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QUIVER BRASCAMP–LIEB INEQUALITIES

NICHOLAS HU

We formulate generalized Brascamp–Lieb inequalities for representations of
bipartite quivers and establish necessary and sufficient conditions for such
inequalities. Notably, we show contra Lieb that Gaussians do not saturate
certain types of quiver Brascamp–Lieb inequalities.

1. Introduction

The Brascamp–Lieb inequalities [7] are an important family of inequalities in
analysis that subsumes several inequalities significant in their own right, includ-
ing Hölder’s inequality, the Loomis–Whitney inequality, and Young’s inequality.
Several variants and extensions of these inequalities have been developed, such as
reverse Brascamp–Lieb inequalities [1], perturbed Brascamp–Lieb inequalities [6],
and adjoint Brascamp–Lieb inequalities [3], some of which have proved to be very
useful in Fourier restriction theory [12].

In addition, algorithms have been devised to compute optimal constants in
Brascamp–Lieb inequalities [9; 11]. The algorithm of Garg et al. [9] does so by
relating these constants to the so-called capacity of completely positive operators,
and this notion of capacity was generalized by Chindris and Derksen [8] to algebraic
objects known as quiver representations. In this paper, we come full circle by
formulating and studying Brascamp–Lieb inequalities for quivers.

1.1. Brascamp–Lieb inequalities. Let us begin by briefly reviewing the theory of
ordinary Brascamp–Lieb inequalities.

Definition 1.1 (Brascamp–Lieb inequality). Let H and H 1, . . . , H m be nontrivial
finite-dimensional Hilbert spaces, and for each 1 ≤ j ≤ m, let B j : H → H j be a
surjective linear map and p j ∈ [1, ∞]. A Brascamp–Lieb inequality is an inequality
of the form

(1-1)
∫

H

m∏
j=1

f j ◦ B j dx ≲
m∏

j=1
∥ f j∥L p j (H j )

that holds for all measurable functions f j : H j
→ [0, ∞], where the implicit

constant (see Section 1.3) is allowed to be infinite.
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Of course, a Brascamp–Lieb inequality is only useful when the implicit constant
is finite. The conditions under which this occurs are well known [4; 5].

Theorem 1.2. Let BL(B, p) denote the smallest constant for which inequality (1-1)
holds, where (B, p) := ((B1, . . . , Bm), (p1, . . . , pm)); it is known as the Brascamp–
Lieb constant for the Brascamp–Lieb datum (B, p). Then BL(B, p) is finite if
and only if the scaling condition

(1-2) dim(H) =

m∑
j=1

p−1
j dim(H j )

and the dimension condition

(1-3) dim(V ) ≤

m∑
j=1

p−1
j dim(B j V ) for all V ≤ H

hold. (Here V ≤ H means that V is a subspace of H.)

Furthermore, Lieb [10] showed that the optimal constant is unchanged when the
functions are restricted to be Gaussians of the form f j (x) := e−π⟨A j x,x⟩p−1

j for each
1 ≤ j ≤ m, where A j ≻ 0 with respect to the Loewner order. Since∫

H j
e−π⟨A j x,x⟩ dx = det(A j )

−1/2,

this yields the following result and formula for Brascamp–Lieb constants.

Theorem 1.3. Let BLG(B, p) denote the smallest constant for which inequal-
ity (1-1) holds when f j (x) := e−π⟨A j x,x⟩p−1

j for some A j ≻ 0 ( for each 1 ≤ j ≤ m).
Then

(1-4) BL(B, p) = BLG(B, p) = sup
A j ≻0

[ ∏m
j=1det(A j )

p−1
j

det
(∑m

j=1 p−1
j B⊤

j A j B j
)]1/2

.

(Here the supremum is taken over A1 ≻ 0, . . . , Am ≻ 0.)

Example 1.4 (Young’s convolution inequality). Let H := Rd
×Rd and H j := Rd for

1 ≤ j ≤ 3 (with their standard inner products), and let B1(x, y) := x , B2(x, y) := y,
and B3(x, y) := x−y for all (x, y)∈ H . Then inequality (1-1) is Young’s convolution
inequality∫

Rd

∫
Rd

f1(x) f2(y) f3(x − y) dx dy ≲ ∥ f1∥L p1 (Rd )∥ f2∥L p2 (Rd )∥ f3∥L p3 (Rd ).

It is a result of Beckner [2] and Brascamp and Lieb [7] that

BL(B, p) =

(
3∏

j=1

p1/p j
j

p′

j
1/p′

j

)d/2

if
3∑

j=1

1
p j

= 2,

where 1/p j + 1/p′

j = 1, and BL(B, p) = ∞ for all other p (under the usual
interpretations of 1/∞ = 0 and ∞

1/∞
= 1).
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Figure 1. The m-subspace quiver (left) and a bipartite quiver (right).

1.2. Quiver Brascamp–Lieb inequalities. The relationships between the spaces
and the linear maps in inequality (1-1) can be depicted by a type of graph known
as a quiver.

Definition 1.5 (quiver). A quiver (or directed multigraph) Q is a tuple (V,A, s, t)
consisting of a set V of vertices, a set A of arrows (or edges), a function s : A → V
specifying the source (or tail) of each arrow, and a function t : A → V specifying
the target (or head ) of each arrow. If V is the disjoint union of two sets V1 and V2

with s(A) ⊆ V1 and t (A) ⊆ V2, the quiver is said to be bipartite.

Definition 1.6 (quiver representation). A representation of a quiver is an assignment
of a vector space to each vertex and a linear map to each arrow.

In what follows, we will only consider quivers with finitely many vertices and
arrows and will generally identify each quiver with a specific representation of
it by nontrivial finite-dimensional Hilbert spaces and surjective linear maps (so,
strictly speaking, the sets of vertices and arrows will be multisets). For instance,
the quiver corresponding to inequality (1-1) is the bipartite m-subspace quiver
defined by V = {H} ∪ {H j

}
m
j=1, A = {B1, . . . , Bm}, s(B j ) = H , and t (B j ) = H j ,

as illustrated in Figure 1 (left).
Recently, Chindris and Derksen [8] considered a quantity analogous to that in for-

mula (1-4) for a general bipartite quiver with V={Hi }
n
i=1∪{H j

}
m
j=1, s(A)={Hi }

n
i=1,

and t (A) = {H j
}

m
j=1; see Figure 1 (right). Namely, if Ai j denotes the set of arrows

from Hi to H j , Ba denotes the surjective linear map representing an arrow a ∈ A,
and p j ∈ [1, ∞] for each 1 ≤ j ≤ m, it was shown that the quantity

(1-5) sup
A j ≻0

[ ∏m
j=1det(A j )

p−1
j∏n

i=1det
(∑m

j=1
∑

a∈Ai j
p−1

j B⊤
a A j Ba

)]1/2

is finite if and only if the scaling condition

(1-6)
n∑

i=1
dim(Hi ) =

m∑
j=1

p−1
j dim(H j )
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and the dimension condition

(1-7)
n∑

i=1
dim(Vi ) ≤

m∑
j=1

p−1
j dim

( n∑
i=1

∑
a∈Ai j

Ba Vi

)
for all Vi ≤ Hi

hold. Clearly, conditions (1-6) and (1-7) and the supremum (1-5) reduce to condi-
tions (1-2) and (1-3) and the supremum (1-4) in the case of the m-subspace quiver.

However, the natural question of whether the supremum (1-5) is the optimal
constant in some generalization of the Brascamp–Lieb inequality was left uninves-
tigated. Indeed, a “quiver Brascamp–Lieb inequality” has yet to be formulated, so
our first task is to reinterpret this algebraic result as an analytic one. Naïvely taking
f j (x) := e−π⟨A j x,x⟩p−1

j as before allows one to write the supremum (1-5) as

sup
A j ≻0

∏n
i=1

∫
Hi

∏m
j=1

∏
a∈Ai j

f j ◦ Ba dx∏m
j=1∥ f j∥L p j (H j )

,

but this misleadingly suggests the untenable inequality

n∏
i=1

∫
Hi

m∏
j=1

∏
a∈Ai j

f j ◦ Ba dx ≲
m∏

j=1
∥ f j∥L p j (H j ),

which in general has a different number of f j on each side. Aiming for the more
viable inequality

(1-8)
n∏

i=1

∫
Hi

m∏
j=1

∏
a∈Ai j

f j ◦ Ba dx ≲
n∏

i=1

m∏
j=1

∏
a∈Ai j

∥ f j∥L p j (H j ) =

m∏
j=1

∥ f j∥
α j

L p j (H j )
,

where α j :=
∑n

i=1 #(Ai j ) (and #(Ai j ) denotes the cardinality of Ai j ), one can verify
that scaling p−1

j by α j in the supremum (1-5) yields

C−1/2
Q, p · sup

A j ≻0

∏n
i=1

∫
Hi

∏m
j=1

∏
a∈Ai j

f j ◦ Ba dx∏m
j=1∥ f j∥

α j

L p j (H j )

when f j (x) := e−π⟨A j x,x⟩α j p−1
j , where

CQ, p :=

m∏
j=1

α
α j p−1

j dim(H j )

j .

Thus, the result of Chindris and Derksen amounts to the theorem below.

Theorem 1.7. Let BLCDG(Q, p) denote the optimal constant in inequality (1-8)
when f j (x) := e−π⟨A j x,x⟩α j p−1

j for some A j ≻ 0, so that

BLCDG(Q, p) = C1/2
Q, p · sup

A j ≻0

[ ∏m
j=1det(A j )

α j p−1
j∏n

i=1det
(∑m

j=1
∑

a∈Ai j
α j p−1

j B⊤
a A j Ba

)]1/2

.
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Figure 2. The quiver Q.

Then BLCDG(Q, p) is finite if and only if the scaling condition

(1-9)
n∑

i=1
dim(Hi ) =

m∑
j=1

α j p−1
j dim(H j )

and the dimension condition

(1-10)
n∑

i=1
dim(Vi ) ≤

m∑
j=1

α j p−1
j dim

( n∑
i=1

∑
a∈Ai j

Ba Vi

)
for all Vi ≤ Hi

hold.

One might hope that a generalization of Theorem 1.3 holds so that the optimal
constant BLCD(Q, p) in inequality (1-8) (for general functions) coincides with
BLCDG(Q, p), or at least that conditions (1-9) and (1-10) are also sufficient for the
finiteness of BLCD(Q, p). Unfortunately, this turns out to be false — the finiteness
of the general constant is in fact equivalent to the scaling condition (1-9) along
with the stronger dimension condition (1-13) given below. We will prove this by
considering ostensibly more general inequalities in which a function is associated
with each arrow instead of each target space.

Definition 1.8 (quiver Brascamp–Lieb inequalities). Let Q be a bipartite quiver rep-
resented by nontrivial finite-dimensional Hilbert spaces H1, . . . ,Hn and H 1, . . . ,H m

and surjective linear maps from the former to the latter. In addition, let Ai j denote
the set of arrows from Hi to H j , Ba denote the map representing an arrow a,
and p j ∈ [1, ∞] for each 1 ≤ j ≤ m. A quiver Brascamp–Lieb inequality is an
inequality of the form

(1-11)
n∏

i=1

∫
Hi

m∏
j=1

∏
a∈Ai j

fa ◦ Ba dx ≲
n∏

i=1

m∏
j=1

∏
a∈Ai j

∥ fa∥L p j (H j )

that holds for all measurable functions fa : H j
→ [0, ∞].

Example 1.9. Consider the quiver Q in Figure 2, where H1 := R3, H 1 := R2,
B1(x1, x2, x3) := (x1, x2), and B2(x1, x2, x3) := (x2, x3); and let p = (p1) :=

( 4
3

)
.

Then inequality (1-8) reads∫
R3

f1(x1, x2) f1(x2, x3) dx ≲ ∥ f1∥L4/3(R2)∥ f1∥L4/3(R2) = ∥ f1∥
2
L4/3(R2)

,

whereas inequality (1-11) reads∫
R3

f1(x1, x2) f2(x2, x3) dx ≲ ∥ f1∥L4/3(R2)∥ f2∥L4/3(R2).
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For quiver Brascamp–Lieb inequalities in the form of inequality (1-11), a gener-
alization of Theorem 1.2 holds.

Theorem 1.10. Let BL(Q, p) denote the optimal constant in inequality (1-11).
Then BL(Q, p) is finite if and only if the scaling condition

(1-12)
n∑

i=1
dim(Hi ) =

n∑
i=1

m∑
j=1

∑
a∈Ai j

p−1
j dim(H j )

and the dimension condition

(1-13)
n∑

i=1
dim(Vi ) ≤

n∑
i=1

m∑
j=1

∑
a∈Ai j

p−1
j dim(Ba Vi ) for all Vi ≤ Hi

hold.

In actuality, such inequalities are no more general than Chindris–Derksen-type
inequalities, as the following result shows.

Theorem 1.11. Let BLCD(Q, p) denote the optimal constant in inequality (1-8).
Then

BLCD(Q, p) ≤ BL(Q, p) ≤

m∏
j=1

α
α j
j · BLCD(Q, p).

(As above, α j =
∑n

i=1 #(Ai j ).)

Corollary 1.12. Let BLCD(Q, p) denote the optimal constant in inequality (1-8).
Then BLCD(Q, p) is finite if and only if the scaling condition (1-12)

n∑
i=1

dim(Hi ) =

m∑
j=1

α j p−1
j dim(H j )

and the dimension condition (1-13)
n∑

i=1
dim(Vi ) ≤

n∑
i=1

m∑
j=1

∑
a∈Ai j

p−1
j dim(Ba Vi ) for all Vi ≤ Hi

hold.

As a result, we find that Gaussians do not saturate Chindris–Derksen-type in-
equalities in general.

Corollary 1.13. There exists a quiver Brascamp–Lieb datum (Q, p) for which
BLCDG(Q, p) < BLCD(Q, p) = ∞.

The sufficiency and necessity of the conditions in Theorem 1.10 will be separately
established in Section 2. The proof of sufficiency involves splitting the bipartite
quiver in question into multiple subspace quivers to which Theorem 1.2 applies;
inequality (1-11) is then obtained as the product of inequalities of the form (1-1). The
proof of necessity is an adaptation of the scaling argument used by Bennett et al. [5].
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Following this, in Section 3, we will show that every instance of inequality (1-8)
can be realized as an instance of inequality (1-11) and vice-versa, which will
prove Theorem 1.11. Corollary 1.12 is merely a restatement of Theorem 1.10
for comparison with Theorem 1.7. Finally, we will verify that for the datum in
Example 1.9, the conditions in Theorem 1.7 hold but those in Theorem 1.10 or
Corollary 1.12 do not, which entails Corollary 1.13 — in essence, the failure of
Theorem 1.3 for quivers.

1.3. Notation. We employ the standard notation A ≲ B to indicate that A ≤ CB
for some constant C > 0; if A ≲ B and B ≲ A, we write A ≈ B. Occasionally,
we adjoin subscripts to this notation to indicate dependence of the constant C on
other parameters; for instance, we write A ≲α,β B when A ≤ CB for some constant
C > 0 depending on α, β.

We also use #( · ) for the cardinality of a finite set, | · | for the measure of a set,
and ∥ · ∥ for the norm of a vector.

2. Conditions for quiver Brascamp–Lieb inequalities

First, we prove that the scaling and dimension conditions in Theorem 1.10 are
sufficient and necessary.

Proof of sufficiency in Theorem 1.10. By taking all but one subspace to be zero in
condition (1-13), we find that

dim(Vi ) ≤
∑

j

∑
a∈Ai j

p−1
j dim(Ba Vi ) for all Vi ≤ Hi and each i .

In particular,
dim(Hi ) ≤

∑
j

∑
a∈Ai j

p−1
j dim(H j ) for each i,

so we also have

dim(Hi ) =
∑

j

∑
a∈Ai j

p−1
j dim(H j ) for each i

on account of condition (1-12). Thus, the scaling condition (1-2) and the dimension
condition (1-3) hold for each of the subspace quivers Qi consisting of the source Hi ,
its incident arrows, and their targets regarded as separate vertices (see Figure 3 for
an example), along with the corresponding weights pi . It follows from Theorem 1.2
that ∫

Hi

∏
j

∏
a∈Ai j

fa ◦ Ba dx ≤ BL(Qi , pi )
∏

j

∏
a∈Ai j

∥ fa∥L p j (H j ),

with BL(Qi , pi ) < ∞ for each i ; taking the product of these inequalities over i
yields the conclusion. □

Our proof that the conditions are necessary adapts an argument of Bennett
et al. [4].
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Figure 3. A bipartite quiver Q and its subspace quivers Q1 and Q2.

Proof of necessity in Theorem 1.10. Let c be a positive constant to be determined
later and let r and R be arbitrary positive constants satisfying r ≤ 1 ≤ R. Given
subspaces Vi ≤ Hi , define

Si :=
{
(vi , v

′

i ) ∈ Vi ⊕ V ⊥

i : ∥vi∥ ≤ cR and ∥v′

i∥ ≤ cr
}

⊆ Hi

for each i and

Sa
:=

{
(wa, w

′

a) ∈ W a
⊕ (W a)⊥ : ∥wa∥ ≤ R and ∥w′

a∥ ≤ r
}

⊆ H j

for each a ∈ Ai j and each i, j , where W a := Ba Vi ≤ H j .
If (vi , v

′

i ) ∈ Si for some i and a ∈Ai j , then Ba vi ∈ W a and ∥Ba vi∥≲ ∥vi∥ ≤ cR,
so Ba vi ∈ Sa provided that c is chosen sufficiently small. Similarly, if we write
Ba v′

i =: (wa, w
′
a) ∈ W a

⊕ (W a)⊥, then ∥wa∥ + ∥w′
a∥ ≈ ∥Ba v′

i∥ ≲ ∥v′

i∥ ≤ cr , so
Ba v′

i ∈ Sa provided that c is chosen sufficiently small because r ≤ R. Hence
Ba Si ⊆ Sa

+ Sa
⊆ 2Sa .

Now taking fa := 12Sa , we find that∏
i

∫
Hi

∏
j

∏
a∈Ai j

fa ◦ Ba dx ≥
∏
i

∫
Si

∏
j

∏
a∈Ai j

fa ◦ Ba dx

=
∏
i
|Si | ≈ R

∑
i dim(Vi )r

∑
i codim(Vi ).

On the other hand,∏
i

∏
j

∏
a∈Ai j

∥ fa∥L p j (H j ) ≈
∏
i

∏
j

∏
a∈Ai j

|Sa
|

p−1
j

≈ R
∑

i
∑

j
∑

a∈Ai j
p−1

j dim(W a)
r

∑
i
∑

j
∑

a∈Ai j
p−1

j codim(W a)
.

Sending R → ∞, we deduce that
∑

i dim(Vi ) ≤
∑

i
∑

j
∑

a∈Ai j
p−1

j dim(W a);
sending r → 0, we deduce that

∑
i codim(Vi ) ≥

∑
i
∑

j
∑

a∈Ai j
p−1

j codim(W a).
Condition (1-13) is the first inequality, while condition (1-12) is the conjunction of
the first inequality with Vi := Hi and the second inequality with Vi := {0} (recalling
that the Ba are assumed to be surjective, so Ba Hi = H j ). □
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3. Examples of quiver Brascamp–Lieb inequalities

Next, we return to the question of when an inequality of the form (1-8) holds, which
is answered by the work of Chindris and Derksen in the Gaussian case. Here we
answer this question in general by proving Theorem 1.11, which implies that such
an inequality is equivalent to an inequality of the form (1-11).

Proof of Theorem 1.11. Given inequality (1-11) and a function f j for each j , we can
take fa := f j for each a ∈ Ai j and each i to obtain inequality (1-8) with constant
BL(Q, p), which shows that BLCD(Q, p) ≤ BL(Q, p).

Conversely, given inequality (1-8) and a function fa for each arrow a, let us
assume that ∥ fa∥L p j (H j ) = 1 for each a. We can then take f j :=

∑
i
∑

a∈Ai j
fa for

each j to obtain∏
i

∫
Hi

∏
j

∏
a∈Ai j

fa ◦ Ba dx ≤ BLCD(Q, p)
∏
i

∏
j

∏
a∈Ai j

∥∥∥ n∑
i ′=1

∑
a′∈Ai ′ j

fa

∥∥∥
L p j (H j )

≤ BLCD(Q, p)
∏
i

∏
j

∏
a∈Ai j

α j = BLCD(Q, p)
∏

j
α

α j
j ,

which is inequality (1-11) assuming that the fa are normalized. By homogeneity,
the inequality holds in general with the same constant, which means that

BL(Q, p) ≤
∏

j
α

α j
j · BLCD(Q, p). □

Now let us see how Example 1.9 gives an instance of condition (1-13) being
strictly stronger than condition (1-10), thereby precluding a generalization of Lieb’s
result (Theorem 1.3) to the quiver setting.

Proof of Corollary 1.13. Consider the datum (Q, p) of Example 1.9. The scaling
condition (1-9) or (1-12) is dim(R3) =

3
2 dim(R2), which is obviously satisfied.

However, the dimension condition (1-10) is

dim(V1) ≤
3
2 dim(B1V1 + B2V1) for all V1 ≤ R3,

whereas the dimension condition (1-13) is

dim(V1) ≤
3
4 dim(B1V1) +

3
4 dim(B2V1) for all V1 ≤ R3.

Evidently, the latter does not hold — consider V1 = span{(1, 0, 0)} — but in fact the
former does.

To see this, first note that if dim(B1V1 + B2V1) = 0, then dim(V1) = 0 since
V1 ≤ ker(B1)∩ker(B2) = {0}, and if dim(B1V1 + B2V1) = 2, the inequality is trivial.
In the remaining case dim(B1V1 + B2V1) = 1, we must have B1V1 ≤ span{w}

and B2V1 ≤ span{w} for some w = (w1, w2) ∈ R2. From this, we find that
V1 ≤ span{(w2

1, w1w2, w
2
2)}, so dim(V1) ≤ 1 and the inequality is satisfied.

As a result, BLCDG(Q, p) is finite (by Theorem 1.7), yet BLCD(Q, p) is not
(by Theorem 1.10 or Corollary 1.12). □
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Remark 3.1. For this datum, we can also observe directly that BLCD(Q, p) is
infinite: if S := ([0, N ]×[0, 1])∪([0, 1]×[0, N ]) and f1 := 1S , then the right-hand
side of inequality (1-8) is ∥1S∥

2
L4/3(R2)

= |S|
3/2

≈ N 3/2, while the left-hand side is∫
R3

1S(x1, x2) 1S(x2, x3) dx ≥ |[0, N ] × [0, 1] × [0, N ]| = N 2.

Even when BLCDG(Q, p) and BLCD(Q, p) are both finite, they need not be
equal — in Example 3.2, they are; in Example 3.3, they are not (in general).

Example 3.2. Consider the quiver Q in Figure 2 with H1 := R2 and H 1 := R1, and
let p = (p1) := (1). In addition, suppose that B1(x) := b⊤

1 x and B2(x) := b⊤

2 x ,
where b1, b2 ∈ R2 are such that B :=

[
b1 b2

]
is invertible.

According to the formula in Theorem 1.7, we have

BLCDG(Q, p) = 2 · sup
a1>0

[
a2

1

det(2b1a1 b⊤

1 + 2b2a1b⊤

2 )

]1/2

=
1

det(B B⊤)1/2 =
1

|det(B)|
.

On the other hand, for any measurable function f1 : R1
→ [0, ∞], we have∫

R2
f1(b⊤

1 x) f1(b⊤

2 x) dx =

∫
R2

f1(y1) f1(y2) |det((B⊤)−1)| dy

=
1

|det(B)|
∥ f1∥L1(R1)∥ f1∥L1(R1),

which shows that
BLCD(Q, p) =

1
|det(B)|

as well.

Example 3.3. Consider the quiver Q in Figure 2 with H1 := R1 and H 1 := R1,
and let p = (p1) := (2). In addition, suppose that B1(x) := b1 x and B2(x) := b2 x ,
where b1, b2 ∈ R1

\ {0}.
According to the formula in Theorem 1.7, we have

BLCDG(Q, p) = 21/2
· sup

a1>0

[
a1

b1a1 b1 + b2a1 b2

]1/2

=

(
2

b2
1 + b2

2

)1/2

.

On the other hand, for any measurable function f1 : R1
→ [0, ∞], we have∫

R
f1(b1x) f1(b2x) dx ≤

[∫
R

f1(b1x)2 dx
]1/2 [∫

R
f1(b2x)2 dx

]1/2

=

[∫
R

f1(y)2
|b−1

1 | dy
]1/2 [∫

R
f1(y)2

|b−1
2 | dy

]1/2

=
1

|b1 b2|1/2 ∥ f1∥L2(R1)∥ f1∥L2(R1),
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which shows that
BLCD(Q, p) ≤

1
|b1 b2|1/2 .

In fact, this is an equality. To see this, let p > 1 and

f1(x) :=

{
|x |

−p/2 if |x | ≥ 1,

0 otherwise.

Assuming without loss of generality that |b1| ≤ |b2|, we compute that∫
R

f1(b1x) f1(b2x) dx =

∫
|x |≥1/|b1|

1
|b1x |p/2 ·

1
|b2x |p/2 dx

=
1

|b1 b2|p/2

∫
|x |≥1/|b1|

( 1
|x |p/2

)2
dx

=
1

|b1 b2|p/2 ·
1

|b1|1−p · ∥ f1∥
2
L2(R1)

,

whence the claim follows by taking p → 1. As a result, we see that both the
Gaussian constant and the general constant are finite for this datum, but that they
are equal if and only if |b1| = |b2|.

4. Concluding remarks and questions

Inspecting the proof of Lieb’s theorem [10], we find that it uses the multilinearity of
inequality (1-1) in the f j , which the quiver inequality (1-8) does not possess. Thus,
one might have expected the optimal constant for Gaussians to differ from that for
general functions in the latter inequality. Indeed, the function f1 in Remark 3.1 can
be thought of as the sum of two rough approximations to Gaussians, g1 :=1[0,N ]×[0,1]

and h1 := 1[0,1]×[0,N ] (ignoring the overlap of their supports). The left-hand side of
the inequality, roughly∫

R3
(g1 + h1)(x1, x2)(g1 + h1)(x2, x3) dx,

is incomparably larger than∫
R3

g1(x1, x2)g1(x2, x3) dx +

∫
R3

h1(x1, x2)h1(x2, x3) dx

for large N because of the “cross terms” in the product, and consequently fails to
be bounded by the right-hand side.

Although the theory of quiver Brascamp–Lieb inequalities does not appear to be
as rich as that of ordinary Brascamp–Lieb inequalities, there are still some questions
that could be investigated. For instance, can the inequalities in Theorem 1.11
be strict? We know that the second can be: consider the quiver Q in Figure 2
once more, with H1 := R1, H 1 := R1, B1(x1) := x1, and B2(x1) := x1; and let
p = (p1) := (2). Then BLCD(Q, p) = BL(Q, p) = 1 by the Cauchy–Schwarz
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inequality and α1 = 2. We can also ask: if not Gaussians, what are the maximizers
of quiver Brascamp–Lieb inequalities? Are there any interesting applications of
such inequalities?
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