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DIVERGENCE FUNCTIONS OF HIGHER-DIMENSIONAL
THOMPSON’S GROUPS

YUYA KODAMA

We prove that higher-dimensional Thompson’s groups have linear divergence
functions. By the work of Drut,u, Mozes, and Sapir, this implies none of the
asymptotic cones of nV has a cut-point.

1. Introduction

Thompson’s groups F , T , and V are finitely presented infinite groups defined by
Richard Thompson in the 1960s. They are all known to be mysterious groups.
For example, T and V are the first examples of finitely presented, infinite, and
simple, and it is known that the amenability of F is a difficult open problem.
Because they have several unpredictable properties, by focusing on such properties,
many “generalized” Thompson’s groups were also defined. Higher-dimensional
Thompson’s groups, denoted by 2V, 3V, . . . , are some such groups defined by
Brin [3]. The group V acts on the Cantor set C, and the group nV acts on the
powers of the Cantor set Cn . It is known that nV is also finitely presented [4; 14]
and simple [3; 5]. In addition, it was shown that for n, m ∈ Z>0, the group nV is
isomorphic to mV if and only if n = m holds [1]. In [16], it was proved that nV
has Serre’s property FA, and hence is one-ended.

In 2018, Golan and Sapir showed that the divergence functions of F , T , and
V are linear [12]. This function was first mentioned by Gromov [13], and later,
Gersten gave the formal definition [11] as a quasi-isometric invariant of geodesic
metric spaces. Roughly speaking, the order of the function indicates whether the
Cayley graphs of the group are “close” to the Euclidean or hyperbolic spaces. In
fact, the orders of the functions of the direct powers of the infinite cyclic group
Z2, Z3, . . . are linear, and it is known that the orders of the functions of hyperbolic
groups are at least exponential [2]. In [12], they asked whether their proof could
be extended to generalized Thompson’s groups. In recent years, similar results
have been obtained for some groups by extending the original arguments [17; 19;
18]. For recent results on functions of groups other than generalized Thompson’s
groups, see [15].
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In this paper, we also extend the argument given by Golan and Sapir. That is,
we show the following:

Theorem 1.1. Higher-dimensional Thompson’s groups have linear divergence
functions.

This paper is organized as follows. In Section 2, we summarize the definition
of the higher-dimensional Thompson’s group 2V and the notion of divergence
functions. In Section 3, we first prepare estimates of the word length of elements in
2V to ensure that the condition required by the definition of the divergence function
is satisfied. Subsequently, we construct a “good” path from any g ∈ 2V to a specific
element in 2V , where the element is determined only from the word length of g. It
should be noted that we assume n = 2 in most of this paper; however, all the proofs
can be generalized to n with the appropriate modifications.

2. Preliminaries

2.1. Definition of the higher-dimensional Thompson’s group 2V. In this section,
we define only the higher-dimensional Thompson’s group 2V . Readers unfamiliar
with the Thompson’s groups are referred to [8].

2.1.1. Homeomorphisms on the direct product of Cantor sets. Let C be the Cantor
set {0, 1} × {0, 1} × · · · . For a finite word w on {0, 1} and a finite or infinite word
ζ on {0, 1}, let wζ denote their concatenation. Following [3], we will describe
partitions of C2 by using subdivisions of the unit square [0, 1]

2. Subsequently, we
will define homeomorphisms from C to itself that are obtained from such partitions.

Firstly, we call [0, 1]
2 itself the trivial pattern. Let us consider a rectangle

[a1, a2] × [b1, b2] ⊂ [0, 1]
2. By dividing this rectangle in half, we obtain two

new rectangles. The way of obtaining rectangles [a1, (a1 + a2)/2] × [b1, b2] and
[(a1 + a2)/2, a2] × [b1, b2] is called vertical subdivision, and the way of obtaining
rectangles [a1, a2] × [b1, (b1 + b2)/2] and [a1, a2] × [(b1 + b2)/2, b2] is called
horizontal subdivision. A pattern is defined as a finite set of rectangles in [0, 1]

2

obtained from the trivial pattern by applying finitely many vertical and horizontal
subdivisions. See Figure 1. For a rectangle [a1, a2]× [b1, b2], the lengths a2 − a1

and b2 −b1 of its horizontal and vertical edges are called its horizontal and vertical
lengths, respectively.

Next, by using patterns, we define partitions of C2 inductively. The trivial
pattern corresponds to C2 itself. Assume that a rectangle in a pattern corresponds
to a subset {wζ1 | ζ1 ∈ C} × {w′ζ2 | ζ2 ∈ C} ⊂ C2 where w and w′ are finite
words on {0, 1}. For the vertical subdivision, we define that the left rectangle
corresponds to the subset {w0ζ1 | ζ1 ∈ C}× {w′ζ2 | ζ2 ∈ C} and the right rectangle
corresponds to the subset {w1ζ1 | ζ1 ∈ C} × {w′ζ2 | ζ2 ∈ C}. Similarly, for the
horizontal subdivision, we define that the bottom rectangle corresponds to the
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Figure 1. The trivial pattern, the pattern once divided vertically,
the pattern once divided horizontally, and a pattern.

subset {wζ1 | ζ1 ∈ C} × {w′0ζ2 | ζ2 ∈ C} and the top rectangle corresponds to the
subset {wζ1 | ζ1 ∈ C} × {w′1ζ2 | ζ2 ∈ C}. Consequently, a set of rectangles of a
pattern gives a partition of C2. For example, the pattern once divided vertically
illustrated in Figure 1 corresponds to {0ζ1 | ζ1 ∈ C} ×C∪ {1ζ1 | ζ1 ∈ C} ×C. We
often identify a partition of C2 with the corresponding partition of [0, 1]

2.
For a pattern with m rectangles, we assign a number from 0 to m − 1 to each

rectangle. Such a pattern is called numbered pattern. Let P and P ′ be numbered
patterns with m rectangles. Let Ri (resp. R′

i ) be a rectangle of P (resp. P ′) numbered
i . Then there exist two subsets {aiζ1 | ζ1 ∈ C} × {biζ2 | ζ2 ∈ C} and {a′

iζ1 | ζ1 ∈

C} × {b′

iζ2 | ζ2 ∈ C} corresponding to Ri and R′

i , respectively. By mapping each
element (aiζ1, biζ2) ∈ {aiζ1 | ζ1 ∈ C} × {biζ2 | ζ2 ∈ C} to (a′

iζ1, b′

iζ2) ∈ {a′

iζ1 | ζ1 ∈

C} × {b′

iζ2 | ζ2 ∈ C}, we obtain a homeomorphism on C2.

Definition 2.1. The higher-dimensional Thompson’s group 2V is the subgroup of
Homeo(C2) consisting of all homeomorphisms obtained from pairs of numbered
patterns with the same number of rectangles.

Following a familiar convention, we write f g for g ◦ f ; namely, we always
consider the right action of 2V on C2.

The domain and target pattern of a pair of numbered patterns are defined as the
patterns that determine the partition of the domain and range set of C2, respectively.

Remark 2.2. The group nV is defined similarly as a subgroup of Homeo(Cn).
Using the unit n-cube instead of the unit square, n-subdivisions are defined, which
yield partitions of Cn .

Note that two distinct pairs of numbered patterns may give the same map. Let
(P, P ′) be a pair of numbered patterns with the same number of rectangles (such a
pair is just called a pair of numbered patterns). Let Ri and R′

i be rectangles of P
and P ′ numbered i , respectively. Apply a vertical subdivision to Ri , and assign i1

to the left rectangle and i2 to the right rectangle. Do the same to R′

i and assign i1

and i2. Consequently, the obtained maps from the two pairs are the same. The same
also holds for the case of horizontal subdivisions. A reduced pair of numbered
patterns is a pair of numbered patterns where the inverse operations (called vertical
and horizontal reductions) cannot be applied to any rectangles.
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In order to multiply two pairs of numbered patterns (P+, P−) and (Q+, Q−),
take a common refinement P of P− and Q+, and by using the operations, construct
pairs (P ′

+
, P) and (P, Q′

−
) such that they give the same maps as (P+, P−) and

(Q+, Q−), respectively. Then the pair (P ′
+
, Q′

−
) is the desired one.

Unfortunately, unlike the original Thompson’s groups, there is no known way to
define a unique reduced numbered pair for each element in 2V . The notion of grid
diagrams provides a solution to this issue. A detailed explanation will be given in
Section 2.1.3.

2.1.2. Pairs of colored binary trees. Just as elements of the Thompson’s groups are
represented by pairs of binary trees, there exists a similar approach for 2V . Like
numbered patterns, the binary trees do not give unique representatives for elements
of 2V . However, because they can represent elements more simply than numbered
patterns, we will frequently use colored binary trees in this paper.

We always assume that binary trees are rooted; namely, they have one specific
vertex called the root. Vertices whose degree is one are called leaves. A graph with
only one vertex (and no edges) is also regarded as a binary tree. We define a caret
to be the binary tree consisting of three vertices, where the degree of the root is
two and of the remaining vertices is one. See Figure 2.

Any binary tree can be constructed inductively by attaching carets to leaves. A
colored binary tree is a binary tree where each caret is colored. We use two colors
{a, b} for 2V and use n colors for nV . We first explain the relationship between
colored binary trees and patterns.

As previously stated, any pattern can be obtained inductively from the trivial
pattern. Similarly, corresponding binary trees are also defined inductively. In the
case of the trivial pattern, the corresponding binary tree is the one that consists
of only the root. More precisely, consider the root as a leaf, the trivial pattern
as a rectangle, and then this rectangle corresponds to this leaf. Since there exists
no caret in this tree, we do not color it. Assume that for a pattern, there exists
a colored binary tree with leaves such that there is a one-to-one correspondence
between the set of rectangles and the set of leaves. Let R be a rectangle of this

root

caret

leaves

Figure 2. A binary tree and a caret.
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Figure 3. The two types of carets and a colored binary tree ob-
tained from a pattern.

pattern, and assume that the corresponding leaf is i-th (from left to right). For the
vertical subdivision of R, let R1 be the left rectangle and R2 be the right rectangle.
Subsequently, we attach a caret colored by a to the i-th leaf and let R1 correspond
to the newly created left leaf and R2 to the right leaf. Similarly, for the horizontal
subdivision, we attach a caret colored by b to the i-th leaf and correspond the
bottom rectangle to the left leaf and the top rectangle to the right leaf.

Following [6], in this paper, we represent carets colored by a by the “triangular
carets” and carets colored by b by “square carets.” See Figure 3.

The numbers in the rectangles and under the leaves represent the one-to-one
correspondence between the set of leaves and rectangles. Observe that numbered
patterns can also be represented by colored binary trees with numbers by writing
numbers under the leaves in the same way. Consequently, each element in 2V can
be represented by a pair of colored binary trees with numbers. A tree corresponding
to a domain (resp. target) pattern is called a domain (resp. target) tree.

Note that, in general, more than one colored binary tree may give the same
pattern. This is due to the fact that applying the following operations to a rectangle
in a pattern are the same: the pattern obtained by subdividing vertically once and
then subdividing two rectangles horizontally; subdividing horizontally once and
then subdividing two rectangles vertically. See Figure 4.

As with pairs of numbered patterns, it is difficult to easily obtain a “good” pair
of colored binary trees for each element of 2V . However, we can use this to give an
estimation of the word length, as we will see in Section 2.2. For a colored binary
tree T , we define a branch of T to be a path from the root of T to a leaf of T . The

Figure 4. Two colored binary trees give the same pattern.
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depth of T is then defined as the maximum length of the branches of T (with each
edge having length one). It is clear that for any element g in 2V , there exists a pair
of colored binary trees giving g. Therefore, we may define the minimality of such
pairs. First, we define a pair of colored binary trees to be shallow if it is a pair of
colored binary trees whose target tree has the smallest depth among pairs that give
the same map. A pair of colored binary trees is then defined as minimal if it is a
shallow pair of binary trees with the smallest number of carets. It should be noted
that such pairs may not be uniquely determined.

Remark 2.3. To make the relationship between grid diagrams and pairs of colored
binary trees clearer, the definition of minimality is slightly modified from that in [6].

2.1.3. Grid diagrams. In this section, we explain how to represent each element in
2V using a “grid” based on [7]. However, unlike [7], the “grid” is constructed on
the target patterns for the sake of our proof. Note that in [7, the second paragraph of
Section 6], it was also pointed out that the same result holds in our setting. Indeed,
we use only the fact that there exists a unique representative for each element in
2V (and nV ). In this case, we only need to change the pattern we focus on from
domain to target. Hence we omit most of the proofs in this section.

Definition 2.4. A grid pattern is defined as a pattern obtained by subdividing the
unit square using only line segments of length one.

The pattern illustrated in Figure 3 is not a grid pattern, since the lengths of the
horizontal line segment on [1/4, 1]×{1/2} and the horizontal line segment between
rectangles numbered 6 and 7 are less than one. An example is illustrated in Figure 5.

Definition 2.5. A grid diagram is a pair of numbered patterns with the same number
of rectangles, and the target pattern is a grid pattern.

Proposition 2.6 [7, Proposition 2.3]. Each element in 2V admits a grid diagram as
a representative.

Sketch of proof. We can repeat horizontal and vertical subdivisions (so that the pairs
of numbered patterns obtained always give the same map) until the target pattern
becomes a grid pattern. □

Figure 5. A grid pattern.
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Moreover, it is known that there exists a unique representative for any element in
2V . In order to give such a representative, we first recall the definition that a grid
diagram is reduced.

Let (P, G) be a grid diagram where G is a grid pattern. In G, take a strip
Ii × [0, 1] ⊂ [0, 1] × [0, 1] where Ii are horizontal edges of the rectangles in G. In
other words, take a rectangle of G where the rectangle is Ii × J j ⊂ [0, 1]× [0, 1],
and then consider Ii × [0, 1]. We apply vertical subdivisions to all rectangles in
Ii × [0, 1], and then apply vertical subdivisions to the corresponding rectangles in
P such that the obtained grid pattern and (P, G) give the same homeomorphism on
C2. We call this operation a vertical global subdivision. We say a grid diagram is
vertically reduced if the inverse operation of the vertical global subdivision cannot
be applied to any two adjacent strips of the target pattern. Similarly, we can define a
horizontal global subdivision and a grid diagram to be horizontally reduced. Finally,
a grid diagram is said to be reduced if it is vertically and horizontally reduced.
Then we have the following:

Theorem 2.7 [7, Theorem 3.2]. Any element in 2V has a unique reduced grid
diagram.

Note that since each reduced grid diagram is a pair of numbered patterns, there
exist corresponding pairs of colored binary trees.

2.2. A generating set of 2V and estimations of word length. Consider a finite set

X2V :=
{

x0, x1, x2, yi , Bi ,Ci , x̂ j , ŷ1,πi ,πi , αi , βi , B̂0, γ0, h x j , ˆh x j
∣∣ i ∈ {0,1}, j ∈ {1,2}

}
defined in Figures 6, 7 and 8. The colored binary trees without numbers are
all assigned 1, 2, . . . to the leaves from left to right. Because this set contains
well-known generating sets (cf. [3; 4; 6]), this also generates 2V . Note that this set
is an inefficient set specialized for calculating the divergence function of 2V .

Following [6], we also express an element of 2V as “PΠ Q−1 form” and use a
part of the form in the proof of the main theorem. We define Ai := A−(i−1)

0 A1 A(i−1)
0

for i ≥ 1 and Bi := B−(i−1)
0 B1 B(i−1)

0 for i ≥ 1. Then the following holds:

Theorem 2.8 [6, Theorem 2.2]. For an element g of 2V , we have its expression
PΠ Q−1, where

(1) P and Q are represented by words of the form

Cm1 · · · Cm p Wi1 · · · Wir ,

where Ci are in Figure 7, Wi are words on {Ai , Bi } without inverse elements,
m1 < m2 < · · · < m p, and i1 < i2 < · · · < ir .

(2) Π is represented by a word on {π0, π1, . . . } ∪ {π0, π1, . . . }.
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Figure 6. Generators of 2V except C0, C1, π0, π1, π0, and π1.

Figure 7. Generators C0, C1, . . . .
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Figure 8. Generators π0, π1, . . . and π0, π1, . . . .

In [6], Burillo and Cleary constructed this expression for each pair of colored
binary trees. We also use this construction. See the proof of [6, Theorem 2.1]
for details. Note that for element g ∈ 2V , if we take an expression PΠ Q−1

corresponding to a minimal pair of colored binary trees (T+, T−), then we have
P = (T+, Rk), Π = (Rk, π, Rk), and Q = (T−, Rk) where π is the corresponding
permutation and Rk is the all-right tree with only vertical carets and k is the depth
of g. Here, an all-right tree is a binary tree obtained by a finite number of attaching
a caret only to the right leaf of a caret, and an all-right tree consisting of two types
of carets is called all-right colored binary tree.

We will consider the word metric with respect to the above generating set. We
first recall a known result of an estimation of the word length for pairs of binary
trees.

Proposition 2.9 (cf. [6, Lemma 4.1]). For an element of 2V which is represented
by a minimal pair of colored binary trees with depth D, its word length with respect
to X2V is at least D/4.

Remark 2.10. The difference between the denominators in [6, Lemma 4.1] and
this lemma arises from the difference in the generating sets. The definition of
minimality is also different, yet this lemma can still be shown similarly: if we take
one of the shortest words with length n, we can say that the depth is at most 4n
since each process of multiplying a generator increases the length of the branches
by at most four.
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As previously stated, a minimal pair of colored binary trees may not be uniquely
determined for an element in 2V . Hence, we use the notion of grid diagrams.
We define the size of a rectangle R = {[ai , ai+1] × [b j , b j+1]} of a pattern as
−(log2(ai+1 − ai ) + log2(b j+1 − b j )) and write it as ∥R∥. For a pattern P , the
fineness of P is defined as the largest size of the rectangles in P and written as ∥P∥.
For an element g ∈ 2V , the fineness of g is defined as ∥G∥, where G is the target
numbered pattern of the reduced grid diagram of g. Note that the fineness of g is
the same as the depth of the target tree of a pair of colored binary trees obtained
from the grid diagram of g. Indeed, at the end of Section 2.1.2, we defined the
depth of a pair of trees as the depth of the target tree. In the proof of the main
theorem, we also use the following estimations:

Proposition 2.11. Let g be in 2V with fineness k. Then the word length of g with
respect to X2V is at least k/8.

Proof. Consider a minimal pair of colored binary trees of g and let D be its depth.
Take a pair of numbered patterns (P1, P2) corresponding to this pair of colored
binary trees. Then, we have ∥P2∥ = D. We construct a grid diagram (P, G) of g
from (P1, P2) without vertical and horizontal global subdivisions. Note that (P, G)

may not be reduced. Since each rectangle in G has horizontal and vertical lengths
of at least 1/2D , the fineness of G is at most 2D. By considering the reduced
grid diagram of g, the fineness of g is at most ∥G∥, namely, k ≤ ∥G∥ holds. By
Proposition 2.9, the word length of g is at least D/4. Hence, the desired result is
obtained. □

By a similar argument, the following also holds:

Corollary 2.12. Let (P1, P2) be a pair of numbered patterns corresponding to
g ∈ 2V , and R = {w1x1ζ1 | ζ1 ∈ C} × {w2x2ζ2 | ζ2 ∈ C} be a rectangle of P2 where
w1, w2 are words on {0, 1} and x1, x2 are in {0, 1}. Assume that neither of the
following conditions (1) nor (2) is satisfied:

(1) • g−1(R) = {w′

1x1ζ1 | ζ1 ∈ C}× {w′

2ζ2 | ζ2 ∈ C}, where w′

1 and w′

2 are some
word on {0, 1}, and

• g−1((w1 x̂1ζ1, w2x2ζ2)) = (w′

1 x̂1ζ1, w
′

2ζ2) for every (w1 x̂1ζ1, w2x2ζ2) ∈

{w1 x̂1ζ1 | ζ1 ∈ C} × {w2x2ζ2 | ζ2 ∈ C}, where x̂1 is in {0, 1} with x̂1 ̸= x1.

(2) • g−1(R) = {w′

1ζ1 | ζ1 ∈ C}× {w′

2x2ζ2 | ζ2 ∈ C}, where w′

1 and w′

2 are some
word on {0, 1}, and

• g−1((w1x1ζ1, w2 x̂2ζ2)) = (w′

1ζ1, w
′

2 x̂2ζ2) for every (w1x1ζ1, w2 x̂2ζ2) ∈

{w1x1ζ1 | ζ1 ∈ C} × {w2 x̂2ζ2 | ζ2 ∈ C}, where x̂2 is in {0, 1} with x̂2 ̸= x2.

Then, the word length of g is at least ∥R∥/8.

Proof. From the assumptions, the fineness of g is at least ∥R∥. By Proposition 2.11,
we have the desired result. □
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We say a rectangle R is an essential rectangle if it satisfies the assumptions of
Corollary 2.12. We call horizontal and vertical twin the subsets Rv

:= {w1 x̂1ζ1 |

ζ1 ∈ C} × {w2x2ζ2 | ζ2 ∈ C} and Rh
:= {w1x1ζ1 | ζ1 ∈ C} × {w2 x̂2ζ2 | ζ2 ∈ C},

respectively, which are defined from R = {w1x1ζ1 | ζ1 ∈ C} × {w2x2ζ2 | ζ2 ∈ C}

in the assumptions of Corollary 2.12. Then the assumptions mean that we cannot
apply vertical and horizontal reductions to R and “congruent rectangles” adjacent
to R. In other words, the assumptions are that Rv is not mapped to the (g−1(R))v

with keeping the orientation and Rh is not mapped to (g−1(R))h with keeping the
orientation.

2.3. Divergence functions of finitely generated groups. For finitely generated
groups, the property of having linear divergence functions is a quasi-isometric
invariant. Since we see asymptotic properties of functions, we introduce an equiva-
lence relation on functions from R>0 to itself as follows: let f and g be functions
from R>0 to itself. We first define f ⪯ g if there exist A, B, C, D, E ≥ 0 such that

f (x) ≤ Ag(Bx + C) + Dx + E

holds for all x ∈ R>0. Then we define f ≈ g if f ⪯ g and g ⪯ f hold. This is an
equivalence relation on the set of functions from R>0 to itself. Note that all linear
functions and constant functions are equivalent.

Let G be a finitely generated group with a finite generating set X . Let 0 be the
Cayley graph of G with respect to X . For δ ∈ (0, 1), we first define the δ-divergence
function of 0 as follows: let �(g1, g2) be the set of all paths connecting g1, g2 ∈ 0.
Let ∥ω∥ denote the length of the path ω. Then for x ∈ R>0, define the function φδ

by setting

φδ(x) := max
{

min{∥ω∥ | ω ∈ �(g1, g2) avoiding B(e, δx)}
∣∣ |g1| = |g2| = x

}
,

where B(e, δx) denotes the open ball of radius δx with a center at identity of G,
and |g1|, |g2| denote the lengths from identity of G to g1, g2 in 0. If there does not
exist such a path, take φδ(x) = ∞. For each δ ∈ (0, 1), the equivalence class of φδ

is invariant under quasi-isometries [11]. Hence, the δ-divergence function of G is
well-defined as an equivalence class of functions.

Definition 2.13. We say a group G has a linear divergence function if there exists
δ ∈ (0, 1) such that the δ-divergence function of G is in the equivalence class of
linear maps.

From this definition, it is clear that if the δ-divergence function of G is in the
equivalence class of linear maps, then the δ′-divergence function of G is also in
the equivalence class of linear functions for every 0 < δ′

≤ δ. In fact, Drut,, Mozes,
and Sapir [9; 10] showed the following theorem, which establishes a relationship
between divergence functions and a topological property of asymptotic cones.
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Theorem 2.14 [9; 10]. The following are equivalent:

(1) G has a linear divergence function.

(2) For every δ ∈ (0, 1/54), the function φδ is in the equivalence class of linear
functions.

(3) None of the asymptotic cones of G has a cut point.

3. Proof of Theorem 1.1

3.1. Size of the bottom left rectangle. For a given pattern P , let R0(P) be defined
as the rectangle of P containing the point (0, 0) ∈ [0, 1]× [0, 1]. We first study the
change of the word length when we multiply some of the generators in X2V .

Lemma 3.1. Let (P+, P−) be a pair of numbered patterns representing g ∈ 2V .
Assume that R0(P−) is essential and a subset of [0, 1/4] × [0, 1]. Then:

(1) There exists a pair of numbered patterns (P+(gx−1
0 ), P−(gx−1

0 )) representing
gx−1

0 such that R0(P−(gx−1
0 )) is essential, R0(P−(gx−1

0 )) ⊂ [0, 1/8]× [0, 1]

and ∥R0(P−(gx−1
0 ))∥ = ∥R0(P−)∥ + 1.

(2) There exists a pair of numbered patterns (P+(gB̂0), P−(gB̂0)) representing
gB̂0 such that R0(P−(gB̂0)) is essential, R0(P−(gB̂0)) ⊂ [0, 1/8]× [0, 1] and
∥R0(P−(gB̂0))∥ = ∥R0(P−)∥ + 1.

(3) If R0(P−) is a subset of [0, 1/4]×[0, 1/2], then there exists a pair of numbered
patterns (P+(gC0), P−(gC0)) representing gC0 such that R0(P−(gC0)) is
essential, R0(P−(gC0)) ⊂ [0, 1/8] × [0, 1] and ∥R0(P−(gC0))∥ = ∥R0(P−)∥.

Proof. For part (1), we have R0(P−)∪(R0(P−))v ∪(R0(P−))h
⊂ [0, 1/2]×[0, 1] if

(R0(P−))h is defined. Consider the composition of pairs of patterns. The rectangle
R0(P−) is unchanged even if the common refinement is taken. Hence, x−1

0 (R0(P−))

is an essential rectangle of a pair of patterns representing gx−1
0 . The remaining

claims are clear from the definition of x−1
0 and because if (R0(P−))h is not defined,

neither is (x−1
0 (R0(P−)))h . By the same argument, part (2) also follows.

For part (3), if R0(P−) is a subset of [0, 1/4]× [0, 1/4], then it is also followed
by a similar argument of the proof of part (1). If R0(P−) is [0, a] × [0, 1/2] for
some a with a ≤ 1/4, then C0(R0(P−))h is not defined. Hence, we also have the
desired result. □

By a similar argument, we also have the following:

Lemma 3.2. Let (P+, P−) be a pair of numbered patterns representing g ∈ 2V .
Assume that R0(P−) is essential and a subset of [0, 1] × [0, 1/4]. Then:
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(1) There exists a pair of numbered patterns (P+(gy−1
0 ), P−(gy−1

0 )) representing
gy−1

0 such that R0(P−(gy−1
0 )) is essential, R0(P−(gy−1

0 )) ⊂ [0, 1]× [0, 1/8]

and ∥R0(P−(gy−1
0 ))∥ = ∥R0(P−)∥ + 1.

(2) There exists a pair of numbered patterns (P+(gγ0), P−(γ0)) representing gγ0

such that R0(P−(gγ0)) is essential, R0(P−(gγ0)) ⊂ [0, 1] × [0, 1/8] and
∥R0(P−(gγ0))∥ = ∥R0(P−)∥ + 1.

(3) If R0(P−) is a subset of [0, 1/2]×[0, 1/4], there exists a pair of numbered pat-
terns (P+(gC−1

0 ), P−(gC−1
0 )) representing gC−1

0 such that R0(P−(gC−1
0 )) is

essential, R0(P−(gC−1
0 ))⊂[0,1]×[0,1/8] and ∥R0(P−(gC−1

0 ))∥=∥R0(P−)∥.

3.2. Construction of the path. In the rest of this paper, we write | · | for the word
length of 2V with respect to X2V . For a word w and w′, we write w ≡ w′ when
w and w′ are the same as words, and ∥w∥ denotes the length of w. If we have
w ≡ w′w′′ for some words w, w′ and w′′ (the word w′′ may be the empty word),
then w′ is said to be a prefix of w and denoted by w′

≤ w. Theorem 1.1 immediately
follows from the following proposition:

Proposition 3.3. There exist constants δ, D and a positive integer Q such that the
following holds: let g ∈ 2V with |g| ≥ 4. Then there exists a path of length at most
D|g| in the Cayley graph of 2V which avoids a δ|g|-neighborhood of the identity and
which has the initial vertex g and the terminal vertex x̂−Q|g|

1 x̂2 x̂ Q|g|

1 x−Q|g|

1 x2x Q|g|

1 .
In other words, there exists a word ω on the generating set such that ∥ω∥ < D|g|;

for any prefix ω′ of ω, we have gω′ > δ|g| such that

gω = x̂−Q|g|

1 x̂2 x̂ Q|g|

1 x−Q|g|

1 x2x Q|g|

1 .

Proof. Let (P+(g), P−(g)) be a reduced pair of numbered patterns representing g
such that R0(P−(g)) is essential. Note that R0(P−(g)) can be made essential by
changing the choice of rectangles to be reduced if necessary. We will define six
subwords, denoted by ω1, . . . , ω6, and then the concatenation of these subwords,
ω1 · · · ω6, will be the desired word, ω.

In subpath 1, we may assume that R0(P−(g)) is a subset of [0, 1/2] × [0, 1].
Indeed, since g is not the identity map, if not, we have R0(P−(g))⊂[0, 1]×[0, 1/2].
Then by replacing the “vertical argument” with the “horizontal one”, it is possible
to join the argument from subpath 3 onward. More precisely, we replace all
vertical and horizontal carets in generators in subpaths 1, 2 with horizontal and
vertical carets, respectively, and replace all the set I1 × I2 ⊂ [0, 1] × [0, 1] in the
definition of subpath 1 with I2 × I1, and construct the PΠ Q−1 expression of g1 by
using an all-right tree with only horizontal carets instead of vertical carets. There
are no generators in Figure 6 which generate Π constructed above, but this is
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not a problem since all we need is Q and the required generators are defined in
Figure 6.

Subpath 1. We define ω1 to be one of the following:

(a) If R0(P−(g)) is a subset of [0, 1/4] × [0, 1], then define ω1 to be the empty
word.

(b) If R0(P−(g)) is [0, 1/2] × [0, 1], then define ω1 to be x̂1.

(c) If R0(P−(g)) is [0, 1/2]×[0, 1/2] and α0(R0(P−(g))) is an essential rectangle
of gα0, then define ω1 to be α0.

(d) If R0(P−(g)) is [0, 1/2] × [0, 1/2] and α0(R0(P−(g))) is not an essential
rectangle of gα0, then define ω1 to be B0π1x−1

0 , as in the figure:

B0π1x−1
0

(e) If R0(P−(g)) is [0, 1/2] × [0, 1/2i
] where i ≥ 2 and α0(R0(P−(g))) is an

essential rectangle of gα0, then define ω1 to be α0.

(f) If R0(P−(g)) is [0, 1/2]× [0, 1/2i
] where i ≥ 2 and α0(R0(P−(g))) is not an

essential rectangle of gα0, then define ω1 to be α1.

Lemma 3.4. In any case, g1 has a reduced pair (P+(g1), P−(g1)) of numbered pat-
terns such that R0(P−(g1)) is essential and a subset of [0, 1/4]× [0, 1]. Moreover,
∥ω1∥ ≤ 3 holds and for any prefix ω′

≤ ω1, we have |gω′
| ≥ |g|/4.

Proof. Since the latter statements are obvious, it is sufficient to show the first
statement. But since cases (a), (c), (d), (e), and (f) of the remaining claim are also
clear, we consider only case (b). Let {w1ζ | ζ ∈ C} × {w2ζ | ζ ∈ C} be a rectangle
corresponding to g−1(R0(P−(g)). In the process of multiplying x̂1, the rectangle
g−1(R0(P−(g)) is subdivided into {w100ζ | ζ ∈ C}× {w2ζ | ζ ∈ C}, {w101ζ | ζ ∈

C} × {w2ζ | ζ ∈ C}, and {w11ζ | ζ ∈ C} × {w2ζ | ζ ∈ C}. Since the rectangles of a
target pattern of gx̂1 corresponding to the first two are {00ζ | ζ ∈C}×{ζ | ζ ∈C} and
{010ζ | ζ ∈ C} × {ζ | ζ ∈ C}, respectively, the rectangle {00ζ | ζ ∈ C} × {ζ | ζ ∈ C}

of gx̂1 is essential.
□

The idea of the following subpath comes from [12; 18].

Subpath 2. We fix an integer M ≥ 100. Consider the expression PΠ Q−1 of a
minimal pair of colored binary trees of g1 and let Cm1 · · · Cm p be the maximal
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words on {Ci } contained in Q, where 0 ≤ m1 < · · · < m p. When m1 is not zero,
we have

Cm1 · · · Cm p = (x−(m1−1)
0 C1x (m1−1)

0 · · · x−(m p−1)

0 C1x (m p−1)

0 )

= x−(m1−1)
0 C1x−(m2−m1)

0 · · · C1x−(m p−m p−1)

0 C1x (m p−1)

0

= x−(m1−1)
0 B̂0x−(m2−m1−1)

0 · · · B̂0x−(m p−m p−1−1)

0 B̂0xm p
0 ,

and define

ω2 ≡ x−(m1−1)
0 B̂0x−(m2−m1−1)

0 · · · B̂0x−(m p−m p−1−1)

0 B̂0x−(M |g1|−m p)

0

· x1 · x (M |g1|−m p)

0 B̂−1
0 x (m p−m p−1−1)

0 B̂−1
0 · · · x (m2−m1−1)

0 B̂−1
0 x (m1−1)

0 .

When m1 is zero, define

ω2 ≡ C0x−(m2−1)
0 B̂0x−(m3−m2−1)

0 · · · B̂0x−(m p−m p−1−1)

0 B̂0x−(M |g1|−m p)

0

· x1 · x (M |g1|−m p)

0 B̂−1
0 x (m p−m p−1−1)

0 B̂−1
0 · · · x (m3−m2−1)

0 B̂−1
0 x (m2−1)

0 C−1
0 .

Let g2 = g1ω2.

See Figure 9 for example.

Lemma 3.5. (1) We have ∥ω2∥ < 4M |g|.

(2) For every prefix ω′ of ω2, we have |g1ω
′
| > |g|/64.

Proof. The proof is only provided when m1 is not zero; however, it can be shown
similarly when m1 is zero. We first note that m p ≤ 4|g1| holds by Proposition 2.9.

Figure 9. An example of the construction of ω2. The dotted
carets in T−(g1) are not used when constructing ω2. The all-
right tree T ′

−
(g1) is obtained by removing the dotted carets from

T−(g1). Note that the tree T ′
−
(g1) is the domain tree of the product

Cm1 · · · Cm p . By using T ′
−
(g1), all we needed to define ω2 are the

generators B̂0, x0, and x1. See also Figure 10.
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A straightforward calculation yields the upper bound of ∥ω2∥. Indeed, we have(
(m1−1)+1+(m2−m1−1)+1+· · ·+(m p−m p−1−1)+1+(M |g1|−m p)

)
×2+1

= 2M |g1| + 1

≤ 2M(|g| + 3) + 1

< 4M |g|.

For part (2), we first consider ω′
≤ ω2 which does not contain x1. When

∥ω′
∥ ≤ ⌊|g1|/2⌋, we have |g1ω

′
| ≥ |g1|/2. Indeed, if not, we have

|g1| = |g1ω
′(ω′)−1

| ≤ |g1ω
′
| + ∥ω′

∥ <
|g1|

2
+

|g1|

2
.

Hence we have |g1ω
′
| ≥ |g1|/2 ≥ (|g| − 3)/2 ≥ |g|/8. Next, we assume that ω′

does not contain x1 and ∥ω′
∥ > |g1|/2 holds. Then by Lemmas 3.4 and 3.1, there

exists a pair of numbered patterns (P+(g1ω
′), P−(g1ω

′)) representing g1ω
′ such

that R0(P−(g1ω
′)) is essential. Then we have

∥R0(P−(g1ω
′))∥ = ∥R0(P−(g1))∥ +∥ω′

∥ > ∥ω′
∥ >

|g1|

2
.(3-1)

By Corollary 2.12, we have

|g1ω
′
| ≥

∥R0(P−(g1ω
′))∥

8
>

|g1|

16
≥

|g|

64
.(3-2)

Next, we assume ω′ contains x1 and no B̂−1
0 . Then there exists i ≥ 0 such

that

g1ω
′
= g1x−(m1−1)

0 B̂0x−(m2−m1−1)

0 · · · B̂0x
−(m p−m p−1−1)

0 B̂0(x−(M |g1|−m p)

0 x1x (M |g1|−m p)

0 )x−i
0

as an element in 2V . Since x−(M |g1|−m p)

0 x1x (M |g1|−m p)

0 is identity on [0, 1/2]×[0, 1],
the essentiality of the rectangle is preserved when i = 0. This means that when i = 0,
we have ∥R0(P−(g1ω

′))∥ > |g1|/2 by inequality (3-1). According to Lemma 3.1(1),
multiplying x−1

0 from the right increases the size of the rectangle. Then for any
i ≥ 0, we have ∥R0(P−(g1ω

′))∥> |g1|/2. This implies that we have |g1ω
′
|> |g|/64

for the same reason as in inequality (3-2).
Finally, consider the case where ω′ contains x1 and B̂−1

0 . From the construction
of ω2, it can be observed that g2 is obtained by attaching carets to the minimal
pair of colored binary trees (T+(g1), T−(g1)). This implies that there exists a
pair of numbered patterns of g2 such that the rectangle of the target pattern
that contains a point (1, 1) ∈ [0, 1] × [0, 1] is essential, and its size is at least
M |g1| + 3 − 4|g1|. Indeed, by Proposition 2.9, the length of the right most branch
of T−(g1) is at most 4|g1|. Hence the number of attached vertical carets to the
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Figure 10. An illustration of the multiplication of g1 and ω2, where
(T+(g1), T−(g1)) is a minimal pair of colored binary trees of g1

and T ′
−
(g1) is the maximal all-right colored binary tree contained

in T−(g1).

rightmost branch is at least M |g1| + 3 − 4|g1|. Also, from the construction, ver-
tical reduction cannot be applied. Therefore the size of the rectangle containing
(1, 1) is at least M |g1| + 3 − 4|g1| by focusing only on the vertical subdivisions,
since the size of a rectangle is defined as the sum of the number of vertical
and horizontal subdivisions. See Figure 10 for an illustration of this argument.

We now consider g1ω
′ as g2ω

′′ by a certain word ω′′. Note that we have
∥ω′′

∥ ≤ m p by a straightforward calculation. This means that ∥ω′′
∥ is sufficiently

smaller than |g2|, so we estimate |g1ω
′
| based on g2. Since m p ≤ 4|g1| holds, by

Corollary 2.12 and Lemma 3.4, we have

(3-3) |g1ω
′
| = |g2ω

′′
| ≥ |g2| − ∥ω′′

∥ ≥
M |g1| + 3 − 4|g1|

8
− 4|g1|

> 1
8(M − 36)|g1| ≥ 8|g1| ≥ 2|g|.

Hence for any prefix ω′
≤ ω2, we have |g1ω

′
| > |g|/64.

□

Subpath 3. Let ω3 be a minimal word on X2V such that ω3 = g−1
1 holds. Let

g3 = g2ω3.

Lemma 3.6. (1) We have ∥ω3∥ ≤ 2|g|.

(2) For every prefix ω′ of ω3, we have |g2ω
′
| > 2|g|.

Proof. The first claim is obvious by Lemma 3.4. For the second claim, we note that
|ω′

| ≤ |g1| holds since ω3 is a minimal word. Then we have

|g2ω
′
| ≥ |g2| − |ω′

| ≥ |g2| − |g1| > 2|g|,

as estimated in inequality (3-3).
□
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Figure 11. An illustration of g3. Observe that g3 is the identity
map on the subset corresponding to all leaves except the i-th leaf.

Subpath 4. We fix an integer Q ≥ 48M . We define ω4 based on a subset [0, 1] ×

[0, 1] where g3 is the identity map. From the construction, one of the following
holds (see also Figure 11):

(a) g3 is the identity map on [0, 1] × [0, 1/2];

(b) g3 is the identity map on [0, 1] × [1/2, 1];

(c) g3 is the identity map on [0, 1/2] × [0, 1]; and

(d) g3 is the identity map on [1/2, 1] × [0, 1].

Then we define ω4 as the word determined from one of the following cases of
capital letters corresponding to each small letter:

(A) let ω4 ≡ ˆh x1
−(Q|g|+1)

ˆh x2 ˆh x1
Q|g|+1;

(B) let ω4 ≡ h x1
−(Q|g|+1)

h x2h x1
Q|g|+1;

(C) let ω4 ≡ x̂−Q|g|

1 x̂2 x̂ Q|g|

1 ; and

(D) let ω4 ≡ x1
−Q|g|x2x1

Q|g|.

Let g4 = g3ω4.

Lemma 3.7. (1) We have ∥ω4∥ ≤ 3Q|g|.

(2) For every prefix ω′ of ω4, we have |g3ω
′
| > 3|g|.

(3) As elements in 2V , g3 and ω4 commute.

Proof. Part (1) follows from a straightforward estimation, and part (3) is obvious
since the supports of g3 and ω4 are disjoint. For part (2), in any case, we note
that generators in ω4 preserve the rectangle with its size at least M |g1| + 3 −

4|g1|. Since the process of obtaining the essential rectangle from this rectangle
requires only at most one horizontal reduction, g3ω4 is also represented by a pair
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of numbered patterns with an essential rectangle of size at least M |g1| + 2 − 4|g1|.
Indeed, when ω4 is defined in the case of (A), since ˆh x1, ˆh x2 is the identity on
[0, 1] × [0, 1/2], the vertical reduction cannot be applied in the process and the
horizontal reduction may be possible. Also, since any generator in ω4 vertically
divides [0, 1] × [0, 1/2], the number of this horizontal reduction is at most one.
For case (B), only at most one reduction is applied for the same reason as in case
(A), and no such reduction is possible in cases (C) and (D). Hence the size is
at least M |g1| + 2 − 4|g1| in any cases. By Corollary 2.12 and Lemma 3.4, we
have

|g3ω
′
| ≥

M |g1| + 2 − 4|g1|

8
> 12|g1| ≥ 3|g|,

which is the desired result.
□

Subpath 5. Let ω5 be a minimal word on X2V such that ω5 = g−1
3 holds. Let

g5 = g4ω5.

Lemma 3.8. (1) We have ∥ω5∥ ≤ 5M |g|.

(2) For every prefix ω′ of ω5, we have |g4ω
′
| > M |g|.

Proof. For part (1), by Lemmas 3.4, 3.5 and 3.6, we have

∥ω5∥ ≤ |g| + ∥ω1∥ +∥ω2∥ +∥ω3∥ ≤ |g| + 3 + 4M |g| + 2|g| < 5M |g|.

For part (2), we first note that ω4 is represented by a pair of patterns with an
essential rectangle of size at least Q|g| + 4. In particular, by a similar argument
to the proof of Lemma 3.7, the horizontal length of this rectangle is unchanged for
g4 = g3ω4. Hence by Corollary 2.12, we have |g4| ≥ (Q|g| + 3)/8. Therefore we
have

|g4ω
′
| ≥ |g4| − ∥ω5∥ > 6M |g| − 5M |g| = M |g|.

This completes the proof.
□

We may now obtain gω1ω2ω3ω4ω5 = ω4, which only depends on |g|.
The final step is to connect any of cases (A) to (D) defined in subpath 4 to

x̂−Q|g|

1 x̂2 x̂ Q|g|

1 x−Q|g|

1 x2x Q|g|

1 by a final subpath. In order to define this subpath, we
write the subpaths defined in cases (A) to (D) as ω4(A), ω4(B), ω4(C) and ω4(D),
respectively.

Subpath 6. If the path ω4 is ω4(A), let ω6 ≡ ω4(B)ω4(C). If the path ω4 is ω4(B),
let ω6 ≡ ω4(A)ω4(C). If the path ω4 is ω4(C), let ω6 ≡ ω4(D). Finally, if the path
ω4 is ω4(D), let ω6 ≡ ω4(C).
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Lemma 3.9. (1) In any case, we have g5ω6 = x̂−Q|g|

1 x̂2 x̂ Q|g|

1 x−Q|g|

1 x2x Q|g|

1 as an
element in 2V .

(2) We have ∥ω6∥ ≤ 6Q|g|.

(3) For every prefix ω′ of ω6, we have |g5ω
′
| > 6M |g|.

Proof. For part (1), we note that ω4(A)ω4(B) = ω4(D) holds as elements in 2V .
Observe that the supports of ω4(A) and ω4(B) are disjoint, and the same holds for
ω4(C) and ω4(D). Since we have ω4(C)ω4(D) = x̂−Q|g|

1 x̂2 x̂ Q|g|

1 x−Q|g|

1 x2x Q|g|

1 , we
obtain the desired result. Part (2) follows from Lemma 3.7.

Finally, part (3) follows from the following observation: in the process of
multiplying generators of ω6, there always exists a pair of numbered patterns
with an essential rectangle whose horizontal length is at least Q|g| + 2. Hence by
Corollary 2.12, we have |g5ω

′
| ≥ (Q|g| + 2)/8 > 6M |g|.

□

Now, we define ω as ω1 · · · ω6. From Lemmas 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, take
D = 10Q and δ = 1/64. Then we have that gω = x̂−Q|g|

1 x̂2 x̂ Q|g|

1 x−Q|g|

1 x2x Q|g|

1 ,
∥ω∥ < D|g|, and |gω′

| > δ|g| for any prefix ω′ of ω. This completes the proof of
Proposition 3.3.

□
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