∨, γk⟩⟨γ
∨

k , β⟩≥4, we get ⟨β∨, γk−p⟩≥2, and with a similar computation,
we find that ⟨γ ∨

k−p, β⟩ = ⟨β∨, γk−p⟩ ≥ 2 as well, so ⟨β∨, γk−p⟩⟨γ
∨

k−p, β⟩ ≥ 4. This
contradicts the minimality of k and thus β /∈ Inv(sγk ). □

Lemma 3.18. Let λ ∈ Y ++, v ∈ W λ and w ∈ W . Let β ∈ 8+ and let γ ∈ Inv(sβ)

be such that β ∈ Inv(sγ ) and ⟨β∨, γ ⟩ = 3, ⟨γ ∨, β⟩ = 1.
Then πv(λ+β∨)sv(β)w and πvsβ (λ+β∨)sv(β)w do not cover πv(λ)w.

Proof. We show that, with the assumptions of the statement, β and γ appear as
positive roots of a root subsystem of 8 isomorphic to G2, and we use this system
to construct chains replacing the ones in the proof of Lemma 3.16.

First, note that −sγ (β) lies in Inv(sβ) (so sβsγ (β) is positive). Indeed, we can
write, as in the proof of Lemma 3.17, β = sα1 . . . sαn (β0) for a minimal n, and
γ = sα1 . . . sαk−1(αk) for some k ≤ n. Then, since β ∈ Inv(sγ ), β is also of the form
sα1 . . . sαk sαk−1 . . . sαk−p+1(αk−p) for some p ≤ k − 1, and thus

−sγ (β) = sα1 . . . sαk−p−1(αk−p) ∈ Inv(sβ).

Therefore we have the following positive roots, and their associated coroots (the
notation will become clear afterwards):

(1) θ1 :=−sγ (β)=γ −β ∈8+, with associated coroot θ∨

1 =−sγ (β∨)=3γ ∨
−β∨.

(2) β̃ :=−sβ(γ )= 3β−γ ∈8+, with associated coroot β̃∨
=−sβ(γ ∨)=β∨

−γ ∨.

(3) γ̃ := sβsγ (β) = 2β − γ ∈ 8+, with associated coroot γ̃ ∨
= sβsγ (β∨) =

2β∨
− 3γ ∨.

Let us also define θ2 = sθ1(γ ) = 3β − 2γ , with associated coroot θ∨

2 = β∨
− 2γ ∨.

Then one can check that {θ1, θ2} form the positive simple roots of a G2 root
system (in the sense that ⟨θ∨

1 , θ2⟩ = −3 and ⟨θ∨

2 , θ1⟩ = −1), such that γ = sθ1(θ2),
β = sθ1sθ2(θ1), γ̃ = sθ2(θ1) and β̃ = sθ2sθ1(θ2). However, θ2 may not be a positive
root in 8, and we thus need to distinguish these two cases.

Let us first suppose that θ2 lies in 8+. Notice that

(3.51) θ∨

1 + β̃∨
+ θ∨

2 = (3γ ∨
− β∨) + (β∨

− γ ∨) + (β∨
− 2γ ∨) = β∨,
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and

(3.52) sθ1sβ̃sθ2 = sθ1(sθ2sθ1sθ2sθ1sθ2)sθ2 = sθ1sθ2sθ1sθ2sθ1 = sθ2sβ̃sθ1 = sβ .

Moreover, we have

⟨θ∨

2 , β̃⟩ = ⟨β∨
− 2γ ∨, 3β − γ ⟩ = 1 > 0,(3.53)

⟨θ∨

2 + β̃∨, θ1⟩ = ⟨2β∨
− 3γ ∨, γ − β⟩ = −1.(3.54)

(1) Suppose first that ⟨λ, θ1⟩ > 0. Since λ is dominant and by (3.53), (3.54),

−⟨λ + θ∨

2 , β̃⟩ < 0 and − ⟨λ + θ∨

2 + β̃∨, θ1⟩ ≤ 0.

Using (3.8) (resp. (3.9)) with (µ0, α0, m) = (λ, θ2, 1) for the first inequality,
(µ0, α0, m) = (λ+ θ∨

2 , β̃, 1) for the second and (µ0, α0, m) = (λ+ θ∨

2 + β̃∨, θ1, 1)

for the third (recall (3.51), (3.52)), we obtain the chain (3.55) (resp. (3.56))

πv(λ)w < πv(λ+θ∨

2 )sv(θ2)w < πv(λ+θ∨

2 +β̃∨)sv(β̃)sv(θ2)w < πv(λ+β∨)sv(β)w,(3.55)

πv(λ)w < πvsθ2 (λ+θ∨

2 )sv(θ2)w(3.56)

< π
vsθ2 sβ̃ (λ+θ∨

2 +β̃∨)sv(θ2)sv(β̃)w < πvsβ (λ+β∨)sv(β)w.

(2) If ⟨λ, θ1⟩ = 0, then −⟨λ + θ∨

2 + β̃∨, θ1⟩ = 1 so the last inequality in the
chains (3.55) and (3.56) do not always hold, we have the following case distinction,
which we already encountered in Lemmas 3.12 and 3.16:

(a) If v(θ1)∈8+, the chain (3.55) still holds, else vsθ1 <v, λ+β∨
= sθ1(λ+θ∨

2 +β̃)

and we instead have the chain

πv(λ)w < πvsθ1 (λ)sv(θ1)w < πvsθ1 (λ+θ∨

2 )sv(θ1)sv(θ2)w < πvsθ1 (λ+θ∨

2 +β̃∨)sv(θ1)sv(β̃)sv(θ2)w,

where the last term is actually equal to πv(λ+β∨)sv(β)w.

(b) If w−1v(θ1) ∈ 8−, then since ⟨λ + θ∨

2 + β̃∨, θ1⟩ < 0, by (1.12) applied
with the affinized root vsθ2sβ̃(θ1)[⟨λ + θ∨

2 + β̃∨, θ1⟩], the third inequality of
chain (3.56) still holds, and thus the whole chain remains correct. Otherwise
if w−1v(θ1) ∈ 8+ we instead have the chain

πv(λ)w<πv(λ)sv(θ1)w<πvsθ2 (λ+θ∨

2 )sv(θ2)sv(θ1)w<π
vsθ2 sβ̃ (λ+θ∨

2 +β̃∨)sv(θ2)sv(β̃)sv(θ1)w,

where the last term is actually equal to πvsβ (λ+β∨)sv(β)w since λ+ θ∨

2 + β̃∨
=

sθ1(λ + β∨).

We now turn to the case of θ2 ∈ 8−. Notice that β∨
= −θ∨

2 + γ̃ ∨
+ γ ∨ and

sβ = sγ sγ̃ sθ2 = sθ2sγ̃ sγ . Moreover, ⟨−θ∨

2 , γ̃ ⟩ = ⟨2γ ∨
− β∨, 2β − γ ⟩ = −1 and
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⟨−θ∨

2 + γ̃ ∨, γ ⟩ = ⟨β∨
− γ ∨, γ ⟩ = 1. Therefore, since λ is dominant and −θ2 is a

positive root:

(1) If ⟨λ, γ̃ ⟩ > 0, then using (3.8) (resp. (3.9)) with (µ0, α0, m) = (λ, −θ2, 1) for
the first inequality, (λ − θ∨

2 , γ̃ , 1) for the second and (λ − θ∨

2 + γ̃ ∨, γ, 1) for the
third, we obtain the chain (3.57) (resp. (3.58))

πv(λ)w < πv(λ−θ∨

2 )sv(θ2)w < πv(λ−θ∨

2 +γ̃ ∨)sv(γ̃ )sv(θ2)w < πv(λ+β∨)sv(β)w(3.57)

πv(λ)w < πvsθ2 (λ−θ∨

2 )sv(θ2)w(3.58)

< πvsθ2 sγ̃ (λ−θ∨

2 +γ̃ ∨)sv(θ2)sv(γ̃ )w < πvsβ (λ+β∨)sv(β)w.

(2) Suppose now that ⟨λ, γ̃ ⟩ = 0, so λ − θ∨

2 + γ̃ = sγ̃ (λ − θ∨

2 ). Then:

(a) If v(γ̃ ) ∈ 8+, the chain (3.57) still holds. Else, vsγ̃ < v and we instead have
the chain

(3.59) πv(λ)w < πvsγ̃ (λ)sv(γ̃ )w < πvsγ̃ (λ−θ∨

2 )sv(γ̃ )sv(θ2)w < πv(λ+β∨)sv(β)w,

where the first inequality comes from Proposition 2.3 and the two others
from (3.8).

(b) If w−1v(γ̃ ) ∈ 8−, then the chain (3.58) still holds. Else w−1v(γ̃ ) ∈ 8+ and
we instead have the chain

(3.60) πv(λ)w < πv(λ)sv(γ̃ )w < πvsθ2 (λ−θ∨

2 )sv(θ2)sv(γ̃ )w < πvsβ (λ+β∨)sv(β)w,

where the first inequality is deduced from (1.12) used with the affinized root
v(γ̃ )[⟨λ, γ̃ ⟩], and the two others from (3.9) as for the chain (3.58). □

Proposition 3.19. Let λ ∈ Y ++, v ∈ W λ and w ∈ W . Let β ∈ 8+ and suppose that
πv(λ+β∨)sv(β)w or πvsβ (λ+β∨)sv(β)w cover πv(λ)w. Then β is a quantum root.

Proof. We prove the contrapositive. Suppose that β is not a quantum root. By
Lemma 3.15, there is γ ∈ Inv(sβ) \ {β} such that ⟨β∨, γ ⟩ ≥ 2. If β /∈ Inv(sγ )

we apply Lemma 3.16. We can also apply it in case ⟨β∨, γ ⟩⟨γ ∨, β⟩ ̸= 3 by
Lemma 3.17. Finally if β ∈ Inv(sγ ) and ⟨β∨, γ ⟩⟨γ ∨, β⟩ = 3 we apply Lemma 3.18.
Therefore if β is not a quantum root then πv(λ+β∨)sv(β)w and πvsβ (λ+β∨)sv(β)w do
not cover πv(λ)w. □

3.5. Conclusion. We now have everything to prove Theorem A:

Theorem A. Suppose that y, x ∈ W a
+

are such that x ≤ y. Then

(3.61) x ◁ y ⇐⇒ ℓa( y) = ℓa(x) + 1.
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Proof. If x ≤ y with ℓa( y) = ℓa(x) + 1, then by strict compatibility of ℓa

(Theorem 1.7), y covers x. Conversely suppose that y covers x. If y and x
have same dominance class then Theorem 2.18 implies that ℓa( y) = ℓa(x)+1. Else,
if projY

+

( y) /∈ W · projY
+

(x), by Proposition 3.1, y is of the form πv(λ+β∨)sv(β)w

or πvsβ (λ+β∨)sv(β)w, for x = πv(λ)w with λ ∈ Y ++, v ∈ W λ, w ∈ W and β ∈ 8+.
Then, by Corollary 3.14, we have ℓa( y)− ℓa(x) = 2 ht(β∨)− ℓ(sβ). Moreover, by
Proposition 3.19, β is a quantum root and therefore, in this case as well,

ℓa( y) − ℓa(x) = 1. □

Along the way, we have obtained a classification of covers, which we summarize
in Proposition 3.20. This is to be compared with [Schremmer 2024, Proposition 4.5].

Proposition 3.20. Let x = πv(λ)w ∈ W a
+

with λ ∈ Y ++, v ∈ W λ and w ∈ W . Let
J ⊂ S be the set of simple reflections such that Wλ = WJ , and recall Notation 1.3
and Definition 3.9. Then covers of x are the elements of the following form:

(1) πv(λ)sv(β)w = xsw−1v(β)[0] for β ∈ 8 such that ℓ(sβv−1w) = ℓ(v−1w) + 1.

(2) πvsβ (λ)sv(β)w = sv(β)[0]x for β ∈ 8+ such that:

(a) ⟨λ, β⟩ ̸= 0.

(b) ℓ(vsβ) = ℓ(v) − 1.

(c) If u denotes vsβ and u J the maximal WJ -suffix of u, then vu−1
J is on a minimal

gallery from v to w.

(3) πv(λ+β∨)sv(β)w = sv(β)[⟨λ,β⟩+1]x = xsw−1v(β)[1] for β ∈ 8+ such that:

(a) β is a quantum root.

(b) λ + β∨ is an almost dominant coweight.

(c) For u = vλ+β∨

, v is on a minimal gallery from 1 to vu, that is to say ℓ(vu) =

ℓ(v) + ℓ(u).

(d) For ṽ = vv(λ+β∨), sv(β)ṽ is on a minimal gallery from v to w.

(4) πvsβ (λ+β∨)sv(β)w = sv(β)[−1]x for β ∈ 8+ such that:

(a) β is a quantum root.

(b) λ + β∨ is an almost dominant coweight.

(c) For u = vλ+β∨

, v is on a minimal gallery from 1 to vsβu.

(d) For ṽ = vvsβ (λ+β∨), sv(β)ṽ is on a minimal gallery from v to w.
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In particular, suppose that λ∈Y ++ is regular and is such that λ+β∨ is also regular
for any quantum root β ∈ 8+. We then say that λ is superregular. Proposition 3.20
can be simplified for superregular coweights. This is to be compared with [Lam
and Shimozono 2010, Proposition 4.4] and [Welch 2022, Theorem 2].

Proposition 3.21. Let x = πv(λ)w ∈ W a
+

with λ ∈ Y ++ a superregular coweight
and v, w ∈ W . Then covers of x are the elements of the following form:

(1) xsβ[0] = πv(λ)wsβ for β ∈ 8+ such that ℓ(v−1wsβ) = ℓ(v−1w) + 1.

(2) sβ[0]x = π sβv(λ)sβw for β ∈ 8+ such that ℓ(sβv) = ℓ(v) − 1.

(3) xsw−1v(β)[1] =πv(λ+β∨)sv(β)w for β ∈8+ a quantum root such that ℓ(v−1w)=

ℓ(sβ) + ℓ(sβv−1w) (otherwise said sβv−1w ≤R v−1w).

(4) sv(β)[−1]x = πvsβ (λ+β∨)sv(β)w for β ∈ 8+ a quantum root such that ℓ(vsβ) =

ℓ(v) + ℓ(sβ) (otherwise said sβ ≤R vsβ).

For Kac–Moody root systems, the existence of superregular coweights is not
clear a priori. However in an upcoming joint work with Hébert we prove that any
Kac–Moody root system admits a finite number of quantum roots, which ensures
the existence of superregular coweights. We also use this finiteness to deduce that
any element of W +

a admits a finite number of covers; in particular intervals in W +
a

are finite.
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