Download this article
 Download this article For screen
For printing
Recent Issues
Vol. 338: 1
Vol. 338: 1
Vol. 337: 1  2
Vol. 336: 1
Vol. 335: 1  2
Vol. 334: 1  2
Vol. 333: 1  2
Vol. 332: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Parallel vector fields and global injectivity in two dimensions

Francisco Braun and Jaume Llibre

Vol. 333 (2024), No. 1, 1–15
Abstract

Let U be simply connected open subset of 2, and let f : U 2 be a local diffeomorphism. We study the global injectivity of f using the planar vector fields of type annular, radial or strip. Our main result enables the unification of proofs for classical results on global injectivity, such as the Hadamard global invertibility theorem and the condition related to the connectedness of the levels sets of one of the coordinates of f.

Keywords
annular vector fields, radial vector field, strip vector field, global injectivity
Mathematical Subject Classification
Primary: 14R15, 34C25
Milestones
Received: 12 March 2024
Revised: 30 October 2024
Accepted: 15 November 2024
Published: 19 December 2024
Authors
Francisco Braun
Departamento de Matemática
Universidade Federal de São Carlos
São Paulo
Brazil
Jaume Llibre
Departament de Matemàtiques
Universitat Autònoma de Barcelona
Catalonia
Spain

Open Access made possible by participating institutions via Subscribe to Open.