
Pacific
Journal of
Mathematics

GEOMETRY AND DYNAMICS ON SUBLINEARLY
MORSE BOUNDARIES OF CAT(0) GROUPS

YULAN QING AND ABDUL ZALLOUM

Volume 333 No. 1 November 2024





PACIFIC JOURNAL OF MATHEMATICS
Vol. 333, No. 1, 2024

https://doi.org/10.2140/pjm.2024.333.155

GEOMETRY AND DYNAMICS ON SUBLINEARLY
MORSE BOUNDARIES OF CAT(0) GROUPS

YULAN QING AND ABDUL ZALLOUM

Given a sublinear function κ , κ-Morse boundaries ∂κ X of proper CAT(0)

spaces are introduced by Qing, Rafi and Tiozzo (2024). It is a topological
space that consists of a equivalence class of quasigeodesic rays and it is
quasiisometrically invariant and metrizable. We study the sublinearly Morse
boundaries with the assumption that there is a proper cocompact action of a
group G on the CAT(0) space in question. We show that G acts minimally
on ∂κ G and that contracting elements of G induces a weak north-south
dynamic on ∂κ G. Also, we show that a homeomorphism f : ∂κ G → ∂κ G′

comes from a quasiisometry if and only if f is successively quasimöbius
and stable. Lastly, we characterize exactly when the sublinearly Morse
boundary of a CAT(0) space is compact.

1. Introduction

Much of the geometric group theory originates from the studying of hyperbolic
groups and hyperbolic spaces. Hyperbolic groups have solvable word problem
and their Gromov boundaries enjoy strong dynamical properties. One fundamental
technique in the study of hyperbolic groups is to study the Gromov boundaries
of these groups. Gromov took the collection of all infinite geodesic rays (up
to fellow traveling) in the associated Cayley graph, equipped this set with cone
topology, and defined the space to be the boundary ∂G of the hyperbolic group G.
The boundary ∂G is independent of the choice of a generating set and has rich
geometric, topological, and algebraic structures (see, for example, the survey in
[Kapovich and Benakli 2002]).

If we view Gromov hyperbolic spaces as coarsely negatively curved, then the
notion of CAT(0) include spaces with both local and global nonpositive curvature.
Accordingly the extension of the boundary theory to CAT(0) spaces and groups has
also been developing in recent decades. In this setting, the space of all geodesic rays
together with the cone topology is called the visual boundary (denoted by ∂vX ). It
is shown by Croke and Kleiner [2000] that the visual boundary of a CAT(0) space
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is not in general a quasiisometry invariant. It is shown in [Qing 2016] that, in the
Croke–Kleiner example, failure to obtain quasiisometry invariance can come from
geodesic rays that spend linear amount of time (with respect to total time traveled)
in each product region.

Hence, one can consider geodesic rays that spend a sublinear amount of time
in each product region. Qing and Rafi [2022] introduce the sublinearly Morse
boundary ∂κX of a CAT(0) metric space X and show that ∂κX is quasiisometry
invariant and metrizable. Qing and Tiozzo [2022] show that, for a right-angled
Artin group G, ∂κG is a model for Poisson boundaries associated to a random walk
(G, µ). Intuitively, a (quasi)geodesic ray is sublinearly Morse if it spends a sublinear
amount of time in each maximal product region, with respect to total time traveled
when it enters that product region. Moreover, it is shown in [Gekhtman et al. 2022]
that for every CAT(0) group with a rank-one element, there exists a κ such that ∂κG
can be identified with the Poisson boundaries of the group. Gekhtman et al. [2022]
also show that the sublinearly Morse directions in the visual boundary of a rank-one
CAT(0) space with a geometric group action are generic with respect to Patterson–
Sullivan measures. Most recently, it is shown that much like the Gromov boundaries,
sublinearly Morse boundaries are sublinearly bi-Lipschitz equivalence invariant
[Pallier and Qing 2024], providing a new way to tell when two groups are not
sublinearly bi-Lipschitz equivalence. These are evidences that the sublinearly
Morse directions behave similar to directions in hyperbolic spaces. In this paper,
we continue to contribute to this comparison and focus on the dynamical property
of the group action on κ-Morse boundaries. Much of the work in this paper is
inspired by the methods in [Charney and Sultan 2015], [Murray 2019] and [Cashen
and Mackay 2019]. In more general proper geodesic spaces, sublinearly Morse
boundaries have been developed and studied, for instance, in [Durham and Zalloum
2022; Murray et al. 2022; Nguyen and Qing 2024; Pallier and Qing 2024; Qing
et al. 2024; Qing and Yang 2024]. Parts of Theorems A and B have been recently
studied in the setting of proper metric spaces in [Garcia et al. 2024].

Minimality of the group action. A group is said to act minimally on a topological
space if every orbit is a dense subset of the space. We show that this property
is enjoyed by the κ boundaries. In contrast with the identifications with Poisson
boundaries in various settings, the minimality result evidence the fact that the
boundary is not too large in excess of the orbit of a point under the group action.

Theorem A (Theorem 3.3). Suppose G is a group that acts properly discontinu-
ously, cocompactly and by isometries metrically on a CAT(0) space X. Then G
acts minimally on ∂κG.

Based on this result, we illustrate that for a subset of the group elements, their
actions induces the following form of north-south dynamics on the boundary.
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Theorem B (Theorem 3.6). Suppose G is a group that acts properly discontinuously,
cocompactly and by isometries metrically on a CAT(0) space X. Let g ∈ G be a
contracting element. For every open set V containing g∞ and every compact set
C ∈ (∂κG \ [g∞

]), there exists an N such that for all n ≥ N , we have gnC ⊂ V .

Compact-type κ-boundaries. In the examples shown in [Qing and Rafi 2022], the
boundaries are not compact. We show that when X is a proper hyperbolic space,
κ-boundary is homeomorphic to the associated Gromov boundary. In fact, we
show that this is exactly when a cocompact CAT(0) space X has compact sublinear
boundaries. On the other hand, examples of CAT(0) space without a cocompact
group action, whose sublinearly boundaries are compact can be constructed easily.
However, it remains open to find a CAT(0) space X with noncompact sublinear
boundary where ∂κX is a perfect space. When X is a hyperbolic CAT(0) space,
then the κ-boundary agrees with the Gromov boundary.

Theorem C (Theorem 4.5). Suppose a group G acts properly discontinuously,
cocompactly and by isometries metrically on a proper CAT(0) space X such that
∂κX ̸= ∅, then the following are equivalent:

(1) Every geodesic ray in X is κ-contracting.

(2) Every geodesic ray in X is strongly contracting.

(3) ∂κX is compact.

(4) The space X is hyperbolic.

Corollary D (Corollary 4.4). If X is a proper CAT(0) hyperbolic space then
∂κX ≃ ∂X.

Rigidity. Paulin [1996] gives the following characterization: if f : ∂X → ∂Y is
a homeomorphism between the boundaries of two proper, cocompact hyperbolic
spaces, then the following are equivalent:

(1) f is induced by a quasiisometry h : X → Y and (2) f is quasimöbius.

Quasimöbius maps are maps such that changes in the cross ratio are controlled by
a continuous function. It was shown in [Charney et al. 2019] that a homeomorphism
on the Morse boundary with inverse limit topology is induced by a quasiisometry of
the space if the homeomorphism is successively quasimöbius stable. Here we give
a similar characterization for sublinearly Morse boundaries. We use the notion of
successively quasimöbius discussed in [Qing and Rafi 2022], which is a 1-parameter
family of quasimöbius maps on ∂κX .

Theorem E (Theorem 5.3). Let X, Y be proper cocompact CAT(0) spaces with
at least 3 points in their sublinear boundaries. A homeomorphism f : ∂κX → ∂κY
is induced by a quasiisometry h : X → Y if and only if f is stable and successively
quasimöbius.
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2. Preliminaries

Quasiisometry and quasiisometric embeddings.

Definition 2.1 (quasiisometric embedding). Let (X, dX ) and (Y, dY ) be metric
spaces. For constants k ≥ 1 and K ≥ 0, we say a map f : X → Y is a (k,K)-
quasiisometric embedding if, for all points x1, x2 ∈ X

1
k

dX (x1, x2)−K ≤ dY ( f (x1), f (x2))≤ k dX (x1, x2)+K.

If, in addition, every point in Y lies in the K-neighborhood of the image of f , then
f is called a (k,K)-quasiisometry. When such a map exists, X and Y are said to be
quasiisometric.

A quasiisometric embedding f −1
: Y → X is called a quasiinverse of f if for

every x ∈ X , dX (x, f −1 f (x)) is uniformly bounded above. In fact, after replacing
k and K with larger constants, we assume that f −1 is also a (k,K)-quasiisometric
embedding:

∀x ∈ X dX (x, f −1 f (x))≤ K and ∀y ∈ Y dY (y, f f −1(x))≤ K.

A geodesic ray in X is an isometric embedding β : [0,∞) → X . We fix a
base-point o ∈ X and always assume that β(0)= o, that is, a geodesic ray is always
assumed to start from this fixed base-point.

Definition 2.2 (quasigeodesics). In this paper, a quasigeodesic ray is a continuous
quasiisometric embedding β : [0,∞)→ X starting from the basepoint o.

The additional assumption that quasigeodesics are continuous is not necessary
for the results in this paper to hold, but it is added for convenience and to make the
exposition simpler.

If β : [0,∞)→ X is a (q,Q)-quasiisometric embedding, and f : X → Y is a
(k,K)-quasiisometry then the composition f ◦β : [t1, t2] → Y is a quasiisometric
embedding, but it may not be continuous. However, one can adjust the map slightly
to make it continuous (see Definition 2.2 in [Qing and Rafi 2022]) such that f ◦β

is a (kq, 2(kq+ kQ+K))-quasigeodesic ray.
Similar to above, a geodesic segment is an isometric embedding β : [t1, t2] → X

and a quasigeodesic segment is a continuous quasiisometric embedding

β : [t1, t2] → X.

Notation. Throughout the paper we will use α, β . . . to denote quasigeodesic
rays. If the quasigeodesic constants are (1, 0), we use α0, β0, . . . to signify that
they are in fact geodesic rays. Meanwhile, we use [α], [β], . . . to denote the κ-
equivalence classes of quasigeodesic rays (see Definition 2.11), and we also use
a, b, . . . to denote κ-equivalence classes without referring an element in each class.



SUBLINEARLY MORSE BOUNDARIES OF CAT(0) GROUPS 159

In contrast, we use α(∞) to denote equivalence classes of α in the visual boundary
(see Definition 2.5). Furthermore, let α be a (quasi)geodesic ray α : [0,∞)→ X ,
if x1, x2 are points on α, then the segment of α between x1 and x2 is denoted
[x1, x2]α . If a segment is presented without subscript, for example [y1, y2], then it
is a geodesic segment between the two points. Let β be a quasigeodesic ray. Define

∥x∥ := d(o, x).

For r > 0, let tr be the first time where ∥β(t)∥ = r and define

(1) βr := β(tr) and β|r := β[0, tr] = [β(0), βr]β,

which are points and segments in X , respectively.

Properties of CAT(0) spaces. A geodesic metric space (X, dX ) is CAT(0) if ge-
odesic triangles in X are at least as thin as triangles in Euclidean space with the
same triple of side-lengths. To be precise, for any given geodesic triangle △pqr ,
consider the unique triangle △ p̄q̄r̄ in the Euclidean plane with the same triple of
side-lengths. The triangle △pqr is at least as thin as △ p̄q̄r̄ in the following sense:
For any pair of points x, y on the triangle △pqr , without loss of generality let x, y
be on edges [p, q] and [p, r ], if we choose points x̄ and ȳ on edges [ p̄, q̄] and [ p̄, r̄ ]

of the triangle △ p̄q̄r̄ so that dX (p, x)= de( p̄, x̄) and dX (p, y)= de( p̄, ȳ), then

dX (x, y)≤ dE2(x̄, ȳ).

A metric space X is proper if closed metric balls are compact. For the remainder
of the paper, we assume X is a proper CAT(0) space; a proper CAT(0) space has
the following basic properties that are needed in this paper:

Lemma 2.3. A proper CAT(0) space X has the following properties:

(1) For any two points x, y in X , there exists exactly one geodesic connecting them.
Consequently, X is contractible via geodesic retraction to a base-point in the space.

(2) The nearest point projection from a point x to a geodesic line β0 is a unique
point denoted πβ0(x), or simply xβ0 . In fact, the closest point projection map to a
geodesic

πβ0 : X → β0

is Lipschitz with respect to distances. The nearest point projection from a point x to
a quasigeodesic line β exists and is not necessarily unique. We denote the whole
projection set πβ(x).

(3) For any x ∈ X , the distance function dX (x, · ) is convex. In other words, for
any given any geodesic [x0, x1] and t ∈ [0, 1], if xt satisfies dX (x0, xt)= td(x0, x1)

then we must have
dX (x, xt)≤ (1 − t) dX (x, x0)+ tdX (x, x1).
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We also need the following redirecting surgery for all proper metric spaces.

Lemma 2.4 [Qing and Rafi 2022, Lemma 4.3]. Let X be a proper, complete metric
space. Let b be a geodesic ray and γ be a (q,Q)-quasigeodesic ray. For r > 0,
assume that dX (br, γ )≤

r
2 . Then, there exists a (9q,Q)-quasigeodesic γ ′ so that

γ ′
∈ [b] and γ |r/2 = γ ′

|r/2.

Boundaries of CAT(0) space.

The visual boundary. In this section we review a couple of topological boundaries
of CAT(0) spaces that are important to the study of this paper.

Definition 2.5 (visual boundary). Let X be a CAT(0) space. The visual boundary
of X , denoted ∂vX , is the collection of equivalence classes of infinite geodesic rays,
where α and β are in the same equivalence class, if and only if there exists some
C ≥ 0 such that d(α(t), β(t)) ≤ C for all t ∈ [0,∞). The equivalence class of α
in ∂vX we denote α(∞).

Notice that by Proposition I.8.2 in [Bridson and Haefliger 1999], for each α
representing an element of ∂vX , and for each x ′

∈ X , there is a unique geodesic
ray α′ starting at x ′ with α(∞)= α′(∞).

We describe the topology of the visual boundary by a neighborhood basis: fix a
base-point o and let α be a geodesic ray starting at o. A neighborhood basis for α
(see Figure 1) is given by sets of the form

Uv(α(∞), r, ϵ) :=
{
β(∞) ∈ ∂vX | β(0)= o and d(α(t), β(t)) < ϵ for all t < r

}
.

In other words, two equivalence classes of points are close in the visual boundary
if they have geodesic representatives that start at the same point and stay close (are
at most ϵ apart) for a long time (at least r). Notice that the above definition of
the topology on ∂vX references a base-point o. Nonetheless, Proposition I.8.8 in
[Bridson and Haefliger 1999] proves that the topology of the visual boundary is
base-point invariant.

Definition 2.6 (visibility). A geodesic line is an isometric embedding of the infinite
interval (−∞,∞). A point ζ in the visual boundary is said to be a visibility point
if any other point ζ ′

∈ ∂vX , there exists a geodesic line l with l(∞) = ζ and
l(−∞)= ζ ′. A subset Y ⊆ ∂X is said to be a visibility space if for any ζ, ζ ′

∈ Y
with ζ ̸= ζ ′, there is a geodesic line l with l(∞)= ζ and l(−∞)= ζ ′.

Related to the above, it’s shown in [Zalloum 2022] that each point of the sublin-
early Morse boundary ∂κX is a visibility point of ∂vX .
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o α

r

ϵ

Figure 1. A basis for open sets.

Sublinearly Morse boundaries. Let κ : [0,∞)→ [1,∞) be a sublinear function
which is monotone increasing and concave, that is,

lim
t→∞

κ(t)
t

= 0.

The assumption that κ is increasing and concave makes certain arguments cleaner,
otherwise they are not really needed. One can always replace any sublinear func-
tion κ , with another sublinear function κ̄ so that

κ(t)≤ κ̄(t)≤ C κ(t)

for some constant C and κ̄ is monotone increasing and concave. For example, define

κ̄(t)= sup
{
λκ(u)+ (1 − λ) κ(v) | 0 ≤ λ≤ 1, u, v > 0 and λu + (1 − λ) v = t

}
.

The requirement κ(t) ≥ 1 is there to remove additive errors in the definition of
κ-contracting geodesics (see Definition 2.10).

κ-Morse geodesic rays. The boundary of interest in this paper consists of points
in ∂vX that are in the “hyperbolic-like”. In proper CAT(0) spaces, they can be
characterized in two equivalence ways.

Definition 2.7 (κ-neighborhood). For a closed set Z and a constant n define the
(κ, n)-neighborhood of Z (see Figure 2) to be

Nκ(Z , n)= {x ∈ X | dX (x, Z)≤ n · κ(x)}.

o b

x

xb

n · κ(x)
∥x∥

(κ, n)-neighborhood of b

Figure 2. A κ-neighborhood of a geodesic ray b with multiplicative
constant n.
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o
≤ cα κ(∥x∥) α

x

∥x∥

Figure 3. A κ-contracting geodesic ray.

Definition 2.8 (κ-Morse I, κ-Morse II). Let Z ⊆ X be a closed set, and let κ be
a concave sublinear function. We say that Z is κ-Morse if one of the following
equivalent (see Proposition 3.10 in [Qing et al. 2024]) condition holds:

(I) There exists a proper function mZ : R2
→ R such that for any sublinear func-

tion κ ′ and for any r > 0, there exists R such that for any (q,Q)-quasigeodesic
ray β with mZ (q,Q) small compared to r , if

dX (βR, Z)≤ κ ′(R), then β|r ⊂ Nκ(Z ,mZ (q,Q)).

(II) There is a function m′

Z : R2
+

→ R+ so that if β : [s, t] → X is a (q,Q)-
quasigeodesic with end points on Z then

[s, t]β ⊂ Nκ(Z ,m′

Z (q,Q)).

Remark 2.9. By taking the maximum function of mZ ,m
′

Z , we may and will always
assume that both conditions hold for the same mZ , which we refer to as the κ-Morse
gauge. Further,

(2) mZ (q,Q)≥ max(q,Q).

Definition 2.10 (κ-contracting sets). For x ∈ X , define ∥x∥= dX (o, x). For a closed
subspace Z of X , we say Z is κ-contracting (see Figure 3) if there is a constant cZ

so that, for every x, y ∈ X

dX (x, y)≤ dX (x, Z) ⇒ diamX (xZ ∪ yZ )≤ cZ · κ(∥x∥).

In fact, to simplify notation, we drop ∥ · ∥ when it appears in the κ function and
write κ(x) instead of κ(∥x∥).

In CAT(0) spaces, a geodesic is κ-contracting if and only if it is κ-Morse [Qing
and Rafi 2022]. Furthermore, κ-contracting can be related to properties introduced
in [Charney and Sultan 2015]. Recall from [Charney and Sultan 2015] that a
geodesic α is such that if there exists a D such that for every x, y ∈ X

dX (x, y)≤ dX (x, α) ⇒ diamX (xα ∪ yα)≤ D.
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Then we say the geodesic is D-contracting. The geodesic is strongly contracting if
it is D-contracting for some D, it follows that A geodesic ray is strongly contracting
if and only if it is κcontracting for κ = 1.
κ-Morse quasigeodesic rays in X space are grouped into equivalence classes to

form ∂κX .

Definition 2.11 (κ-equivalence classes in ∂κX ). Let β and γ be two quasigeodesic
rays in X . If β is in some κ-neighborhood of γ and γ is in some κ-neighborhood
of β, we say that β and γ κ-fellow travel each other. This defines an equivalence
relation on the set of quasigeodesic rays in X (to obtain transitivity, one needs to
change n of the associated (κ, n)-neighborhood).

We denote the equivalence class that contains β by [β].

Definition 2.12 (sublinearly Morse boundary). Let κ be a sublinear function as
specified in Section 2 and let X be a CAT(0) space:

∂κX := {all κ-Morse quasigeodesics}/κ-fellow traveling.

We define the topology of ∂κX below.

We also use a, b to denote κ-equivalence classes in ∂κX . We need the following
fact that since X is CAT(0), there is a unique geodesic ray in each equivalence class:

Lemma 2.13 [Qing and Rafi 2022, Lemma 3.5]. Let X be a CAT(0) space. Let
b : [0,∞)→ X be a geodesic ray in X. Then b is the unique geodesic ray in any
(κ, n)-neighborhood of b for any n. That is to say, there is an 1-1 embedding of the
set of points in ∂κX into the points of ∂vX.

Proof. For each element a ∈ ∂κX , consider its unique geodesic ray α. The associated
α(∞) is an element of ∂vX . By Lemma 3.5 in [Qing and Rafi 2022], each equiva-
lence class contains a unique geodesic ray. Meanwhile, if two elements a, b ∈ ∂κX
contain the same geodesic ray, they are in fact the same set of quasigeodesics,
therefore this map is well defined. Therefore we have an embedding of the set of
points in ∂κX into the points of ∂vX . □

Coarse cone topology on ∂κX. We equip ∂κX with a topology which is a coarse
version of the visual topology. In visual topology, if two geodesic rays fellow travel
for a long time, then they are “close”. In this coarse version, if two geodesic rays
and all the quasigeodesic rays in their respect equivalence classes remain close
for a long time, then they are close. Now we define it formally. First, we say a
quantity D is small compared to a radius r > 0 if

(3) D ≤
r

2κ(r)
.
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o

geodesic β0

α0

(κ,mα0(q,Q))-neighborhood of α0

(q,Q)-quasigeodesic β

r

Figure 4. b ∈ Uκ(a, r) because the quasigeodesics of b such as
β, β0 stay inside the associated (κ,mα0(q,Q))-neighborhood of α0

(as in Definition 2.7 ), up to distance r.

Recall that given a κ-Morse quasigeodesic ray β, we denote its associated κ-
Morse gauge mβ(q,Q). These are multiplicative constants that give the heights of
the κ-neighborhoods.

Definition 2.14 (topology on ∂κX ). Let a ∈ ∂κX and α0 ∈ a be the unique geodesic
in the class a. Define Uκ(a, r) to be the set of points b (see Figure 4) such that for
any (q,Q)-quasigeodesic of b, denoted β, such that mβ(q,Q) is small compared
to r, satisfies

β|r ⊂ Nκ(α0,mα0(q,Q)).

Let the topology of ∂κX be the topology induced by this neighborhood system.
The following fact shows that a κ-boundary is well defined with respect to the
associated group.

Theorem 2.15 [Qing et al. 2024]. Let X, Y be a proper metric space and let κ
be a sublinear function. The κ-boundaries of X, Y are denoted ∂κX, ∂κY . Any
quasiisometry from X to Y induces a homeomorphism between ∂κX and ∂κY .

3. Dense subsets and minimality of G-action

In this section we prove two results concerning dense subsets of ∂κG. First we
show that the set of all Morse directions, ∂1G is dense in ∂κG, secondly and more
generally, the action of G is minimal on ∂κG and as a consequence, a Morse element
in G acts with north-south dynamics on the boundary. To begin with, in this section,
let G acts properly discontinuously, cocompactly and by isometries metrically on a
CAT(0) space X .

Let A be a geodesic ray or a geodesic segment. Since G acts cocompactly on X
there exists a compact set F such that X ⊆

⋃
g∈G g · F . In particular, there exists a

set {gi } such that A ⊆
⋃

gi
gi · F . We can organize the gi such that

⋃
gi

gi · F covers
longer and longer initial segment of A as i → ∞.
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o

a

b

≥
π
2

Figure 5. The local angle in a CAT(0) space.

Definition 3.1 (angles in CAT(0) spaces [Bridson and Haefliger 1999, II.3.1]). Let
X be a CAT(0) space and let ℓ : [0, a]→ X and ℓ′ : [0, a′

]→ X be two geodesic paths
issuing from the same point ℓ(0)= c′(0). Then the comparison angle ̸

E(c(t), c′(t ′))

is a nondecreasing function of both t, t ′
≥ 0, and the Alexandrov angle ̸ (c, c′) is

equal to
lim

t,t ′→0
̸ c(0)(c(t), c′(t ′))= lim

t→0
̸ (c(t), c′(t)).

Hence, we define
̸ (c, c′)= lim

t→0
2 arcsin 1

2t
d(c(t), c′(t)).

We also refer to the Alexandrov angle as the local angle (see Figure 5).

Lemma 3.2. Let c0 be a concatenation of a geodesic segment and an infinite
geodesic ray as follows:

• The geodesic segment is the initial segment of a κ-Morse geodesic ray labeled b.

• The infinite geodesic ray is a κ-Morse geodesic ray labeled a.

• Suppose in addition that the Alexandrov angle are the point of concatenation is
bounded below by the right angle.

Then c0 is κ-Morse, and its Morse gauge is bounded above by

mc0(q,Q)≤ m′

b(3q,Q)+ ma(3q,Q).

Proof. We will show that c0 satisfies the κ-Morse II condition. Consider a quasi-
geodesic ray c′ that sublinearly tracks c0. Let p be the point of concatenation on c0

and project p to c′ and label the projection as pc′ (see Figure 6). By the surgery
lemma [Qing and Rafi 2022, Lemma 2.5], we have

[o, pc′]c′ ∪ [p, pc′]

is a (3q,Q) quasigeodesic segment whose endpoints are on b, thus by κ-Morse II it
is in the m′

b(3q,Q) neighborhood of b. Define c′′ to be the quasigeodesic ray with
c′′

⊆ c′ and c′′(0)= pc′ . Again, by [Qing and Rafi 2022, Lemma 2.5],

[p, pc′] ∪ c′′
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o
p

a

c′′

c′

b

pc′

Figure 6. The quasigeodesic ray c′ is covered by the union of a
quasigeodesic segment [o, pc′]c′ ∪[p, pc′], and a quasigeodesic ray
[p, pc′] ∪ c′′.

is (3q,Q) quasigeodesic ray that sublinearly tracks a. Likewise by κ-Morse I it
is in the ma(3q,Q) neighborhood of a. Thus c′ is in a m′

b(3q,Q)+ ma(3q,Q)-
neighborhood of c0. □

Theorem 3.3. Suppose G acts properly discontinuously, cocompactly and by isome-
tries metrically on a proper CAT(0) space X and |∂κX | ≥ 3. For each a ∈ ∂κX ,
such that G · a is dense in ∂κX.

Proof. By Theorem 1.1 in [Hamenstädt 2009], the action of G on its visual bound-
ary ∂X is minimal. In particular, no element in the visual boundary is a global fixed
point of G. Now, since elements of the κ-boundary ∂κX are also elements in the
visual boundary, we conclude that G.a ̸= a for any a ∈ ∂κX .

Fix a point a ∈ ∂κX , by the above, there exists a group element g ∈ G such that
ga ̸= a. Since ∂κX is a visibility space [Zalloum 2022], we can choose a biinfinite
geodesic line, denoted l, that connects a and g · a ∂κG, we will write l(∞) for a
and l(−∞) for g · a. Given any point b ∈ ∂κX (not necessarily different from l(∞)

or l(−∞)), and let b be a geodesic ray representing b with b(0)= o. It suffices to
show that a subset of the points in G · a converges to b. If b = l(∞) or b = l(−∞)

then we are done. Otherwise fix a point p ∈ ℓ.
Since G acts on X cocompactly, there exists a constant C and elements {gi ∈ G}

for i = 1, 2, 3, . . . such that d(gi · p, b(i))≤ C for all i ∈ N.
Denote li := gi · ℓ. Also let pi := gi · p and consider the quasigeodesics

αi := [o, pi ] ∪ [pi , l+i ), βi := [o, pi ] ∪ [pi , l−i ).

Since li is a line in a CAT(0) space, at least one of the local angles ̸ (o, pi , li (∞)),
̸ (o, pi , li (−∞)) is greater than or equal π2 . Consequently, at least one of αi or βi

is a (3, 0)-quasigeodesic ray (see Figure 7). For each i , let γi ∈ {αi , βi } be such a
(3, 0)-quasigeodesic ray. Each γi is κ-Morse as its tail is κ-Morse. By Lemma 3.2,
for all i and for all q,Q we have

mγi (q,Q) < m′

b(3q,Q)+ ml(3q,Q)+ C ′,
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b

o

αi = gi l(−∞)βi = gi l(∞)

pi

Figure 7. Translates of ℓ by {gi } along b.

where C ′ is a constant depending only on C . Since mγi does not depend on i we
write it as mγ . Let q,Q be small compared to r . Let

κ ′
= 3mγ Cκ + C.

Since b is κ-Morse I, we have that for each r > 0, and for each pair of (q,Q)
small compared to r , there exists R(q,Q, r, κ ′) ≥ 1 such that the conclusion of
the κ-Morse I notion holds. Furthermore, by the proof of Theorem 3.14 in [Qing
and Rafi 2022], since κ ′ is concave, if R = R(q,Q, r, κ ′) satisfies the definition of
κ-Morse I, then all R > R(q,Q, r, κ ′) also satisfies the definition of κ-Morse I.

Recall that γi ∈ {αi , βi }. Let i = ⌈R⌉. By construction we have d(bR, γ⌈R⌉)≤ C .
Thus, there exists a point s⌈R⌉ ∈ [0,∞) with d(bR, γ⌈R⌉(s⌈R⌉))≤ C . In particular,
since γ⌈R⌉ is a (3, 0)-quasigeodesic, we have

R − C ≤ d(γ (s⌈R⌉), o)≤ R + C ⇒ s⌈R⌉ < 3(R + C).

Now it remains to show that γ⌈R⌉ ∈ U(b, r). Let ζ be a (q,Q)-quasigeodesic in
the class of γ⌈R⌉, then by [Qing et al. 2024, Lemma 3.4] , we get that

d(γ⌈R⌉(s⌈R⌉), ζ )≤mγ κ(si ) as ζ and γ⌈R⌉ are both κ-Morse,

≤mγ κ(3(R + C)) as κ is monotone nondecreasing,

≤mγ κ(3C R)≤3mγ Cκ(R) as κ is convex.

This provides a point x ∈ ζ with d(x, γi (si )) ≤ mγ Cκ(R). Hence, by the
triangle inequality, we get that d(x, b(R)) ≤ 3mγ Cκ(R)+ C . Now, recall that
κ ′

= 3mγ Cκ + C , thus R(q,Q, r, κ ′) is precisely that

d(x, b(R))≤ 3mγ Cκ(R)+ C ⇒ ζr ⊆ Nκ(b, r).

This holds for every (q,Q)-quasigeodesic representative of γi and thus we have

(4) γ⌈R⌉ ∈ U(b, r).

That is to say, for larger and larger r we can find an associated sequence of γi that
is in U(b, r), Thus up to a subsequence γi = gi · a limits to b. □
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As a consequence of the proof we can establish the following corollary.

Corollary 3.4. Let l be a biinfinite axis of a rank-one element g ∈ G and let a
be another element in ∂κX (not necessarily different from the ends of l). Then for
each r , there exists a large enough n such that gk

· a ∈ U([l(∞)], r) for all k ≥ n.

Proof. As established in the proof of Theorem 3.3, for a sequence of larger and
larger r one can construct an associated sequence of γi that is in U([l(∞)], r). By
cocompactness, each γi has in its class a (3, 0)-quasigeodesic ray with an initial
geodesic segment that is [o, gi · p], where the sequence

{g1, g2, g3, . . . }

tracks l. Since l is rank-one, the tracking sequence for l(∞) becomes

{g, g2, g3, g4 . . . },

thus γi consists of a initial segment [o, gi
· p]. Thus for each r there exists ⌈R(r)⌉

such that if i = ⌈R(r)⌉ then

[γi ] ∈ U([l(∞)], r).

Furthermore, by the proof of Theorem 3.3, all R > R(r) works for the definition of
κ-Morse I, thus for all i ≥ ⌈R(r)⌉, we also have that

[γi ] ∈ U([l(∞)], r).

By combining the two we then have that there exists a large enough n such that
gk

· a ∈ U([l(∞)], r) for all k ≥ n. □

Remark 3.5. Consider a point b ∈ ∂κX represented by a geodesic ray b. Let p ∈ X ,
gi ∈ G and C > 0 be such that every point b(t) is within C of gi · p for some i . The
above argument shows that for any pair of points a, a′

∈ ∂κX , the orbit gi {a, a′
} has

a subsequence converging to b. Suppose further that a ̸= b. If we are provided that
gi a = a for all gi , then gi a′ has a subsequence converging to b. This observation
will be used in the proof of Theorem 3.6.

Now we prove a weak version of north-south dynamics for the action of a group
on its κ-boundaries. By [Hamenstädt 2009, Proposition 4.3] an element in a CAT(0)
group is contracting if and only if it is a rank-one element.

Theorem 3.6. Let g ∈ G be a rank-one element. Let g∞ denotes the endpoint of
the axis associated to g. For any open set U containing g∞ and a compact set
C ∈ (∂κG \ [g−∞

]), there exists an N such that for all n ≥ N , we have gn
· C ⊂ U.

Proof. Consider any open set U that contains g+∞. By construction U contains a
neighborhood specified in Definition 2.14 thus let U(g+∞, r) be the neighborhood
in U . Let A be a line connecting g∞ and g−∞. That is, A is an axis of g and {gi

}
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g−∞ g−∞
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Figure 8. The quasigeodesic ray c′ is covered by the union of a
quasigeodesic segment [o, pc′]c′ ∪[p, pc′], and a quasigeodesic ray
[p, pc′] ∪ c′′.

tracks A. For a point a ∈ C ⊂ ∂κX , we let l be a geodesic line connecting [g−∞
]

to a and fix a point p on l. let this point p be a new basepoint. We can do this
because ∂κG is basepoint invariant there exists a natural homeomorphism of the
boundaries when changing basepoint. Define C := d(p, A), in particular, since g
preserves the line A, we have d(gn p, g A)= d(gn p, A)= C . Hence, for each n the
quasigeodesic ray

γn := [o, gn
· p] ∪ [gn

· p, gn
· a)

is a (3, 0)-quasigeodesic (see Figure 8).
By Corollary 3.4, we have that for each R, there exists a large enough n with

gk
· a ∈ U([g+∞

], R) for all k ≥ n. This holds for each point in C, i.e., for each
point a ∈ C, there exists a large enough power na with gna · a ∈ U([g+∞

], R)⊆ U .
Now, notice that

gna · a ∈ U([g+∞
], R) ⇒ a ∈ (gna)−1U([g+∞

], R).

Since g is rank-one, (gna)−1
= g−na . We denote the open sets as

U (n, a) := g−naU(g∞, R).

Hence, the collection {U (n, a)|a ∈ C} forms a cover for C yielding a finite subcover

{U (ni , ai )}
i=1,2,3...m .

Now, choose N := max{n1, · · ·nm}, and let n be any natural number such that
n ≥ N . We get

gnC ⊆ gn
(⋃

i
U (ni , ai )

)
since

⋃
i

U (ni , ai ) is a cover,

= gn
(⋃

i
g−nai U([g+∞

], R)
)

definition of U (ni , ai ),

⊆
⋃
i

gmi U(g∞, R) since n ≥ N ≥ ni , mi = n − ni ,

⊆ U(g∞, R)⊆ U. □
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4. Compact-type sublinearly Morse boundaries for CAT(0) spaces

It is shown in [Qing and Rafi 2022] that if G = Z2 ⋆Z, then ∂κG is not compact. In
this section we show that the κ-boundary is compact if and only if the underlying
group is hyperbolic.

Contracting geodesic rays and the visual boundary. We remind the reader of a
few terminologies from [Charney and Murray 2017] and [Charney et al. 2019].
Recall that a geodesic γ is strongly contracting if it is in the sublinearly Morse
boundary whose associated sublinear function κ = 1. This implies the existence
of a constant D such that all disjoint balls project onto γ to a set of diameter at
most D, in which case we say γ is D-strongly contracting. Consider the set of all
D-strongly contracting geodesic rays emanating from o. We can think of this set as
a subspace of the various boundaries we study in this paper: we use ∂Dv X to denote
the set of all D-contracting geodesic rays emanating from o when equipped with the
subspace topology of the visual boundary, and use ∂Dκ X when equipped with the
subspace topology of the κ-boundary. We note that the subspace ∂Dv X is compact
and metrizable.

Denote by ∂(n,D)κ X the collection of all n-tuples (a1, a2, . . . , an) of distinct
points ai ∈ ∂κX such that every biinfinite geodesic connecting ai to a j is D-strongly
contracting.

Let X1 ⊂ X2 ⊂ X3 ⊂ . . . be a nested sequence of topological spaces. The direct
limit of {X i }, denoted by lim

−−→
X i , is the space consisting of the union of all X i given

the following topology: A subset U is open in lim
−−→

X i if U ∩ X i is open in X i for
each i .

The following is a standard way to establish continuous maps between two nested
sequences and the proof is left as an exercise for interested readers.

Lemma 4.1. Let {X i } and {Y j } be two sequences of nested topological spaces. Let

X = lim
−−→

X i and Y = lim
−−→

Yi

be the direct limit of {X i } and {Yi } respectively. If f : X → Y is a map such that

• for each i there exists some j with f (X i )⊆ Y j ,

• f |X i : X i → Y j is continuous,

then f is continuous.

Consider the topological spaces ∂Dv X . The Morse boundary ∂⋆X is the direct
limit of the topological spaces ∂Dv X where D ∈ N. In other words

∂⋆X = lim
−−→

∂Dv X

Hence, a set U is open in ∂⋆X if and only if U ∩ ∂Dv X is open for each D.
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The following proposition states that equipping this subset with the subspace
topology of the visual boundary or the subspace topology of the κ-boundary yields
homeomorphic spaces. The intuitive reason for this is the following: since quasi-
geodesics stay uniformly close to D-strongly contracting geodesics, the topology
of fellow traveling of geodesics (the visual topology) and the topology of fellow
traveling of quasigeodesics (the topology of the κ-boundary) coincide.

Proposition 4.2. The inclusion map id : ∂Dv X → ∂Dκ X is a homeomorphism onto
its image.

Proof. We need to show that the map id : ∂Dv X → ∂Dκ X is a homeomorphism. Since
∂Dv X is closed [Charney and Sultan 2015, Lemma 3.2] and X is proper, ∂Dv X is
compact. Also, the space ∂Dκ X is metrizable by Theorem D in [Qing and Rafi 2022].
Hence, it suffices to show that the map id is a continuous map. Notice that since
every geodesic ray in ∂Dv X is D-strongly contracting for the same D, applying
Definition 2.7, we get an associated Morse function such that every geodesic ray
β0 is m(D)-Morse, where m(D) depends only on D and satisfies the following:
For every constants r > 0, n > 0 and every sublinear function κ ′, there is an
R = R(β0, r, n, κ

′) > 0 where the following holds: Let η : [0,∞)→ X be a (q,Q)-
quasigeodesic ray so that mβ0(q,Q) is small compared to r, let tr be the first time
∥η(tr)∥ = r and let tR be the first time ∥η(tR)∥ = R. Then

dX (η(tR), β0)≤ n · κ ′(R)

implies that

η[0, tr] ⊂ N1(β0,mβ0(q,Q))⊂ Nκ(β0,mβ0(q,Q)).

This leads us to our first claim:

Claim. Given b ∈ ∂Dκ X , each neighborhood of b, denoted Uκ
(
b, r), must contain a

visual neighborhood basis of β0, the unique geodesic ray in the class of b.

Proof of the Claim. To see this, let β0 ∈ b be the unique geodesic ray starting at o. We
wish to show that for any r> 0, there exists r′ and ϵ such that Uv

(
β0, r

′, ϵ)⊆Uκ(b, r).
In other words, we want to show that for any r > 0, there exists r′ and ϵ if a

geodesic ray α0 ∈ a with α0(0) = o satisfies d(α0(t), β0(t)) < ϵ for t ≤ r′, then,
any (q,Q)-quasigeodesic representative α of a with mβ0(q,Q) small compared to r,
we have

α|r ⊂ Nκ(ζ,mβ0(q,Q)).

Remember that α|r = α([0, tr]) where tr is the first time where ∥α(t)∥ = r.
Let r be given and let

n = max{mβ0(q,Q)+ 1 | q,Q ≤ r}.
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By Definition 2.7, with Z = β0, there exists an R = R(r, n) such that any
(q,Q)-quasigeodesic representative β of a with mβ(q,Q) small compared to r,
we have

d(β(tR), b) < n ⇒ βr ⊂ N1(β0,mβ(q,Q)).

Choose r′ = r+ R and ϵ = 1. Hence, we want to show that if d(a(t), b(t)) < 1 for
t ≤ r + R, then βr ⊂ Nκ(b,mβ0(q,Q)) for β defined above. Since a is 1-Morse
with gauge m, the Hausdorff distance between a and β is at most m(q,Q). This
implies that for any 0< t ≤ r+ R, we have

d(a(t)), β(it)) <mβ0(q,Q) for some it .

Therefore, if tR is the first time with ∥β(tR)∥ = R, we must have

d(a, β(tR)) <mβ0(q,Q).

Now, since d(a(t), b(t)) < 1 for all t < r+ R and as d(a, β(tR)) < mβ0(q,Q),
the triangle inequality gives

d(b, β(tR))≤ d(b, a)+ d(a, β(tR))≤ 1 +mβ0(q,Q),

which we can rewrite as

βr ⊂ N1(b,mβ0(q,Q))⊂ Nκ(b,mβ0(q,Q)),

which proves the claim. □

Now we are left to show that the map id is continuous. Since both ∂Dv X and ∂Dκ X
are metrizable spaces, it suffices to establish sequential continuity. Let {cn}, c∈∂Dv X
with cn → c. Assume that cn → c in ∂Dv X , we want to show that cn → c in ∂Dκ X .
Using the above claim, since each neighborhood of c in ∂Dκ X contains an open
neighborhood of ∂Dv X , the statement is immediate. □

Corollary 4.3. For a CAT(0) space X , the natural map i :∂⋆X ↪→∂κX is continuous.

Proof. By Proposition 4.2, iD : ∂Dv X ↪→ ∂κX is continuous for each D. Since

∂⋆X = lim
−−→

∂Dv X,

by definition i : ∂⋆X ↪→ ∂κX is continuous. □

Corollary 4.4. Let X be proper CAT(0) hyperbolic space. Let κ be a sublinear
function. The space ∂κX is compact, and the κ-Morse boundary is homeomorphic
to the Gromov boundary.

Proof. Since X is a hyperbolic space, there exists a uniform constant D such that
every geodesic ray is D-strongly contracting. This implies that the subspace ∂Dv X
defined above is the entire visual boundary, in other words, we have ∂Dv X = ∂vX .



SUBLINEARLY MORSE BOUNDARIES OF CAT(0) GROUPS 173

Also, since every geodesic ray is D-strongly contracting, the subspace ∂Dκ X de-
fined above is the full κ-boundary as a set. That is to say, ∂Dκ X = ∂κX as sets.
Proposition 4.2 then yields a homeomorphism between the visual boundary of X ,
∂vX and the κ-boundary of X , ∂κX . By [Bridson and Haefliger 1999, III.H.3], the
Gromov boundary is homeomorphic to the visual boundary of X . Thus we have

∂X ∼= ∂vX ∼= ∂κX.

As X is proper, ∂X is compact, thus the κ-boundary ∂κX must also be compact. □

Theorem 4.5. Suppose a group G acts properly discontinuously, cocompactly
and by isometries metrically on a CAT(0) space X such that ∂κX ̸= ∅, then the
following are equivalent:

(1) Every geodesic ray in X is κ-contracting.

(2) Every geodesic ray in X is strongly contracting.

(3) ∂κX is compact.

(4) The space X is hyperbolic.

Proof. We will prove the equivalences by showing (3) ⇒ (1) ⇒ (4) ⇒ (3) and
also (4)⇔ (2). We start by showing (3) implies (1). The statement is vacuously
true if ∂κX is empty. If ∂κX is nonempty, then by [Zalloum 2022], there exists a
rank-one isometry g. This yields the existence of a strongly contracting geodesic
line lg that is an axis for g. Let o be a point on lg and let β be an arbitrary geodesic
ray emanating from o. We show now that β is κ-contracting. Since the action of G
on X is cocompact, there exists a C ≥ 0 and a sequence of group elements {gi } ⊆ G
such that d(β(i), gi · o)≤ C for each i ∈ N (the dots in Figure 9). Now, consider
the sets given by gi lg. Since gi acts by isometry, these are biinfinite geodesic lines
passing the points gio. Recall [ · , · ] denote a geodesic segment between two points.
By CAT(0) geometry, the concatenation of two geodesic segments at angle bounded
below by π

2 forms a (3,0)-quasigeodesic segment. Lastly, we denote one end of gi lg

by gi lg(∞) and the other end by gi lg(−∞).
For each i , consider the concatenation

[o, gio] ∪ [gio, gi lg(∞)] and [o, gio] ∪ [gio, lg(−∞)].

By CAT(0) geometry, one of these two concatenations consists of geodesic segments
intersecting at angles bounded below by π

2 . Thus one of the two concatenations is
a (3,0)-quasigeodesic ray starting at o. Relabel the sequence of (3,0)-quasigeodesic
rays defined by concatenating [o, gio] with either [gio, lg(∞)] or [gio, lg(−∞)]

to form a sequence of (3,0)-quasigeodesic rays, by γi . Since ∂κX is compact, up
to passing to a subsequence, [γi ] converges to an element b ∈ ∂κX . Let b be the



174 YULAN QING AND ABDUL ZALLOUM

β

o lg(∞)lg(−∞)

gi lg(∞)gi lg(−∞)

gio

Figure 9. Translates of lg by {gi } along α0.

geodesic representative of b. The convergence implies that for each r > 0, there
exists k such that if i ≥ k, the sequence γi satisfies

γi |r ⊂ Nκ(b,mb(3, 0)).

Since the subsegment of γi given by [o, gio] is in a C-neighborhood of β, we
have for each r , β|r is in Nκ(b,C +mb(3, 0)), and hence

β ∈ Nκ(b,C +mb(3, 0)).

Lemma 2.13 then implies that β = b. Thus we have

[β] = [b] = b ∈ ∂κX,

which finishes the proof.
Next we show that (1) implies (4). If every geodesic ray is κ-contracting, then

X does not contain an isometric copy of E2, and hence, by the flat plane theorem
[Bridson and Haefliger 1999, III.0.3 Theorem 3.1], the space X must be hyperbolic.
The implication (4)⇒ (3) is Corollary 4.4.

Lastly, we prove the equivalence between (2) and (4). Since every geodesic ray
is N-Morse for the same N in a δ-hyperbolic space, we have (4) ⇒ (2). On the
other hand, by way of contradiction, suppose X is not a hyperbolic space, then it
must contain an isometrically embedded E2 by the flat plane theorem [Bridson and
Haefliger 1999, III.0.3 Theorem 3.1]. Let o ∈ E2 and the geodesic rays that stays
entirely in the is not D-strongly contracting for any D. Therefore (2)⇒ (4). □

Remark 4.6. As we can see in [Behrstock 2019], one can have part of the sublinearly
Morse boundary being compact while the rest of the sublinearly Morse boundary
is not compact. In this case the theorem can be applied to a part of the space X
whose sublinear boundary is the compact portion.
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5. Successively quasimöbius homeomorphisms on the sublinearly Morse
boundaries

Paulin [1996] characterizes homeomorphisms between boundaries of cocompact
hyperbolic spaces that are induced by quasiisometries. They characterize such
homeomorphisms as the ones that are quasimöbius.

quasimöbius maps.

Definition 5.1. Let X, Y be proper geodesic CAT(0) space.

• A map f : ∂κX → ∂κY is said to be 1-stable if for every D, there exists D′

such that f (∂Dκ X)⊆ ∂D
′

κ Y .

• A map f : ∂κX → ∂κY is said to be 2-stable if for every D, there exists D′

such that
f (∂(2,D)κ X)⊆ ∂(2,D

′)
κ Y.

Notice that it follows from the above definition that a 2-stable map f maps
∂
(n,D)
κ X to ∂(n,D

′)
κ X for all n ≥ 2. Hence, it makes sense to make the next definition.

A map f : ∂κX → ∂κY is said to be stable if it is both 1- and 2-stable.

Definition 5.2. The cross-ratio of a four-tuple (a, b, c, d) ∈ ∂
(4,D)
κ X is defined to

be [a, b, c, d] = ± supα∈(a,c) d(πα(b), πα(d)), where the sign is positive if the
orientation of the geodesic (πα(b), πα(d)) agrees with that of (a, c) and is negative
otherwise.

A stable map f : ∂κX → ∂κY is said to be successively quasimöbius if for every D,
there exists a continuous map ψD : [0,∞) → [0,∞) such that for all 4-tuples
(a, b, c, d) ∈ ∂

(4,D)
κ X , we have [ f (a), f (b), f (c), f (d)] ≤ ψD(|[a, b, c, d]|).

In this section, as an application of visibility [Zalloum 2022] and using the works
[Charney and Murray 2017] and [Charney et al. 2019], we prove a weaker version
of this characterization.

Theorem 5.3. Let X, Y be proper cocompact CAT(0) spaces with at least 3 points
in their sublinear boundaries. A homeomorphism f : ∂κX → ∂κY is induced by a
quasiisometry h : X → Y if and only if f is stable and successively quasimöbius.

The following is an immediate consequence.

Corollary 5.4. Let G and H be CAT(0) groups. Then G is quasiisometric to H if
and only if there exists a homeomorphism f : ∂κG → ∂κH which is successively
quasimöbius and stable.

We will often make use of the following theorem.

Theorem 5.5 [Charney et al. 2019]. Let X, Y be proper cocompact CAT(0) spaces
with at least 3 points in their Morse boundaries. A homeomorphism f : ∂⋆X → ∂⋆Y
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is induced by a quasiisometry h : X → Y if and only if f is 2-stable and successively
quasimöbius.

Lemma 5.6. A quasiisometry h : X → Y induces a stable homeomorphism, i.e.,
∂κh : ∂κX → ∂κY .

Proof. Fix o ∈ X and let o′
= h(o) where h is a (k,K)-quasiisometry. Qing and

Rafi [2022] show that a quasiisometry h induces a homeomorphism ∂h on their
respective κ-boundaries. If γ is a D-strongly contracting geodesic ray, then by
[Charney and Sultan 2015], the unique geodesic ray starting at h(o) and representing
[ f (γ )] must be D′-strongly contracting where D′ depends on D, k and K. This
implies that ∂κh is 1-stable. Now, Theorem 5.5 gives us that the map induced by h
on the Morse boundary is 2-stable. Hence, we deduce that ∂κh is stable. □

Lemma 5.7. Any homeomorphism f : ∂κX → ∂κY such that f, f −1 are 1-stable
induces a homeomorphism g : ∂⋆X → ∂⋆Y on their Morse boundaries, with
g(x)= f (x) for all x ∈ ∂⋆X.

Proof. Let f : ∂κX → ∂κY be a homeomorphism such that f and f −1 are 1-stable.
Notice that by Theorem E in [Qing and Rafi 2022], we have that if κ ′ < κ , then the
inclusion map

i : ∂κ ′ X → ∂κX

is continuous. Taking κ ′
= 1 yields that i : ∂1 X → ∂κX is continuous. Hence, since

both f and f −1 are 1-stable, the restriction of f to ∂1 X induces a homeomorphism
f̄ : ∂1 X → ∂1Y , with f̄ = f |∂1 X where ∂1 X and ∂1Y are given the subspace topology
of the κ-boundary. Meanwhile,

∂1 X =

∞⋃
D=1

∂D1 X and ∂1Y =

∞⋃
D=1

∂D1 Y.

Since ∂D1 X is equipped with the subspace topology of ∂1 X , the inclusion map

iD : ∂D1 X ↪→ ∂1 X

is continuous. Using Proposition 4.2, we get that

iD : ∂Dv X ↪→ ∂1 X

is continuous for every D, where ∂Dv X is given the subspace topology of the visual
boundary. Furthermore, since f is 1-stable, we have f̄ ◦ iD : ∂Dv X ↪→ ∂D

′

1 Y for
some D′ where f̄ ◦ iD is continuous. Using Proposition 4.2, we obtain a continuous
map

f̄ ◦ iD : ∂Dv X ↪→ ∂D
′

v Y for each D.

Hence, by Lemma 4.1, we get a continuous map g : ∂⋆X → ∂⋆Y . Applying the
same argument above to f −1 yields a continuous map g′

: ∂⋆Y → ∂⋆X with

g ◦ g′
= id∂⋆X and g′

◦ g = id∂⋆Y . □
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Proof of Theorem 5.3. (⇒) If h is a quasiisometry, then f := ∂h is stable by
Lemma 5.6 . Also, f is successively quasimöbius by Theorem 5.5.

(⇐) Using Lemma 5.7 any stable homeomorphism f : ∂κX → ∂κY induces a
homeomorphism g : ∂⋆X → ∂⋆Y on their Morse boundaries, with g(x)= f (x) for
all x ∈ ∂⋆X . Since f is successively quasimöbius and g(x) = f (x) for x ∈ ∂⋆X ,
Theorem 5.5 implies the existence of a quasiisometry h : X → Y such that we have
∂h = g : ∂⋆X → ∂⋆Y . We wish to show that the induced map

∂κh : ∂κX → ∂κY

agrees with f . Notice that as a set ∂⋆X = ∂1 X , where ∂1 X is the subset of ∂κX con-
sisting of equivalence classes having a strongly contracting representative. Hence,
we have ∂κh(x)=∂h(x) for all x ∈∂1 X ⊆∂κX . Now, since ∂h = g, and g(x)= f (x)
on ∂1 X , we get that

∂κh(x)= ∂h(x)= g(x)= f (x)

for all x ∈ ∂1 X . Therefore, ∂κh(x) = f (x) for all x ∈ ∂1 X ⊆ ∂κX . It remains to
show that ∂κh(x ′)= f (x ′) for all x ′

∈ ∂κX . Let x ′
∈ ∂κX , by Corollary 3.4, there

exists a sequence xn ∈ ∂1 X that converges to x ′:

xn → x ′

in ∂κX . Since f is continuous on ∂Xκ , we have convergence

f (xn)= ∂κh(xn)→ f (x ′).

Also, since ∂κh is continuous on ∂κX , we get that

∂κh(xn)→ ∂κh(x ′).

As ∂κY is Hausdorff, we obtain ∂κh(x ′)= f (x ′). □

This result is far from satisfying, since successively quasimöbius requires one
to check the quasimöbius condition for every D, it is a much stronger condition
than quasimöbius. Currently there is no results directly characterizing quasimöbius
maps on the κ-boundaries.
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