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CONSTANT HOLOMORPHIC SECTIONAL CURVATURE

SHUWEN CHEN AND FANGYANG ZHENG

We consider the conjecture of Chen and Nie concerning the space forms for
canonical metric connections of compact Hermitian manifolds. We verify the
conjecture for two special types of Hermitian manifolds: complex nilman-
ifolds with nilpotent J , and nonbalanced Bismut torsion-parallel manifolds.

1. Introduction and statement of results

The simplest kind of Riemannian manifolds are the so-called space forms, which
means complete Riemannian manifolds with constant sectional curvature. Their
universal covers are respectively the sphere Sn , the Euclidean space Rn , or the
hyperbolic space Hn , equipped with (scaling of) the standard metrics.

In the complex case, the sectional curvature of Hermitian manifolds in general
can no longer be constant (unless it is flat). Instead one requires the holomorphic
sectional curvature to be constant. When the metric is Kähler, one gets the so-called
complex space forms, namely complete Kähler manifolds with constant holomorphic
sectional curvature. Analogous to the Riemannian case, their universal covers are
the complex projective space CPn , the complex Euclidean space Cn , or the complex
hyperbolic space CHn , equipped with (scaling of) the standard metrics.

When a Hermitian metric is not Kähler, its curvature tensor does not obey all
the Kähler symmetries in general. As a result, the holomorphic sectional curvature
could no longer determine the entire curvature tensor. So one would naturally
wonder about when can the holomorphic sectional curvature be constant. In this
direction, a long-standing conjecture is the following:

Conjecture 1 (constant holomorphic sectional curvature conjecture). Given any
compact Hermitian manifold, if the holomorphic sectional curvature of its Chern
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(or Levi-Civita) connection is a constant c, then when c ̸= 0 the metric must be
Kähler (hence a complex space form), while when c = 0 the metric must be Chern
(or Levi-Civita) flat.

Note that when n ≥ 3, there are compact Chern flat (or Levi-Civita flat) manifolds
that are non-Kähler. Compact Chern flat manifolds are compact quotients of complex
Lie groups by the classic theorem of Boothby [5], and compact Levi-Civita flat
Hermitian threefolds were classified in [13], while for dimension 4 or higher it is
still an open question. Note also that the compactness assumption is necessary for
the conjecture.

For n = 2, Conjecture 1 was confirmed by Balas and Gauduchon [2; 3], Sato and
Sekigawa [18], and Apostolov, Davidov, and Mushkarov [1] in the 1980s and 1990s.
In higher dimensions, the first substantial result towards this conjecture is the result
by Davidov, Grantcharov, and Mushkarov [11], in which they showed among other
things that the only twistor space with constant holomorphic sectional curvature is
the complex space form CP3. More recently, Chen, Chen, and Nie [9] showed that,
for locally conformally Kähler manifolds, the conjecture holds provided that the
holomorphic sectional curvature is a nonpositive constant. The conjecture is also
known in some other special cases; see, for instance, [8; 15; 16; 20].

Given a Hermitian manifold (Mn, g), besides the Chern connection ∇
c and Levi-

Civita connection ∇, there is another metric connection that is widely studied: the
Bismut connection ∇

b. It is the connection compatible with both the metric g and
the almost complex structure J , as well as having totally skew-symmetric torsion.
Its existence and uniqueness was proved by Bismut in [4]. It was discovered
independently by Strominger [19], so in some literature it was also called the
Strominger connection.

Previously, we tried to extend Conjecture 1 to the Bismut connection case, and
raised the following conjecture and question [7, Conjecture 2 and Question 1]:

Conjecture 2. Given any compact Hermitian manifold, if the holomorphic sectional
curvature of its Bismut connection is a nonzero constant, then the metric must be
Kähler (hence a complex space form).

Question 3. What kind of compact Hermitian manifolds will have zero Bismut
holomorphic sectional curvature but are not Bismut flat?

The reason for the above splitting is due to the fact that there are examples
of compact Hermitian manifolds with vanishing Bismut holomorphic sectional
curvature but its Bismut curvature is not identically zero, e.g., the standard Hopf
manifolds of dimension ≥ 3 (or standard Hopf surfaces but with a specially varied
metric). In [7] we proved Conjecture 2 and answered Question 3 for the n = 2
case, and also answered them in the special case of complex nilmanifolds with
nilpotent J and the Bismut Kähler-like manifolds (see [7, Theorems 3 and 4]).
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The three canonical connections on a given Hermitian manifold (Mn, g), namely,
∇ (Levi-Civita), ∇

c (Chern) and ∇
b (Bismut), are all equal to each other when g

is Kähler. While when g is not Kähler, they are linearly independent. The line
of connections spanned by Chern and Bismut are called Gauduchon connections,
discovered by Gauduchon [12]:

Dr
=

1
2(1 + r)∇c

+
1
2(1 − r)∇b, r ∈ R.

In the literature there are a number of different ways to parametrize these Gauduchon
connections. Here we used Gauduchon’s approach, so that D1

= ∇
c is the Chern

connection, D−1
= ∇

b is the Bismut connection. Note that in this parametrization,
D0

=
1
2(∇c

+ ∇
b) is the Hermitian projection of the Levi-Civita connection ∇,

often called the Lichnerowicz connection. Let

Dr
s = (1 − s)Dr

+ s∇, (r, s) ∈ � := {s ̸= 1} ∪ {(0, 1)} ⊂ R2.

In the rs-plane R2, the domain � is the cone over the r-axis with vertex (0, 1),
or equivalently, the plane of canonical metric connections Dr

s are the cone over
the line of Gauduchon connections with vertex at the Levi-Civita connection. As
is well known, when the metric g is Kähler, all Dr

s coincide, while when g is not
Kähler, Dr

s ̸= Dr ′

s′ for any two distinct points (r, s), (r ′, s ′) in �.
In [6], H. Chen and X. Nie gave a beautiful characterization of the possible exten-

sion of Conjecture 1 to the 2-parameter family of canonical metric connections Dr
s .

They discovered the particular subset (which will be called the Chen–Nie curve
from now on)

0 = {(r, s) ∈ R2
| (1 − r + rs)2

+ s2
= 4} ⊂ �,

and proved the following theorem (see [6, Theorem 2.4]):

Theorem 4 (Chen–Nie). Let (M2, g) be a compact Hermitian surface with point-
wise constant holomorphic sectional curvature with respect to its Dr

s connection.
Then either g must be Kähler, or (r, s) ∈ 0 and (M2, g) is an isosceles Hopf surface
equipped with an admissible metric.

In other words, in order to extend Conjecture 1 to the Dr
s connections, one

has to exclude the subset 0 and address its zero holomorphic sectional curvature
case differently just like what we have seen in the Bismut connection case in [7].
Following their discovery, it is natural to propose the following:

Conjecture 5 (Chen–Nie). Given any compact Hermitian manifold, if the holo-
morphic sectional curvature of its Dr

s connection is a nonzero constant, then the
metric must be Kähler (hence a complex space form). If the holomorphic sectional
curvature of its Dr

s connection is zero and (r, s) ∈ � \ 0, then g must be Dr
s flat.

A companion question is the following:
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Question 6. For any (r, s)∈0, what kind of compact Hermitian manifolds will have
its Dr

s connection being nonflat but with vanishing holomorphic sectional curvature?

The aforementioned theorem of Chen and Nie says that Conjecture 5 is true when
n = 2. Note that the Chen–Nie curve 0 lies between the two horizontal lines s = −2
and s = 2, passing through the point

( 1
3 , −2

)
, (−1, 2), (−1, 0), (3, 0), and with r

approaching ±∞ when s → 1. Note that D−1
0 is just the Bismut connection ∇

b,
while D3

0 = 2∇
c
−∇

b is the reflection point of ∇
b with respect to ∇

c, sometimes
called the anti-Bismut connection. In the notation of [25], D1/3

−2 = ∇
−, D−1

2 = ∇
+

are also special connections in the sense that their curvature moves in sync with the
curvature of ∇

b, for instance, the curvatures of ∇
+, ∇

− and ∇
b will obey all Kähler

symmetries (namely, be Kähler-like) at the same time. Also, ∇
+

+∇
c
= 2∇, that is,

∇
+ is the reflection point of the Chern connection ∇

c with respect to the Levi-Civita
connection ∇. Similarly, ∇

− is the reflection point of D−1/3
=

1
3∇

c
+

2
3∇

b with
respect to ∇

′
= D0

−1, the so-called anti-Levi-Civita connection, while D−1/3 is
called the minimal connection since it has the smallest norm of torsion amongst all
Gauduchon connections.

By a beautiful theorem of Lafuente and Stanfield [14, Theorem A], for any
Gauduchon connection Dr other than Chern or Bismut, if a compact Hermitian
manifold has flat (or more generally, Kähler-like) Dr , then the metric must be
Kähler. For Dr

s with s ̸= 0, it was proved in [25, Theorem 4] that if Dr
s is other

than ∇, ∇
′, ∇

+ or ∇
−, and if a Hermitian manifold has flat (or more generally,

Kähler-like) Dr
s , then the metric must be Kähler.

In other words, with the exception of the three canonical connections ∇
c, ∇

b, ∇

and ∇
′, ∇

+, ∇
−, for any other Dr

s , a compact Hermitian manifold with flat Dr
s

must be Kähler.
The main purpose of this short article is to confirm Conjecture 5 for general

dimensional Hermitian manifolds in the special case of either complex nilmanifolds
(with nilpotent J in the sense of [10]) or nonbalanced Bismut torsion-parallel
manifolds. Recall that by a complex nilmanifold here we mean a compact Hermitian
manifold (Mn, g) such that its universal cover is a nilpotent Lie group equipped
with a left-invariant complex structure and a compatible left-invariant metric. A
compact Hermitian manifold (Mn, g) is said to be Bismut torsion-parallel (or BTP
for brevity) if ∇

bT b
= 0, where T b is the torsion of the Bismut connection ∇

b. Also
g is said to be balanced if d(ωn−1) = 0, where ω is the Kähler form of g. Examples
and properties of BTP manifolds are discussed in [26; 27]. Note that any non-Kähler
Bismut Kähler-like (BKL) manifold is always a nonbalanced BTP manifold.

Theorem 7. Let (Mn, g) be a compact Hermitian manifold such that for some
(r, s) ∈ �, the canonical metric connection Dr

s of g has constant holomorphic
sectional curvature c.
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(1) Assume that (Mn, g) is a complex nilmanifold with nilpotent J . If Dr
s is not the

Chern connection, then c = 0, the Lie group is abelian, and (Mn, g) is (a finite
undercover of ) a flat complex torus. If Dr

s is the Chern connection, then c = 0,
the Lie group is a (nilpotent) complex Lie group, and (Mn, g) is Chern flat.

(2) If (Mn, g) is a nonbalanced BTP manifold, then c = 0 and (r, s) ∈ 0.

(3) If (M3, g) is balanced BTP of dimension 3, then either it is Kähler, or it
is Chern flat and c = 0, (r, s) = (1, 0) (namely, with Dr

s being the Chern
connection), with M3 being a compact quotient of the simple complex Lie
group SO(3, C) equipped with the standard metric.

The above theorem says that Conjecture 5 holds for all complex nilmanifolds with
nilpotent J , all compact nonbalanced BTP manifolds, and all compact balanced BTP
threefolds. In particular, since (non-Kähler) Bismut Kähler-like (BKL) manifolds
or Vaisman manifolds are always nonbalanced BTP, we know that Conjecture 5
holds for BKL or Vaisman manifolds.

2. Preliminaries

First let us recall the definition of sectional curvature and holomorphic sectional
curvature. Given a connection D on a differential manifold Mn , its torsion and
curvature are respectively defined by

T D(x, y) = Dx y − Dy x − [x, y], RD
xyz = Dx Dyz − Dy Dx z − D[x,y]z,

where x , y, z are vector fields on M . When M is equipped with a Riemannian
metric g =⟨ · , · ⟩, we could use g to lower the index and turn RD into a (4, 0)-tensor
(which we still denote by the same letter):

RD(x, y, z, w) = ⟨RD
xyz, w⟩,

where x , y, z, w are vector fields on M . Clearly, RD is skew-symmetric with respect
to its first two positions. If D is a metric connection, namely, Dg = 0, then RD is
skew-symmetric with respect to its last two positions as well, hence it becomes a
bilinear form on 32T M . Note that the presence of torsion T D usually will make
the bilinear form RD not symmetric in general. The sectional curvature of D is
defined by

K D(π) = −
RD(x ∧ y, x ∧ y)

|x ∧ y|2
, where π = spanR{x, y} ⊂ Tp M.

Here as usual |x ∧ y|
2
= |x |

2
|y|

2
−⟨x, y⟩

2. It is easy to see that the value K D(π) is
independent of the choice of the basis of the 2-plane π in the tangent space Tp M .
Since the bilinear form RD may not be symmetric, the values of K in general will
not determine the entire RD (but only the symmetric part of RD).
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Now suppose (Mn, g) is a Hermitian manifold and D is a metric connection.
Then besides the sectional curvature K D , one also has the holomorphic sectional
curvature H D, which is the restriction of K D on those 2-planes π that are J -
invariant: Jπ = π . In this case, for any nonzero x ∈ π , {x, J x} is a basis of π , so
we can rewrite H D in complex coordinates:

H D(X) =
RD(X, X , X, X)

|X |4
, X = x −

√
−1J x .

Let {e1, . . . , en} be a local frame of type-(1, 0) complex tangent vector fields on Mn ,
and denote by RD

i j̄kℓ̄
= RD(ei , ē j , ek, ēℓ) the components of RD under the frame e.

We see that
H D

≡ c ⇐⇒ R̂D
i j̄kℓ̄

=
1
2 c(δi jδkℓ + δiℓδk j ),

where
R̂D

i j̄kℓ̄
=

1
4(RD

i j̄kℓ̄
+ RD

k j̄i ℓ̄ + RD
i ℓ̄k j̄ + RD

kℓ̄i j̄ )

is the symmetrization of RD .
Next let us recall the structure equations of Hermitian manifolds. Let (Mn, g) be

a Hermitian manifold and denote by ω the Kähler form associated with g. Denote
by ∇, ∇

c, ∇
b the Levi-Civita, Chern, and Bismut connection, respectively. Denote

by R the curvature of ∇, by T c
= T and Rc the torsion and curvature of ∇

c, and
by T b and Rb the torsion and curvature of ∇

b. Under any local unitary frame e, let
us write

T c(ei , ek) =

n∑
j=1

T j
ike j , 1 ≤ i, k ≤ n.

Then T j
ik are the Chern torsion components under e. Let ϕ be the coframe of

local (1, 0)-forms dual to e, namely, ϕi (e j ) = δi j . Denote by θ , 2 the matrices of
connection and curvature of ∇

c under e. Let τ be the column vector under e of the
Chern torsion, namely, τ j =

1
2

∑
i,k T j

ikϕi ∧ ϕk . Then the structure equations and
Bianchi identities are

dϕ = −
tθ ∧ ϕ + τ, dθ = θ ∧ θ + 2,

dτ = −
tθ ∧ τ +

t2 ∧ ϕ, d2 = θ ∧ 2 − 2 ∧ θ.

Similarly, denote by θb, 2b the matrices of connection and curvature of ∇
b under e.

Then
2b

= dθb
− θb

∧ θb.

Let γ = ∇
b
− ∇

c be the tensor, and for simplicity we will also write γ = θb
− θ

under e. Then by [23] we have

(1) γ ei =

∑
j

γi j e j =

∑
j,k

(T j
ikϕk − T i

jk ϕk)e j .
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Also, following the notation of [22; 23], the Levi-Civita connection is given by

∇ei =

∑
j

((
θi j +

1
2γi j

)
e j + βi j ē j

)
, where βi j =

1
2

∑
k

T k
i jϕk .

Therefore, if we write e =
t(e1, . . . , en) and ϕ =

t(ϕ1, . . . , ϕn) as column vectors,
then under the frame t(e, ē) the matrices of connection and curvature of ∇ are
given by

θ̂ =

[
θ1 β̄

β θ1

]
, 2̂ =

[
21 22

22 21

]
, θ1 = θ +

1
2γ,

where
21 = dθ1 − θ1 ∧ θ1 − β̄ ∧ β,

22 = dβ − β ∧ θ1 − θ1 ∧ β,

dϕ = −
tθ1 ∧ ϕ −

tβ ∧ ϕ.

As is well known, the entries of the curvature matrix 2 are all (1, 1)-forms, while
the entries of the column vector τ are all (2, 0)-forms, under any frame e. Since

2i j =

n∑
k,ℓ=1

Rc
kℓ̄i j̄ ϕk∧ϕℓ, 2b

i j =

n∑
k,ℓ=1

(Rb
kℓi j̄ ϕk∧ϕℓ+Rb

k̄ℓ̄i j̄ ϕk∧ϕℓ+Rb
kℓ̄i j̄ ϕk∧ϕℓ),

and

(21)i j =

n∑
k,ℓ=1

(Rkℓi j̄ ϕk ∧ ϕℓ + Rk̄ℓ̄i j̄ ϕk ∧ ϕℓ + Rkℓ̄i j̄ ϕk ∧ ϕℓ),

(22)i j =

n∑
k,ℓ=1

(Rkℓī j̄ ϕk ∧ ϕℓ + Rkℓ̄ī j̄ ϕk ∧ ϕℓ).

From the structure equations and Bianchi identities, one gets this relationship
between the three curvature tensors [7, Lemma 2]:

Lemma 8. Let (Mn, g) be a Hermitian manifold. Under any local unitary frame e,

(2)

Rkℓ̄i j̄ − Rc
kℓ̄i j̄ = −

1
2 T j

ik,ℓ̄
−

1
2 T i

jℓ,k̄
+

1
4

∑
r

(T r
ik T r

jℓ − T j
kr T i

ℓr − T ℓ
ir T k

jr ),

Rb
kℓ̄i j̄ − Rc

kℓ̄i j̄ = −T j
ik,ℓ̄

− T i
jℓ,k̄

+

∑
r

(T r
ik T r

jℓ − T j
kr T i

ℓr )

for any i , j , k, ℓ, where the indices after commas mean covariant derivatives with
respect to ∇

c.

Note that the discrepancy in the coefficients here and [7, Lemma 2] is due to
the fact that our T j

ik is twice of that in [7]. For our later use, we will also need to
express the covariant derivatives of torsion in terms of the Bismut connection. Let
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us use indices after semicolons to denote the covariant derivatives with respect to
the Bismut connection. By the formula for γ (1) we have

(3)

T j
ik,ℓ − T j

ik;ℓ =

∑
r

(T j
rk T r

iℓ + T j
ir T r

kℓ − T r
ik T j

rℓ),

T j
ik,ℓ̄

− T j
ik;ℓ̄

=

∑
r

(−T j
rk T i

rℓ − T j
ir T k

rℓ + T r
ik T r

jℓ).

Next let us examine the curvature components of the canonical metric connections

Dr
s = (1 − s)Dr

+ s∇, Dr
=

1
2(1 + r)∇c

+
1
2(1 − r)∇b, (r, s) ∈ �.

For convenience, in the following we will fix an arbitrary point (r, s) ∈ � and
write D for Dr

s . Under the local unitary frame e, we have

Dei =

∑
j

(θ D
i j e j + sβi j ē j ), θ D

= θ +
1
2(1 − r + rs)γ = θ + tγ,

where we wrote t =
1
2(1 − r + rs). So under the frame t(e, ē) the matrices of

connection and curvature of D are given by

θ̂ D
=

[
θ D sβ̄
sβ θ D

]
, 2̂D

=

[
2D

1 2D
2

2D
2 2D

1

]
, θ D

= θ + tγ,

where
2D

1 = dθ D
− θ D

∧ θ D
− s2β̄ ∧ β,

2D
2 = s(dβ − β ∧ θ D

− θ D ∧ β).

For any fixed point p ∈ M , by the same proof of [23, Lemma 4], we may choose
our local unitary frame e near p so that θ D

|p = 0. So at the point p we have
θ |p = −tγ |p. Let γ ′ be the (1, 0)-part of γ . Then we have γ = γ ′

−γ ′∗ where γ ′∗

denotes the conjugate transpose of γ ′. Note that we always have tγ ′
∧ ϕ = −2τ , so

by the structure equation we get

∂ϕr =
( 1

2 − t
) ∑

i,k

T r
ikϕi ∧ ϕk, ∂̄ϕr = t

∑
i,k

T i
rkϕi ∧ ϕk at the point p.

Since θb
|p = −(t − 1)γ |p, at p we have

∂̄γ ′

kℓ|p = ∂̄
∑

i

T ℓ
kiϕi =

∑
i

(∂̄(T ℓ
ki ) ∧ ϕi + T ℓ

ki ∂̄ϕi )

=

∑
i, j

(
−∂̄ j (T ℓ

ki ) + t
∑

r

T ℓ
kr T i

r j

)
ϕi ∧ ϕ j

=

∑
i, j

(
T ℓ

ik; j̄ + (t − 1)
∑

r

(T r
ik T r

jℓ − T ℓ
ir T k

jr ) −

∑
r

T ℓ
kr T i

jr

)
ϕi ∧ ϕ j ,
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where index after the semicolon stands for covariant derivative with respect to the
Bismut connection ∇

b. At p, we have

2D
1 = 2 + 8, 8 = tdγ + t2γ ∧ γ − s2β̄ ∧ β.

We compute the (1, 1)-part of 8 at the point p:

(8kℓ)
1,1

= t ∂̄γ ′

kℓ − t∂γ ′

ℓk − t2
∑

r

(γ ′

kr ∧ γ ′

ℓr + γ ′

rk ∧ γ ′

rℓ) − s2
∑

r

βkr ∧ βrℓ

=

∑
i, j

(
tT ℓ

ik; j̄ + tT k
jℓ;ī

+ (t2
− 2t)(w − vℓ

i ) − t (v j
i + vℓ

k) −
1
4 s2v

j
k

)
ϕi ∧ ϕ j .

Here and from now on we will use these abbreviations:

(4)

w =

∑
r

T r
ik T r

jℓ, v
j
i =

∑
r

T j
ir T k

ℓr , vℓ
i =

∑
r

T ℓ
ir T k

jr ,

v
j
k =

∑
r

T j
kr T i

ℓr , vℓ
k =

∑
r

T ℓ
kr T i

jr .

We therefore conclude the following:

Lemma 9. Let (Mn, g) be a Hermitian manifold. Under any local unitary frame e,
the curvature of D = Dr

s has components

RD
i j̄kℓ̄

= Rc
i j̄kℓ̄

+ t (T ℓ

ik; j̄ + T k
jℓ;ī

) + (t2
− 2t)(w − vℓ

i ) − t (v j
i + vℓ

k) −
1
4 s2v

j
k ,

for any 1 ≤ i, j, k, ℓ ≤ n, where t =
1
2(1 − r + rs), Rc is the Chern curvature,

w and v
j
i etc. are given by (4), and indices after the semicolon stand for covariant

derivatives with respect to the Bismut connection ∇
b.

Note that using this shorthand notation, by (3) and (2), we get:

Lemma 10. Given a Hermitian manifold (Mn, g), under any local unitary frame e,

Rb
i j̄kℓ̄

− Rc
i j̄kℓ̄

= T ℓ

ik; j̄ + T k
jℓ;ī

+ vℓ
i − v

j
i − vℓ

k − w for all 1 ≤ i, j, k, ℓ ≤ n,

where w and v
j
i etc. are given by (4), and the indices after the semicolon stand for

covariant derivatives with respect to the Bismut connection ∇
b.

Since T̂ j
ik;ℓ̄

= 0, ŵ = 0, and v̂
j
i = v̂

j
k = v̂ℓ

i = v̂ℓ
k =

1
4(v

j
i + v

j
k + vℓ

i + vℓ
k) := v̂, we

finally end up with the following identity which holds for any Hermitian manifold:

(5) R̂D
i j̄kℓ̄

= R̂c
i j̄kℓ̄

−
(
t2

+
1
4 s2)v̂ = R̂ b

i j̄kℓ̄
+

(
1 − t2

−
1
4 s2)v̂.

In the rest of this section, let us recall a basic formula for Lie–Hermitian manifolds,
which means compact Hermitian manifolds with universal cover (G, J, g), where G
is a Lie group equipped with a left-invariant complex structure J and a compatible
left-invariant metric g. Denote by g the Lie algebra of G. Then the left-invariant
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complex structure and metric on G correspond to a complex structure and a metric
on g: the former means an almost complex structure J on the vector space g

satisfying the integrability condition

[x, y] − [J x, J y] + J [J x, y] + J [x, J y] = 0 for all x, y ∈ g,

while the latter means an inner product g = ⟨ · , · ⟩ on g such that ⟨J x, J y⟩ = ⟨x, y⟩

for any x, y ∈ g. Denote by gC the complexification of g, and by g1,0 its (1, 0)-part,
namely,

g1,0
=

{
x −

√
−1J x | x ∈ g

}
.

By a unitary frame of g we mean a basis e = {e1, . . . , en} of the complex vector
space g1,0 ∼= Cn so that ⟨ei , ē j ⟩ = δi j for any 1 ≤ i, j ≤ n. Here we assume that G
has real dimension 2n and we have extended ⟨ · , · ⟩ bilinearly over C. Following
the notation of [21; 22; 24] we will let

(6) [ei , e j ]=
∑

k

Ck
i j ek, [ei , ē j ]=

∑
k

(Di
k j ek − D j

ki ēk) for all 1 ≤ i, j ≤ n.

If we denote by ϕ the coframe dual to e, then the structure equation takes the form

dϕi = −

n∑
j,k=1

( 1
2C i

jkϕ j ∧ ϕk + D j
ikϕ j ∧ ϕk

)
and the first Bianchi identity which coincides with the Jacobi identity becomes

n∑
r=1

(Cr
i j C

ℓ
rk + Cr

jkCℓ
ri + Cr

ki C
ℓ
r j ) = 0,

n∑
r=1

(Cr
ik Dℓ

jr + Dr
ji Dℓ

rk − Dr
jk Dℓ

ri ) = 0,

n∑
r=1

(Cr
ik Dr

jℓ − C j
rk Di

rℓ + C j
r i Dk

rℓ − Dℓ
ri Dk

jr + Dℓ
rk Di

jr ) = 0,

for any 1 ≤ i, j, k, ℓ ≤ n. Under the frame e, the Chern connection form and Chern
torsion components are

θi j =

n∑
k=1

(D j
ikϕk − Di

jkϕk), T j
ik = −C j

ik − D j
ik + D j

ki .

From this, we get the expression for γ and the Bismut connection matrix

θb
i j =

n∑
k=1

((−C j
ik + D j

ki )ϕk + (C i
jk − Di

k j ) ϕk).



METRIC CONNECTIONS WITH CONSTANT HOLOMORPHIC SECTIONAL CURVATURE 339

Following [7], we can take the (1, 1)-part in 2b
= dθb

− θb
∧ θb and obtain

Rb
kℓ̄i j̄ = (Cr

ikCr
jℓ − C j

rkC i
rℓ) − (Cr

ik Dr
ℓj + Cr

jℓDr
ki ) + (C j

ir Dk
rℓ − C j

kr Di
ℓr )

+ (C i
jr Dℓ

rk − C i
ℓr D j

kr ) − (D j
r i Dk

rℓ + Dℓ
rk Di

r j ) + (Dr
ki Dr

ℓj − D j
kr Di

ℓr )

for any i, j, k, ℓ. Here r is summed up from 1 to n. For our later proofs, we will
also need the following result for the symmetrization of Rb, which are (33) and
(34) from [7]:

Lemma 11. Let (G, J, g) be an even-dimensional Lie group equipped with a left-
invariant complex structure and a compatible metric. Let e be a unitary frame
of g1,0 and C , D be defined by (6). Then under e we have

4R̂ b
kk̄i ī = −

(
|C i

rk |
2
+|Ck

ri |
2
+2Re(C i

r i C
k
rk)

)
(7)

+2Re
(
C i

ir (Dk
rk−Dk

kr )+Ck
kr (Di

r i−Di
ir )+C i

kr (Di
rk−Di

kr )+Ck
ir (Dk

ri−Dk
ir )

)
−2

(
|Di

rk |
2
+|Dk

ri |
2
+2Re(Di

r i Dk
rk)

)
+

(
|Dr

ki |
2
+|Dr

ik |
2
+2Re(Dr

ik Dr
ki )

)
−

(
|Di

kr |
2
+|Dk

ir |
2
+2Re(Di

ir Dk
kr )

)
,

R̂ b
i ī i ī = −|C i

r i |
2
+2Re(C i

ir (Di
r i−Di

ir ))−2 |Di
r i |

2
+|Dr

ii |
2
−|Di

ir |
2.(8)

Finally let us recall this famous result of Salamon [17, Theorem 1.3]:

Theorem 12 (Salamon). Let G be a nilpotent Lie group of dimension 2n equipped
with a left-invariant complex structure. Then there exists a coframe ϕ ={ϕ1, . . . , ϕn}

of left-invariant (1, 0)-forms on G such that

dϕ1 = 0, dϕi = I{ϕ1, . . . , ϕi−1} for all 2 ≤ i ≤ n,

where I stands for the ideal in exterior algebra of the complexified cotangent bundle
generated by those (1, 0)-forms.

Note that when g is a compatible left-invariant metric, clearly one can choose
the above coframe ϕ so that it is also unitary. In terms of the structure constants C
and D given by (6), this means

C j
ik = 0 unless j > i or j > k; D j

ik = 0 unless i > j.

If the complex structure J is nilpotent in the sense of Cordero, Fernández, Gray,
and Ugarte [10], then there exists an invariant unitary coframe ϕ so that

(9) C j
ik = 0 unless j > i and j > k; D j

ik = 0 unless i > j and i > k.

We do not know how to prove Conjecture 5 for all nilmanifolds at the present
time, but for those with nilpotent J in the sense of [10], we will be able to confirm
the conjecture with the help of (9) above.
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3. The standard Hopf manifolds

Consider the standard (isosceles) Hopf manifold (Mn, g), n ≥ 2, where the manifold
and the Kähler form ω of the metric are given by

(10) Mn
= (Cn

\{0})/⟨φ⟩, ω =
√

−1
∂∂̄|z|2

|z|2
, φ(z1, . . . , zn)= (a1z1, . . . , anzn),

where ai are constants satisfying 0< |a1|= · · ·= |an|<1. Here (z1, . . . , zn) denotes
the standard Euclidean coordinate of Cn and |z|2 is shorthand for |z1|

2
+· · ·+ |zn|

2.
Near any given point p ∈ Mn , (z1, . . . , zn) gives a local holomorphic coordinate

system, under which the metric g has components gkℓ̄ =
1

|z|2 δkℓ. If we let ei = |z| ∂i ,
where ∂i =

∂
∂zi

, then e becomes a local unitary frame of (Mn, g). The Chern
curvature components are

Rc
i j̄kℓ̄

= |z|4 Rc(∂i , ∂̄ j , ∂k, ∂̄ℓ)

= |z|4
(

−∂i ∂̄ j gkℓ̄ +

∑
r,s

∂i gkr̄ ∂̄ j gsℓ̄ gr̄ s
)

= δi jδkℓ −
z̄i z j

|z|2
δkℓ,

for any 1 ≤ i, j, k, ℓ ≤ n. On the other hand, by the defining equation ∂ωn−1
=

−η ∧ ωn−1, we know that Gauduchon’s torsion 1-form is η = (n − 1)∂|z|2, and the
Chern torsion components under the frame e are

T j
ik =

z̄k

|z|
δi j −

z̄i

|z|
δk j for all 1 ≤ i, j, k ≤ n.

From this, we compute

v
j
i =

∑
r

T j
ir T k

ℓr = δi jδkℓ +
1

|z|2
(z̄i zℓδk j − z̄i z jδkℓ − z̄kzℓδi j ).

Taking its symmetrization, we obtain

4v̂ = 2(δi jδkℓ + δiℓδk j ) −
1

|z|2
(z̄i z jδkℓ + z̄kzℓδi j + z̄i zℓδk j + z̄kz jδiℓ) = 4R̂c.

So for any canonical metric connection Dr
s where (r, s) ∈ �, by (5) we get

R̂D
= R̂c

−
(
t2

+
1
4 s2)v̂ =

(
1 − t2

−
1
4 s2)R̂c.

In particular, whenever t2
+

1
4 s2

= 1, or equivalently, whenever (r, s) belongs to
the Chen–Nie curve 0, then one would have R̂D

= 0, that is, the canonical metric
connection Dr

s for the standard Hopf manifold will have vanishing holomorphic
sectional curvature. When (r, s) /∈ 0, on the other hand, we have

R̂D
11̄11̄ =

(
1 − t2

−
1
4 s2)R̂c

11̄11̄ =
(
1 − t2

−
1
4 s2)(1 −

|z1|
2

|z|2

)
.
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Since n ≥ 2, the right-hand side is not a constant function, thus the holomorphic
sectional curvature of Dr

s cannot be a constant.
Next we want to check that, for (r, s) ∈ �, when will the canonical metric

connection Dr
s of the standard Hopf manifold be flat? To do this, let us fix any

1 ≤ i, j, k, ℓ ≤ n and introduce the shorthand notation

bi j =
z̄i z j

|z|2
δkℓ, biℓ =

z̄i zℓ

|z|2
δk j , bk j =

z̄kz j

|z|2
δiℓ, bkℓ =

z̄kzℓ

|z|2
δi j .

We compute

w =

∑
r

T r
ik T r

jℓ = bi j + bkℓ − biℓ − bk j .

Similarly,

v
j
i = δi jδkℓ − bi j − bkℓ + biℓ, v

j
k = δiℓδk j + bkℓ − biℓ − bk j ,

vℓ
i = δiℓδk j + bi j − biℓ − bk j , vℓ

k = δi jδkℓ − bi j − bkℓ + bk j .

Also, Rc
i j̄kℓ̄

equals δi jδkℓ −bi j . As is well known (see, for instance, the proof of [27,
Lemma 4.6]), the standard Hopf manifolds given by (10) are Bismut torsion-parallel
(or equivalently, Vaisman), so when we plug all of these expressions into the formula
in Lemma 9 we end up with

RD
i j̄kℓ̄

= (1 − 2t)δi jδkℓ +
(
2t − t2

−
1
4 s2)δiℓδk j

+ +(2t − 1)bi j
(
t2

−
1
4 s2)bkℓ +

( 1
4 s2

− t
)
(biℓ + bk j ).

In particular, for any i ̸= k, we have

RD
iīkk̄ = (1 − 2t) + (2t − 1)

|zi |
2

|z|2
+

(
t2

−
1
4 s2) |zk |

2

|z|2
,

RD
ik̄kī =

(
2t − t2

−
1
4 s2)

+
( 1

4 s2
− t

)( |zi |
2

|z|2
+

|zk |
2

|z|2

)
.

Now assume that RD
= 0. When n ≥ 3, each of the coefficients on the right-hand

sides must be zero, so we get 1−2t = 0, 1
4 s2

= t2
= t , which lead to a contradiction.

This means that Dr
s can never be flat for any (r, s) when n ≥ 3. When n = 2,

however, we have |zi |
2
+ |zk |

2
= |z|2, so the vanishing of RD

iīkk̄
and RD

ik̄kī
in this

case only give us
t2

−
1
4 s2

− 2t + 1 = 0, t − t2
= 0.

From this, we conclude that either t = 1 and s = 0, or t = 0 and s = ±2. Recall
that t =

1
2(1 − r + rs), so we end up with three solutions:

(r, s) = (−1, 0), (−1, 2),
( 1

3 , −2
)
.
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The corresponding connections are D−1
0 = ∇

b, D−1
2 = ∇

+, and D1/3
−2 = ∇

−, namely,
the Bismut connection, and the two vertices of the Chen–Nie curve 0, which lies
between the horizontal lines s = −2 and s = 2. Conversely, it is known that when
n = 2, the isosceles Hopf surface is Bismut flat, hence is also ∇

+ and ∇
− flat ([25]).

In summary, we have proved the following:

Proposition 13. Let (Mn, g) be a standard (isosceles) Hopf manifold given by (10),
with n ≥ 2. Then for any (r, s) ∈ � \ 0, the canonical metric connection Dr

s
cannot have constant holomorphic sectional curvature. For any (r, s) ∈ 0, Dr

s has
vanishing holomorphic sectional curvature, but it is not flat except when n = 2
and Dr

s is ∇
b, ∇

+ or ∇
−.

Recall that the Chen–Nie curve 0 is defined by 1 = t2
+

1
4 s2 where 2t = 1−r +rs.

4. Proof of Theorem 7

In this section we will prove the main result, namely Theorem 7. Let us start with
the nilmanifold case.

Proof of Theorem 7 for nilmanifolds. Let (Mn, g) be a complex nilmanifold, namely,
a compact Hermitian manifold with universal cover (G, J, g), where G is a nilpotent
Lie group, J a left-invariant complex structure on G, and g a left-invariant metric
on G compatible with J . We assume that J is nilpotent in the sense of [10].
Now suppose that for some (r, s) ∈ �, the holomorphic sectional curvature of the
canonical metric connection D = Dr

s is a constant c. This means that

R̂D
i j̄kℓ̄

=
1
2 c(δi jδkℓ + δiℓδk j ) for all 1 ≤ i, j, k, ℓ ≤ n,

under any unitary frame e. By (5), we have

R̂ b
i j̄kℓ̄

=
1
2 c(δi jδkℓ + δiℓδk j ) +

(
t2

+
1
4 s2

− 1
)
v̂.

Therefore,

(11) R̂ b
i īkk̄ =

1
2 c(1 + δik) +

(
t2

+
1
4 s2

− 1
)

·
1
4

∑
r

(2 Re(T i
ir T k

kr ) + |T k
ir |

2
+ |T i

kr |
2) for all 1 ≤ i, k ≤ n.

Choose i = k, we get

R̂ b
i ī i ī = c +

(
t2

+
1
4 s2

− 1
) ∑

r
|T i

ir |
2
= c +

(
t2

+
1
4 s2

− 1
) ∑

r>i
|Di

r i |
2,

where in the last equality we used the fact that T j
ik = −C j

ik − D j
ik + D j

ki and (9).
Comparing the above identity with (8) and utilizing (9) again, we end up with

−c =
(
t2

+
1
4 s2

+ 1
) ∑

r>i
|Di

r i |
2 for all 1 ≤ i ≤ n.
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If we choose i = n, then the right-hand side is vacuum, so we know that c = 0.
Hence Di

∗i = 0. From this, we get T i
i∗ = 0. So (11) now takes the form

R̂ b
i īkk̄ =

(
t2

+
1
4 s2

− 1
) 1

4

∑
r

(|T k
ir |

2
+ |T i

kr |
2) = R̂ b

kk̄i ī .

Let us assume that i < k. Plugging the above into (7) and utilizing (9), we get

4R̂ b
kk̄i ī =

(
t2

+
1
4 s2

− 1
)( ∑

r<k
(|Ck

ir |
2
+ |Di

kr |
2) +

∑
r>k

(|Dk
ri |

2
+ |Di

rk |
2)

)
=

∑
r<k

(−|Ck
ri |

2
+ |Dr

ki |
2
− |Di

kr |
2) − 2

∑
r>k

(|Di
rk |

2
+ |Dk

ri |
2).

That is,(
t2

+
1
4 s2

+ 1
) ∑

r>k
(|Dk

ri |
2
+ |Di

rk |
2)+

(
t2

+
1
4 s2) ∑

r<k
(|Ck

ir |
2
+ |Di

kr |
2) =

∑
r<k

|Dr
ki |

2.

We already know that D j
∗ j = 0 for any j . In particular D∗

2∗
= 0 by (9), so if we take

k = 2 in the above identity, the right-hand side would be zero, thus we conclude
that D2

∗1 = D1
∗2 = 0. Hence by (9) we have D∗

3∗
= 0. Take k = 3 in the above

identity, again the right-hand side is zero which leads to D j
∗ℓ = 0 whenever j, ℓ ≤ 3.

Thus D∗

4∗
= 0 by (9). Repeating this process, we end up with D = 0. Then by

the above identity again, we get
(
t2

+
1
4 s2

)
C = 0. Note that (t, s) = (0, 0) means

(r, s) = (1, 0) or equivalently Dr
s = ∇

c. So when Dr
s is not the Chern connection,

we get C = 0, hence the Lie group G is abelian, and g is Kähler and flat. In this
case (Mn, g) is a finite undercover of a flat complex torus. When (t, s) = (0, 0),
the connection Dr

s is the Chern connection. The vanishing of D means that the Lie
group G is a complex Lie group, so g is Chern flat.

In summary, when Dr
s is not the Chern connection, the constancy of holomorphic

sectional curvature for Dr
s would imply that the nilpotent group G must be abelian

and g is Kähler and flat. When Dr
s is the Chern connection, the constancy of

Chern holomorphic sectional curvature would imply that G is a (nilpotent) complex
Lie group, and g is Chern flat. This completes the proof of Theorem 7 for the
nilmanifold case. □

We remark that in the nilmanifold case we do not need to exclude any (r, s)
values for the metric connection Dr

s . As one can see from the above proof, the
technical assumption that J is nilpotent is crucial in the argument, and without
which we do not know how to complete the proof. It would be an interesting
question to answer though.

Next let us prove Theorem 7 in the BTP case.

Proof of Theorem 7 for nonbalanced BTP manifolds. Let (Mn, g) be a compact,
nonbalanced BTP manifold. Assume that for some (r, s) ∈ �, the canonical metric
connection D = Dr

s has constant holomorphic sectional curvature: H D
= c. Then
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under any local unitary frame e, we have R̂D
i j̄kℓ̄

=
1
2 c(δi jδkℓ + δiℓδk j ) for any 1 ≤

i, j, k, ℓ ≤ n. By (5), we get

(12) R̂ b
i j̄kℓ̄

=
1
2 c(δi jδkℓ + δiℓδk j ) +

(
t2

+
1
4 s2

− 1
)
v̂ for all 1 ≤ i, j, k, ℓ ≤ n,

where 4v̂ = v
j
i + vℓ

k + v
j
k + vℓ

i . Since g is nonbalanced BTP, by Definition 1.6 and
Proposition 1.7 of [27], we know that locally on Mn there always exist the so-called
admissible frames, which means a local unitary frame e such that the Chern torsion
components under e enjoy the property T n

i j = 0 and T j
in = δi j ai for any 1 ≤ i, j ≤ n,

where ai are global constants on Mn , also, the Bismut curvature components satisfy
Rb

n j̄kℓ̄
= Rb

i j̄nℓ̄
= 0 for any 1 ≤ i, j, k, ℓ ≤ n. Let us take i = j and k = ℓ = n in (12).

Then we get
0 =

1
2 c(1 + δin) +

(
t2

+
1
4 s2

− 1
) 1

4 |ai |
2.

For i = n, since an = 0 we deduce c = 0. So the above equality becomes(
t2

+
1
4 s2

− 1
)
|ai |

2
= 0

for each i . Since the metric is assumed to be nonbalanced, we have a1+· · ·+an−1 =

λ > 0, therefore those ai cannot be all zero and we must have t2
+

1
4 s2

− 1 = 0.
That is, the parameter (r, s) must belong to the Chen–Nie curve 0. □

It remains to deal with the case of balanced BTP threefolds, which relies on the
classification result for such threefolds in [26]. First we need the following:

Lemma 14. Let (Mn, g) be a BTP manifold with its Dr
s connection having constant

holomorphic sectional curvature c. Then under any local unitary frame e,

Rb
i j̄kℓ̄

=
1
2 c(δi jδkℓ+δiℓδk j )−

1
2w+

1
4

(
t2

+
1
4 s2

−3
)
(v

j
i +vℓ

k)+
1
4

(
t2

+
1
4 s2

+1
)
(vℓ

i +v
j
k ).

Proof. For BTP manifolds, by [26] we know that the Bismut curvature Rb always
satisfies the symmetry condition Rb

i j̄kℓ̄
= Rb

kℓ̄i j̄
and

Qi j̄ kℓ̄ := Rb
i j̄kℓ̄

− Rb
k j̄ i ℓ̄ = −w − v

j
i − vℓ

k + vℓ
i + v

j
k ,

under any local unitary frame. Therefore, for BTP manifolds,

(13) R̂ b
i j̄kℓ̄

=
1
2(Rb

i j̄kℓ̄
+ Rb

k j̄ i ℓ̄) =
1
2(2Rb

i j̄kℓ̄
− Qi j̄ kℓ̄)

= Rb
i j̄kℓ̄

+
1
2(w + v

j
i + vℓ

k − vℓ
i − v

j
k ).

Under our assumption H D
= c, we have R̂D

i j̄kℓ̄
=

1
2 c(δi jδkℓ + δiℓδk j ). On the other

hand, by (5) we get

R̂D
− R̂ b

=
1
4

(
1 − t2

−
1
4 s2)(v j

i + vℓ
k + vℓ

i + v
j
k ).

Plugging this into (13), we get the desired expression for Rb stated in the lemma. □
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Lemma 14 implies that, for a BTP manifold with Dr
s holomorphic sectional

curvature being a constant c, its Bismut curvature satisfies

(14) Rb
i īkk̄ =

1
2 c(1 + δik) −

1
2

∑
r

|T r
ik |

2
+

1
2

(
t2

+
1
4 s2

− 3
)

Re
∑
r

T i
ir T k

kr

+
1
4

(
t2

+
1
4 s2

+ 1
) ∑

r
(|T i

kr |
2
+ |T k

ir |
2) for all 1 ≤ i, k ≤ n,

under any local unitary frame e.
Next let us recall the classification result from [26] for balanced BTP threefolds.

Let (M3, g) be a balanced, non-Kähler, compact BTP Hermitian threefold. By the
observation in [26; 28], for any given point p ∈ M , there always exists a unitary
frame e (which will be called special frames from now on) in a neighborhood of p
such that under e the only possibly nonzero Chern torsion components are ai = T i

jk ,
where (i jk) is a cyclic permutation of (123). Furthermore, each ai is a global
constant on M3, with a1 = · · · = ar > 0, ar+1 = · · · = 0, where r = rB ∈ {1, 2, 3}

is the rank of the B tensor, which is the global 2-tensor on any Hermitian manifold
defined under any unitary frame by Bi j̄ =

∑
k,ℓ T j

kℓT i
kℓ. The conclusion in [26]

indicates that any compact balanced (but non-Kähler) BTP threefold must be one
of the following:

• rB = 3, (M3, g) is a compact quotient of the complex simple Lie group SO(3, C),
in particular it is Chern flat.

• rB = 1, (M3, g) is the so-called Wallach threefold, namely, M3 is biholomorphic
to the flag variety P(TP2) while g is the Kähler–Einstein metric g0 minus the square
of the null-correlation section. Scale g by a positive constant if necessary, the
Bismut curvature matrix under a special frame e is

(15) 2b
=

α+β 0 0
0 α σ

0 −σ̄ β

,


α = ϕ11̄ + (1 − b)ϕ22̄ + bϕ33̄ + pϕ23̄ + p̄ϕ32̄,

β = ϕ11̄ + bϕ22̄ + (1 − b)ϕ33̄ − pϕ23̄ − p̄ϕ32̄,

σ = pϕ22̄ − pϕ33̄ + qϕ23̄ + (1 + b)ϕ32̄,

where b is a real constant, p, q are complex constants, ϕ is the coframe dual to e,
and we wrote ϕi j̄ for ϕi ∧ ϕ j for simplicity.

• rB = 2, in this case (M3, g) is said to be of middle type. Again under appropriate
scaling of the metric, the Bismut curvature matrix under e becomes

(16) 2b
=

 dα dβ0

−dβ0 dα

0

,

{
dα = x(ϕ11̄ + ϕ22̄) + iy(ϕ21̄ − ϕ12̄),

dβ0 = −iy(ϕ11̄ + ϕ22̄) + (x − 2)(ϕ21̄ − ϕ12̄),

where x, y are real-valued local smooth functions.

With this explicit information on Bismut curvature at hand, we are now ready to
finish the proof of Theorem 7 for the balanced BTP threefold case.
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Proof of Theorem 7 for balanced BTP threefolds. Let (M3, g) be a compact balanced
BTP Hermitian threefold. Assume that g is not Kähler (otherwise by the constancy
of holomorphic sectional curvature we already know that the manifold is a complex
space form). Suppose that for some (r, s) ∈ � the canonical metric connection Dr

s
of g has constant holomorphic sectional curvature c.

First let us consider the rB = 3 case. In this case g is Chern flat, so by (5) we have

(17) 1
2 c(δi jδkℓ + δiℓδk j ) = R̂D

i j̄kℓ̄
= −

(
t2

+
1
4 s2)v̂.

Now let e be a special frame. Then the only nonzero Chern torsion components
under e are T 1

23 = T 2
31 = T 3

12 = λ > 0. Therefore v̂i ī i ī =
∑
r

|T i
ir |

2
= 0 for any

1 ≤ i ≤ 3, while for any 1 ≤ i ̸= k ≤ 3 we have

4v̂i īkk̄ =
∑
r

(|T i
kr |

2
+ |T k

ir |
2
+ 2 Re(T i

ir T k
kr )) = λ2

+ λ2
+ 0 = 2λ2.

If we let i = j =k =ℓ in (17), then we get c=0. If we let i = j ̸=k =ℓ in (17) instead,
then we obtain c =−

(
t2

+
1
4 s2

)
λ2. Thus t = s =0. Since t =

1
2(1−r+rs), this means

that r = 1. Hence our connection Dr
s is D1

0 , which is the Chern connection ∇
c.

Next let us consider the rB = 1 case. In this case (M3, g) is the Wallach threefold.
Under a special frame e, the only nonzero Chern torsion component is T 1

23 = λ > 0.
So as in the previous case v̂i ī i ī =

∑
r |T i

ir |
2

= 0 for any 1 ≤ i ≤ 3, and for any
1 ≤ i < k ≤ 3 we have

4v̂i īkk̄ =
∑
r

(|T i
kr |

2
+ |T k

ir |
2
+ 2 Re(T i

ir T k
kr )) = δi1λ

2.

Therefore by Lemma 14 we have Rb
i ī i ī

= c for any 1 ≤ i ≤ 3 and

(18) Rb
i īkk̄ =

1
2 c −

1
2δi2λ

2
+

1
4

(
t2

+
1
4 s2

+ 1
)
δi1λ

2 for all 1 ≤ i < k ≤ 3.

On the other hand, by the formula (15) for the Bismut curvature matrix under e,
we have

Rb
11̄11̄ = 2, Rb

22̄22̄ = 1 − b, Rb
11̄22̄ = 1, Rb

22̄33̄ = b.

Therefore 2 = 1−b = c which implies that c = 2 and b = −1, while by (18) we get

1 =
1
2 c +

1
4

(
t2

+
1
4 s2

+ 1
)
λ2, b =

1
2 c −

1
2λ2.

Note that the first equality in the above line gives a contradiction. So in this Fano case
the holomorphic sectional curvature of Dr

s for any (r, s) ∈ � cannot be a constant.
Finally let us consider the rB = 2 case. In this case, under a special frame e the

only nonzero Chern torsion components are T 1
23 = T 2

31 = λ > 0. So by (14) we get
Rb

i ī i ī
= c for each 1 ≤ i ≤ 3, and, for any 1 ≤ i < k ≤ 3,

Rb
i īkk̄ =

1
2 c −

1
2λ2δk3 +

1
4

(
t2

+
1
4 s2

+ 1
)
λ2(2 − δk3).
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From (16), we get Rb
11̄11̄

= x , Rb
33̄33̄

= 0, hence x = c = 0. Also by (16) we have
Rb

11̄22̄
= x , thus the above equality gives us

0 = x = Rb
11̄22̄ =

1
2 c − 0 +

1
4

(
t2

+
1
4 s2

+ 1
)
λ2(2 − 0) =

1
2

(
t2

+
1
4 s2

+ 1
)
λ2,

which is clearly a contradiction. This shows that balanced BTP threefolds of middle
type can never have constant holomorphic sectional curvature for Dr

s for any (r, s).
This completes the proof the Theorem 7 for the case of balanced BTP threefolds. □
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