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GELFAND–CETLIN ABELIANIZATIONS
OF SYMPLECTIC QUOTIENTS

PETER CROOKS AND JONATHAN WEITSMAN

We show that generic symplectic quotients of a Hamiltonian G-space M by
the action of a compact connected Lie group G are also symplectic quotients
of the same manifold M by a compact torus. The torus action in question
arises from certain integrable systems on g∗, the dual of the Lie algebra
of G. Examples of such integrable systems include the Gelfand–Cetlin
systems of Guillemin and Sternberg (1980; 1983) in the case of unitary
and special orthogonal groups, and certain integrable systems constructed
for all compact connected Lie groups by Hoffman and Lane (2023). Our
abelianization result holds for smooth quotients, and more generally for
quotients which are stratified symplectic spaces in the sense of Sjamaar
and Lerman (1991).

1. Introduction

Let G be a compact connected Lie group with Lie algebra g. Suppose that M is
a Hamiltonian G-space, i.e., a symplectic manifold equipped with a symplectic
action of G and equivariant moment map µ : M → g∗. The symplectic or Marsden–
Weinstein [9] quotient of M by G at level ξ ∈ g∗ is the topological space

M//ξ G := µ−1(ξ)/Gξ ,

where Gξ ⊂ G is the G-stabilizer of ξ . If G acts freely on µ−1(ξ), then M//ξ G is
a smooth symplectic manifold. In the absence of this freeness assumption, M//ξ G
is a stratified symplectic space in the sense of Sjamaar and Lerman [10].

The purpose of this paper is to show that certain integrable systems on g∗

allow us to express generic symplectic quotients of a Hamiltonian G-space M as
symplectic quotients of the same manifold M by the action of a compact torus. Such
integrable systems include the Gelfand–Cetlin systems constructed by Guillemin
and Sternberg [3; 4] for unitary and special orthogonal groups, as well as the more
recent generalizations of Gelfand–Cetlin systems by Hoffman and Lane [8] to
arbitrary Lie type.
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An example of our main result arises in classical mechanics [2]. Suppose that
we are given a Hamiltonian SO(3)-space M with an invariant Hamiltonian function
H : M → R. The SO(3)-action gives rise to two Poisson-commuting conserved
quantities: the total angular momentum, and the angular momentum in some fixed
direction in the Lie algebra of SO(3) corresponding to a choice of maximal torus.
These quantities give the components of a moment map for a densely defined 2-torus
action on M , coming from the Gelfand–Cetlin system of Guillemin and Sternberg for
the case of SO(3).1 Our main result shows that for a nonzero value ξ of the angular
momentum, the symplectic quotient M//ξ SO(3) coincides with an appropriate
symplectic quotient of M under the densely defined torus action. See [2] for more
examples of these techniques.

1.1. Main result. We introduce the notion of a Gelfand–Cetlin datum (λbig, g
∗
s-reg)

in Definition 1. This amounts to λbig being a continuous map on g∗ that restricts
to a Poisson moment map for a Hamiltonian action of a compact torus Tbig on
an open dense subset g∗

s-reg ⊂ g∗, along with some extra conditions that capture
salient properties of the classical Gelfand–Cetlin systems. One of these conditions is
that the open, symplectic submanifold Ms-reg := µ−1(g∗

s-reg) ⊂ M be a Hamiltonian
Tbig-space with moment map λM := (λbig◦µ)|Ms-reg for any Hamiltonian G-space M
with moment map µ : M → g∗. The results of Guillemin and Sternberg [3; 4]
imply that Gelfand–Cetlin data exist for all unitary and special orthogonal groups,
while more recent results of Hoffman and Lane [8] imply that such data exist in all
Lie types.

The following is the main result of our paper.

Theorem. Let G be a compact connected Lie group, and M a Hamiltonian G-space
with moment map µ : M → g∗. Suppose that (λbig, g

∗
s-reg) is a Gelfand–Cetlin datum,

and consider a point ξ ∈ g∗
s-reg.

(i) The torus Tbig acts freely on λ−1
M (λbig(ξ)) if and only if Gξ acts freely on µ−1(ξ).

In this case, there is a canonical symplectomorphism M//ξG ∼= Ms-reg//λbig(ξ)Tbig.

(ii) There is a canonical isomorphism M//ξ G ∼= Ms-reg //λbig(ξ)Tbig of stratified
symplectic spaces.

Part (ii) is strictly more general than (i). Part (i) is included for the sake of
exposition and accessibility. One may regard this theorem as an approach to
abelianizing the generic symplectic quotients of a Hamiltonian G-space M , i.e., to
presenting such quotients as symplectic quotients by a compact torus.

1The square of the total angular momentum is a smooth function, but the orbits of its Hamiltonian
flow do not have constant period, and so it does not generate a circle action. Taking the square root
gives a function whose Hamiltonian flow generates a circle action, but which is only continuous, not
differentiable, at zero. It therefore does not define a Hamiltonian flow at zero.
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1.2. Comparison to symplectic implosion. By means of symplectic implosion,
Guillemin, Jeffrey, and Sjamaar [5] offer a different approach to abelianizing sym-
plectic quotients. Their construction replaces G and a Hamiltonian G-space M with
a maximal torus T ⊂ G and the imploded cross-section Mimpl, respectively; the latter
is a stratified symplectic Hamiltonian T -space whose dimension is generally less
than that of M . Symplectic quotients of M by G are then shown to be realizable as
symplectic quotients of Mimpl by T . Our construction retains the same manifold M
and replaces G with a torus Tbig.

The imploded cross-section (T ∗G)impl features prominently in [5]. This stratified
symplectic space also features prominently in [8], where Hoffman and Lane show
Gelfand–Cetlin data to exist in arbitrary Lie type. It is natural to suspect that
this coincidence is a shadow of some deeper connection between our work and
symplectic implosion.

1.3. Organization. Section 2 briefly establishes some of our conventions concern-
ing Lie theory and Hamiltonian geometry. Section 3 subsequently motivates and
contextualizes the notion of a Gelfand–Cetlin datum. Our main result is then proved
in Section 4 for smooth quotients. A generalization to stratified symplectic spaces
is formulated and proved in Section 5.

2. Background and conventions

This section establishes some of our notation and conventions regarding Lie theory
and Hamiltonian geometry.

2.1. Tori. The Lie algebra of the unitary group U(1) is the real vector space iR ⊂ C

of purely imaginary numbers. We will identify this vector space with R in the
obvious way. It follows that Rk is the Lie algebra of U(1)k for all nonnegative
integers k, and that

Rk
→ U(1)k, (x1, . . . , xk) 7→ (ei x1, . . . , ei xk )

is the exponential map for U(1)k . In certain contexts, we will implicitly use the dot
product to regard Rk as the dual of the Lie algebra of U(1)k .

2.2. General compact connected Lie groups. Let G be a compact connected
Lie group with Lie algebra g and rank ℓ. One has the adjoint representations
Ad : G → GL(g) and ad : g → gl(g), as well as the coadjoint representations
Ad∗

: G → GL(g∗) and ad∗
: g → gl(g∗). The G-representations induce G-actions

on g and g∗, and thereby give rise to stabilizer subgroups

Gx := {g ∈ G : Adg(x) = x} and Gξ := {g ∈ G : Ad∗

g(ξ) = ξ}
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of G for all x ∈ g and ξ ∈ g∗. On the other hand, the g-representations allow us to
define centralizers

gx := {y ∈ g : ady(x) = 0} and gξ := {y ∈ g : ad∗

y(ξ) = 0}

for all x ∈ g and ξ ∈ g∗. It follows that gx (resp. gξ ) is the Lie algebra of Gx

(resp. Gξ ). Let us also note that dim gx ≥ ℓ and dim gξ ≥ ℓ for all x ∈ g and ξ ∈ g∗.
The regular loci

greg := {x ∈ g : dim gx = ℓ} and g∗

reg := {ξ ∈ g∗
: dim gξ = ℓ}

are open, dense, G-invariant subsets of g and g∗, respectively. An element x ∈ g

(resp. ξ ∈ g∗) then belongs to greg (resp. g∗
reg) if and only if gx (resp. gξ ) is a Cartan

subalgebra of g. This is equivalent to Gx (resp. Gξ ) being a maximal torus of G.
A few remarks on maximal tori and Cartan subalgebras are warranted. Let t ⊂ g

be a Cartan subalgebra, and write T ⊂ G for the maximal torus with Lie algebra t.
The exponential map exp : g → G then restricts to a surjective homomorphism
exp|t : t → T of abelian groups. The kernel of the latter is a free Z-submodule of t
with rank equal to ℓ. It follows that the same is true of

3t :=
1

2π
ker(exp|t) ⊂ t.

2.3. Hamiltonian geometry. Suppose that (M, σ ) is a Poisson manifold, that is,
σ ∈ H 0(M, 32TM) is a Poisson bivector field on the manifold M . Note that σ

may be regarded as a skew-symmetric bilinear map from two copies of T ∗M to the
trivial rank-1 vector bundle over M . Contracting σ with cotangent vectors in the
first argument then determines a vector bundle morphism σ∨

: T ∗M → TM . One
calls (M, σ ) nondegenerate if σ∨ is an isomorphism. In this case, (σ∨)−1

= ω∨

for a unique symplectic form ω ∈ H 0(M, 32T ∗M), where ω∨
: TM → T ∗M is the

vector bundle morphism obtained by contracting ω with tangent vectors in the first
argument. This process gives rise to a bijective correspondence between symplectic
structures on M and nondegenerate Poisson structures on M . We will thereby make
no distinction between symplectic manifolds and nondegenerate Poisson manifolds.

If (M, σ ) is a Poisson manifold, then σ can be recovered from the Poisson bracket
{ · , · } that it induces. This bracket associates to smooth functions f1, f2 : M → R

the smooth function

{ f1, f2} := σ(d f1 ∧ d f2) : M → R.

At the same time, one defines the Hamiltonian vector field of a smooth function
f : M → R by X f := −σ∨(d f ) ∈ H 0(M, TM). It follows that

{ f1, f2} = −X f1( f2) = X f2( f1)

for all smooth functions f1, f2 : M → R.
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Now let G be a compact connected Lie group with Lie algebra g and exponential
map exp : g→ G. If G acts smoothly on a manifold M , then each η ∈ g determines
a generating vector field ηM ∈ H 0(M, TM) by

(ηM)m :=
d
dt

∣∣∣
t=0

exp(−tη) · m

for all m ∈ M . A Poisson manifold (M, σ ) with a smooth G-action will be called
a Poisson Hamiltonian G-space if σ is G-invariant and M comes equipped with
a moment map. This last term refers to G-equivariant smooth map µ : M → g∗

satisfying Xµη = ηM for all η ∈ g, where µη
: M → R is the result of pairing µ

with η pointwise. We will reserve the term Hamiltonian G-space for a Poisson
Hamiltonian G-space whose underlying Poisson structure is symplectic.

It will be advantageous to recall the Poisson Hamiltonian G-space structure
on g∗. The Poisson bracket on g∗ is given by

{ f1, f2}(ξ) = ξ([dξ f1, dξ f2])

for all smooth functions f1, f2 : g∗
→ R and points ξ ∈ g∗, where

dξ f1, dξ f2 ∈ (g∗)∗ = g

denote the differentials of f1, f2 at ξ , respectively. One finds that g∗ is a Poisson
Hamiltonian G-space with respect to the coadjoint action, and with the identity
g∗

→ g∗ serving as the Poisson moment map.

3. Gelfand–Cetlin data

In this section, we define Gelfand–Cetlin data and introduce their main properties.
This begins with the definition itself in Section 3.1. The existence of Gelfand–Cetlin
data is addressed in Section 3.2, while concrete techniques for constructing such
data are discussed in Sections 3.3 and 3.4. In Section 3.5, we describe concrete
Gelfand–Cetlin data for unitary groups.

3.1. Definition and relation to integrable systems. Let G be a compact connected
Lie group with Lie algebra g and rank ℓ. Consider the quantities

u :=
1
2(dim g− ℓ) and b :=

1
2(dim g+ ℓ),

and introduce the following tori of small, intermediate, and big ranks:

Tsmall := U(1)ℓ, Tint := U(1)u, and Tbig := Tsmall × Tint ∼= U(1)b.

The respective Lie algebras of these tori are

Rsmall := Rℓ, Rint := Ru, and Rbig := Rsmall × Rint ∼= Rb.
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Definition 1. A Gelfand–Cetlin datum is a pair (λbig, g
∗
s-reg), consisting of a contin-

uous map λbig = (λ1, . . . , λb) : g∗
→ Rbig and open dense subset g∗

s-reg ⊂ g∗ that
satisfy the following conditions:

(i) λ1, . . . , λℓ are G-invariant on g∗ and smooth on g∗
reg.

(ii) {dξ λ1, . . . , dξ λℓ} is a Z-basis of the lattice 3gξ
⊂ gξ for all ξ ∈ g∗

reg.

(iii) g∗
s-reg ⊂ g∗

reg.

(iv) λbig|g∗
s-reg

: g∗
s-reg → Rbig is a smooth submersion and moment map for a Poisson

Hamiltonian Tbig-space structure on g∗
s-reg.

(v) λbig|g∗
s-reg

: g∗
s-reg → λbig(g

∗
s-reg) is a principal Tint-bundle.

(vi) If M is a Hamiltonian G-space with moment map µ : M → g∗, then

(λbig ◦ µ)|µ−1(g∗
s-reg)

: µ−1(g∗

s-reg) → Rbig

is a moment map for a Hamiltonian Tbig-space structure on µ−1(gs-reg).

In this case, we adopt the notation

λsmall := (λ1, . . . , λℓ) : g∗
→ Rsmall, λint := (λℓ+1, . . . , λb) : g∗

→ Rint,

Ms-reg := µ−1(g∗

s-reg), and λM := (λbig ◦ µ)|Ms-reg : Ms-reg → Rbig.

We also refer to the elements of g∗
s-reg as the strongly regular elements of g∗.

Remark 2. Condition (v) in Definition 1 is only slightly weaker than the exis-
tence of global action-angle coordinates on g∗

s-reg. This existence question features
prominently in [1; 8].

It is instructive to consider this definition in relation to the theory of completely
integrable systems. One is thereby led to the following result.

Proposition 3. Let (λbig, g
∗
s-reg) be a Gelfand–Cetlin datum. If O⊂g∗ is a coadjoint

orbit and Os-reg := O∩ g∗
s-reg, then

λint|Os-reg : Os-reg → λint(Os-reg) ⊂ Rint

is a completely integrable system, principal Tint-bundle, and moment map for a
Hamiltonian action of Tint on Os-reg.

Proof. Note that the Hamiltonian vector field of any smooth function g∗
→ R

is tangent to O. It follows that Os-reg is stable under the action of Tbig on g∗
s-reg.

Definition 1(iv) now implies that Os-reg is a Hamiltonian Tbig-space with moment
map λbig|Os-reg . We conclude that λint|Os-reg is a moment map for the Hamiltonian
action of Tint ⊂ Tbig on Os-reg.

Since λsmall is constant-valued on O, Definition 1(v) tells us that

λint|Os-reg : Os-reg → λint(Os-reg)
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is a principal Tint-bundle. It therefore remains only to prove that

dim Tint =
1
2 dimOs-reg.

This follows immediately from the fact that dim Tint = u =
1
2(dim g− ℓ). □

3.2. Existence of Gelfand–Cetlin data. It is natural to wonder about the generality
in which Gelfand–Cetlin data exist. The earliest constructions are due to Guillemin
and Sternberg [3; 4], and apply to all unitary groups U(n) and special orthogonal
groups SO(n). The underlying techniques are based on Thimm’s method, as
described in [4]. Further details are outlined in Sections 3.3–3.5. The case of
symplectic groups is considerably more subtle and addressed in Harada’s paper [6].

Some recent work of Hoffman and Lane [8] implies the existence of Gelfand–
Cetlin data for an arbitrary compact connected Lie group G. In more detail, one
may consider completely integrable systems on an arbitrary Poisson manifold.
A completely integrable system on g∗ is thereby a continuous map φ : g∗

→ Rbig

with the following property: there exists an open dense subset U ⊂ g∗
reg such that

φ|U is a smooth submersion with pairwise Poisson-commuting component functions.
A Gelfand–Cetlin datum is thereby a completely integrable system on g∗. On the
other hand, suppose that M is a Hamiltonian G-space with moment map µ : M →g∗.
One might hope for φ ◦µ : M → Rbig to be a completely integrable system on an
open subset of M ; such a system would be called collective. Another aspiration
would be for φ ◦ µ : M → Rbig to be the moment map of a Hamiltonian torus
action on an open subset of M . This central theme of [8] is reflected in Definition 1:
Gelfand–Cetlin data are defined in such a way as to induce Hamiltonian torus actions
on open subsets of Hamiltonian G-spaces. The construction of Gelfand–Cetlin data
is done in Sections 6.2 and 6.3 of [8]. Hoffman and Lane [8] begin by associating
completely integrable systems on g∗ to good valuations on the base affine space; see
[8, Data 5.2] and [8, Theorem 6.2]. Propositions 6.4 and 6.5 of [8] then show such
systems to have several properties; these imply the existence of pairs (λbig, g

∗
s-reg)

satisfying parts (i)–(iv) of Definition 1. To address part (v) of Definition 1, Hoffman
and Lane introduce the notion of toric contraction for Hamiltonian G-spaces [8,
Definition 6.7]. The existence of pairs (λbig, g

∗
s-reg) satisfying parts (i)–(v) then

follows from Propositions 6.8 and 6.9 of [8].
The Hoffman–Lane paper is part of a broader program aimed at generalizing the

results of Harada and Kaveh [7].

3.3. Construction of Gelfand–Cetlin data: integrality. We now discuss the con-
struction of functions λ1, . . . , λℓ : g∗

→ R satisfying conditions (i) and (ii) in
Definition 1. Let G be a compact connected Lie group with Lie algebra g and
rank ℓ. Choose a G-invariant inner product on g, a Cartan subalgebra t ⊂ g, and
a closed, fundamental Weyl chamber t+ ⊂ t. The chamber t+ is known to be a
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fundamental domain for the adjoint action of G on g. Our inner product thereby
identifies t+ with a fundamental domain t∗

+
⊂ g∗ for the G-action on g∗. We may

therefore define a continuous surjection π : g∗
→ t∗

+
by the property that

(G · ξ) ∩ t∗
+

= {π(ξ)} for all ξ ∈ g∗,

where G · ξ ⊂ g∗ is the coadjoint orbit of ξ . One sometimes calls π the sweeping
map on g∗ with respect to t; its fibers are exactly the coadjoint orbits of G, and
π(g∗

reg) is the interior (t∗
+
)◦ of t∗

+
. One also finds that the commutative diagram

g∗
reg g∗

(t∗
+
)◦ t∗

+

π |g∗
reg π

is Cartesian. The left vertical map

π |g∗
reg

: g∗

reg → (t∗
+
)◦

is easily seen to be a smooth, surjective submersion.
Now choose a Z-basis {φ1, . . . , φℓ} of the Z-submodule 3t ⊂ t. Note that the

pairing between t and t∗ allows one to regard φ1, . . . , φℓ as functions on t∗
+

. With
this in mind, each k ∈ {1, . . . , ℓ} determines a function

λk := φk ◦ π : g∗
→ R.

The previous paragraph implies that λ1, . . . , λℓ are smooth on g∗
reg, while being

G-invariant and continuous as functions on g∗. Given any ξ ∈ g∗
reg, the differentials

dξ λ1, . . . , dξ λℓ ∈ (g∗)∗ = g may be described as follows.

Proposition 4. If ξ ∈g∗
reg, then {dξ λ1, . . . , dξ λℓ} is a Z-basis of the lattice 3gξ

⊂gξ .

Proof. Choose g ∈ G for which Ad∗

g(ξ) ∈ (t∗
+
)◦. Since each function λk is G-

invariant, one has

dξ λk = dAd∗
g(ξ)λk ◦ Ad∗

g = Adg−1(dAd∗
g(ξ)λk)

for all k ∈ {1, . . . , ℓ}. We also observe that Adg−1 : g → g restricts to a Z-module
isomorphism λt

∼=−→ λgξ
. It therefore suffices to take ξ ∈ (t∗

+
)◦ and prove that

dξ λk = φk for all k ∈ {1, . . . , ℓ}.
Assume that ξ ∈ (t∗

+
)◦, and fix k ∈ {1, . . . , ℓ}. Our invariant inner product allows

us to regard t∗ as a subspace of g∗. We then note that g∗
= t∗ ⊕ Tξ (G · ξ), and that

Tξ (G · ξ) is contained in the kernel of dξ λk . Let us also note that Tξ (G · ξ) is the
annihilator of t in g∗, and as such is contained in the kernel of φk . These last two
sentences reduce us to proving that dξ λk(η) = φk(η) for all η ∈ t∗. On the other
hand, we have dξ λk = φk ◦ dξπ . It therefore suffices to prove that dξπ(η) = η for
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all η ∈ t∗. But this is an immediate consequence of the following two observations:
(t∗

+
)◦ is an open subset of t∗, and π(η) = η for all η ∈ (t∗

+
)◦. □

3.4. Construction of Gelfand–Cetlin data: Thimm’s method. Retain the objects
and notation discussed in Section 3.3. Let G = G0 ⊃ G1 ⊃ · · · ⊃ Gm be a
descending filtration of G by connected closed subgroups with respective Lie
algebras g = g0 ⊃ g1 ⊃ · · · ⊃ gm . Let us also choose a Cartan subalgebra t j ⊂ g j

and closed, fundamental Weyl chamber (t j )+ ⊂ t j for each j ∈ {0, . . . , m}. Our
G-invariant inner product on g gives rise to a G j -module isomorphism g j ∼= g∗

j ,
by means of which t j and (t j )+ correspond to subsets t∗j and (t∗j )+ of g∗

j . As in
Section 3.3, one may define a continuous surjection π j : g∗

j → (t∗j )+ by the condition
that (G j · ξ) ∩ (t∗j )+ = {π j (ξ)} for all ξ ∈ g∗

j .
Let ℓ = ℓ0 ≥ ℓ1 ≥ · · · ≥ ℓm be the ranks of G = G0 ⊃ G1 ⊃ · · · ⊃ Gm ,

respectively. Let us also choose a Z-basis {φ j1, . . . , φ jℓ j } of the lattice 3t j ⊂ t j

for each j ∈ {0, . . . , m}. As in Section 3.3, we define the functions

ν jk := φ jk ◦ π j : g∗

j → R

for k ∈ {1, . . . , ℓ j }. The same section implies that ν j1, . . . , ν jℓ j are G j -invariant
and continuous on g∗

j , as well as smooth on (g∗

j )reg. We also have the following
equivalent version of Proposition 4.

Proposition 5. If j ∈ {0, . . . , m} and ξ ∈ (g∗

j )reg, then {dξν j1, . . . , dξν jℓ j } is a
Z-basis of the lattice 3(g j )ξ ⊂ (g j )ξ .

Let σ j : g∗
→ g∗

j be the transpose of the inclusion g j ↪→ g for each j ∈ {0, . . . , m}.
Consider the functions on g∗ defined by

λ jk := ν jk ◦ σ j : g∗
→ R for j ∈ {0, . . . , m} and k ∈ {1, . . . , ℓ j }.

It will be convenient to enumerate these functions as

(3-1) λbig := (λ1, . . . , λc)

:= (λ01, . . . , λ0ℓ, λ11, . . . , λ1ℓ1 . . . , λm1, . . . , λmℓm ) : g∗
→ Rc,

where c := ℓ0 + · · · + ℓm .
The discussion preceding Proposition 5 implies that λbig is smooth on the open

subset
U :=

m⋂
j=0

σ−1
j ((g∗

j )reg) ⊂ g∗.

Let us also define

g∗

s-reg := {ξ ∈ U : dξ λbig is surjective}.

These last few sentences give context for the following consequence of [3, Theo-
rem 3.4].
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Proposition 6. Let λbig and g∗
s-reg be as defined above.

(i) The restriction λbig|g∗
s-reg

: g∗
s-reg → Rc is a moment map for a Poisson Hamilton-

ian U(1)c-space structure on g∗
s-reg.

(ii) If M is a Hamiltonian G-space with moment map µ : M → g∗, then

(λbig ◦ µ)|µ−1(g∗
s-reg)

: µ−1(g∗

s-reg) → Rc

is a moment map for a Hamiltonian U(1)c-space structure on µ−1(g∗
s-reg).

This result has the following immediate connection to Definition 1: the pair
(λbig, g

∗
s-reg) is a Gelfand–Cetlin datum if and only if c = b, g∗

s-reg is dense in g∗, and
λbig|g∗

s-reg
: g∗

s-reg → λbig(g
∗
s-reg) is a principal Tint-bundle. Guillemin and Sternberg

[3; 4] explicitly show these conditions to be achievable for G =U(n) and G =SO(n).
Our next section outlines the details of the Guillemin–Sternberg construction for
G = U(n).

3.5. Example of Gelfand–Cetlin datum: the Gelfand–Cetlin system on u(n)∗. Fix
a positive integer n. Consider the Lie group G := U(n) of unitary n×n matrices, and
its Lie algebra g := u(n) of skew-Hermitian n ×n matrices. Let us also consider the
real U(n)-module H(n) of Hermitian n×n matrices. In what follows, we will freely
identify u(n)∗ with H(n) by means of the nondegenerate, G-invariant bilinear form

(3-2) u(n) ⊗R H(n) → R, η ⊗ ξ 7→ −i tr(ηξ).

Given an integer j ∈ {0, . . . , n − 1}, define the subgroup

G j :=

{[
I j 0
0 A

]
: A ∈ U(n − j)

}
⊂ G = U(n).

The descending chain U(n) = G = G0 ⊃ G1 ⊃ · · · ⊃ Gn−1 then induces such a
chain u(n) = g = g0 ⊃ g1 ⊃ · · · ⊃ gn−1 on the level of Lie algebras. We have

g j =

{[
0 0
0 x

]
: x ∈ u(n − j)

}
⊂u(n) and g∗

j =

{[
0 0
0 ξ

]
: ξ ∈ H(n − j)

}
⊂H(n)

for all j ∈ {0, . . . , n − 1}, where the second equation implicitly uses (3-2). The
transpose σ j : g∗

→ g∗

j of g j ⊂ g then sends ξ ∈ g∗
=H(n) to the (n − j)× (n − j)

submatrix in the bottom right-hand corner of ξ .
Now note that

t j :=




0 0
ia1

0
. . .

ian− j

 : a1, . . . , an− j ∈ R

 ⊂ g j
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is a Cartan subalgebra for each j ∈ {0, . . . , n − 1}. Let φ jk ∈ t j be the result of
setting ak = 1 and ap = 0 for p ̸= k, noting that {φ j1, . . . , φ j (n− j)} is a Z-basis of
3t j ⊂ t j . At the same time, consider the fundamental Weyl chamber

(t j )+ :=




0 0
ia1

0
. . .

ian− j

 : a1, . . . , an− j ∈ R, a1 ≥ · · · ≥ an− j

 ⊂ t j

for each j ∈ {0, . . . , n − 1}. Under the pairing (3-2), (t j )+ corresponds to the cone

(t∗j )+ :=




0 0
a1

0
. . .

an− j

 : a1, . . . , an− j ∈ R, a1 ≥ · · · ≥ an− j

 ⊂ H(n).

We then have sweeping maps π j : g∗

j → (t∗j )+ and compositions

ν jk := φ jk ◦ π j : g∗

j → R

for j ∈ {0, . . . , n − 1} and k ∈ {1, . . . , n − j}, as in Section 3.4. The functions

λ jk := ν jk ◦ σ j : H(n) → R

from Section 3.4 are therefore given by the following condition: if ξ ∈ H(n) and
j ∈ {0, . . . , n − 1}, then λ j1(ξ) ≥ λ j2(ξ) ≥ · · · ≥ λ j (n− j)(ξ) are the eigenvalues of
the (n − j) × (n − j) submatrix in the bottom right-hand corner of ξ .

Observe that the number of maps λ jk is

n + (n − 1) + · · · + 1 =
n(n+1)

2
=

1
2(dim u(n) + n).

Our enumeration (3-1) therefore takes the form

λbig :=(λ1, . . . ,λ n(n+1)
2

)

:=
(
λ01, . . . ,λ0n,λ11, . . . ,λ1(n−1), . . . ,λ(n−2)1,λ(n−2)2,λ(n−1)1

)
:H(n)→R

n(n+1)
2 .

Let us also consider the open dense subset

H(n)s-reg :=

{
ξ ∈ H(n) :

λ j1(ξ) > · · · > λ j (n− j)(ξ) for all j ∈ {0, . . . , n − 1}

λ0k(ξ) > · · · > λ(n−k)k(ξ) for all k ∈ {1, . . . , n}

}
of g∗

= H(n). By the paragraph following Proposition 6, (λbig,H(n)s-reg) is a
Gelfand–Cetlin datum if and only if λbig|H(n)s-reg : H(n)s-reg → λbig(H(n)s-reg) is a
principal bundle for Tint =U(1)

n(n−1)
2 ; this latter condition is verified in [3, Section 5].
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4. The abelianization theorem

This section is devoted to the proof of our abelianization theorem for smooth
quotients. Some preliminary results are established in Sections 4.1 and 4.2, while
the main proof appears in Section 4.3.

4.1. The universal maximal torus. Adopt the notation and conventions given in
Section 3.1, and let (λbig, g

∗
s-reg) be a Gelfand–Cetlin datum. Given any ξ ∈ g∗

reg,
Definition 1(ii) tells us that {dξ λ1, . . . , dξ λℓ} is a basis of gξ . This basis determines
a vector space isomorphism

κξ : gξ
∼=−→ Rℓ, x1dξ λ1 + · · · + xℓ dξ λℓ 7→ (x1, . . . , xℓ).

The torus Tsmall is then a universal maximal torus in the following sense.

Proposition 7. If ξ ∈ g∗
reg, then κξ integrates to a Lie group isomorphism

τξ : Gξ
∼=−→ Tsmall.

Proof. It suffices to prove that κξ restricts to a Z-module isomorphism from the
kernel of exp|gξ

: gξ → Gξ to (2πZ)ℓ ⊂ Rℓ. This is an immediate consequence of
Proposition 4. □

Proposition 8. Let M be a Hamiltonian G-space with moment map µ : M → g∗.
Suppose that ξ ∈ g∗

s-reg. Then g ·m = τξ (g) ·m for all g ∈ Gξ and m ∈ µ−1(ξ), where
the left- and right-hand sides denote the actions of Gξ ⊂ G on M and Tsmall ⊂ Tbig

on Ms-reg, respectively.

Proof. Let Xζ be the generating vector field on Ms-reg determined by ζ ∈ Rsmall

via the action of Tsmall on Ms-reg. Write Yη for the generating vector field on M
determined by η ∈ gξ through the action of Gξ ⊂ G on M . It suffices to prove
that (Xκξ (η))m = (Yη)m for all η ∈ gξ and m ∈ µ−1(ξ). Setting γ j := dξ λ j and
letting e j ∈ Rℓ

= Rsmall denote the j-th standard basis vector, this is equivalent
to establishing that (Xe j )m = (Yγ j )m for all j ∈ {1, . . . , ℓ} and m ∈ µ−1(ξ). On
the other hand, Yγ j (resp. Xe j ) is the Hamiltonian vector field on M (resp. Ms-reg)
associated to µγ j (resp. the j -th component µ∗λ j of λ◦µ). This further reduces us
to proving that dmµγ j = dmµ∗λ j . But it is clear that

dmµ∗λ j = dξλ j ◦ dmµ = dmµγ j

for all m ∈ µ−1(ξ) and j ∈ {1, . . . , ℓ}. □

4.2. Some supplementary results. We now prove two supplementary facts needed
to establish the main result of this paper. We continue with the notation and
conventions of Sections 3.1 and 4.1.



GELFAND–CETLIN ABELIANIZATIONS OF SYMPLECTIC QUOTIENTS 265

Proposition 9. Let M be a Hamiltonian G-space with moment map µ : M → g∗.
Suppose that ξ ∈ g∗

s-reg.

(i) If m ∈ µ−1(ξ) and t ∈ Tint satisfy t · m ∈ µ−1(ξ), then t = e.

(ii) The saturation of µ−1(ξ) under the action of Tint on Ms-reg is λ−1
M (λbig(ξ)).

Proof. To verify (i), let m ∈ µ−1(ξ) and t ∈ Tint be such that t · m ∈ µ−1(ξ). Let
us also observe that µ is Tint-equivariant when restricted to a map Ms-reg → g∗

s-reg.
These last two sentences imply that ξ = t · ξ . Since Tint acts freely on g∗

s-reg, we
must have t = e.

We now verify (ii). To this end, note that λ−1
M (λbig(ξ)) is a Tint-invariant subset

of Ms-reg that contains µ−1(ξ). This implies that the saturation of µ−1(ξ) is con-
tained in λ−1

M (λbig(ξ)). For the opposite inclusion, suppose that m ∈ λ−1
M (λbig(ξ)).

Definition 1(v) tells us that t · µ(m) = ξ for some t ∈ Tint. By the equivariance
property of µ mentioned in the previous paragraph, we must have t · m ∈ µ−1(ξ).
This completes the proof of (ii). □

Fix ξ ∈ g∗
s-reg. In light of the previous proposition, we may define the map

δξ : µ−1(ξ) × Tint → λ−1
M (λbig(ξ)), (m, t) 7→ t · m.

The following result is immediate consequence of the previous proposition.

Corollary 10. If ξ ∈ g∗
s-reg, then δξ is a homeomorphism.

4.3. Proof of the abelianization theorem. Let us continue with the notation and
conventions set in Sections 3.1, 4.1, and 4.2.

Theorem 11. Let M be a Hamiltonian G-space with moment map µ : M → g∗.
Suppose that ξ ∈ g∗

s-reg.

(i) The stabilizer Gξ acts freely on µ−1(ξ) if and only if Tbig acts freely on
λ−1

M (λbig(ξ)).

(ii) In the case of (i), there is a canonical symplectomorphism

M//ξ G ∼= Ms-reg //λbig(ξ)Tbig.

Proof. We begin by verifying (i). In light of Proposition 7, the multiplication map

ρξ : Gξ × Tint → Tbig, (g, t) 7→ τξ (g) t

is a Lie group isomorphism. We also note that the action of Gξ on µ−1(ξ) and
multiplication action of Tint on itself define an action Gξ × Tint on µ−1(ξ) × Tint.
By Proposition 8, the homeomorphism δξ is equivariant in the sense that

δξ ((g, t) · x) = ρξ (g, t) · δξ (x)
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for all (g, t) ∈ Gξ × Tint and x ∈ µ−1(ξ) × Tint. It follows that Gξ acts freely on
µ−1(ξ) if and only if Tbig acts freely on λ−1

M (λbig(ξ)).
We now prove (ii). By Corollary 10, the inclusion µ−1(ξ) ↪→ λ−1

M (λbig(ξ))

descends to a diffeomorphism

f : µ−1(ξ)
∼=−→ λ−1

M (λbig(ξ))/Tint.

We also note that the Tbig-action on λ−1
M (λbig(ξ)) induces a residual action of the

subtorus Tsmall on λ−1
M (λbig(ξ))/Tint. Proposition 8 then tells us that

f(g · m) = τξ (g) · f(m)

for all g ∈ Gξ and m ∈ µ−1(ξ). The map f therefore descends to a diffeomorphism

ϕ : M//ξ G ∼=−→ Ms-reg //λbig(ξ)Tbig.

It therefore suffices to prove that ϕ pulls the symplectic form β on Ms-reg//λbig(ξ)Tbig

back to the symplectic form α on M//ξ G.
We have a commutative diagram

µ−1(ξ) λ−1
M (λbig(ξ))

M//ξ G Ms-reg //λbig(ξ)Tbig

j

π θ

ϕ

where
π : µ−1(ξ) → µ−1(ξ)/Gξ = M//ξ G

and
θ : λ−1

M (λbig(ξ)) → λ−1
M (λbig(ξ))/Tbig = Ms-reg //λbig(ξ)Tbig

are the canonical quotient maps and j : µ−1(ξ) ↪→ λ−1
M (λbig(ξ)) is the inclusion. We

also have inclusion maps k : µ−1(ξ) ↪→ M and l : λ−1
M (λbig(ξ)) ↪→ M . Another con-

sideration is that α (resp. β) is the unique 2-form on M//ξG (resp. Ms-reg//λbig(ξ)Tbig)
for which π∗α = k∗ω (resp. θ∗β = l∗ω), where ω is the symplectic form on M . It
therefore suffices to prove that π∗(ϕ∗β)= k∗ω. On the other hand, our commutative
diagram implies that

π∗(ϕ∗β) = j∗(θ∗β) = j∗(l∗ω) = k∗ω. □

5. Generalization to stratified symplectic spaces

We now provide a generalization of Theorem 11 in the realm of stratified symplectic
spaces [10]. In Section 5.1, we recall the immediately pertinent parts of Sjamaar and
Lerman’s more general theory of stratified symplectic spaces. The generalization
of Theorem 11 to stratified symplectic spaces appears in Section 5.2.
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5.1. Stratified symplectic spaces. Let X be a topological space on which a compact
torus T acts continuously. Given a closed subgroup H ⊂ T , let

X H := {x ∈ X : Tx = H}

be the locus of points with T -stabilizer Tx equal to H . Denote by Stab(T, X) the
set of all closed subgroups H ⊂ T for which X H ̸= ∅.

Now let G be a compact connected Lie group with Lie algebra g. Suppose that
M is a Hamiltonian G-space with moment map µ : M → g∗. As discussed in the
introduction to this paper, M//ξ G is a stratified symplectic space [10] for all ξ ∈ g∗.
This means that M//ξ G is naturally partitioned into symplectic manifolds satisfying
certain compatibility conditions. While we refer the reader to [10, Definition 1.12]
for a precise definition and description of stratified symplectic spaces, the following
exposition will be sufficient for our purposes.

Fix a point ξ ∈ g∗
reg, and recall that Gξ ⊂ G is a maximal torus. Adopt the more

parsimonious notation
Stab(G, ξ) := Stab(Gξ , µ

−1(ξ)),

and note that µ−1(ξ) is the disjoint union

µ−1(ξ) =

⊔
H∈Stab(G,ξ)

µ−1(ξ)H .

The arguments in the proof of [10, Theorem 2.1] imply that each subset µ−1(ξ)H

is a locally closed, Gξ -invariant submanifold of M . These arguments also imply
that the topological quotient (µ−1(ξ)H )/Gξ carries a unique manifold structure for
which the canonical map π : µ−1(ξ)H → (µ−1(ξ)H )/Gξ is a surjective submersion.
One further consequence of [10, Theorem 2.1] is the existence of a symplectic
form ω on (µ−1(ξ)H )/Gξ such that π∗ω is the pullback of ω along the inclusion
µ−1(ξ)H ↪→ M . It follows that M//ξ G = µ−1(ξ)/Gξ is a disjoint union

(5-1) M//ξ G =

⊔
H∈Stab(G,ξ)

(µ−1(ξ)H )/Gξ

of symplectic manifolds, called the symplectic strata of M//ξ G.

Remark 12. The quotients (µ−1(ξ)H )/Gξ need not be manifolds in the traditional
sense of the term; each may have connected components of different dimensions.
To obtain a stratification into genuine symplectic manifolds, one must refine (5-1)
and declare the symplectic strata to be the connected components of the quotients
(µ−1(ξ)H )/Gξ . The distinction between (5-1) and this refined stratification will
not materially affect any argument in this paper.

Definition 13. Let G and K be compact connected Lie groups with respective Lie
algebras g and k. Suppose that M (resp. N ) is a Hamiltonian G-space (resp. Hamil-
tonian K-space) with moment map µ : M → g∗ (resp. ν : N → k∗). Take ξ ∈ g∗

reg and
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η ∈ k∗reg. A pair of maps ϕ : M//ξ G → N//η K and φ : Stab(G, ξ) → Stab(K , η) will
be called an isomorphism of stratified symplectic spaces if the following conditions
are satisfied:

(i) ϕ is a homeomorphism.

(ii) φ is a bijection.

(iii) ϕ restricts to a symplectomorphism (µ−1(ξ)H )/Gξ → (ν−1(η)φ(H))/Kη for
each H ∈ Stab(G, ξ).

Remark 14. Assume that this definition is satisfied. Equip M//ξ G and N//η K with
the refined stratifications discussed in Remark 12. By (ii) and (iii), the association
S 7→ ϕ(S) defines a bijection from the set of symplectic strata S ⊂ M//ξ G to the
set of symplectic strata in N//η K . Property (i) implies that this bijection is an
isomorphism of partially ordered sets, i.e., any symplectic strata S, T ⊂ M//ξ G
satisfying S ⊂ T must also satisfy ϕ(S) ⊂ ϕ(T ). We also know that ϕ restricts to
a symplectomorphism S → ϕ(S) for all symplectic strata S ⊂ M//ξ G, as follows
from (iii). In other words, an isomorphism in the sense of Definition 13 gives
rise to an isomorphism between the refined symplectic stratifications on M//ξ G
and N//η K .

5.2. A more general abelianization theorem. Let us continue with the notation
and conventions set in Section 4, as well as those in Section 5.1 concerning stratified
symplectic spaces.

In preparation for our next proposition, we encourage the reader to recall
Proposition 7 and Corollary 10.

Proposition 15. Let M be a Hamiltonian G-space with moment map µ : M → g∗.
Suppose that ξ ∈ g∗

s-reg.

(i) The association H 7→ τξ (H) defines a bijection

Stab(G, ξ)
∼=−→ Stab(Tbig, λbig(ξ)).

(ii) If H ⊂ Gξ is a closed subgroup, then δξ restricts to a diffeomorphism

µ−1(ξ)H × Tint
∼=−→ λ−1

M (λbig(ξ))τξ (H).

Proof. As in the proof of Theorem 11(i), we have

δξ ((g, t) · x) = ρξ (g, t) · δξ (x)

for all (g, t) ∈ Gξ ×Tint and x ∈ µ−1(ξ)×Tint. It follows that K 7→ ρξ (K ) defines
a bijection

Stab(Gξ × Tint, µ
−1(ξ) × Tint)

∼=−→ Stab(Tbig, λbig(ξ)),
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and that δξ restricts to a homeomorphism

(µ−1(ξ) × Tint)K
∼=−→ λ−1

M (λbig(ξ))ρξ (K )

for all closed subgroups K ⊂ Gξ × Tint. On the other hand, we clearly have a
bijection

Stab(G, ξ)
∼=−→ Stab(Gξ × Tint, µ

−1(ξ) × Tint), H 7→ H × {e} ⊂ Gξ × Tint.

We also note that

(µ−1(ξ) × Tint)K = µ−1(ξ)H × Tint and ρξ (K ) = τξ (H)

for K = H ×{e}. These last three sentences combine to imply the desired results. □

The following is our generalization of Theorem 11 to stratified symplectic spaces.

Theorem 16. If ξ ∈ g∗
s-reg, then there is a canonical isomorphism

M//ξ G ∼= Ms-reg //λbig(ξ)Tbig

of stratified symplectic spaces.

Proof. By Corollary 10 and Proposition 15, the inclusion µ−1(ξ) ↪→ λ−1
M (λbig(ξ))

descends to a homeomorphism

f : µ−1(ξ)
∼=−→ λ−1

M (λbig(ξ))/Tint,

whose restriction to µ−1(ξ)H is a diffeomorphism

µ−1(ξ)H
∼=−→ λ−1

M (λbig(ξ))τξ (H)/Tint

for all H ∈ Stab(G, ξ). We also note that the Tbig-action on λ−1
M (λbig(ξ)) induces a

residual action of the subtorus Tsmall on λ−1
M (λbig(ξ))/Tint. Proposition 8 then tells

us that
f(g · m) = τξ (g) · f(m)

for all g ∈ Gξ and m ∈ µ−1(ξ). The map f therefore descends to a homeomorphism

ϕ : M//ξ G ∼=−→ Ms-reg//λbig(ξ)Tbig,

whose restriction to (µ−1(ξ)H )/Gξ is a diffeomorphism

ϕH : (µ−1(ξ)H )/Gξ
∼=−→ (λ−1

M (λbig(ξ))τξ (H))/Tbig

for all H ∈ Stab(G, ξ).
Now consider the bijection

φ : Stab(G, ξ)
∼=−→ Stab(Tbig, λbig(ξ)), H 7→ τξ (H)

from Proposition 15(i). We claim that ϕ and φ define an isomorphism of strat-
ified symplectic spaces, in the sense of Definition 13. In light of the previous
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paragraph, it suffices to prove the following for all H ∈ Stab(G, ξ): ϕH pulls the
symplectic form β on (λ−1

M (λbig(ξ))τξ (H))/Tbig back to the symplectic form α on
(µ−1(ξ)H )/Gξ .

Proposition 15(ii) implies that µ−1(ξ)H ⊂ λ−1
M (λbig(ξ)). This leads to the com-

mutative diagram

µ−1(ξ)H λ−1
M (λbig(ξ))τξ (H)

(µ−1(ξ)H )/Gξ (λ−1
M (λbig(ξ))τξ (H))/Tbig

j

π θ

ϕH

where
π : µ−1(ξ)H → (µ−1(ξ)H )/Gξ

and
θ : λ−1

M (λbig(ξ))τξ (H) → (λ−1
M (λbig(ξ))τξ (H))/Tbig

are the canonical quotient maps and j : µ−1(ξ)H ↪→ λ−1
M (λbig(ξ)) is the inclusion.

We also have inclusion maps k : µ−1(ξ) ↪→ M and l : λ−1
M (λbig(ξ)) ↪→ M . Another

consideration is that α (resp. β) is the unique 2-form on (µ−1(ξ)H )/Gξ (resp.
(λ−1

M (λbig(ξ))τξ (H))/Tbig) for which π∗α = k∗ω (resp. θ∗β = l∗ω). It therefore
suffices to prove that π∗(ϕ∗

Hβ)= k∗ω. On the other hand, our commutative diagram
implies that

π∗(ϕ∗

Hβ) = j∗(θ∗β) = j∗(l∗ω) = k∗ω. □
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