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GARY SEITZ (1943–2023): IN MEMORIAM

Gary Seitz was born in Santa Monica, California, and grew up in Los Angeles.
His father, David Seitz, was in the casino business, and his mother Sarah worked
in a hair salon. As a youth, Gary was into body-building and bowling, and at one
point had to make a career decision between going into mathematics or becoming
a professional bowler. Fortunately for us, he decided on the former, and did his
Bachelor’s and Master’s degrees at Berkeley. While at Berkeley he met Sheila
Coutin, and they married while still undergraduates in 1964. They had two sons,
Aaron and Steve, both of whom went on to have academic careers.

After Berkeley, Gary moved to the University of Oregon in Eugene for his
PhD with advisor Charles Curtis, which he completed in 1968. He then held a
postdoctoral research position at the University of Illinois at Chicago Circle until
1970, when he returned as a faculty member to Eugene, where he remained until
his retirement. He served the University of Oregon with enormous distinction, both
academically and administratively, as Head of Department 1994–2001, CAS Distin-
guished Professor from 2000, and Associate Dean of Natural Sciences 2002–2005.

Gary was a leading figure in algebra for over 50 years, publishing about 100
articles and books on a wide variety of topics, mainly centering around group theory:
finite groups, algebraic groups, representation theory, maximal subgroups, and
applications to other areas such as number theory and algebraic combinatorics. He
was extremely collaborative in his research, publishing with 29 different coauthors,
and holding visiting appointments at Caltech, Notre Dame, IHES, Bar Ilan, Tel
Aviv, the Technion, IAS Princeton, Aarhus, Utrecht, Essen, Tokyo, Warwick and
Imperial College London. He was named a Fellow of the American Mathematical
Society in 2013.

Let us discuss some of the themes of Gary’s research in a little more detail. In his
PhD thesis and several subsequent papers, he proved deep results about a wide class
of finite solvable groups known as M-groups. He then moved to Chicago, which at
the time was a tremendous centre for finite group theory, particularly surrounding the
finite simple groups and the attempt to classify them. Jacques Tits had recently intro-
duced his theory of B N -pairs for finite groups, and their associated buildings, and
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he had shown that any simple group with a B N -pair of rank at least 3 is necessarily a
group of Lie type, providing a geometric setting for these families of simple groups,
and also a powerful method for identifying them. Tits’ methods were largely geomet-
ric, and for ranks 1 and 2 the geometric structure was not strong enough — for exam-
ple, the groups with a B N -pair of rank 1 are just the 2-transitive permutation groups.
It was important to fill this gap, and together with Christoph Hering and Bill Kantor,
also based in Chicago at the time, Gary succeeded in classifying the split B N -pairs of
rank 1; soon thereafter, with Paul Fong, Gary classified the split B N -pairs of rank 2.

These results provided an essential tool in the ongoing programme to classify the
finite simple groups, which was proceeding apace at the time. Gary made further
key contributions to this programme with his work, partly with Michael Aschbacher,
on standard subgroups. A standard subgroup of a finite group G is a quasisimple
subgroup that is embedded in a very specific way in an involution centralizer in
G. One key part of the classification programme was to determine the finite groups
G that have a standard subgroup A belonging to one of the known families of
quasisimple groups. Many authors were involved in this project; Gary and Michael
handled the case where CG(A) has 2-rank at least 2, and in several further papers
Gary dealt with the case of 2-rank 1 when A is a group in the family Lie(2) of groups
of Lie type in characteristic 2. Along the way, Gary and Michael found it necessary to
develop a complete theory of involution classes and centralizers for groups in Lie(2),
and wrote a much-cited paper on this that proved to be a precursor of Gary’s later
fundamental work on unipotent elements in algebraic groups, on which more later.

The completion of the classification of finite simple groups was first announced
in the early 1980s. However, not much was known about the subgroup structure
of these groups, and in particular their maximal subgroups. The study of these
maximal subgroups formed one of the themes of Gary’s work for the next 30 years.
The finite groups of Lie type are intimately related to the corresponding simple
algebraic groups over algebraically closed fields, and in the 1950s Dynkin had
solved the maximal subgroup problem for classical groups over C; a major part of his
solution was the determination of all triples (G, H, V ) with V a finite-dimensional
complex vector space and G < H < Cl(V ), where Cl(V ) is a classical group on V
and G, H are connected algebraic groups acting irreducibly on V . Gary took on
the formidable project of generalizing this result to algebraically closed fields of
arbitrary characteristic. He gave part of this problem to his then PhD student Donna
Testerman, and between them they solved it completely, publishing their results in
two Memoirs of the AMS, totalling about 500 pages. This work has been used many
times both within finite and algebraic group theory, and in its applications.

For the simple algebraic groups of exceptional Lie types (G2, . . . , E8), one can
hope to determine all the connected maximal subgroups. In further pioneering work,
Gary achieved this in another Memoir published in 1991, assuming the characteristic
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p of the underlying field is not too small (p > 7 suffices in all cases). In a later
Memoir with Martin Liebeck, he extended the result to all characteristics, and also
to disconnected subgroups. These results had implications for maximal subgroups
of the finite exceptional groups of Lie type, and in a long series of papers with
Martin, and also some with Arjeh Cohen, Jan Saxl and others, Gary built an edifice
of theory on the subgroup structure of these families of simple groups.

We mentioned before Gary’s work with Michael Aschbacher classifying invo-
lution classes in the groups in Lie(2). He continued to work on many different
aspects of unipotent elements in finite and algebraic groups G of Lie type. In a
1983 paper, he built a theory of root groups relative to arbitrary maximal tori of
the finite groups, and used this to determine the subgroups containing such tori. In
other papers published in the 1990s, he classified the subgroups generated by root
elements, and at the other extreme, by regular or semiregular unipotent elements.

In 2000 Gary achieved a breakthrough, solving the “saturation” problem of J-P.
Serre for arbitrary unipotent elements of order p (the characteristic of the underlying
field, assumed good for the simple algebraic group G): he proved that any such
unipotent element u is contained in a unique 1-dimensional unipotent subgroup of a
particularly nice A1 subgroup (called a “good” A1 by Gary), unique up to conjugacy
in G by CG(u). This enables one to answer many questions about unipotents by
studying the good A1’s, a beautiful class of subgroups. Gary published numerous
further papers on this topic, culminating in his book with Martin Liebeck, which
presents a complete theory of unipotent classes and centralizers in simple algebraic
groups, and nilpotent classes in the corresponding Lie algebras.

Of course much of Gary’s work already discussed involves heavy use of the rep-
resentation theory of finite and algebraic groups. Gary also published many articles
that are purely on this topic. An early one was a much-cited 1974 paper with Vicente
Landazuri giving lower bounds for the dimensions of irreducible representations of
groups in Lie(p) over fields of characteristic coprime to p; this work has been built
on by many authors to classify all the low-dimensional representations of these
groups, an important theory with many applications. Another highlight is Gary’s
1992 paper with Jens Jantzen on the innocent-looking problem of determining which
irreducible representations (in arbitrary characteristic) of the symmetric group Sn

remain irreducible on restriction to Sn−1. The results and conjectures posed in this
paper formed the first step in a theory of modular branching rules for representations
of Sn developed by Alexander Kleshchev and others, now a fundamental tool of
representation theory.

Another topic on which Gary made decisive contributions is the theory of G-
complete reducibility (G-cr): this was introduced by Serre as a way of interpreting
concepts of representation theory in the more general setting of maps between
algebraic groups. In a 1996 Memoir with Martin Liebeck, Gary proved that arbitrary
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reductive subgroups of exceptional algebraic groups are completely reducible pro-
vided the underlying characteristic p is not too small (p > 7 suffices in all cases).
Together with results of Jantzen and McNinch, and Serre himself, on classical
groups, these results formed the basis of G-cr theory, which has since been taken
much further by many authors.

Gary was involved in several projects applying group theory to other areas
of mathematics. The most striking of these was his proof with Yoav Segev and
Andrei Rapinchuk that all finite quotients of the multiplicative group of a finite
dimensional division algebra are solvable. A consequence was the solution of the
Margulis–Platonov conjecture on the normal subgroup structure of algebraic groups
over number fields. The method behind their proof was based on the remarkable
idea, pioneered by Segev, that the commuting graph of such a finite quotient must
have strong connectivity properties; in several substantial papers, they proved that
commuting graphs of nonsolvable groups could not have such properties.

Let us finally mention the topic on which Gary was working for most of the last
ten years of his life: the theory of multiplicity-free representations. The project was
to classify the triples (G, H, V ), where H < G < GL(V ) are connected reductive
algebraic groups over an algebraically closed field of characteristic zero, and V
is an irreducible G-module whose restriction to H is multiplicity-free (i.e., each
composition factor appears with multiplicity 1). A great deal of classical work,
going back to Dynkin, Howe, Kac, Stembridge, Weyl and others, can be set in this
context. In his final Memoir with Martin and Donna, Gary determined all such
triples in cases where H and G are both simple algebraic groups of type A, showing
that there are many beautiful families of such representations.

There are large parts of Gary’s output that we have not mentioned, but we hope
we have conveyed some of the profound influence of his work across many areas
and over many years.

Gary was the advisor of eleven PhD students, almost all of whom continued into
the academic profession. Three of them, George McNinch, Gerhard Röhrle and
Donna Testerman, have contributed articles to this volume.

We three had the privilege of learning continually from Gary’s enormous depth
of knowledge and ideas, as well as collaborating with him over many years. But we
valued above all his warm, generous friendship; his wisdom in matters mathematical
and non-mathematical; his boundless energy; and his wonderful company, full of
laughter and fun. We miss him deeply.

Martin Liebeck
Gerhard Röhrle
Donna Testerman
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INTRINSIC COMPONENTS IN
INVOLUTION CENTRALIZERS OF FUSION SYSTEMS

MICHAEL ASCHBACHER

This paper lays the foundation for the study of the saturated 2-fusion systems
in which the centralizer of some fully centralized involution has a component
whose center is nontrivial.

The results in this paper are part of a program to, first, classify a large subclass
of the class of simple 2-fusion systems of component type, and then, second, to use
the theorem on fusion systems to simplify the proof of the theorem classifying the
finite simple groups. See [4; 5] for a description of the program; there is also a bit
of discussion of the program below.

Let p be a prime and S a finite p-group. A fusion system on S is a cate-
gory F whose objects are the subgroups of S and, for subgroups P, Q of S, the set
homF (P, Q) of morphisms from P to Q is a set of injective group homomorphisms
from P to Q, and that set satisfies two weak axioms. The standard example is the
fusion system FS(G) for G a finite group and S ∈ Sylp(G), whose morphisms are
those induced via conjugation in G. A fusion system is saturated if it satisfies two
more axioms easily seen to hold in the standard example using Sylow’s theorem.
See [12] for notation, terminology, and basic definitions and results on fusion
systems.

Let F be a saturated fusion system on a finite 2-group S. Proceeding by analogy
with finite groups, one can define the notion of a normal subsystem of F , which can
then be used to define the notions of simple and quasisimple systems, subnormal
subsystems of F , and the set Comp(F) of components of F . For t an involution
in S the centralizer CF (t) of t in F is defined, and if t is fully centralized (i.e.,
|CS(t)| ≥ |CS(x)| for each conjugate x of t) then CF (t) is saturated, so we can
define Comp(CF (t)).

Define C(F) to be the set of components of centralizers of involutions in F ; that
is, C ∈ C(F) if there exists some involution t ∈ S and a conjugate (t̄, C) of (t, C)

such that t̄ is fully centralized and C ∈ Comp(CF (t̄)); we write I(C) for the set of
such involutions t . We say that F is of component type if C(F) is nonempty.

This work was partially supported by DMS NSF-1601063.
MSC2020: 20D05.
Keywords: fusion systems, finite simple groups.
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Our main theorem is a contribution to the case where some C ∈ C(F) is intrinsic:
that is, Z(C) is nontrivial.

Theorem 1. Assume F is a saturated fusion system on a finite 2-group S and
C ∈ C(F) has a fully normalized Sylow group. In addition assume the following:

(a) C is realized by some K ∈ Kqs.

(b) C is maximal in C(F).

(c) I(C) ∩ Z(C) ̸= ∅.

Then one of the following holds:

(1) C is a component of F .

(2) C is nearly standard, so X̃ (C) has a unique maximal member Q, and one of
the following holds:

(i) Q = Z(K ) is of order 2.
(ii) K ∼= �ϵ

6(q) with q ≡ ±3 mod 8 and ϵ ≡ q mod 4, C is standard, and
Q ∼= Z4.

(iii) K/Z(K ) ∼= L3(4) and Q = Z(K ) ∼= E4.

The definition of a maximal member of C(F) appears in Notation 6.1.12 in [5].
The definition of a standard or nearly standard subsystem appears in Section 9.1
of [5]. The definition of X̃ (C) appears in Notation 6.1.2 of [5]. Kqs is a class of
quasisimple groups with centers of even order, defined in Definition 1.3 and listed
in Definition 1.3, 1.4, and 1.5; the remaining quasisimple groups with centers of
even order have been treated elsewhere.

1. Intrinsic components

Definition 1.1. Let K be a quasisimple group with center of even order, K =

K/Z(K ), and x̄ an involution in K . Following Definition 5.5.1 in [14], define x̄
to split relative to K if the coset x̄ contains an involution. Define x̄ to be stable
relative to K if x̄ splits and for some involution y in x̄ , CAut(K )(x̄) = CAut(K )(y).

Definition 1.2. We extend a notion in [8] to quasisimple groups: define K to be
2-small if for T ∈ Syl2(K ) and T ≤ S ∈ Syl2(Aut(K )), we have CS(T ) = Z(T )

with |Z(T ) : Z(K )| = 2.

Definition 1.3. Define Kqs to be the collection of known quasisimple groups K
with Z(K ) of even order and K/Z(K ) not Goldschmidt, other than

(a) Ân , n ≥ 5,

(b) K of Lie type of odd characteristic other than �ϵ
6(q) with q ≡ ±3 mod 8 and

q ≡ ϵ mod 4,
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(c) Ŝp6(2),

(d) K/Z(K ) ∼= L3(4) with 8(Z(K )) ̸= 1.

We recall that, from [6], the 2-fusion systems of all the groups �ϵ
6(q) with

q ≡ ±3 mod 8 and q ≡ ϵ mod 4 appearing in Definition 1.3(b) are isomorphic. Thus
in this case we may take K to be �−

6 (3).

1.4. A quasisimple group K with K/Z(K ) sporadic is in Kqs precisely when

(1) K/Z(K ) is M12, M22, J2, Co1, HS, Suz, Ru, F22, or F2, and

(2) either |Z(K )| = 2 or K/Z(K ) ∼= M22 and Z(K ) ∼= Z4.

Proof. See 6.4.2 in [5]. □

1.5. A quasisimple group with K/Z(K ) ∈ Chev(2) is in Kqs precisely when one of
the following holds:

(1) K/Z(K ) ∼= G2(4) or F4(2) and |Z(K )| = 2.

(2) K/Z(K ) is U6(2), �+

8 (2), or 2E6(2) and Z(K ) ∼= Z2 or E4.

(3) K/Z(K ) ∼= L3(4) and Z(K ) ∼= Z2 or E4.

Proof. See 6.4.3 in [5]. □

1.6. Let K ∈ Kqs, K = K/Z(K ), and z̄ a 2-central involution in K . Then one of
the following holds:

(1) z̄ is stable relative to K .

(2) K ∼= M22 and Z(K ) ∼= Z4.

(3) K ∼= �+

8 (2).

Proof. This follows from Proposition 6.4.2 in [14]. □

1.7. Let K ∈ Kqs satisfy one of the following:

(1) K ∼= M22 and Z(K ) ∼= Z4.

(2) K ∼= �+

8 (2).

Then for T ∈ Syl2(K ), Z(T ) = Z(K ).

Proof. In each case, Z(T ) = ⟨z̄⟩ is of order 2. Therefore either Z(T ) = Z(K )

or Z(T ) = Z(T ). But no involution in Z(T ) is stable from the remark following
Proposition 6.4.2 in [14], so the lemma follows. □

1.8. Let K ∈ Kqs and assume

(1) neither of the exceptional cases in 1.7 hold, and

(2) K/Z(K ) is not G2(4), F4(2), or L3(4).

Then K is 2-small.
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Proof. Let T ∈ Syl2(K ) and Z be the preimage of Z(T ) in K . By (1) and 1.6, all
involutions in Z(T ) are stable, so Z = Z(T ). Further Kqs can be retrieved from
Definition 1.3, 1.4, and 1.5, and, for groups K on that list but not in (2) we check
using Definition 7.1, 7.2, and 7.3 in [8] that K is 2-small. Hence |Z(T )| = 2,
so |Z(T ) : Z(K )| = 2, and for T ≤ S ∈ Syl2(Aut(K )) we have CS(T ) = Z(T ),
completing the proof. □

2. Terminal components

See Definition 8.1.1 in [5] for the definition of a terminal component.

2.1. Assume F is a saturated fusion system on a finite 2-group S and C ∈ C(F) has
a fully normalized Sylow group T . In addition assume the following:

(a) C is subintrinsic in C(F).

(b) C is maximal in C(F).

(c) m(T ) > 1.

Then one of the following holds:

(1) C is a component of F .

(2) C is a terminal member of C(F).

Proof. By (a) there is an involution j ∈C f and L∈ Comp(CC( j)) such that j ∈ Z(L)

and L ∈ C(F) with j ∈ I(L). See Definition 6.1.17 in [5] for the definition of C⊥,
and Definition 6.2.7 in [5] for the definition of ρ(C) and ρ0(C).

Suppose first that C⊥
̸= {C}. Then (1) holds by (c) and Theorem 7.4.14 in [5].

Thus we may assume C⊥
= {C}. Therefore if ρ(C) = ρ0(C), then (2) holds by

Definition 8.1.1 in [5], so we may assume otherwise. Thus by Definition 6.2.7
in [5], there is (t1, C1) ∈ ρ(C) and an involution a ∈ Qt1 − X̃ (C1). Without loss
of generality (t1, C1) = (t, C). Let α ∈ A(a) and adopt the bar convention of
Notation 6.1.12 in [5]. Now there is a conjugate (i, E, C) of ( j,L, C) under α. As
j ∈ I(L) ∩ Z(L), i ∈ I(E) ∩ Z(E), so C pumps up to a component D of Fā by 1.9
in [7]. Thus by (b), C = D, contradicting a /∈ X̃ (C1). □

See Section 9.1 in [5] for the definition of a standard subsystem and a nearly
standard subsystem of F . In particular if C ∈ C(F) is nearly standard, then X̃ (C)

has a unique maximal member Q.
Often we assume the following hypothesis:

Hypothesis 2.2. (1) F is a saturated fusion system over a finite 2-group S.

(2) C ∈C(F) has fully normalized Sylow group T and is tamely realized by K ∈Kqs.

(3) C is terminal in C(F).

2.3. Assume Hypothesis 2.2. Then:
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(1) C is nearly standard. Let Q be the unique maximal member of X̃ (C) and
Q0 = CS(T ).

(2) Z(K ) = Z(C) ≤ Q.

(3) For 1 ̸= X ≤ Q and α ∈ A(X), Cα∗ ⊴ NF (Xα).

(4) Set 6 = NAutF (Q0T )(T ). Then AutF (T ) = Aut6(T ).

(5) If AutF (T ) ≤ Aut(C) then C is standard.

(6) If σ ∈ 6 with X and Xσ in X̃ then σ|T ∈ Aut(C).

(7) If Z(T ) = Z(K ) then C is standard.

Proof. By Hypothesis 2.2(2), Z(C)= Z(K ) ̸= 1, so part (1) follows from 9.2.4 in [5]
and Hypothesis 2.2(3). Part (2) follows from 6.2.10(3) in [5] and Hypothesis 2.2(3).
Part (3) follows from (1) and (S2) in the definition of “nearly standard” in Section 9.1
in [5]. Part (4) follows from 6.1.8(1) in [5]. Part (5) follows from (1) and the
definition of “standard”. Part (6) is 6.1.8(3) in [5]. Assume the setup of (7). By (2),
X = Z(K )= Z(C)≤ Q, so by 8.1.3 in [5], X ∈ X̃ . By assumption Z(T )= Z(K )= X ,
so 6 acts on X ; hence 6|T ≤ Aut(C) by (6). Now (7) follows from (4) and (5). □

In this section 6 is defined as in 2.3(4).

2.4. Assume Hypothesis 2.2 and C is not standard. Then:

(1) Q0 is abelian.

(2) Q0 = Q Z(T ), so |Q0 : Q| = |Z(T )|.

(3) There exists σ ∈ 6 with Q ∩ Qσ = 1. Hence |Q| ≤ |Z(T )|.

(4) If K is 2-small then Q = Z(K ) is of order 2.

(5) If K/Z(K ) is G2(4), F4(2), or L3(4) then either Q = Z(K ) is of order 2 or
Q ∼= E4.

(6) Assume the setup of (5). Then for each 1 ̸= X ≤ Q and α ∈A(X), F∗(NF (Xα))

equals (Qα) ∗ Cα∗ and α : Q0T → Q0T induces an isomorphism of Q ∗ C
with F∗(NF (Xα)).

Proof. Part (1) follows from 2.3.5 and 9.2.3(9) in [5].
Choose 1 ̸= X ≤ Q and α ∈A(X). By 8.1.4(1) in [5], we may take T α = T . Set

B = Cα∗; by 2.3(3), B ⊴ NF (Xα).
As Q0 = CS(T ), 1 = [Q0, T ], and by (1), Q0T ≤ CS(X), so (Q0T )α ≤ CS(Xα)

and hence 1 = [Q0α, T α] = [Q0α, T ]. Thus Q0α ≤ CS(T ) = Q0, so Q0α = Q0.
Define Q X as in Notation 9.2.2 in [5]; that is,

(∗) Q Xα = θ ∩ NS(X)α, where θ = CNS(Xα)(B).

By 9.2.3(6) in [5], Q X = NQ(X), so Q X = Q by (1). As B ⊴ NF (Xα) and
Q0 = Q0α, we can form Q0B in NF (Xα). By Lemma 2.22 in [9], Q0B is realized by
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a group Q0K1 with K1 ∼= K . As T is Sylow in B, θ centralizes T , and hence is con-
tained in Q0, so θ = CQ0(B) = CQ0(K1). Define π : Q0K1 → Aut(K1) by xπ = cx

to be conjugation of K1 by x . Observe that ker(π) = θ so Q0K1π ∼= Q0π K 1. Also
Q0π = Z(T ); this follows from 1.8 unless K is one of the five exceptional groups
appearing in 1.8, where the claim can be verified using 2-local facts about the five
groups such as in [14]. Hence Q0/θ ∼= Z(T ) and Q0 = θ Z(T ). Now

(∗∗) Qα = Q Xα = θ ∩ NS(X)α.

Also θ ≤ Q0 = Q0α ≤ NS(X)α so

(∗∗∗) Qα = θ.

Thus Q0 = θ Z(T ) = QαZ(T ) = QαZ(T )α, so (2) holds. Also by (∗) and (∗∗∗),
Qα = CNS(Xα)(B), so the first statement in (6) holds. We have seen that α acts
on Q0 and T , so α is an automorphism of the group Q0T = QT , and induces
an isomorphism of the fusion systems QC and QαB. This completes the proof
of (6). As C is not standard by hypothesis, 2.3(4)–(5) say there exists σ ∈ 6 with
σ /∈ Aut(C). Then Q ∩ Qσ = 1 by 2.3(6). Then |Q| ≤ |Z(T )| by the second
statement in (2), completing the proof of (3). Part (4) follows from (3). Similarly
if K is as in (5) then Z(T ) ∼= E4, so (3) implies (5). □

In the next lemma for a saturated 2-fusion system E , E∞ is the last term in the
Puig series for E , defined in Definition 2.18 of [9].

2.5. Assume Hypothesis 2.2 with K/Z(K )∼= F4(2) and |Q|> 2. Then C is standard.

Proof. Assume C is not standard. Then Q ∼= E4 by 2.4(5). By 2.4(3) there is σ ∈ 6

with Q0 = Q × Qσ . Now Z(T ) = ⟨z̄l, z̄s⟩ where z̄c is a root involution. Then there
is y ∈ Qσ such that the image of y in K is a root involution and D = CC(y) is
the 2-fusion system of CK (y). By 8.5 in [3], D is the fusion system of a maximal
parabolic of K with D∞

= D. As K is quasisimple, the parabolic does not split
over Z(K ), so D = D∞. Let τ = σ−1

∈ AutF (Q0T ), so that Qστ = Q. Now
y centralizes D, so x = yτ centralizes Dτ ∗. Choose X and α as in the proof
of 2.4 with X = ⟨x⟩. Then xα centralizes E = Dτ ∗α∗. As D = D∞, E = E∞ and
hence E ≤ F∞

xα = B = Cα∗ by 2.4(6). Thus as Qα centralizes B, it centralizes E .
By 2.4(6), α induces an isomorphism of the fusion systems QC and QαB. Thus
applying α−1, Q centralizes Dτ ∗. Then applying σ , Qσ centralizes D, contradicting
CQ0(D) = Q⟨y⟩. □

2.6. Assume K/Z(K ) ∼= L3(4) and |Z(K )| = 2. Then:

(1) Aut(T ) acts on Z(K ).

(2) If Hypothesis 2.2 holds for K then C is standard.
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Proof. Let Z(K ) = ⟨k⟩; we show k is the unique member of Z(T ) that is not a
commutator in T , hence establishing (1). One way to see this is to consider a
maximal parabolic Ŷ of the covering group K̂ of K with Z(K̂ ) ∼= E4. Using 1.6,
Ŷ is of the form A ∼= E64 extended by L2(4), with A/Z(T̂ ) the natural module
for Ŷ/A and Ŷ indecomposable on A as K̂ is quasisimple. Regarding A as an
F4-module for Ŷ/A and taking T̂ ∈ Syl2(Ŷ ), we claim that Ẑ = CA(T̂ ) has five
points Z(K̂ ), [Ẑ , B̂] for Z3 ∼= B̂ ≤ NŶ (T̂ ), and [A, ti ], 1 ≤ i ≤ 3, for ti A the
involutions in T̂ /A. If so, the only members of Ẑ that are commutators in T̂ are
in [A, ti ] for some i . Now K = K̂/5 for some 5 of order 2 in Z(K̂ ), and thus
k is the unique noncommutator in Z(T ). Thus to complete the proof of (1) it
remains to prove the claim. But if the claim fails, then [A, T̂ ] is the point [Ẑ , B̂],
so [A, Ŷ ] = [A, T̂ ][A, T̂1] is of rank 2, where T̂1 is a second Sylow group of Ŷ ,
contradicting Ŷ indecomposable on A. So (1) is established.

Assume Hypothesis 2.2. By 2.3(2), X = Z(K ) ≤ Q, so by (1) and 2.3(6),
6 ≤ Aut(C). Then (2) follows from 2.3(4)–(5). □

2.7. Assume K/Z(K ) ∼= G2(4) and |Z(K )| = 2. Let M = CK (Z(T )). Then:

(1) Aut(M) acts on Z(K ).

(2) If Hypothesis 2.2 holds for K then C is standard.

Proof. Let Z(K ) = ⟨k⟩ and Z = Z(T ). By 18.4 in [10], K has two classes of invo-
lutions — the long and short root involutions — and Z(T ) is a long root subgroup.
By 1.6, Z(T ) = Z . Again by [10], M = L R, where R is the radical of M and L ∼=

L2(4) contains a short root subgroup. From the Atlas, short root involutions lift to
elements of order 4 in K , so the preimage L of L in K is isomorphic to SL2(5). From
Example 3.2.4 in [14], R/Z is the sum of two orthogonal modules for L , so R is tran-
sitive on complements J to R in M , so Z(J ) = ⟨k⟩ for each such J . This proves (1).

Assume the setup of (2). Then, using 2.4(6), QCC(Z) = CF (Z) ⊴ NF (Z) = B,
with Q R ⊴ B and CB(Q R) ≤ Q R, so B is constrained with model B with
CB(Z) ∼= QCK (Z) = QM . Also M = O2(QM) ⊴ B. Then AutF (T ) = AutB(T )

as Z = Z(T ) and B = NF (Z). Then as M ⊴ AutB(T ) centralizes k by (1), (2)
follows from 2.4(3). □

Theorem 2.8. Assume Hypothesis 2.2. Then one of the following holds:

(1) Q = Z(K ) is of order 2.

(2) C is standard.

(3) K/Z(K ) ∼= L3(4) and Q = Z(K ) ∼= E4.

Proof. If |Q|=2 then (1) follows from 2.3(2), so we may assume |Q|>2. By 2.3(7),
we may assume Z(T ) ̸= Z(K ), while K is not 2-small by 2.4(4). Hence by 1.7
and 1.8, K/Z(K ) appears in case (2) of 1.8. Next K/Z(K ) ∼= L3(4) by 2.5 and 2.7,
while Z(K ) ∼= E4 by 1.5(3) and 2.6. Finally (3) holds by 2.4(3). □
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3. Tight embedding

Given a saturated fusion system on a 2-group S, a fully normalized abelian sub-
group P of S is tightly embedded in F if

(T1) For each 1 ̸= X ≤ P and α ∈ A(X), Pα ⊴ NF (Xα), and

(T2) for each 1 ̸= X ≤ P , XF
∩ P = X NF (P).

We can also define tight embedding for groups. Given a finite group G, an
abelian 2-subgroup P of G is tightly embedded in G if distinct conjugates of P
intersect trivially. Equivalently,

(TE1) For each 1 ̸= X ≤ P , P ⊴ NG(X), and

(TE2) for each 1 ̸= X ≤ P , X G
∩ P = X NG(P).

Another equivalent definition is obtained by quantifying over all involutions in P
rather than over all nontrivial subgroups of P .

In the remainder of this section we assume the following hypothesis:

Hypothesis 3.1. F is a saturated fusion system on a finite 2-group S such that
F = PC where

(1) C = O2(F) is tamely realized by K ∈ Kqs, and

(2) P is an abelian 2-subgroup of S tightly embedded and fully normalized in F .

3.2. (1) There exists a finite group G with S ∈ Syl2(G), F = FS(G), K = E(G),
F∗(G) = O2(G)K , and G = PK .

(2) G/K ∼= P/(P ∩ K ) is an abelian 2-group.

Proof. As K tamely realizes C, (1) follows from Lemma 2.22 in [9]. As G = PK
and P is an abelian 2-group, (2) holds. □

Set U = O2(G) and G∗
= G/U ; thus U = CG(K ) and G∗

≤ Aut(K ∗) with
K ∗ ∼= K/Z(K ) simple.

3.3. Let 1 ̸= X ≤ P and G X = ⟨P NG(X)
⟩. Then:

(1) NG(X) = P NK (X).

(2) O2(CK (X))∗ = O2(CK ∗(X∗)).

(3) P is strongly closed in SX with respect to NG(X) for SX ∈ Syl2(NG(X)).

(4) G+

X = G X/O(G X ) = H+

0 × H+

1 ×· · ·× H+
n where H0 ≤ P and for 1 ≤ i ≤ n,

H+

i is a Goldschmidt group with P ∩ Hi = �1(S ∩ Hi ).

(5) If NK (X)/O(NK (X)) has no Goldschmidt components then O(NK (X))P is
a normal subgroup of NG(X).
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Proof. As P is abelian and G = PK , (1) holds. Next k ∈ CK (X) = 1 if and only if
[k, X ] = 1 while k∗

∈ CK ∗(X∗) if and only if 1 = [k∗, X∗
] = [k, X ]

∗ if and only if
[k, X ] ≤ U . Thus O2(1∗) ≤ O2(CK ∗(X∗)). Let j∗

∈ CK ∗(X∗) be of odd order m;
we may choose | j | = m. Then j ∈ O2(G) = K , so [ j, X ] ≤ U ∩ K = Z(K ) and
hence j centralizes X Z(K )/Z(K ) and Z(K ) so j centralizes X by 24.5 in [2].
Thus O2(CK ∗(X∗)) ≤ O2(1∗), completing the proof of (2).

As P is abelian and tightly embedded in F , from condition (T1) above for
α ∈A(X) we have Pα ⊴ NF (Xα). As P ∈F f there is β ∈A(Pα) with Pαβ = P ;
set ζ =αβ and observe that Pζ = P and as Pα⊴ NF (Xα), ζ ∈A(X), so replacing α

by ζ we may take Pα = P . Thus P ⊴ NF (Xα), so P is strongly closed in NS(Xα)

with respect to NF (Xα). Next by (T2), there is γ ∈ NF (P) with (Xα)γ = X , so
there is g ∈ NG(P) with (Xα)g

= X , so (3) holds with SX = NS(Xα)g.
Part (4) follows from Goldschmidt’s fusion theorem [13], determining groups

generated by conjugates of a strongly closed abelian 2-subgroup. As O2(G) = K ,
O2(G X ) ≤ NK (X). Then (4) implies (5). □

3.4. Let X be the set of involutions x ∈ P such that O(CK ∗(x∗)) = 1 and CK ∗(x∗)

has no Goldschmidt components. Then:

(1) For each x ∈ X, P ⊴ CG(x).

(2) If each involution in P is in X then P is tightly embedded in G.

Proof. By 3.3(2), O(CG(x))∗ = O(CK ∗(x∗)) and if CK ∗(x∗) has no Goldschmidt
components then, using 3.3(5), neither does CG(x). Hence (1) follows from 3.3(5).
From Hypothesis 3.1(2) and condition (T2) in the definition of tight embedding,
xF

∩ P = x NF (P) so xG
∩ P = x NG(P), and, together with (1) and the third of the

equivalent definitions of tight embedding in groups at the beginning of this section,
(2) follows. □

3.5. Either P is faithful on K or G = P ∗ K is a central product of P with K .

Proof. Suppose x is an involution in CP(K ). As K is not Goldschmidt and F∗(G)=

UK by 3.2(1), it follows from 3.4 that P ⊴ CG(x). Thus [P, K ] ≤ P ∩ K ≤ Z(K )

so K centralizes P . The lemma follows as G = PK by 3.2(1). □

3.6. Assume |P| = 4 or P is cyclic. Then:

(1) For each involution x ∈ P , PO(CK (x)) ⊴ CG(x).

(2) If O(CK ∗(x∗)) = 1 for each involution x in P then P is tightly embedded in G.

Proof. If |P| = 4 then |P : ⟨x⟩| = 2, so as P is strongly closed in CG(x), (1)
follows from the Z∗-theorem. Similarly (1) holds when P is cyclic. Then (1), 3.3(2)
and 3.4(2) imply (2). □

3.7. Assume K/Z(K ) ∈ Chev(2). Then:
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(1) P is tightly embedded in G.

(2) If P is faithful on K , 8(P) = 1, and |P| > 2 then P ≤ UK .

Proof. We may assume P is not normal in G, so P is faithful on K by 3.5. We
first prove (1), where by 3.4 it suffices to verify the two conditions defining X.
If x∗

∈ K ∗ then F∗(CK ∗(x∗)) = O2(CK ∗(x∗)), so the conditions hold; thus we
may assume x∗ induces an outer automorphism on K ∗, so x∗ and its centralizer
are listed in [10]. As K appears in 1.5, we find that the conditions are satisfied,
unless K ∗ ∼= L3(4) and x∗ induces a graph or graph-field automorphism. In either
case we conclude from 3.3(4) that P∗

∩ K ∗
̸= 1, so there is an involution z ∈ P

with z∗
∈ K ∗. But as we just saw, F∗(CK ∗(z∗)) = O2(CK ∗(z∗)), so P ⊴ CG(z)

by 3.3(5). Next z∗ is stable by 1.6 and P is fully normalized by Hypothesis 3.1(2),
so z ∈ Z(T ), where T = S ∩ K . As ⟨xT

⟩ is nonabelian, this contradicts P ⊴ CG(z)
and P abelian. This completes the proof of (1).

Assume the setup of (2). Using (1), the hypotheses of 20.1 in [10] are satisfied;
then (2) follows from that lemma. □

3.8. Assume K/Z(K ) is sporadic and either |P| = 4 or P is cyclic. Then P is
tightly embedded in G.

Proof. By 3.6(2) it suffices to show O(CK ∗(x∗)) = 1 for each involution x in P .
This follows by inspection of Table 5.3 in [14] for each of the groups listed in 1.4. □

4. Splitting

In this section we assume C is a quasisimple fusion system on a 2-group T tamely
realized by some K ∈ Kqs.

Recall from Subsection 0.13 in [5] that a critical split extension of C is a
pair (F, P), where F is a saturated fusion system on a 2-group S, C = O2(F), P
is a complement in S to a Sylow group T of C, P is isomorphic to E4, and P is
tightly embedded in F . Further C is said to split if there is no nontrivial critical
extension (F, P) of C; that is, for each such pair we have F = CS(C) ∗ C.

Throughout this section we assume (F, P) is a critical split extension of C.

4.1. (1) Hypothesis 3.1 is satisfied.

(2) There exists a finite group G with S ∈ Syl2(G), F = FS(G), K = E(G),
F∗(G) = O2(G)K , and G = PK .

(3) If (F, P) is nontrivial then P is faithful on K .

Proof. Part (1) is immediate; then (1) and 3.2(1) imply (2), and 3.5 implies (3). □

Set U = O2(G) and G∗
= G/U .

4.2. Assume (F, P) is nontrivial. Then:
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(1) For some involution x ∈ P , x∗ /∈ K ∗.

(2) |Out(K/Z(K ))| is even.

Proof. If (1) fails then G∗
= K ∗, so G = UK and hence F = U ∗ C, contradicting

(F, P) nontrivial. Thus (1) holds and (1) and 4.1(2) imply (2). □

4.3. If K/Z(K ) ∈ Chev(2) then C splits.

Proof. This follows from 3.7(2). □

4.4. If K/Z(K ) is sporadic then C splits.

Proof. Assume (F, P) is nontrivial. By 3.8, P is tightly embedded in G. Hence,
using 3.3(2), for each involution x ∈ P , O2(CK ∗(x∗)) acts on P∗ ∼= E4.

By 4.2 there is an involution x in P − KU , and |Out(K ∗)| is even. Inspecting
Table 5.3 in [14] in those cases where |Out(K ∗)| is even, we find that K ∗, CK ∗(x∗)

is among the pairs listed in 14.5 in [8]. In each case O2(CK (x)) is irreducible on
V ∗

= O2(CK ∗(x∗)), so V ∗
= P∗

∩ K ∗ is of order 2, and hence K ∗ ∼= M12 and the
preimage V of V ∗ in K is generated by v of order 4. Next by Table 5.3b in [14],
there exists an involution i∗

∈ CK ∗(v∗) with [x∗, i∗
] = v∗. It follows that x inverts v

and P =⟨x, y⟩ where y =uv for some u ∈U with u2
=v2. Now v ∈CK (y), so v acts

on P , a contradiction as then [x, v] = v2
∈ P , whereas P is faithful on K by 3.5. □

We recall that, from [6], the 2-fusion systems of all the groups �ϵ
6(q) with

q ≡ ±3 mod 8 and q ≡ ϵ mod 4 appearing in Definition 1.3(b) are isomorphic. Thus
in this case we may take K to be �−

6 (3).

4.5. If K is �ϵ
6(q) with q ≡ ±3 mod 8 and q ≡ ϵ mod 4 then C splits.

Proof. Assume (F, P) is nontrivial. We may take K to be �−

6 (3). Then the
classes of involutions in Aut(K ) and their centralizers are listed in Table 2.10
in [1]. Inspecting that list, we find that for x∗ an involution in G∗, we have
O(CK ∗(x∗)) = 1 and CK ∗(x∗) has no Goldschmidt components. Therefore by 3.4,
P is tightly embedded in G and normal in CG(x) for each involution x in P . As
E4 ∼= P∗ is O2(CK ∗(x∗))-invariant we conclude from Table 2.10 in [1] that x∗ is of
type i(4, δ) for δ ∈ {1, −1}. By 4.2(1), we may choose x∗ /∈ K ∗, so x∗

∈ i(4, −1).
Thus the remaining two involutions in P∗

= O2(CG∗(x∗)) are reflections, whereas
we just saw they are in i(4, δ). □

Theorem 4.6. Assume C is a quasisimple 2-fusion system tamely realized by some
K ∈ Kqs. Then C splits.

Proof. The possibilities for K are listed in Definition 1.3, 1.4, 1.5. Now appeal
to 4.3–4.5. □
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5. Standard subsystems

In this section we assume the following hypothesis:

Hypothesis 5.1. (1) F is a saturated fusion system on a finite 2-group S.

(2) C is a standard subsystem of F on T ∈ F f . Let Q be the unique maximal
member of X̃ (C) and write Q for the centralizer in F of C.

(3) C is tamely realized by K ∈ Kqs.

(4) C is not a component of F .

5.2. F is almost simple.

Proof. Observe Hypothesis 9.4.1 of [5] is satisfied by (1) and (2) of Hypothesis 5.1,
so the result follows from Hypothesis 5.1(4) and 9.4.6 in [5]. □

5.3. Either 8(Q) = 1 or Q is cyclic.

Proof. By Theorem 4.6 and 9.4.10 in [5], either 8(Q) = 1 or m(Q) = 1. Thus we
may assume Q is quaternion and it remains to exhibit a contradiction. Let z be the
involution in Q.

As C is standard, Q is tightly embedded in F , so τ = (F, �) is a quaternion
fusion packet, where � = QF . By 5.2, L = F∗(F) is simple, so by Theorem 1
in [6], and as C is a component of Fz , we conclude that L is the 2-fusion system
of a group L of Lie type over Fq for some odd q. Then as C is a component
of Lz , K ∼= �ϵ

6(q). As Q ⊴ Fz , �(z) = {Q}, where �(z) = {P ∈ � : z ∈ P}. As
C = E(CFz (Q)), |�|> 1 from Theorem 1 in [6], and then ρ = (C, 0) is a quaternion
fusion packet, where 0 = � − {Q}. As K ∼= �ϵ

6(q) it follows that 0 = �(t) is of
order 2, for some t ∈ zF , contradicting |�(t)| = |�(z)| = 1. □

In the remainder of the section we assume:

Hypothesis 5.4. Hypothesis 5.1 holds with |Q| > 2.

5.5. (1) NF (Q) is tamely realized by a group M with F∗(M) = Q ∗ K .

(2) Q is tightly embedded in F .

Proof. By 5.3, Q is abelian, so Q = O2(Q) and F∗(NF (Q))= QC. Then (1) follows
from Lemma 2.22 in [9]. As Q is tightly embedded in F and Q = O2(Q) = O2′

(Q),
(2) follows. □

5.6. It is not the case that Q is weakly closed in NS(Q) with respect to F .

Proof. If Q is cyclic the lemma follows from 9.4.7(3) in [5]. If 8(Q) = 1 it follows
from 9.4.11 in [5]. □
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Notation 5.7. Set 1 = QF
∩ NS(Q) − {Q}.

By 5.6, 1 ̸= ∅. Recall from Definition 3.1.9 in [5] that P(Q) is the set
{1 ̸= P ≤ S : homF (P, Q) ̸= ∅} and P∗(Q) is the set of maximal members
of P(Q). Let PQ = {P ∈ P(Q) : P ≤ NS(Q)} and P∗

Q be the maximal members
of PQ . For example, 1 ⊆ P∗

Q .
Choose Q ̸= P ∈ P∗

Q ∩ NF (Q) f , and set H = PK ≤ M and H∗
= H/(H ∩ Q).

5.8. (1) P is tightly embedded in NF (Q) and in PC.

(2) P is faithful on K .

Proof. Part (1) is a consequence of 13.1 in [8]. As Q = CS(K ), CP(K ) ≤ Q; but
P ∩ Q = 1, by, for example, 3.1.12(2) in [5]. Thus (2) holds. □

5.9. (1) Z(K ) is strongly closed in Q with respect to F .

(2) Let P ∈ 1 and φ ∈ homF (Q, P). Then Z(K )φ is strongly closed in P with
respect to F .

Proof. Let x ∈ Z(K ) and y ∈ xF
∩ Q. As AutF (Q) controls fusion in Q there is

m ∈ M with xm
= y. Then as K ⊴M , y ∈ Z(K ), proving (1). Now (1) implies (2). □

6. Sporadic components

We prove:

Theorem 6.1. Assume Hypothesis 5.1 with K/Z(K ) sporadic. Then |Q| = 2.

Assume F is a counterexample to the theorem. Adopt the notation from Section 5;
in particular choose P ∈ 1 as in Notation 5.7.

6.2. 8(Q) = 1.

Proof. Assume otherwise; by 5.3, Q is cyclic, so P ∼= Q is also cyclic. Let
x be the involution in P . By 5.8(1) and 3.8, P is tightly embedded in H , so
P ⊴ CH (x). Hence by 3.3(2), O2(CK ∗(x∗)) centralizes P∗. Inspecting Table 5.3
in [14] for involution centralizers with this property, we conclude K ∗ ∼= H S,
CK ∗(x∗) ∼= S5/(Z4 ∗ Q2

8) and P∗
= Z(O2(CK ∗(x∗))).

Let W = O2(CK (x)) and R = O2(W ). Then R = ⟨r W
⟩ for r∗

∈ R∗
− P∗ of

order 4, so 8(R) = ⟨r2
⟩ is of order 2 with 8(R)∗ = ⟨x∗

⟩.
Let y be a preimage of x∗ in K ; by 1.6, x∗ is stable, so y is an involution and

x = qy for some q ∈ Q with q2
= 1. Then as Q is cyclic, q ∈ Z(K ) and x ∈ K .

Let P0 be the preimage of P∗ in K ; then P0 = P × Z(K ) with ⟨x⟩ = 8(P0). Thus
⟨x⟩ = 8(R) ≤ W .

Let α ∈ A(x) with z = xα ∈ Z(C). Let W = FS∩W (W ); then W = O2(CFz (x)).
Next U =Wα∗

≤ O2(Fz) = C. As W/⟨x, z⟩ ∼= A5/E16, it follows from Table 5.3m
in [14] that zα ∈ {x, xz} and U = W . This is a contradiction as Z(K ) = ⟨xα⟩ =

8(Rα), so O2(W/Z(K )) = Rα/Z(K ) is elementary abelian. □
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6.3. |Z(K )| = 2.

Proof. If not then by 1.4(2), K/Z(K ) ∼= M22 and Z(K ) ∼= Z4, contrary to 6.2. □

Notation 6.4. By 6.3, Z(K ) = ⟨t⟩ is of order 2. Let φ ∈ homF (Q, P) and x0 = tφ.
Let x ∈ P − ⟨x0⟩ and X = ⟨x, x0⟩.

6.5. (1) x0 ∈ Z(CH (x)).

(2) x∗

0 centralizes O2(CK ∗(x∗)).

Proof. By 5.9(2), x0 is strongly closed in P with respect to F . Then as P is
strongly closed in Sx with respect to CH (x) for Sx ∈ Syl2(CH (x)) by 3.3(3), x0 is
strongly closed in Sx . Hence, by the Z∗-theorem, O(CH (x))⟨x0⟩ ⊴ CH (x). But as
we saw during the proof of 3.8, O(CH (x)) = 1, so (1) holds. Then (1) and 3.3(2)
imply (2). □

6.6. X∗
= O2(CH∗(x∗)), CH∗(X∗) = X∗

× L∗, and one of the following holds:

(1) K ∗ ∼= M12, X∗ ≰ K ∗ and L∗ ∼= A5.

(2) X∗
≤ K ∗ ∼= J2 and L∗ ∼= A5.

(3) X∗
≤ K ∗ ∼= Co1 and L∗ ∼= G2(4).

(4) X∗
≤ K ∗ ∼= Suz and L∗ ∼= L3(4).

(5) X∗
≤ K ∗ ∼= Ru and L∗ ∼= Sz(8).

Proof. We appeal to 6.5 and inspect the tables in Section 5.3 of [14] for involutions x∗

and a 4-group X∗ centralizing O2(CK ∗(x∗)). □

We are now in a position to derive a contradiction that will establish Theorem 6.1.
From 6.6 there is an involution y ∈ X with y∗

∈ K ∗. Thus y = ck for some c ∈ Q
and k ∈ K with k∗

= y∗. But from Section 5.3 in [14], |k| = 4. Then as 8(Q) = 1
by 6.2, y = ck is also of order 4, contradicting 8(P) = 1. This completes the proof
of Theorem 6.1.

7. �−
6 (3)

We prove:

Theorem 7.1. Assume Hypothesis 5.1 with K ∼= �ϵ
6(q) and |Q| > 2. Then we may

take q = 3 and we have:

(1) Q ∼= Z4.

(2) Let x be the involution in P; then x ∈ K is in i(2, −1) in K = �−

6 (3), so
O2(CK ∗(x∗)) ∼= SL2(3) ∗ SL2(3).
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Assume F is a counterexample to the theorem. Adopt the notation from Section 5;
in particular choose P ∈ 1 as in Notation 5.7. Note that by Definition 1.3(b), q ≡

±3 mod 8 and q ≡ϵ mod 4; indeed the 2-fusion systems of any two groups satisfying
these congruences are isomorphic, so, for example, we may take (q, ϵ) = (3, −1).

7.2. Q is cyclic.

Proof. Assume otherwise; by 5.3, 8(Q) = 1. Adopt Notation 6.4; applying 5.9(2)
as in the proof of 6.5, x∗

0 centralizes O2(CK ∗(x∗)). We may take K ∼= �−

6 (3). Then
inspecting the list of involution centralizers in Table 2.10 of [1] for involutions x∗

and a 4-group X∗ centralizing O2(CK ∗(x∗)) we conclude that x∗
∈ i(4, δ) for some

δ ∈ {1, −1}. But then for y∗
∈ X∗

−⟨x∗
⟩, y∗ is a reflection, a contradiction as (xx0)

∗

also serves in the role of x∗. □

Let x be the involution in P . Inspecting the list of centralizers in Table 2.10
of [1] we find that O(CK ∗(i∗)) = 1 for each involution i∗

∈ H∗, so by 3.6(2):

7.3. P is tightly embedded in H , so P ⊴ CH (x) and P∗ centralizes O2(CK ∗(x∗)).

7.4. |P∗
| = 4 and either

(1) x∗
∈ i(4, +) and O2(CK ∗(x∗)) ∼= SL2(3) ∗ SL2(3), or

(2) x∗ is a projective involution and CK ∗(x∗) ∼= U3(3).

Proof. This time we inspect Table 2.10 in [1] for centralizers in which some cyclic
group of order at least 4 centralizes O2(CK ∗(x∗)). □

7.5. Case (1) of 7.4 holds.

Proof. Assume instead that 7.4(2) holds. Let F = F9, V be a 4-dimensional unitary
space over F , and G = GU(V ). Let B = {v1, . . . , v4} be an orthonormal basis
for V , λ ∈ F of order 4, wi ∈ CG(v⊥

i ) with viwi = λvi , Qi = ⟨wi ⟩, and ti = w2
i .

Then CG(ti ) = Qi × L i where L i = CG(vi ) ∼= GU3(3). Therefore Qi is tightly
embedded in G.

Next, setting Z = ⟨−idV ⟩ ≤ Z(G) and G+
= G/Z , we have SU(V )+ ∼= K and

SU(V )+Q+

1 is a split extension with w1 inducing an automorphism on SU(V )+

quasiequivalent to that of a generator of P on K ; so H = PK ∼= SU(V )+Q+

1 .
Let 6 = {Qi : 1 ≤ i ≤ 4} and W0 = ⟨6⟩. Then 6 = QG

1 ∩ CG(W0) as the
weight spaces of W0 are the Fvi . Hence as the weak closure of Q1 in a Sylow
2-subgroup SG of G is abelian (since Q1 ∼= Z4 is tightly embedded), W0 is that weak
closure and 6 = QG

1 ∩ SG is of order 4. Moreover AutG(W0) acts as Sym(6) on 6

and U0 = ⟨t NG(W0)
1 ⟩ is of rank 4 with t+NG(W0)

1 = U+

0 − U+

1 for a unique hyper-
plane U1 of U0, and a generator t+ for Z(SU(V )+) is not contained in U+

0 as
|t | = 4. In particular

∏
i t+

i = 1.
As H ∼= SU(V )+Q+

1 it follows that P H
∩ NS(Q) = θ is of order 4 and 2 =

QF
= θ ∪{Q} is of order 5. Moreover W = ⟨2⟩ is abelian with AutF (W ) transitive
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on 2, so as AutNF (Q)(W0) induces Sym(θ) on θ , AutF (W ) induces Sym(2) on 2.
Let xi be the involution in Pi ∈ θ and y the involution in Q. As

∏
i t+

i = 1 we have∏
i xi = 1. Then as

∏
i xi = 1 and AutF (2) induces Sym(2) on 2, we conclude

that y = x1x2x3 ∈ U = ⟨xi : 1 ≤ i ≤ 4⟩, contradicting t+ /∈ U+

0 . □

We are now in a position to complete the proof of Theorem 7.1. By 7.4
and 7.5, 7.4(1) holds. Thus x∗

∈ i(4, +) induces an inner automorphism on K ,
so x = ck for some c ∈ Q and k ∈ K with k∗

= x∗. Then k is of type i(4, +) or
i(2, −) in K ∼= �−

6 (3). Further 1 = x2
= c2k2

= c2, so as Q ∼= Z4 by 7.4, c ∈ Z(K )

so x ∈ K is in i(4, +) or i(2, −). Let t be the involution in Q, X = ⟨t, x⟩, and
α ∈A(x) with xα = t . As P centralizes O2(CK (x)) ∼= SL2(3)∗SL2(3) and x ∈ P ,
we may take Xα = X . Then as Z(O2(CK (x))) is generated by an element in i(4, +)

and xα = t /∈ O2(CK (x)), we conclude that x is in i(2, −). This completes the
proof of Theorem 7.1.

8. Chev(2)

In this section we assume the following hypothesis:

Hypothesis 8.1. Hypothesis 5.1 is satisfied with K/Z(K ) ∈ Chev(2).

We continue to adopt the notation from Section 5, and choose P ∈ 1 as in
Notation 5.7.

8.2. P is tightly embedded in H.

Proof. This is 3.7(1). □

In the remainder of the section we assume:

Hypothesis 8.3. Hypothesis 8.1 holds with 8(Q) = 1 and |Q| > 2.

8.4. P ≤ QK .

Proof. This is 3.7(2). □

8.5. Assume m(Q) > 2. Then for each h ∈ H , NPh (P) ≤ CH (P).

Proof. See the proof of 15.18 and 21.2 in [8]. □

8.6. Assume K/Z(K ) ∼= L3(4). Then:

(1) Q = Z(K ) ∼= E4.

(2) P∗
= Z(T ∗).

Proof. By choice of P in Notation 5.7, P ∈ NF (Q) f and by 8.4, P∗
≤ T ∗, so

as K ∗ has one class of involutions there exists an involution z ∈ P with z∗
∈ Z(T ∗),

and hence z ∈ Z(T )Q. Let J = T Q and suppose m(Q) > 2. Then z ∈ Z(J ) so
for h ∈ H , Ph

∩ J ≤ CPh (z) ≤ NPh (P) by 8.2, so Ph
∩ J ≤ CH (P) by 8.5. But
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J ≤ ⟨zH
∩ J ⟩Q, so P ≤ Z(J ) = Z(T )Q. Therefore as |Z(J ) : Q| = 4 < |P|,

1 ̸= P ∩ Q, a contradiction.
We’ve shown m(Q) ≤ 2, so as |Q| > 2 by Hypothesis 8.3, we have Q ∼= E4.

As J ≤ CH (z) ≤ NH (P), we have [P, T ] ≤ P ∩ T . Indeed if P∗
̸= Z(T ∗)

then [P∗, T ∗
] = Z(T ∗), so Z(T )Q ≤ P Q, contradicting |P| = |Q| = 4. Hence

P Q = Z(J ), so the lemma holds if Q = Z(K ). Thus we may assume |Z(K )| = 2
and it remains to produce a contradiction.

Next J = J (NS(Q)), so N = NF (J ) controls fusion of conjugates of members
of Q in Z(J ). Therefore a generator k of Z(K ) is fused to a member of P in N .
This is a contradiction as k is the only member of [J, J ] which is not a commutator
in J , which we saw during the proof of 2.6. In any event this is a contradiction. □

8.7. K/Z(K ) is not U6(2) or �+

8 (2).

Proof. Assume otherwise. By 8.2, P is tightly embedded in H , and by 8.5, either

(a) |P| = 4, or

(b) for each h ∈ H , NPh (P) ≤ CH (P).

Therefore Hypothesis 22.1 in [10] is satisfied, so as Z(K ) ̸= 1, 22.2 in [10]
supplies a contradiction. Note that the case K/Z(K ) ∼= L3(4) should have been
excluded in Hypothesis 21.1, and it was not treated in 21.3 in [10]. □

8.8. K/Z(K ) is not G2(4), F4(2), or 2E6(2).

Proof. We can repeat the proof of 8.3 in [11]. Note the appeal to 3.9 in paragraph
four of that proof should be an appeal to 2.7. □

Theorem 8.9. Assume Hypothesis 8.1 with 8(Q) = 1. Then either |Q| = 2 or
K/Z(K ) ∼= L3(4) and Q = Z(K ) ∼= E4.

Proof. Assume otherwise; then Hypothesis 8.3 is satisfied. Then K ∈ Kqs, with
K/Z(K ) ∈ Chev(2). In particular K appears in 1.5. But we have eliminated the
cases in 1.5(1)–(2) in 8.7 and 8.8, and 8.6 completes the proof when 1.5(3) holds. □

9. Mopping up

In this section we assume the following hypothesis:

Hypothesis 9.1. Hypothesis 8.1 is satisfied with Q cyclic and |Q| > 2.

We continue to adopt the notation from Section 5, and choose P ∈ 1 as in
Notation 5.7. Let x be the involution in P and ⟨u⟩ = U = �2(P). Let SP = PT ,
H = PC, and W = ⟨UH

⟩.

9.2. 8(P) ≤ QK , so x∗
∈ K ∗.

Proof. From [14] a Sylow 2-subgroup of Out(K ) is of exponent at most 2. □
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9.3. K/Z(K ) is not G2(4).

Proof. Assume otherwise; from 9.2, x∗
∈ K ∗, so x∗ is in one of the two classes of

involutions of K ∗ described in 18.2 of [10], and CK ∗(x∗) is described in 18.4 of [10].
In particular CH∗(O2(CK ∗(x∗)))= X∗ is the root subgroup of the root involution x∗,
whereas from 3.3(2) and 8.2, P∗

≤ X∗ and P is cyclic by Hypothesis 9.1. □

9.4. K/Z(K ) is not L3(4).

Proof. Assume otherwise; then K ∗ has one class of involutions, so as P ∈ NF (Q) f ,
x∗

∈ Z(T ∗) and then by 1.6, x ∈ Z(QT ). Hence by 8.2, [QT, U ] ≤ U , whereas
T ∗ normalizes no Z4-subgroup of H∗. □

Given a finite group G, a near transposition in G is an involution t such that
whenever s ∈ tG with ⟨s, t⟩ a 2-group, we have [s, t] = 1.

9.5. Let R ∈ Hfrc with R ⊴ SP , let Y be a model for NH(R), and set Y +
= Y/R.

Then:

(1) 8(W ) ≤ R.

(2) If u /∈ R then u+ is a near transposition in Y +.

Proof. This follows from 18.4 in [8]. □

9.6. K/Z(K ) is not U6(2).

Proof. Assume otherwise; regard K ∗ as the image of K̂ =SU(V ) for a 6-dimensional
unitary space V over F4. Let V3 be a T -invariant 3-dimensional totally singular
subspace of V , Y = NH (V3), and R = O2(Y ). Then R∗ ∼= E29 and Y + ∼= L3(4) is
irreducible on R∗. By 9.5, x ∈ 8(W ) ≤ R and as 8(R∗) = 1, u /∈ R. Thus u+ is a
near transposition in Y + by 9.5(2). This contradicts 17.2 in [8], which says that
L3(4) has no near transpositions. □

9.7. K/Z(K ) is not �+

8 (2).

Proof. Assume otherwise; then K ∗ has three maximal parabolics Y ∗

i , 1 ≤ i ≤ 3,
such that R∗

i = O2(Y ∗

i ) is the orthogonal module for Y ∗

i /R∗

i
∼= �+

6 (2). As Q is
cyclic, |Z(K )| = 2, so there is a unique i with 8(Ri ) = 1, say i = 1. By 9.5(1),
x ∈ R1, and as 8(R∗

1) = 1, u /∈ R1. Hence by 9.5(2), u+ is a near transposition
in Y +, where Y = NH (R∗

1). It follows that Y + ∼= O+

6 (2) and u+ is a transvection
on the orthogonal space R∗

1 . Then [R1, u] = ⟨x⟩ with x∗ a nonsingular point in R∗

1 ,
so X∗

= O2(CK ∗(x∗)) is [R∗

1 , X∗
] extended by Sp6(2). This is a contradiction as

such an X∗ centralizes no element of Y ∗ of order 4. □

9.8. K/Z(K ) is not 2E6(2).
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Proof. Assume otherwise; we repeat the argument in 18.15, 18.6, and 18.19 in [8].
Let z∗ be the long root involution in Z(T ∗) and Y ∗

= CK ∗(z∗). Then R∗
=

O2(Y ∗) ∼= 21+20 is extraspecial with Y + ∼= U6(2) irreducible on R̃ = R∗/⟨z∗
⟩. In

particular Y ∗ centralizes no element of order 4, so x∗
̸= z∗. Then as 8(R∗) = ⟨z∗

⟩,
u∗ /∈ R∗, so u+ is a near transposition in Y +. Hence by 17.7(1) in [8], u+ is a
transvection in Y +. As 8(R) ≤ Z(K )⟨z⟩, |R : CR(x)| ≤ 4, so as [CR(x), u] ≤ ⟨x⟩

we have m([R̃, u]) ≤ 3. Then by 17.7(2) in [8], m(R̃) ≤ 18, a contradiction. □

9.9. K/Z(K ) is not F4(2).

Proof. Assume otherwise and for c ∈ {l, s} let z∗
c be the c-root involution in Z(T ∗).

By 1.6, zc ∈ Z(T ).
Suppose u∗ /∈ K ∗; then z∗u

l = z∗
s so [zl, u] = zl zs = x ′

∈ Z(T ), and hence x = x ′.
But then T = CT (u)⟨zl⟩, a contradiction.

Hence u∗
∈ K ∗, so u ∈ Y = CPK (zl). Now from Section 8 in [3], R∗

=

O2(Y ∗) = R∗

1 Z(R∗) where R∗

1
∼= 21+8 and Z(R∗) ∼= E27 , and Y ∗/R∗ ∼= Sp6(2) with

⟨z∗

l ⟩ = Z(Y ∗). Hence x∗
̸= z∗

l and as 8(R∗) = ⟨z∗

l ⟩, we conclude that u∗ /∈ R∗.
Therefore u+ is a near transposition in Y + ∼= Sp6(2), so u+ is a transvection.
Arguing as in the proof of the previous lemma, m([R̃, u]) ≤ 3. This contradicts
m([R/Z(R), u]) = 4. □

Theorem 9.10. Assume Hypothesis 8.1 holds with Q cyclic. Then |Q| = 2.

Proof. By Hypothesis 8.1, K ∈ Kqs with K/Z(K ) ∈ Chev(2). Thus K is described
in 1.5. But now the various cases arising in 1.5 are treated in this section, establishing
the theorem. □

Theorem 2. Assume Hypothesis 5.1. Then one of the following holds:

(1) |Q| = 2.

(2) K ∼= �ϵ
6(q) with q ≡ ±3 mod 8 and ϵ ≡ q mod 4, and Q ∼= Z4.

(3) K/Z(K ) ∼= L3(4) and Q = Z(K ) ∼= E4.

Proof. By Hypothesis 5.1(3), C is tamely realized by K ∈ Kqs. The class Kqs is
defined in Definition 1.3; in particular one of the following holds:

(i) K/Z(K ) is sporadic.

(ii) K/Z(K ) ∈ Chev(2).

(iii) K ∼= �ϵ
6(q) with q ≡ ±3 mod 8 and ϵ ≡ q mod 4.

This follows as K/Z(K ) is a known finite simple group that is not Gold-
schmidt, Z(K ) is of even order, coverings of alternating groups are excluded
in Definition 1.3(a), and coverings of groups of Lie type and odd characteristic,
with exception of the orthogonal group in (iii), are excluded in Definition 1.3(b).
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In case (i) conclusion (1) of Theorem 2 holds by Theorem 6.1. In case (iii)
conclusion (1) or (2) of Theorem 2 holds by Theorem 7.1. This leaves case (ii),
where Hypothesis 8.1 is satisfied.

By 5.3 either 8(Q) = 1 or Q is cyclic. In the first case conclusion (1) or (3) of
Theorem 2 holds by Theorem 8.9. Thus we may assume Hypothesis 9.1 is satisfied.
Here conclusion (1) of Theorem 2 holds by Theorem 9.10, completing the proof. □

Finally we supply a proof of Theorem 1. So assume the hypothesis of that
theorem. First we check that the hypotheses of 2.1 are satisfied. Condition 2.1(a)
holds by hypothesis (c) of Theorem 1. Condition 2.1(b) holds by hypothesis (b) of
Theorem 1. And condition 2.1(c) holds by hypothesis (a) of Theorem 1.

By 2.1, either conclusion (1) of Theorem 1 is satisfied, or C is terminal, and
we may assume the latter. Thus Hypothesis 2.2 is satisfied. Hence by 2.3(1), C is
nearly standard, so Q exists. We may assume conclusion (2)(i) of Theorem 1 does
not hold, so |Q| > 2. Hence by Theorem 2.8 either conclusion (2)(iii) holds or C is
standard, and we may assume the latter. Therefore Hypothesis 5.1 is satisfied. But
now Theorem 2 completes the proof.
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ON GOOD A1 SUBGROUPS,
SPRINGER MAPS, AND OVERGROUPS

OF DISTINGUISHED UNIPOTENT ELEMENTS
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Dedicated to the fond memory of Gary Seitz

Suppose G is a simple algebraic group defined over an algebraically closed
field of good characteristic p. In 2018 Korhonen showed that if H is a
connected reductive subgroup of G which contains a distinguished unipotent
element u of G of order p, then H is G-irreducible in the sense of Serre. We
present a short and uniform proof of this result under an extra hypothesis
using so-called good A1 subgroups of G, introduced by Seitz. In the process
we prove some new results about good A1 subgroups of G and their proper-
ties. We also formulate a counterpart of Korhonen’s theorem for overgroups
of u which are finite groups of Lie type. Moreover, we generalize both results
above by removing the restriction on the order of u under a mild condition
on p depending on the rank of G, and we present an analogue of Korhonen’s
theorem for Lie algebras.

1. Introduction and main results

Throughout, G is a connected reductive linear algebraic group defined over an
algebraically closed field k of characteristic p and H is a closed subgroup of G.

Following Serre [35], we say that H is G-completely reducible (G-cr for short)
provided that whenever H is contained in a parabolic subgroup P of G, it is
contained in a Levi subgroup of P , and that H is G-irreducible (G-ir for short)
provided H is not contained in any proper parabolic subgroup of G at all. Clearly,
if H is G-irreducible, it is trivially G-completely reducible, and an overgroup of a
G-irreducible subgroup is again G-irreducible; for an overview of this concept see
[4], [34] and [35]. Note that in case G = GL(V ) a subgroup H is G-completely
reducible exactly when V is a semisimple H -module and it is G-irreducible precisely
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when V is an irreducible H -module. Recall that if H is G-completely reducible,
then the identity component H◦ of H is reductive [35, Proposition 4.1].

A unipotent element u of G is distinguished provided any torus in the centralizer
CG(u) of u in G is central in G. Likewise, a nilpotent element X of the Lie algebra g
of G is distinguished provided any torus in the centralizer CG(X) of X in G is
central in G, see [10, Section 5.9] and [16, Section 4.1]. For instance, regular
unipotent elements in G are distinguished, and so are regular nilpotent elements
in g [39, III, 1.14] (or [10, Proposition 5.1.5]). The converse is true in type A, since
a distinguished unipotent or nilpotent element must clearly consist of a single Jordan
block. Overgroups of regular unipotent elements have attracted much attention in
the literature, e.g., see [22; 32; 42; 44] and [6].

The following remarkable result was proved by Korhonen.

Theorem 1.1 [17, Theorem 6.5]. Suppose G is simple and p is good for G. Let H
be a reductive subgroup of G. Suppose H◦ contains a distinguished unipotent
element of G of order p. Then H is G-irreducible.

One can easily extend this theorem to arbitrary connected reductive G by reducing
to the simple case, see Remark 6.3.

Korhonen’s proof of Theorem 1.1 depends on checks for the various possible
Dynkin types for simple G. E.g., for G simple of exceptional type, Korhonen’s
argument relies on long exhaustive case-by-case investigations from [20], where
all connected reductive non-G-cr subgroups are classified in the exceptional type
groups in good characteristic. For classical G, Korhonen requires an intricate
classification of all SL2-representations on which a nontrivial unipotent element
of SL2 acts with at most one Jordan block of size p. Our main aim is to give a short
uniform proof of Theorem 1.1 in Section 6 without resorting to further case-by-case
checks, but imposing an extra hypothesis which allows us to use a landmark result
by Seitz (see Section 5.1).

Theorem 1.2. Suppose p is good for G. Let H be a connected reductive subgroup
of G. Suppose H contains a distinguished unipotent element of G of order p.
Suppose also that:

(†) There exists a Springer map φ for H such that φ(u) is a distinguished element
of g.

Then H is G-irreducible.

For a discussion of Springer maps, see Section 4.1.

Remark 1.3. Suppose as in Theorem 1.1, that G is simple classical with natural
module V , and p ≥ dim V > 2. Then, thanks to [15, Proposition 3.2], V is
semisimple as an H◦-module, and by [35, (3.2.2(b))], this is equivalent to H◦ being
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G-cr. Then H is G-ir, by Lemma 3.1. This gives a short uniform proof of the
conclusion of Theorem 1.1 in this case, as the bound p ≥ dim V > 2 ensures that
every distinguished unipotent element (including the regular ones) is of order p.
The conclusion can fail if the bound is not satisfied, see Theorem 1.5.

We say that a subgroup of G is of type A1 if it is isomorphic to SL2 or PGL2.
Our proof of Theorem 1.2 involves the notion of a good A1 subgroup, which was
introduced by Seitz in [33]. We consider the interaction of good A1 subgroups
with associated cocharacters and Springer maps; we identify a useful class of
Springer maps (Definition 5.16), which we call logarithmic Springer maps, and
we prove some results that are of interest in their own right (see Corollary 5.20
and Lemma 5.30). Our main result on good A1 subgroups is the following (see
Section 5.2 for definitions).

Theorem 1.4. Suppose p is good for G and let A be an A1 subgroup of G. The
following are equivalent.

(i) A is subprincipal.

(ii) A is optimal.

(iii) A is good.

Theorem 1.1 covers the situation when p is good for G. There are only a few
cases when G is simple, p is bad for G, and G admits a distinguished unipotent
element of order p, by work of Proud, Saxl, and Testerman [31, Lemmas 4.1, 4.2]
(see Lemmas 2.5 and 2.7). In this case the conclusion of Theorem 1.1 fails precisely
in one instance, as observed in [17, Proposition 1.2] (Example 2.6), else it is valid
(Example 2.8). Combining the cases when p is bad for G with Theorem 1.2,
we recover Korhonen’s main theorem [17, Theorem 1.3] (assuming that (†) from
Theorem 1.2 holds).

Theorem 1.5. Suppose G is simple and let H be a reductive subgroup of G. Sup-
pose H◦ contains a distinguished unipotent element of G of order p, and suppose
that (†) holds. Then H is G-irreducible, unless p = 2, G is of type C2, and H is a
type A1 subgroup of G.

Our next goal is an extension of Theorem 1.2 to finite groups of Lie type in G.
Let σ : G → G be a Steinberg endomorphism of G, so that the finite fixed point
subgroup Gσ = G(q) is a finite group of Lie type over the field Fq of q elements. For
a Steinberg endomorphism σ of G and a connected reductive σ -stable subgroup H
of G, σ is also a Steinberg endomorphism for H with finite fixed point subgroup
Hσ = H ∩Gσ [40, 7.1(b)]. Obviously, one cannot directly appeal to Theorem 1.2 to
deduce anything about Hσ , because (Hσ )◦ is trivial. For the notion of a q-Frobenius
endomorphism, see Section 2.3.
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Theorem 1.6. Let H be a connected reductive subgroup of G and suppose p is
good for G. Let σ : G → G be a Steinberg endomorphism stabilizing H such that
σ |H is a q-Frobenius endomorphism of H. If G admits components of exceptional
type, then assume q > 7. Suppose Hσ contains a distinguished unipotent element
of G of order p, and suppose that (†) holds. Then Hσ is G-irreducible.

Combining Theorem 1.6 with the aforementioned results from [31], we are able to
deduce the following analogue of Theorem 1.5 for finite subgroups of Lie type in G.

Theorem 1.7. Let H be a connected reductive subgroup of G. Let σ : G → G be a
Steinberg endomorphism stabilizing H such that σ |H is a q-Frobenius endomor-
phism of H. If G is of exceptional type, then assume q > 7. Suppose Hσ contains a
distinguished unipotent element of G of order p, and suppose that (†) holds. Then
Hσ is G-irreducible, unless p = 2, G is of type C2, and H is a type A1 subgroup
of G.

In the special instance in Theorems 1.6 and 1.7 when Hσ contains a regular
unipotent element u from G, the conclusion of both theorems holds without any
restriction on the order of u and without any restriction on q (and without any
exceptions of the type seen in Theorem 1.7), see [6, Theorem 1.3].

In our final main result we show that we can remove condition (†) and the
condition that u has order p from Theorem 1.2, at the cost of increasing our bound
on p. We also obtain an analogue under the hypothesis that Lie(H) contains
a distinguished nilpotent element of g. For a unipotent element u ∈ G to be
distinguished is a mere condition on the structure of the centralizer CG(u) of u
in G. The extra condition for u to have order p is thus somewhat artificial. This
restriction in Theorems 1.1 and 1.2 is due to the methods used in [17] and in our
proofs in Section 6, which require the unipotent element to lie in a subgroup of
type A1; such an element must obviously have order p.

To state our theorem, we need to introduce an invariant a(G) of G from [35,
Section 5.2]: for G simple, set a(G) = rk(G)+ 1, where rk(G) is the rank of G.
For reductive G, let a(G)= max{1, a(G1), . . . , a(Gr )}, where G1, . . . ,Gr are the
simple components of G.

Theorem 1.8. Suppose p ≥a(G). Let H be a reductive subgroup of G. Suppose H◦

contains a distinguished unipotent element of G or Lie(H) contains a distinguished
nilpotent element of g. Then H is G-irreducible.

Section 2 contains background material. In Section 3 we prove Theorem 1.8,
along with some analogues for finite subgroups of Lie type. In Section 4 we discuss
Springer maps and associated cocharacters. We recall Seitz’s notion of good A1

subgroups in Section 5 and we prove Theorem 1.4 in Section 5.2 (see Theorem 5.24).
Theorems 1.2 and 1.5–1.7 are proved in Section 6.
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2. Preliminaries

2.1. Notation. Throughout, we work over an algebraically closed field k of char-
acteristic p. For convenience we assume that p > 0 unless otherwise stated; most
of our results hold for p = 0 with obvious modifications and in many cases the
proof is much easier (see Remarks 3.3(vi), for example). All affine varieties are
considered over k and are identified with their sets of k-points. A linear algebraic
group H over k has identity component H◦; if H = H◦, then we say that H is
connected. We denote by Ru(H) the unipotent radical of H ; if Ru(H) is trivial,
then we say H is reductive.

Throughout, G denotes a connected reductive linear algebraic group over k. All
subgroups of G considered are closed. By DG we denote the derived subgroup
of G, and likewise for subgroups of G. We denote the Lie algebra of G by Lie(G)
or by g. If p > 0 then we denote the p-power map on g by X 7→ X [p]. By a Levi
subgroup of G we mean a Levi subgroup of some parabolic subgroup of G. Recall
that a homomorphism f : G1 → G2 of connected algebraic groups is a central
isogeny if f is surjective, ker( f ) is finite and the kernel of the derivative d f is
central in Lie(G1).

Let Y (G)= Hom(Gm,G) denote the set of cocharacters of G. For µ∈ Y (G) and
g ∈ G we define the conjugate cocharacter g ·µ ∈ Y (G) by (g ·µ)(t)= gµ(t)g−1

for t ∈ Gm ; this gives a left action of G on Y (G). For H a subgroup of G, let
Y (H) := Y (H◦)= Hom(Gm, H) denote the set of cocharacters of H . There is an
obvious inclusion Y (H)⊆ Y (G).

Fix a Borel subgroup B of G containing a maximal torus T . Let 8=8(G, T )
be the root system of G with respect to T , let 8+

=8(B, T ) be the set of positive
roots of G, and let 6 =6(G, T ) be the set of simple roots of 8+. For each α ∈8

we have a root subgroup Uα of G. For α in8, let xα : Ga →Uα be a parametrization
of the root subgroup Uα of G.

We denote the unipotent variety of G by UG and the nilpotent cone of g by NG .
We define

U
(1)

G = {u ∈ UG | u p
= 1}

and
N

(1)
G = {X ∈ NG | X [p]

= 0}.

If u ∈ UG then we have a unique decomposition u = u1 · · · ur , where ui ∈ Gi

and the Gi are the simple factors of DG; we call ui the projection of u onto Gi .
Clearly u is distinguished in G if and only if ui is distinguished in Gi for each i .

2.2. Good primes. A prime p is said to be good for G if it does not divide any
coefficient of any positive root when expressed as a linear combination of simple
ones. Else p is called bad for G [39, Section 4]. Explicitly, if G is simple, p is
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good for G provided p > 2 in case G is of Dynkin type Bn , Cn , or Dn; p > 3 in
case G is of Dynkin type E6, E7, F4 or G2 and p> 5 in case G is of type E8. If G
is semisimple then we say that p is separably good for G if p is good for G and
the canonical map from Gsc to G is separable, where Gsc is the simply connected
cover of G. For arbitrary connected reductive G we say that p is separably good
for G if it is separably good for [G,G]. We observe that if L is a Levi subgroup
of G and p is good for G, then it is also good for L .

2.3. Steinberg endomorphisms of G. Recall that there is a basic dichotomy for
endomorphisms of a simple algebraic group: either the endomorphism is an auto-
morphism, or its set of fixed points is finite [40, Theorem 10.13]. Given a reductive
group G, a Steinberg endomorphism of G is a surjective homomorphism σ : G → G
such that the corresponding fixed point subgroup Gσ := {g ∈ G | σ(g)= g} of G is
finite. If S is a σ -stable set of closed subgroups of G, then Sσ denotes the subset
consisting of all σ -stable members of S .

If G is a reductive group defined over the finite field Fq (i.e., with some Fq-
structure), then the corresponding standard Frobenius endomorphism σq : G → G is
an example of a Steinberg endomorphism, and in this case we also write Gσ = G(q).
In this situation, there exist a σq -stable maximal torus T and Borel subgroup B ⊇ T ,
and with respect to a chosen parametrization of the root groups as above, we have
σq(xα(t))= xα(tq) for each α ∈8 and t ∈ Ga , see [13, Theorem 1.15.4(a)].

Recall that a generalized Frobenius endomorphism of a reductive group G is
an endomorphism of G for which some power is a standard Frobenius endomor-
phism σq . If G is simple, then every Steinberg endomorphism of G is actually a
generalized Frobenius morphism [13, Theorem 2.1.11]. Further, when G is simple
and p is good for G, every such endomorphism has the form σ = τσq , where τ is
an algebraic automorphism of G of finite order, σq is a standard q-power Frobenius
endomorphism of G, and σq and τ commute, see [40, Section 11]. Conversely, it is
clear (for arbitrary reductive G) that any endomorphism σ which factorizes in this
way is a generalized Frobenius endomorphism. However, if G is not simple and p
is bad for G, then a generalized Frobenius map may fail to factor into a field and
algebraic automorphism of G, e.g., see [14, Example 1.3].

Following [31], we call a generalized Frobenius endomorphism σ a q-Frobenius
endomorphism provided σ = τσq , where τ is an algebraic automorphism of G of
finite order, σq is a standard q-power Frobenius endomorphism of G, and σq and τ
commute.

2.4. Bala–Carter theory. We recall some relevant results and concepts from Bala–
Carter theory. Suppose p is good for G. A parabolic subgroup P of G admits a
dense open orbit on its unipotent radical Ru(P), the so-called Richardson orbit, see
[10, Theorem 5.2.1]. A parabolic subgroup P of G is called distinguished provided
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dim(D P/Ru(P))= dim(Ru(P)/D Ru(P)), see [30, Section 2.1]. For G simple, the
distinguished parabolic subgroups of G (up to G-conjugacy) were worked out in [2]
and [3], see [10, pp. 174–177]. The notion of a distinguished parabolic subgroup
of G also makes sense in case p is bad for G, see [16, Section 4.10].

The following is the celebrated Bala–Carter theorem [10, Theorems 5.9.5, 5.9.6],
which is valid in good characteristic, thanks to work of Pommerening [28; 29]. For
the Lie algebra versions see also [16, Proposition 4.7, Theorem 4.13].

Theorem 2.1. Suppose p is good for G.

(i) There is a bijective map between the G-conjugacy classes of distinguished
unipotent elements of G and conjugacy classes of distinguished parabolic subgroups
of G. The unipotent class corresponding to a given parabolic subgroup P contains
the dense P-orbit on Ru(P).

(ii) There is a bijective map between the G-conjugacy classes of unipotent elements
of G and conjugacy classes of pairs (L , P), where L is a Levi subgroup of G and P
is a distinguished parabolic subgroup of D L. The unipotent class corresponding to
the pair (L , P) contains the dense P-orbit on Ru(P).

Remark 2.2. (i) Let 1 ̸= u ∈ UG . Let S be a maximal torus of CG(u). Then u is
distinguished in the Levi subgroup CG(S) of G, since S is the unique maximal torus
of CCG(S)(u). Conversely, if L is a Levi subgroup of G with u distinguished in L ,
then the connected center of L is a maximal torus of CG(u)◦, see [16, Remark 4.7].

(ii) Let σ : G → G be a Steinberg endomorphism of G and let 1 ̸= u ∈ Gσ

be unipotent. Then CG(u)◦ is σ -stable. The set of all maximal tori of CG(u)◦

is σ -stable and CG(u)◦ is transitive on that set [38, Theorem 6.4.1]. Thus the
Lang–Steinberg theorem, see [39, I, 2.7], provides a σ -stable maximal torus, say S,
of CG(u)◦. Then, by part (i), L = CG(S) is a σ -stable Levi subgroup of G and u is
distinguished in L .

2.5. Cocharacters and parabolic subgroups of G. Let λ ∈ Y (G). Recall that λ
affords a Z-grading on g =

⊕
j∈Z g( j, λ), where

g( j, λ) := {X ∈ g | Ad(λ(t))X = t j X for every t ∈ Gm}

is the j -weight space of Ad(λ(Gm)) on g, see [10, Section 5.5] or [16, Section 5.1].
Let pλ :=

⊕
j≥0 g( j, λ). Then there is a unique parabolic subgroup Pλ with

Lie(Pλ)=pλ and CG(λ) :=CG(λ(Gm)) is a Levi subgroup of Pλ. Since all maximal
tori in G are conjugate, it suffices to describe these subgroups and subalgebras when
λ ∈ Y (T ) for our fixed maximal torus T . In this case, letting X (T )= Hom(T,Gm)

denote the character group of T , we have Uα ⊆ Pλ if and only if ⟨λ, α⟩ ≥ 0, where
⟨ , ⟩ : Y (T )× X (T )→ Z is the usual pairing between cocharacters and characters.
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We have Uα ⊆ CG(λ) if and only if ⟨λ, α⟩ = 0, and Ru(Pλ) is generated by the Uα

with ⟨λ, α⟩> 0, see the proof of [38, Proposition 8.4.5].
Set J := {α ∈ 6 | ⟨α, λ⟩ = 0}. Then Pλ = PJ = ⟨T,Uα | ⟨α, λ⟩ ≥ 0⟩ is the

standard parabolic subgroup of G associated with J ⊆6.
Let ρ =

∑
α∈6 cαρ α be the highest root in 8+. Define htJ (ρ) :=

∑
α∈6\J cαρ .

In view of Theorem 2.1, the following gives the order of a distinguished unipotent
element in good characteristic.

Lemma 2.3 [43, order formula (0.4)]. Suppose p is good for G. Let P = PJ be a
distinguished parabolic subgroup of G and let u be in the Richardson orbit of P
on Ru(P). Then the order of u is min{pa

| pa > htJ (ρ)}.

2.6. Overgroups of type A1. It has been understood for some time now that if p is
good for G then one can study unipotent elements of G having order p by embedding
them in A1 subgroups of G. The existence of A1 overgroups for unipotent elements
of order p is guaranteed by the following fundamental results of Testerman [43,
Theorem 0.1] if p is good for G and else by Proud, Saxl, and Testerman [31];
these results were originally proved for semisimple G but the extension to arbitrary
connected reductive G is immediate.

Theorem 2.4 [43, Theorems 0.1, 0.2]. Suppose p is good for G. Let σ be idG or
a Steinberg endomorphism of G. Let u ∈ Gσ be unipotent of order p. Then there
exists a σ -stable subgroup of G of type A1 containing u.

The proof of Theorem 2.4 is based on case-by-case checks and depends in part
on computer calculations involving explicit unipotent class representatives. For a
uniform proof of the theorem, we refer the reader to McNinch [23]. Conditions to
ensure G-complete reducibility of such a subgroup were given in [26].

We now consider A1 overgroups of distinguished unipotent elements in arbitrary
characteristic. There are only a few instances when G is simple, p is bad for G,
and G admits a distinguished unipotent element of order p. We recall the relevant
results concerning the existence of A1 overgroups of such elements.

Lemma 2.5 [31, Lemma 4.1]. Let G be simple classical of type Bl,Cl , or Dl and
suppose p = 2. Then G admits a distinguished involution u if and only if G is of
type C2 and u belongs to the subregular class C of G. If σ is idG or a q-Frobenius
endomorphism of G and u ∈ C ∩ Gσ , then there exists a σ -stable subgroup A of G
of type A1 containing u.

Example 2.6. Let G be simple of type C2 and let p = 2. Let σ be idG or a q-
Frobenius endomorphism of G, and suppose u ∈ Gσ is a distinguished unipotent
element of order 2. Then Lemma 2.5 provides a σ -stable subgroup A of type A1

containing u. Thanks to [17, Proposition 1.2], there are such subgroups A which
are not G-ir. In fact, according to the same reference, there are two G-conjugacy
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classes of such A1 subgroups in G, see Example 5.15 below. Since A is contained
in a proper parabolic subgroup of G, so is Aσ . So the latter is also not G-ir. By
Lemma 3.1 below, A and Aσ are not G-cr, either.

Lemma 2.7 [31, Lemmas 3.3, 4.2]. Let G be simple of exceptional type and
suppose p is bad for G. Then G admits a distinguished unipotent element u of
order p if and only if G is of type G2, p = 3, and u belongs either to the subregular
class G2(a1)

1 or to the class A(3)1 of G. Moreover, if σ is idG or a q-Frobenius
endomorphism of G and u ∈ G2(a1)∩ Gσ , then there exists a σ -stable subgroup A
of G of type A1 containing u. In case u ∈ A(3)1 , there is no overgroup of u in G of
type A1.

Example 2.8. Let G be simple of type G2 and p = 3. Let H be a reductive
subgroup of G containing a distinguished unipotent element u from G. Then,
as p = 3 = a(G2), it follows from Theorem 1.8 that H◦ is G-ir, and so is H .
This applies in particular to the subgroup A of G of type A1 containing u when
u ∈ G2(a1). Since 3 is not a good prime for G, Theorem 1.1 does not apply in this
case. See also [41, Corollary 2].

In case of the presence of a q-Frobenius endomorphism of G stabilizing H , we
show in our proof of Theorem 1.7 that Hσ is also G-ir.

Theorem 2.9 [31, Theorem 5.1]. Let G be semisimple and suppose p is bad for G.
Let σ be idG or a q-Frobenius endomorphism of G. Let u ∈ Gσ be unipotent of
order p. If p = 3, and G has a simple component of type G2, assume that the
projection of u into this component does not lie in the class A(3)1 . Then there exists
a σ -stable subgroup of G of type A1 containing u.

Corollary 2.10. Let G be simple of type G2, p =3 and let σ be idG or a q-Frobenius
endomorphism of G. Let u ∈ A(3)1 ∩ Gσ . Then there is no proper semisimple
subgroup H of G containing u. In particular, any such u is semiregular, that is,
CG(u) does not contain a noncentral semisimple element of G.

Proof. By way of contradiction, suppose H is a proper semisimple subgroup of G
containing u. Since p = 3 is good for H (e.g., see [41, Corollary 3]), there is
a σ -stable A1 subgroup A in H containing u, by Theorem 2.4. It follows from
Lemma 2.7 that u ∈ G2(a1) which contradicts the hypothesis that u ∈ A(3)1 . □

The following result is needed in the proof of Theorem 1.2 below.

Lemma 2.11. Suppose G is semisimple and p = 3 is good for G. Let H be a
connected reductive subgroup of G. Let u ∈ H be a unipotent element of order 3
which is distinguished in G. Then H does not admit a simple component of type G2.

1Throughout, we use the Bala–Carter notation for distinguished classes in the exceptional groups,
see [10, Section 5.9].
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Proof (see [17, p. 387]). Since p is good for G, every simple component of G is
of classical type. Let V ′ be the natural module of the simple component G ′ of G,
and let H ′ be the projection of H into G ′. Since the projection u′ of u into G ′

has order 3, the largest Jordan block size of u′ on V ′ is at most 3. Since u′ is
distinguished in G ′, the Jordan block sizes of u′ are distinct and of the same parity.
Hence dim V ′

≤ 4. Since a nontrivial representation of a simple algebraic group of
type G2 has dimension at least 5, H ′ does not have a simple component of type G2.
Hence H has no simple component of type G2. □

In summary, we see that if 1 ̸= u ∈ U
(1)

G then u is contained in an A1 subgroup
of G unless p = 3 and G has a simple G2 factor such that the projection of u onto
this factor lies in the class A(3)1 .

3. Variations on Theorems 1.2 and 1.6

In this section we prove Theorem 1.8. We also state and prove some related
results for finite subgroups of Lie type. We need the following analogue of [6,
Corollary 4.6], which shows that in order to derive the G-irreducibility of H in
Theorem 1.8, it suffices to show that H is G-cr, see also [17, Lemma 6.1]. This
also applies to Theorems 1.2 and 1.6.

Lemma 3.1. Let H be a G-completely reducible subgroup of G. Suppose that H
contains a distinguished unipotent element u of G or Lie(H) contains a distin-
guished nilpotent element X of g. Then H is G-irreducible.

Proof. Suppose H is contained in a parabolic subgroup P of G. Then, by hypothesis,
H is contained in a Levi subgroup L of P . As the latter is the centralizer of a
torus S in G, S centralizes u (resp., X ) and so S is central in G. Hence L = G,
which implies P = G. □

Along with Lemma 3.1, the following theorem of Serre immediately yields
Theorem 1.8.

Theorem 3.2 [35, Theorem 4.4]. Suppose p ≥ a(G) and (H : H◦) is prime to p.
Then H◦ is reductive if and only if H is G-completely reducible.

Proof of Theorem 1.8. Since p ≥ a(G), Theorem 3.2 applied to H◦ shows the latter
is G-cr. Thus H◦ is G-ir by Lemma 3.1, and so is H . □

Remarks 3.3. (i) The characteristic restriction in Theorem 1.8 (and Theorem 3.2)
is needed, see Theorem 1.5.

(ii) The condition in Theorem 1.8 that the distinguished unipotent element of G
belongs to H◦ (as opposed to H ) is also necessary, as for instance the finite unipotent
subgroup of G generated by a given distinguished unipotent element of G is not
G-cr [35, Proposition 4.1].
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(iii) Under the given hypotheses, Theorem 1.8 applies to an arbitrary distinguished
unipotent element of G, irrespective of its order. For Theorem 1.1 to achieve the
same uniform result, p has to be sufficiently large to guarantee that the chosen
element has order p. For G simple classical with natural module V , this requires
the bound p ≥ dim V , see Remark 1.3. For G simple of exceptional type, this
requires the following bounds: p > 11 for E6, p > 17 for E7, p > 29 for E8,
p > 11 for F4, and p > 5 for G2, see [43, Proposition 2.2]. So in many cases the
bound p ≥ a(G) from Theorem 1.8 is better.

(iv) For an instance when p is bad for G so that Theorem 1.1 does not apply, but
Theorem 1.8 does, see Example 2.8.

(v) Theorem 1.8 generalizes [6, Theorem 3.2] which consists of the analogue in
the special instance when the distinguished element is regular in G (or g). Note
that in this case no restriction on p is needed, see [6, Theorem 3.2; 22, Theorem 1;
44, Theorem 1.2].

(vi) In characteristic 0, a subgroup H of G is G-cr if and only if it is reductive [35,
Proposition 4.1]. So in that case the conclusion of Theorem 1.8 follows directly
from Lemma 3.1.

Once again, in the presence of a Steinberg endomorphism σ of G, one cannot
appeal to Theorem 1.8 directly to deduce anything about Hσ , because (Hσ )◦ is
trivial. In Corollary 3.5 we present an analogue of Theorem 1.8 for the finite groups
of Lie type Hσ under an additional condition stemming from [7].

Note that for S a torus in G, we have CG(S) = CG(s) for some s ∈ S, see [8,
III, Proposition 8.18].

Proposition 3.4 [7, Proposition 3.2]. Let H ⊆ G be connected reductive groups.
Let σ : G → G be a Steinberg endomorphism that stabilizes H and a maximal
torus T of H. Suppose:

(i) CG(T )= CG(t) for some t ∈ Tσ .

(ii) Hσ meets every T -root subgroup of H nontrivially.

Then Hσ and H belong to the same parabolic and the same Levi subgroups of G. In
particular, H is G-completely reducible if and only if Hσ is G-completely reducible;
similarly, H is G-irreducible if and only if Hσ is G-irreducible.

Without condition (i), the proposition is false in general, see [7, Example 3.2].
The following is an immediate consequence of Theorem 1.8 and Proposition 3.4.

Corollary 3.5. Suppose G, H and σ satisfy the hypotheses of Proposition 3.4.
Suppose in addition that p ≥ a(G). If Hσ contains a distinguished unipotent
element of G, then Hσ is G-irreducible.
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Corollary 3.5 generalizes [6, Theorem 1.3] which consists of the analogue in the
special instance when the distinguished element is regular in G. Note that in this
case no restriction on p is needed.

Example 3.6 below shows that the conditions in Corollary 3.5 hold generically.

Example 3.6. Let σq : GL(V )→ GL(V ) be a standard Frobenius endomorphism
which stabilizes a connected reductive subgroup H of GL(V ) and a maximal
torus T of H . Pick l ∈ N such that firstly all the different T -weights of V are
still distinct when restricted to Tσ l

q
and secondly there is a t ∈ Tσ l

q
, such that

CGL(V )(T )= CGL(V )(t). Then for every n ≥ l, both conditions in Corollary 3.5 are
satisfied for σ = σ n

q . Thus there are only finitely many powers of σq for which the
conditions in Corollary 3.5 can fail. The argument here readily generalizes to a
Steinberg endomorphism of a connected reductive G which induces a generalized
Frobenius morphism on H .

4. Springer maps and associated cocharacters

4.1. Springer maps. The notion of a Springer isomorphism was introduced in [37].
A Springer isomorphism is a G-equivariant isomorphism of varieties φ : UG → NG .
It follows from work of Springer [37, Theorem 3.1] that a Springer isomorphism φ

exists if p is good and G is simple and simply connected. We follow Springer and
consider G-equivariant maps from UG to NG , but note that several other authors
consider G-equivariant maps from NG to UG instead (see, e.g., [36]).

We wish to consider versions of Springer maps for arbitrary connected reduc-
tive G. To prove existence, we need to weaken the definition slightly.

Definition 4.1. A Springer map (for G) is a G-equivariant homeomorphism of
varieties φ : UG → NG .

Remark 4.2. It follows from G-equivariance that if φ is a Springer map then
φ(1)= 0 and for any u ∈ UG , u is distinguished if and only if φ(u) is distinguished.

Remark 4.3. If p is good for G then there exists a Springer map φ for G, see [25,
Proposition 5]. Below we sketch the argument briefly, following [25, Proposition 5]
and [36, Section 1.2]. Note first that a Springer map is uniquely determined by its
value on a single regular unipotent element u of G: this follows from G-equivariance,
and because the orbit G · u is dense in UG . If G is simple and p is separably good
for G then we can prove existence of a Springer isomorphism by reversing this
argument. Fix a regular unipotent element u ∈ G, and choose X ∈ NG such that
CG(u)= CG(X). We have an obvious isomorphism from G · u to G · X . Because
UG and NG are normal (for references, see [34, Lecture 2]), one can show that this
map extends to a unique G-equivariant isomorphism from UG to NG . Let us say
that G is of separable type if it is of the form G = G1 × · · ·× Gr , where each Gi
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is simple and p is separably good for G. A similar argument to the above works
for G of separable type: for UG = UG1 × · · · × UGr is normal since each UGi is,
and likewise NG is normal.

Now let G be an arbitrary connected reductive group and assume p is good
for G. Since UG ⊆ DG and NG ⊆ Lie(DG), there is no harm in assuming that G
is semisimple. Choose a central isogeny π from G̃ to G, where G̃ = G̃1 ×· · ·× G̃r

with each G̃i simple and p separably good for G̃. Then π (resp., dπ) gives a
homeomorphism from UG̃ to UG (resp., from NG̃ to NG) [23, Lemma 27]. If φ̃ is
a Springer map for G̃ then the composition

UG → UG̃
φ̃

−→ NG̃ → NG

is a Springer map for G. This gives a bijection between the set of Springer maps
for G̃ and the set of Springer maps for G. Since G̃ admits a Springer isomorphism,
it follows that G admits a Springer map.

Note that if G is of separable type then any Springer map φ for G is an isomor-
phism. For fix a regular unipotent element u ∈ G and let X = φ(u). By the above
discussion, there is a unique Springer isomorphism φ′ for G such that φ′(u)= X ;
the uniqueness implies that φ′

= φ. It also follows from the construction in the
previous paragraph that if G is an arbitrary connected reductive group and p is
good for G then the restriction of φ to any maximal unipotent subgroup U of G
gives an isomorphism of varieties from U to Lie(U ).

Remark 4.4. Let G1,G2 be connected reductive groups and let φi be a Springer
map for Gi for i = 1, 2. We claim that the map φ1 ×φ2 : UG1×G2 → NG1×G2 given
by (φ1 × φ2)((u1, u2)) = (φ1(u1), φ2(u2)) is a Springer map for G1 × G2. It is
clear that φ1 × φ2 is a (G1 × G2)-equivariant bijection. The Zariski topology on
the product of varieties is not the product topology, so it is not immediately clear
that φ1 × φ2 is a homeomorphism. To see this, we can pass to the case when G1

and G2 are of separable type, by Remark 4.3. Then φ1 and φ2 are isomorphisms,
so φ1 ×φ2 is an isomorphism, and the claim follows. We show in Lemma 4.14 that
every Springer map for G1 × G2 arises in this way.

Remark 4.5. It follows from G-equivariance that a Springer map φ gives rise to a
bijective map from the set of unipotent conjugacy classes of G to the set of nilpotent
conjugacy classes of g. Serre [24, Section 10, Corollary] shows that this map does
not depend on the choice of Springer map (the proof given in the same work is for
simple G, but the extension to arbitrary G follows easily from Remarks 4.3 and 4.4).
In particular, the condition in (†) does not depend on the choice of Springer map
for H .

Remark 4.6. Springer maps need not exist in bad characteristic. For instance, a
simple group G of type F4 with p = 2 does not admit a Springer map, because the
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numbers of unipotent classes in G and nilpotent G-orbits in Lie(G) are different
(see [10, Section 5.11]).

Lemma 4.7 [36, Section 1.2, Remark 1]. Let φ be a Springer map for G. Then
φ(u p)= φ(u)[p] for any u ∈ UG .

Remark 4.8. It follows from Lemma 4.7 that any Springer map for G induces a
homeomorphism from U

(1)
G to N

(1)
G .

In Section 4.2 we define the notion of an associated cocharacter for an element
u ∈ UG , using a fixed Springer map to give a correspondence between UG and NG .
In many contexts one can fix a single Springer map once and for all. We need,
however, to consider the interaction of Springer maps with subgroups of G. This
motivates the following definition.

Definition 4.9. Let M be a connected subgroup of G. We say that a Springer map φ
for G is M-compatible if φ(UM)⊆ NM , and we say that M is Springer-compatible
if there exists an M-compatible Springer map for G.

If φ is M-compatible then in fact φ(UM) = NM , since dim(UM) = dim(NM);
note that dimension can be defined in a purely topological way (via Krull dimension),
so it is preserved by homeomorphisms. Note also that when M is reductive and φ
is an M-compatible Springer map, the restriction of φ to UM gives a Springer map
for M , which we denote by φM .

Example 4.10 [27, (3.3.1)(a)]. Let M be a connected reductive subgroup of the
form CG(S)◦, where S ⊆ G. It follows from G-equivariance that any Springer map
for G is M-compatible, so M is Springer-compatible.

Example 4.11. The arguments in Remark 4.3 show that if Gi is a simple factor
of G then any Springer map for G is Gi -compatible, so Gi is Springer-compatible.

Example 4.12. Assume p > h(G), where h(G) denotes the Coxeter number of G.
The map log : UG → NG from [34, Theorem 3] is a Springer map. Let H be a
connected reductive subgroup of G. We see that log is H -compatible if and only
if H is saturated in the sense of [34, Lecture 3]. For some properties of saturated
subgroups, see [7] and [34].

Example 4.13. Let G = SL2 × SL2. For q a positive power of p, let Hq be SL2

diagonally embedded in G with a q-Frobenius twist in one of the factors: say, the
second factor. Note that Lie(Hq)= Lie(SL2)⊕0, so Lie(Hq) contains no nilpotent
elements that are distinguished in g. It follows from Remark 4.2 that no Springer
map for G is Hq -compatible, so Hq is not Springer-compatible.

We can find a similar example for G simple. Let G be a simple group of type G2

and assume p > 2. Define Hq to be SL2 diagonally embedded in the A1 Ã1 regular
subgroup of G with a q-Frobenius twist in one of the factors, and let 1 ̸= u ∈ Hq
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be unipotent. Then u is a distinguished unipotent element of G by [19, Table 10,
Section 4.1], but Lie(Hq) contains no nilpotent elements that are distinguished
in g, so Hq is not Springer-compatible. We are grateful to Adam Thomas for this
example.

Lemma 4.14. Let G1,G2 be connected reductive groups and let φ be a Springer
map for G1 × G2. Then φ is G1-compatible and G2-compatible. Also, φ = φ1 ×φ2,
where φi is the restriction of φ to Gi .

Proof. By Remark 4.4, we can reduce to the case when G1 × G2 is of separable
type. The Gi -compatibility of φ follows easily from the (G1 × G2)-equivariance.
Now fix regular u1 ∈ UG1 and u2 ∈ UG2 , and set X = (X1, X2), where X i = φi (ui )

for 1 ≤ i ≤ 2. Then X i is a regular element of Lie(Gi ) for 1 ≤ i ≤ 2, u = (u1, u2)

is a regular element of G and X is a regular element of Lie(G). Clearly, we have
CGi (ui )= CGi (X i ) for 1 ≤ i ≤ 2.

Let φ′

i be the unique Springer isomorphism for Gi such that φ′

i (ui ) = X i . We
have

(φ′

1 ×φ′

2)((u1, u2))= (φ′

1(u1), φ
′

2(u2))= (X1, X2)= φ((u1, u2)),

so φ = φ′

1 ×φ′

2. Moreover,

(φ1(u1), 0)= φ((u1, 0))= (φ′

1 ×φ′

2)((u1, 0))= (φ′

1(u1), 0),

so φ1(u1)= φ′

1(u1), so φ1 = φ′

1. Likewise φ2 = φ′

2, and the result follows. □

4.2. Cocharacters associated to nilpotent and unipotent elements. The Jacobson–
Morozov theorem allows one to associate an sl(2)-triple to any given nonzero
element of NG in characteristic zero or large positive characteristic. This is an
indispensable tool in the Dynkin–Kostant classification of the nilpotent orbits
in characteristic zero as well as in the Bala–Carter classification of unipotent
conjugacy classes of G in large prime characteristic, see [10, Section 5.9]. In
good characteristic there is a replacement for sl(2)-triples, so-called associated
cocharacters, see Definition 4.15 below. These cocharacters are important tools
in the classification theory of unipotent classes and nilpotent orbits of reductive
algebraic groups in good characteristic, see, for instance, [16, Section 5] and [30].
We recall the relevant concept of cocharacters associated to a nilpotent element
following [16, Section 5.3].

Definition 4.15. Let X ∈ NG . A cocharacter λ ∈ Y (G) of G is associated to X
(in G) provided X ∈ g(2, λ) and there exists a Levi subgroup L of G such that X is
distinguished nilpotent in Lie(L) and λ(Gm)≤D L . Following [12, Definition 2.13],
we write

�a
G(X) := {λ ∈ Y (G) | λ is associated to X}
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for the set of cocharacters of G associated to X . Likewise, for M a connected
reductive subgroup of G such that X ∈ Lie(M), we write �a

M(X) for the set of
cocharacters of M that are associated to X . This notation stems from the fact that
associated cocharacters are destabilizing cocharacters of G for X in the sense of
Kempf–Rousseau theory, see [24] and [30].

Let u ∈ UG . A cocharacter λ∈ Y (G) of G is associated to u (in G) provided it is
associated to φ(u), where φ : UG → NG is a fixed Springer map as in Section 4.1,
see [25, Section 3]. We write

�a
G,φ(u) := {λ ∈ Y (G) | λ is associated to u}

for the set of cocharacters of G associated to u. Likewise, for M a connected
reductive subgroup of G containing u and φ′ a Springer map for M , we write
�a

M,φ′(u) for the set of cocharacters of M that are associated to u. If φ is understood
then we sometimes write �a

G(u) instead of �a
G,φ(u).

Remark 4.16. Let u ∈ UG , λ∈�a
G(u), and g ∈ CG(u). Then g ·λ is also associated

to u, see [16, Section 5.3]. Proposition 4.19(ii) gives a converse to this property.

Remark 4.17. Suppose that G1, . . . ,Gr are connected reductive groups and set
G = G1×· · ·×Gr . Let ui ∈UGi for each 1≤ i ≤r and let L be a Levi subgroup of G.
Then L = L1×· · ·×Lr for some Levi subgroups L i of Gi . Set u = (u1, . . . , ur )∈ L .
It is clear that u is distinguished in L if and only if ui is distinguished in L i for
each i . Likewise, if X = (X1, . . . , Xr ) ∈ NL then X is distinguished in Lie(L) if
and only if X i is distinguished in Lie(L i ) for each i .

Fix a Springer map for G. Let λ ∈ Y (G). We can write λ = λ1 × · · · × λr for
some λi ∈ Y (Gi ). It follows from the previous paragraph that λ is associated to X
in Lie(G) if and only if λi is associated to X i in Lie(Gi ) for each i [16, Section 5.6].
We deduce the analogous statement for u from Remark 4.4: if φ = φ1 × · · ·×φr is
a Springer map for G then λ is associated to u in G if and only if λi is associated
to ui in Gi for each i .

Let ψ : G̃ → G be an epimorphism of connected reductive groups such that
ker(dψ) is central in Lie(G̃). Let ũ ∈ UG̃ , let X̃ ∈ NG̃ , let L̃ be a Levi subgroup
of G̃ and let λ̃∈ Y (G̃). Set u =ψ(ũ), X = dψ(X̃), L =ψ(L̃) and λ=ψ ◦λ̃. Let φ̃
be a Springer map for G̃ and let φ be the corresponding Springer map for G as
described in Remark 4.3. Using [16, Section 4.3] and Remark 4.4 we get analogues
of the above statements: u is distinguished in L if and only if ũ is distinguished
in L̃ , X is distinguished in Lie(L) if and only if X̃ is distinguished in Lie(L̃) and λ
is associated to X (resp., to u) if and only if λ̃ is associated to X̃ (resp., to ũ).

Remark 4.18. The notion of an associated cocharacter for an element u ∈ UG

depends on the choice of the Springer map for G; see [24, Remark 23]. We do,
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however, have the following. Let φ1 and φ2 be Springer maps for G. Let 1 ̸=u1 ∈UG

and let λ ∈�a
G,φ1

(u1). Then λ ∈�a
G,φ2

(u2), where u2 = φ−1
2 (φ1(u)). Note that u2

is conjugate to u1 by Remark 4.5.

We require some basic facts about cocharacters associated to unipotent elements.
The following results are [16, Lemma 5.3, Proposition 5.9] for nilpotent elements
(see also [30, Theorem 2.3, Proposition 2.5]); the versions for unipotent elements
follow immediately.

Proposition 4.19. Suppose p is good for G. Let 1 ̸= u ∈ UG .

(i) �a
G(u) ̸= ∅, i.e., cocharacters of G associated to u exist.

(ii) CG(u)◦ acts transitively on �a
G(u).

(iii) Let λ ∈ �a
G(u) and let Pλ be the parabolic subgroup of G defined by λ as in

Section 2.5. Then Pλ depends only on u and not on the choice of λ.

(iv) Let λ ∈�a
G(u) and let P(u) := Pλ be as in (iii). Then CG(u)⊆ P(u).

If u is distinguished in G, then the parabolic subgroup P(u) of G from Propo-
sition 4.19(iii) is a distinguished parabolic subgroup of G and u belongs to the
Richardson orbit of P(u) on its unipotent radical, see Theorem 2.1(i); see also [24,
Proposition 22].

Remark 4.20. Let p > 0 and suppose 1 ̸= u ∈ U
(1)

G is contained in a subgroup A
of G of type A1. Such a subgroup A always exists when p is good, and when p
is bad there is essentially only one exception, due to Testerman [43] and Proud,
Saxl, and Testerman [31], see Theorems 2.4 and 2.9. Then, since p is good for A,
by Proposition 4.19(i) there exists a cocharacter λ ∈�a

A(u). Note that λ(Gm) is a
maximal torus in A.

It follows from the work of Pommerening [28; 29] that the description of the
unipotent classes in characteristic 0 is identical to the one for G when p is good
for G. In both instances these are described by so-called weighted Dynkin diagrams.
As a result, a cocharacter associated to a unipotent element in good characteristic
acts with the same weights on the Lie algebra of G as its counterpart does in
characteristic 0. This fact is used in the proof of the following result by Lawther
[18, Theorem 1]; see also the proof of [33, Proposition 4.2] and [24, Remark 31].
The result is stated in [18, Theorem 1] for G simple, but the extension to arbitrary
connected reductive G is immediate, using arguments like those in Remark 4.17;
note that if ψ : G̃ → G is an epimorphism of connected reductive groups such
that ker(dψ) is central in Lie(G) then dψ gives an isomorphism from Lie(Ũ ) onto
Lie(ψ(Ũ )), where Ũ is any maximal unipotent subgroup of G̃, so the weights of
λ̃ ∈ Y (G̃) on Lie(G̃) are the same as the weights of ψ ◦ λ̃ on Lie(G).
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Lemma 4.21. Let u ∈ UG . Suppose p is good for G. Let λ ∈�a
G(u). Denote by ωG

the highest weight of λ(Gm) on g. Then u has order p if and only if ωG ≤ 2p − 2.

The concept of associated cocharacters is not only a convenient replacement for
sl(2)-triples from the Jacobson–Morozov theory, it is a very powerful tool in the
classification theory of unipotent conjugacy classes and nilpotent orbits. Specifi-
cally, in [30] Premet showcases a conceptual and uniform proof of Pommerening’s
extension of the Bala–Carter Theorem 2.1 to good characteristic. His proof uses
the fact that associated cocharacters are optimal in the geometric invariant theory
sense of Kempf–Rousseau–Hesselink.

4.3. Cocharacters associated to distinguished elements. The linchpin of our proofs
of Theorems 1.2 and 1.6 is the following collection of facts.

Lemma 4.22 [12, Lemma 3.1]. Suppose p is good for G. Let M be a connected
reductive subgroup of G. Let X ∈ Lie(M) be a distinguished nilpotent element of g.
Then �a

M(X)=�a
G(X)∩ Y (M).

The assertion of the lemma fails in general if X is not distinguished in g, even
when p is good for both M and G, e.g., see [16, Remark 5.12]. However, we do
have the following result for all nilpotent elements in good characteristic.

Lemma 4.23 [12, Corollary 3.22]. Suppose p is good for G. Let L ⊆ G be a Levi
subgroup of G. Let X ∈ NL . Then �a

L(X)=�a
G(X)∩ Y (L).

We need group-theoretic analogues of Lemmas 4.22 and 4.23. For the former
we need an extra Springer compatibility assumption, otherwise the result can fail
(see Remark 6.1).

Lemma 4.24. Suppose p is good for G. Let M be a connected reductive subgroup
of G. Suppose M is Springer-compatible and let φ be an M-compatible Springer
map. Let u ∈ M be a distinguished unipotent element of G. Then

�a
M,φM

(u)=�a
G,φ(u)∩ Y (M).

Proof. Let X = φ(u)= φM(u). Then

�a
M,φM

(u)=�a
M(X)=�a

G(X)∩ Y (M)=�a
G,φ(u)∩ Y (M),

where the middle equality is from Lemma 4.22. □

Lemma 4.25. Suppose p is good for G. Let L ⊆ G be a Levi subgroup of G and
let φ be a Springer map for G. Let u ∈ UL . Then �a

L ,φL
(u)=�a

G,φ(u)∩ Y (L).

Proof. Since L = CG(S) for some torus S, φ is L-compatible by Example 4.10.
The result now follows by the same argument as in Lemma 4.24. □
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5. Good A1 subgroups

5.1. Good A1 overgroups. In his seminal work [33], Seitz defines an important
class of A1 overgroups of an element 1 ̸= u ∈U

(1)
G for G simple (see [33, Section 1]).

He establishes the existence and fundamental properties of these overgroups pro-
vided p is good for G. We recall some of these results and generalize them to
arbitrary connected reductive G.

Definition 5.1. Following [23, Section 1], we say that a homomorphism β :SL2 →G
is good if each weight of the corresponding representation of SL2 on g is at most
2p − 2. We say that a subgroup A of G of type A1 is a good A1 subgroup of G, or
is good for G, if it is the image of a good homomorphism. Else we call A a bad A1

subgroup of G. This is of course independent of the choice of a maximal torus
of A. For 1 ̸= u ∈ U

(1)
G , we define

A (u) := AG(u) := {A ⊆ G | A is a good A1 subgroup of G containing u}

and analogously, for a connected reductive subgroup M of G we write AM(u) for
the set of all good A1 subgroups of M containing u.

Clearly any conjugate of a good A1 homomorphism (resp., subgroup) is good. If
A ⊆ H ⊆ G are connected reductive groups such that A is a good A1 subgroup of G,
then A is obviously also a good A1 subgroup of H . We see in Lemma 5.30 that
the converse holds under some extra hypotheses. The converse is false in general,
however, e.g., just take A = H to be a bad A1 subgroup of G.

Example 5.2. Let V be an SL2-module such that weights of a maximal torus T
of SL2 on V are less than p. Then the weights of T in the induced action on
Lie(GL(V ))∼= V ⊗V ∗ are at most 2p−2. Thus the induced subgroup A in GL(V )
is a good A1. In this situation the highest weights of T on each composition factor
of V are restricted, so V is a semisimple SL2-module; see [1, Corollary 3.9]. Hence
A is GL(V )-cr; this is a special case of Theorem 5.4(iii) below.

We record parts of the main theorems from [33] for our purposes, using the
notation above. These were formulated and proved in [33] for simple G, but we
need extensions to arbitrary connected reductive G. To obtain this, we need the
following lemma.

Lemma 5.3. Let G be a connected reductive group. Let β1, β2 : SL2 → G be
good homomorphisms with the same image A. Then β1 and β2 are conjugate by an
element of A.

Proof. Assume first that A ∼= SL2. Let 1 ≤ i ≤ 2. Then we can regard βi as an
element of End(SL2), so it is an inner endomorphism followed by a Frobenius q-th
power map for q = pr for some r ≥ 0. Let T be a maximal torus of SL2. If r ≥ 1
then the highest weight of T is at least 2q, since SL2 acts on Lie(A) with highest
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weight 2, which contradicts the goodness assumption. Therefore, βi ∈ Aut(SL2).
But all automorphisms of SL2 are inner. The result follows.

For A ∼= PGL2, we can factor βi as

SL2 → PGL2
β ′

i−→ PGL2,

where the first map is the canonical projection. One can now apply an argument
like the above one to the maps β ′

i : PGL2 → A. □

Theorem 5.4. Let G be connected reductive. Suppose p is good for G and let
1 ̸= u ∈ U

(1)
G . Then the following hold:

(i) A (u) ̸= ∅.

(ii) Ru(CG(u)) acts transitively on A (u).

(iii) Let A ∈ A (u). Then A is G-completely reducible.

(iv) There is a unique 1-dimensional unipotent subgroup U of G such that u ∈ U
and U is contained in a good A1 subgroup of G.

Notation 5.5. We denote the subgroup U from Theorem 5.4(iv) by U(u).

Proof of Theorem 5.4. For G simple see [33, Theorems 1.1–1.3]. Now let G be
connected reductive. Since SL2 and PGL2 are perfect, any A1 subgroup of G is
contained in DG. Hence without loss we can assume that G is semisimple; note
for (iii) that a subgroup of DG is DG-cr if and only if it is G-cr [5, Proposition 2.8].
Moreover, let ψ : G̃ → G be a central isogeny of connected reductive groups. If Ã
is an A1 subgroup of G̃ then Ã is good for G̃ if and only if ψ( Ã) is good for G:
see the argument of the paragraph preceding Lemma 4.21. Note also for (iii) that if
H̃ ⊆ G̃ then H̃ is G̃-cr if and only if ψ(H̃) is G-cr [4, Lemma 2.12]. Hence we
can assume without loss that G = G1 × · · · × Gr , where each Gi is simple.

We need a description of good A1 subgroups of G in terms of good A1 subgroups
of the Gi . Let T be a maximal torus of SL2. Denote by πi the projection from G
to Gi . Let β : SL2 → G be a homomorphism and define βi := πi ◦β. For notational
convenience, we assume that each βi is nontrivial. The weights of T on Lie(Gi )

form a subset of the set of weights of T on Lie(G), since Lie(G) = ⊕ Lie(Gi ).
Therefore, if β is a good homomorphism for G, then βi is a good homomorphism
for Gi or trivial. Conversely, if βi : SL2 → Gi is a nontrivial homomorphism for
each i , define β := β1 × · · · × βr to be the diagonal embedding into G. Then
the maximal weight ωG of T on Lie(G) is given by max{ωGi }, where ωGi is the
maximal weight of T on Lie(Gi ). Thus, β is good if and only if the βi are good.
Now (i) and (iii) are immediate from the above observations, [4, Lemma 2.12]
and the results for G simple.

For (ii), let A1 and A2 be good A1 subgroups of G = G1 × · · · × Gr containing
u = (u1, . . . , ur ) with ui ̸= 1 for each i . Choose two good homomorphisms
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β1, β2
: SL2 → G such that Im(β i )= Ai . By the observations above, there are good

homomorphisms β1
i , β

2
i : SL2 → Gi with images A1

i , A2
i containing ui . Now [33,

Theorem 1.1(ii)] implies that A2
i = gi A1

i g−1
i for some gi ∈ Ru(CGi (ui )). Lemma 5.3

(applied to Gi ) implies that hi gi ·β1
i = β2

i for some hi ∈ A2
i . Hence β2

= hg ·β1,
where g = (g1, . . . , gr ) ∈ Ru(CG(u)) and h = (h1, . . . , hr ) ∈ A2. It follows that
A2

= g · A1.
For (iv), let G = G1 ×· · ·× Gr and let u = (u1, . . . , ur ) ∈ U

(1)
G with ui ̸= 1 for

each i . Choose an A ∈ AG(u) which is the image of the good homomorphism β.
We get good homomorphisms βi with images Ai ∈ AGi (ui ), and β = β1 ×· · ·×βr ,
as before. Without loss we can assume the βi are nontrivial. Fix a 1-dimensional
unipotent subgroup V of SL2. After conjugating β by an element of A, we can
assume that U(ui ) = βi (V ) for each i . Define U(u) = (β1 × · · · × βr )(V ). This
is a 1-dimensional unipotent subgroup of G containing u and is contained in the
good A1 subgroup A. This proves the existence. For the uniqueness, let U ′ be
another 1-dimensional unipotent subgroup of G such that u ∈ U ′

⊆ A′ for some
A′

∈AG(u). By (ii), A = g A′g−1 for some g ∈CG(u), and so gU ′g−1
=U(u). Write

g = (g1, . . . , gr ) with gi ∈ CGi (ui ). By [33, Theorem 1.2(i)] gi centralizes U(ui ),
and hence g centralizes U(u). Thus, U ′

= U(u). □

Example 5.6. Let Hq be the bad A1 subgroup of G =SL2 × SL2 from Example 4.13.
Here β1 = idSL2 , while β2 : SL2 → SL2 is the q-th power map, which is not a good
homomorphism. On the other hand, the projection of Hq onto each factor is just SL2,
which is a good A1 subgroup of SL2, so we cannot detect the badness of Hq just
by looking at its images in the simple factors of G.

Remark 5.7. Let 1 ̸= u ∈ U
(1)

G . We claim that

(5.8) CG(U(u))= CG(u)= CG
(
Lie(U(u))

)
.

To see this, suppose first that G̃ is of the form G1 × · · · × Gr , where each Gi is
simple, and let πi : G̃ → Gi be the canonical projection. Let ũ = (u1, . . . , ur )∈U

(1)
G̃

with ui ̸= 1 for each i . Choose a good homomorphism β̃ : SL2 → G̃ such that
U(ũ)⊆ Ã := Im(SL2), and set βi = πi ◦ β̃ and Ai = βi (SL2). It follows from [33,
Theorem 1.2(i)] that

CGi (U(ui ))= CGi (ui )= CGi

(
Lie(U(ui ))

)
for each i . We deduce from the arguments in the proof of Theorem 5.4 that
CG̃(U(ũ)) = CG̃(ũ) = CG̃

(
Lie(U(ũ))

)
; note that dβi : Lie(SL2) → Lie(Ai ) is

surjective for each i because βi does not involve a Frobenius twist.
If ψ : G̃ → G is a central isogeny and 1 ̸= ũ ∈ U

(1)
G̃

, then it is clear that
U(u)= ψ(U(ũ)), where u = ψ(ũ), and we deduce that

(5.9) CG(U(u))= CG(u)= CG
(
Lie(U(u))

)
.
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Now let G be an arbitrary connected reductive group and let 1 ̸= u ∈ U
(1)

G .
Then U(u)⊆ DG. Now (5.8) follows easily from (5.9) applied to the semisimple
group DG.

We deduce from (5.8) and Theorem 5.4(ii) that U(u) is contained in every good A1

overgroup of u.

Lemma 5.10. Suppose p is good for G. Let 1 ̸= u ∈ U
(1)

G and let A be an A1

subgroup of G containing U(u). Then A is good in G.

Proof. Let A′ be a good A1 subgroup containing U(u). Then A and A′ have a
common maximal unipotent subgroup U(u). By [21, Theorem 1.1], A and A′ are
G-conjugate. Hence A is good, because A′ is. □

Lemma 5.11. Suppose p is good for G. Let A be an A1 subgroup of G and let
λ ∈ Y (A). Suppose that

(i) λ ∈�a
G(X) for some 0 ̸= X ∈ N

(1)
G , or

(ii) λ ∈�a
G,φ(u) for some 1 ̸= u ∈ U

(1)
G and some Springer map φ for G.

Then A is a good A1 subgroup of G.

Proof. Let φ be a Springer map for G, and let λ ∈�a
G,φ(u) for some 1 ̸= u ∈ U

(1)
G .

It follows from Lemma 4.21 that the weights of λ on g are at most 2p − 2. Define
β : SL2 → A to be an isomorphism if A ∼= SL2, and the usual central isogeny
SL2 → PGL2 followed by an isomorphism from PGL2 onto A if A ∼= PGL2. Then
there exists µ : Gm → SL2 such that µ is an isomorphism onto a maximal torus
of SL2 and λ= β ◦µ. The weights of µ on g are at most 2p − 2 by construction,
so A is good. Hence A is good if (ii) holds.

If (i) holds then λ ∈�a
G,φ(u), where u := φ−1(X). But u ∈ U

(1)
G , by Lemma 4.7,

so (ii) holds, so A is good by the argument above. □

In the next theorem we recall parts of the analogue of Theorem 5.4 for finite
overgroups of type A1.

Theorem 5.12. Let G be connected reductive. Suppose p is good for G. Let
σ : G → G be a Steinberg endomorphism of G. Suppose u ∈ Gσ is unipotent of
order p.

(i) A (u)σ ̸= ∅.

(ii) Ru(CG(u))σ acts transitively on A (u)σ .

(iii) Let A ∈ A (u)σ . Suppose that q > 7 if G is of exceptional type. Then Aσ is
σ -completely reducible.

(iv) There is a unique σ -stable 1-dimensional unipotent subgroup U of G such that
u ∈ U and U is contained in a good A1 subgroup of G.
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Proof. (i)–(iii) The simple case is proved by Seitz in [33, Theorem 1.4]. For
connected reductive groups we use an argument similar to the one in the proof of
Theorem 5.4.

(iv) By (i) we can choose some A ∈ A (u)σ . Now U(u)⊆ A by Remark 5.7. Clearly
U(u) is the unique 1-dimensional unipotent subgroup of A that contains u, so U(u)
must be σ -stable. Hence U := U(u) has the desired properties. □

Remark 5.13. Parts (i) and (ii) of Theorem 5.12 follow from parts (i) and (ii) of
Theorem 5.4 and the Lang–Steinberg theorem, see [33, Proposition 9.1].

Remark 5.14. (i) Concerning the terminology in Theorem 5.12(iii), following [14],
a subgroup H of G is said to be σ -completely reducible, provided that whenever H
lies in a σ -stable parabolic subgroup P of G, it lies in a σ -stable Levi subgroup of P .
This notion is motivated by certain rationality questions concerning G-complete
reducibility, see [14] for details. For a σ -stable subgroup H of G, this property is
equivalent to H being G-cr, thanks to [14, Theorem 1.4].

(ii) Apart from the special conjugacy class of good A1 subgroups in G asserted in
Theorem 5.4, there might be a plethora of conjugacy classes of bad A1 subgroups
in G even when p is good for G. Just take a nonsemisimple representation

β : SL2 → SL(V )= G

in characteristic p > 0. Then the A1 subgroup β(SL2) is bad in G, while p is good
for G. For a concrete example, see [16, Remark 5.12]. This can only happen if p
is sufficiently small compared to the rank of G, thanks to Theorem 3.2.

The subgroups Hq of SL2 × SL2 in Example 4.13 are also bad A1 subgroups,
see Remark 6.1.

(iii) The proofs of Theorems 5.4 and 5.12 for G simple by Seitz in [33] depend on
separate considerations for each Dynkin type and involve in part intricate arguments
for the component groups of centralizers of unipotent elements. In [24], McNinch
presents uniform proofs of Seitz’s theorems for G strongly standard reductive,
which are almost entirely free of any case-by-case checks, utilizing methods from
geometric invariant theory. However, McNinch’s argument (see [24, Theorem 44])
of the conjugacy result in Theorem 5.4(ii) depends on the fact that for a good A1

subgroup A of G, the A-module g is a tilting module. The latter is established by
Seitz in [33, Theorem 1.1].

In [33, Section 9], Seitz exhibits instances when there is no good A1 overgroup
of an element of order p when p is bad for G. As we explain next, Example 2.6
gives a counterexample to Theorem 5.4(iii) in case p is bad for G: that is, it gives
a good A1 subgroup A such that A is not G-cr. Specifically, we show that some
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of the A1 subgroups in that example are good A1 subgroups of G, but thanks to
Example 2.6, they are not G-cr.

Example 5.15 (Example 2.6 continued). Let G be simple of type C2 and p = 2.
Let σ be idG or a q-Frobenius endomorphism of G. Let C denote the subregular
unipotent class of G. Suppose u ∈ C ∩Gσ . Then by Example 2.6 there are σ -stable
subgroups A of G of type A1 containing u that are not G-cr. Specifically, let E be
the natural module for SL2. Consider the two conjugacy classes of embeddings
of SL2 into G = Sp(V ), where we take either V ∼= E ⊥ E or V ∼= E ⊗ E , as an
SL2-module. The images of both embeddings meet the class C nontrivially. One
checks that the highest weight of a maximal torus of SL2 on g is 4 in the second
instance. So in this case the image of SL2 in G is not a good A1. In contrast, in
the first instance the highest weight of a maximal torus of SL2 on g is 2 = 2p − 2,
by Example 5.2. So the image of SL2 in G is a good A1 in SL(V ), and so it is a
good A1 in G as well.

5.2. Characterizations of good A1 subgroups. In this section we investigate some
other types of A1 subgroup which were introduced by McNinch. We prove that these
other notions are all equivalent to goodness (Theorem 5.24). The key ingredient we
need is work of Sobaje, who proved the existence of a Springer map for G with
especially nice properties. We assume throughout the section that p is good for G.

We recall a construction from [33, Proposition 5.2] (see also [36]). Let P be a
parabolic subgroup of G, and set U = Ru(P). It can be shown that any Springer
map for G maps U to Lie(U ). Suppose U has nilpotency class less than p; in this
case we say that P is restricted. In particular, any distinguished parabolic subgroup
of G corresponding to a distinguished unipotent element of order p is restricted
[24, Proposition 24]. We endow Lie(U ) with the structure of an algebraic group
using the Baker–Campbell–Hausdorff formula. There is a unique P-equivariant
isomorphism of algebraic groups expP : Lie(U ) → U such that the derivative
of expP is the identity on Lie(U ) (this is established in [33, Proposition 5.2] for
semisimple G, but the extension to connected reductive G is immediate). We denote
the inverse of expP by logP : Lie(U )→ U .

Definition 5.16. We say that a Springer map φ for G is logarithmic if the following
holds: for any 1 ̸= u ∈ U

(1)
G , the restriction of φ gives an isomorphism φu of

algebraic groups from U(u) to Lie(U(u)), and dφu is the identity on Lie(U(u)).

Proposition 5.17. (i) There exists a logarithmic Springer map for G.

(ii) Let φ be a logarithmic Springer map for G. Then for every restricted parabolic
subgroup P , the restriction of φ to Ru(P) is logP .

(iii) Any two logarithmic Springer maps induce the same map from U
(1)

G to N
(1)

G .
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Proof. First assume that G is simple and p is separably good for G. Part (ii) follows
from [36, Proposition 2.1]. For part (i), let ϕ : NG → UG be a G-equivariant isomor-
phism of varieties as in [36, Theorem 4.1]. Fix a maximal unipotent subgroup U
of G. By [36, Theorem 1.1], dϕ : Lie(U ) → Lie(U ) is a scalar multiple of the
identity. Condition (1) of [36, Theorem 4.1] implies that this scalar is 1, so dϕ is the
identity map. Let 1 ̸= u ∈ U

(1)
G and set X =ϕ−1(u). Then X ∈ N

(1)
G by Remark 4.8,

so by [36, Corollary 4.3(1)], ϕ gives an isomorphism from k X onto a 1-dimensional
unipotent subgroup U ′ of G which is contained in a good A1 subgroup of G. By
construction, U ′

= U(u). Since dϕ is the identity map, X belongs to Lie(U(u)), so
ϕ gives an isomorphism of algebraic groups from Lie(U(u)) to U(u). It follows
that ϕ−1 is a logarithmic Springer map for G, so (i) is proved.

Now let 1 ̸= u ∈ U
(1)

G . Choose a good A1 overgroup A of u in G. Choose
a maximal torus T of A such that T normalizes U(u). Definition 5.16 and the
T -equivariance of ϕ−1 imply that the map from U(u) to Lie(U(u)) induced by ϕ−1

does not depend on the choice of ϕ−1. This proves part (iii).
The result now follows for arbitrary connected reductive G using Remark 4.3. □

Remark 5.18. If p > h(G) then the map log from Example 4.12 is a logarithmic
Springer map (see [34, Theorem 3] and [24, Remark 27]). In this case any Borel
subgroup of G is a restricted parabolic, so the restriction of any logarithmic Springer
map for G to Ru(B) is logB by Proposition 5.17(ii). Hence log is the unique
logarithmic Springer map for G.

Remark 5.19. We saw above that the condition on φ in Definition 5.16 implies
part (ii) of Proposition 5.17. Sobaje observes at the beginning of [36, Section 2] that
the converse also holds. The reason is that every 1 ̸= u ∈ U

(1)
G belongs to Ru(P) for

some restricted parabolic subgroup P of G: this follows from [9, Theorem 2.4]. We
also deduce that the restriction of logP to U(u) is φu for every restricted parabolic
subgroup P of G and every u ∈ Ru(P) such that u has order p.

Corollary 5.20. Let φ be a logarithmic Springer map for G. Then for any A1

subgroup A of G, A is good for G if and only if φ is A-compatible.

Proof. Suppose A is good. Let 1 ̸= u ∈ UA. Then U(u)⊆ A and

φ(U(u))= Lie(U(u))⊆ Lie(A),

so φ is A-compatible. Conversely, suppose φ is A-compatible. Let 1 ̸= u ∈ UA and
set X =φ(u)∈Lie(U(u)). Now X ∈Lie(A) by the A-compatibility, so k X ⊆Lie(A).
Hence U(u)= φ−1(k X)⊆ A by the A-compatibility. We deduce from Lemma 5.10
that A is good for G. □

We now recall the other types of A1 subgroup that we need, namely optimal and
subprincipal A1 subgroups. These were introduced by McNinch in [23] and [24].
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Definition 5.21. We call a homomorphism β : SL2 → G optimal if there is a
maximal torus T of SL2 such that the restriction λ of β to T ∼= Gm is a cocharacter
associated in G to some nilpotent 0 ̸= X ∈ Im(dβ). We call an A1 subgroup of G
optimal if it is the image of an optimal homomorphism.

Remark 5.22. This is equivalent to the definition in [24, Section 1]: for it is clear
that if T is the standard maximal torus of SL2 and λ is associated to some nilpotent
0 ̸= X ∈ Lie(SL2) then X is a scalar multiple of dφ

((0
0

1
0

))
.

Definition 5.23. Fix a Springer map φ for G. We call a homomorphism β :SL2 →G
subprincipal if there is a maximal torus T of SL2 such that the restriction λ of β
to T ∼= Gm is a cocharacter associated in G to some nilpotent 0 ̸= X ∈ Im(dβ)
and φ−1(X) is G-conjugate to an element of Im(β). Note that the latter condition
does not depend on the choice of φ, by Remark 4.5. We call an A1 subgroup of G
subprincipal if it is the image of a subprincipal homomorphism.

The next result implies Theorem 1.4.

Theorem 5.24. Let A be an A1 subgroup of G. Let φ be a logarithmic Springer
map for G. The following conditions are equivalent.

(i) A is subprincipal.

(ii) A is optimal.

(iii) There exist u ∈ U
(1)

G and λ ∈ Y (A) such that λ ∈�a
G,φ(u).

(iv) A is good.

Proof. The implication (i) =⇒ (ii) is immediate from the definitions, and (iii) =⇒ (iv)
follows from Lemma 5.11. If A is optimal then there exist 0 ̸= X ∈NA and λ∈Y (A)
such that λ ∈�a

G(X). Then λ ∈�a
G,φ(u

′), where u′
= φ−1(X), and u′ has order p

by Lemma 4.7. Hence (ii) =⇒ (iii).
By [23, Remark 21], there exists at least one subprincipal A1 subgroup A

of G such that u ∈ A, and A is good by the arguments above. It is clear from
the definition that any CG(u)-conjugate of A is subprincipal. Since CG(u) acts
transitively on A (u) (Theorem 5.4(ii)), it follows that any good A1 subgroup of G
that contains u is subprincipal. This shows that (iv) =⇒ (i). Hence (i)–(iv) are all
equivalent. □

Remark 5.25. If the equivalent conditions from Theorem 5.24 hold then there
exist λ ∈ Y (A) and 0 ̸= X ∈ NA such that λ ∈ �a

G(X). Then λ ∈ �a
G(u), where

u = φ−1(X), which belongs to A by Corollary 5.20. Hence we can take the
element u from Theorem 5.24(iii) to belong to A if we wish.

Remark 5.26. It is implicit in the discussion in [23, Section 1] that a subprincipal A1

subgroup of G is good. McNinch also proved that goodness and optimality are
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equivalent for A1 subgroups under the extra assumption that G is strongly standard
(see [24, Proposition 53]).

Proposition 5.27. Let L be a Levi subgroup of G and let A be a good A1 subgroup
of L. Then A is a good A1 subgroup of G.

Proof. Since p is good for G, p is good for L . By Theorem 5.24, A is optimal
in L , so there exist 0 ̸= X ∈ NA and λ ∈ Y (A) such that λ ∈�a

L(X). Lemma 4.23
implies that λ ∈ �a

G(X), so A is optimal in G. Hence A is a good A1 subgroup
of G by Theorem 5.24. □

Corollary 5.28. Let A be a good A1 subgroup of G and let 1 ̸= u ∈ UA. Then
there is a Levi subgroup L of G such that A ⊆ L and u is a distinguished unipotent
element of L.

Proof. Pick a Levi subgroup L ′ of G such that u is a distinguished unipotent
element of L ′. By Theorem 5.4(i) we can choose a good A1 subgroup A′ of L ′

such that u ∈ A′. Now A′ is a good A1 subgroup of G by Proposition 5.27, so there
exists g ∈ CG(u) such that g A′g−1

= A (Theorem 5.4(ii)). Then A ⊆ L , where
L := gL ′g−1. Clearly, L is a Levi subgroup of G and u is a distinguished unipotent
element of L . □

Corollary 5.29. Let φ be a logarithmic Springer map for G and let L be a Levi
subgroup of G. Then φL is a logarithmic Springer map for L.

Proof. Let 1 ̸= u ∈ U
(1)

L . Choose a good A1 overgroup A of u in L . Then A is
good for G by Proposition 5.27, so U(u)⊆ A. We see that U(u) is both the unique
1-dimensional overgroup of u that is contained in a good A1 subgroup of L , and
the unique 1-dimensional overgroup of u that is contained in a good A1 subgroup
of G. The result now follows from the definition of a logarithmic Springer map. □

Lemma 5.30. Let H be a connected reductive subgroup of G, and assume p is good
for H. Let u ∈ U

(1)
H such that u is distinguished in G. Let A ∈ AH (u). Suppose

there is a Springer map φ for H such that φ(u) is a distinguished element of g.
Then A is good for G.

Proof. By Theorem 5.24, A is a subprincipal A1 subgroup of H , so there exist
λ ∈ Y (A) and 0 ̸= X ∈ NA such that λ is associated to X in H and φ(u) is H -
conjugate to X . Since by hypothesis φ(u) is a distinguished element of g, X is also
a distinguished element of g. Lemma 4.22 implies that λ is associated to X in G.
Hence A is an optimal A1 subgroup of G, so A is a good A1 subgroup of G by
Theorem 5.24. □

Remark 5.31. Let H be a connected reductive subgroup of G and assume p is
good for H . Suppose H is Springer-compatible. Let A be an A1 subgroup of H
containing a distinguished unipotent element u of G. Let φ be the restriction to H
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of any H -compatible Springer map for G. Then φ(u) is a distinguished element
of g by Remark 4.2, so the hypotheses of Lemma 5.30 hold. Hence if A is good
for H then A is good for G.

The following relates the set of cocharacters of G that are associated to some
1 ̸= u ∈ U

(1)
G to those stemming from good A1 overgroups of u in G.

Corollary 5.32. Let 1 ̸= u ∈ U
(1)

G . Let φ be a logarithmic Springer map for G. We
have a disjoint union

�a
G,φ(u)=

⋃̇
A∈A (u)

�a
A,φA

(u),

where φA denotes the restriction of φ to A.

Proof. Note that it makes sense to speak of the restriction of φ to a good A1

subgroup A of G, by Corollary 5.20. We first prove that the union above is disjoint.
Let A, Ã ∈ A (u) and suppose there exists some

λ ∈�a
A,φA

(u)∩�a
Ã,φ Ã

(u).

Then A and Ã share the common Borel subgroup λ(Gm)U(u). It follows from [21,
Lemma 2.4] that A = Ã.

Let A ∈ A (u) and let λ ∈�a
A,φA

(u). By Corollary 5.28 there is a Levi subgroup
L of G such that A ⊆ L and u is a distinguished unipotent element of L . It
follows from Lemma 4.24 (applied to the inclusion A ⊆ L) and Lemma 4.25 that
λ ∈�a

G,φ(u). Hence
�a

G,φ(u)⊇

⋃̇
A∈A (u)

�a
A,φA

(u).

Since we have A (u) ̸= ∅ (Theorem 5.4(i)), CG(u) acts transitively on both A (u)
(Theorem 5.4(ii)) and �a

G,φ(u) (Proposition 4.19(ii)), and we see that the reverse
inclusion follows. □

6. Proofs of Theorems 1.2 and 1.5–1.7

Armed with the results from above, we prove Theorems 1.2 and 1.6 simultaneously.

Proof of Theorems 1.2 and 1.6. We may assume that G is semisimple, since any
unipotent element of G is contained in the derived subgroup DG◦. Likewise, we
may also assume that H is connected and semisimple, as any unipotent element
of H◦ is contained in the derived subgroup D H◦, and H is G-ir if D H◦ is. Let
u ∈ U

(1)
H be distinguished in G.

First suppose p is bad for H . If p > 2 then H admits a simple component H ′

of exceptional type. If u ∈ H is a distinguished unipotent element of G then the
projection u′ of u onto H ′ is a distinguished unipotent element of H ′, so p = 3
and H ′ is of type G2, by Lemma 2.7. But this is impossible by Lemma 2.11 since
p is good for G. Hence p = 2. It follows that each simple component of G is



ON GOOD A1 SUBGROUPS, SPRINGER MAPS, AND OVERGROUPS 57

of type A. Now distinguished unipotent elements are regular in type A, so u is a
regular element of G. It follows from [6, Theorem 1.1] (resp., [6, Theorem 1.3])
that H (resp., Hσ ) is G-ir.

Therefore we can assume that p is good for H . By Theorem 5.4(i) (resp.,
Theorem 5.12(i)) there is a good A1 subgroup (resp., good σ -stable A1 subgroup) A
of H such that u ∈ A. By Lemma 5.30 and hypothesis (†), A is a good A1 subgroup
of G. Hence A (resp., Aσ ) is G-cr by Theorem 5.4(iii)) (resp., Theorem 5.12)(iii)),
so A (resp., Aσ ) is G-ir by Lemma 3.1. We conclude that H (resp., Hσ ) is G-ir. □

Remark 6.1. If we remove hypothesis (†) from Lemma 5.30, Theorem 1.2, etc.,
then our arguments break down. For instance, let G = SL2 × SL2, q and Hq be as
in Example 4.13. Let u be any unipotent element of Hq such that the projection of u
onto each SL2-factor of Hq is nontrivial; then u is distinguished (in fact, regular)
in G. It is easy to see that Hq is not a good A1 subgroup of G and there does not
exist λ ∈ Y (Hq) such that λ is associated to u in G; in particular, the conclusion of
Lemma 5.30 does not hold for Hq . Of course Theorem 1.1 still applies, alternately
so does Theorem 1.8, so Hq is G-ir.

As a consequence of Theorems 1.2 and 1.6 we obtain the following.

Corollary 6.2. Let G be a connected reductive group. Suppose p is good for G. Let
σ be idG or a q-Frobenius endomorphism of G. Let u ∈ Gσ be unipotent of order p.
Suppose u is distinguished in the σ -stable Levi subgroup L of G (see Remark 2.2(ii)).
Let H be a σ -stable connected reductive subgroup of L containing u, and suppose
there is a Springer map φ for L such that φ(u) is a distinguished element of Lie(L).
Then Hσ is G-completely reducible.

Proof. As p is also good for L (see Section 2.2), it follows from Theorem 1.2
(resp., Theorem 1.6) applied to L that Hσ is L-ir and so is L-cr. Thus, Hσ is G-cr,
by [35, Proposition 3.2]. □

Remark 6.3. In the setting of Theorem 1.1 the following argument allows us to
reduce the case when G is connected reductive to the simple case. As in the proof
of Theorem 1.2 above, we can assume that G is semisimple. Let G1, . . . ,Gr be
the simple factors of G. Multiplication gives an isogeny from G1 × · · ·× Gr to G.
Thus, by [4, Lemma 2.12(ii)(b)] and [16, Section 4.3], we can replace G with
G1 × · · · × Gr , so we can assume G is the product of its simple factors. Finally,
thanks to [4, Lemma 2.12(i)] and [16, Section 4.3], we can reduce to the case when
G is simple.

Finally, we address Theorems 1.5 and 1.7.

Proof of Theorems 1.5 and 1.7. By Theorems 1.2 and 1.6, the only cases we need
to consider are when p is bad for G. If G is classical, then we are in the situation
of Lemma 2.5 and Example 2.6, so we are done.
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We are left to consider the case when G is of exceptional type. Then owing to
Lemma 2.7, G is of type G2 and p = 3. There is no harm in assuming that H is
semisimple. It follows from Example 2.8 that H is G-ir. Thus Theorem 1.5 follows.
So consider the setting of Theorem 1.7 when σ |H is a q-Frobenius endomorphism
of H in this case. By Corollary 2.10, u belongs to the subregular class of G2.
It follows from the proof of Lemma 2.7 in [31] that u is contained in a σ -stable
maximal rank subgroup of G of type A1 Ã1 and this type is unique. Since H is
proper and semisimple, H ⊆ M , where M is a σ -stable maximal rank subgroup
of G of type A1 Ã1. Since p is good for H , there is a σ -stable subgroup A of H
of type A1 containing u, by Theorem 2.4. Thus A ⊆ H ⊆ M . Since u is also
distinguished in M and p = 3 is good for M , Theorem 1.6 shows that Aσ is M-ir.
Note that M is the centralizer of a semisimple element of G of order 2 (by Deriziotis’
criterion, see [11, 2.3]). Since Aσ is M-cr, it is G-cr, owing to [4, Corollary 3.21].
Once again, by Lemma 3.1, Aσ is G-ir and so is Hσ . Theorem 1.7 follows. □

Remark 6.4. In [17, Section 7], Korhonen gives counterexamples to Theorem 1.1
when the order of the distinguished unipotent element of G is greater than p (even
when p is good for G [17, Proposition 7.1]). Theorem 1.8 implies that this can only
happen when p < a(G). For instances of overgroups of distinguished unipotent
elements of G of order greater than p for p ≥ a(G) (and p good for G), so that
Theorem 1.8 applies, see Examples 6.6 and 6.7.

Remark 6.5. In view of Remark 6.4, it is natural to ask for instances of G, u
and H when the conclusion of Theorem 1.8 holds even when p< a(G) but p is still
good for G. If p is good for G and G is simple classical, nonregular distinguished
unipotent elements always belong to a maximal rank semisimple subgroup H of G,
by [43, Propositions 3.1, 3.2]. For G simple of exceptional type this is also the
case in almost all instances of nonregular distinguished unipotent elements, see
[43, Lemma 2.1]. Each such H is obviously G-irreducible. This is independent
of p of course and thus applies in particular when p < a(G). For instance, let G
be of type E7, p = 5, and suppose u belongs to the distinguished class E7(a3)

(resp., E7(a4), E7(a5)). Then htJ (ρ) = 9 (resp., 7, 5), so u has order 52, by
Lemma 2.3 in each case. Since u does not have order 5, Theorem 1.1 does not
apply, and since 5 < 8 = a(G) neither does Theorem 1.8. Nevertheless, in each
case u is contained in a maximal rank subgroup H of type A1 D6, see [43, p. 52],
and each such H is G-ir.

We close the section with several additional higher order examples in good
characteristic when Theorem 1.1 does not apply but Theorem 1.8 does.

Example 6.6. Let G be of type E6. Suppose p is good for G. In [43, Lemma 2.7],
Testerman exhibits the existence of a simple subgroup H of G of type C4 whose
regular unipotent class belongs to the subregular class E6(a1) of G. Let u be regular
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unipotent in H . For p = 7, the order of u is 72, by Lemma 2.3, so Theorem 1.1
can’t be invoked to say anything about H . However, for p = 7 = a(G), we infer
from Theorem 1.8 that H is G-ir.

Example 6.7. Let G be of type E8. Suppose p = 11. Let u be in the distinguished
class E8(a3) (resp., E8(a4), E8(b4), E8(a5), or E8(b5)). From the corresponding
weighted Dynkin diagram corresponding to u we get htJ (ρ)= 17 (resp., 14, 13, 11,
or 11), see [10, p. 177]. It follows from Lemma 2.3 that in each of these instances u
has order 112. So we can’t appeal to Theorem 1.1 to deduce anything about reductive
overgroups of u. But as 11 = p ≥ a(G)= 9, Theorem 1.8 applies and allows us to
conclude that each such overgroup is G-ir. For example, in each instance above, u is
contained in a maximal rank subgroup H of G of type A1 E7 or D8, see [43, p. 52].
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THE q-SCHUR CATEGORY AND
POLYNOMIAL TILTING MODULES FOR QUANTUM GLn

JONATHAN BRUNDAN

The q-Schur category is a Z[q, q−1]-linear monoidal category closely related
to the q-Schur algebra. We explain how to construct it from coordinate
algebras of quantum GLn for all n ≥ 0. Then we use Donkin’s work on
Ringel duality for q-Schur algebras to make precise the relationship between
the q-Schur category and a Z[q, q−1]-form for the Uqgln-web category of
Cautis, Kamnitzer and Morrison. We construct explicit integral bases for
morphism spaces in the latter category, and extend the Cautis–Kamnitzer–
Morrison theorem to polynomial representations of quantum GLn at a root
of unity over a field of any characteristic.

1. Introduction

We revisit some algebra from the 1990s using the diagrammatic technique of
string calculus for strict monoidal categories which has become ubiquitous in
this area since then. The initial goal is to give a self-contained construction of
a strict Z[q, q−1

]-linear monoidal category, the q-Schur category, together with
three important bases for its morphism spaces. The path algebra of this category is
Morita equivalent to the direct sum of the q-Schur algebras Sq(n, n) of Dipper and
James [1989] for all n ≥ 0. In that context, all three bases were studied in detail
already 30 years ago, and this part of the article is mainly expository. There are
already many generalizations in the literature — cyclotomic [Dipper et al. 1998],
affine [Green 1999; Miemietz and Stroppel 2019; Maksimau and Stroppel 2021],
and 2-categorical [Williamson 2011; Mackaay et al. 2013; Webster 2017], to name
but a few.

Once the general framework is in place, we use the q-Schur category to define a
Z[q, q−1

]-form for the positive half of the Uqgln-web category of Cautis, Kamnitzer
and Morrison [2014], complete with bases for its morphism spaces as free Z[q, q−1

]-
modules. Integral bases in the latter category have previously been constructed in
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an unpublished paper of Elias [2015], and their existence also follows theoretically
from [Andersen et al. 2018], but the relationship to the known bases for the q-Schur
algebra is not apparent from that work. We also explain how the canonical basis
fits into this picture, something which is not mentioned at all in [Elias 2015].

Our starting point is the definition of a strict Z-linear monoidal category called the
Schur category, denoted simply by Schur, from [Brundan et al. 2020, Definition 4.2].
The object set of Schur is the set 3s of all strict compositions, that is, sequences λ=

(λ1, . . . , λℓ) of positive integers for ℓ ≥ 0, with tensor product of objects defined by
concatenation. For strict compositions λ and µ, the morphism space HomSchur(µ, λ)

is zero unless r :=
∑

i λi =
∑

i µi , in which case this morphism space is a free Z-
module with a distinguished standard basis parametrized by the set (Sλ\Sr/Sµ)min

of minimal length representatives for the double cosets of the parabolic subgroups Sλ

and Sµ in the symmetric group Sr . Vertical composition making Schur into a Z-
linear category is defined by Schur’s product rule as in the classical Schur algebra
(see [Green 2007, 2.3b]), and the horizontal composition making it into a monoidal
category is induced by the natural embeddings Sa × Sb ↪→ Sa+b.

As usual with strict monoidal categories, it is convenient to represent morphisms
in Schur by certain string diagrams; the vertical composition f ◦g of morphisms f
and g is obtained by stacking the string diagram for f on top of the one for g, and
their horizontal composition f ⋆ g is obtained by stacking f to the left of g. We
represent the standard basis elements for HomSchur(µ, λ) by λ × µ double coset
diagrams,1 such as the diagram on the left:

1 1

3

2 2
⇐⇒

3 2 4

4 5

⇐⇒ (2 5 8 4 7 3 6) ∈ (S(4,5)\S9/S(3,2,4))min ⇐⇒ A =

[
1 0 3
2 2 1

]
.

In this double coset diagram, there are strings of various thicknesses indicated
by the numerical labels. Thick strings at the bottom split into thinner strings,
which are allowed to cross each other forming a reduced diagram for a permutation
in the middle of the picture, before merging back into thick strings at the top.
Subsequently, we will index Sλ\Sr/Sµ-double cosets also by the set Mat(λ, µ)

consisting of matrices of nonnegative integers whose row and column sums are the
entries of the compositions λ and µ, respectively. The i j -entry ai, j of the matrix A

1Called “chicken foot diagrams” in [Brundan et al. 2020].
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records the thickness of the string that connects the i-th thick string at the top to
the j-th thick string at the bottom of the corresponding double coset diagram.

The q-analog of the Schur category is a strict Z[q, q−1
]-linear monoidal category

denoted by q-Schur whose specialization at q = 1 recovers Schur. In our approach,
q-Schur is defined from the outset to be the Z[q, q−1

]-linear category with the same
objects as Schur, tensor product of objects being by concatenation as before. Its
morphism spaces are defined so that Homq-Schur(µ, λ) is the free Z[q, q−1

]-module
with a standard basis {ξA | A∈Mat(λ, µ)}, which we represent graphically by almost
the same double coset diagrams as above, except that we replace each singular cross-
ing with a positive crossing . Then we need rules for computing vertical and
horizontal compositions of standard basis vectors. Horizontal composition is defined
by horizontally stacking diagrams just as in Schur. Vertical composition is defined
by the q-analog of Schur’s product rule; see (4-8) and (4-9). Although there is no
simple closed formula for this in general, it can be computed algorithmically using
relations in Manin’s quantized coordinate algebra Oq(n) of n×n matrices [1988].

Our first theorem gives a presentation for q-Schur which incorporates the positive
crossings as one of three types of generating morphism. Setting q =1 in this recovers
the presentation for Schur derived in [Brundan et al. 2020].

Theorem 1. As a strict Z[q, q−1
]-linear monoidal category, q-Schur is generated

by the objects (r) for r > 0 and morphisms called merges, splits and positive
crossings represented by

a b

a+b
: (a) ⋆ (b) → (a + b),

a b

a+b
: (a + b) → (a) ⋆ (b),

b a

a b
: (a) ⋆ (b) → (b) ⋆ (a)

for a, b > 0, subject to the associativity and coassociativity relations

cba

=

cba

,

cba

=

cba

(1-1)

for a, b, c > 0, together with

a b =
[a+b

a

]
q

a+b

,

c d

a b

=

∑
0≤s≤min(a,c)
0≤t≤min(b,d)

t−s=d−a=c−b

qst

c d

a b

s t(1-2)
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for a, b, c, d > 0 with a + b = c + d. Here,
[n

s

]
q is the q-binomial coefficient (3-2),

and splits/merges with a string of thickness zero should be interpreted as identities.

The positive crossings are important because they define a braiding making
q-Schur into a braided monoidal category. In fact, positive crossings and their
inverses, the negative crossings, can be written in terms of merges and splits:

a b
=

min(a,b)∑
s=0

(−q)s

a b

b−s

a−s
=

min(a,b)∑
s=0

(−q)s

ba

a−s

b−s
,

a b
:=

(
b a

)−1

=

min(a,b)∑
s=0

(−q)−s

a b

b−s

a−s
=

min(a,b)∑
s=0

(−q)−s

ba

a−s

b−s
.

The following gives a slightly more efficient presentation for q-Schur using only
the merges and splits as generating morphisms.

Theorem 2. The monoidal category q-Schur is generated by the objects (r) for
r > 0 and the morphisms

a b
and

a b

for a, b > 0, subject only to the relations (1-1) together with one of the equivalent
square-switch relations

(1-3)
ba

c

d =

min(c,d)∑
s=max(0,c−b)

[a−b+c−d
s

]
q

ba

d−s

c−s
,

b a

c

d =

min(c,d)∑
s=max(0,c−b)

[a−b+c−d
s

]
q

b a

d−s

c−s

for a, b, c, d ≥ 0 with d ≤ a and c ≤ b + d.

The presentations for q-Schur in Theorems 1 and 2 are not new, e.g., the
relations can be found in [Latifi and Tubbenhauer 2021] (with a different choice
of normalization for the positive crossings coming from quantum SLn rather than
quantum GLn). We give complete proofs here, rather than attempting to adapt
related results already in the literature such as [Doty 2003]. Our general approach
to the definition of q-Schur, equipping each of its morphism spaces with a standard
basis over Z[q, q−1

] from the outset with structure constants which can computed
algorithmically, facilitates calculations which seem quite awkward otherwise; for
example, see Corollary 6.2 for a formula for the composition of two positive
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crossings. The ability to compute products effectively is also exploited in the proof
of the straightening formula in Lemma 7.4.

This straightening formula is the key ingredient in the proof of Theorem 3, which
constructs a second basis for morphism spaces in q-Schur. We formulate this in
terms of the path algebra

(1-4) H :=

⊕
λ,µ∈3s

Homq-Schur(µ, λ)

viewed as a locally unital algebra with distinguished idempotents {1λ | λ ∈ 3s}

arising from the identity endomorphisms of the objects of q-Schur. Multiplication
in H is induced by composition. Let 3+ be the subset of 3s consisting of all
partitions, that is, ordered sequences κ = (κ1 ≥ · · · ≥ κℓ) of positive integers for
ℓ ≥ 0. For λ ∈ 3s and κ ∈ 3+, we denote the usual set of all semistandard tableaux
of shape κ and content λ by Std(λ, κ). For P ∈ Std(λ, κ), let A(P) ∈ Mat(λ, κ) be
the matrix whose i j-entry records the number of times i appears on row j of P .
For the definition of “symmetrically based quasihereditary algebra” used in the
statement of the theorem, see Definition 7.1. The triangular bases in this definition
are cellular bases in the sense of [Graham and Lehrer 1996]. However, the axioms
are simpler than the ones for a cellular algebra; they are also more restrictive since
it follows automatically that the underlying algebra is a split quasihereditary algebra
with duality in the sense of [Cline et al. 1990].

Theorem 3. The locally unital algebra H =
⊕

λ,µ∈3s
1λH1µ is a symmetrically

based quasihereditary algebra with weight poset 3+ ordered by the dominance
ordering ≤, anti-involution T : H → H, ξA 7→ ξAT , and triangular basis consisting of
the codeterminants ξA(P)ξA(Q)T for (P, Q) ∈

⋃
λ,µ∈3s ,κ∈3+ Std(λ, κ)× Std(µ, κ).

There is a third remarkable basis in this subject, the canonical basis, which
appeared originally in the context of q-Schur algebras in [Beilinson et al. 1990] and
was studied in detail by Du [1992a; 1992b; 1995] from the perspective of Hecke
algebras; see also [Deng et al. 2008, Chapter 9]. To define it, take λ, µ ∈ 3s such
that r :=

∑
i λi =

∑
i µi , and A ∈ Mat(λ, µ). Writing d+

A ∈ (Sλ\Sr/Sµ)max for the
maximal length double coset representative indexed by A, let

θA :=

∑
B∈Mat(λ,µ)

qℓ(d+

A )−ℓ(d+

B ) Pd+

A ,d+

B
(q−2)ξB,

where Px,y(t) ∈ Z[t] is the Kazhdan–Lusztig polynomial for x, y ∈ Sr . Then the
canonical basis for Homq-Schur(µ, λ) is {θA | A ∈ Mat(λ, µ)}. The canonical basis
can also be defined in terms of the bar involution − : q-Schur → q-Schur, the
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antilinear strict monoidal functor which fixes objects and the generating merge
and split morphisms: θA is the unique morphism in Homq-Schur(µ, λ) such that
θ A =θA and θA ≡ ξA

(
mod

∑
B∈Mat(λ,µ) qZ[q]ξB

)
. Note also that the bar involution

interchanges positive and negative crossings.
The canonical basis makes the path algebra H into a “standardly full-based

algebra” using the language of [Du and Rui 1998], with the same weight poset and
cell ideals as the ones arising from the codeterminant basis in Theorem 3. This
follows from the results in [Du and Rui 1998, §5.3], which imply that the canonical
basis is cellular, hence, equivalent to a triangular basis; see Remark 7.6 for a precise
statement. Theorem 3 could be deduced as a consequence of this like in [Du and
Rui 1998, §5.5]. It could also be deduced from R. M. Green’s construction [1996]
of the q-analog of J. A. Green’s codeterminant basis for the Schur algebra. The
short self-contained proof of Theorem 3 given here is similar to the one in [Green
1996] (and in [Woodcock 1993] when q = 1), but incorporates simplifications
made possible by working in the less constrained setting of the q-Schur category.
Analogous bases for cyclotomic q-Schur algebras of all levels (not merely level one)
have been constructed in [Dipper et al. 1998, Theorem 6.6] by a different method.

At least one of these new bases (codeterminant or canonical) is needed in order
to understand a certain truncation q-Schurn of the q-Schur category. By definition,
this is the quotient of q-Schur by the two-sided tensor ideal In generated by the
identity endomorphisms 1(r) for r > n. The presentation for q-Schurn arising from
Theorem 2 makes it clear that it is a version of Cautis, Kamnitzer and Morrison’s
Uqgln-web category, or rather, its positive half involving only upward-pointing
strings. The ideal In is compatible with the basis from Theorem 3. Consequently, the
path algebra of q-Schurn is also a symmetrically based quasihereditary algebra with
triangular basis given by the images of the codeterminants ξA(P)ξA(Q)T for all pairs
(P, Q) of semistandard tableaux whose shape κ satisfies κ1 ≤n. This basis is similar
to the integral bases for morphism spaces in this category constructed in [Elias 2015].
The canonical basis also induces a cellular basis for the path algebra of q-Schurn .

Let k be a field viewed as a Z[q, q−1
]-algebra in some way, and consider the

specialization q-Schurn(k) := k ⊗Z[q,q−1] q-Schurn . Also let Un be Lusztig’s
Z[q, q−1

]-form for the quantized enveloping algebra Uqgln with Chevalley genera-
tors Ei , Fi (1 ≤ i ≤ n − 1) and D±1

i (1 ≤ i ≤ n). Let Un(k) := k ⊗Z[q,q−1] Un . We
view it as a Hopf algebra with comultiplication 1 satisfying

1(Ei ) = 1 ⊗ Ei + Ei ⊗ D−1
i Di+1,

1(Fi ) = Fi ⊗ 1 + Di D−1
i+1 ⊗ Fi ,

1(Di ) = Di ⊗ Di .
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The natural Un(k)-module V is the vector space with basis v1, . . . , vn such that
Eiv j = δi+1, jvi , Fiv j = δi, jvi+1, Div j = qδi, j v j . Its r-th quantum exterior power∧r V is a certain quotient of the r -th tensor power V ⊗r with a basis given by the
monomials vi1 ∧ · · · ∧ vir that are images of the pure tensors vi1 ⊗ · · · ⊗ vir for
1 ≤ i1 < · · · < ir ≤ n. Let q-Tilt+n (k), the category of polynomial tilting modules,
be the full additive Karoubian monoidal subcategory of Un(k)-mod generated by
the exterior powers

∧r V for all r ≥ 0. This is a braided (but not rigid) monoidal
category with braiding c : − ⊗ −

∼
H⇒ −⊗

rev
− defined so that

(1-5) cV,V : V ⊗V → V ⊗V, vi⊗v j 7→


v j⊗vi if i < j ,
q−1v j⊗vi if i = j ,
v j⊗vi−(q−q−1)vi⊗v j if i > j .

If k is of characteristic zero and the image of q in k is not a root of unity, q-Tilt+n (k)

is a semisimple abelian category, and the following theorem can be deduced from
[Cautis et al. 2014].

Theorem 4. There is a k-linear monoidal functor 6n : q-Schurn(k) → q-Tilt+n (k)

taking the generating object (r) to
∧r V , the merge a b to the natural surjec-

tion
∧a V ⊗

∧b V ↠
∧a+b V , and the split a b to the inclusion

∧a+b V ↪→∧a V ⊗
∧b V defined by

vi1∧·· ·∧via+b 7→ q−ab
∑

w∈(Sa+b/Sa×Sb)min

(−q)ℓ(w)viw(1)
∧·· ·∧viw(a)

⊗viw(a+1)
∧·· ·∧viw(a+b)

for 1 ≤ i1 < · · · < ia+b ≤ n. This functor is full and faithful, and it induces a
monoidal equivalence between the additive Karoubi envelope of q-Schurn(k) and
q-Tilt+n (k).

The monoidal functor 6n of Theorem 4 is not a braided monoidal functor — it
takes the positive crossing

ba
to

(−1)abc−1∧b V,
∧a V

rather than to c∧a V,
∧b V . This twist, which may at first seem inconvenient, is

reasonable since the proof involves some Ringel duality — the generating object (r)

of the q-Schur category corresponds more naturally to the r -th quantum symmetric
power of the natural module rather than its exterior power.

There is one more important explanation to be made: subsequently, the notation
q-Schur will be used to denote a slightly larger version of the q-Schur category
than appears in this introduction, with objects that are indexed by all compositions,
not just strict ones. In other words, we adjoin an additional generating object (0)
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which is isomorphic but not equal to the strict identity object 1. We prefer to use
the same notation for both versions — it should be clear from context whether we
are working with or without strings of thickness zero. The natural inclusion of
the q-Schur category as defined in the introduction into the one with 0-strings is a
monoidal equivalence, making it easy to go back and forth between the two versions.
One advantage of q-Schur category with 0-strings is that there is a surjective algebra
homomorphism from Un to the path algebra of the full subcategory whose objects
are compositions with exactly n parts. Actually, it is more convenient to work with
Lusztig’s modified form U̇n here; see (8-1). Using this connection, the approach
to q-Schur algebras taken in [Doty 2003], exploiting Lusztig’s refined Peter–Weyl
theorem for U̇n [Lusztig 2010, Section 29.3], could be adapted to give yet another
approach to the results here.

2. Double coset combinatorics

A composition λ⊨ r is a finite sequence λ = (λ1, . . . , λℓ) of nonnegative integers
summing to r . We write ℓ(λ) for the total number ℓ of parts, which is allowed to
be zero, and |λ| for the sum of the parts. We emphasize that we treat compositions
of different lengths as being different, e.g., () ̸= (0) ̸= (0, 0). A partition λ ⊢ r is a
composition λ = (λ1, . . . , λℓ)⊨ r whose parts satisfy

λ1 ≥ · · · ≥ λℓ > 0.

For partitions, we allow ourselves to write λr even if r > ℓ(λ), in which case λr = 0.
We denote the sets of all compositions and all partitions by 3 and 3+, respectively.
Let ≤ be the usual dominance ordering on 3+.

We denote the transposition (i i+1) in the symmetric group Sr by si , ℓ : Sr →N is
the length function, and wr ∈ Sr is the longest element. Elements of Sr act on the left
on the set {1, . . . , r}. There is also a right action of Sr on Zr by place permutation:
for i = (i1, . . . , ir ) ∈ Zr and w ∈ Sr , the r-tuple i · w has j-th entry iw( j). For
λ = (λ1, . . . , λℓ)⊨ r , the set

Iλ :=
{

i = (i1, . . . , ir ) ∈ Zr
| #{k = 1, . . . , r | ik = i} = λi for all i ∈ {1, . . . , ℓ(λ)}

}
is a single orbit under this action. Also let iλ

= (iλ
1 , . . . , iλ

r ) denote the unique
element of Iλ whose entries are in weakly increasing order. Its stabilizer in Sr is
the parabolic subgroup Sλ = Sλ1 × · · · × Sλℓ

.
For λ, µ⊨ r , the symmetric group Sr acts diagonally on the right on Iλ × Iµ.

The orbits are parametrized by the set Mat(λ, µ) of all ℓ(λ)×ℓ(µ) matrices with
nonnegative integer entries such that the entries in the i-th row sum to λi and the
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entries in the j -th column sum to µ j for all i ∈ {1, . . . , ℓ(λ)} and j ∈ {1, . . . , ℓ(µ)}.
For A = (ai, j ) ∈ Mat(λ, µ), the corresponding Sr -orbit on Iλ × Iµ is

(2-1) 5A :=
{
(i, j) ∈ Iλ × Iµ | #{k = 1, . . . , r | (ik, jk) = (i, j)} = ai, j

for all i ∈ {1, . . . , ℓ(λ)}, j ∈ {1, . . . , ℓ(µ)}
}
.

The set Mat(λ, µ) is actually just one of many different sets used in the literature
to parametrize the orbits of Sr on Iλ × Iµ. Another is by the set Row(λ, µ) of row
tableaux of shape µ and content λ, that is, left justified arrays with µ1 boxes in
row 1 (the top row), µ2 boxes in row 2, and so on, with boxes filled with integers
so that entries are weakly increasing in order from left to right along each row,
and there are a total of λ1 entries equal to 1, λ2 equal to 2, and so on. We use the
explicit bijection

(2-2) A : Row(λ, µ) → Mat(λ, µ)

taking P ∈ Row(λ, µ) to the matrix A(P) ∈ Mat(λ, µ) whose i j-entry records the
number of times i appears on row j of P . The inverse bijection maps A ∈ Mat(λ, µ)

to the row tableau P ∈ Row(λ, µ) whose j -th row is equal to 1a1, j 2a2, j · · · ℓaℓ(λ), j .
A third way to parametrize orbits is by the double coset diagrams introduced

already in the introduction. We gave already there an example in which λ = (4, 5),
µ = (3, 2, 4), for which the matrix A ∈ Mat(λ, µ), the corresponding double coset
diagram, and the corresponding row tableau P ∈ Row(λ, µ) are

(2-3) A =

[
1 0 3
2 2 1

]
⇐⇒

1 1

3

2 2

⇐⇒ P =
1 1 1 2
2 2
1 2 2

.

Unlike in the introduction, we are now allowing compositions with parts equal to 0,
so double coset diagrams can also have strings labeled by 0. In fact, it is harmless
to omit these zero thickness strings from the diagram entirely, but one should mark
their endpoints. Here is an example with λ = (4, 0, 5, 0) and µ = (3, 2, 0, 4):

(2-4) A =


1 0 0 3
0 0 0 0
2 2 0 1
0 0 0 0

 ⇐⇒ 1 1
3

2 2
⇐⇒ P =

1 1 1 3

3 3
1 3 3

.

Two other sets in bijection with Mat(λ, µ) are the sets of minimal length and
maximal length double coset representatives, which we denote by (Sλ\Sr/Sµ)min

and (Sλ\Sr/Sµ)max, respectively. For A ∈ Mat(λ, µ), we denote the corresponding
elements of (Sλ\Sr/Sµ)min and (Sλ\Sr/Sµ)max by dA and d+

A , respectively.
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Lemma 2.1. Given λ, µ⊨ r and A ∈ Mat(λ, µ), let λ− ⊨ r (resp., µ+ ⊨ r ) be ob-
tained by reading the entries of A in order along rows starting with the top row
(resp., in order down columns starting with the leftmost column). We have

(SλdA) ∩ (dA Sµ) = dA Sµ+ = Sλ− dA.

Every element w ∈ SλdA Sµ can be written uniquely as xdA y for x ∈ (Sλ/Sλ−)min,
y ∈ Sµ (resp., xdA y for x ∈ Sλ, y ∈ (Sµ+\Sµ)min), and we have that

ℓ(xdA y) = ℓ(x) + ℓ(dA) + ℓ(y).

Proof. This follows from [Dipper and James 1989, Lemma 1.6]. □

The double coset diagram gives a convenient visual way to translate an element
A ∈ Mat(λ, µ) into the minimal length double coset representatives dA. Alterna-
tively, to obtain dA, let (i1, . . . , ir ) ∈ Iλ be the sequence (P) obtained by reading
the entries of the corresponding row tableau P from left to right along rows, starting
with the top row. Then replace the λ1 entries equal to 1 in this sequence by 1, . . . , λ1

in increasing order, the λ2 entries equal to 2 by λ1+1, . . . , λ1+λ2 in increasing order,
and so on. The result is dA written in one-line notation. To compute d+

A , we instead
start from the sequence (P) obtained by reading entries of P from right to left along
rows, starting with the top row. Then we replace the entries 1 by λ1, . . . , 1 in de-
creasing order, the entries 2 by λ1+λ2, . . . , λ1+1 in decreasing order, and so on. In
the example (2-3), (P) = (1, 2, 2, 2, 2, 1, 1, 1, 2) so dA = (1, 5, 6, 7, 8, 2, 3, 4, 9),
and (P) = (2, 2, 1, 2, 2, 2, 1, 1, 1) so d+

A = (9, 8, 4, 7, 6, 5, 3, 2, 1).
Let ≤ be the Bruhat ordering on the symmetric group (so the identity ele-

ment is minimal). This restricts to partial orders on the sets (Sλ\Sr/Sµ)min and
(Sλ\Sr/Sµ)max, such that

(2-5) dA ≤ dB ⇐⇒ d+

A ≤ d+

B

if dA and dB are minimal length double coset representatives and d+

A and d+

B are
the corresponding maximal ones (this coincidence is proved in [Hohlweg and
Skandera 2005]). Using the bijections between these sets, we transport the Bruhat
order to partial orders on Row(λ, µ) and Mat(λ, µ). The resulting partial order on
Mat(λ, µ) is given explicitly in terms of matrices by

(2-6) A ≤ B

⇐⇒

( s∑
i=1

t∑
j=1

ai, j ≥

s∑
i=1

t∑
j=1

bi, j for all s ∈{1, . . . ,ℓ(λ)}, t ∈{1, . . . ,ℓ(µ)}

)
.
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One finds this elementary combinatorial observation in many places in the literature;
for example, see [Beilinson et al. 1990] which also explains the geometric origin of
this ordering.

3. The quantized coordinate algebra

The ring Z[q, q−1
] has a bar involution − which sends q to q−1. We will use the

term “antilinear map” for a Z-module homomorphism between Z[q, q−1
]-modules

which intertwines q and q−1 in this way. For Z[q, q−1
]-modules, V ⊗ W means

tensor product over Z[q, q−1
] and V ∗ denotes HomZ[q,q−1](V, Z[q, q−1

]). We will
need the quantum integer

(3-1) [n]q :=
qn

− q−n

q − q−1

and quantum binomial coefficient

(3-2)
[n

s

]
q :=

[n]q [n − 1]q · · · [n − s + 1]q

[s]q [s − 1]q · · · [1]q
,

which we interpret as zero in the case s < 0. These satisfy the Pascal-type recurrence
relation

(3-3)
[n

s

]
q = qs

[n−1
s

]
q + qs−n

[n−1
s−1

]
q

= q−s
[n−1

s

]
q + qn−s

[n−1
s−1

]
q
.

The following play the role of the binomial theorem for positive and negative
exponents:

n∏
s=1

(1 + q2s−n−1x) =

n∑
s=0

[n
s

]
q x s,

n∏
s=1

1
(1 + q2s−n−1x)

=

n∑
s=0

[
−n

s

]
q
x i .(3-4)

Here are some more identities that will be needed later.

Lemma 3.1. For n ≥ 0, we have
∑n

s=0(−1)sqs(n−1)
[n

s

]
q = δn,0.

Proof. Set x = −q−n−1 in the first identity from (3-4). □

Lemma 3.2. For m, n ∈ Z and s ≥ 0, we have∑
a+b=s

qmb−na[m
a

]
q

[n
b

]
q =

[m+n
s

]
q .

Proof. This is proved by a standard argument using (3-4). See also [Fiebig
2023, Proposition 4.1(5)] (where this is called the Chu–Vandermonde convolution
formula). □

Lemma 3.3. For m ∈ Z and s ≥ 0, we have
∑

a+b=s
(−q)−b

[m+a
a

]
q

[m
b

]
q = qms .
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Proof. This is the q-analog of [Brundan et al. 2020, Lemma A.1]. See [Brundan
and Kleshchev 2022, Lemma 3.1(3)] for its proof. □

Let Oq(n) be Manin’s quantized coordinate algebra of n×n matrices [1988],
which is the Z[q, q−1

]-algebra on generators {xi, j | 1 ≤ i, j ≤ n} subject to the
relations

xi, j xk,l =


xk,l xi, j if i < k and j > l,
xk,l xi, j − (q − q−1)xi,l xk, j if i > k and j > l,
q−1xk,l xi, j if i = k and j > l,
qxk,l xi, j if i < k and j = l.

(3-5)

We view Oq(n) as a bialgebra with comultiplication 1 : Oq(n) → Oq(n) ⊗Oq(n)

and counit ε : Oq(n) → Z[q, q−1
] defined by

(3-6) 1(xi,k) =

n∑
j=1

xi, j ⊗ x j,k, ε(xi, j ) = δi, j .

Lemma 3.4. In Oq(2), we have for a, b ≥ 0 that

xa
2,2xb

1,1 =

min(a,b)∑
s=0

q−s(s−1)/2(q−1
− q)s

[s]!q
[a

s

]
q

[b
s

]
q x s

2,1xb−s
1,1 xa−s

2,2 x s
1,2.

Proof. Use induction on a to check that

xa
2,2x1,1 = x1,1xa

2,2 − (q − q−1)[a]x2,1xa−1
2,2 x1,2.

This treats the case b = 1. Then proceed by induction on b using (3-3). □

Lemma 3.5. In Oq(2), we have for a ≥ 0 and i, j ∈ {1, 2} that

1(xa
i, j ) =

a∑
s=0

[a
s

]
q x s

i,1xa−s
i,2 ⊗ xa−s

2, j x s
1, j .

Proof. Exercise. □

The character group of the n-dimensional torus consisting of diagonal matrices
in GLn is naturally identified with the abelian group Zn , with standard coordinates
ε1, . . . , εn . There is a scalar product on Zn such that εi · ε j = δi, j . We also have
the dominance order on Zn defined by λ ≤ µ if the difference µ − λ is a sum of
simple roots αi := εi − εi+1 for i = 1, . . . , n − 1.

The algebra Oq(n) admits two different gradings. It is Z-graded with xi, j in
degree one, and it is bigraded by the character group Zn with xi, j of bidegree (εi , ε j ):

(3-7) Oq(n) =

⊕
r≥0

Oq(n, r) =

⊕
λ,µ∈Zn

Oq [λ, µ].



q -SCHUR CATEGORY AND POLYNOMIAL TILTING MODULES FOR GLn 75

These two gradings are compatible with each other:

(3-8) Oq(n, r) =

⊕
λ,µ∈3(n,r)

Oq [λ, µ],

where 3(n, r) := {λ⊨ r | ℓ(λ) = n} is the set of all λ ∈ Zn such that λ1, . . . , λn ≥ 0
and λ1 +· · ·+λn = r . It is also important to observe that Oq(n, r) is a subcoalgebra
of Oq(n).

Let

(3-9) I(n, r) := {i = (i1, . . . , ir ) ∈ Zr
| 1 ≤ i1, . . . , ir ≤ n} =

⋃
λ∈3(n,r)

Iλ.

For i, j ∈ I(n, r), we use the shorthand xi, j := xi1, j1 · · · xir , jr . Then Oq(n, r) is
free as a Z[q, q−1

]-module with the following basis, which we call the normally
ordered monomial basis:

(3-10) {xi, j | i, j ∈ I(n, r), j1 ≤ · · · ≤ jr and is ≥ is+1 when js = js+1}.

There are several different proofs of this, e.g., in [Brundan 2006, §6] it is derived
from another realization of Oq(n) as a braided tensor product of quantum symmetric
algebras; normally ordered here corresponds to the “terminal double indexes” in
that article. Another relevant basis is

(3-11) {xi, j | i, j ∈ I(n, r), i1 ≥ · · · ≥ ir and js ≤ js+1 when is = is+1}.

This is the monomial basis in [Brundan 2006] indexed by “initial double indexes”.
Following [Brundan 2006, Theorem 16], the bar involution on Oq(n) is the

antilinear map

(3-12) − : Oq(n) → Oq(n),

which fixes all of the generators xi, j and satisfies

(3-13) xy = qλ·µ−λ′
·µ′

ȳ x̄

for x of bidegree (λ, λ′) and y of bidegree (µ, µ′). It is indeed an involution.

Lemma 3.6. The bar involution is an antilinear coalgebra automorphism.

Proof. Let 1 denote the composition −⊗−◦1. We must show that 1(x) = 1(x̄)

for any x ∈ Oq(n). This follows by induction on degree. □

For λ, µ ∈ 3(n, r), recall the set Mat(λ, µ) of matrices with these row and
column sums from Section 2, which parametrizes the orbits 5A of Sr on Iλ × Iµ.
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For A ∈ Mat(λ, µ), let

(3-14) xA := xi, j for (i, j) ∈ 5A such that j1 ≤ · · · ≤ jd
and ik ≥ ik+1 when jk = jk+1.

In other words, if A corresponds to P ∈ Row(λ, µ) under (2-2) then i = (P)

and j = iµ; the notation (P) means the sequence obtained by reading the entries
of P in the order suggested by the arrow. Hence i = iλ

· d(A)w0 where w0 is the
longest element of Sr . The set {xA | λ, µ ∈ 3(n, r), A ∈ Mat(λ, µ)} is the normally
ordered monomial basis of Oq(n, r) from (3-10), we have merely parametrized it
in a more convenient way. By [Brundan 2006, Theorem 16] again, the image of the
normally ordered monomial xA under the bar involution is

(3-15) x̄A := xi, j for (i, j) ∈ 5A such that i1 ≥ · · · ≥ ir

and jk ≤ jk+1 when ik = ik+1.

In other words, if AT corresponds to Q ∈ Row(µ, λ) under (2-2) then i = iλ
·wr and

j = (Q). The set {x̄A | λ, µ ∈ 3(n, r), A ∈ Mat(λ, µ)} is the basis for Oq(n, r)

from (3-11).
Recall the partial order (2-6) on Mat(λ, µ). The bar involution acts on the

normally ordered monomial basis in a unitriangular fashion:

x̄A = xA + (a Z[q, q−1
]-linear combination of xB’s for B > A).

This may be seen explicitly by using (3-5) to rewrite (3-15) in terms of normally
ordered monomials. So one can apply Lusztig’s Lemma to define another basis
for Oq [λ, µ], the dual canonical basis {bA | A ∈ Mat(λ, µ)}. The dual canon-
ical basis element bA is the unique bar-invariant vector in Oq [λ, µ] such that
bA ≡ xA

(
mod

∑
B∈Mat(λ,µ) qZ[q]xB

)
. The dual canonical basis is discussed

further in [Brundan 2006] (and many other places). In particular, the polyno-
mials pA,B(q) ∈ Z[q] defined from

(3-16) xB =

∑
A∈Mat(λ,µ)

pA,B(q)bA

are (renormalized) Kazhdan–Lusztig polynomials: writing Px,y(t) ∈ Z[t] for the
usual Kazhdan–Lusztig polynomial associated to x, y ∈ Sr , we have

(3-17) pA,B(q) = qℓ(d+

A )−ℓ(d+

B ) Pd+

A ,d+

B
(q−2).

This is explained in [Brundan 2006, Remark 10]. We have pA,B(q) = 0 unless
A ≥ B, pA,A(q) = 1, and pA,B(q) ∈ qN[q] if A > B. The last assertion, which
follows from positivity of Kazhdan–Lusztig polynomials, will not be needed here.
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Lemma 3.7. Suppose we are given A′, B ′
∈ Mat(λ′, µ′) for λ′, µ′

∈ 3(n, r) and
1 ≤ i, j ≤ n such that λ′

i = µ′

j = 0. Let A and B be the matrices obtained from A′

and B ′ by removing the i-th row and j-th column. Then pA,B(q) = pA′,B ′(q).

Proof. This is clear from the nature of the defining relations (3-5) for Oq(n): they
only depend on the relative positions of the indices in the total order on the set
{1, . . . , n}, not on the actual values. □

Example 3.8. For λ, µ ∈ 3(2, r) and A ∈ Mat(λ, µ), we have

bA = xa2,1
2,1 xa1,1−min(a1,1,a2,2)

1,1 (x1,1x2,2 − qx2,1x1,2)
min(a1,1,a2,2)xa2,2−min(a1,1,a2,2)

2,2 xa1,2
1,2 .

This follows from a special case of [Brundan 2006, Theorem 20], which gives a
closed formula for the dual canonical basis element bA for all A ∈ Mat(λ, µ) if
either λ or µ has at most two nonzero parts. Expanding the binomial gives

bA = xA−q M[m
1

]
q xA+B +q2(M−1)

[m
2

]
q xA+2B −· · ·+(−1)mqm(M+1−m)

[m
m

]
q xA+m B,

where m := min(a1,1, a2,2), M := max(a1,1, a2,2) and B :=
[

−1
1

1
−1

]
.

Lemma 3.9. There is a surjective bialgebra homomorphism

Y∗
: Oq(m + n) ↠Oq(m) ⊗Oq(n),

xi, j 7→


xi, j ⊗ 1 if 1 ≤ i, j ≤ m,
1 ⊗ xi−m, j−m if m + 1 ≤ i, j ≤ m + n,
0 otherwise.

This intertwines the bar involution on Oq(m + n) with the bar involution −⊗− on
Oq(m) ⊗Oq(n).

Proof. The existence of this algebra homomorphism follows from the relations.
Then one checks that it is a coalgebra homomorphism too. Finally, for the statement
about the bar involution, note for an m×m matrix A and an n×n matrix B that Y∗

sends xdiag(A,B) to xA ⊗ xB and x̄diag(A,B) to x̄A ⊗ x̄B . □

There is also an antilinear algebra antiautomorphism

(3-18) T∗
: Oq(n) → Oq(n), xi, j 7→ x j,i .

This is a coalgebra antiautomorphism, i.e., T∗
⊗ T∗

◦1 = P ◦1 ◦ T∗ where P is the
tensor flip. Comparing (3-14) and (3-15), we see that T∗

(xA) = x̄AT where AT is
the transpose matrix. Since T∗ is an involution, it follows that it commutes with the
bar involution. Let

(3-19) T∗
:= − ◦ T∗

= T∗
◦ − : Oq(n) → Oq(n).
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This is a linear coalgebra antiautomorphism (but not an algebra antiautomorphism)
which commutes with the bar involution and sends xA to xAT . It follows that

(3-20) T∗(bA) = bAT .

The dual canonical basis element bA indexed by A = In , which is minimal in
the Bruhat order, is the quantum determinant

(3-21) detq :=

∑
w∈Sn

(−q)ℓ(w)xw(1),1 · · · xw(n),n.

This is central in Oq(n). It is also a group-like element, i.e., 1(detq) = detq ⊗ detq
and ε(detq)= 1. The coordinate algebra of the quantum general linear group q-GLn

is the Ore localization of Oq(n) at the quantum determinant. The bialgebra structure
on Oq(n) extends to make this into a Hopf algebra. We will not work explicitly
with this Hopf algebra here, but its existence underpins all subsequent language
and notation.

By a polynomial representation of q-GLn we mean a right Oq(n)-comodule.
We use the notation Homq-GLn (−, −) to denote morphisms in the category of
polynomial representations. Since Oq(n) is a bialgebra, this is a monoidal category.
For example, we have the natural representation of q-GLn , which is the free
Z[q, q−1

]-module V with basis v1, . . . , vn and comodule structure map η : V →

V ⊗Oq(n, 1) defined from

(3-22) η(v j ) =

n∑
i=1

vi ⊗ xi, j .

It is a polynomial representation of degree 1, hence, its r -th tensor power V ⊗r is a
polynomial representation of degree r , meaning that it is a right Oq(n, r)-comodule.

The category of polynomial representations of q-GLn is also braided, with
braiding c that is uniquely determined by requiring that cV,V ∈ Endq-GLn (V ⊗ V )

is the Z[q, q−1
]-linear map defined by (1-5). We have (cV,V +q)(cV,V −q−1) = 0,

hence, cV,V has eigenvalues −q and q−1. After localizing at [2] = q + q−1, the
tensor square V ⊗V decomposes as the direct sum of the corresponding eigenspaces.
The q−1-eigenspace is spanned by

(3-23) {v j ⊗ vi + qvi ⊗ v j | 1 ≤ i < j ≤ n} ∪ {vk ⊗ vk | 1 ≤ k ≤ n}.

The quantum exterior algebra

(3-24)
∧

(V ) =

⊕
r≥0

∧r V
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is the quotient of the tensor algebra T (V ) by the two-sided ideal generated by the
quadratic tensors from (3-23). This is studied in [Parshall and Wang 1991] (see also
[Brundan 2006, §5]), where it is proved that

∧r V is free as a Z[q, q−1
]-module

with basis

{vI := vi1 ∧ · · · ∧ vir | I = {i1 < · · · < ir } ⊆ {1, . . . , n}}.

The comodule structure map η for
∧r V satisfies η(vJ ) =

∑
I vI ⊗ x I,J where

(3-25) x I,J :=

∑
w∈Sr

(−q)ℓ(w)xiw(1), j1 · · · xiw(r), jr

for I = {i1 < · · · < ir } and J = { j1 < · · · < jr }. These so-called quantum minors
include the quantum determinant (3-21) as a special case.

4. The q-Schur algebra

We continue to work over Z[q, q−1
] like in the previous section. The q-Schur

algebra is the Z[q, q−1
]-linear dual

(4-1) Sq(n, r) := Oq(n, r)∗ =

⊕
λ,µ∈3(n,r)

Oq [λ, µ]
∗.

It is an algebra with multiplication Sq(n, r)⊗ Sq(n, r) → Sq(n, r) defined by the
dual map to the restriction Oq(n, r) → Oq(n, r)⊗Oq(n, r) of the comultiplication
on Oq(n). For this, we are identifying f ⊗ g ∈ Sq(n, r)⊗ Sq(n, r) with an element
of (Oq(n, r)⊗Oq(n, r))∗ so that ⟨ f ⊗ g, x ⊗ y⟩ := ⟨ f, x⟩⟨g, y⟩ for f, g ∈ Sq(n, r),
x, y ∈ Oq(n, r).

The unit element 1 ∈ Sq(n, r) is the restriction of the counit ε to Oq(n, r). For
λ ∈ 3(n, r), let 1λ be the function which is equal to ε on Oq [λ, λ] and is zero on
all other summands Oq [λ, µ] in the decomposition (3-8). This defines mutually
orthogonal idempotents {1λ | λ ∈ 3(n, r)} in Sq(n, r) whose sum is the identity.
Moreover, 1λSq(n, r)1µ = Oq [λ, µ]

∗.
The dual map to the bar involution on Oq(n, r) defines a bar involution on

Sq(n, r) which we denote with the same notation, so ⟨ f̄ , x⟩ = ⟨ f, x̄⟩ for f ∈

Sq(n, r), x ∈ Oq(n, r). Lemma 3.6 implies that − : Sq(n, r) → Sq(n, r) is an
antilinear algebra automorphism. The dual of the restriction Oq(m + n, r) →⊕

a+b=r Oq(m, a) ⊗Oq(n, b) of the homomorphism Y∗ from Lemma 3.9 defines
an injective algebra homomorphism

(4-2) Yr :

⊕
a+b=r

Sq(m, a) ⊗ Sq(n, b) ↪→ Sq(m + n, r), ξA ⊗ ξB 7→ ξdiag(A,B).
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This intertwines the bar involutions −⊗− on each Sq(m, a)⊗ Sq(n, b) with the bar
involution on Sq(m + n, r). The dual of (3-19) gives us a transposition involution
T : Sq(n, r) → Sq(n, r). This is a linear algebra antiautomorphism.

The dual bases to {xA | A ∈ Mat(λ, µ)} and {bA | A ∈ Mat(λ, µ)} give bases for
the free Z[q, q−1

]-module 1λSq(n, r)1µ, which we denote by {ξA | A ∈ Mat(λ, µ)},
the standard basis, and {θA | A ∈ Mat(λ, µ)}, the canonical basis. The canonical
basis element θA ∈ 1λSq(n, r)1µ is the unique bar-invariant element that satisfies
θA ≡ ξA

(
mod

∑
B∈Mat(λ,µ) qZ[q]ξB

)
. In particular, θA is the sum of ξA with a

qN[q]-linear combination of ξB for B < A, because by (3-16) we have

(4-3) θA =

∑
B∈Mat(λ,µ)

pA,B(q)ξB,

where pA,B(q) is the Kazhdan–Lusztig polynomial from (3-17). There is also a
geometric construction of the canonical basis via intersection cohomology. This
is explained in [Beilinson et al. 1990, §1.4], where the standard basis element ξA

is denoted [A] and θA is denoted {A} (up to some renormalization).
The counit ε is zero on all of the normally ordered monomials in Oq [λ, λ] except

for xλ1
1,1 · · · xλn

n,n , proving the first equality in

(4-4) 1λ = ξdiag(λ1,...,λn) = θdiag(λ1,...,λn).

The second equality follows because

ξ A = ξA + (a Z[q, q−1
]-linear combination of ξB’s for B < A)

and A = diag(λ1, . . . , λn) is minimal in the Bruhat ordering, so ξdiag(λ1,...,λn) is bar
invariant. More generally, since the homomorphism Yr is bar equivariant, we have

(4-5) Yr (θA ⊗ θB) = θdiag(A,B).

Also, by (3-20), we have

(4-6) T(ξA) = ξAT, T(θA) = θAT .

Example 4.1. For A ∈ Mat(λ, µ) with λ, µ ∈ 3(2, r) we have

(4-7) θA =

min(a1,2,a2,1)∑
s=0

qs(s+max(a1,1,a2,2))
[s+min(a1,1,a2,2)

s

]
qξA−s B,

where B :=
[

−1
1

1
−1

]
. This follows by inverting the transition matrix in Example 3.8.

For n×n matrices A, B, C with nonnegative integer entries, define

(4-8) Z(A, B, C) := ⟨ξA ⊗ ξB, 1(xC)⟩ ∈ Z[q, q−1
].
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These are the structure constants for multiplication in the standard basis of the
q-Schur algebra: we have

(4-9) ξA ◦ ξB :=

∑
C

Z(A, B, C)ξC .

This formula can be viewed as a q-analog of Schur’s product rule. For a completely
different approach to the definition of these structure constants (counting points
over a finite field), see [Beilinson et al. 1990, §1.1]. The structure constants have
the following stabilization property, which will be relevant in the next section.

Lemma 4.2. Suppose we are given A′
∈ Mat(λ′, µ′), B ′

∈ Mat(µ′, ν ′) and C ′
∈

Mat(λ′, ν ′) for λ′, µ′, ν ′
∈ 3(n, r) and 1 ≤ i, j, k ≤ n such that λ′

i = µ′

j = ν ′

k = 0.
Let A, B, C be the matrices obtained by removing the i-th row and j-th column
of A′, the j-th row and k-th column of B ′, and the i-th row and k-th column of C ′,
respectively. Then we have Z(A, B, C) = Z(A′, B ′, C ′).

Proof. This follows for the same reason as Lemma 3.7. □

Let Hr be the Hecke algebra of the symmetric group, that is, the Z[q, q−1
]-

algebra on generators τ1, . . . , τr−1 subject to the relations

(τi +q)(τi −q−1)= 0, τiτ j = τ jτi if |i − j | > 1, τiτi+1τi = τi+1τiτi+1.

For w ∈ Sr , we have the corresponding element τw ∈ Hr defined from a reduced
expression for w, and the elements {τw | w ∈ Sr } give a basis for Hw as a free
Z[q, q−1

]-module. Recall also that the Hecke algebra has its own antilinear bar
involution − : Hw → Hw, τw 7→ τ−1

w−1 .

Lemma 4.3. Suppose that r ≤ n and let ω := (1r 0n−r ) ∈ 3(n, r). There is
an algebra isomorphism Hr

∼
−→ 1ωSq(n, r)1ω sending τw to the standard basis

element ξA for the matrix A ∈Mat(ω, ω) such that aw(i),i =1 for i =1, . . . , r and all
other entries are zero. This map intertwines the bar involutions on Hr and Sq(n, r).

Proof. Check that the relation

τwτi =

{
τwsi if w(i) < w(i + 1),

τwsi − (q − q−1)τw if w(i) > w(i + 1)

holds in Sq(n, r) by explicitly calculating the corresponding structure constants.
This is well known so we omit the details. □

Let V be the natural representation of q-GLn . In addition to our definition
of Sq(n, r) by dualizing Oq(n, r), and the approach in [Beilinson et al. 1990]
where the q-Schur algebra arises as the endomorphism algebra of a permutation
representation of the finite general linear group, the q-Schur algebra can be realized
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as an endomorphism algebra for an action of the Hecke algebra Hr on the tensor
space V ⊗r . To explain this, note that V ⊗r has basis vi := vi1 ⊗ · · · ⊗ vir for
i ∈ I(n, r). There is a right action of Hr on V ⊗r such that τi acts as the braiding
1⊗(i−1)

⊗ cV,V ⊗ 1r−i−1 from (1-5). Since V ⊗r is a polynomial representation of
degree r , it is a left Sq(n, r)-module. The action of Hr commutes with the action
of Sq(n, r). Hence, there is a well-defined algebra homomorphism

(4-10) Sq(n, r) → EndHr (V ⊗r ).

This homomorphism is actually an algebra isomorphism. There are several ways
to see this, e.g., it can be deduced from [Dipper and James 1986]. In fact, in
[Dipper and James 1986], the authors work with a different realization of the right
Hr -module V ⊗r as a direct sum of permutation modules. In this form, one obtains
a basis for the endomorphism algebra on the right-hand side of (4-10) quite easily
from the Mackey theorem, and then just needs to check that this basis is also the
image of the standard basis for Sq(n, r) under the homomorphism (4-10). Since
this is quite important for us, we go through some details in the next paragraph.

For λ∈3(n, r), let Hλ be the parabolic subalgebra of Hr associated to Sλ. Let Xλ

be the free Z[q, q−1
]-module of rank one with basis mλ viewed as a right Hλ-module

so that mλτi = q−1mλ for each τi ∈ Hλ. The (right) permutation module is the
induced module M(λ) := Xλ⊗Hλ

Hr . There is a unique Hr -module homomorphism

(4-11) fλ : M(λ) → 1λV ⊗r , mλ ⊗ 1 7→ viλ .

This is actually an isomorphism because the vectors {mλ⊗τw |w ∈ (Sλ\Sr )min} give
a basis for M(λ), and fλ maps them to the basis {vi | i ∈ Iλ} for 1λV ⊗r . Summing
over all λ ∈ 3(n, r), this gives us an Hr -module isomorphism

(4-12) f :

⊕
λ∈3(n,r)

M(λ) ∼
−→ V ⊗r .

The following lemma explains how to transport the natural action of Sq(n, r) on V ⊗r

through f to obtain an action on this direct sum of permutation modules.

Lemma 4.4. Suppose that λ, µ ∈ 3(n, r) and A ∈ Mat(λ, µ). The diagram

1µV ⊗r 1λV ⊗r

M(µ) M(λ)

ξA

fµ fλ
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commutes, where the top map is defined by acting on the left with ξA, and the bottom
map is the Hr -module homomorphism sending

(4-13) mµ ⊗ 1 7→

∑
w∈(Sµ+\Sµ)min

qℓ(w0)−ℓ(w)mλ ⊗ τdAτw,

where µ+ ⊨ r is as in Lemma 2.1 and w0 is the longest element of (Sµ+\Sµ)min.

Proof. The comodule structure map η of V ⊗r satisfies

η(v j ) =

∑
i∈I(n,r)

vi ⊗ xi, j .

Hence, for j ∈ Iµ, we have

(4-14) ξAv j =

∑
i∈Iλ

⟨ξA, xi, j ⟩vi .

By (3-14), xA = xiλ·dAw0,iµ . The Sµ-orbit of iλ
·dAw0 is {iλ

·dAw |w ∈ (Sµ+\Sµ)min}.
Also for w ∈ (Sµ+\Sµ)min we have xiλ·dAw,iµ = qℓ(w0)−ℓ(w)xiλ·dAw0,iµ as one needs
to use the last relation in (3-5) a total of ℓ(w0) − ℓ(w) times. Putting this together
shows that

ξAviµ =

∑
w∈(Sµ+\Sµ)min

qℓ(w0)−ℓ(w)viλ·dAw.

The lemma now follows since fλ sends mλ ⊗ 1 to viλ , fµ sends mµ ⊗ 1 to viµ , and
viλ·dAw = viλτdAτw as iλ

1 ≤ · · · ≤ iλ
r . □

Let m be another natural number. For λ∈3(m, r), let Y (λ) be the free Z[q, q−1
]-

module of rank one with basis nλ viewed as a left Hλ-module so that τi nλ = −qnλ

for each τi ∈ Hλ. The (left) signed permutation module is the induced module
N (λ) := Hr ⊗Hλ

Y (λ).

Lemma 4.5. There is an algebra isomorphism

Sq(m, r) ∼
−→ EndHr

( ⊕
λ∈3(m,r)

N (λ)

)
sending ξA ∈ 1λSq(m, r)1µ to the unique Hr -module homomorphism such that

1 ⊗ nµ 7→

∑
w∈(Sµ+\Sµ)min

(−1)ℓ(w)+ℓ(dA)qℓ(w0)−ℓ(w)τ−1
w τ−1

dA
⊗ nλ,

where µ+ is as in Lemma 2.1 and w0 is the longest element of (Sµ+\Sµ)min, and
1 ⊗ nν 7→ 0 for ν ̸= µ.
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Proof. We start from the algebra isomorphism (4-10). Using (4-12) and Lemma 4.4,
and replacing n by m, this gives us an algebra isomorphism

Sq(m, r) ∼
−→ EndHr

( ⊕
λ∈3(m,r)

M(λ)

)
such that ξA ∈ 1λSq(m, r)1µ acts on mµ ⊗ 1 ∈ M(µ) according to (4-13), and
it acts as zero on all other summands. Then we use the algebra antiautomor-
phism Hr → Hr , τx 7→ (−1)ℓ(x)τ−1

x . The pull-back of the right Hr -module M(λ)

along this map is isomorphic to the left Hr -module N (λ), there being a unique
isomorphism such that mλ ⊗ τx 7→ (−1)ℓ(x)τ−1

x ⊗ nλ for all x ∈ Sr . We deduce
that EndHr

(⊕
λ∈3(m,r) M(λ)

)
∼= EndHr

(⊕
λ∈3(m,r) N (λ)

)
. It just remains to note

that the action of ξA ∈ 1λS(m, r)1µ on
⊕

λ∈3(m,r) M(λ) translates into the action
on

⊕
λ∈3(m,r) N (λ) described explicitly in the statement of the lemma. □

The goal now is to replace Hr and the signed permutation modules N (λ) in
Lemma 4.5 with the quantum general linear group q-GLn and its polynomial
representations

(4-15)
∧λ V :=

∧λ1 V ⊗ · · · ⊗
∧λℓ(λ) V .

Lemma 4.6. Take λ, µ ∈ 3(m, r) and A ∈ Mat(λ, µ). There is a unique q-GLn-
module homomorphism φA :

∧µ V →
∧λ V such that the diagram

V ⊗r V ⊗r

∧µ V
∧λ V

φA

commutes, where the vertical maps are the quotient maps and the top map is
right multiplication by

∑
w∈(Sµ+\Sµ)min

(−1)ℓ(w)+ℓ(dA)qℓ(w0)−ℓ(w)τ−1
w τ−1

dA
where µ+

is defined as in Lemma 2.1 and w0 is the longest element of (Sµ+\Sµ)min.

Proof. By the definition of quantum exterior powers, the kernel of the projection
V ⊗r ↠

∧µ V is generated by the kernels of the endomorphisms τ j −q−1
= τ−1

j −q
for all j with s j ∈ Sµ. Hence, we need to show for such a j and v ∈ V ⊗r with
vτ−1

j = qv that the vector

v′
:=

∑
w∈(Sµ+\Sµ)min

(−1)ℓ(w)+ℓ(dA)qℓ(w0)−ℓ(w)vτ−1
w τ−1

dA

is in the sum of the kernels of the maps τ−1
i − q for all i with si ∈ Sλ. We have

(Sµ+\Sµ)min = X ⊔ Xs j ⊔ Y
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such that ℓ(xs j ) = ℓ(x) + 1 for all x ∈ X , and ys j y−1
∈ Sµ+ for all y ∈ Y . This

follows from [Dipper and James 1989, Lemma 1.1]. For x ∈ X , we have

(−1)ℓ(x)+ℓ(dA)qℓ(w0)−ℓ(x)vτ−1
x τ−1

dA
+ (−1)ℓ(xs j )+ℓ(dA)qℓ(w0)−ℓ(xs j )vτ−1

j τ−1
x τ−1

dA
= 0

as vτ−1
j = qv. This implies that

v′
=

∑
y∈Y

(−1)ℓ(y)+ℓ(dA)qℓ(w0)−ℓ(y)vτ−1
y τ−1

dA
.

It remains to show for y ∈ Y that vτ−1
y τ−1

dA
is in the kernel of τ−1

i − q for some i with
si ∈ Sλ. We have dA ys j = tdA y for t := dA(ys j y−1)d−1

A . Since ys j y−1
∈ Sµ+ , we

deduce using Lemma 2.1 that t ∈ Sλ (in fact, it is in Sλ− ≤ Sλ in the notation from the
lemma), and that ℓ(tdA y)= ℓ(t)+ℓ(dA)+ℓ(y). Since ℓ(dA ys j )≤ ℓ(dA)+ℓ(y)+1,
we deduce that ℓ(t) = 1. Hence, t = si for some i such that si ∈ Sλ. Moreover
vτ−1

y τ−1
dA

τ−1
i = vτ−1

j τ−1
y τ−1

dA
= qvτ−1

y τ−1
dA

. □

The following theorem is the quantum analog of [Donkin 1993, Proposition 3.11].
See [Donkin 1998, 4.2(19)] for a closely related result already in the quantum setting.

Theorem 4.7. Fix m, r ∈ N. For any n ≥ 0, there is a surjective algebra homomor-
phism

(4-16) gn : Sq(m, r) ↠ Endq-GLn

( ⊕
λ∈3(m,r)

∧λV
)

sending ξA ∈ 1λSq(m, r)1µ to the endomorphism that is equal to the homomor-
phism φA from Lemma 4.6 on the summand

∧µ V , and is zero on all other sum-
mands. Moreover, gn is an isomorphism if n ≥ r .

Proof. Using the base change functor k⊗Z[q,q−1]−, it suffices to prove the analogous
statement when Z[q, q−1

] is replaced by a field k and q is any nonzero element. In
the remainder of the proof, we assume we are working over a field in this way, writing
q-GLn(k) for the quantum general linear group over k, whose coordinate algebra
is k ⊗Z[q,q−1] Oq(n). The category of polynomial representations of q-GLn(k)

is a highest weight category satisfying standard homological properties. This is
justified, for instance, in [Parshall and Wang 1991] or [Donkin 1998].2 In the
next paragraph, we treat the case that n ≥ r . Then the existence and surjectivity
of gn for n < r follows from the existence and surjectivity of gN for N ≥ r by
an argument involving truncation to the subgroup q-GLn < q-GLN using [Donkin
1998, 4.2(11)] (this requires the standard homological properties).

2It can also be deduced by using the results of Section 7 to show that Sq (n, r) is a split quasihered-
itary algebra.
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So now assume that n ≥ r and that we are working over a field. We must show
that gn is a well-defined algebra isomorphism. To see this, we use the Schur functor,
that is, the idempotent truncation functor π : Sq(n, r)-mod → Hr -mod defined by
the idempotent 1ω, notation as in Lemma 4.3. This sends an Sq(n, r)-module to
its ω-weight space viewed as an Hr -module via the isomorphism from that lemma.
We have π

( ∧λ V
)
∼= N (λ), there being a unique such isomorphism sending the

canonical image of v1 ⊗ · · · ⊗ vr in
∧λ V to 1 ⊗ nλ. Moreover, the Schur functor

induces an isomorphism

HomSq (n,r)

( ∧µ V,
∧λ V

)
∼

−→ HomHr (N (µ), N (λ)).

This follows by general principles (e.g., see [Jantzen and Seitz 1992, Theorem 2.12])
because the head of

∧µ V and the socle of
∧λ V are p-restricted, i.e., they only

involve irreducible modules L which are not annihilated by π . Indeed, these
modules are both submodules and quotient modules of the tensor space V ⊗r , which
has p-restricted head and socle because V ⊗r ∼= Sq(n, r)1ω by the isomorphisms
(4-10) and (4-11), hence,

HomSq (n,r)(L , V ⊗r ) ∼= HomSq (n,r)(V ⊗r , L) ∼= HomSq (n,r)(Sq(n, r)1ω, L) ∼= 1ωL

for any self-dual module L . Consequently, π induces an algebra isomorphism

Endq-GLn

( ⊕
λ∈3(m,r)

∧λ V
)

∼= EndHr

( ⊕
λ∈3(m,r) N (λ)

)
.

Composing this with the isomorphism from Lemma 4.5 gives the desired isomor-
phism gn .

It just remains to identify the endomorphism gn(ξA) with φA. For this, it suffices
to check for ξA ∈ 1λSq(m, r)1µ that the maps gn(ξA) and φA are equal on the
canonical image of v1 ⊗ · · · ⊗ vr in

∧µ V . By the definition from Lemma 4.6, φA

sends this vector to the canonical image of∑
w∈(Sµ+\Sµ)min

(−1)ℓ(x)+ℓ(dA)qℓ(w0)−ℓ(w)(v1 ⊗ · · · ⊗ vr )τ
−1
w τ−1

dA

in
∧λ V . On the other hand, gn(ξA) takes this vector to the image of∑

w∈(Sµ+\Sµ)min

(−1)ℓ(x)+ℓ(dA)qℓ(w0)−ℓ(w)τwτ−1
dA

(v1 ⊗ · · · ⊗ vr ),

where the left action of Hr on 1ωV ⊗r comes from the left action of Sq(n, r) via the
isomorphism of Lemma 4.3. Now observe for any x ∈ Sr that τx(v1 ⊗ · · ·⊗ vr ) =

(v1⊗· · ·⊗vr )τx as, by the definitions, both vectors are equal to vx(1)⊗· · ·⊗vx(r). □
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5. The q-Schur category

It is easy to adapt (4-8) to define Z(A, B, C) ∈ Z[q, q−1
] for A ∈ Mat(λ, µ),

B ∈ Mat(µ, ν), C ∈ Mat(λ, ν) and compositions λ, µ, ν ⊨ r that are not necessarily
of the same length. To do so, we pick any n ≥ ℓ(λ), ℓ(µ), ℓ(ν) and let λ′, µ′ and ν ′

be compositions of length n obtained from λ, µ and ν by adding some extra entries
equal to zero. Let A′

∈ Mat(λ′, µ′), B ′
∈ Mat(µ′, ν ′) and C ′

∈ Mat(λ′, ν ′) be the
matrices obtained by inserting corresponding rows and columns of zeros into A, B
and C ; see (2-3) and (2-4) for an example. Then we define Z(A, B, C) to be the
structure constant Z(A′, B ′, C ′) for the q-Schur algebra Sq(n, r) exactly as defined
earlier. The stability from Lemma 4.2 implies that this is well-defined independent
of all choices.

The following theorem defines the q-Schur category with 0-strings. The version
without 0-strings discussed in the introduction is the full subcategory with object
set 3s ⊂ 3.

Theorem 5.1. There is a Z[q, q−1
]-linear strict monoidal category q-Schur with

• objects that are all compositions λ ∈ 3;

• for λ⊨ r and µ⊨ s, the morphism space Homq-Schur(µ, λ) is {0} unless r = s,
and it is the free Z[q, q−1

]-module with basis {ξA | A ∈ Mat(λ, µ)} if r = s;

• tensor product of objects is defined by concatenation of compositions;

• tensor product of morphisms (horizontal composition) is defined by ξA ⋆ ξB :=

ξdiag(A,B);

• vertical composition of morphisms is defined as in (4-9).

The strict identity object 1 is the composition of length zero, and the identity
endomorphism 1λ of an object λ ∈ 3 is ξdiag(λ1,...,λℓ(λ)).

Proof. Most of the axioms of strict monoidal category are straightforward. The fact
that vertical composition is associative is a consequence of associativity of multi-
plication in the q-Schur algebra. To check the interchange law, we must show that

(ξA ⋆ 1σ ) ◦ (1µ ⋆ ξB) = (1λ ⋆ ξB) ◦ (ξA ⋆ 1ρ)

for λ, µ⊨ a, σ, ρ ⊨ b and A ∈ Mat(λ, µ), B ∈ Mat(σ, ρ), that is,

ξdiag(A,σ1,...,σℓ(σ )) ◦ ξdiag(µ1,...,µℓ(µ),B) = ξdiag(λ1,...,λℓ(λ),B) ◦ ξdiag(A,ρ1,...,ρℓ(ρ)).

Using the stability from Lemma 4.2, we may assume that ℓ(λ) = ℓ(µ) = m and
ℓ(σ ) = ℓ(ρ) = n. We have (ξA ⊗ 1σ )(1µ ⊗ ξB) = (1λ ⊗ ξB)(A ⊗ 1ρ) in the algebra
Sq(m, a) ⊗ Sq(n, b). Now apply the algebra homomorphism Ya+b from (4-2). □
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Remark 5.2. It is clear from the definition that the path algebra of the full sub-
category of q-Schur generated by objects in 3(n, r) may be identified with the
q-Schur algebra, that is,

(5-1) Sq(n, r) =

⊕
λ,µ∈3(n,r)

Homq-Schur(µ, λ).

By (4-10) and Lemma 4.4, we have 1λSq(n, r)1µ
∼=HomHr (M(µ), M(λ)) for λ, µ∈

3(n, r). It follows that the full subcategory of q-Schur generated by objects
in 3(r) :=

⋃
n≥0 3(n, r) is isomorphic to the category q-Schur(r) with object

set 3(r) and morphism spaces

(5-2) Homq-Schur(r)(µ, λ) := HomHr (M(µ), M(λ)),

with the natural composition law. The categories q-Schur(r) for all r can then be
assembled to obtain an alternative approach to the definition of q-Schur, with tensor
product arising from the bifunctors q-Schur(r) × q-Schur(s) → q-Schur(r + s)
induced by the natural embeddings Hr ⊗Hs ↪→ Hr+s . We have emphasized the based
approach in Theorem 5.1 since it allows composition of standard basis elements to
be computed effectively using the coalgebra structure on Oq(n). This will be used
several times later on.

We have defined the morphism space Homq-Schur(µ, λ) so that it comes equipped
with the standard basis {ξA | A ∈Mat(λ, µ)}. We can also transfer the canonical basis
from the q-Schur algebra to q-Schur, as follows. Take any λ, µ⊨ r and A, B ∈

Mat(λ, µ). There is a corresponding Kazhdan–Lusztig polynomial pA,B(q) ∈ Z[q].
To define this, we again pick any n ≥ ℓ(λ), ℓ(µ), add extra zeros to λ and µ to
make them into compositions of the same length n, and add corresponding rows and
columns of zeros to A and B to obtain A′, B ′

∈ Mat(λ′, µ′). Then we let pA,B(q) :=

pA′,B ′(q), where the latter polynomial comes from (4-3). This is well defined
independent of the choices thanks to Lemma 3.7. It is also clear from the proof of that
lemma that the slightly more general polynomials pA,B(q) still satisfy (3-17). Let

(5-3) θA :=

∑
B∈Mat(λ,µ)

pA,B(q)ξB,

thereby defining the canonical basis {θA | A ∈ Mat(λ, µ)} for Homq-Schur(µ, λ).

Lemma 5.3. There is an antilinear strict monoidal functor − : q-Schur → q-Schur
which is the identity on objects and, on the morphism space Homq-Schur(µ, λ), is
the unique antilinear map which fixes the canonical basis {θA | A ∈ Mat(λ, µ)}.
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Proof. Since the bar involution for q-Schur algebras is an antilinear algebra automor-
phism, this prescription gives a well-defined antilinear functor. To see that it is strict
monoidal, it suffices to observe that θA ⋆θB = θdiag(A,B). This follows from (4-5). □

In a similar way, we upgrade the involution T on Sq(n, r) to a strict linear
monoidal functor

(5-4) T : q-Schur → (q-Schur)op,

which is the identity on objects, commutes with the bar involution, and sends
ξA 7→ ξAT , θA 7→ θAT . This follows by (4-6).

Theorem 5.4. There is a full Z[q, q−1
]-linear monoidal functor 6n from q-Schur

to the category of polynomial representations of q-GLn sending the object λ⊨ d to
the polynomial representation

∧λ V of degree r from (4-15), and the morphism ξA

for λ, µ⊨ r and A ∈ Mat(λ, µ) to the homomorphism φA :
∧µ V →

∧λ V from
Lemma 4.6.

Proof. To see that 6n is a functor, we must show that 6n(ξA ◦ ξB) = 6n(ξA) ◦

6n(ξB) for A ∈ Mat(λ, µ), B ∈ Mat(µ, ν), λ, µ, ν ⊨ r and r ≥ 0. In view of the
definition of vertical composition in q-Schur, this follows because φA ◦ φB =∑

C∈Mat(λ,ν) Z(A, B, C)φC by Theorem 4.7, taking m ≥ ℓ(λ), ℓ(µ), ℓ(ν). The
same theorem also shows that 6n is full. Finally, to see that 6n is a monoidal
functor, we need to check that φA ⊗φB = φdiag(A,B). This is clear from the explicit
description of these maps given by Lemma 4.6. □

Remark 5.5. (1) By the final statement from Theorem 4.7, the proof of Theorem 5.4
also shows that the functor 6n defines an isomorphism Homq-Schur(µ, λ) ∼

−→

Homq-GLn

( ∧µ V ,
∧λ V

)
providing n ≥ |λ|, |µ|. So one could say that 6n is

asymptotically faithful as n → ∞. In Corollary 8.4 below, we will give an explicit
description of the kernel of 6n , that is, the tensor ideal of q-Schur consisting of
the morphisms that it annihilates.

(2) Let k be a field viewed as a Z[q, q−1
]-algebra in some way, and consider the

specialization q-Schur(k) := k ⊗Z[q,q−1] q-Schur. The functor 6n in Theorem 5.4
induces a k-linear monoidal functor from q-Schur(k) to the category of polynomial
representations of q-GLn(k). By the proofs of Theorems 4.7 and 5.4, this induced
functor is also full.

By merges, splits, and positive crossings, we mean the morphisms ξ[a b] , ξ
[a

b
] , and

ξ[
0 b
a 0

] for a, b ≥ 0. The images φ[a b] , φ[a
b
] , and φ[

0 b
a 0

] of these special morphisms
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under the functor 6n from Theorem 5.4 are the natural projection

(5-5)
∧a V ⊗

∧b V ↠
∧a+b V , v ⊗ w 7→ v ∧ w,

the inclusion∧a+b V ↪→
∧a V ⊗

∧b V ,

vi1 ∧ · · · ∧ via+b 7→ q−ab
∑

(−q)ℓ(w)viw(1)
∧ · · · ∧ viw(a)

⊗ viw(a+1)
∧ · · · ∧ viw(a+b)

,

where the sum is over w ∈ (Sa+b/Sa × Sb)min, and the isomorphism

(5-6) (−1)abc−1∧b V,
∧a V

:
∧a V ⊗

∧b V ∼
−→

∧b V ⊗
∧a V ,

where c∧b V,
∧a V :

∧b V ⊗
∧a V →

∧a V ⊗
∧b V is the braiding on the monoidal

category of polynomial representations of q-GLn . This follows from the explicit
description of φA in Lemma 4.6. We refer to the morphisms ξ [

0 b
a 0

] for a, b ≥ 0 as
negative crossings. The following lemma implies that the image of ξ [

0 b
a 0

] under
the functor 6n is the isomorphism

(5-7) (−1)abc∧a V,
∧b V :

∧a V ⊗
∧b V ∼

−→
∧b V ⊗

∧a V .

Lemma 5.6. For a, b ≥ 0, we have

ξ [
0 b
a 0

] = ξ−1[
0 a
b 0

].
Also the merge and split morphisms ξ[a b] and ξ[a

b
] are invariant under the bar

involution, hence, they coincide with the canonical basis elements θ[a b] and θ[a
b
].

Proof. The part about merge and split morphisms is trivial as these matrices
are not comparable to any other in the Bruhat ordering. For the first part, we
show that ξ [

0 a
b 0

]
◦ ξ[

0 b
a 0

]
= 1(a,b). This identity (with a and b switched) together

with the image of this identity under the bar involution implies the result. Take
any A ∈ Mat((a, b), (a, b)) and consider the coefficient of ξA when the product
ξ [

0 a
b 0

]ξ[
0 b
a 0

]
∈ Sq(2, a + b) is expanded in terms of the standard basis. Since multi-

plication in Sq(2, a+b) is dual to comultiplication in Oq(2, a+b), this coefficient is
equal to the xb

2,1xa
1,2 ⊗ xa

2,1xb
1,2-coefficient of 1(xa2,1

2,1 xa1,1
1,1 xa2,2

2,2 xa1,2
1,2 ) when expanded

in terms of the basis
{

x̄B ⊗ xC | B, C ∈ Mat((a, b), (a, b))
}
. By Lemma 3.5,

1(xa2,1
2,1 xa1,1

1,1 xa2,2
2,2 xa1,2

1,2 ) =

a2,1∑
a′

2,1=0

a1,1∑
a′

1,1=0

a2,2∑
a′

2,2=0

a1,2∑
a′

1,2=0

[a2,1
a′

2,1

]
q

[a1,1
a′

1,1

]
q

[a2,2
a′

2,2

]
q

[a1,2
a′

1,2

]
q

× x
a′

2,1
2,1 x

a2,1−a′

2,1
2,2 x

a′

1,1
1,1 x

a1,1−a′

1,1
1,2 x

a′

2,2
2,1 x

a2,2−a′

2,2
2,2 x

a′

1,2
1,1 x

a1,2−a′

1,2
1,2

⊗ x
a2,1−a′

2,1
2,1 x

a′

2,1
1,1 x

a1,1−a′

1,1
2,1 x

a′

1,1
1,1 x

a2,2−a′

2,2
2,2 x

a′

2,2
1,2 x

a1,2−a′

1,2
2,2 x

a′

1,2
1,2 .
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To get xa
2,1xb

1,2 on straightening using (3-5) into the normal order in the second tensor
position, we must have a′

2,1 = a′

1,1 = 0, a′

1,2 = a1,2 and a′

2,2 = a2,2. This term is

(5-8) xa2,1
2,2 xa1,1

1,2 xa2,2
2,1 xa1,2

1,1 ⊗ xb
2,1xa

1,2 = q−a2,1a2,2−a1,1a1,2 xa2,2
2,1 xa2,1

2,2 xa1,2
1,1 xa1,1

1,2 ⊗ xb
2,1xa

1,2.

Because we are using the ordering from (3-11) for monomials in the first tensor
(rather than the normal ordering), we only get a nonzero coefficient when A =

[
a 0
0 b

]
,

when the coefficient is 1. This shows the product is 1(a,b). □

Remark 5.7. By a similar argument to the proof of Lemma 5.6, one can also prove
the “quadratic relation”

ξ[
0 a
b 0

] ◦ ξ[
0 b
a 0

] =

min(a,b)∑
s=0

q−s(s−1)/2−s(a+b−2s)(q−1
− q)s

[s]!q ξ[ a−s s
s b−s

].
Indeed, from (5-8), the coefficient of ξ[ a−s s

s b−s
] in ξ[

0 a
b 0

]
◦ ξ[

0 b
a 0

] is q−s(a−s)−s(b−s)

times the coefficient of xb
2,1xa

1,2 when

xb−s
2,1 x s

2,2x s
1,1xa−s

1,2

is expanded in terms of the normally ordered monomial basis. The latter coefficient
is q−s(s−1)/2(q−1

− q)s
[s]!q by Lemma 3.4.

More generally, a merge of n strings is a morphism of the form ξA for a 1×n
matrix A, a split of n strings is a morphism of the form ξA for an n×1 matrix A,
and a positive permutation of n strings is a morphism of the form ξA for an n×n
matrix A such that in each row and column there is at most one nonzero entry.
Positive permutations of n strings can be parametrized instead by w ∈ Sn and a
composition µ of length n, setting

(5-9) τw;µ := ξA, where A ∈ Mat(µ·w−1,µ) has aw(1),1 = µ1, . . . ,aw(n),n = µn .

If µ ∈ 3(n, r) then the same formula defines an element of 1µ·w−1 Sq(n, r)1µ;
for example, for w ∈ Sr ≤ Sn , the image of τw ∈ Hr under the isomorphism of
Lemma 4.3 is τw;ω. For 1 ≤ i < n, we have

τsi ;µ = 1(µ1,...,µi−1) ⋆ ξ[ 0 µi+1
µi 0

] ⋆ 1(µi+2,...,µn).(5-10)

So τsi ;µ, which we call a simple permutation of n strings, is a positive crossing
tensored on the left and right with the appropriate identity morphisms. The follow-
ing lemma implies that any positive permutation of n strings can be obtained by
composing simple permutations.



92 JONATHAN BRUNDAN

Lemma 5.8. Suppose that µ ∈ 3(n, r) and w ∈ Sn is a permutation such that
w(i) < w(i + 1) for some 1 ≤ i < n. Then τwsi ;µ = τw;µ·si ◦ τsi ;µ.

Proof. It suffices to prove the analogous statement in the q-Schur algebra Sq(n, r).
There is a left action of Sn on I(n, r) by its action on entries. This commutes with
the right action of Sr . We claim that the left action of Sq(n, r) on V ⊗r satisfies
τw;µviµ = vw·iµ . To see this, the normally ordered monomial in Oq(n, r) that is dual
to the standard basis vector τw;µ is xw·iµ,iµ . Moreover, w · iµ is the only i ∈ I(n, r)

such that xw·iµ,iµ appears in the normally ordered monomial basis expansion of xi,iµ .
So the claim follows from (4-14).

To prove the lemma, it suffices to show that τw;µ·si τsi ;µ and τwsi ;µ act in the same
way on viµ . The latter gives vwsi ·iµ by the claim. Also τsi ;µviµ = vsi ·iµ . So we are
reduced to checking that τw;µ·si vsi ·iµ = vwsi ·iµ . Let d ∈ (Sµ·si \Sr )min be the unique
Grassmann permutation such that iµ·si · d = si · iµ. The action of Hr on V ⊗r was
defined using (1-5), from which we see that viµ·si τd = viµ·si ·d . Similarly, because
w(i) < w(i + 1), we get that vw·iµ·si )τd = v(w·iµ·si )·d . So

τw;µ·si vsi ·iµ = τw;µ·si viµ·si ·d = τw;µ·si viµ·si τd = vw·iµ·si τd

= v(w·iµ·si )·d = vw·(iµ·si ·d) = vw·(si ·iµ) = vwsi ·iµ . □

A special case of the next lemma implies that

ξ[a1+···+as b1+···+bt ] ◦ (ξ[a1 ··· as ] ⋆ ξ[b1 ··· bt ]) = ξ[a1 ··· as b1 ··· bt ],(5-11)

(ξ[a1 ··· as ]T ⋆ ξ[b1 ··· bt ]T) ◦ ξ[a1+···+as b1+···+bt ]T = ξ[a1 ··· as b1 ··· bt ]T,(5-12)

for a1, . . . , as, b1, . . . , bt ≥ 0. Hence, all merges/splits of n strings can be expressed
as compositions of tensor products of merges/splits of 2 strings and appropriate
identity morphisms.

Lemma 5.9. Suppose that λ, µ⊨ r , A ∈ Mat(λ, µ) and 1 ≤ i ≤ ℓ(λ), 1 ≤ j ≤ ℓ(µ).

(a) Let B be obtained from A by replacing its i-th row by two rows of length ℓ(µ),
the first of which has entries ai,1, . . . ,ai, j ,0, . . . ,0 with sum λ′

i , and the second has
entries 0, . . . ,0,ai, j+1, . . . ,ai,ℓ(µ) with sum λ′′

i (so λ′

i + λ′′

i = λi ). Then

ξA = (1(λ1,...,λi−1) ⋆ ξ[λ′

i λ′′

i ] ⋆ 1(λi+1,...,λℓ(λ))) ◦ ξB .

(b) Let B be obtained from A by replacing its j-th column by two columns of
length ℓ(λ), the first of which has entries a1, j , . . . , ai, j , 0, . . . , 0 with sum µ′

j , and
the second has entries 0, . . . , 0, ai+1, j , . . . , aℓ(λ), j with sum µ′′

j (so µ′

j +µ′′

j = µ j ).
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Then
ξA = ξB ◦ (1(µ1,...,µ j−1) ⋆ ξ[

µ′

j
µ′′

j

] ⋆ 1(µ j+1,...,µℓ(µ))).

Proof. We just prove (b). Then (a) follows on applying T. By the way that
composition in q-Schur is defined, the statement we are trying to prove reduces to
the following claim about multiplication in Sq(n, r):

Claim. Suppose that λ, µ ∈ 3(n, r), A ∈ Mat(λ, µ) and 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1
with µ j+1 = 0. Let B ∈ Mat(λ, µ′) be obtained from A by replacing the j-th
and ( j+1)-th columns with [ai,1 · · · ai, j 0 · · · 0]

T and [0 · · · 0 ai+1, j · · · an, j ]
T,

respectively, and C ∈ Mat(µ′, µ) be diag
(
µ1, . . . , µ j−1,

[ µ′

j
µ′

j+1

0
0

]
, µ j+2, . . . , µn

)
.

Then ξA = ξBξC in Sq(n, r).

To see this, it suffices to show for D ∈ Mat(λ, µ) that gD , the xB ⊗xC -coefficient
of 1(xD) when expanded in terms of normally ordered monomials, is equal to δA,D .
We have that

xB = xi1,(1µ1 ) · · · xi j−1,(( j−1)
µ j−1 )

· (xai, j
i, j · · · xa1, j

1, j xan, j
n, j+1 · · · xai+1, j

i+1, j+1)xi j+2,(( j+2)
µ j+2 ) · · · xin,(nµn ),

xC = xµ1
1,1 · · · xµ j−1

j−1, j−1(x
µ′

j+1
j+1, j x

µ′

j
j, j )xµ j+2

j+2, j+2 · · · xµn
n,n,

xD = x j1,(1µ1 ) · · · x j j−1,(( j−1)
µ j−1 )(xdn, j

n, j · · · xd1, j
1, j )x j j+2,(( j+2)µ j+2) · · · x jn,(nµn ),

where ik := (nan,k · · · 1a1,k ) and j k = (ndn,k · · · 1d1,k ). It is easy to see that the
xik ,(kµk ) ⊗ xµk

k,k-coefficient of 1(x j k ,(k
µk )) is 0 unless j k = ik , when it is 1. This

implies that gD = 0 unless j k = ik for each k = 1, . . . , j −1, j +2, . . . , n in which
case, by weight considerations, we have d1, j = a1, j , . . . , dn, j = an, j , hence, D = A.
Thus, we are reduced to showing that gA = 1.

Our argument shows that gA is the coefficient of

xai, j
i, j · · · xa1, j

1, j xan, j
n, j+1 · · · xai+1, j

i+1, j+1 ⊗ x
µ′

j+1
j+1, j x

µ′

j
j, j

in the normally ordered expansion of

1(xan, j
n, j · · · xa1, j

1, j ) =

∑
k∈I(n,r)

x(nan, j ··· 1a1, j ),k ⊗ xk,( jµ j ).

To complete the proof, we claim for k ∈ I(n, r) that xai, j
i, j · · · xa1, j

1, j xan, j
n, j+1 · · · xai+1, j

i+1, j+1
appears with nonzero coefficient in the normally ordered expansion of x(nan, j ··· 1a1, j ),k
if and only if k = (( j + 1)

µ′

j+1 jµ′

j ), in which case the coefficient is 1. Certainly,
k must be a permutation of (( j + 1)

µ′

j+1 jµ′

j ). For any such k and any h that is
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a permutation of (nan, j · · · 1a1, j ), we define the height of the monomial xh,k to
be

∑
s hs where the sum is over all 1 ≤ s ≤ µ j such that ks = j . The monomial

xai, j
i, j · · · xa1, j

1, j xan, j
n, j+1 · · · xai+1, j

i+1, j+1 is of height
∑i

k=1 kak, j . Also x(nan, j ··· 1a1, j ),k is of
the same height if k = (( j + 1)

µ′

j+1 jµ′

j ), and otherwise its height is strictly bigger.
In order to straighten x(nan, j ··· 1a1, j ),k, we need to use the commutation relations
x p, j+1x p, j = q−1x p, j x p, j+1 and x p, j+1xq, j = xq, j x p, j+1 −(q −q−1)x p, j xq, j+1 for
p > q. Monomials arising from the “error term” x p, j xq, j+1 are of strictly greater
height, so do not contribute to the coefficient, and the others have the same height.
The claim follows. □

Now take any A ∈ Mat(λ, µ) and define λ−, µ+ as in Lemma 2.1. Note that
n := ℓ(λ−)= ℓ(µ+)= ℓ(λ)ℓ(µ). We can convert A into a matrix A◦

∈ Mat(λ−, µ+)

with at most one nonzero entry in each row and column by applying a sequence of
the operations A 7→ B described in Lemma 5.9(a)–(b). For example,

[
1 0 3
2 2 1

]
7→

1 0 0
0 0 3
2 2 1

 7→


1 0 0
0 0 0
0 0 3
2 2 1

 7→


1 0 0
0 0 0
0 0 3
2 0 0
0 2 1



7→



1 0 0
0 0 0
0 0 3
2 0 0
0 2 0
0 0 1


7→



1 0 0 0
0 0 0 0
0 0 0 3
0 2 0 0
0 0 2 0
0 0 0 1


7→



1 0 0 0 0
0 0 0 0 0
0 0 0 0 3
0 2 0 0 0
0 0 0 2 0
0 0 0 0 1


7→



1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 3 0
0 2 0 0 0 0
0 0 0 2 0 0
0 0 0 0 0 1


.

The n×n matrix A◦ obtained in this way is uniquely determined. It corresponds
to the permutation of n strings arising from the middle part of the double coset
diagram of A. Lemma 5.9 plus (5-11) and (5-12) gives us an explicit algorithm to
express the standard basis element ξA as a composition

(5-13) ξA = ξA− ◦ ξA◦ ◦ ξA+,

where ξA− is a tensor product of ℓ(λ) merges of ℓ(µ) strings and ξA+ is a tensor prod-
uct of ℓ(µ) splits of ℓ(λ) strings. The double coset diagrams of A−

∈ Mat(λ, λ−)

and A+
∈ Mat(µ+, µ) are given explicitly by the top part or the bottom part of the

diagram of A, respectively.

Lemma 5.10. For a, b ≥ 0, we have ξ[a b] ◦ ξ[a
b
] =

[a+b
a

]
qξ[a+b] .

Proof. The xa
1,1xb

1,2 ⊗ xb
2,1xa

1,1-coefficient of 1(xa+b
1,1 ) is

[a+b
a

]
q by Lemma 3.5. □



q -SCHUR CATEGORY AND POLYNOMIAL TILTING MODULES FOR GLn 95

Lemma 5.11. For a, b, c, d ≥ 0 with a + b = c + d , we have

θ[ 0 c
a d−a

] = ξ[c
d
] ◦ ξ[a b] =

min(a,c)∑
s=0

qs(s+d−a)ξ[ s c−s
a−s s+d−a

] if a ≤ d and b ≥ c,

θ[ c−b b
d 0

] = ξ[c
d
] ◦ ξ[a b] =

min(b,d)∑
t=0

q t (t+c−b)ξ[ t+c−b b−t
d−t t

] if a ≥ d and b ≤ c.

Proof. We just prove this when a ≤ d , the other case is similar. Since the merge ξ[c
d
]

and the split ξ[a b] are bar invariant, and the canonical basis element θA is the unique
bar invariant element equal to ξA plus a qZ[q]-linear combination of other ξB , the
first equality follows from the second one. To prove the second equality, we must
show that the coefficient of ξ[ s c−s

a−s s+d−a
] of ξ[c

d
]
◦ ξ[a c+d−a] is equal to qs(s+d−a).

This is the coefficient of xd
2,1xc

1,1 ⊗ xa
1,1xc+d−a

1,2 in 1(xc−s
2,1 x s

1,1x s+d−a
2,2 xc−s

1,2 ), which
may be computed by the same argument as was used in the proof of Lemma 5.6. □

6. Presentations

We start now to represent morphisms in q-Schur by string diagrams. Let 1 be
the strict identity object, that is, the composition () of length zero. For λ =

(λ1, . . . , λℓ) ∈ 3, the identity endomorphism 1λ in q-Schur will be represented by
a sequence of strings labeled from left to right by λ1, . . . , λℓ, which we think of as
indicating the thicknesses of the strings. We are including strings of zero thickness.
For a, b ≥ 0, we use the string diagrams

(6-1)
0

: (0) → 1,
0

: 1 → (0),

a b

a+b
: (a, b) → (a + b),

a b

a+b
: (a + b) → (a, b)

to denote the standard basis vectors ξA where A is the 0×1 matrix, the 1×0 matrix,
the matrix [a b] or the matrix

[a
b

]
, respectively. Henceforth, in string diagrams

for morphisms in q-Schur, we will omit thickness labels on strings when they are
implicitly determined by the other labels. We represent the positive crossing ξ[

0 b
a 0

]
by the string diagram

ba
: (a, b) → (b, a).(6-2)

This morphism is invertible by Lemma 5.6, so it makes sense to define

ab
:=

(
ba

)−1
.
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Theorem 6.1. The Z[q, q−1
]-linear monoidal category q-Schur is generated by

the objects (r) for r ≥ 0 and the morphisms

, ,
a b

,
a b

and
a b

for a, b ≥ 0, subject only to the following relations for admissible a, b, c, d ≥ 0:

= 11, =

0
,(6-3)

a 0
=

a
,

0 b
=

b
,

a 0
=

a
,

0 b
=

b
,(6-4)

cba

=

cba

,

cba

=

cba

,(6-5)

a b =
[a+b

a

]
q

a+b ,

c d

a b

=
∑

0≤s≤min(a,c)
0≤t≤min(b,d)

t−s=d−a=b−c

qst

c d

a b

s t .(6-6)

Positive and negative crossings can be written in terms of other generating mor-
phisms since

a b
=

min(a,b)∑
s=0

(−q)s

a b

b−s

a−s
=

min(a,b)∑
s=0

(−q)s

ba

a−s

b−s
,(6-7)

a b
=

min(a,b)∑
s=0

(−q)−s

a b

b−s

a−s
=

min(a,b)∑
s=0

(−q)−s

ba

a−s

b−s
.(6-8)

The following hold:

(a) There is a unique braiding c : −⋆−
∼

H⇒−⋆rev
− making q-Schur into a braided

monoidal category such that c(a),(b) =
a b

.

(b) For any A ∈ Mat(λ, µ), the standard basis element ξA is represented as a string
diagram by the double coset diagram for A with all crossings drawn as positive
crossings.

(c) The antilinear involution − : q-Schur → q-Schur is defined on string diagrams
by interchanging positive and negative crossings.

(d) The linear isomorphism T : q-Schur → q-Schurop maps a string diagram to its
rotation through 180◦ around a horizontal axis.



q -SCHUR CATEGORY AND POLYNOMIAL TILTING MODULES FOR GLn 97

Before we prove this, we give some comments. The relations (6-3) imply that
(0) ∼= 1. The relations (6-4) mean that splits and merges with a string of thickness
zero can be expressed in terms of the other generating morphisms, hence, can be
eliminated from any string diagram. Using (6-3), (6-4) and the definition of negative
crossings, the second relation in (6-6) implies that

0a
=

0a
=

a
,

b0
=

b0
=

b
.(6-9)

This means that crossings involving a string of thickness zero can also be expressed
in terms of other morphisms, so these can be eliminated from string diagrams too.
Then all remaining strings of thickness zero can be contracted to dots on the top
and bottom boundaries. In this way, any string diagram is equivalent to one without
strings of thickness zero. The relations (6-5) mean that we can introduce further
diagrams as shorthand for more general splits and merges of n strings. For example,
splits and merges of 3 strings are

cba
:=

cba
=

cba
,

cba

:=

cba

=

cba

.(6-10)

By (5-11) and (5-12), these are the standard basis vectors ξ[a b c] and ξ[
a
b
c

], respec-
tively.

Proof of Theorem 6.1. Let q-Schur′ be the strict Z[q, q−1
]-linear monoidal category

defined by the generators and relations in the statement of the theorem. We also
define the negative crossings in q-Schur′ by setting

(6-11)
a b

:=

min(a,b)∑
s=0

(−q)−s

a b

b−s

a−s
.

At this point, some calculations are needed to deduce the following additional rela-
tions from the defining relations in q-Schur′ (for all a, b, c, d ≥ 0 that make sense):

ba

c

d =

min(c,d)∑
s=max(0,c−b)

qs(b−c+s)[a−d+s
s

]
q

a b
d−s

c−s

(6-12)

=

min(c,d)∑
s=max(0,c−b)

[a−b+c−d
s

]
q

ba

d−s

c−s
,
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b a

c

d =

min(c,d)∑
s=max(0,c−b)

qs(b−c+s)[a−d+s
s

]
q

b a
c−s

d−s

(6-13)

=

min(c,d)∑
s=max(0,c−b)

[a−b+c−d
s

]
q

b a

d−s

c−s
,

ba
=

a b

b a

−

min(a,b)∑
s=1

qs2

a b

s s(6-14)

=

min(a,b)∑
s=0

(−q)s

a b

b−s

a−s
=

min(a,b)∑
s=0

(−q)s

ba

a−s

b−s
,

(6-15)

cba
=

cba
,

cba
=

cba
,

cba

=

cba

,

cba

=

cba

,

(6-16)
a b

= qab

a b
,

a b

= qab
a b

,

ba

=

ba

,

ab

=

ab

,

(6-17)
b ca

=

b ca

.

The derivations of these relations are similar to those in the appendix of [Brundan
et al. 2020] (which treats the q = 1 case); see the appendix to the version of this
article available on the arxiv.

Now we prove (a) but for the presented category q-Schur′ rather than q-Schur
itself; then (a) for q-Schur follows at the end when we have established that

q-Schur′ ∼= q-Schur.

We need natural isomorphisms cλ,µ :λ⋆µ ∼
−→µ⋆λ for all compositions λ, µ. Given

that c(a),(b) is the positive crossing, there is no choice for the definition of more
general cλ,µ in order for the hexagon axioms for a braided monoidal category to hold:
it must be defined by composing positive crossings according to a reduced expression
for the Grassmann permutation taking 1, . . . , ℓ(λ) to ℓ(µ) + 1, . . . , ℓ(µ) + ℓ(λ)

and ℓ(λ) + 1, . . . , ℓ(λ) + ℓ(µ) to 1, . . . , ℓ(µ). As any two reduced expressions

https://doi.org/10.48550/arXiv.2407.07228
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for a Grassmann permutation are equivalent by commuting braid relations, the
resulting morphism is well defined by the interchange law. The morphism cλ,µ is
an isomorphism since the positive crossing

a b
is invertible; its two-sided inverse

is
b a

according to the last two relations in (6-16). Naturality follows from (6-15).
Next, we show that there is a strict Z[q, q−1

]-linear monoidal functor F :

q-Schur′
→q-Schur taking (r) 7→ (r) and the generating morphisms of q-Schur′ to

the morphisms in q-Schur represented by the same diagrams. To prove this, we just
need to check relations: (6-3) and (6-4) are trivial to check in q-Schur, (6-5) follows
from (5-11) and (5-12), and (6-6) follows from Lemmas 5.10 and 5.11. By definition,
the functor F takes the positive crossing in q-Schur′ to the positive crossing in
q-Schur, so the identity (6-7) in q-Schur follows by applying F to (6-14). We have
observed already that the negative crossing in q-Schur′ is the two-sided inverse of
the positive crossing in q-Schur′, hence,

F
(

a b

)
=

a b

since the negative crossing in q-Schur is also the inverse of the positive crossing
by the original definition. To prove that (6-8) holds in q-Schur, the first equality
follows by applying F to (6-11). The second equality follows by applying the bar
involution to the second equality of (6-7), remembering that this fixes splits and
merges in q-Schur thanks to Lemma 5.6.

For any A∈Mat(λ, µ), let ξ ′

A be the morphism in q-Schur′ obtained by taking the
(reduced) double coset diagram for A, replacing all crossings by positive crossings,
and interpreting the result as a morphism by composing generators as the diagram
suggests. The resulting morphism is well defined independent of the choices made
when doing this. For the split of ℓ(µ) strings at the bottom and the merge of ℓ(λ)

strings at the top, this depends on (6-5) as explained in the comments after the
statement of the theorem. For the permutation of ℓ(λ)ℓ(µ) strings in the middle,
one needs to draw the diagram according to a choice of a reduced expression, but
the resulting morphism is independent of this by (6-17). We are ready to prove (b)
by showing that F(ξ ′

A) = ξA. This follows from the factorization of ξA explained
in (5-13), together with Lemma 5.8, (5-11) and (5-12), since these results show ξA

can be obtained from merges, splits and positive crossings in exactly the same way
as ξ ′

A is obtained from the corresponding generating morphisms for q-Schur′.
Now we can prove that F is an isomorphism. It is clear that it defines a bijection

between the object sets of q-Schur′ and q-Schur (both are identified with 3).
Since the morphisms ξA (A ∈ Mat(λ, µ)) form a basis for Homq-Schur(µ, λ) by the
definition of q-Schur, we deduce using the previous paragraph that F is full. It just
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remains to show that it is faithful, which we do by proving that the morphisms ξ ′

A
(A ∈ Mat(λ, µ)) span Homq-Schur′(µ, λ) as a Z[q, q−1

]-module. This follows from
our next claim, since the merge and split morphisms f described in the claim for
all λ, λ′ generate q-Schur′ as a Z[q, q−1

]-linear category by (6-7).

Claim. For any λ, λ′, µ∈3, A ∈ Mat(λ, µ) and f :λ→λ′ that consists of a merge
or split of 2 strings tensored on the left and/or right by some identity morphisms,
the composition f ◦ ξ ′

A is a Z[q, q−1
]-linear combination of the morphisms ξ ′

A
(A ∈ Mat(λ, µ)).

To prove the claim, there are two cases:

• Suppose first that f has a merge of two strings connecting to the i-th and (i+1)-th
thick strings at the top of ξ ′

A. The double coset diagram of A has a merge of r
strings at its i-th vertex and merge of s strings at its (i+1)-th vertex. We use (6-5)
to convert f ◦ ξ ′

A into a diagram which has a merge of r + s strings at its i-th vertex.
For example,

(6-18) = .

The permutation arising in the middle section of the resulting diagram is not
necessarily reduced, but it can be converted to a scalar multiple of some ξ ′

B using
(6-5), (6-6), (6-16) and (6-17).

• Now suppose that f has a split connecting to the i-th vertex at the top of the
double coset diagram of A. Say this vertex in the double coset diagram is part of
an n-fold merge. Using (6-5), (6-6) and (6-15), we rewrite the composition of the
split in f and this merge in ξ ′

A as a sum of other ξ ′

B . For example,

(6-19)
f

g
=

∑
.

Then compose these diagrams with the remainder of the diagram, using (6-15) then
(6-5) again to commute the splits at the bottom of this part of the resulting diagrams
downwards past the positive crossings in ξ ′

A.

All that is left is to prove (c) and (d). Part (c) follows because the bar involution
on q-Schur fixes merges and splits and interchanges positive and negative crossings
by Lemma 5.6; it obviously fixes the other two generating morphisms and . Part (d)
follows using (b) because T takes ξA to ξAT . □
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Corollary 6.2. In q-Schur, we have

ba

=

min(a,b)∑
s=0

q−s(s−1)/2+r(a+b−2s)(q−1
− q)s

[s]!q
a b

a−s b−s .

Proof. This is a translation of Remark 5.7 into the graphical description of q-Schur
provided by the theorem. □

We also have the following theorem, which gives an alternative presentation for
q-Schur with fewer generators and relations.

Theorem 6.3. The strict Z[q, q−1
]-monoidal category q-Schur is generated by the

objects (r) for r ≥ 0 and the morphisms

, , a b and
a b

subject only to the relations (6-3) and (6-4) for a, b ≥ 0, (6-5) for a, b, c > 0, and
one of the two square-switch relations from (1-3) for all a, b, c, d ≥ 0 with d ≤ a
and c ≤ b + d.

Proof. Let q-Schur′ be the strict Z[q, q−1
]-linear monoidal category defined by

the new presentation in the statement of the theorem, assuming for clarity that the
second relation in (1-3) is the chosen one. All of the relations of q-Schur′ hold in
q-Schur thanks to (6-13). So there is a strict Z[q, q−1

]-linear monoidal functor F :

q-Schur′
→ q-Schur taking (r) 7→ (r) and the generating morphisms for q-Schur′

to the morphisms represented by the same diagrams in q-Schur. In the next
paragraph, we show that F is an isomorphism, proving the theorem for this choice
of square-switch. The proof of the theorem if one instead chooses the first square-
switch relation from (1-3), i.e., the one that is known to hold in q-Schur by (6-12),
is very similar — one simply needs to rotate all calculations in a vertical axis.

To prove that F is an isomorphism, we use the presentation from Theorem 6.1 to
construct a two-sided inverse G : q-Schur → q-Schur′. This is defined on objects
so that (r) 7→ (r) and, on generating morphisms, it maps the positive crossing to

(6-20)
ba

:=

min(a,b)∑
s=0

(−q)s

a b

b−s

a−s
∈ Homq-Schur′((a) ⋆ (b) → (b) ⋆ (a))

and the other generating morphisms for q-Schur to the morphisms represented by
the same diagrams in q-Schur′. That G is indeed a two-sided inverse of F follows
using (6-7). It remains to show that G is well defined, which is another relations
check. The relations (6-3) and (6-4) hold in q-Schur′ by its definition. If one or
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more of a, b, c is zero, the relations (6-5) follow easily from (6-3) and (6-4), so
the relations (6-5) also hold in q-Schur′ for all a, b, c ≥ 0. The first relation from
(6-6) follows from the chosen square-switch relation taking b = 0 and c = d. It
remains to show that the second relation from (6-6) holds in q-Schur′ using only
(6-3), (6-4) and (6-5) and square-switch. This is explained in the appendix to the
arxiv version of this paper; see (a) of the corollary there. □

7. A straightening formula for codeterminants

Definition 7.1. Let O be a commutative Noetherian ring and K =
⊕

λ,µ∈3 1λK 1µ

be a locally unital O-algebra with (mutually orthogonal) distinguished idempo-
tents 1λ (λ ∈ 3) for some index set 3. We say that K is a based quasihereditary
algebra with weight poset 3+ if we are given a subset 3+

⊆ 3, an upper finite
partial order ≤ on 3+, and finite sets X (λ, κ) ⊂ 1λK 1κ and Y (κ, λ) ⊂ 1κ K 1λ for
λ ∈ 3, κ ∈ 3+, such that the following axioms hold:

• The products xy for (x, y) ∈
⋃

λ,µ∈3

⋃
κ∈3+ X (λ, κ) × Y (κ, µ) give a basis

for K as a free O-module. We refer to this as the triangular basis.

• For λ, µ ∈ 3+, we have X (λ, µ) ̸= ∅ ⇒ λ ≤ µ, Y (λ, µ) ̸= ∅ ⇒ λ ≥ µ, and
X (λ, λ) = Y (λ, λ) = {1λ}.

We say that it is a symmetrically based quasihereditary algebra if in addition there
is an algebra anti-involution T : K → K such that Y (κ, λ) = T(X (λ, κ)) for all
λ ∈ 3 and κ ∈ 3+ (in this case, there is no need to specify Y (κ, λ) in the first place).

Remark 7.2. When O is a field, Definition 7.1 is [Brundan and Stroppel 2024,
Definition 5.1]. When the set 3 is finite, it is a simplified version of the definition
of based quasihereditary algebra given in [Kleshchev and Muth 2020]. In that
case, as explained in detail in [Kleshchev and Muth 2020], K is also a standardly
full-based algebra in the sense of [Du and Rui 1998], and a split quasihereditary
algebra in the sense of [Cline et al. 1990]. In the symmetrically based case, K
is a cellular algebra in the sense of [Graham and Lehrer 1996], and when K is
the path algebra of an O-linear category C with object set 3, Definition 7.1 is
equivalent to C being a strictly object-adapted cellular category in the sense of
[Elias and Lauda 2016, Definition 2.1] (the opposite partial order is used there).
The far-reaching consequences for the representation theory of K are well known,
and are discussed in these references.

For the remainder of the section, K is the path algebra

(7-1) K :=

⊕
λ,µ∈3

Homq-Schur(µ, λ)

https://doi.org/10.48550/arXiv.2407.07228
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of the q-Schur category with 0-strings. This is a locally unital Z[q, q−1
]-algebra

with the distinguished system {1λ | λ ∈ 3} of mutually orthogonal idempotents
coming from the identity endomorphisms of the objects of q-Schur. Recall the
set Row(λ, µ) of row tableaux of shape µ and content λ from Section 2, and
the bijection A : Row(λ, µ) ∼

−→ Mat(λ, µ) from (2-2). We start now to index
the standard and canonical bases by the sets Row(λ, µ) instead of Mat(λ, µ),
introducing the shorthand

(7-2) ϕP := ξA(P), βP := θA(P)

for P ∈ Row(λ, µ). For a partition κ , let Std(λ, κ) be the usual set of semistandard
tableau of shape κ and content λ, that is, the subset of Row(λ, κ) consisting of the
row tableaux of shape κ and content λ whose entries are also strictly increasing
down columns.

Lemma 7.3. For λ, µ⊨ r , the Z[q, q−1
]-module 1λK 1µ is spanned by the prod-

ucts ϕPT(ϕQ) for P ∈ Row(λ, κ), Q ∈ Row(µ, κ), where κ is the dominant conju-
gate of µ.

Proof. The dominant conjugate κ of µ is the unique partition whose parts are
a permutation of the nonzero parts of µ. Using a morphism of the form τw;µ

from (5-9), we deduce µ ∼= κ in q-Schur. Consequently, any element of 1λK 1µ =

Homq-Schur(µ, λ) is a morphism which factors through κ . Since the morphisms ϕP

for P ∈ Row(λ, κ) give the standard basis for 1λK 1κ = Homq-Schur(κ, λ) and
the morphisms T(ϕQ) for Q ∈ Row(µ, κ) give the standard basis for 1κ K 1µ =

Homq-Schur(µ, κ), we deduce that the products ϕPT(ϕQ) span 1λK 1µ. □

Now we come to the main combinatorial lemma. To formulate it, we use certain
lexicographic total orders on tableaux and partitions. On partitions, ≥lex is just the
usual lexicographical ordering; it is a refinement of the dominance ordering on
partitions into a total order. To define the required ordering ≤lex on tableaux of the
same shape, given any tableau T , we let (T ) be the sequence obtained by reading
its entries in order from right to left along rows, starting with the top row. Then we
declare that S ≤lex T if and only if (S) ≤lex (T ) in the lexicographic ordering
on sequences.

Lemma 7.4. For λ⊨ r , κ ⊢ r and P ∈ Row(λ, κ) which is not semistandard, ϕP

can be written as a Z[q, q−1
]-linear combination of the elements

• ϕS for S ∈ Row(λ, κ) with S <lex P;

• ϕP ′T(ϕQ′) for P ′
∈ Row(λ, κ ′) and Q′

∈ Row(κ, κ ′) of shape κ ′
⊢ r with

κ ′ >lex κ .
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Proof. Take P as in the statement. Since P is not semistandard, we may choose
a ≥ 1 and 0 ≤ m < n ≤ κa+1 so that the entries of P in rows a and a + 1 look like

i1 ≤ · · · ≤ im < im+1 ≤ · · · ≤ in ≤ in+1 ≤ · · · ≤ iκa

⊻
j1 ≤ · · · ≤ jm ≤ jm+1 = · · · = jn < jn+1 ≤ · · · ≤ jκa+1 .

Let U be the row tableau which is identical to P everywhere except in rows a and
a + 1, which are replaced by three (possibly empty) rows as in the diagram:

i1 ≤ · · · ≤ im

j1 ≤ · · · ≤ jn ≤ im+1 ≤ · · · ≤ iκa

jn+1 ≤ · · · ≤ jκa+1 .

Let µ be the shape of the tableau U . Let V be the row tableau of shape κ and
content µ with all entries on row b equal to b for b < a, entries am (a + 1)κa−m on
row a, entries (a + 1)n (a + 2)κa+1−n on row a + 1, and all entries on row b equal
to b + 1 for b > a + 1. Expanding in terms of the standard basis, we have

(7-3) ϕU ϕV =

∑
S∈Row(λ,κ)

gSϕS

for coefficients gS ∈ Z[q, q−1
]. We claim that gS = 0 unless S ≤lex P and that

gP = 1. This suffices to prove the lemma. Indeed, assuming the claim, we rearrange
(7-3) to obtain

ϕP = ϕU ϕV −

∑
S<lex P

gSϕS.

The second term on the right-hand side is already of the desired form. To understand
the first term, note that the first a − 1 rows of U are of lengths κ1, . . . , κa−1, and it
also has a row of length κa + n − m > κa . Consequently, the dominant conjugate
of the shape µ of U is greater than κ in the ordering >lex. So, by Lemma 7.3, the
first term can be rewritten as a sum ϕP ′T(ϕQ′) for row tableaux P ′, Q′ of dominant
shape κ ′ >lex κ . This is also of the desired form.

It just remains to prove the claim. Take S ∈ Row(λ, κ). Recalling that xS =

x (S),iκ and xU = x (U ),iµ , the definition of multiplication in K gives that gS is the
x (U ),iµ ⊗ x (V ),iκ -coefficient of

1(x (S),iκ ) =

∑
k∈Iµ

x (S),k ⊗ xk,iκ

when expanded in terms of the normally ordered monomial basis. To straighten xk,iκ

into normal order, we only need the fourth relation from (3-5), and see that this
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coefficient is nonzero if and only if k = (R) for a tableau R of shape κ (not
necessarily a row tableau) that is obtained from V by shuffling entries within rows a
and a + 1. Moreover, the coefficient is 1 in the case that R = V . To complete the
proof, we show for such a tableau R that the x (U ),iµ-coefficient of x (S), (R) is
zero unless S ≤lex P , it is 1 if S = P and R = V , and it is zero if S = P and R ̸= V .
Suppose the entries in rows a and a + 1 of S are

i ′

1 ≤ · · · ≤ i ′

κa

j ′

1 ≤ · · · ≤ j ′

κa+1
.

In order to convert the monomial x (S), (R) into normal order, we must apply
the relations to commute products of the form xi ′

c,a+1xi ′

b,a for 1 ≤ b < c ≤ κa or
x j ′

c,a+2x j ′

b,a+1 for 1 ≤ b < c ≤ κa+1. This can be done using the second and third
relations from (3-5). We deduce that

x (S), (R) =

∑
v∈(Sκr /Sm×Sκa−m)min

w∈(Sκa+1/Sn×Sκa+1−n)min

gv,wx (Tv,w),iµ

for some scalars gv,w ∈ Z[q, q−1
] with g1,1 = δR,V , where Tv,w is the tableau of

shape µ obtained from S by replacing its rows a and a +1 by three rows according
to the diagram:

i ′

v(1) ≤ · · · ≤ i ′

v(m)

j ′

w(1) ≤ · · · ≤ j ′

w(n) i ′

v(m+1) ≤ · · · ≤ i ′

v(κa)

j ′

w(n+1) ≤ · · · ≤ j ′

w(κa+1)
.

In particular, if S = P then T1,1 = U . Using the fourth relation, the x (U ),iµ-
coefficient of x (Tv,w),iµ is nonzero if and only if Tv,w ∼row U , i.e., they have
the same entries in each row counted with multiplicity, and the coefficient is 1 if
Tv,w = U . Now it remains to check that

• Tv,w ∼row U ⇒ S ≤lex P;

• Tv,w ∼row U and S = P ⇒ (v, w) = (1, 1).

To see this, suppose that Tv,w ∼row U . All rows of S are clearly equal to the
corresponding rows of P except perhaps for rows a and a + 1. Also the sequences
i ′

v(1) ≤ · · · ≤ i ′

v(m) and j ′

w(n+1) ≤ · · · ≤ j ′

w(κa+1)
are equal to i1 ≤ · · · ≤ im and

jn+1 ≤ · · · ≤ jκa+1 , respectively. So the a-th row of S is obtained by taking all of
the entries in the a-th row of U together with κa − m entries from row a + 1, and
row a + 1 of S is obtained by taking all of the remaining entries from row a + 1 of
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U plus all of the entries in row a + 2. It follows that S ≤lex P . Moreover, if S = P ,
then v = w = 1 due to the assumptions that im < im+1 and jn < jn+1. □

Theorem 7.5. The path algebra K =
⊕

λ,µ∈3 1λK 1µ of q-Schur is a symmetrically
based quasihereditary algebra. The required data from Definition 7.1 is as follows:

• The weight poset is the set 3+
⊂ 3 of partitions ordered by the dominance

ordering.

• The anti-involution T : K → K is the transposition map arising from (5-4).

• X (λ, κ) = {ϕP | P ∈ Std(λ, κ)}.

In particular, for λ, µ⊨ r , the codeterminants

(7-4) {ϕPT(ϕQ) | κ ⊢ r, P ∈ Std(λ, κ), Q ∈ Std(µ, κ)}

give a basis for 1λK 1µ as a free Z[q, q−1
]-module.

Proof. The second axiom follows because there is a unique semistandard tableau
of shape and content κ , and there only exist semistandard tableaux of shape κ ′

and content κ if κ ≤ κ ′. It just remains to check for λ, µ⊨ r that the set (7-4) is
a basis for 1λK 1µ as a free Z[q, q−1

]-module. By the original definition, 1λK 1µ

is a free Z[q, q−1
]-module with basis labeled by Mat(λ, µ). It is well known that

|Mat(λ, µ)| =
∑

κ⊢r |Std(λ, κ)× Std(µ, κ)|, e.g., this follows from the Robinson–
Schensted–Knuth-type correspondence in (7-5) below. So the set (7-4) is of size
≤ rank 1λK 1µ. It remains to show that the set (7-4) spans 1λK 1µ as a Z[q, q−1

]-
module.

By Lemma 7.3, the elements ϕPT(ϕQ) for P ∈ Row(λ, κ), Q ∈ Row(µ, κ)

and κ ⊢ r span 1λK 1µ. To complete the proof, we show by induction on the
lexicographic orderings that any such ϕPT(ϕQ) can be written as a Z[q, q−1

]-linear
combination of ϕP ′T(ϕQ′) such that either P ′

∈ Std(λ, κ), Q′
∈ Std(µ, κ) with

P ′
≤lex P, Q′

≤lex Q, or P ′
∈ Std(λ, κ ′), Q′

∈ Std(µ, κ ′) for κ ′ >lex κ . Applying T
if necessary, we may assume that P is not semistandard. Applying Lemma 7.4, we
see that ϕPT(ϕQ) is a linear combination of elements ϕST(ϕQ) for S ∈ Row(λ, κ)

with S <lex P , and ϕP ′T(ϕQ′)T(ϕQ) = ϕP ′T(ϕQϕQ′) with P ′ of shape κ ′ >lex κ .
Both types of elements can then be expanded into the required form by induction; for
the second type, one first expands ϕQϕQ′ as a sum of terms ϕR for R ∈ Row(µ, κ ′),
then applies T to obtain a linear combination of ϕP ′T(ϕR)’s, before invoking the
induction hypothesis. □

Remark 7.6. Let us explain how the canonical basis fits into this picture. In [Du
and Rui 1998, §5.3], one finds a Robinson–Schensted–Knuth-type correspondence
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giving a bijection

(7-5) Mat(λ, µ) ∼
−→

⋃
κ∈3+

Std(λ, κ)× Std(µ, κ), A 7→ (P(A), Q(A)),

which we explain more fully shortly. Also let κ(A) be the common shape of the
tableaux P(A) and Q(A) and recall (7-2). Then [Du and Rui 1998, Theorem 5.3.3]
can be reformulated as follows:

Theorem. The path algebra K of q-Schur has another triangular basis

(7-6)
{
βPT(βQ)

∣∣ (P, Q) ∈
⋃

λ,µ∈3

κ∈3+

Std(λ, κ)× Std(µ, κ)
}

making it a symmetrically based quasihereditary algebra with X (λ, κ) equal to
{βP | P ∈ Std(λ, κ)} and all other data as in Theorem 7.5. For A ∈ Mat(λ, µ) we
have

(7-7) θA ≡ βP(A)T(βQ(A))
(

mod
∑

B∈Mat(λ,µ) with κ(B)>κ(A)

Z[q, q−1
]θB

)
.

So the canonical basis is a cellular basis which is equivalent to the triangular
basis (7-6), that is, it defines the same two-sided cell ideals and induces the same
basis in each two-sided cell.

To define the map (7-5) explicitly, take A ∈ Mat(λ, µ) corresponding to R ∈

Row(λ, µ) under the bijection (2-2). Let i = (i1, . . . , ir )∈ Iλ be the sequence (R).
Then we use column insertion3 to insert i1, . . . , ir in order into the empty tableau, to
end up with a semistandard tableau P(A)∈Std(λ, κ) for some κ ⊢ r . We also obtain
another semistandard tableau Q(A) ∈ Std(µ, κ), namely, the recording tableau
defined so that the entry of the box that gets added at the r -th step of the algorithm
is iµ

r . This concise description of the map (7-5) is equivalent to the more complicated
description in [Du and Rui 1998, §5.3]. It takes some combinatorial work (omitted
here) to establish the equivalence. For example, suppose that A =

[
1 0 2
0 1 0

]
, λ = (3, 1)

and µ = (1, 1, 2). Then i = (1, 2, 1, 1) and iµ
= (1, 2, 3, 3). Column insertion of

the sequence i gives ∅ 1
−→ 1

2
−→ 1

2

1
−→ 1 1

2

1
−→ 1 1 1

2
. So we get that

P(A) =
1 1 1
2 , Q(A) =

1 3 3
2 , κ(A) = (3, 1).

3We mean the following algorithm to insert i into a semistandard tableau: start with the first
column; if i is bigger than all entries in the column then we add i to the bottom of that column and
stop; otherwise, we find the smallest entry j in the column that is greater than or equal to i , replace
that entry by i , then repeat to insert j into the next column to the right.
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8. Tilting modules

For n ≥ 0, let In be the two-sided tensor ideal of q-Schur generated by the identity
morphisms 1(r) for all r > n, then set

q-Schurn := q-Schur/In.

This is a strict Z[q, q−1
]-linear monoidal category.

Theorem 8.1. The path algebra Kn of q-Schurn is a symmetrically based quasi-
hereditary algebra, with one possible triangular basis arising from the images of
the codeterminants from (7-4) for all κ ∈ 3+ satisfying κ1 ≤ n, and another one
given by the images of the canonical basis products from (7-6) for the same κ . Also
the images of the canonical basis elements θA for A ∈

⋃
λ,µ∈3 Mat(λ, µ) such that

κ(A)1 ≤ n give a cellular basis for Kn .

Proof. The two-sided tensor ideal In is equal to the ordinary two-sided ideal of
q-Schur generated by the morphisms 1κ for all partitions κ ∈ 3+ with κ1 > n.
This follows because every object λ ∈ 3 which has some part r > n is isomorphic
to such a partition κ . Hence, In corresponds to the two-sided ideal In ◁ K of the
path algebra K of q-Schur generated by the idempotents 1κ for all κ ∈ 3+ with
κ1 > n, and Kn = K/In . The set {κ ∈ 3+

| κ1 > n} is an upper set in the poset 3+,
hence, In is a cell ideal in the based quasihereditary algebra K . Consequently,
by [Brundan and Stroppel 2024, Corollary 5.6], the quotient algebra Kn is also a
symmetrically based quasihereditary algebra with bases as described in the statement
of the theorem. □

Now let k be a field viewed as a Z[q, q−1
]-algebra in some way, and consider

the k-linear monoidal categories

q-Schur(k) := k⊗Z[q,q−1] q-Schur and q-Schurn(k) := k⊗Z[q,q−1] q-Schurn.

From the bases as free Z[q, q−1
]-modules discussed in the proof of Theorem 8.1,

it follows that q-Schurn(k) may be identified with the quotient of q-Schur(k) by
the two-sided tensor ideal In(k) generated by the morphisms 1(r) for r > n.

Let q-Tilt+n (k) be the monoidal category of polynomial tilting modules for
q-GLn(k), that is, the full additive Karoubian monoidal subcategory of the category
of polynomial representations of q-GLn(k) generated by the exterior powers

∧r V
for 1 ≤ r ≤ n. Here, to avoid too much more notation, we are reusing

∧r V to
denote the specializations of the Z[q, q−1

]-modules from before. Note also that we
defined the braided monoidal category q-Tilt+n (k) in the introduction in a different
way in terms modules over the algebra Un(k), but the two definitions are equivalent.
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This identification requires the specific choice of comultiplication 1 described in
the introduction in order for the induced homomorphism U̇n → K to map

(8-1) E (r)
i 1λ 7→

··· ···

λ1 λi λi+1 λn

r
, F (r)

i 1λ 7→
··· ···

λ1 λi λnλi+1

r

for 1 ≤ i < n, r ≥ 0 and λ ∈ Nn with λi+1 ≥ r or λi ≥ r , respectively (they map to
zero for all other λ). To see that the defining relations of U̇n hold in K , most of
them are easy: this is the origin of the square-switch relation. The Serre relation is
deduced from the other relations in [Cautis et al. 2014, Lemma 2.2.1].

Remark 8.2. When 0 ≤ a − d ≤ b − c, the expressions in (6-12) and (6-13) are
the canonical basis elements θ[a−d c

d b−c

] and θ[b−c d
c a−d

] from Example 4.1. They are
also the images under the homomorphism (8-1) of the canonical basis elements
E (c)F (d)1(a,b) and F (c)E (d)1(b,a) of U̇2.

The monoidal functor 6n from Theorem 5.4 extends to define a k-linear monoidal
functor q-Schur(k)→ q-Tilt+n (k). Since

∧r V ={0} for r > n, this factors through
the quotient q-Schurn(k) to induce a k-linear monoidal functor 6n :q-Schurn(k)→

q-Tilt+n (k).

Theorem 8.3. For any field k, the functor 6n : q-Schur(k) → q-Tilt+n (k) in-
duces a k-linear monoidal equivalence between the additive Karoubi envelope of
q-Schurn(k) and q-Tilt+n (k).

Proof. We saw already in Remark 5.5(2) that 6n is full. It is dense by the definition
of q-Tilt+n (k). It just remains to show that it is faithful. Thus, we must show that
the surjective k-linear map Homq-Schurn(k)(µ, λ)↠ Homq-GLn(k)

( ∧µ V,
∧λ V

)
in-

duced by the functor is also injective for any λ, µ⊨ r . By Theorem 8.1, we know that
the morphism space on the left is of dimension

∑
κ⊢r |Std(λ, κ) × Std(µ, κ)|. This

is also the dimension of Homq-GLn(k)

( ∧µ V,
∧λ V

)
. Indeed, in the highest weight

category of polynomial representations of q-GLn(k), the tilting module
∧µ V has a

filtration with sections that are standard modules 1(κ ′) for partitions κ with κ1 ≤ n,
and

∧λ V has a filtration with sections that are costandard modules ∇(κ ′) for the
same κ . By the Littlewood–Richardson rule, the multiplicities

( ∧µ V : 1(κ ′)
)

and( ∧µ V : ∇(κ ′)
)

are |Row(µ, κ)| and |Row(λ, κ)|. Since

dim Extiq-GLn(k)(1(λ), ∇(µ)) = δλ,µδi,0,

this is enough to prove that Homq-GLn(k)

( ∧µ V,
∧λ V

)
has the same dimension

as Homq-Schurn(k)(µ, λ). □
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Corollary 8.4. The kernel of 6n from Theorem 5.4 is equal to In .

Proof. Let Jn be the kernel of 6n . Since
∧r V = {0} for r > n, In ⊆ Jn . Hence, 6n

factors through the quotient to induce a full Z[q, q−1
]-linear monoidal functor from

q-Schurn to the category of polynomial representations of q-GLn . It is sufficient
to show that this induced functor is also faithful. This follows because it remains
an isomorphism on base change to Q(q) by a special case of Theorem 8.3. □

Proofs of results in the introduction. Recall that in the introduction we were dis-
cussing the q-Schur category without 0-strings. This is the full subcategory of
the q-Schur category with 0-strings generated by the objects 3s . The path alge-
bra H of the category without 0-strings from (1-4) is the idempotent truncation
H =

⊕
λ,µ∈3s

1λK 1µ of the path algebra K of the category with 0-strings from (7-1).
The set 3+ indexing the special idempotents is a subset of 3s ⊂ 3. In view of
this, Theorem 3 follows immediately from Theorem 7.5. Every object of the q-
Schur category with 0-strings is isomorphic to an object of the q-Schur category
without 0-strings. So the two path algebras K and H are Morita equivalent, and the
restriction of the equivalence from Theorem 8.3 remains an equivalence. Theorem 4
follows. Finally, we explain how to establish the presentations in Theorems 1 and 2.
These are similar to the ones in Theorems 6.1 and 6.3, respectively, but we have
omitted the relations involving the generators and . Instead, (1-2) and (1-3) need
to be interpreted in a different way when strings labeled by 0 are present — simply
omit those strings so that the splits and merges become identity morphisms. That
these relations hold follows from the ones in Theorems 6.1 and 6.3 by contracting
0-strings. To complete the proof of Theorem 1, one needs to show that we have a
full set of relations. This follows by a straightening argument which is the same as
the one used in the proof of Theorem 6.1. Then Theorem 2 follows from Theorem 1
by the same argument that was used to deduce Theorem 6.3 from Theorem 6.1.
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Let C be a conjugacy class of involutions in a group G. We study the
graph 0(C) whose vertices are elements of C with g, h ∈ C connected by
an edge if and only if gh ∈ C. For t ∈ C, we define the component group
of t to be the subgroup of G generated by all vertices in 0(C) that lie in the
connected component of the graph that contains t .

We classify the component groups of all involutions in simple groups of
Lie type over a field of characteristic 2. We use this classification to partially
classify the transitive binary actions of the simple groups of Lie type over
a field of characteristic 2 for which a point stabiliser has even order. The
classification is complete unless the simple group in question is a symplectic
or unitary group.

1. Introduction

Let G be a finite group acting on a finite set �. Let I, J ∈�n be n-tuples of elements
of �, for some n ≥ 2, written I = (I1, . . . , In) and J = (J1, . . . , Jn). For r ≤ n, we
say that I and J are r-related, and we write I ∼r J , when for each choice of indices
1 ≤ k1 < k2 < · · ·< kr ≤ n, there exists g ∈ G such that I g

ki
= Jki for all i . We say that

the action of G on � has relational complexity k if, for all n ≥ 2 and all I, J ∈ �n ,
I ∼k J implies that I ∼n J , and k is the minimal such positive integer. This
definition originated with Cherlin [3], motivated by considerations in model theory.
In particular Cherlin observed that the relational complexity of a finite permutation
group is the least k for which the group can be viewed as an automorphism group
acting naturally on a homogeneous relational structure whose relations are k-ary.

There has been particular interest in the foundational case of permutation groups
of relational complexity 2, which were coined binary groups by Cherlin. In this
case, the relational structures in question are homogeneous edge-coloured directed
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graphs. Many problems and conjectures on binary actions were posed in [3], and
in recent years there has been substantial progress on some of these. Following
[4; 15], we now have a full classification of the primitive binary permutation groups
in [8]. More recently, a general study of the binary actions of finite simple groups
has been initiated in [6; 7]; in particular, we now have a full classification of the
binary actions of the alternating groups.

The first aim of this paper is to contribute to the classification of the binary
actions of the simple groups by proving a result for simple groups of Lie type over
a field of characteristic 2. Our main result in this direction is the following.

Theorem 1. Let G = G(q) be a simple group of Lie type over Fq , where q = 2a .
Suppose that G has a binary action on a set � and that there exists ω ∈ � such
that Gω, the stabiliser in G of ω, is a proper subgroup of G of even order. Then one
of the following holds:

(i) G =
2B2(22a+1) with a ≥ 1 and Gω is the centre of a Sylow 2-subgroup of G.

(ii) G = Sp2n(2
a) or PSUn(2a), with n ≥ 2, and Gω contains the centre of a long

root subgroup of G.

(iii) G = Sp4(2
a) with a ≥ 2 and Gω contains a short root subgroup of G.

For comments on the hypotheses of the theorem, see the remark after Theorem 2
below. Note that the theorem applies with G equal to Sp4(2)′, G2(2)′ and 2F4(2)′

(and also to SL2(2a), via the isomorphism PSU2(q) ∼= SL2(q) in (ii)). Note too that
the theorem applies to all actions of G — there is no assumption of transitivity, for
instance. Let us briefly discuss the three listed items in the theorem.

In (i), G is a Suzuki group and the transitive binary actions of G are completely
classified [7]. In this case we know that the action of G on the set of right cosets of
a nontrivial proper subgroup H is binary if and only if H is the centre of a Sylow
2-subgroup of G.

For (ii) and (iii), our expectation is that the result would remain true were the
word “contains” to be replaced, in each case, with the word “is”. This would amount
to a classification of the nontrivial transitive binary actions of the simple groups of
Lie type over a field of characteristic 2 for which a point stabiliser has even order.

To emphasise this point we present a result — Proposition 6.3 — which implies
that, were we to make the aforementioned replacement and restrict our attention to
transitive actions, then the resulting list of actions would all be binary.

Our proof of Theorem 1 makes use of methods introduced in [6], in particular
the notion of a component group. Our second main result pertains to a special case
of this notion which we now define (more detail is given in Section 2).
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G t 1(t)

SL6(2) (J 3
2 ) 29

PSU6(2) (J 3
2 ) 29

PSU7(2) (J 3
2 , J1) 29

Sp6(2) W (2) + V (2) 26

�+

12(2) W (2)3 215

Sp12(2) W (2)3 215

Table 1. Exceptional involution classes.

Let G be a finite group, let t be an involution in G and let C = tG be the conjugacy
class of t . We define a graph 0(C), whose vertices are elements of C; two vertices
g, h ∈ C are connected by an edge in 0(C) if gh ∈ C. We write 1(t) for the group
generated by all vertices in 0(C) that lie in the connected component of the graph
that contains t . We call 1(t) the component group of the element t .

We are ready to state our second main result. For this result we do not include
Sp4(2)′ or G2(2)′ in the hypothesis (but we do include 2F4(2)′). Note also that the
group G =SL2(q) is included under item (ii) of the theorem, since Sp2(q)=SL2(q).

Theorem 2. Let G = G(q) be a simple group of Lie type over Fq , where q = 2a ,
and let t ∈ G be an involution. Then one of the following holds:

(i) 1(t) = G.

(ii) t is a long root involution, G = Sp2n(q), PSUn(q) or 2B2(q), and 1(t) is
the centre of a long root subgroup (the centre of a Sylow 2-subgroup when
G =

2B2(q)).

(iii) t is a short root involution, G = Sp4(q) (q > 2), and 1(t) is a short root
subgroup.

(iv) G, t and 1(t) are as in Table 1.

The notation for the classes of Sp6(2) and �+

12(2) in Table 1 is described in
Section 4.4. Each line of the table corresponds to a single conjugacy class in G,
except for the line for G = �+

12(2), where W (2)3 corresponds to two G-classes, in-
terchanged by an outer automorphism. For the classes in Table 1, 1(t) is elementary
abelian, and in all cases except G = PSU7(2), we have 1(t) = O2(CG(t)).

Remark. Let us remark on the hypotheses of Theorem 1 — specifically, the charac-
teristic 2 assumption for G = G(q), and the assumption that a point stabiliser has
even order. Other cases are the subject of future projects, and will require additional
ideas. For example, if G = G(q) with q odd and t ∈ G is an involution, then
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there are many more possibilities for the component group 1(t) than those in the
conclusion of Theorem 2; in some cases it is even possible that the graph 0(C) has
no edges at all. Also the even order assumption on the point stabiliser is necessary
for our methods, through the application of Lemma 2.2.

Structure of the paper. In Section 2 we discuss the graph 0(C) in a more general
context than that given above and we state a number of results that connect this
graph to the binary actions.

In Section 3 we describe some computational methods that pertain to the graph
0(C), concluding with several lemmas that will be important for the proofs of
Theorems 1 and 2. In Section 4 we give the proof of Theorem 2 and in Section 5 we
give the (very short) proof of Theorem 1. In the final section we prove a proposition
which implies a partial converse to Theorem 1.

2. Binary actions and component groups

All groups mentioned in this paper are finite, and all group actions are on finite sets.

2.1. Component groups. We mentioned (a special case of) the graph 0(C) in the
introduction. This graph was first defined in [6] and we give the definition here.

Definition 2.1. Given a conjugacy class C in a group G we define a graph, 0(C),
whose vertices are elements of C; two vertices g, h ∈ C are connected in 0(C) if g
and h commute and either gh−1 or hg−1 is in C.

The next lemma connects the graph 0(C) to the notion of a binary action; this
lemma first appeared as [6, Corollary 2.16]. The fixity of an element in a group
acting on a set � is the number of points of � fixed by the element.

Lemma 2.2. Let G act transitively on �, let H be the stabiliser of a point in �,
let p be a prime dividing |H |, let C be a conjugacy class of elements of order p of
maximal fixity and let g be in H ∩ C. If the action is binary, then H contains all
vertices in the connected component of 0(C) that contains g.

In what follows we will write “element of maximal p-fixity” as shorthand for
“element of prime order p of maximal fixity”.

In the notation of Lemma 2.2, we say that the component group of g in G is the
group generated by the connected component of 0(C) that contains g; we write this
as 1(g). So the conclusion of Lemma 2.2 could be “H contains 1(g)”.

It turns out that Definition 2.1 and Lemma 2.2 can be stated slightly more
generally. To do this we need to revisit an example from [6], on which the proof of
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Lemma 2.2 is based. Here and below, we write Fix(g) to denote the fixed set of a
permutation g.

Example 2.3. Let p be a prime and let g1, g2 be distinct commuting elements of
order p in a group G acting on a set 3. Set g3 = g1g−1

2 and write Fi for the fixed
set of gi for i = 1, 2, 3. Assume that

|F1| = |F2| = |F3| ≥ 1

and assume that F1 and F2 are distinct (which, in turn, means that F3 is distinct
from both F1 and F2).

Then ⟨g1, g2⟩ acts on the set F = F1 ∪ F2 ∪ F3 and we write τ0 for the (nontrivial)
permutation of F3 induced by g1 (and g2) on the set F3. Finally let τ be the
permutation of F which equals τ0 on F3 and fixes all points in F \ F3.

Write I = ( f1, . . . , fk), where F = { f1, . . . , fk} and k = |F |, and write J =

( f τ
1 , . . . , f τ

k ). It is easy to verify directly that

(1) I ∼2 J ;

(2) I ∼k J if and only if there exists a permutation h ∈ G that fixes F setwise and
that induces the permutation τ on F .

In particular, if the action of G on 3 is binary, then there exists a permutation h ∈ G
that fixes F setwise and that induces the permutation τ on F . Note that Fix(h)

properly contains Fix(gi ) for i = 1, 2.

Definition 2.4. Given a union of conjugacy classes D in a group G we define a
graph, 0(D), whose vertices are elements of D; two vertices g, h ∈D are connected
in 0(D) if g and h commute and either gh−1 or hg−1 is in D.

For g ∈ D, we write 1(g,D) for the group generated by the vertices in the
connected component of 0(D) that contains g. In particular, if C is the conjugacy
class containing g, then 1(g, C) = 1(g), the component group of g.

Lemma 2.5. Let G act transitively on �, let H be the stabiliser of a point in �,
let p be a prime dividing |H |, let D be a union of conjugacy classes of elements of
maximal p-fixity and let g be in H ∩ D. If the action is binary, then 1(g,D) ≤ H.

Proof. Assume, for a contradiction, that 1(g,D) ̸≤ H . Then there exist g1, g2 ∈ D
such that g1 and g2 are adjacent in 0(D), g1 ∈ H and g2 ̸∈ H . This immediately
implies that g1 and g2 commute and that Fix(g1) is distinct from Fix(g2). Now the
setup of Example 2.3 applies. Since the action of G on � is assumed to be binary,
there must exist an element h whose fixed set properly contains Fix(g1). This
contradicts the fact that g1 is an element of maximal p-fixity and we are done. □
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2.2. Terminal component groups. The next lemma inspires the definitions that
follow.

Lemma 2.6. Let G act transitively on �, let H be the stabiliser of a point in �,
let p be a prime dividing |H |, let D be a union of conjugacy classes of elements of
maximal p-fixity and let g be in H ∩ D. If the action is binary, then every element
of 1(g,D) that has order p is also an element of maximal p-fixity.

Proof. By assumption, the action of G is binary and so Lemma 2.5 implies that the
stabiliser of any point fixed by g contains 1(g,D). Thus every element of 1(g,D)

fixes at least as many elements of � as g. □

Now consider a finite group G and an element g contained in D, a union of
conjugacy classes of elements of order p. Let D1 = D and let 01(D) = 0(D) and
11(g) = 1(g,D).

For a positive integer i , define Di to be the union of conjugacy classes in G
which satisfy two criteria:

(1) elements of these conjugacy classes have order p;

(2) for any such conjugacy class, C , we have C ∩ 1(g,Di−1) ̸= ∅.

Now define 1i (g,D) = 1(g,Di ). We have an ascending chain of subgroups:

11(g,D) ≤ 12(g,D) ≤ 13(g,D) ≤ · · · .

We define 1∞(g,D) to be the union of all of the subgroups in this chain. In the
case where D = C, the conjugacy class containing g, we write 1∞(g) = 1∞(g,D)

and call this group the terminal component group of g in G. This definition allows
us to strengthen Lemma 2.6:

Lemma 2.7. Let G act transitively on �, let H be the stabiliser of a point in �,
let p be a prime dividing |H |, let D be a union of conjugacy classes of elements of
maximal p-fixity and let g be in H ∩ D. If the action is binary, then H contains
1∞(g,D).

In particular if g is any element of maximal p-fixity, then H contains 1∞(g),
the terminal component group of g.

Proof. We suppose that Di is a union of conjugacy classes of elements of maximal
p-fixity. We will use induction to prove that, for all positive integers i ,

(S1) 1i (g,D) ≤ H ; and

(S2) Di+1 is a union of conjugacy classes of elements of maximal p-fixity.
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For i = 1, (S1) follows from Lemma 2.5 and (S2) follows from Lemma 2.6.
Thus the base case of our inductive argument is proved.

Let us assume that (S1) and (S2) are true for i . Since (S2) is true for i , Lemma 2.5
implies that (S1) is true for i +1. Now Lemma 2.6 implies that (S2) is true for i +1.
The result follows by induction. □

Remark 2.8. We will be interested primarily in the groups 1(g) and 1∞(g) for
various elements g of prime order in G.

The most obvious scenario where the more general notion of 1(g,D) and
1∞(g,D) is of interest would be setting D to be the rational conjugacy class
containing g (i.e., the union of conjugacy classes that contain an i-th power of g,
where i is coprime to the order of g). Clearly, in any action of G, if g is an element
of maximal p-fixity, then the same will be true of all of the rational conjugates of g.

3. Computing with component groups

The proof of Theorem 2 involves the calculation of several component groups in
certain exceptional cases, using a computer. We have relied on GAP and Sagemath,
but it is not possible to use a naive approach for the task at hand. We describe how
the computation was made possible. Besides, the “transport group”, to be defined
shortly, is probably a useful object to think of, even in theoretical situations.

In what follows, G is a finite group, s ∈ G is an involution and C is its conjugacy
class. We wish to compute the connected component X of 0(C) containing s; the
subgroup generated by this connected component is then determined readily by
standard algorithms.

The techniques we describe would work equally well with s an element of prime
order p, although we stick to p = 2 for simplicity of language (and because this is
what the paper is about).

3.1. Introducing the transport group. The naive approach to our problem would
consist in finding all the neighbours of s in the graph 0(C), by scanning all the
elements of C one by one; then finding the neighbours of these neighbours; and
then iterating until no new vertex can be appended to the connected component.
This is way too slow in practice.

We will mostly reduce things to the computation of the original neighbours of s,
with no need to dive deeper in the graph. An essential ingredient is this lemma:

Lemma 3.1. Let Y be a finite, connected graph, and let T be a subgroup of Aut(Y )

with the following property: there is a vertex v such that all its neighbours are of
the form vt for t ∈ T . Then the action of T is vertex transitive.
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Proof. Let w ∈ Y . To show that w ∈ vT , we proceed by induction on the length n
of a minimal path from v to w in the graph, the case n = 1 being given. We see
immediately that w has a neighbour u such that u ∈ vT , by induction. If u = vt

for t ∈ T , then wt−1
is a neighbour of v, so that wt−1

= vt ′ for some t ′
∈ T , and

w = vt ′t as desired. □

We will apply this with Y = X , the connected component of s, viewed as an
induced subgraph of 0(C), and of course with v = s. By definition, all the vertices
of 0(C) are conjugates of s within G, so that we may find elements ti ∈ G such
that the neighbours of s can be computed to be of the form st1, . . . , std . Each ti
acts on 0(C) by graph automorphisms, and takes s to an element of X , and so it
preserves the connected subgraph X . We can then apply the lemma to the subgroup
T = ⟨t1, . . . , td⟩, and we find that X = sT .

This provides already a comfortable speedup, but we also need to select the
group T more carefully, as finding the neighbours of v is in itself a costly operation.
Since these neighbours must commute with s by definition, we elect to:

(1) Compute first the centraliser Z = CG(s).

(2) Determine the conjugacy classes of involutions in Z .

(3) For each such class, pick one representative x , and check whether there is
t ∈ G such that st

= x (so that x ∈ C), and then check whether sx ∈ C; if not,
discard the conjugacy class.

(4) Finally, define the transport group T to be generated by Z and all the elements t
obtained during the previous step.

The lemma then applies with this T , as is checked readily (simply note that in
step (3), we only need one representative, as there is an element of Z (which is thus
in T ) which fixes s and takes x to any other involution in the conjugacy class).

Having gone through these steps, it is very easy to compute the order of T , and
|T |/|Z | is the size of sT

= X . Very often, we find that X = 0(C) so that, when G
is simple, we can conclude that 1(s) = G. Otherwise, standard algorithms allow
us to iterate over the elements of X and compute the group they generate.

Remark 3.2. To give a bit of perspective, let us mention the sort of performance
we obtained with G = �+

12(2) for some randomly chosen involution s. The naive
algorithm took about 8 minutes to compute the neighbours of s, and there are around
800 of these, so we expected to have to wait 4 days to get the list of the vertices
in X which are at distance 2 from s. By contrast, the algorithm above concludes
that 1(s) = G in less than 20 seconds.
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3.2. Randomised calculations. The above algorithm can still take a lot of time
in certain cases (for example, when the centraliser Z has a complicated structure).
However, another advantage of the approach we have just described is that it can
be turned easily into a randomised algorithm. The idea is simply to draw elements
of C at random until one finds a neighbour of s in 0(C); then, compute t ∈ G such
that the vertex just found is st , and keep a list of the elements t thus obtained. At
any moment, we can compute the group T generated by CG(s) and the t’s that
have been collected. If at any point T = G (which happens frequently with our
examples), of course we may stop and conclude that 1(s) = G (when G is simple).
Otherwise, we can stop after a certain number of tries, and what we have is a
subgroup T of the “real” transport group, and we can compute the group 1′(s)
generated by sT , which is a subgroup of the “real” component group 1(s).

In this situation, we can try to compute the terminal component group 1∞(s)
instead, as in Section 2.1. Concretely, we check whether 1′(s) (and so also 1(s))
contains an involution s1 such that s1 ̸∈ C; if there is one, we can run the algorithm
with s1, obtaining 1′(s1), a subgroup of 1(s1), and crucially, 1′(s1) is also a
subgroup of 1∞(s), by definition. We can continue and find s2 in either 1′(s)
or 1′(s1), compute 1′(s2), which is yet another subgroup of 1∞(s), and so on. We
stop when there are no more elements to try (because all of their conjugacy classes
have been attempted), or when there is si such that 1′(si ) = G, in which case we
conclude that 1∞(s) = G also.

This search is best organised, and more easily summarised, as follows. Our
program constructs a graph whose vertices are the conjugacy classes of involutions
in G. When we have found that 1(s) = G for an involution s, we paint the
corresponding vertex black. Otherwise, the vertex is left in white, and we add
a directed arrow from the class of s to that of any s1 such that s1 ∈ 1′(s), our
computed approximation of 1(s). A sufficient condition for 1∞(s) = G is thus
that from the corresponding vertex, there is a directed path leading to a black vertex.

As an example, here is a graph produced when working with G = �+

12(2). It
shows that 1∞(s) = G for any involution s:

In general, the graphs thus produced only reflect partial information, as obtained
at a given point in time by the randomised calculation. Typically, we then focus
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our efforts on the white vertices, and start the full, nonrandom algorithm on them,
to see if 1(s) is really smaller than G. Of course, this may take a little longer.

3.3. Results. To conclude this section we record three results that will be important
for the proof of Theorem 2. These were all proved using the computational methods
described above.

Lemma 3.3. Let G be one of the groups SL6(2), PSUn(2) (4 ≤ n ≤ 8), Sp2n(2)

(3 ≤ n ≤ 6), �±

2n(2) (4 ≤ n ≤ 6), and let t ∈ G be an involution. Then one of the
following holds:

(i) 1(t) = G.

(ii) G = PSUn(2) or Sp2n(2) and t is a long root involution.

(iii) G, t are as in Table 1 of Theorem 2.

Lemma 3.4. Let G be equal to 2F4(2)′ or 3D4(2) and let t ∈ G be an involution.
Then 1(t) = G.

Lemma 3.5. Let G be a group occurring in Table 1 and let t be the associated
involution. Then 1∞(t) = G.

Notice that Lemma 3.5 implies that if G = G(q) is a simple group of Lie type
over Fq where q = 2a and t ∈ G is an involution, then either 1∞(t) = G or else G
and t are as described at points (ii) and (iii) of Theorem 2.

4. Proof of Theorem 2

4.1. Long root elements. Here we prove a lemma identifying component groups
of long root elements for arbitrary characteristic. In the statement we do not include
G = Sp4(2)′, G2(2)′ or 2G2(3)′, but we do include 2F4(2)′.

Lemma 4.1. Let G = G(q) be a simple group of Lie type over Fq , where q = pa ,
and let t be a long root element. Then one of the following holds:

(i) 1(t) = G.

(ii) G = PSp2n(q) (n ≥ 1) or PSUn(q) (n ≥ 3), and 1(t) is the centre of a long
root subgroup.

(iii) G =
2G2(q) or 2B2(q), and 1(t) is the centre of a Sylow p-subgroup of G.

Proposition 6.3 asserts that if G is one of the groups listed in items (ii) or (iii), t
is a long root element and H = 1(t), then either G = PSp2(q) with q odd or the
action of G on the set of right cosets of H in G is binary.
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Proof. First assume that G is not one of the groups under (ii) or (iii), and is of
untwisted type. Let 8 be the root system of G, and 8L the set of long roots in 8

(so 8L = 8 if there is only one root length). We can take t = uα(1) with α ∈ 8L .
As G ̸= Cn(q), there exists β ∈ 8L such that α+β ∈ 8L , and ⟨U±α, U±β⟩ = A2(q).
Working in SL3(q) with the usual representation

uα(c) =

1 c
1

1

, uβ(c) =

1
1 c

1

, uα+β(c) =

1 c
1

1

,

we see that the graph 0(C) has, for any ci ∈ Fq \ 0, the edges

u−β(c1) uα(c2) uα+β(c3) uβ(c4) u−α(c5).

Hence 1(t) contains ⟨U±α, U±β⟩ = A2(q).
Now take α = −α0, where α0 is the highest root. Then for any long root ρ such

that β = α0 − ρ ∈ 8L , we see from the above that 1(t) contains U±β . If there
is only one root length, these root groups U±β , together with U±α, generate G;
so 1(t) = G in this case. Finally, suppose there are two root lengths. Then 8

is of type Bn (n ≥ 3), G2 or F4, and the root groups U±β for β ∈ 8L generate a
subsystem subgroup Dn−1(q), A2(q) or D4(q), respectively. So 1(t) contains this
subsystem subgroup, which is maximal in G. Also 1(t) is invariant under CG(t),
which is the derived group of a parabolic subgroup of G, and is not contained in
the subsystem subgroup. It follows that 1(t) = G in this case also.

Now assume that G is of twisted type, and is not one of the groups under (ii)
or (iii). For G =

2Dn(q) (n ≥ 4), 3D4(q) or 2E6(q), the above argument gives the
result, as there is a subsystem A2 spanned by long roots. And for G =

2F4(q)′, we
argue as follows. The involution t lies in a subgroup 2F4(2)′ of G, and Lemma 3.4
implies that 1(t) ≥

2F4(2)′. As 1(t) is CG(t)-invariant, it follows that 1(t) = G.
Now we let G be one of the groups under (ii) and (iii) and we must describe 1(t).

We start by assuming that G = PSp2n(q). With respect to a suitable standard basis
e1, . . . , en, fn, . . . , f1, modulo the scalars Z = ⟨−I ⟩, we can take

(1) t =

1 λ

I2n−2

1

,

for some scalar λ ̸= 0, and then

CG(t) =


ϵ x c

A AJ xT

ϵ

 : A ∈ Sp2n−2(q), x ∈ F2n−2
q , c ∈ Fq , ϵ = ±1

 /
Z ,
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where J is the matrix of the form restricted to e2, . . . , en, fn, . . . , f2. The only
elements u ∈ CG(t) for which both u and tu−1 are conjugate to t are those with
A = I2n−2 and x = 0. Hence

(2) u ∈


1 c

I2n−2

1

 : c ∈ Fq

 = U,

a long root subgroup. Thus 1(t) = U in this case.
The proof of (ii) for G = PSUn(q) is very similar. Take V to be an n-dimensional

unitary space over Fq2 , with unitary form having Gram matrix with 1’s on the reverse
diagonal and 0’s elsewhere. Then we can take t to be as in (1) with λ+λq

= 0, and
we compute as above that the only elements u ∈ CG(t) for which both u and tu−1

are conjugate to t lie in a subgroup U defined as in (2), but with the condition on
the scalar c ∈ Fq2 being c + cq

= 0. Then U is the centre of a long root subgroup
of G, and 1(t) = U , proving (ii) in this case.

Now let G =
2G2(q) or 2B2(q) as in (iii), with q = p2a+1, where p = 2 or 3, and

a ≥ 1. Then CG(t) = P , a Sylow p-subgroup of G. The structure and fusion of P is
described in [13; 14]: Z(P) is elementary abelian of order q and has all its noniden-
tity elements conjugate to t ; also there is no element u ∈ P \ Z(P) such that u and
tu−1 are conjugate to t . Hence 1(t)= Z(P) in these cases, completing the proof. □

We now prove Theorem 2 separately for the various Lie types.

4.2. Linear groups.

Lemma 4.2. Theorem 2 holds for G = PSLn(q), q = 2a .

Proof. Let G =PSLn(q) with q =2a . If n =2, the only involution class in G contains
a root element t = J2 ∈ SL2(q) = Sp2(q) (where Ji denotes an i×i unipotent Jordan
block), and this class is covered by Lemma 4.1.

So assume n ≥ 3. We begin by establishing the result for n ≤ 4. For n = 3, the
group PSL3(q) has only one class of involutions, with representative t = (J2, J1),
a long root element, so this case is covered by Lemma 4.1. Now let n = 4,
G = PSL4(q). Again, root elements (J2, J 2

1 ) are covered by Lemma 4.1, so let
t = (J 2

2 ) ∈ G. We can take t = J2 ⊗ I ∈ SL2(q)⊗SL2(q) < G. Then CG(t) contains
I ⊗SL2(q), and each involution u in this group is conjugate to t ; also tu = J2 ⊗ J2

is conjugate to t . Hence t is joined in 0(C) to all such involutions u. It follows
that 1(t) contains I ⊗SL2(q). Similarly, arguing with neighbours of u, we see that
SL2(q) ⊗ I ≤ 1(t). Thus

1(t) ≥ SL2(q) ⊗ SL2(q).
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Also, if we write t as
( I

0
I
I

)
, then as in the proof of Lemma 3.3, we see that 1(t)

contains N := O2(CG(t)) ∼= q4. Using [2, Tables 8.8 and 8.9], we see that for q ≥ 4,
the only overgroups in G of SL2(q)⊗SL2(q) = �+

4 (q) are O+

4 (q) and Sp4(q), and
hence ⟨SL2(q) ⊗ SL2(q), N ⟩ = G. Finally, for q = 2 we argue in A8 ∼= L4(2) that
1(t) = G here too. This completes the proof for n = 4. Now suppose n ≥ 5. Adopt,
for λ ∈ Fq , the notation

J2(λ) =

(
1 λ

0 1

)
, J2 = J2(1), t = (J a

2 , J b
1 ),

where 2a + b = n. By Lemma 4.1 we can assume that a ≥ 2.
Assume next that q > 2, and let α ∈ Fq \ {0, 1}. Suppose b ≥ 1. Write t = t1 ⊕ t2,

where t1 = (J2, J1), t2 = (J a−1
2 , J b−1

1 ). Let u2 = (J2(α)a−1, J b−1
1 ). If u1 ∈ SL3(q)

is an involution joined to t1 in the graph on tSL3(q)

1 , then t is joined to u = u1 ⊕ u2

in the graph on tG . Hence by the result for SL3(q), we have 1(t) ≥ SL3(q). This
holds for any choice of blocks (J2, J1) in t , and these SL3(q) subgroups generate G.
So 1(t) = G in the case where b ≥ 1.

Now suppose b = 0 (still assuming that q > 2). For this case, write t = t1 ⊕ t2,
where t1 = (J 2

2 ), t2 = (J a−2
2 ). Let u2 = (J2(α)a−2), and argue as above using the

result for SL4(q) that 1(t) contains the subgroup SL4(q) corresponding to t1. This
holds for any choice of blocks J 2

2 in t , so again we see that 1(t) = G.
It remains to deal with the case where q = 2. It is convenient first to deal with

n = 5, 6. For these cases we have t = (J 2
2 , J n−4

1 ) (excluding the exceptional case
(J 3

2 ) ∈ SL6(2) as it is conclusion (iii) of Theorem 2). For n = 5, we write t = t1 ⊕ t2,
where t1 = (J 2

2 ), t2 = J1. Arguing as above using the result for SL4(q), we see that
1(t) contains S := SL4(q). Also 1(t) is CG(t)-invariant, and we can compute a
CG(t)-conjugate Sc of S such that ⟨S, Sc

⟩ = G. Thus 1(t) = G in the case n = 5.
For n = 6 we argue similarly, taking t = t1 ⊕ t2, where t1 = (J2, J1), t2 = (J2, J1)

and using the result for SL3(q).
Finally, assume that n ≥ 7 (with q = 2). Write t = t1 ⊕ t2, where

t1 =

{
(J2, J1) if a = 2,

(J 2
2 ) if a ≥ 3.

Then t1, t2 are involutions in SLn1(2), SLn2(2), where n1 = 3 or 4, n2 = n − n1. If
ui ∈ SLni (2) (i = 1, 2) are involutions joined to ti in the graphs on t

SLni (2)

i , then u =

u1 ⊕u2 is joined to t in 0(C). Hence inductively we have 1(t) ≥ SLn1(2)×SLn2(2)

(the second factor possibly replaced by 29 in the case where n = 10, t = (J 5
2 )). By

reordering the blocks in t , we obtain several different such subgroups in 1(t), and
these generate G. This completes the proof. □
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4.3. Unitary groups.

Lemma 4.3. Theorem 2 holds for G = PSUn(q) with n ≥ 3, q = 2a .

Proof. Let G = PSUn(q) with q = 2a . If n = 3 then there is only one class of invo-
lutions, namely the long root elements, and these are covered by Lemma 4.1. So we
may suppose that n ≥ 4, and that t ∈ G is an involution that is not a long root element.

If n = 4 then t = (J 2
2 ) and we argue as in the proof of Lemma 4.2 (second para-

graph) that 1(t)= G, noting at the end that the case q = 2 is covered by Lemma 3.3.
Now assume that n ≥ 5 and q > 2. Let t = (J a

2 , J b
1 ) (with a ≥ 2, as t is not a long

root element). We argue by induction on n. Write t = t1 ⊕ t2, where t1 = (J a
2 , J b−1

1 )

if b ≥ 1, and t1 = (J a−1
2 ) if b = 0. Then inductively, 1(t1)= SUn−1(q) or SUn−2(q)

in the respective cases. Moreover 1(t) contains this subgroup: in the first case this
is clear, and in the second we can use neighbours of t of the form u1 ⊕ u2, where
u2 = J2(α), as in the proof of Lemma 4.2. As 1(t) is CG(t)-invariant, it follows
that 1(t) = G.

Finally, consider the case n ≥ 5, q = 2. By Lemma 3.3, we may assume that n ≥ 9.
Let t = (J a

2 , J b
1 ) with a ≥ 2. If b ≥ 1, write t = t1 ⊕ t2, where t1 = (J a

2 , J b−1
1 ), and

argue inductively as above (using Lemma 3.3 for the base case where t1 ∈ SU8(2)).
Now suppose b = 0, and write t = t1 ⊕ t2, where t1 = (J 2

2 ), t2 = (J a−2
2 ). If a > 5,

then inductively we have 1(t) ≥ SU4(2) × SUn−4(2); also 1(t) contains several
subgroups of this form corresponding to different pairs of J2-blocks, and these
generate G. And if a = 5, then according to the entry for PSU6(2) in Table 1,
1(t2) = 29, and so we see that 1(t) contains 1(t1) × 1(t2) = SU4(2) × 29. The
collection of such subgroups SU4(2), one for each pair of J2-blocks in t , generates G,
and hence 1(t) = G in this case, completing the proof. □

4.4. Symplectic and orthogonal groups. We consider the symplectic and orthogo-
nal groups G =Sp2n(q), �ϵ

2n(q) with q =2a and ϵ =±. Note that Oϵ
2n(q)<Sp2n(q),

and let V = V2n(q) be the natural module. We begin by describing the involution
classes in G, with notation and results taken from [12, Chapters 4-6]. There is
an involution in Oϵ

2(q) \ �ϵ
2(q) (hence also in Sp2(q)), which we denote by V (2).

Also the group �+

4 (q) has a subgroup SL2(q) stabilising a pair of totally singular
2-spaces, and we denote an involution in this SL2 subgroup by W (2); it acts as J 2

2
on the 4-dimensional space. Denote by W (1) the identity element of �ϵ

2(q). Then,
with one exceptional case, every involution t ∈ G is uniquely determined up to
conjugacy by an orthogonal decomposition

(3) t = W (1)a
+ W (2)b

+ V (2)c,
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where c ≤ 2 (and n = a + 2b + c). The exceptional case is t = W (2)b
∈ �+

4b(q),
in which case there are two G-classes of involutions which are interchanged by
elements of O+

4b(q) \ �+

4b(q).
Note that in (3), c can only be 1 if G = Sp2n(q). Also, when G is orthogonal and

c = 2, there are actually two possibilities for the blocks V (2)2 — in the notation
of [9], they could be V (2)+V (2)∈�+

4 (q) or V (2)+Vα(2)∈�−

4 (q) (where α ∈Fq is
such that the quadratic x2

+x+α is irreducible over Fq ). For our proof below it is not
necessary to distinguish between these cases, so we use the notation V (2)2 for both.

Lemma 4.4. Theorem 2 holds for G = Sp2n(q) with n ≥ 2, q = 2a .

Proof. Let G = Sp2n(q) with q = 2a . Note that the class of long root elements of G
is represented by t = V (2)+ W (1)n−1, and the conclusion of Theorem 2 for this
class follows from Lemma 4.1. Henceforth we do not consider this class.

Suppose first that n = 2 and q > 2. The classes of long and short root elements
of G are interchanged by a graph automorphism, so the conclusion of the theorem for
short root elements follows from Lemma 4.1. The remaining involution class in G
contains t = V (2)2. This element lies in a subgroup Sp4(2)′ ∼= A6 of G, and arguing
in A6 we see that 1(t) ≥ A6. As 1(t) is CG(t)-invariant, 1(t) = G for this class.

Next consider n = 3. If q = 2 then G = Sp6(2), which is covered by Lemma 3.3,
so assume q > 2. The classes to consider are those containing t = W (2) + W (1),
V (2)2

+ W (1) and W (2)+ V (2). In the first two cases t lies in a subgroup Sp6(2),
so Lemma 3.3 shows that 1(t) ≥ Sp6(2), and now the CG(t)-invariance of 1(t)
shows that it is equal to G. In the last case, t is conjugate to V (2)3, and writing
t = t1 ⊕ t2 with t1 = V (2)2

∈ Sp4(q), we see that 1(t) contains 1(t1) = Sp4(q)

and hence that 1(t) = G.
If n = 4 or 5 then since any representative t as in (3) lies in a subgroup Sp2n(2)

of G, Lemma 3.3 shows that 1(t) contains Sp2n(2), and then CG(t)-invariance gives
1(t)= G. The same argument applies for n = 6, except for the class t = W (2)3 (the
exceptional class in Sp12(2) in Table 1). In this case, Table 1 gives the conclusion
if q = 2, and for q > 2 we write t = t1 ⊕ t2 with t1 = W (2)2, t2 = W (2) and see
that 1(t) contains 1(t1) = Sp8(q), hence that 1(t) = G.

Suppose finally that n ≥ 7. Let t ∈ G be as in (3). We argue by induction on n,
having established the base cases n = 3, 4, 5, 6.

Assume a ≥ 1, and write t = t1 ⊕ t2 with t1 = W (1)a−1
+ W (2)b

+ V (2)c,
t2 = W (1). Then 1(t) contains 1(t1), which inductively is Sp2n−2(q), unless
t1 = W (2)3

∈ Sp12(2) and G = Sp14(2). In the former case, 1(t) = G in the usual
way; in the latter, rewrite t as (W (2)2) ⊕ (W (2) + W (1)) ∈ Sp8(2)× Sp6(2) - then
Lemma 3.3 gives 1(t) ≥ Sp8(2)× Sp6(2), and now we see that 1(t) = G as usual.
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So we may assume a = 0. Then b ≥ 3, and we can write t = t1 ⊕ t2 with
t1 = W (2)2, t2 = W (2)b−2

+ V (2)c. Then 1(t) contains 1(t1) = Sp8(q), and this
is the case for any pair of W (2)-blocks making up t1. Hence 1(t) ≥ Sp2n−2c(q),
and then 1(t) = G in the usual way. □

Lemma 4.5. Theorem 2 holds for G = �ϵ
2n(q) with q = 2a , n ≥ 4 and ϵ = ±.

Proof. Let t ∈ G be as in (3). The proof goes by induction on n, and runs along
entirely similar lines to that of Lemma 4.4. We first establish the bases cases
n = 4, 5, 6 in exactly the same way, using Lemma 3.3 to see that 1(t) contains a
subgroup �δ

2n(2) and hence that 1(t) = G, in all cases except t = W (2)3
∈ �+

12(q).
For the latter class, the case q = 2 is covered by Lemma 3.3, and for q > 2 we
write t = t1 ⊕ t2 with t1 = W (2)2, t2 = W (2); hence 1(t) ≥ 1(t1) = Sp8(q), from
which we deduce that 1(t) = G.

Finally, for n ≥ 7 we argue by induction exactly as in the proof of Lemma 4.4. □

4.5. Exceptional groups of Lie type.

Lemma 4.6. Theorem 2 holds for G = G(q), a simple group of exceptional Lie
type, where q = 2a .

Note that we exclude G2(2)′ in the hypothesis.

Proof. First we consider the simple groups G(q) of untwisted Lie type. A convenient
list of conjugacy classes of involutions in these groups G(q) can be found in the
tables in [12, Chapter 22]. Class representatives are products of involutions in Levi
subgroups Ak

1, as listed in the tables.

Case G = E8(q). There are four involution classes, corresponding to Levi sub-
groups Ak

1 for k = 1, 2, 3, 4. For k = 1 this is a root involution, covered by
Lemma 4.1.

For k = 2, we can take as representative t = uα4(1)uα8(1) with the usual labelling
of the Dynkin diagram. Then t lies in a subsystem subgroup A7(q) generated
by U±αi for i =1, 3, 4, 5, 6, 7, 8; it also lies in a subsystem A6(q) generated by U±αi

for i = 2, 4, 5, 6, 7, 8. By Lemma 4.2, 1(t) contains both of these subsystem
subgroups. Together they generate G, so 1(t) = G.

Now consider k = 3, so t ∈ A3
1. Here we can take t = uα4(1)uα6(1)uα8(1), and we

see that 1(t) contains subsystem subgroups A7(q) and A6(q) as in the previous case.
Finally consider k = 4. A Levi subgroup A4

1 lies in a subsystem subgroup A8, so
Lemma 4.2 gives 1(t) ≥ A8(q), which is maximal. Also 1(t) is CG(t)-invariant,
and CG(t) = [q84

].C4(q) by [12]. Hence 1(t) = G.
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Case G = E7(q). Apart from root elements, there are four involution classes,
labelled A2

1, (A3
1)

(1), (A3
1)

(2), A4
1, with representatives

A2
1 : uα4(1)uα7(1),

(A3
1)

(1)
: uα2(1)uα5(1)uα7(1),

(A3
1)

(2)
: uα3(1)uα5(1)uα7(1),

A4
1 : uα2(1)uα3(1)uα5(1)uα7(1).

The A2
1 class is dealt with as for E8(q). For t in one of the A3

1 classes, t lies in
a subsystem subgroup D6(q), so by Lemma 4.5 we have 1(t) ≥ D6(q); one can
adjoin roots to those defining the A3

1 Levis to obtain several different D6 subsystem
subgroups, all of which lie in 1(t) and generate G. Finally, for t in the A4

1 class,
t again lies in a subsystem D6(q), so 1(t) contains D6(q) and is CG(t)-invariant
(here CG(t) = [q42

] · C3(q)), which is enough to force 1(t) = G.

Cases G = E6(q), F4(q). These are dealt with in similar fashion — the class
representatives t lie in subsystem subgroups D5(q) or D4(q), respectively, so 1(t)
contains this subgroup and is CG(t)-invariant, which forces 1(t) = G.

Case G = G2(q). Here q ≥ 4 (as we excluded G2(2)′ from the hypothesis). Apart
from long root involutions, there is one involution class Ã1, with representative
t = uα(1), where α is a short root. Take α = α1 + 2α2, where α1, α2 are simple
roots with α2 short, and let 8 be the root system. Now Ã1 = ⟨U±α⟩ is centralised
by A1 = ⟨U±α1⟩, and the action of A1 Ã1 on the 6-dimensional module V6 = VG(λ1)

is 1 ⊗ 1 ⊕ 0 ⊗ 1(2) (where 1 denotes the natural 2-dimensional module — see [12,
Chapter 11]). In particular the long and short root involutions act on V6 as (J 2

2 , J 2
1 )

and (J 3
2 ), respectively. For λ∈ Fq \{0, 1}, and for any involution x ∈ A1, the element

u = xuα(λ) is conjugate to both t and tu; so u is joined to t in the graph 0(C).
Hence 1(t) contains A1 × Uα . It is also CG(t)-invariant, and CG(t) = [q3

].A1(q),
from which we see that 1(t)≥CG(t). Since u is joined to t , also 1(t)≥CG(u). We
need to finally check that ⟨CG(t), CG(u)⟩ = G. We shall prove this with x = uα1(1)

(so u = uα1(1)uα(λ)).
Suppose that ⟨CG(t), CG(u)⟩ ̸= G, and let M be a maximal subgroup of G con-

taining ⟨CG(t), CG(u)⟩. From the maximal subgroups of G (see, for example, [2]),
we see that M must be the parabolic subgroup P = ⟨U±α1, Uβ : β ∈ 8+

⟩.
Write U = ⟨Uβ : β ∈ 8+

⟩. Since CG(u) ≤ P , there exists v ∈ U such that Av−1

1 ≤

CG(u), and so uv
∈ CG(A1) = Ã1. Since uv

∈ U , it follows that uv
∈ Ã1 ∩U = Uα .

However we can see from the commutator relations in U that this is not possible.
Therefore ⟨CG(t), CG(u)⟩ = G, completing the proof for G2(q).
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We now move on to the twisted exceptional groups G(q). For these, there are
convenient lists of involution class representatives given in [1].

Case G = 2E6(q). The involution class representatives t lie in a subsystem sub-
group 2D5(q), so by Lemma 4.5, 1(t) contains this subgroup and is CG(t)-invariant,
which forces 1(t) = G.

Case G = 2F4(q)′. For q = 2, Lemma 3.4 implies that for both the involution class
representatives t ∈

2F4(2)′ we have 1(t) ≥
2F4(2)′. Now assume q ≥ 4. Note that G

has two classes of involutions. From [5, p. 75] we see that there are no involutions
in 2F4(2) \

2F4(2)′. Hence both involution classes are represented by elements t in
a subgroup 2F4(2)′ of G, and so by the q = 2 case we have 1(t) ≥

2F4(2)′. Also
1(t) is CG(t)-invariant, and it follows that 1(t) = G.

Case G = 3D4(q). Again there are two involution classes, and both are represented
by involutions t in a subgroup G2(q) of G. Hence by the G2(q) case, for q ≥ 4 we
have 1(t) ≥ G2(q), and so 1(t) = G by the CG(t)-invariance. Finally, for q = 2
we have 1(t) = G by Lemma 3.4.

Case G = 2B2(q). Here q ≥ 8 and there is just one involution class tG , and by
Lemma 4.1, 1(t) is the centre of a Sylow 2-subgroup.

This completes the proof for exceptional groups. □

5. Proof of Theorem 1

For the first part of this section G =G(q) is a simple group of Lie type over Fq , where
q = 2a . We consider the binary action of G on a set �. We assume that H is the
stabiliser in G of a point ω ∈ � and that H is a proper subgroup of G of even order.

By [6, Lemma 2.5] we know that the action of G on (G : H), the set of cosets
of H in G, is binary (or, put another way, we can assume that the action of G is
transitive). Since H has even order, there exist involutions in G that fix elements
of (G : H). We take g to be an involution in H of maximal 2-fixity for the action
of G on (G : H). Now the following lemma immediately yields Theorem 1:

Lemma 5.1. One of the following holds:

(i) The element g is a long root involution, G = Sp2n(q), PSUn(q) or 2B2(q), and
1(g) is the centre of a long root subgroup that is contained in H (the centre of
a Sylow 2-subgroup when G =

2B2(q)).

(ii) The element g is a short root involution, G = Sp4(q) with q > 2, and 1(g) is
a short root subgroup that is contained in H.

If G =
2B2(q), then H = 1(g).
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Proof. The four possibilities for 1(g) are given by Theorem 2. We examine these
in turn, noting that Lemma 2.2 implies that 1(g) ≤ H .

If item (i) of Theorem 2 holds, then we have H = G which is a contradiction.
Items (ii) and (iii) are listed in the statement of the lemma.

Finally, if item (iv) of Theorem 2 holds, then G, g and 1(g) are shown in Table 1.
But, in this case, Lemma 3.5 implies that 1∞(g) = G and Lemma 2.7 implies that
1∞(g) ≤ H . Once again we have a contradiction.

To complete the proof of the lemma we use the fact that if G =
2B2(q), then G

has a single conjugacy class of involutions and so the fact that H = 1(g) follows
from [7, Theorem 1.1]. □

6. A partial converse to Theorem 1

The main result of this section, Proposition 6.3, pertains to the groups listed at
items (ii) and (iii) of Lemma 4.1. We show that particular actions of these groups
are binary. These are the first nonregular transitive binary actions to have been
described for the families PSpn(q), PSUn(q) and 2G2(q).

As we mention in the introduction, we conjecture that the actions considered in
Proposition 6.3 include all of the transitive binary actions of a simple group of Lie
type over a field of characteristic 2, for which a point stabiliser has even order.

Recall that a group H is a TI-subgroup of a group G if H is a subgroup of G
with the property that H ∩ H g is either H or {1} for g ∈ G. Now we need the
following result.

Lemma 6.1 [7, Lemma 2.3]. Suppose that G acts on �, the set of cosets of
a TI-subgroup H. The action is binary if and only if , given any three distinct
conjugates H1, H2 and H3 of H , we have H1 ∩ (H2 H3) = {1}.

Lemma 6.2. Let S = SL2(q) where q = pa for some prime p and positive integer a.
Let H be a Sylow p-subgroup of G. For all H1, H2 and H3, distinct conjugates
of H , we have H1 ∩ (H2 H3) = {1}.

Proof. Since S acts 2-transitively on the set of Sylow p-subgroups of S, we can as-
sume that H2 is the set of strictly upper-triangular matrices and H3 is the set of strictly
lower-triangular matrices. Now consider h2 ∈ H2 and h3 ∈ H3 and observe that

h2h3 =

(
1 a
0 1

) (
1 0
b 1

)
=

(
1+ab a

b 1

)
.

We wish to determine if h2h3 can lie in a third conjugate, H1, of H . If this were the
case, then h2h3 would be an element of order p. This requires that h2h3 has two
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eigenvalues equal to 1 and so the characteristic polynomial is λ2
− 2λ+ 1. But this

would imply that a or b is equal to 0. Thus if we take h2 and h3 to be nontrivial,
then h2h3 is not an element of order p. The result follows. □

Lemmas 6.1 and 6.2 show that the action of SL2(q) on the cosets of a Sylow
p-subgroup is binary. But in contrast, for q odd the action of PSL2(q) is not binary,
as shown in [7].

Proposition 6.3. Let G and H be one of the following:

(1) G = PSp2n(q) (n ≥ 1) or PSUn(q) (n ≥ 3) and H is the centre of a long root
subgroup of G.

(2) G =
2G2(q) or 2B2(q), and H is the centre of a Sylow p-subgroup of G with

p = 3 or 2, respectively.

Then the action of G on the set of right cosets of H is binary if and only if G is not
equal to PSp2(q) with q odd.

Note that q is an arbitrary prime power. When q is even, this lemma gives a
partial converse to Theorem 1.

Proof. It is well known, and easy to confirm directly, that in every case H is a
TI-subgroup of G. We will, therefore, prove Proposition 6.3 using Lemma 6.1.

If G is as in item (1), then we suppose, first, that G = PSp2(q) = PSL2(q). In
this case the action of G on the set of right cosets of H is binary if and only if q is
even, by [7, Theorem 1.2].

Suppose next that G = PSU3(q). Then the action of G on the set of conjugates
of H is 2-transitive and any distinct pair of conjugates of H generate a subgroup iso-
morphic to SL2(q). If (H2, H3) is such a pair, then H2, H3 are Sylow p-subgroups
of ⟨H2, H3⟩ and so, if H1 is a third conjugate of H satisfying H1∩ H2 H3 ̸= {1}, then
H1 must be a subgroup of ⟨H2, H3⟩ (since H is a TI-subgroup). But now Lemma 6.2
implies that in this case H1 ∩ H2 H3 = {1}. Thus the criterion of Lemma 6.1 is
satisfied and we conclude that the action is binary.

Suppose next that G = PSp2n(q) with n ≥ 2 or PSUn(q) with n ≥ 4. Then the
action of G on the set of conjugates of H has rank 3 (see [11]) and so G has 3
orbits in its action by conjugation on the set of pairs of conjugates of H , one of
which includes the pair (H, H), which we can ignore.

A second orbit includes the pair (H, H opp) where H opp is the centre of an
‘opposite’ root subgroup of H ; in particular ⟨H, H opp

⟩∼=SL2(q). Now the argument
proceeds just as for PSU3(q), via Lemma 6.2, to lead us to conclude that the criterion
of Lemma 6.1 is satisfied when (H2, H3) is in this orbit.
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The third orbit contains all pairs of conjugates of H that commute with each other.
We take G = PSp2n(q) first and display two such conjugates explicitly as follows:
we let {e1, . . . , en, f1, . . . , fn} be a hyperbolic basis for V = Fn

q with respect to an
alternating form ϕ and we set H †

2 to be the long root subgroup consisting of linear
maps g that fix every basis vector except for e1 and for which there exists αg ∈ Fq

such that

eg
1 = e1 + αg f1.

Similarly H †
3 is the long root subgroup consisting of linear maps g that fix every

basis vector except for e2 and for which there exists αg ∈ Fq such that

eg
2 = e2 + αg f2.

It is clear that nontrivial elements of H †
2 and H †

3 have a single Jordan block of
size 2, whereas an element of H †

2 H †
3 \ (H †

2 ∪ H †
3 ) has two Jordan blocks of size 2.

Writing H2 (resp. H3) for the projective image of H †
2 (resp. H †

3 ) we conclude that
the only long root elements in ⟨H2, H3⟩ lie in H2 ∪ H3. Since H is a TI-subgroup,
we conclude that if H1 is a third conjugate of H , then H1 ∩ H2 H3 = {1} and the
criterion of Lemma 6.1 is verified in this case too. We conclude, therefore, that the
action of G on the set of right cosets of H is binary.

The proof for G = PSUn(q) is identical except that our basis is written with
respect to a Hermitian form and we require that αg ∈ Fq2 satisfies αg + α

q
g = 0.

If G is as in item (2), then the result for G =
2B2(q) follows from [7, Theorem 1.1].

We are left with the case G =
2G2(q) for which we use facts from [14]. The group H

is the centre of a Sylow 3-subgroup of G, and all of its nonidentity elements lie in
the same conjugacy class C ; a representative is denoted by X in [14]. Moreover
H ∼= (Fq , +), and we can parametrise the elements of H as {h(c) : c ∈ Fq}, where
h(c)h(d) = h(c + d).

Let H2, H3 be distinct conjugates of H . We claim that

(4) H2 H3 ∩ C = (H2 ∪ H3) \ {1},

from which the result will follow in the usual way from Lemma 6.1. To prove (4),
we use character theory to count the number of triples in the set

S := {(x1, x2, x3) ∈ C3
: x1x2x3 = 1}.

By the well-known Frobenius formula (see, for example, [10, 30.4]), we have

|S| =
|C |

3

|G|

∑
χ∈Irr(G)

χ(X)3

χ(1)
.
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All the values χ(X) for χ ∈ Irr(G) are listed in [14, p. 87], and we compute from
these that

|S| = (q3
+ 1)(q − 1)(q − 2).

The number of triples in S of the form (h(c), h(d), h(−c − d)) is (q − 1)(q − 2),
and if we multiply this by the number of conjugates of H , we obtain |S|. It follows
that every triple in S is a conjugate of such a triple (h(c), h(d), h(−c − d)), and
(4) follows. □
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Dedicated with admiration and thanks to the memory of our colleague Gary M. Seitz

For an element x of a finite group T , the Aut(T )-class of x is {xσ |σ ∈Aut(T )}.
We prove that the order |T | of a finite nonabelian simple group T is bounded
above by a function of the parameter m(T ), where m(T ) is the maximum,
over all primes p, of the number of Aut(T )-classes of elements of T of
p-power order. This bound is a substantial generalisation of the results of
Pyber (1992) and of Héthelyi and Külshammer (2005), and it has implications
for relative Brauer groups of finite extensions of global fields.

1. Introduction

In 1992 Pyber [33] showed that a group of order n contains at least O
( log n

(log log n)8

)
conjugacy classes of elements. This solved a problem of Brauer from 1963 [3],
who had asked for a significant improvement on his lower bound of log log n. In
Section 1.1 we briefly discuss the interesting story around these bounds, which date
back to work of Landau in 1903 and extend to recent work in 2017. The special
case of Pyber’s bound for a nonabelian simple group T could be turned around to
state that |T | < c f (m) where m is the number of Aut(T )-classes in T, c is a constant,
and f is the particular function f (m) = (log m)2

· log log m. This alternative
statement of Pyber’s result was used in [32, Theorem 4.4] to prove a conjecture
about maximal subgroups of a finite group which are “covering subgroups”, and in
turn, this application had consequences for Kronecker classes of algebraic number
fields (see [32, Section 4]).

Many classical results concerning conjugacy classes of elements in groups have
analogues in the case where the conjugacy classes are restricted to those consisting
of elements of prime power order. For example, given a core-free subgroup H of
a group G, not only is a there a conjugacy class of elements of G that does not
meet H , but Fein, Kantor and Schacher [9] showed that there is a conjugacy class
of elements of prime power order that avoids H . Similarly, not only does every
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nonlinear irreducible character of a finite group vanish on some conjugacy class of
elements, but Malle, Navarro and Olsson [27] showed that each such character must
vanish on some conjugacy class of elements of prime power order. Such analogues
usually have interesting applications: for example, the Fein–Kantor–Schacher result
is equivalent (see [9, Section 3]) to the fact that the relative Brauer group of a
nontrivial finite extension of global fields is infinite.

In this paper we prove a new bound (Theorem 1.1) on the order of a finite simple
group related to its p-elements, that is, elements of p-power order for various
primes p. The bound is a substantial generalisation of the results of Pyber and
others, in that the parameter m above is replaced by

(1) m(T ) = max
p prime

m p(T ),

where m p(T ) = #{Aut(T )-classes of elements of p-elements in T }.

Theorem 1.1. There exists an increasing function f on the natural numbers such
that, for a finite nonabelian simple group T , the order of T is at most f (m(T )).

In the proof of Theorem 1.1 for exceptional groups of Lie type, we are indebted to
the work of Gary Seitz, to whose memory this paper is dedicated, and his coauthors
Martin Liebeck and Jan Saxl, for their classification of the subgroups of maximal
rank of these groups [25]. Their results gave us the detailed information about
certain tori and their normalisers on which our proof is based. In addition, in the
proof of Theorem 1.1 for classical groups, we use the description by Aschbacher
and Seitz [1] of conjugacy classes of involutions in Chevalley groups of even
characteristic to bound the dimension (Lemma 4.1).

The function f (n) we obtain in the proof of Theorem 1.1 involves an n! term.
It is possible that a better function might be obtained, see Remark 4.3 for further
comments. Since the function f (n) in Theorem 1.1 is increasing, the bound can be
turned around to give a lower bound in terms of |T | for the number of Aut(T )-classes
of p-elements in T .

Corollary 1.2. There exists an increasing function g on the natural numbers such
that, for a finite nonabelian simple group T , there is a prime p dividing |T | such that
the number of Aut(T )-classes of elements of p-power order in T is at least g(|T |).

There are numerous bounds in the literature that relate |T | with various parameters
concerning numbers of conjugacy classes or Aut(T )-classes. For example, by [28,
Theorems 1.2 and 1.4], for a given prime p dividing |T |, the order |T | is bounded
above in terms of the number of its p-regular conjugacy classes (elements of order
coprime to p) and also, apart from certain rank 1 Lie type simple groups, |T | is
bounded above in terms of the number of its p-singular conjugacy classes (elements
of order a multiple of p). One motivation for proving Theorem 1.1 is a conjecture
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concerning finite groups G with a proper subgroup that meets all Aut(G)-classes
of elements of G of prime power order [32, Conjecture 4.3′]. Thus, rather than
considering p-singular or p-regular elements for some fixed prime p, we must work
with all elements of prime power order. In future work [12] we apply Theorem 1.1
to prove an important case of [32, Conjecture 4.3′], which has consequences for
relative Brauer groups of field extensions as discussed in [9; 12; 14].

Finally we note that many bounds of this type in the literature are available
for general finite groups, and it would be interesting to know if the bounds in
Theorem 1.1 and Corollary 1.2 can be used to obtain similar bounds for larger
families of finite groups.

This paper is organised as follows. In Section 2 we prove some preliminary
numerical results and a result relating the normalisers of cyclic subgroups S of a
group G with our parameter m(G) (1). We treat the alternating groups in Section 3
and the bulk of the work takes place in Sections 4 and 5 where we consider the
classical groups and the exceptional groups of Lie type, respectively. Finally in
Section 6 we complete the proof of Theorem 1.1.

1.1. Commentary on Landau’s and Pyber’s theorems. Landau’s theorem [23]
from 1903 states that, for a given positive integer k, there are only finitely many
finite groups having exactly k conjugacy classes of elements, and so such a group
must have order bounded in terms of k. Brauer [3] made this bound explicit in 1963,
showing that a group of order n has at least log log n conjugacy classes, and asked
for a substantially better bound. Providing an improvement was the main focus of
Pyber’s 1992 paper [33], where he proved that a group of order n ⩾ 4 must have
at least c log n/(log log n)8 conjugacy classes for some “computable constant” c.
The relevance for this paper is Pyber’s bound for nonabelian simple groups [33,
Lemma 4.4]: if T is a finite nonabelian simple group and a = |Aut(T )|, then the
number of Aut(T )-classes in T is at least

2c(log a/log log a)1/2
for some constant c.

Since 1992 there have been numerous contributions that strengthened these bounds
(see [2] for an overview). Currently the best lower bound for the number k(G) of
conjugacy classes of an arbitrary finite group G is given by Baumeister, Maróti and
Tong-Viet in 2018 [2, Theorem 1.1]:

∀ϵ >0, ∃δ>0 such that ∀ finite groups G with |G| ⩾ 3, k(G)⩾
δ log |G|

(log log |G|)3+ϵ
.

Many better lower bounds are available for restricted classes of groups, for example,
for G soluble then Keller [19] proved that k(G) ⩾ c log |G|

log log |G|
for some constant c;

a purely logarithmic lower bound k(G) > log3 |G| was given in [2, Theorem 1.2]
for groups with trivial soluble radical; and a better than logarithmic lower bound
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was obtained for nilpotent groups by Jaikin-Zapirain [18]. These bounds have been
exploited to obtain related bounds concerning irreducible complex representations,
for example, bounding the number of irreducible characters of odd degree [11; 16]
in connection with the McKay conjecture. Also, as mentioned above, there are
various results in [28] that give lower bounds for the number of conjugacy classes
of p-regular elements, or p-singular elements, or the total number of classes of
elements of prime power order (adding over the prime divisors) in [15], but to
our knowledge our bound in terms of classes of p-elements, for a certain single
prime p, is new.

Remark 1.3. Our proof of Theorem 1.1 for simple classical groups hints towards a
possible bound for the order of a simple group in terms of another property. For a
group G and a prime s we define

ms-exp(G) = #{Aut(G)-classes of elements of order exp(G)s},

where exp(G)s is the s-part of the exponent exp(G), and set mexp(G) to be the
maximum of ms-exp(G) over all primes s dividing |G|. In addition, for a set S of
primes we set mS-exp(G) to be the maximum of ms(G) over all primes s ∈ S.

The above concepts are motivated by choices made in the proof of Proposition 4.2.
It turns out that for simple classical groups T , apart from the characteristic p, the
set S(T ) of primes s we consider all have the property that the Sylow s-subgroups
are cyclic and hence have order exp(T )s , and the s-elements we consider are those
of maximal order exp(T )s . Thus for a simple classical group T of characteristic p,
we prove that |T | is bounded above by a function of

m′(T ) = max{m p(T ), mS(T )-exp(T )},

where m p(T ) is as in (1). See Remark 4.4 for further details. This motivated us
to consider whether a similar bound holds for other simple groups. In Remark 3.2
we show, using the prime number theorem, that for large enough m, |Alt(m)| is
bounded above by a function of mexp(Alt(m)). We believe this style of bound has
not previously been studied. It would be interesting to know if such a bound holds
also for the simple exceptional groups of Lie type.

2. Preparatory lemmas

For a prime s and integer n, let ns denote the s-part of n, that is, the highest power
of s dividing n, and let ns′ = n/ns denote the part of n prime to s. For an integer
m define S(m) to be the set of all prime divisors s of qm

− 1 such that (qm
− 1)s

does not divide q t
− 1 for any t < m. In our analysis we need that

Prod(m, q) :=

∏
s∈S(m)

(qm
− 1)s
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is large enough, for example, larger than q or some constant multiple of q . We use
the following lemma to treat the classical groups.

Lemma 2.1. Let q be a prime power and m a positive integer.

(i) Suppose that s is a prime divisor of qm
− 1. If t is the smallest positive integer

such that (qm
− 1)s divides q t

− 1, then t divides m.

(ii) q + 1 divides Prod(2, q), and q2
+ 1 divides Prod(4, q).

(iii) If m is odd and m > 1, then 2 ̸∈ S(2m) and Prod(2m, q) divides qm
+ 1.

(iv) Suppose that m is an odd prime. Then:

(1) If s ∈ S(m) and s |q − 1, then s = m; if s ∈ S(2m) and s |q2
− 1, then

s = m and m |q + 1.
(2) (qm

− 1)/(q − 1) divides Prod(m, q).
(3) (qm

+ 1)/(q + 1) divides Prod(2m, q).

Proof. (i) Let sb
= (qm

− 1)s and let t be the least positive integer such that sb

divides q t
− 1. Then t ⩽ m. Write m = kt + r , where 1 ⩽ r ⩽ t . Then sb divides

gcd(qm
− 1, q t

− 1) = qgcd(m,t)
− 1, and gcd(m, t) = gcd(r, t) ⩽ r ⩽ t . By the

minimality of t we have r = t , and hence t divides m.

(ii) If a prime s |q2
− 1 then either s ∈ S(2) or (q2

− 1)s divides q − 1, and hence
q2

− 1 divides (q − 1) · Prod(2, q), so Prod(2, q) is divisible by q + 1. Similarly, if
a prime s |q4

− 1 then, by part (i), either s ∈ S(4) or (q4
− 1)s divides q2

− 1, and
hence q2

+ 1 divides Prod(4, q).

(iii) Next assume that m is odd and m > 1. If q is even then 2 ̸∈ S(2m) by the
definition of S(2m). It turns out that this also holds if q is odd: by [13, Lemma 2.5],

(q2m
− 1)2 = ((q2)m

− 1)2 = (q2
− 1)2

and as m > 1, again 2 ̸∈ S(2m) by the definition of S(2m). Thus, for any q , S(2m)

consists of odd primes. Since gcd(qm
− 1, qm

+ 1) = (2, q − 1), it follows that for
any odd prime s, (q2m

−1)s divides exactly one of qm
+1 and qm

−1. Moreover, if
s ∈ S(2m) then (q2m

−1)s does not divide qm
−1 by definition, and hence, for each

s ∈ S(2m), we have that (q2m
− 1)s divides qm

+ 1. Hence Prod(2m, q) divides
qm

+ 1, proving (iii).

(iv) Now assume that m is an odd prime and let s be a prime dividing qm
− 1.

Then either s ∈ S(m) or (qm
− 1)s divides q − 1, and hence qm

− 1 divides
(q − 1) · Prod(m, q), so Prod(m, q) is divisible by (qm

− 1)/(q − 1). Furthermore,
if s ∈ S(m) and s |q − 1, then s must divide (qm

− 1)/(q − 1) by the definition
of S(m), and hence s divides

gcd
(

qm
− 1

q − 1
, q − 1

)
= gcd(m, q − 1).
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Since m is prime this implies s = m. Similarly, if s ∈ S(2m) and s divides q2
− 1,

then s must divide (q2m
− 1)/(q2

− 1) by the definition of S(2m), and hence s
divides

gcd
(

q2m
− 1

q2 − 1
, q2

− 1
)

= gcd(m, q2
− 1).

Since m is prime this implies that s = m divides q2
− 1. Further, by part (iii),

s |qm
+ 1 and hence s divides gcd(qm

+ 1, q2
− 1) = q + 1. Thus parts (1) and (2)

are proved.
Finally, if a prime s divides q2m

−1 and t is minimal such that (q2m
−1)s divides

q t
− 1, then either s ∈ S(2m), or t ∈ {m, 2, 1}. Thus q2m

− 1 divides

Prod(2m, q) ·
(qm

− 1)(q2
− 1)

gcd(qm − 1, q2 − 1)
= Prod(2m, q) · (qm

− 1)(q + 1).

It follows that (qm
+ 1)/(q + 1) divides Prod(2m, q). □

Definition 2.2. We say that a group G is prime power bounded by n, or simply,
pp-bounded by n, if m(G) ⩽ n, where m(G) is as in (1). In other words, for each
prime p dividing |G|, the number of Aut(G)-classes of elements of p-power order
in G is at most n.

In the following lemma φ denotes the Euler φ-function, namely for a positive
integer m, φ(m) is the number of positive integers at most m and coprime to m.

Lemma 2.3. Suppose that G is a group that is pp-bounded by n. Let S ⩽ G be a
nontrivial cyclic s-subgroup of order sb, where s is prime, and let N = NAut(G)(S).
Then there is a bijection C → D, where

C := {xAut(G)
| x ∈ S, o(x) = sb

}, D := {x N
| x ∈ S, o(x) = sb

}

and |C| = φ(|S|)/r with r = |NAut(G)(S) : CAut(G)(S)|. Furthermore,

φ(|S|) = sb−1(s − 1) ⩽ rn and φ(|S|) divides r(n!).

Proof. Note that if x1, x2 ∈ S have order sb and are such that xg
1 = x2 for some

g ∈ Aut(G), then Sg
= ⟨x1⟩

g
= ⟨xg

1 ⟩ = ⟨x2⟩ = S, so that g ∈ N . Conversely, if
x1, x2 ∈ S are conjugate by an element of N , then they are also conjugate under the
action of Aut(G). This gives a bijection C → D as claimed.

For x N
∈ D, we know ⟨x⟩ = S, so |x N

| = |N : CN (x)| = |N : CN (S)|. Note that
CAut(G)(S)⩽ NAut(G)(S) = N so that CAut(G)(S) = CN (S). Hence |N : CN (S)| = r .
Thus each N -class in D has length exactly r . Since S contains φ(|S|) elements of
order |S| (where φ is Euler’s function), r divides φ(|S|) and |D| = φ(|S|)/r . Since
G is pp-bounded by n, we have φ(|S|)/r = |D|⩽ n, and hence φ(|S|) divides r(n!).

□

Notation 2.4. Throughout the paper log x denotes the natural logarithm of x .
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Lemma 2.5. For all a > 1 we have

a1/4

4
<

√
a

log a
.

Proof. The inequality in the statement is equivalent to log a < 4a1/4. Exponentiating
both sides, we see the latter inequality is equivalent to a < e4a1/4

, that is,

f (a) := e4a1/4
− a > 0.

Now

f ′(a) =
e4a1/4

a3/4 − 1 and f ′′(a) =
e4a1/4

a3/2

(
1 −

3
4a1/4

)
.

For a ⩾ 1 we have f ′′(a) > 0, so that f ′(a) is increasing for a ⩾ 1. Further,
f ′(1) = e4

− 1 > 0, so f ′(a) > 0 for all a ⩾ 1. Thus f (a) is increasing for a ⩾ 1,
and since f (1) = e4

− 1 > 0, we have f (a) > 0 for all a ⩾ 1, as required. □

Lemma 2.6. Suppose that q = pa , p ⩾ 2 and a ⩾ 1. Then
√

q log 2
2

⩽
q
a

.

Proof. Note that a = log q/log p ⩽ log q/log 2. Now since log x ⩽ 2
√

x for all
x ∈ R with x > 0, we have

a ⩽
2
√

q
log 2

and thus a
√

q ⩽ 2q/log 2, which yields
√

q log 2
2

⩽
q
a

. □

3. The alternating groups

We first consider the alternating groups.

Lemma 3.1. If T ∼= Alt(m) is pp-bounded by n, then |T | ⩽ 1
2(3n + 2)! .

Proof. Suppose that T ∼= Alt(m) is pp-bounded by n. If m ̸= 6, we note that T
has ⌊m/3⌋ Aut(T )-classes of elements of elements order 3. This gives m ⩽ 3n + 2,
and hence |T |=

1
2 ·m!⩽ 1

2 ·(3n+2)! . If m = 6, then T has two classes of 2-elements,
so n ⩾ 2. Then certainly |T | = 360 ⩽ 1

2 · (3n + 2)! holds. □

Remark 3.2. As discussed in Remark 1.3, another type of bound on |T | for a
simple group T is in terms of the number of Aut(T )-classes of elements with
order equal to exp(T )p, the p-part of the exponent of T . We explain briefly that
there is such a bound when T ∼= Alt(m), for sufficiently large m. Recall that
exp(Alt(m)) = lcm{m′

: 1 ⩽ m′ ⩽ m}.
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Let π(x) denote the number of integers less than or equal to x that are prime.
Based on the prime number theorem, we know (for sufficiently large x) that

(2) c x
log x

< π(x) < d x
log x

for explicit constants c and d. For example, if x ⩾ 11, then we can take c = 1,
and for x “sufficiently large” we can take d = 1.04423; see [34, pp. 176–177].
These bounds allow us to prove existence of primes in certain intervals, somewhat
analogously to Bertrand’s postulate which asserts that there is a prime between m
and 2m for all positive integers m. We are interested here in the existence of a
prime p such that

√
m/3 < p ⩽

√
m/2; and we claim that such a prime exists for

sufficiently large m. Indeed, if
√

m/3 is large enough so that (2) holds with c = 1,
then we have

π(
√

m/2) >

√
m/2

log
√

m/2
and π(

√
m/3) < d

√
m/3

log
√

m/3
,

and a sufficient condition for p to exist is that
√

m/2
log

√
m/2

> d
√

m/3
log

√
m/3

,

which is equivalent to

log m >

1
√

2
log 3 −

1
√

3
d log 2

1
√

2
−

1
√

3
d

and since d is a constant, this holds for sufficiently large m.
Thus, if m is large enough we may choose a prime p such that

√
m/3< p⩽

√
m/2,

or equivalently, 2p2 ⩽ m < 3p2. We may assume that p > 3 (by taking m > 27)
and then we see that the p-part exp(T )p of the exponent is exactly p2. Meanwhile,
the inequality 2p2 ⩽ m implies that T has at least p Aut(T )-classes of elements of
order p2, namely, for 1 ⩽ i ⩽ p, elements that have a single p2-cycle and exactly i
cycles of length p. Such elements with different values of i cannot be conjugate in
Aut(T ) ∼= Sym(m) because they have different cycle types, so there are at least p
Aut(T )-classes of elements with exponent exp(T )p, that is, mexp(T ) ⩾ p. Thus
m < 3p2 ⩽ 3(mexp(T ))2, and hence |T | is bounded above by 1

2(3(mexp(T ))2)! .

4. Finite simple classical groups

Let T be a finite simple classical group defined over a field of order q = pa , as in
one of the lines of Table 1. The table records also the natural module V for T and
its dimension, and the covering group G of T in GL(V ).

Lemma 4.1. Let T and d be as in Table 1. Then the number of unipotent conjugacy
classes is at least d.
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T d V G conditions

PSL(d, q) d ⩾ 2 Fd
q SLd(q) (d, q) ̸= (2, 2) or (2, 3)

PSU(d, q) d ⩾ 3 Fd
q2 SUd(q) (d, q) ̸= (3, 2)

PSp(2d, q) d ⩾ 2 F2d
q Sp2d(q) (d, q) ̸= (2, 2)

P�◦(2d+1, q) d ⩾ 3 F2d+1
q �◦

2d+1(q) q odd

P�ϵ(2d, q) d ⩾ 4 F2d
q �ϵ

2d(q) ϵ ∈ {+, −}

Table 1. Simple classical groups, their covering groups and natural modules.

Proof. Note that the identity element forms a unipotent conjugacy class, and since
there is always a nonidentity unipotent conjugacy class, the assertion holds if d = 2.
Thus we may assume that d ⩾ 3. Furthermore, making use of the identity, we
need to show the existence of d − 1 nonidentity unipotent classes. The unipotent
conjugacy classes in classical groups are well known; see, e.g., [5; 10; 24; 36]
or [1] for unipotent elements of order 2.

Let Ji denote an i ×i Jordan block with all 1’s down the diagonal. Then for each i
such that 2 ⩽ i ⩽ d , the group T = PSL(d, q) contains an element corresponding to
the matrix that is the direct sum of Ji and Id−i . These are clearly not conjugate under
any element of P0L(d, q) or under the inverse transpose map, so the number of
Aut(T )-conjugacy classes of nonidentity unipotent elements is at least d − 1. Each
of these conjugacy classes meets PSU(d, q) nontrivially and so for T = PSU(d, q)

the number of Aut(T )-conjugacy classes of nonidentity unipotent elements is also
at least d − 1.

Suppose now that T = PSp(2d, q) (with d ⩾ 3). For each i ⩽ d, the group T
contains an element whose corresponding matrix has Jordan canonical form that
is the direct sum of i copies of J2 and I2(d−i). This gives us d different conjugacy
classes in T that are clearly not fused in P0Sp(2d, q). Since 2d > 4, we have
Aut(T ) = P0Sp(2d, q), and the result is proved.

Next suppose that T = P�◦(2d + 1, q) and q is odd. For each even i with
1⩽ i ⩽ 2d +1, there are unipotent elements whose corresponding matrix has Jordan
canonical form being the direct sum of Ji and I2d+1−i . This gives d distinct classes
that are clearly not fused in P0O(2d + 1, q) = Aut(T ), as required.

Finally, we have T = P�ϵ(2d, q) with ϵ ∈ {±}. First suppose that q is odd. For
each i with 1 ⩽ i ⩽ d, there are unipotent elements in T whose corresponding
matrix has Jordan canonical form being the direct sum of J2i and I2(d−i). This
gives d distinct classes that are clearly not fused under inner, diagonal or field
automorphisms of T . Moreover, when 2d = 8 and ϵ = +, from [4, Proposition 3.55]
we see that none of these classes are fused under a triality automorphism. Hence
T has at least d Aut(T )-classes of unipotent elements. Suppose now that q is
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even. We again follow the notation of [1, Section 8] for involutions in T and use
the geometric description in [5, Section 3.5.4]. For each even i < d we get two
T -classes of involutions with Jordan canonical form consisting of i copies of J2.
When i = d and d is even, we get one such T -class when ϵ = − and three when
ϵ = +. Fusing of these classes in P0O±(2d, q) occurs only when ϵ = + and
i = d is even, in which case two of the three classes fuse. When d is odd we have
Aut(T ) = P0O±(2d, q) and so we see that T has at least d − 1 Aut(T )-classes of
involutions as required. Suppose now that d is even. Then the number of T -classes
of involutions is 2(⌊(d −1)/2⌋)+3 = d +1 when ϵ = + and 2(⌊(d −1)/2⌋)+1 = d
when ϵ = −. Thus if ϵ = −, or if ϵ = + and 2d ̸= 8, we see that T has at least d
Aut(T )-classes of involutions. Finally, if 2d = 8 and ϵ = +, then two of the classes
with i = 4 (denoted a4 and a′

4 in [5]) are fused with one of the classes with i = 2
(denoted c2 in [5]) under triality [4, Proposition 3.55]. Hence in this final case we
also get at least d − 1 Aut(T )-classes of involutions, as required. □

Proposition 4.2. There is an increasing integer function g such that, if T is a finite
simple classical group as in Table 1, and T is pp-bounded by n, then |T | < g(n).

Proof. The group T has a natural module V as in Table 1, and it is convenient to
work with the preimage G ⩽ GL(V ) acting linearly on V . We set q = pa with
p prime. Let ϕ denote the natural map ϕ : G → T , and for a subgroup H of T
let Ĥ denote the full preimage of H under ϕ. We first observe that, by Lemma 4.1,
the number of Aut(T )-classes of unipotent elements of T is at least d, and hence
d ⩽ c1(n) with c1(n) = n.

There is a prime m satisfying d
2 < m ⩽ d, and we choose the smallest possible

value for m, except that we choose m = 3 if d = 3. Then one of the following holds:

(i) m < d .

(ii) d = m = 2 with T = PSL(2, q) or PSp(4, q).

(iii) d = m = 3 with T = PSL(3, q), PSU(3, q), PSp(6, q), or P�◦(7, q).

Choice of decomposition. If m < d then we choose a decomposition V = U ⊕ W ,
with dim(U )=m in the linear and unitary cases, and dim(U )=2m in the symplectic
and orthogonal cases (and possibly dim(W ) = 0). Additionally, if G preserves a
form, we choose U to be nondegenerate and W = U⊥. Finally, in the orthogonal
case, we choose U of minus-type.

Choice of cyclic subgroup. In our arguments we will work with a cyclic subgroup
of G that stabilises the decomposition V = U ⊕ W and acts trivially on W (see [30,
Section 3] for a description of the linear action of these tori). More specifically:

(L) If T = PSL(d, q) we consider a cyclic subgroup H of order qm
−1

(q−1)·(m,q−1)
such

that ĤU is a Singer cycle of SL(U ) and Ĥ fixes W pointwise.
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case G |Ĥ | ĤU Ĥ W notes

(L) SL(d, q) (qm
−1)/(q−1) ⩽GL(1, qm) 1 m =d if d =2 or 3

(U) SU(d, q) (qm
+1)/(q+1) ⩽GU(1, qm) 1 m =d if d =3

(Sp) Sp(2d, q) qm
+1 ⩽Sp(2, qm) 1 m =d if d =2 or 3

(O) �(2d+1, q) (qm
+1)2′ ⩽GO−(2, qm) 1 m =d if d =3

(O) �±(2d, q) (qm
+1)2′ ⩽GO−(2, qm) 1

Table 2. Choices for a cyclic subgroup Ĥ of G.

(U) If T = PSU(d, q) then m is an odd prime and we consider a cyclic subgroup H
of order qm

+1
(q+1)·(m,q+1)

such that ĤU is a Singer cycle of SU(U ) and Ĥ fixes W
pointwise.

(Sp) If T = PSp(2d, q) we consider a cyclic subgroup Ĥ of order qm
+1 such that

ĤU is a maximal torus of Sp(2m, q) and Ĥ fixes W pointwise.

(O) If T = P�ϵ(2d, q) or P�◦(2d + 1, q) with m < d , and also in the exceptional
case where T = P�◦(7, q) with q odd and d = m = 3, then the parameter m is an
odd prime and U is of minus-type and dimension 2m. By [22, Lemma 4.1.1(ii)],
the stabiliser in G of the decomposition V = U ⊕ W contains the subgroup

�(U ) × 1 ∼= �−(2m, q),

which fixes W pointwise. We consider a cyclic subgroup Ĥ of �(U ) × 1 of order
qm

+1
(q+1)2

such that ĤU is contained in a Singer cycle of �(U ). Note that

|O(U ) : �(U )| = 2 · (2, q − 1)

(see [22, Table 2.1.C]) and that (qm
+1)/(q +1) is odd since m is odd, so the 2-part

(qm
+ 1)2 = (q + 1)2 and |Ĥ | = (qm

+ 1)2′ .
Thus the cyclic subgroup Ĥ has the properties given in the appropriate row of

Table 2. First we consider the linear case.

Case 1. T = PSL(d, q).
Here |Ĥ | = (qm

−1)/(q −1) and we set H = ϕ(Ĥ). Also H ∼= Ĥ if m < d , or if
m =d =3 with gcd(3, q−1)=1, or if m =d =2 with q even, since in these cases Ĥ
contains no nontrivial scalar matrix. We assume first that |H | = (qm

− 1)/(q − 1),
and comment at the end on how to adjust our argument to deal with the exceptional
cases when m = d = 2 or 3 and m divides q − 1.

The centraliser of ĤU in GL(U ) is the full Singer cycle C = GL(1, qm) and
NGL(U )(Ĥ)= C.m (see [29, Lemma 2.1] or [17, Satz II.7.3, p. 187]). Setting q = pa

with p prime, we have

N0L(d,q)(Ĥ) =
(
GL(1, qm) · m × GL(d − m, q)

)
· a
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(or GL(1, qm) ·ma if m = d). It follows that r := |NAut(T )(H)/CAut(T )(H)| divides
2am (noting that in general an outer automorphism corresponding to the “inverse
transpose map” will act nontrivially on H if d > 2).

Let s ∈S(m) as defined in Section 2, and let Ŝ be the Sylow s-subgroup of Ĥ and
S =ϕ(Ŝ). Since |Ŝ| does not divide q−1 by the definition of S(m), we have |S|= sb

for some b ⩾ 1 and φ(|S|) = sb−1(s − 1). Also Ŝ is irreducible on U , and S and H
have the same centraliser and normaliser in Aut(T ) (see [29, Lemma 2.1]). Hence
|NAut(T )(S)/CAut(T )(S)| = |NAut(T )(H)/CAut(T )(H)| = r divides 2am. Further, by
Lemma 2.3, the number of Aut(T )-classes of elements of T of order |S| is φ(|S|)/r
and divides n! . Thus φ(|S|) divides r · n! , which divides 2am · n! . Since m ⩽ d
and d ⩽ c1(n) = n, it follows that 2m ⩽ 2n and hence 2m divides (2n)! . Thus

(3) φ(|S|) = sb−1(s − 1) divides c2(n) a,

where c2(n) = (2n)! · n! . Note that the bound c2(n) a is independent of the prime
s ∈ S(m). The condition (3) implies that s − 1 is a divisor of c2(n) a, and since
the number of divisors of c2(n) a is less than 2

√
c2(n) a (see [31, Section 8.3]), it

follows that |S(m)| < 2
√

c2(n) a.
Now |H | = |ϕ(Ĥ)| = (qm

− 1)/(q − 1) and recall that m is prime. If s ∈ S(m)

and s does not divide q − 1, then (qm
− 1)s = |H |s and in this case by (3) we have

(qm
− 1)s = |S| = sb

=
sφ(|S|)

(s − 1)
⩽ 2c2(n) a.

On the other hand if s ∈ S(m) and s divides q − 1, then s = m by Lemma 2.1(iv).
In this case,

(qm
− 1)m

(q − 1)m
= |S| =

mφ(|S|)

(m − 1)
⩽ 2c2(n) a.

Putting this together we see that

Prod(m, q) =

∏
s∈S(m)

(qm
− 1)s ⩽ (q − 1)m · (2c2(n) a)2

√
c2(n) a.

Thus we have
Prod(m, q)

(q − 1)m
⩽ (2c2(n) a)2

√
c2(n) a.

By Lemma 2.1(iv), we obtain a lower bound:

Prod(m, q)

(q − 1)m
⩾

1
(q − 1)m

·
qm

− 1
q − 1

⩾
qm

− 1
(q − 1)2 .

Suppose first that m ⩾ 3. Then (qm
− 1)/(q − 1)2 > q = pa . If a = 1, this gives

the upper bound q < (2c2(n))2
√

c2(n) and we are done. Suppose that a > 1. Now

(2c2(n) a)2
√

c2(n) a
=

(
(2c2(n))2

√
c2(n)

)√
a
(e2

√
c2(n))log(a)

√
a ⩽ c3(n)

√
a log a
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for some function c3(n). Hence a log p <
√

a log a log(c3(n)) which yields
√

a log p
log a

< log(c3(n)).

Since a > 1, we have
√

a/ log a ⩾ 1, so log p ⩽ log c3(n) and hence p ⩽ c3(n).
Also, for all a > 1, Lemma 2.5 gives

a1/4 log 2
4

⩽

√
a log 2
log a

⩽

√
a log p
log a

,

and hence a ⩽
( 4

log 2 log(c3(n))
)4. Thus, when m ⩾ 3, we have shown that all of

a, p and d are bounded above by functions of n, and hence |T | is also bounded
above by some function of n. If m = d = 2 with q even, then (q − 1)m = 1 and, by
Lemma 2.1(ii), pa < q + 1 ⩽ Prod(m, q). Our arguments therefore give

pa < Prod(m, q) ⩽ c3(n)
√

a log a,

and the same argument yields the required bound.
Now we treat the two exceptional cases: if m = d = 3 with 3 dividing q − 1,

then Ĥ has order (q3
−1)/(q −1) = q2

+q +1 and its image H = ϕ(Ĥ) has order
1
3(q2

+ q + 1). Also, by Lemma 2.1(iv), we have (q3
− 1)/(q − 1) ⩽ Prod(m, q).

Thus the argument above yields

pa
= q <

(q3
− 1)

(q − 1)2 ⩽
Prod(3, q)

(q − 1)3
= 3 · |H | ⩽ c′

3(n)
√

a log a,

and the required bound.
Finally assume that m = d = 2 with q odd. Here T has unique conjugacy classes

of cyclic subgroups of orders 1
2(q +1) and 1

2(q −1), and one of these orders is odd,
say 1

2(q + δ). We choose H < T with H cyclic of odd order 1
2(q + δ), and for

each prime s dividing 1
2(q + δ), we consider the Sylow s-subgroup S of H . The

index |NAut(T )(S) : CAut(T )(S)| is 2a, and hence by Lemma 2.3, the number of
Aut(T )-classes of elements of T of order |S| divides 2a · n! . Now a very similar
argument to that above shows that the product over the primes s of the orders of
these Sylow subgroups of H (which equals |H |) is bounded above by c3(n)

√
a log a

for some function c3(n), and since |H | ⩾ 1
2(q − 1) ⩾ pa/3, we conclude that p

and a, and hence also q are bounded by some function of n. Thus |T | is bounded
by a function of n, which completes the proof in the linear case.

Case 2. The remaining cases with m = d in (ii) and (iii).
Here T and m are as in Table 3; in each case T contains a cyclic subgroup H

with order as in the respective row of Table 3. For each prime s dividing |H |, we
consider the Sylow s-subgroup S of H . Then H and S have the same centralisers and
normalisers in Aut(T ) and the index r = |NAut(T )(S) : CAut(T )(S)| is as in Table 3.



150 MICHAEL GIUDICI, LUKE MORGAN AND CHERYL E. PRAEGER

T m |H | r

PSp(4, q) 2 (q2
+ 1)/(2, q − 1) 4a · (2, q)

PSU(3, q) 3 (q2
− q + 1)/(3, q + 1) 6a

PSp(6, q) 3 (q3
+ 1)/(2, q + 1) 6a

P�◦(7, q) 3 (q3
+ 1)2′ 6a

Table 3. Orders of cyclic subgroups of T in the remaining cases for m = d.

By Lemma 2.3, the number of Aut(T )-classes of elements of T of order |S| is
equal to φ(|S|)/r and hence φ(|S|) divides r · n! , which divides 24a · n! in each of
these four cases, and this bound is independent of s. Thus in each case

|S| = s ·
φ(|S|)

s − 1
< 2φ(|S|) ⩽ 48a · n! .

The number of divisors of 24a · n! is less than 2
√

24a · n! by [31, Section 8.3],
so |H |, which is the product of |S| over all s, satisfies

|H | ⩽ (48a · n!)2
√

24a·n!.

On the other hand, in all cases |H | > q = pa . If a = 1, then this bounds q by a
function of n and we are done. Suppose that a > 1. Then

|H | ⩽ (48a · n!)2
√

24a·n!
=

(
(48 · n!)2

√
24·n!

)√
a
(e2

√
24·n!)log(a)

√
a ⩽ c(n)

√
a log a

for some function c(n). Thus pa
= q < |H | ⩽ c(n)

√
a log a , and so taking logs we

obtain (
√

a log p)/ log a ⩽ log c(n). Arguing as in the previous case, this bounds
both a and p, and hence also q and |T |, by some function of n.

Case 3. The other classical groups with m < d.
Here m is an odd prime, d ⩾ 4, and the preimage G of T has a cyclic subgroup Ĥ

as in case (U), (Sp), or (O) of Table 2. Since m < d, Ĥ has nontrivial fixed point
space in V and hence contains no nontrivial scalars, so H := ϕ(Ĥ) ∼= Ĥ . In all
cases |H | divides qm

+ 1.
By (iii) and (iv) of Lemma 2.1, we have 2 ̸∈ S(2m), and Prod(2m, q) divides

qm
+ 1 and is divisible by (qm

+ 1)/(q + 1). Moreover, by Lemma 2.1(iv)(1), if
s ∈ S(2m) then s divides qm

+ 1, and either (qm
+ 1)s = Prod(2m, q)s divides

(qm
+ 1)/(q + 1), or s = m divides q + 1. In the former case we have

(qm
+ 1)s = |H |s = Prod(2m, q)s,

while if s = m divides q + 1 then, since m is odd, either we again have

(qm
+ 1)s = |H |s = Prod(2m, q)s,

or T = PSU(m, q) and |H |m = (qm
+ 1)m/(q + 1)m .
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Now we argue as in the linear case for the primes in S(2m) (rather than S(m)).
Let s ∈ S(2m) and let Ŝ be the Sylow s-subgroup of Ĥ and S = ϕ(Ŝ) the Sylow
s-subgroup of H . An identical argument to that in the linear case shows that the
number of Aut(T )-classes of elements of T of order |S| is φ(|S|)/r and divides n! ,
where r = |NAut(T )(H)/CAut(T )(H)|, and for each of the groups in this case r
divides 12ma. The argument thus shows that φ(|S|) divides c2(n) a for some
function c2(n), and that there are at most 2

√
c2(n) a primes in S(2m). For each

prime s where (qm
+ 1)s = |H |s = Prod(2m, q)s , we therefore have

(qm
+ 1)s = |S| =

sφ(|S|)

(s − 1)
< 2c2(n) a.

There is at most one prime in S(2m) for which this condition fails, namely the
prime s = m if m |q + 1 and T = PSU(d, q). In this exceptional case we have
instead that

(qm
+ 1)m

(q + 1)m
= |S| =

mφ(|S|)

(m − 1)
< 2c2(n) a.

Since s is odd, s divides exactly one of qm
+ 1 and qm

− 1. Since s ∈ S(2m), we
must therefore have that (qm

+ 1)s = (q2m
− 1)s . Thus in the case where m does

not arise as an exceptional prime in S(2m), we have

Prod(2m, q) =

∏
s∈S(2m)

(q2m
− 1)s

=

∏
s∈S(2m)

(qm
+ 1)s ⩽ (2c2(n) a)2

√
c2(n) a ⩽ c3(n)

√
a log a

for some c3(n), and as Prod(2m, q) ⩾ (qm
+ 1)/(q + 1) > q = pa , we obtain the

required bound on q and |T | as before. On the other hand, if m does arise as an
exception, so in particular T = PSU(d, q), then we obtain

Prod(2m, q)

(q + 1)m
=

1
(q + 1)m

∏
s∈S(2m)

(qm
+ 1)s ⩽ (2c2(n) a)2

√
c2(n) a ⩽ c′

3(n)
√

a log a

for some c′

3(n). Now

Prod(2m, q)

(q + 1)m
⩾

(qm
+ 1)

(q + 1)2 ⩾
(q3

+ 1)

(q + 1)2 > q − 2

and the usual argument yields the required bound. □

Remark 4.3. We comment on the function f (n) which appears in Theorem 1.1.
This function is the maximum over the functions for different families of simple
groups. From the linear case when d > 2 and q = p, we have c1(n) = n so that
c2(n) = (2n)! · n! . Then

c3(n) = 2((2n)! · n!)2
√

(2n)!·n!
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and so we obtain

log p ⩽ log c3(n) = (2
√

(2n)! · n!) log(2 · (2n)! · n!).

Since we have |T | ⩽ pd2
, we have shown log |T | ⩽ d2 log p, which gives

log |T | ⩽ n2(2
√

(2n)! · n!) log(2 · (2n)! · n!).

The functions arising from the other cases of classical simple groups are similar.

Remark 4.4. In the course of the proof of Proposition 4.2 for simple classical
groups T , we make use of s-elements, for carefully chosen primes s. One of
these primes is the characteristic s = p, and for all the other primes s, we bound
the number of Aut(T )-classes of elements of maximal order exp(T )s = |T |s , as
discussed in Remark 1.3. Thus if S(T ) is the set of these primes s, then in our
proof of Proposition 4.2 we have bounded |T | by a function of the parameter

m′(T ) = max{m p(T ), mS(T )-exp(T )}

defined in Remark 1.3. We showed in Remark 3.2 that a similar bound holds for
alternating groups. However, our approach to the exceptional groups of Lie type is
different from the classical case (see Section 5 below), and it is an open question if
such a bound holds for the simple exceptional groups of Lie type.

5. The exceptional groups

In this section we complete the proof of Theorem 1.1 for the simple groups of
Lie type that are exceptional. Our treatment is divided into two cases, depending on
whether or not there is a torus subgroup whose normaliser is maximal. Remarkably,
most families have this property.

Lemma 5.1. For each simple group T in Table 4, there exists a cyclic subgroup H
of the claimed order. Let s be prime dividing |H |, Hs be the Sylow s-subgroup of H
and z be the corresponding value from Table 4. Then one of the following holds:

(1) Hs is characteristic in NT (H), NAut(T )(H) = NAut(T )(Hs) and

|NAut(T )(H) : CAut(T )(Hs)|

divides z|Out(T )|.

(2) T = E7(q), q is odd, s = 2 and there is a nontrivial characteristic cyclic
2-subgroup Y2 of NT (H) of order at least |H |2/2 such that

NAut(T )(H) = NAut(T )(Y2) and |NAut(T )(H) : CAut(T )(Y2)|

divides z|Out(T )|.

(3) T = E7(q), q is odd, s = 2 and |H |2 ⩽ 2.
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T |H | NT (H) z |Out(T )| notes

2 B2(q) q ±
√

2q + 1 H.4 4 a q = 22t+1 [35, Theorem 9]
2G2(q) q ±

√
3q + 1 H.6 6 a q = 32t+1 [20, Theorem C]

2F4(q) q2
+ q + 1 ±

√
2q(q + 1) H.12 12 a q = 22t+1 [26, Main Theorem]

3D4(q) q4
− q2

+ 1 H.4 4 a [21, Theorem]
F4(q) q4

− q2
+ 1 H.12 12 2a q > 2 even [8, Table 8]

E6(q) (q2
+ q + 1)/e (3D4(q) × H).3 3 2ae [8, Table 9]

2E6(q) (q2
− q + 1)/e′ (3D4(q) × H).3 3 ae′ q > 2 [8, Table 10]

E7(q) (q − 1)/d (E6(q) × H).2 2 ad q ≡ 2 (mod 3) [25, Table 5.1]
E7(q) (q + 1)/d (2E6(q) × H).2 2 ad q ̸≡ 2 (mod 3) [25, Table 5.1]
E8(q) (q4

− 1)(q4
− q3

+ q) + 1 H.30 30 a [25, Table 5.2]

Table 4. Choices for a cyclic subgroup H for exceptional groups T
defined over a field of size q = pa , p a prime, with NT (H) maximal,
d = (2, q − 1), e = (3, q − 1), e′

= (3, q + 1).

Proof. The existence of a cyclic subgroup H of T of the prescribed order is given by
the reference in the notes column of Table 4. (For T = E7(q) see also [7, Table 4.1].)
Further, each reference proves that NAut(T )(H) is a maximal subgroup of Aut(T ).

Let s be a prime dividing |H | and let Hs be the Sylow s-subgroup of H . We
claim that s is coprime to z, except for the case T = E7(q), q is odd and s = 2. This
is easy to verify, for example, when T = E6(q) we have |H | is coprime to 3 unless
q ≡ 1 (mod 3), in which case q ≡ 1, 4, 7 (mod 9) and so q2

+ q + 1 ≡ 3 (mod 9),
which implies that |H | =

1
3(q2

+ q + 1) is coprime to 3; or, for example, when
T = E8(q) then |H | = (q4

− 1)(q4
− q3

+ q) + 1 is coprime to 30.
Suppose first that T = E7(q), q is odd and s = 2. We may assume that

|H |2 > 2 otherwise statement (3) of Lemma 5.1 holds. If O2(NT (H)) ⩽ H ,
then O2(NT (H)) = H2 and we set Y2 = H2. Otherwise, O2(NT (H)) = (H2).2.
Write H2 = ⟨y⟩. Then since ⟨y2

⟩ is a normal subgroup of O2(NT (H)) = ⟨y⟩.2
of index 4, we have that 8

(
O2(NT (H))

)
= ⟨y⟩ or ⟨y2

⟩ (depending on whether
O2(NT (H))/⟨y2

⟩ is cyclic or elementary abelian, respectively). Hence in this
case we set Y2 = 8(O2(NT (H))). In both cases, Y2 is a characteristic cyclic
subgroup of NT (H) of order at least |H |2/2 (in particular, Y2 ̸= 1). It follows
that NAut(T )(H) ⩽ NAut(T )(Y2) and the maximality of NAut(T )(H) in Aut(T ) gives
equality. Finally, CT (H) contains (NT (H))′′ ∼= E6(q) or 2E6(q), and H ⩽ CT (H),
so we have that |NAut(T )(H) : CAut(T )(H)| divides z|Out(T )|. This proves that
statement (2) of Lemma 5.1 holds.

Assume now that T is any of the groups in Table 4, but that if T = E7(q) and q is
odd, then s ̸= 2. Let Hs be the Sylow s-subgroup of H . Now NT (H) = (D × H).Z ,
where D is either trivial or nonabelian simple and Z is a cyclic group of order z,
as in Table 4. Since we have excluded the case s = 2 when T = E7(q) and q is
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T |H | M NT (H) z |Out(T )| notes

G2(q) q2
+ q + 1 SL(3, q) : 2 H : 6 6 ⩽ 2a [6, Theorem 2.3; 20, Theorem A]

F4(q) q4
+ 1 2.�9(q) H.4 4 a q odd [8, Table 7; 25, Table 5.1]

Table 5. Choices for a cyclic subgroup H of exceptional groups T when
NT (H) is not maximal, but NT (H) < M for a unique class of maximal
M , q = pa with p prime.

odd, we have that s is coprime to z. It follows that Hs = Os(NT (H)), and so Hs is
characteristic in NT (H). Thus

NAut(T )(H) ⩽ NAut(T )(Hs)

and the maximality of NAut(T )(H) gives equality. Finally, since CT (H) contains
D× H , we conclude that |NAut(T )(H) : CAut(T )(H)| divides z|Out(T )|. This proves
that statement (1) of Lemma 5.1 holds. □

Lemma 5.2. For each simple group T in Table 5, there exists a cyclic subgroup H
of the claimed order. Let s be a prime dividing |H |, Hs be the Sylow s-subgroup
of H and z be the corresponding value in Table 5. Then one of the following holds:

(1) Hs is characteristic in NT (H), NAut(T )(H) = NAut(T )(Hs) and

|NAut(T )(H) : CAut(T )(Hs)|

divides z|Out(T )|.

(2) T = G2(q), q ≡ 1 (mod 3), s = 3 and |H3| = 3.

(3) T = F4(q), s = 2 and |H2| = 2.

Proof. The proof is similar to that of Lemma 5.1, with adjustments since NT (H)

is not maximal in T . Let T = G2(q) or T = F4(q) with q odd. For each row of
Table 5, take H to be a cyclic subgroup of the specified order inside the specified
maximal subgroup M of T (the maximality of M in T is justified by the references
in the notes column of Table 5).

Claim. NT (H) = NM(H), and the structure of the normaliser is as displayed in
the respective column of Table 5.

Proof of Claim. Suppose first that T = G2(q) and note that |H | has order divisible
by a prime t that is a primitive prime divisor of q3

− 1 (and therefore t ⩾ 5).
Choose q0 = pb with b a minimal divisor of a such that NT (H) ⩽ G2(q0) =: T0.
Now, since T0 contains no normal cyclic subgroups, we have NT (H) ⩽ L for some
maximal subgroup L of T0 (and note that L cannot be a subfield subgroup by the
minimality of q0). From the references in the notes column, we see that L and t
are as in Table 6.
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L q0 t notes q2
0 + q0 + 1 ⩾

23.PSL(3, 2) p 7 p odd 13
PSL(2, 13) 4 7 21
J2 4 7 21
J1 11 7, 19 133
PSL(2, 13) q0 = p 7, 13 p ≡ 1, 3, 4, 9, 10, 12 (mod 13) 13
PSL(2, 13) q0 = p2 7, 13 p ≡ 2, 5, 6, 7, 8, 11 (mod 13) 21
PSL(2, 8) q0 = p 7 p ≡ 1, 8 (mod 9) 307
PSL(2, 8) q0 = p3 7 p ≡ 2, 4, 5, 7 (mod 9) 73
PSU(3, 3) : 2 q0 = p 7 p ⩾ 5 31
SL(3, q0) : 2 t

Table 6. Possibilities for L with NT (H) ⩽ L for T = G2(q).

L t

PGL(2, 13) 13
PSL(2, 17) 17
PSL(2, 25).2 13
PSL(2, 27).(3) 13
33 ⋊SL(3, 3) 13
2.�9(q0)

Table 7. Possibilities for L with NT (H) ⩽ L for T = F4(q).

Now H is cyclic of order q2
+ q + 1 ⩾ q2

0 + q0 + 1, and on comparing the entry
for L in Table 6 with the bound in the last column of that table, we see that L
contains a cyclic subgroup of order |H | only if either L = PSL(2, 13), t = 13 and
q = q0 = p = 3, or L = SL(3, q0) : 2. In the first case, we have |H |= 13 = q2

+q+1
and NPSL(2,13)(H) = H : 6, as in Table 5. In the latter case, we have

|NSL(3,q0):2(H)| = (q2
0 + q0 + 1).6 ⩽ |NM(H)|.

Hence q = q0 and NT (H) = NM(H) = H.6, again as in Table 5.
Suppose now that T = F4(q), where q is odd, and note that there is a primitive

prime divisor t of q8
− 1 that divides |H | (from which it follows that t ⩾ 11). As

above, choose q0 = pb with b a minimal divisor of a such that NT (H)⩽ F4(q0)=:T0,
and let L be a maximal subgroup of T0 containing NT (H). Then t divides |L|,
and so from [8, Tables 1 and 8] we see that L and t are as in Table 7.

For the groups in the first 5 rows of Table 7, we have that a subgroup of L of
order t is self-centralising, and thus |H | = t = q4

+ 1. Now, since q is odd, we
have |H | = t = q4

+ 1 ⩾ q4
0 + 1 ⩾ 82, a contradiction. Hence the only possibility
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is that L ∼= 2.�9(q0), and comparing the orders of N2.�9(q0)(H) and NM(H), we
have q = q0 and NT (H) = NM(H) = H.4 as in Table 5. □

We now turn to the statements of the lemma. First consider the case T = G2(q).
Then s is coprime to z, unless s = 3 and q ≡ 1 (mod 3). If s = 3 and q ≡ 1 (mod 3),
then q2

+ q + 1 ≡ 3 (mod 9), and so |H |3 = (q2
+ q + 1)3 = 3, and statement (2)

of the lemma holds. Suppose now that if s = 3 holds, then q ̸≡ 1 (mod 3). Then
|H | = q2

+ q + 1 is coprime to 3 and odd, so Os(NT (H)) = Hs is a characteristic
subgroup of NT (H), and thus NAut(T )(H) = NAut(T )(Hs). Arguing similarly to
Lemma 5.1, we see that statement (1) of the lemma holds.

Consider now the case T = F4(q). Since q is odd, we have that q ≡ ±1 (mod 4),
and hence q4

+ 1 ≡ 2 (mod 4). Thus |H |2 = 2 and part (3) of this lemma holds
if s = 2. If s is odd, then s is coprime to z and hence Os(NT (H)) = Hs satisfies
part (1) of the lemma, similarly to the previous cases. □

Proposition 5.3. There is an increasing integer function h such that, if T is a simple
exceptional group of Lie type, and T is pp-bounded by n, then |T | < h(n).

Proof. Let T be a simple exceptional group of Lie type defined over the field with
q elements. Note that since the rank of T is bounded by a constant, we simply need
to prove that q is bounded by a function of n. In particular, we may assume that
q > 2 so that we may use all rows of Table 4.

Case 1. T is one of the groups appearing in Table 4.
We apply Lemma 5.1 and consider the outcomes in turn. Let H be the cyclic

subgroup of T defined in Lemma 5.1 and let π(H) be the set of prime divisors
of |H |. For s ∈ π(H) let Hs be the Sylow s-subgroup of H . Then, in all cases,

(4)
q − 1

2
⩽ |H | and |H | =

∏
s∈π(H)

|Hs |.

Case 1(i). If T = E7(q), we assume that q is even.
Now Hs is cyclic and |Hs | = sb for some b ⩾ 1. Let C(s) be the set of Aut(T )-

classes of elements g ∈ T such that gAut(T )
∩ H ̸= ∅ and |g| = sb. Since T is

pp-bounded by n, it follows from Lemma 2.3 that |C(s)| divides z|Out(T )|n! , which
implies that (s − 1) divides 360a(n!) (using the lowest common multiple of the
entries in the z column of Table 4). Since the number of divisors of 360a(n!) is at
most 2

√
360an!, and different values of s give distinct divisors, we have

(5) |π(H)| ⩽ 2
√

360a(n!).

Further, for each s ∈ π(H), Lemma 2.3 combined with the value of the index
|NAut(T )(H) : CAut(T )(H)| from Lemma 5.1 yields

(6) |Hs | = sb
= sb−1(s − 1)

s
s − 1

= φ(|Hs |)
s

s − 1
⩽ 2z |Out(T )|n ⩽ 60an.
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Thus putting (4), (5) and (6) together, we have

q
4
⩽

q − 1
2

⩽ |H | ⩽ |π(H)| max
s∈π(H)

(|Hs |) ⩽ 120an
√

360a(n!).

This gives q
a3/2 ⩽ f (n),

with f (n) = 480n
√

360(n!). By Lemma 2.6,

q
a3/2 =

(
q
a

)3/2

q−1/2 ⩾

(
log 2

2
q1/2

)3/2

q−1/2
= Cq1/4

for a constant C . Thus we obtain q1/4 ⩽ f (n)/C , which shows that q is bounded
by a function of n, and hence |T | ⩽ h1(n), for a computable function h1.

Case 1(ii). T = E7(q) and q is odd.
From parts (2) and (3) of Lemma 5.1 we have

|H | = |H2|

( ∏
s∈π(H), s odd

|Hs |

)
⩽

{
2
(∏

s∈π(H), s odd |Hs |
)

if |H2| = 2,

2|Y2|
(∏

s∈π(H), s odd |Hs |
)

if |H2| > 2.

Since T is pp-bounded by n, an identical argument to that given above shows that

|π(H)| ⩽ 2
√

z|Out(T )|(n!) ⩽ 2
√

4a(n!).

Further, for s ∈ π(H) with s odd, since T is pp-bounded by n, Lemmas 2.3 and 5.1
give, exactly as above, |Hs |⩽ z|Out(T )|n ⩽ 4an. For s = 2, suppose that |H2| > 2,
so that Lemma 5.1(2) holds. Then Lemma 2.3 gives

|Y2|

2
= φ(|Y2|) ⩽ z|Out(T )|n = 4an,

so that |Y2| ⩽ 8an. Thus

|H | ⩽ 2(8an)(2
√

4a(n!))

and since |H | ⩾ q−1
2 , we obtain

q − 1
a3/2 ⩽ 64n

√
4(n!).

Similarly to the above, q is bounded by a function of n, and hence |T | ⩽ h2(n), for
a computable function h2.

Case 2. T appears in Table 5.
Here T = G2(q) or T = F4(q) with q odd. We apply Lemma 5.2 and consider

the outcomes in turn. Let H be the cyclic subgroup of T defined in Lemma 5.1
and let Hs be the Sylow s-subgroup of H and let π(H) be the set of prime divisors
of |H |.
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From parts (2) and (3) of Lemma 5.2, we may write

|H | =

{
(3, q − 1)

(∏
s∈π(H), s ̸=3 |Hs |

)
if T = G2(q),

2
(∏

s∈π(H), s ̸=2 |Hs |
)

if T = F4(q).

Now for any s ∈ π(H) such that (T, s) ̸= (G2(q), 3) or (F4(q), 2), Lemma 5.2(1)
applies, and we argue similarly to the previous cases to obtain |π(H)| ⩽ 2

√
12an! .

Further, we have |Hs | ⩽ 2z|Out(T )|n ⩽ 24an. This gives

q ⩽ |H |

3
⩽ 2

√
12an!(24an)

and therefore |T | is bounded by a computable function h3(n).
Finally, we define h(n) to be the maximum over the functions h1, h2 and h3,

and thus in any of the cases above, we have |T | ⩽ h(n), as required. □

6. Proof of Theorem 1.1

We set
f (n) = max

{1
2(3n + 2)!, g(n), h(n)

}
+ |M |,

where g(n) is the function in Proposition 4.2, h(n) is the function in Proposition 5.3
and M is the Monster sporadic simple group. It is clear from the functions g and h
that f is an increasing function. Let T be a nonabelian finite simple group. If T is
sporadic, then |T | ⩽ |M | ⩽ f (n). If T is alternating, classical or an exceptional
group of Lie type, then Lemma 3.1, Propositions 4.2 and 5.3, respectively, shows
that |T | ⩽ f (n). This completes the proof of Theorem 1.1.
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MONOGAMOUS SUBVARIETIES OF THE NILPOTENT CONE

SIMON M. GOODWIN, RACHEL PENGELLY,
DAVID I. STEWART AND ADAM R. THOMAS

In memory of Gary, who influenced us greatly

Let G be a reductive algebraic group over an algebraically closed field k
of prime characteristic not 2, whose Lie algebra is denoted g. We call a
subvariety X of the nilpotent cone N ⊂ g monogamous if for every e ∈X, the
sl2-triples (e, h, f ) with f ∈ X are conjugate under the centraliser CG(e).
Building on work by the first two authors, we show there is a unique maximal
closed G-stable monogamous subvariety V ⊂N and that it is an orbit closure,
hence irreducible. We show that V can also be characterised in terms of
Serre’s G-complete reducibility.

1. Introduction

Let k be an algebraically closed field of characteristic p ̸= 2, and G a simple
algebraic k-group with Lie algebra g = Lie(G). Three elements e, h, f ∈ g form
an sl2-triple if the subalgebra ⟨e, h, f ⟩ is a homomorphic image of sl2(k). That is,
(e, h, f ) satisfy the relations

[h, e] = 2e, [h, f ] = −2 f, [e, f ] = h.

When the characteristic is 2 these relations degenerate leading to a qualitatively
different theory; see [Stewart and Thomas 2024] for more details. This justifies our
underlying assumption of p ̸= 2. Theorems of Jacobson [1951], Morozov [1942]
and Kostant [1959] say that if k is of characteristic 0, then for any nilpotent e ∈ g

there exists an sl2-triple (e, h, f ) in g which is unique up to conjugacy by the
centraliser of e in G.

Over fields of positive odd characteristic, for any nilpotent e ∈ g there exists an
sl2-triple (e, h, f ) in g except in the case G is of type G2, p = 3, and e is in the
Ã1(3) class [Stewart and Thomas 2018, Theorem 1.7]. We continue the investigation
into generalising Kostant’s uniqueness theorem to fields of small characteristic. Let
X be a subset of the nilpotent cone N ⊂ g. We say that X is monogamous if the
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following property holds:

Let (e, h, f ) and (e, h′, f ′) be sl2-triples with e, f, f ′
∈X. Then (e, h, f )

is CG(e)-conjugate to (e, h′, f ′).

The main theorem of [Stewart and Thomas 2018] proves that N is monogamous
if and only if p > h(G), where h(G) is the Coxeter number for G. When G is
of classical type, Goodwin and Pengelly [2024] showed that there exists a unique
maximal G-stable closed subvariety of N that is monogamous, and gave an explicit
description of these. This paper completes the story by treating the exceptional
types. Define the following subset of N :

V :=

{
x ∈N

∣∣∣∣∣
x [p]

= 0,

x is not distinguished in a Levi subalgebra with a factor of type Ap−1,

x is not subregular if G is of type G2 and p = 3.

}
.

Theorem 1.1. Let G be a simple algebraic group over an algebraically closed
field k of characteristic p > 2. Then V is the unique maximal G-stable closed
monogamous subvariety of N . Furthermore, V is irreducible, being the closure of a
single orbit as specified in Tables 1 and 2 below.

In [Stewart and Thomas 2018], a close relationship was found between uniqueness
of sl2-subalgebras and the existence of so-called non-G-cr sl2-subalgebras. The
notion of G-complete reducibility for subgroups of G is due to Serre [2005], and
the natural generalisation to subalgebras of g was introduced by McNinch [2007].

G m λ

Am−1 a(p − 1) + r ((p − 1)a, r)

B m−1
2

p + a(p − 1) + r (r > 0) (p, (p − 1)a, r − 1, 1) a even

(p, (p − 1)a−1, p − 2, r + 1) a odd

p + a(p − 1) (p, (p − 1)a) a even
(p, (p − 1)a−1, p − 2, 1) a odd

≤ p (m)

C m
2

a(p − 1) + r ((p − 1)a, r)

D m
2

p + a(p − 1) + r (p, (p − 1)a, r) a even
(p, (p − 1)a−1, p − 2, r, 1) a odd

≤ p (m − 1, 1)

Table 1. Partition λ corresponding to the orbit Oλ such that V = Oλ

in the classical types, where a ≥ 0 and 0 ≤ r < p − 1.
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G p O G p O

G2 3 Ã(3)

1 E6 3 A3
1

5 G2(a1) 5 D4(a1)

≥ 7 G2 7 E6(a3)

F4 3 A1 Ã1 11 E6(a1)

5 F4(a3) ≥ 13 E6

7 F4(a2)

11 F4(a1)

≥ 13 F4

G p O G p O

E7 3 A4
1 E8 3 A4

1

5 A3 A2 A1 5 A2
3

7 E7(a5) 7 E8(a7)

11 E7(a3) 11 E8(a6)

13 E7(a2) 13 E8(a5)

17 E7(a1) 17 E8(a4)

≥ 19 E7 19 E8(a3)

23 E8(a2)

29 E8(a1)

≥ 31 E8

Table 2. Orbits O such that V = O in the exceptional types.

Given a subalgebra h⊆ g, we say that h is G-completely reducible (G-cr for short) if
for every parabolic subalgebra p such that h⊆ p there exists some Levi subalgebra l
of p with h ⊆ l.

We say X⊆N is A1-G-cr if every subalgebra generated by an sl2-triple (e, h, f )

with e, f ∈ X is G-cr.

Theorem 1.2. Let G be a simple algebraic group over an algebraically closed
field k of characteristic p > 2. Then V is the unique maximal G-stable closed
A1-G-cr subvariety of N .

The proof follows very quickly from Theorem 1.1; see Section 4.

Remark 1.3. It would be interesting to know more about the geometry of the
nilpotent variety V . In type A, Donkin [1990] showed that the closure of each
orbit is normal. Orbit closures in the remaining classical types are considered by
Xiao and Shu [2015]. For exceptional types G2, F4, . . . , E8, results of Thomsen
[2000] show that our varieties V are in fact Gorenstein normal varieties with rational
singularities as long as p ≥ 5, 11, 7, 11, 13, respectively.
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2. Preliminaries

Throughout, k is an algebraically closed field of characteristic p > 2 and G is a
simple k-group with g= Lie(G). There is an inherited [p]-map on g and we use x [p]

to denote the image of x ∈ g under this map. The variety of all nilpotent elements
in g, often called the nilpotent cone, is denoted by N . The restricted nullcone is the
subvariety of N consisting of elements x such that x [p]

= 0 and we denote it by Np.
The distribution of nilpotent elements among sl2-subalgebras of g is insensitive to
central isogeny, and so we assume that whenever G is classical, it is one of SL(V ),
Sp(V ) or SO(V ) and write G = Cl(V ) for brevity; if G is exceptional, we take it
to be simply connected.

Recall that a prime p is bad for G if p = 2 and G is of type B, C or D; if p ≤ 3
and G is exceptional; or if p ≤ 5 and G is of type E8; otherwise it is good. In some
examples we require a choice of base for the root system associated to g; we use
Bourbaki notation [2005]. Finally, we fix a maximal torus T of G.

2.1. Nilpotent orbits and Hasse diagrams. The orbits for the action of G on N
are called nilpotent orbits. There are finitely many such and they are classified. In
case G is of exceptional type, we describe an orbit O = G · x by a label indicating
a Levi subalgebra in which e is distinguished; for these labels we refer to [Liebeck
and Seitz 2012].

When G = Cl(V ), the classification of orbits in terms of the action on V is well-
known and can be found in [Jantzen 2004, Section 1], but we recap it here for ease
of reference. Set m = dim V . If G = SL(V ), orbits are parametrised by partitions
of m according to the Jordan decomposition of their elements’ actions on V ; we
write x ∼ (λ1, . . . , λr ) where λ1 ≥ · · · ≥ λr is the partition of m corresponding to x .
In types B and C orbits are parametrised by partitions of m with an even number of
even parts and an even number of odd parts, respectively. In type D it is slightly more
complicated. A partition is called very even if it only has even parts and they all occur
with even multiplicity. There is one orbit for each partition of m with an even number
of even parts that is not very even; and two orbits for each very even partition of m.

To check that V is a closed subvariety of N we require information about the
Hasse diagrams for the closure relation on nilpotent orbits. For classical types,
apart from type D, the closure order on orbits is precisely the dominance order
on partitions. In type D we start with the Hasse diagram for the dominance order
on partitions with an even number of even parts. Then we replace each very even
partition λ with two nodes λ1, λ2 and replace each edge from λ to µ with two
edges from λi to µ. For exceptional types the picture is actually incomplete in
general. But if p is good for G, the existence of Springer morphisms implies that
the Hasse diagrams remain the same as those in characteristic 0 [Spaltenstein 1982,
Thèoréme III 5.2]. These can be found in [Spaltenstein 1982, pp. 247–250] and are
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reproduced in [Carter 1993, Section 13.4] with labels closer to those in [Liebeck and
Seitz 2012]. However, those in [Carter 1993] are missing edges in the E6, E7 and E8

diagrams. Specifically, there should be an edge between the following pairs of labels:

E6: (D4(a1), A3).

E7: (D6(a2), D5(a1)+ A1), (D5(a1), D4), (D4(a1),2A2+ A1), (D4(a1), A2+3A1).

E8: (E6 + A1, E8(b6)), (E8(a7), D6(a2)), (A3 + A1, A3).

In bad characteristic, there are not even the same number of nilpotent and
unipotent orbits; for certain bad primes there are more nilpotent orbits than in
characteristic 0. The full Hasse diagram for G2 when p = 3 can be deduced from
[Stuhler 1971]:

G2

G2(a1)

( Ã1)(3)

Ã1 A1

0

For the remaining types we will have to work harder to obtain partial information
about the closure relations.

We can now prove part of Theorem 1.1.

Lemma 2.1. The subset V ⊆ N is a closed G-stable subvariety; moreover, it is the
closure of a single orbit in each case, as specified in Tables 1 and 2.

Proof. Suppose G = Cl(V ) with dim V = m. An orbit corresponding to a partition λ

of m is contained in the restricted nullcone if and only if the largest part of λ is
at most p. Let G = SL(V ) or Sp(V ) (resp. SO(V )), and let x ∈ N with partition
represented by λ. Then x is not distinguished in a Levi subalgebra with a factor
of type Ap−1 precisely when λ contains no parts of size p (resp. at most one part
of size p). Now every orbit represented in Table 1 represents a single orbit in V:
for G of type D, each λ given in Table 1 is not very even. Observe that any other
orbit in V is represented by a partition lower than λ in the dominance ordering, and
hence is contained in Oλ; and vice-versa, by definition of V .

Now suppose G is of exceptional type. We use the tables in the corrected arxiv ver-
sion of [Stewart 2016] to determine the orbits in the restricted nullcone. A nilpotent
element x is distinguished in a Levi subalgebra with a factor of type Ap−1 exactly
when the labelling of its orbit contains an Ap−1 part. Thus in good characteristic, as
well as for G of type G2, the result then follows by inspecting the Hasse diagrams.
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O A2
3 D4(a1)A2 A3 A2 A1 A3 A2

λ (5, 42, 13) (5, 33, 12) (5, 32, 22, 1) (5, 32, 15)

O D4(a1)A1 D4(a1) A3 A2
1 A2

2 A2
1

λ (5, 3, 22, 14) (5, 3, 18) (5, 24, 13) (35, 1)

O A3 A1 A2
2 A1 A3 A2

2
λ (5, 22, 17) (34, 22) (5, 111) (34, 14)

O A2 A3
1 A2 A2

1 A2 A1 A2

λ (33, 22, 13) (33, 17) (32, 22, 16) (32, 110)

O A4
1 A3

1 A2
1 A1

λ (3, 24, 15) (26, 14) (24, 18) (22, 112)

Table 3. D8 partitions for nilpotent orbits in V for E8, p = 5.

In the remaining cases we use case-by-case analysis. First let G be of type E8 and
p = 5. Note that every class is distinguished in Lie(L) for L some Levi subgroup
of G. The Levi subgroups in question are all conjugate to subgroups of M , a
maximal subgroup of G of type D8. Let V be the 16-dimensional standard module
for M . For each nontrivial class in V we choose a representative e in Lie(M) and
calculate the Jordan block sizes for the action of e on V ; these are in Table 3. Note
that for some classes there are many non-M-conjugate choices for e. For example,
there are three non-M-conjugate Levi subgroups of M of type A2

3; these correspond
to the subsets of simple roots {1, 2, 3, 5, 6, 7}, {1, 2, 3, 5, 6, 8} and {1, 2, 3, 6, 7, 8}.
A regular nilpotent element of the corresponding Levi subalgebras will act on V
with Jordan blocks of sizes (44), (44) and (5, 42, 13), respectively.

Note that the final partition is higher in the dominance order than all other
partitions in Table 3. Therefore, the closure of the M-orbit of a representative of the
class A2

3 contains a representative of every class in V . It remains to prove that there
are no more G-classes in the closure of the A2

3 class. By [Stewart 2016, Table 10],
the Jordan block sizes for the adjoint action of nilpotent elements in the A2

3-class are
(538, 412, 110). By embedding G into SL248, it follows that the Jordan block sizes
for the adjoint action of every nilpotent element in the closure of the A2

3-class will
be lower than (538, 412, 110) in the dominance order. Using [loc. cit.], we check that
every nonrestricted class has a Jordan block of size greater than 5 and all remaining
classes (which have labels with an A4 part) have at least 45 blocks of size 5.

Now let p = 3. When G is of type F4, the subset V consists of the zero element
and the union of the three classes with labels A1, Ã1 and A1 Ã1. All three nontrivial
classes have representatives contained in Lie(M) where M is a subgroup of type B3.
We may choose these representatives so that the corresponding partitions of 7 are
(22, 13), (3, 14) and (3, 22), respectively. Therefore, all three classes are contained



MONOGAMOUS SUBVARIETIES OF THE NILPOTENT CONE 167

in the closure of the A1 Ã1-class. By [Liebeck and Seitz 2012, Table 22.1.4], the
three classes in V for G of type E6 (which are A1, A2

1 and A3
1) are all contained in

an F4-subalgebra. Therefore the closure of the A3
1-class contains all three classes.

When G is of type E7, the nonzero elements of V consist of the union of the
five classes with labels A1, A2

1, (A3
1)

(1), (A3
1)

(2) and A4
1. All such classes have

representatives contained in Lie(M) where M is a subgroup of type D6. We may
choose these representatives so that the corresponding partitions of 12 are (22, 18),
(3, 19), (26), (3, 22, 15) and (3, 24, 1), respectively. Thus, all the classes in V are
contained in the closure of the A4

1-class. The discussion in [Liebeck and Seitz 2012,
Section 16.1.2] shows that the four nontrivial classes in V for G of type E8 (which
are A1, A2

1, A3
1 and A4

1) are contained in an E7-subalgebra. Thus the closure of the
A4

1-class contains all classes in V .
A final routine use of the tables in [Stewart 2016] allows us to complete the

proof. For example, when G is of type E7 the Jordan block sizes for the adjoint
action of a nilpotent element in the A4

1-class are (328, 214, 121). Every nonrestricted
class has a block of size greater than 3 and all other remaining classes have at least
33 blocks of size 3. □

2.2. G-cr subalgebras.

Proposition 2.2. Suppose e ∈ Np. If e is contained in an sl2-triple then there exists
a G-cr subgroup X ≤ G of type A1 such that Lie(X) contains e.

Proof. If G = SL(V ) then e[p]
= 0 implies e has Jordan blocks of size at most p,

which means e is regular in a Levi subalgebra of type Ar1 × · · · × Ari where
r j ≤ p − 1 for each j . The image of X = SL2 under the completely reducible
representation given by L(r1)⊕ · · · ⊕ L(ri ) satisfies the demands of the theorem,
where r j now represents a (restricted) high weight. So assume G is not of type A.
Then if p is good for G, it is very good, and the result follows from [McNinch
2005, Proposition 33, Theorem 52].

So we may assume p is bad, and therefore that G is exceptional. As before, the
orbits of Np can be worked out from the tables in [Stewart 2016] and there are not
very many. By inspection, it follows that the label of every restricted nilpotent class
is denoted by sums of Ar for r < p and D4(a1) if G = E8, p = 5 or is G2(a1) when
G = G2, p = 3; the class ( Ã1)(3) is excluded since it is not contained in an sl2-triple.

We first deal with the final case. The subsystem subgroup A2 < G2 contains
an A2-irreducible subgroup X of type A1. By [Stewart 2010, Theorem 1], all
simple subgroups of G2 are G2-cr when p = 3. The restriction of the nontrivial 7-
dimensional G2-module to X is L(2)2

+ L(0). It follows that the nilpotent elements
contained in Lie(X) have Jordan blocks of size (32, 1) and thus are in the G2(a1)

class by [Stewart 2016, Table 4].
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In the remaining cases, every class is a distinguished element in l = Lie(L) for
some Levi subgroup L with simple factors only of type Ar with r < p or D4. By
[Serre 2005, Proposition 3.2], a subgroup X of L is G-cr if and only if it is L-cr.
Furthermore a subgroup X of a central product L = L1L2 is L-cr if and only if
the projection of X to both L1 and L2 is L-cr. Therefore, it suffices to deal with
the cases where L is simple and simply connected of type Ar (r < p) or D4 — but
these cases have already been tackled. □

If X is G-cr then so is Lie(X) by [McNinch 2007, Theorem 1]; so we get the
following.

Corollary 2.3. Suppose e ∈ Np. If e is contained in an sl2-triple then there exists a
G-cr subalgebra s ∼= sl2 of g containing e.

The following is used a couple of times, and is [McNinch 2007, Lemma 4].

Lemma 2.4. Let L be a Levi factor of a parabolic subgroup of G. Suppose that we
have a Lie subalgebra s ⊂ l = Lie(L). Then s is G-cr if and only if s is L-cr.

Proposition 2.5. Suppose e ∈ N is distinguished in a Levi subalgebra l = Lie(L)

with a factor of type Ap−1. Then there is an sl2-triple (e, h, f ) such that s :=

⟨e, h, f ⟩ is non-G-cr and f ∈ L · e.

Proof. By Lemma 2.4 it suffices to treat the case that L = SL(V ) with dim V = p.
In that case, let s = ⟨e, h, f ⟩ be the image of sl2 under the representation given by
the p-dimensional baby Verma module Z0(0); see [Jantzen 1998, Section 5.4]. As
V ↓ X = Z0(0) is a nontrivial extension of the irreducible module L(p − 2) by the
trivial module we have that s is not L-cr. It is easy to see that one of e or f has
a full Jordan block on V and is therefore regular. But the whole of N (L) is the
closure of a regular nilpotent element so we are done. □

Lemma 2.6. Let p be a good prime for G and (e, h, f ) be an sl2-triple with
e, f ∈ N . Suppose that e and f are distinguished in Levi subalgebras of g with no
factors of type Ap−1. If s := ⟨e, f ⟩ is G-cr then s is a p-subalgebra.

Proof. Suppose s is not a p-subalgebra. Then by [Stewart and Thomas 2018,
Lemma 4.3], s is L-irreducible in a Levi subalgebra l=Lie(L) with L = L1L2 · · · Lr

and L1 of type Ar p−1, say, for some r ∈ N. Therefore, the projection s̄ of s to
l1 = Lie(L1) is also L1-irreducible, so that s̄ acts irreducibly on the r p-dimensional
natural L1-module. All irreducible representations of sl2 have dimension at most p
by [Block 1962, Lemma 5.1], thus r = 1. Moreover, the classification of p-
dimensional irreducible sl2-modules in [Jantzen 1998, Section 5.4] shows that the
image of e or f in s̄ is regular in L1, a contradiction. □
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3. Monogamy of V

We start with an observation that V can be characterised using the following partial
order on N .

Definition 3.1. Let x, y ∈ N . We say x ⪯ y (resp. x ≺ y) if rank(ad(x)p−1) ≤

rank(ad(y)p−1) (resp. rank(ad(x)p−1) < rank(ad(y)p−1)).

Note that rank(ad(x)p−1) can be calculated from the adjoint Jordan blocks of x
of size at least p, and if G is exceptional, this can be done by reference to [Stewart
2016, Section 3.1]. The next lemma follows from a simple case-by-case check,
using Tables 1 and 2, the Hasse diagrams for nilpotent orbit closures and [Stewart
2016, Section 3.1].

Lemma 3.2. Let x, y ∈ N such that x ∈ V and y /∈ V . Then x ≺ y.

Remark 3.3. Comparing ranks of (p−1)-th powers is necessary for the partial
order to differentiate nilpotent orbits contained in V . For example, let G be of
type E6, p = 5, and take x, y ∈N to be representatives of the D4(a1) and A4 classes,
respectively. Then we have x ∈ V and y /∈ V . Using [Stewart 2016, Table 16] we
see that rank(ad(x)) = rank(ad(y)) = 78, however rank(ad(x)p−1) = 11 < 15 =

rank(ad(y)p−1).

Let X ⊆ N . We say that X is partially monogamous if the following holds:

If (e, h, f ) and (e, h′, f ′) are two sl2-triples with e, f, f ′
∈X and f, f ′

⪯ e,
then f and f ′ are conjugate under the action of CG(e).

Lemma 3.4. Let X be a subvariety of Np. Then X is monogamous if and only if it
is partially monogamous.

Proof. One direction is trivial. Suppose X is partially monogamous but not monoga-
mous. Then there exist sl2-triples (e, h, f ) and (e, h′, f ′) with e, f, f ′

∈X such that
(e, h, f ) is not CG(e)-conjugate to (e, h′, f ′). Since X is partially monogamous
it follows that either f ̸⪯ e or f ′

̸⪯ e; without loss of generality we assume the
former. Thus rank(ad(e)p−1) < rank(ad( f )p−1), and in particular, e and f are not
conjugate.

Let ( f, h̃, ẽ) be an sl2-triple with f conjugate to ẽ, which exists by Proposition 2.2.
Then the two sl2-triples ( f, −h, e) and ( f, h̃, ẽ) satisfy f, e, ẽ ∈ X and e, ẽ ⪯ f .
But as X is partially monogamous, we have that f is conjugate to ẽ, which is in
turn conjugate to e, a contradiction. □

Theorem 1.1 for classical types follows from Lemma 2.1 and the main theorem
of [Goodwin and Pengelly 2024]. For the remainder of this section we suppose G
is of exceptional type.
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3.1. Bad characteristic. We first treat the case when p is bad for G. Fix 0 ̸= e ∈ V
for the remainder of this section. We use the representatives as in [Liebeck and
Seitz 2012], presented in [Stewart 2016]. If G is of type G2 and p = 3, then the
element e with label ( Ã1)(3) cannot be extended to an sl2-triple by [Stewart and
Thomas 2018, Theorem 1.7]. So we exclude that case from now on.

Lemma 3.5. The normaliser NG(⟨e⟩) (and centraliser CG(e)) is smooth if and only
if the class of e does not occur in the following table:

G p class of e

G2 3 G2(a1)

F4 3 F4, Ã2 A1

E6 3 E6, E6(a1), E6(a3), A5, A2
2 A1, A2

2
E8 3 E8, E8(a1), E8(a3), E7, E6 A1, E8(b6),

A7, E6, E6(a3)A1, A5 A1, A2
2 A2

1, A2
2 A1

5 E8, A4 A3

Proof. Every element e has a cocharacter τ for which im(τ ) is contained in NG(⟨e⟩)
but not CG(e). Thus, the dimension of NG(⟨e⟩) is precisely dim CG(e)+1. Similarly,
dim ng(⟨e⟩) = dim cg(⟨e⟩) + 1 thanks to the existence of sl2-triples. Therefore
NG(⟨e⟩) is smooth precisely when CG(e) is smooth.

It is straightforward to use Magma to calculate the dimension of cg(e). Comparing
these dimensions with the dimension of CG(e) presented in [Liebeck and Seitz
2012, Tables 22.1.1–22.1.5] completes the proof. □

Observe that the set of classes in Lemma 3.5 does not intersect V , so we may
now deduce an important reduction.

Proposition 3.6. There exists an sl2-triple (e, h̄, f̄ ) with f̄ conjugate to e and
h̄ ∈ t=Lie(T ). Moreover, if (e, h, f ) is also an sl2-triple then h is CG(e)-conjugate
to h̄.

Proof. We know from Proposition 2.2 that there is an sl2-triple (e, h̄, f̄ ) with f̄
in the same nilpotent class as e. By Lemma 3.5, the group NG(⟨e⟩) is smooth.
Therefore, all maximal tori in ng(⟨e⟩) are NG(⟨e⟩)-conjugate. A computation in
Magma shows that ng(⟨e⟩)∩t is a maximal torus of ng(⟨e⟩). So we may assume that
h̄ is contained in t (noting that if (λe, h̄g, f̄ g) is an sl2-triple then so is (e, h̄g, λ f̄ g)).

For the final part, first note that since [h, e]= 2e we have [h[p], e]= ad(h)pe = 2e
thanks to Fermat’s little theorem. Therefore h = ⟨h[p]

r
| r = 0, 1, . . . ⟩ is an abelian

p-closed subalgebra of ng(⟨e⟩). It follows from [Strade and Farnsteiner 1988,
Chapter 2, Corollary 4.2] that h = t′ ⊕n′ where t′ is the set of semisimple elements
of h. Since t′ is a torus, the above argument shows that up to NG(⟨e⟩)-conjugacy
we may assume that t′ is contained in t. In particular, h̄ ∈ t′.
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Because cg(⟨e⟩) has codimension 1 in ng(⟨e⟩) and h̄ ̸∈ cg(⟨e⟩) we see that the
torus t′ decomposes as t′ = ct′(e) ⊕ ⟨h̄⟩. Furthermore, n′

⊂ cg(⟨e⟩). It follows that
h = h̄ + h′ for some h′

∈ cg(e) ∩ cg(h̄).
Since h = [e, f ] and h̄ = [e, f̄ ] we also have h′

∈ im(ad(e)). Thus

h′
∈ W = cg(⟨e, h⟩) ∩ im(ad(e)).

Another Magma check shows that every element in W is p-nilpotent.
In particular, all eigenvalues of h′ are 0. Since h = h̄ + h′ and [h, f ] = −2 f

we must have [h̄, f ] = −2 f . Therefore, f ∈ F = ker(ad(h̄) + 2Idim g) and so
h = [e, f ] ∈ im(ad(e))(F). Note that f̄ ∈ F also, so h̄ ∈ im(ad(e))(F) and hence
h′

∈ im(ad(e))(F).
Thus h′

∈ W ∩ im(ad(e))(F). A final straightforward check in Magma shows
that W ∩ im(ad(e))(F) = 0, as required. □

We now describe an ad-hoc method to prove that if (e, h, f ′) is an sl2-triple with
f ′

∈ V and f ′
⪯ e then f ′ is uniquely determined up to C := (CG(e) ∩ CG(h))-

conjugacy. In principle, this can be implemented by hand, but for speed and accuracy
we have used Magma. Applying Proposition 3.6 and Lemma 3.4 then completes
the proof that V is monogamous.

Setup: By Proposition 3.6, there exists an sl2-triple (e, h, f ) with h ∈ t = Lie(T )

and f ∈V in the same nilpotent class as e. Let (e, h, f ′) be an sl2-triple with f ′
∈V

and f ′
⪯ e. Since

(1) [h, f ′
] = −2 f ′

we have f ′
∈ F := ker(ad(h) + 2Idim(g)). We set up a generic element of the

subspace F , namely f̃ =
∑

xivi ∈ g where the xi are variables and v1, . . . , vdim(F)

is a basis for F . One can view the set of all f̃ as describing a subvariety F of g.
In Steps 1 to 3 below, we add in additional equations and thus replace F with
successively smaller sets (still called F by abuse of notation).

Step 1: The equation

(2) [e, f̃ ] = h

yields a set of linear equations among the xi . We use these to constrain f̃ and thus
reduce the dimension of F . Now every element of F forms an sl2-triple with e.

Example 3.7. We give an example where Step 1 is sufficient. Let G be of type E7,
p = 3 and e = eα2 + eα5 + eα7 . Then e is a representative of the (A3

1)
(1) orbit and

e ∈ V by Lemma 2.1. On this occasion it is obvious that (e, h, f ) is an sl2-triple
with h = h2 + h5 + h7 ∈ t and f = e−α2 + e−α5 + e−α7 .



172 S. M. GOODWIN, R. PENGELLY, D. I. STEWART AND A. R. THOMAS

Let F := ker(ad(h) + 2Idim(g)). A straightforward calculation shows that the
space F is 27-dimensional with a basis of root vectors v1 = er1, . . . , v27 = er27 for
some set of roots r1, . . . , r27; in particular r12 = −α2, r13 = −α5 and r14 = −α7.

We let f̃ =
∑

i xivi as above. We then compute [e, f̃ ] = h. For i ̸= 12, 13, 14
we find that the left-hand side has a coordinate of the form λxi for λ = 1 or 2. Thus
xi = 0 for i ̸= 12, 13, 14. On the other hand the coordinate of h2 is seen to be equal
to x14 + 2. Thus x14 is −1. Similarly, the coordinates of h5 and h7 are x13 + 2 and
x12 + 2, respectively. We have therefore determined all the variables in f̃ and in
fact f̃ = f , which is sufficient.

Step 2: The adjoint action of C preserves F . Find a set of variables {xi | i ∈ Z}

such that every C-orbit in F contains a representative with xi = 0 for i ∈ Z . Thus
we may assume that these variables are zero in f̃ , further reducing F .

Example 3.8. We give an example where Steps 1 and 2 are sufficient. Let G be of
type G2 and p = 3. Consider e = e10 which is a representative of the Ã1 orbit, thus
contained in V by Lemma 2.1.

Clearly, if h = h10, f = e−10, then (e, h, f ) is an sl2-triple with f ∈ V . Define
F := ker(ad(h) + 2Idim(g)). This is 3-dimensional and we build f̃ as above:

f̃ = x1e−11 + x2e−10 + x3e21.

After Step 1 we find

f̃ = x1e−11 + e−10 + x3e21.

Now we apply elements of C = CG(e)∩CG(h) to f̃ . First consider x−01(t) ∈ C .
We calculate that

x−01(t) · f̃ = (t + x1)e−11 + e−10 + x3e21.

Therefore, by setting t = −x1, we see that every C-orbit in F contains a represen-
tative with x1 = 0. We’re down to

f̃ = e−10 + x3e21.

Finally, conjugation by x31(t) ∈ C sends f̃ to e−10 + (t + x3)e21. Thus we conclude
that f̃ = f , as required.

Step 3: Finally, we impose the condition that f̃ should represent an element f ′
∈ V

with f ′
⪯ e. Since every element in V is p-nilpotent, the equation

(3) ad( f̃ )p
= 0

yields further polynomial equations we want the xi to satisfy.
Forcing F to only contain elements f ′ with f ′

⪯ e is slightly more subtle since
we cannot simply calculate the ‘rank’ of M = ad( f̃ )p−1. Let R = rank(ad(e)p−1)
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and ϵ be a map evaluating the remaining variables to choices in k (so each f ′
∈ F

is simply some ϵ( f̃ )). We find a subset r1, . . . , rR of rows and subset c1, . . . , cR

of columns such that, up to the reordering of rows and columns, the corresponding
submatrix S of M is upper triangular and all diagonal entries are elements of F∗

p.
Then any element f ′

∈ F will satisfy rank(ad( f ′)p−1) ≥ R. We only want those
elements f ′

⪯ e which means rank(ad( f ′)p−1) ≤ R. Thus, given any row r of M
the element ϵ(r) is in the span of ϵ(r1), . . . , ϵ(rR). In particular, a row r ′ of M
with zeroes at all columns c1, . . . , cR evaluates to zero. This final set of conditions
is enough to force all remaining variables to be 0.

Example 3.9. Here we require Step 3. Let G be of type G2 and p = 3. Consider
e = e01 which is a representative of the A1 orbit, thus contained in V by Lemma 2.1.

Take h = h01, f = e−01. Then (e, h, f ) is an sl2-triple in g with f ∈ V . Define
F := ker(ad(h) + 2Idim(g)). This is 5-dimensional and we build f̃ as above:

f̃ = x1e−32 + x2e−01 + x3e−10 + x4e11 + x5e32.

After Step 1 we find

f̃ = x1e−32 + e−01 + x3e−10 + x4e11 + x5e32.

There are no elements of C = CG(e)∩ CG(h) which we can use to reduce f̃ , so
we move onto Step 3.

The equation ad( f̃ )p
= 0 gives many relations amongst the remaining variables

but none that allow us to conveniently reduce f̃ . Consider the matrix M = ad( f̃ )p−1.
The first, eighth, tenth and thirteenth column of M consist only of zeroes, so we
remove them, leaving the matrix M ′ as follows:

x1x5 0 0 x5 2x2
4 0 0 x4x5 0 x2

5

0 2x4 0 0 0 x5 0 0 0 0
0 0 2x4 0 0 0 x5 0 0 0
0 0 0 0 2x1x5+x3x4 0 0 x3x5+x2

4 0 0
0 2x1x4+2x2

3 0 0 0 x1x5+2x3x4 0 0 x3x5+x2
4 0

0 x3 0 0 0 2x4 0 0 x5 0
0 0 x3 0 0 0 x4 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 x1x4+x2

3 0 0 2x1x5+x3x4 0 0
x1 0 0 1 x3 0 0 x4 0 x5

0 2x1 0 0 0 2x3 0 0 2x4 0
0 0 2x1 0 0 0 x3 0 0 0
x2

1 0 0 x1 x1x3 0 0 2x2
3 0 x1x5

0 0 0 0 0 x1 0 0 x3 0
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We calculate that
R = rank(ad(e)p−1) = 1.

Therefore, if ϵ( f̃ ) = f ′
⪯ e for some evaluation map ϵ, the rank of ϵ(M ′) is at most

one. Observe that M ′

10,4 = 1 and so the rank of ϵ(M ′) is at least one. It follows that
every row of ϵ(M ′) is a multiple of the tenth row of ϵ(M ′).

Consider the sixth row of M ′. This only has nonzero entries in columns 2, 6
and 9, namely x3, 2x4 and x5. Since the tenth row is zero in columns 2, 6 and 9,
the sixth row of ϵ(M ′) is zero. Hence x3 = x4 = x5 = 0.

Similarly, row 11 of ϵ(M ′) is zero. Thus x1 = 0, and we conclude that f̃ = f .

3.2. Good characteristic. Suppose p is a good prime for G. As in the bad charac-
teristic case, we describe an algorithm to deduce that V is monogamous. In good
characteristic there is a considerable amount of theory at our disposal. In particular,
every e ∈ N has an associated cocharacter: that is, a homomorphism τ : Gm → G
such that under the adjoint action, we have τ(t) · e = t2e and τ evaluates in the
derived subgroup of the Levi subgroup in which e is distinguished.

Lemma 3.10. Suppose p is good for G, and let (e, h1, f1) be an sl2-triple with
e, f1 ∈V . Then there is a cocharacter τ associated to e such that Lie(τ (Gm))=⟨h1⟩.
Thus if (e, h2, f2) is also an sl2-triple with f2 ∈ V , then h2 is CG(e)-conjugate to h1.
Moreover, if h1 = h2 and g =

⊕
i g(i) is the grading of g with respect to τ we have

f1 − f2 ∈

⊕
r>0

ge(−2 + r p),

where ge(i) := cg(e) ∩ g(i).

Proof. We start by proving that hi is toral. By Lemma 2.6, the subalgebra si =

⟨e, hi , fi ⟩ is either a p-subalgebra or non-G-cr. In the former case, we are done. In
the latter case, the argument in the proof of [Stewart and Thomas 2018, Lemma 6.1]
applies, showing hi is toral.

Now we apply [Stewart and Thomas 2018, Proposition 2.8]. This yields cocharac-
ters τi associated to e such that Lie(τi (Gm)) = ⟨hi ⟩. By [Jantzen 2004, Lemma 5.3],
any two cocharacters associated to e are CG(e)-conjugate. Therefore, h1 and h2

are CG(e)-conjugate and so up to CG(e)-conjugacy we may assume they are equal.
Set h = h1 = h2.

Since [e, f1− f2]=h−h =0 we know f1− f2 ∈ cg(e). Furthermore, [h, f1− f2]=

−2( f1 − f2) and hence

f1 − f2 ∈

⊕
r

g(−2 + r p).

The conclusion follows by noting that cg(e) is contained in the nonnegative graded
part of g. □
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Fix 0 ̸= e ∈V for the remainder of this section. Choose a cocharacter τ associated
to e such that h ∈ Lie(τ (Gm)) ⊂ t with [h, e] = 2e. In practice, we use the
representatives and associated cocharacters given in [Lawther and Testerman 2011].
We know from Pommerening [1977; 1980] and Lemma 3.10 that there exists a
unique f̄ ∈ g(−2) such that (e, h, f̄ ) is an sl2-triple. Furthermore, if (e, h, f ) is
another sl2-triple then f = f̄ + f ′ with f ′

∈
⊕

r>0 ge(−2 + r p). Therefore, we
need to prove that if f ∈ V then up to C = CG(e) ∩ CG(h)-conjugacy we have
f = f̄ , i.e., that f ′

= 0.
To do this we use the ad-hoc method from Section 3.1. Indeed, by Lemma 3.4 it

suffices to prove that f = f̄ when f ⪯ e. We now apply Steps 1–3 starting with
the space F = f +

⊕
r>0 ge(−2 + r p).

Example 3.11. We give a final example, this time in good characteristic. Let G be
of type E7 and p = 7. Consider

e = e100
0

000 + e010
0

000 + e001
0

000 + e000
0
100 + e000

0
010,

which is a representative of the (A5)
(2) orbit; thus e ∈V by Lemma 2.1. By [Lawther

and Testerman 2011, p. 109], e has an associated cocharacter with the following
τ -weights on simple roots τ =

2 2 2
−9

2 2 −5 . One uses the inverse of the Cartan
matrix to convert this into a sum of coroots, yielding

h = 2h1 + 6h3 + 5h4 + 6h5 + 2h6 ∈ Lie(τ (Gm))

(this process is how one gets from the diagram of the distinguished cocharacters in
Section 11 to the cocharacters given in Table 3 of [ibid.]). The unique f̄ ∈ g(−2)

such that (e, h, f̄ ) is an sl2-triple is then given by

f̄ = 2e−100
0

000 + 6e−010
0

000 + 5e−001
0

000 + 6e−000
0
100 + 2e−000

0
010.

Let F = f +
⊕

r>0 ge(−2 + r p), which is 6-dimensional. We build a generic
element f̃ of F as in Section 3.1 with six variables. Following Step 1 by enforcing
the linear equations from [e, f̃ ] = h yields

f̃ = f̄ + x1e−123
2

211 + x2e−001
1

100 + x2e−011
1

000 + x3e−000
0
001 + x4e111

0
111

− x5e122
1
110 + x5e112

1
210 + x6e234

2
321.

On this occasion C := CG(e) ∩ CG(h) is finite and we move on to Step 3.
Let M = ad( f̃ )p−1. We calculate that

R = rank(ad(e)p−1) = 13.

So if ϵ( f̃ ) = f ′
⪯ e for some evaluation map ϵ, we have that the rank of ϵ(M) is

at most 13.
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Ordering the basis of g as in Magma, we use the 13×13 submatrix S of M
corresponding to the rows r and columns c where

r = {75, 125, 62, 94, 87, 129, 120, 97, 42, 82, 23, 34, 108},

c = {37, 100, 24, 52, 50, 109, 92, 60, 14, 40, 5, 9, 72}.

The submatrix S is upper triangular and all diagonal entries are elements of F∗
p.

The only other nonzero entries in S can be found in row one, which is

(1 0 4x2 0 0 0 5x5 0 0 0 0 0 0).

We find that 42 rows of M have zero entries in every column in c, so each of
these rows is zero. An example of such a row is the eighth row of M . In row 8
we find x4, 3x5 and −x6 in columns 11, 15 and 70, respectively. It follows that
x4 = x5 = x6 = 0. Similarly the 133-rd row of M then allows us to deduce that
x1 = x2 = x3 = 0. Thus f̃ = f as required.

4. Proof of Theorems 1.1 and 1.2

Proposition 2.2 shows that for each e ∈ V there exists an sl2-triple (e, h, f ) with
s = ⟨e, h, f ⟩ = Lie(X) for a G-cr subgroup X < G of type A1. Thus f is G-
conjugate to e and hence f ∈ V . We have demonstrated in Section 3 that any
other sl2-triple (e, h′, f ′) with f ′

∈ V is CG(e)-conjugate to (e, h, f ). Therefore
s′

= ⟨e, h′, f ′
⟩ is G-conjugate to s and hence G-cr.

It remains to prove that V is the unique maximal closed G-stable subvariety of N
satisfying both the monogamy and A1-G-cr conditions.

For G of classical type, it follows from [Goodwin and Pengelly 2024, Theo-
rem 1.1] that V is maximal with respect to being monogamous and the unique
subvariety with this property. For the A1-G-cr property, the ingredients are in
[ibid.] but let us spell out the details, as these essentially make up the strategy for
the groups of exceptional type used below.

Proposition 4.1. Let G be a simple algebraic group of classical type. Then V is the
unique maximal closed G-stable A1-G-cr subvariety of N .

Proof. Suppose X is a G-stable closed subvariety of N satisfying the A1-G-cr
condition and X ̸⊆ V . Let e ∈ X \V .

First suppose e is distinguished in a Levi subalgebra l = Lie(L) with L having
a factor of type Ap−1. Proposition 2.5 shows that e is contained in an sl2-triple
generating a non-G-cr subalgebra, a contradiction (these non-G-cr subalgebras are
also exhibited in [Goodwin and Pengelly 2024, Section 2.4]).

By definition of V , we may now assume that e[p]
̸= 0. The discussion before

Proposition 2.2 in [ibid.] exhibits an sl2-triple (e, h, f ) with f [p]
= 0 and f in G · e,



MONOGAMOUS SUBVARIETIES OF THE NILPOTENT CONE 177

thus f ∈ X. The argument in the first paragraph shows that neither e nor f are
distinguished in a Levi subalgebra with a factor of type Ap−1. By Lemma 2.6, the
sl2-subalgebra ⟨e, f ⟩ is non-G-cr, a final contradiction. □

Proposition 4.2. Let G be a simple algebraic group of exceptional type. The
variety V is the unique maximal closed G-stable subvariety of N satisfying both the
monogamy and A1-G-cr conditions.

Proof. Suppose X is a G-stable closed subvariety of N satisfying either the
monogamy or A1-G-cr condition and X ̸⊆ V .

First suppose there exists e ∈ X which is distinguished in a Levi subalgebra
l = Lie(L) with a factor of type Ap−1. Then Propositions 2.2 and 2.5 furnish us
with two sl2-triples (e, h, f ) and (e, h′, f ′) such that the first generates a G-cr
subalgebra and the second generates a non-G-cr subalgebra. Moreover, f is in the
same G-class as e and f ′ is in the closure of the G-class of e. Hence X does not
satisfy either condition, a contradiction.

Thus, we now assume every element of X is distinguished in a Levi subalgebra
with no factors of type Ap−1. Since X ̸⊆ V , there exists a nilpotent class in X with
representative e distinguished in a Levi subalgebra l= Lie(L) of g such that e[p]

̸= 0.
Suppose p is good for L . From [Premet and Stewart 2019, Section 2.4] we find

an sl2-triple (e, h, f ) of l with f [p]
= 0. Since p is good for L , we may simply

inspect the Hasse diagrams of each factor of L to deduce that every restricted
nilpotent class is contained in the closure of each nonrestricted distinguished class.
Thus, f ∈ X . Furthermore, s= ⟨e, f ⟩ ∼= sl2 is a non-L-cr subalgebra by Lemma 2.6.
Hence by Lemma 2.4, X does not satisfy the A1-G-cr condition. Proposition 2.2
yields an sl2-triple ( f, h′, e′) which generates a G-cr sl2-subalgebra, and moreover
e′ is in the same G-class as f . Therefore, f is contained in two nonconjugate
sl2-triples. Thus X does not satisfy the monogamy condition either.

In the remaining cases p is bad for L (and hence for G) so L has an excep-
tional factor (including the cases L = G). For each class, we choose e to be
the representative as in [Liebeck and Seitz 2012]. Then [Liebeck and Seitz 2012,
Theorem 1(iii)(b)] provides a parabolic subgroup P = QL of G and a 1-dimensional
torus T1 < Z(L) with the following properties: e ∈ q≥2 := Lie(Q≥2) and moreover,
the closure of the P-orbit of e is equal to q≥2, where here Q≥2 is the product of
all root groups for which the T1-weight is at least 2. Thus, q≥2 ⊆X. Unless G is of
type G2 (this case is dealt with momentarily), a straightforward calculation shows
that q≥2 contains a representative of the Ap−1-class. Thus, so does X, which is a
contradiction.

Finally, let G be of type G2 and p = 3. The only two classes not contained
in V are the regular and the subregular. Since the closure of the regular class
contains the subregular class it suffices to assume X contains the subregular class.
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A representative for this orbit is e = eα2 + e−3α1−α2 . This is a regular nilpotent
element in m = Lie(M) where M is the standard subsystem subgroup of type A2

corresponding to the simple roots α2 and −3α1 − 2α2.
As in the proof of Proposition 2.5, there exists an sl2-triple (e, h, f ) in m such

that s = ⟨e, f ⟩ is non-M-cr. Furthermore, f is in the orbit labelled A1 (both as
an A2-orbit and G2-orbit). We claim that s is non-G-cr. By Proposition 2.2, the
element f is contained in an sl2-triple generating a G-cr subalgebra and by the
claim, the sl2-triple ( f, −h, e) generates a non-G-cr subalgebra. Hence X does not
satisfy either condition.

For the claim, note that s is certainly G-reducible since it is non-M-cr. All G-cr
sl2-subalgebras which are G-reducible are contained in a Levi subalgebra. In this
low-rank case, it immediately follows that all such sl2-subalgebras are G-conjugate
to either l1 = ⟨e±α1⟩ or l2 = ⟨e±α2⟩. Therefore a G-cr sl2-subalgebra only contains
nilpotent elements in the A1 or Ã1 classes. The claim follows since s contains e
which is in the subregular class. □
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AN EXTENSION OF GOW’S THEOREM

ROBERT M. GURALNICK AND PHAM HUU TIEP

In memory of our good friend and esteemed colleague Gary Seitz

We extend Gow’s theorem to finite groups G whose generalized Fitting
subgroup is Z(G)S for a quasisimple Lie-type group S of simply connected
type in characteristic p, and whose center Z(G) has p′-order.

A result of Rod Gow [2000, Theorem 2] asserts that the product aGbG of any
two regular semisimple classes in a finite simple group of Lie type G contains
every nontrivial semisimple element x ∈ G. This result has been used in many
applications. It has also been extended to any quasisimple Lie-type group of simply
connected type: the product aGbG of any two regular semisimple classes in G
contains every noncentral semisimple element x ∈ G; see [Guralnick and Tiep 2015,
Lemma 5.1].

We will further extend Gow’s theorem. Let p be a prime and let G be a simple,
simply connected algebraic group defined over Fp. Let F : G → G be a Steinberg
endomorphism, so that

S := GF

is quasisimple. (In particular, we do not view PSL2(9) as Sp4(2)′, SU3(3) as G2(2)′,
or SL2(8) as 2G2(3)′.)

We will consider finite groups G with

(1) F∗(G) = Z(G)S and p ∤|Z(G)|,

(so CG(S) = CG(F∗(G)) = Z(G)Z(S) is a p′-group), and aim to show that the
product aGbG of two particular conjugacy classes in G will cover all elements g ∈ G
of a certain kind. Before going on we state a special case of a consequence of our
main result which is less technical. Versions of this result have already been used
in [Acciarri et al. 2023; Guralnick et al. 2025].
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Corollary 1. Let G be as above. Assume that a ∈ G has order prime to p, |CS(a)|

has order prime to p and that s ∈ S \ Z(S) is semisimple. Then st
= [a, u] for some

t, u ∈ S.

In fact, one need not assume that g has order prime to p. See our main result
Theorem 6.

Let a and b be elements of G, and set G1 := ⟨S, a, b⟩. Then S ◁G1, and hence
S◁F∗(G1). It follows that F(G1), as well as any quasisimple subnormal subgroup
T ̸= S of G1, centralizes S. Hence by (1), F∗(G1) = Z(G1)S. Furthermore,

Z(G1) ≤ CG(S) = Z(G)Z(S)

is also a p′-subgroup. Hence, for our purposes, we may assume

(2) G = ⟨S, a, b⟩.

Let St denote the Steinberg character of S, and for x ∈ G, write x p for the p-part
of x . By [Feit 1993, Corollary D], St extends to a rational-valued character StG

of G (called the basic p-Steinberg character of G). By [Feit 1995, Theorem C],
there is a Sylow p-subgroup P and a p-subgroup D of G, of order

|D| = pd
= |G/S|p,

such that P = Q ⋊ D for a Sylow p-subgroup Q of S and the following statement
holds. For any element x ∈ G, StG(x) ̸= 0 if and only if x p ∈ D (up to conjugation),
in which case

StG(x) = ±|CS(x)|p.

In view of these results, the proper generalization to G of regular semisimple classes
in S will be that a, b ∈ G satisfy

(3) ap ∈ D up to conjugation in G and p ∤|CS(a)|,

and

(4) bp ∈ D up to conjugation in G and p ∤|CS(b)|,

Certainly, g ∈ G can belong to aGbG only when it does so in the solvable group G/S,
so we will assume

(5) gS ∈ (aS)G/S(bS)G/S and gp ∈ D up to conjugation in G.

For instance, if G/S is abelian, then the first condition in (5) is equivalent to g ∈abS.

Proposition 2. (i) If p > 2 and Q ∈ Sylp(S), then CG(Q) = Z(G)Z(S)Z(Q).

(ii) If g ∈ G \ Z(G)Z(S) and gp ∈ D, then p divides [S : CS(g)].
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Proof. Since Z := Z(G)Z(S) is a p′-group centralizing Q and normal in G, we
may work in G := G/Z and identify Q with Q := Q Z/Z . Note that Z ∩ S = Z(S).
Moreover, as S is perfect, we have CG(S/Z(S)) = CG(S) = Z . It follows that

S := S/Z(S)◁G ≤ Aut(S),

i.e., G is almost simple.
Consider any element x ∈ C := CG(Q). Then H := ⟨S, x⟩ ≤ G is also almost

simple, whence Op′(H) = 1, and R := ⟨Q, x p⟩ is a Sylow p-subgroup of H
centralized by x . It follows that R = Op(NH (R)). By [Gorenstein et al. 1998,
Corollary 3.1.4], Op(NH (R)) = F∗(NH (R)), whence x belongs to CNH (R)(R) ≤ R
and so x = x p is a p-element. Thus C is a p-group.

Similarly, Q = Op(NS(Q)) = F∗(NS(Q)), and so

C ∩ S = CS(Q) = CNS(Q)(Q) ≤ Q.

It follows that C ∩ S = Z(Q).

(i) Now we assume p >2 and show that C ≤ S, which implies that CG(Q)= Z(Q)Z .
Assume the contrary: C ̸≤ S. Since C is a p-group, we can find a p-element x ∈C\S;
in particular, [x, Q] = 1. Now R := ⟨x, Q⟩ is Sylow p-subgroup of H := ⟨S, x⟩

and x ∈ Z(R). As S ◁ H ≤ G ≤ Aut(S), we still have Op′(H) = 1. Now, if p > 2
then Z(R) ≤ F∗(H) = S by [Glauberman et al. 2020, Corollary 1.2], and hence
x ∈ S, contrary to the choice of x .

(ii) Assume the contrary that p ∤[S : CS(g)]. Conjugating g suitably, we may assume
that g ∈ CG(Q) with Q ∈ Sylp(S) as before.

Suppose first that p > 2. Then g ∈ Z(G)Z(S)Z(Q) by (i), and so gp ∈ S. But
gp is conjugate to an element in D by assumption and D ∩ S = 1, so gp = 1. It
follows that g ∈ Z(G)Z(S), a contradiction.

Thus we have p = 2. Then

StG(1) = |Q| = |CS(g)|p = ±StG(g).

On the other hand, St is trivial at Z(S), so the generalized center of StG contains Z =

Z(G)Z(S) and hence equals G as G/Z is almost simple with socle S. As the gen-
eralized center of StG contains g, we conclude that g ∈ Z , again a contradiction. □

Fix any element g ∈ G satisfying (5). Then SCG(g) ≤ G, so

(6) Z ∋ [G : SCG(g)] =
|G| · |CS(g)|

|S| · |CG(g)|
=

[G : CG(g)]

[S : CS(g)]
.

Write

(7)
[G : CG(g)]p

[S : CS(g)]p
= pe.
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Lemma 3. Let X be a finite group, which is abelian-by-cyclic, that is, X has a
normal abelian subgroup A◁ X such that X/A is cyclic. Suppose x, y, z ∈ X are
such that

X = ⟨x, y⟩ and z ≡ xy (mod [X, X ]).

Then ∑
α∈Irr(X)

α(x)α(y)α(z)
α(1)

= |X/[X, X ]|.

Proof. The condition z ≡ xy (mod [X, X ]) implies that∑
α∈Irr(X),α(1)=1

α(x)α(y)α(z)
α(1)

= |X/[X, X ]|.

Hence it suffices to show that the contribution of any nonlinear α ∈ Irr(X) to the
sum in the statement is 0. Consider any irreducible constituent λ of α|A. Suppose
λ is not X -invariant. As X = ⟨x, y⟩, we may assume that λ is not x-invariant, in
which case α(x) = 0 by Clifford’s theorem and the contribution is 0 as claimed.

Suppose now that λ is X -invariant. Then for any a ∈ A and t ∈ X , as λ(1) = 1
we have

λ(tat−1a−1) = λ(tat−1)/λ(a) = 1,

whence [t, a] ∈ Ker(λ) and Ker(λ)◁ X . It follows that A/Ker(λ) ≤ Z(X/Ker(λ)).
But X/A is cyclic, so X/Ker(λ) is abelian. Now λ is the unique irreducible
constituent of αA, so Ker(λ) ≤ Ker(α), and hence α, viewed as an irreducible
character of X/Ker(λ), must be linear, contrary to the assumption α(1) > 1. □

Proposition 4. Under the assumptions (1)–(5), assume in addition that G/S is
abelian-by-cyclic. Then

61 :=

∑
χ∈Irr(G|St)

χ(a)χ(b)χ(g)

χ(1)
· |gG

|

is a rational integer whose p-part is at most pd+e.

Proof. As mentioned above, St extends to StG . Hence, by Gallagher’s theorem
[Isaacs 2006, (6.17)], any χ ∈ Irr(G|St) is of the form

χ = StGα

with α ∈ Irr(G/S). Using (2), (5) and Lemma 3, we see that∑
α∈Irr(G/S)

α(a)α(b)α(g)

α(1)

is a rational integer whose p-part is at most pd .
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On the other hand, by (3) and (4) we see that

StG(a)StG(b)StG(g)

StG(1)
· |gG

| = ±
|CS(g)|p · |G|p · |G|p′

|S|p · |CG(g)|p · |CG(g)|p′

= ±
[G : CG(g)]p

[S : CS(g)]p
· [G : CG(g)]p′

is pe times a p′-integer. Hence the statement follows. □

Recall that St is the only p-defect zero character of S. By the main result of
[Humphreys 1971], all the remaining characters of S belong to p-blocks of maximal
defect. The next result deals with these characters.

Proposition 5. Under the assumptions (1)–(5), assume in addition that G/S has
a cyclic Sylow p-subgroup and a normal p-complement, and that g /∈ Z(G)Z(S).
Then

62 :=

∑
χ∈Irr(G)\Irr(G|St)

χ(a)χ(b)χ(g)

χ(1)
· |gG

|

is pd+e+1 times an algebraic integer.

Proof. By the hypothesis we can write G/S = (H/S)⋊D for some normal subgroup
H ≥ S of G. Note that any χ ∈ Irr(G)\Irr(G|St) lies above some θ ∈ Irr(H) which
does not lie above St. Suppose θ is not G-invariant. As G = ⟨H, a, b⟩, we may
assume that θ is not a-invariant, in which case χ(a) = 0 by Clifford’s theorem, and
the contribution of χ to 62 is 0.

Hence we need to count the total contribution to 62 of the characters χ ∈ Irr(G|θ),
where θ /∈ Irr(H |St) is G-invariant. Since G/H is cyclic, any such θ extends to a
character χ1 of G, and we may write

Irr(G|θ) = {χ1µ | µ ∈ Irr(G/H)}.

By the assumption θ /∈ Irr(H |St), every irreducible constituent of θ |S belongs to an
S-block BS of maximal p-defect.

Conjugating g suitably, we may assume that gp ∈ D. Note that gp′ ∈ H , so
g = gpgp′ belongs to

K := ⟨H, gp⟩◁G.

Set
χ2 := (χ1)|K ∈ Irr(K |θ).

Now the p-block B of H that contains θ covers BS , and p ∤|H/S|, so B has maximal
defect; see, e.g., [Navarro 1998, Theorem 9.26]. But K/H ↪→ D is a p-group, so
by [Navarro 1998, Corollary 9.6] there is a unique p-block B2 of K that covers B.
In particular,

Irr(K |θ) ⊆ Irr(B2).
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Moreover, B is K -invariant as θ is K -invariant, whence B2 is of maximal defect by
[Navarro 1998, Theorem 9.17]. It follows that B2 contains a character χ0 of height
zero, and so of p′-degree.

As χ0 and χ2 belong to the same block, we know that the two algebraic integers

ωχi (g) =
χi (g)

χi (1)
· |gK

|

for i ∈ {0, 2} are congruent modulo p. By Proposition 2, |gS
| is divisible by p,

so |gK
| is divisible by p as well; see the computation in (6). But p ∤χ0(1), so

p | ωχ0(g). It follows that

(8) p divides ωχ2(g) =
χ2(g)

χ2(1)
· |gK

| =
χ1(g)

χ1(1)
· |gK

|.

Next, (6) applied to S ◁ H with p ∤|H/S| shows that

|gS
|p = |gH

|p.

On the other hand, gp centralizes g, and K = ⟨H, gp⟩, so H CK (g) = K , showing
that gK

= gH . Hence |gS
|p = |gK

|p, and (7) becomes

pe
=

|gG
|p

|gK |p
.

Together with (8), we now obtain

pe+1 divides ωχ1(g) =
χ1(g)

χ1(1)
· |gG

|.

Now, (5) implies that g ≡ ab (mod G/H), and so∑
µ∈Irr(G/H)

µ(a)µ(b)µ(g)

µ(1)
= |G/H | = pd .

It follows that∑
χ∈Irr(G|θ)

χ(a)χ(b)χ(g)

χ(1)
· |gG

| = ωχ1(g)
∑

µ∈Irr(G/H)

µ(a)µ(b)µ(g)

µ(1)
= pdωχ1(g)

is pd+e+1 times an algebraic integer. □

Theorem 6. Under the assumptions (1)–(5), assume in addition that all the follow-
ing conditions hold:

(a) G/S is abelian-by-cyclic.

(b) G/S has cyclic Sylow p-subgroups and a normal p-complement.

(c) g /∈ Z(G)Z(S).

Then g ∈ aGbG .
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Proof. By Propositions 4 and 5,

|gG
|

∑
χ∈Irr(G)

χ(a)χ(b)χ(g)

χ(1)
= 61 + 62

is ps(u + ptv), where u ∈ Z\ pZ, v is an algebraic integer, 0 ≤ s ≤ d +e, and t ≥ 1.
Now if u + ptv = 0, then v = −u/pt is rational and an algebraic integer, so v ∈ Z

and u ∈ pZ, a contradiction. Thus∑
χ∈Irr(G)

χ(a)χ(b)χ(g)

χ(1)
̸= 0,

and so g ∈ aGbG by Frobenius’ character formula. □

Proof of Corollary 1. To prove this, we may replace G by ⟨S, a, b⟩ with b := a−1.
Then (3)–(4) hold with g := s. Now G/S is cyclic, so s ∈ aGbG by Theorem 6.
But aG

= aS and bG
= bS since G = ⟨S, a⟩ = ⟨S, b⟩, so the statement follows. □

In what follows, q is always a power of the prime p. We will use the structure
of Aut(S) as described in [Gorenstein et al. 1998, Theorem 2.5.12], in particular
the notation Inndiag(S) and Outdiag(S).

Theorem 7. Under the assumptions (1)–(5), assume in addition that all the follow-
ing conditions hold for g, S = S/Z(S), and G = G/Z(G)Z(S):

(a) g /∈ Z(G)Z(S).

(b) If S = PSLn(q) with n ≥ 3, or S = P�+

2n(q) with n ≥ 4, or S = E6(q), then
the quotient G/(G ∩ Inndiag(S)) is cyclic.

Then g ∈ aGbG .

Proof. Recall that G/S ∼= G/S is a subgroup of O := Out(S). By Theorem 6, we
need to show that A = G/S satisfies both of the conditions (a) and (b) listed therein.
Note that both (a) and (b) in Theorem 6 follow from the condition

(9) A admits a normal abelian p′-subgroup B with A/B being cyclic.

In turn, (9) is a consequence of the condition

(10) O := Out(S) admits a normal abelian p′-subgroup J with O/J being cyclic.

(Indeed, taking B := A ∩ J we have A/B ↪→ O/J .)
Set J := Outdiag(S) := Inndiag(S)/S. Now, if S is a twisted group, i.e., the

parameter d for S ∼=
d6(q) in [Gorenstein et al. 1998, Theorem 2.5.12] is greater

than one, then (10) holds (for this choice of J ). It remains to consider the untwisted
groups, that is, the ones with d = 1.
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If S = PSL2(q) then (10) holds. Suppose that S = PSLn(q) with n ≥ 3, or
S = P�+

2n(q) with n ≥ 4, or S = E6(q). Then taking B := (G ∩ Inndiag(S))/S,
we see that A/B is cyclic by assumption (b) in Theorem 7, hence (9) holds.

In the remaining cases, S is of type Bn , Cn , G2, F4, E7, or E8, hence O/J is
cyclic, and so (10) holds. □

Next we deduce another consequence of Theorem 6. For the definition of the
reduced Clifford group 0+(Fn

q) = CSpinϵ
n(q), see, for example, [Tiep and Zalesski

2005, §6]; in particular, it contains Spinϵ
n(q) as a normal subgroup with factor Cq−1.

Theorem 8. Let q be a prime power, and let (G, S) be any of the following pairs
of groups:

(a) G = GLn(q) with n ≥ 2, (n, q) ̸= (2, 2), (2, 3), and S = SLn(q).

(b) G = GUn(q) with n ≥ 2, (n, q) ̸= (2, 2), (2, 3), (3, 2), and S = SUn(q).

(c) G = CSp2n(q) with n ≥ 2, (n, q) ̸= (2, 2), and S = Sp2n(q).

(d) G = CSpinϵ
n(q) with n ≥ 5, 2∤q , and ϵ = ±, and S = Spinϵ

n(q).

(e) G = GOϵ
n(q) or SOϵ

n(q) with n ≥ 5, 2∤q , and ϵ = ±, and S = �ϵ
n(q).

Suppose that a, b ∈ G are such that p ∤|CS(a)| and p ∤|CS(b)|. If g ∈ G is any
noncentral p′-element such that g ∈ abS, then g ∈ aGbG .

Proof. For all of the above pairs but (e), we have that S is a quasisimple Lie-type
group of simply connected type, S ◁ G, F∗(G) = Z(G)S, and Z(S) ≤ Z(G).
Furthermore, G/S is abelian of p′-order, and (3), (4), and (5) are all fulfilled.
Hence the statement follows from Theorem 6. In the case of (e), the same proof of
Theorem 6 applies. □

Note that Theorem 6 also applies to GOϵ
2n(q) with 2 | q and n ≥ 3. But we do

not include them in Theorem 8 since the subgroup D is now of order 2 and so
conditions (3)–(5) are more complicated than those formulated in Theorem 8.
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ON DIMENSIONS OF ROCK BLOCKS OF
CYCLOTOMIC QUIVER HECKE SUPERALGEBRAS

ALEXANDER KLESHCHEV

To the memory of Gary Seitz

We explicitly compute the dimensions of certain idempotent truncations of
RoCK blocks of cyclotomic quiver Hecke superalgebras. Equivalently, this
amounts to a computation of the value of the Shapovalov form on certain
explicit vectors in the basic representations of twisted affine Kac–Moody Lie
algebras of type A.

1. Introduction

Our goal is to obtain a technical (but neat) result computing the dimensions of certain
idempotent truncations of RoCK blocks of cyclotomic quiver Hecke superalgebras.
Equivalently, this amounts to a computation of the value of the Shapovalov form
on certain explicit vectors in the basic representation V (30) of the twisted affine
Kac–Moody Lie algebra g of type A(2)2ℓ .

To state the result, let g be the Kac–Moody Lie algebra of type A(2)2ℓ , with a
normalized invariant form ( · | · ) on the corresponding weight lattice P , and the
Weyl group W . Let

I = {0, 1, . . . , ℓ}, J := I \ {ℓ},

{αi | i ∈ I } be the simple roots, {3i | i ∈ I } be the fundamental dominant weights,
and Q+ ⊂ P be the set of Z≥0-linear combinations of the simple roots. For
the negative Chevalley generators { fi | i ∈ I } of g, we have the divided powers
f (k)i := f k

i /k! ∈ U (g) for k ∈ Z≥0. Fix a nonzero highest weight vector v+ of the
irreducible g-module V (30) with highest weight 30. Let ( · , · ) be the Shapovalov
form on V (30) such that (v+, v+)= 1.

For every w ∈ W with reduced decomposition w = rit · · · ri1 , setting

(1.1) ak := (rik−1 · · · ri130 | α∨

ik
) (k = 1, . . . , t),
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it is easy to see that a1, . . . , at ∈ Z≥0 and

vw := f (at )
it

· · · f (a1)
i1

v+

is a nonzero vector of the weight space V (30)w30 , which does not depend on the
choice of reduced decomposition and satisfies (vw, vw)= 1.

For every j ∈ J and m ∈ Z≥0, we define the divided power monomial

(1.2) f (m, j) := f (m)j · · · f (m)1 f (2m)
0 f (m)1 · · · f (m)j f (2m)

j+1 · · · f (2m)
ℓ−1 f (m)ℓ ∈ U (g)

(with f (0, j) interpreted as 1). Recalling the null-root δ := 2α0 +· · ·+2αℓ−1 +αℓ,
note that the monomial f (m, j) has total weight −mδ. More generally, given
d, n ∈ Z>0, a composition µ = (µ1, . . . , µn) of d into n nonnegative parts and a
tuple j = ( j1, . . . , jn) ∈ J n we define

(1.3) f (µ, j) := f (µn, jn) · · · f (µ1, j1) ∈ U (g).

For a composition ωd := (1, . . . , 1) of d, we also define

(1.4) f (ωd) :=

∑
j∈J d

f (ωd , j)=

∑
j1,..., jd∈J

f (1, jd) · · · f (1, j1).

If the weight space V (30)30−θ for θ ∈ Q+ is nonzero, then we can write
θ =30 −w30 + dδ for some w in the Weyl group W and a unique d ∈ Z≥0. We
then say that θ is RoCK if (θ | α∨

0 ) ≥ 2d and (θ | α∨

i ) ≥ d − 1 for i = 1, . . . , ℓ.
This is equivalent to the cyclotomic quiver Hecke algebra R30

θ being a RoCK block,
as defined in [Kleshchev and Livesey 2022, Section 4.1]. To each composition
µ= (µ1, . . . , µn) and tuple j = ( j1, . . . , jn)∈ J n , we can define the corresponding
divided power idempotents e(µ, j) ∈ R30

θ . The idempotents e(ωd , j) are then
distinct and orthogonal to each other for distinct j ∈ J d , so we also have the
idempotent e(ωd) :=

∑
j∈J d e(ωd , j).

Main Theorem. Let weight θ = 30 − w30 + dδ be RoCK, n ∈ Z>0, µ =

(µ1, . . . , µn) be a composition of d with n parts, and j = ( j1, . . . , jn) ∈ J n . Set

(1.5) |µ, j |ℓ−1 :=

∑
1≤r≤n
jr =ℓ−1

µr .

Then
dim e(µ, j)R30

θ e(ωd)= ( f (µ, j)vw, f (ωd)vw)

=

( d
µ1 · · ·µn

)
4d−|µ, j |ℓ−1 3|µ, j |ℓ−1 .

The first equality in the theorem is a known consequence of the Kang–Kashiwara–
Oh categorification, so the main work is to prove of the second equality. This is
proved in Theorem 5.6.
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The dimension formula for e(µ, j)R30
θ e(ωd) obtained in the Main Theorem is

a shadow of the fact that the Gelfand–Graev idempotent truncation of a RoCK
block R30

θ is isomorphic to a generalized Schur algebra corresponding to a certain
Brauer tree algebra. In fact, our Main Theorem is a key step needed for the proof
of this isomorphism in [Kleshchev 2024].

2. Shapovalov forms

2.1. Lie theoretic notation. Let g be the Kac–Moody Lie algebra of type A(2)2ℓ
(over C); see [Kac 1990, Chapter 4]. We set

p := 2ℓ+ 1.

The Dynkin diagram of g has vertices labeled by I = {0, 1, . . . , ℓ}:

c << <c c c c c0 1 2 ℓ−2 ℓ−1 ℓ c c0 1
if ℓ= 1.if ℓ≥ 2 and

We have the standard Chevalley generators {ei , fi , hi | i ∈ I } of g and the
Chevalley anti-involution

σ : g → g, ei 7→ fi , fi 7→ ei , hi 7→ hi .

We have the weight lattice P of g, the subset of all dominant integral weights
P+ ⊂ P , and the set {αi | i ∈ I } ⊂ P of the simple roots of g. We denote by Q the
sublattice of P generated by the simple roots and set

Q+ :=

{∑
i∈I

miαi

∣∣∣ mi ∈ Z≥0 for all i ∈ I
}

⊂ Q.

For θ =
∑

i∈I miαi ∈ Q+, its height is

ht(θ) :=

∑
i∈I

mi .

For θ ∈ Q+ of height n, we set

I θ := {(i1, · · · , in) ∈ I n
| αi1 + · · · +αin = θ}.

We have the null-root

δ =

ℓ−1∑
i=0

2αi +αℓ

with ht(δ)= 2ℓ+ 1 = p.
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We denote by ( · | · ) a normalized invariant form on P whose Gram matrix with
respect to the linearly independent set α0, α1, . . . , αℓ is

2 −2 0 · · · 0 0 0
−2 4 −2 · · · 0 0 0

0 −2 4 · · · 0 0 0
. . .

0 0 0 . . . 4 −2 0
0 0 0 . . . −2 4 −4
0 0 0 . . . 0 −4 8


if ℓ≥ 2 and

(
2 −4

−4 8

)
if ℓ= 1.

Recall from [Kac 1990, §§3.7, 3.13] the (affine) Weyl group W generated by
the fundamental reflections {ri | i ∈ I } as a Coxeter group. The form ( · | · ) is
W -invariant; see [Kac 1990, Proposition 3.9].

For 3 ∈ P+, we denote by V (3) the irreducible integrable g-module of highest
weight 3. Fix a nonzero highest weight vector v+ ∈ V (3)3. The Shapovalov form
is the unique symmetric bilinear form ( · , · ) on V (3) such that (v+, v+)= 1 and

(2.1) (xv,w)= (v, σ (x)w) (x ∈ g, v, w ∈ V (3)).

Lemma 2.2. Let 3 ∈ P+ and w ∈ W with a reduced decomposition w = rit · · · ri1 .
Then

(i) ak := (rik−1 · · · ri13 | α∨

ik
) ∈ Z≥0 for all k = 1, . . . , t ;

(ii) vw := f (at )
it

· · · f (a1)
i1

v+ is a nonzero vector of the weight space V (3)w3, which
does not depend on the choice of a reduced decomposition of w;

(iii) (vw, vw)= 1.

Proof. This is well-known. For example, for all the claims, except the indepen-
dence of a reduced decomposition, one can consult [Kleshchev and Livesey 2022,
Lemma 2.4.11]. One way to see the independence of a reduced decomposition is
to first note that (iii) determines vw uniquely up to a sign, and if f (bt )

jt · · · f (b1)
j1 v+

is such vector corresponding to another reduced decomposition, we cannot have
vw = − f (bt )

jt · · · f (b1)
j1 v+, since, by the Kang–Kashiwara–Oh categorification [Kang

et al. 2013], the vectors f (at )
it

· · · f (a1)
i1

v+ and f (bt )
jt · · · f (b1)

j1 v+ correspond to mod-
ules over a certain algebra when V (3) is identified with a Grothendieck group. □

2.2. Quantized enveloping algebra. Let q be an indeterminate and consider the
ring Z[q, q−1

] of Laurent polynomials and the field C(q) of rational functions. For
i ∈ I and n ∈ Z≥0, we have the following elements of Z[q, q−1

]:

(2.3) qi := q(αi |αi )/2, [n]i :=
qn

i − q−n
i

qi − q−1
i

, [n]
!

i := [1]i [2]i · · · [n]i .
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Let Uq(g) be the quantized enveloping algebra of type A(2)2ℓ , i.e., the associative
unital C(q)-algebra with generators {Ei , Fi , K ±1

i | i ∈ I } subject only to the quantum
Serre relations

Ti E j T −1
i = q(αi |α j )E j ,

Ti F j T −1
i = q−(αi |α j )F j ,

Ei F j − F j Ei = δi, j
Ti − T −1

i

qi − q−1
i

,

1−ai, j∑
r=0

(−1)r E (r)i E j E (1−ai, j −r)
i = 0 (i ̸= j),

1−ai, j∑
r=0

(−1)r F (r)i F j F (1−ai, j −r)
i = 0 (i ̸= j),

where we have set Ti := K (αi |αi )/2
i , E (r)i := Ei/[r ]

!

i , F (r)i := Fi/[r ]
!

i .

There is a C(q)-linear anti-involution σq : Uq(g)→ Uq(g) with

σq : Ei 7→ qi Fi T −1
i = q−1

i T −1
i Fi , Fi 7→ q−1

i Ti Ei = qi Ei Ti , Ti 7→ Ti .

For 3 ∈ P+, we denote by Vq(3) the irreducible integrable module for Uq(g)

of highest weight 3. We fix a nonzero highest weight vector v+,q ∈ Vq(3)3, so
Eiv+,q = 0 and Tiv+,q = q(αi |3)v+,q for all i ∈ I . There is a unique symmetric
bilinear form ( · , · )q on Vq(3) such that (v+,q , v+,q)q = 1 and

(2.4) (xv,w)q = (v, σq(x)w)q (x ∈ Uq(g), v, w ∈ Vq(3));

see [Kashiwara et al. 1996, Appendix D]. We refer to ( · , · )q as the (quantum)
Shapovalov form.

2.3. Putting q to 1. Let Vq be a Uq(g)-module which decomposes as a direct sum
of finite-dimensional integral weight spaces Vq =

⊕
µ∈P Vq,µ. Suppose also that

there exists a full rank Z[q, q−1
]-sublattice Vq,µ,Z[q,q−1] ⊂ Vq,µ for every µ such

that Vq,Z[q,q−1] :=
⊕

µ∈P Vq,µ,Z[q,q−1] is stable under all Ei and Fi . Considering C

as a Z[q, q−1
]-module with q acting as 1, we change scalars to get the complex

vector space Vq |q=1 := C ⊗Z[q,q−1] Vq,Z[q,q−1] with linear operators ei := 1 ⊗ Ei ,
fi := 1⊗ Fi and hi := 1⊗ ((Ti − T −1

i )/(qi −q−1
i )) for all i . These linear operators

are easily checked to satisfy the Serre relations for g; see [Jantzen 1996, 5.13;
Lusztig 1988, Theorem 4.12 and §4.14]. Thus Vq |q=1 becomes a g-module. (This
module depends on the choice of the Z[q, q−1

]-sublattice).
Given a symmetric bilinear form ( · , · )q on Vq which satisfies (2.4) and is

Z[q, q−1
]-valued on Vq,Z[q,q−1], we obtain, extending scalars, a symmetric bilinear

form ( · , · )q |q=1 on Vq |q=1 satisfying (2.1).
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The above constructions can be applied to the irreducible modules Vq(3) with
highest weight 3 ∈ P+ by considering the Z[q, q−1

]-sublattice spanned by all
vectors of the form Fi1 · · · Fir v+. Taking into account that the formal characters
of Vq(3) and V (3) agree by [Lusztig 1988, Theorem 4.12 and §4.14], this shows
that there is a unique isomorphism V (3) ∼

−→ Vq(3)|q=1 mapping v+ onto 1⊗v+,q .
Identifying V (3) and Vq(3)|q=1 under this isomorphism, the quantum Shapovalov
form ( · , · )q yields the usual Shapovalov form ( · , · ), that is, ( · , · )q |q=1 = ( · , · ).
In particular:

Lemma 2.5. Let ( · , · )q be the Shapovalov form on Vq(3) and ( · , · ) be the Shapo-
valov form on V (3). Then for all i1, . . . , in, j1, . . . , jn ∈ I , we have

(Fi1 · · · Finv+,q , F j1 · · · F jnv+,q)q ∈ Z[q, q−1
]

and

( fi1 · · · finv+, f j1 · · · f jnv+)= (Fi1 · · · Finv+,q , F j1 · · · F jnv+,q)q |q=1.

Another example of passing from Vq to Vq |q=1 will be considered in Section 4.

3. Combinatorics

Recall that we have set p = 2ℓ+ 1.

3.1. Partitions, multipartitions, tableaux. We denote by P the set of all partitions
and by P(n) the set of all partitions of n ∈ Z≥0. For λ ∈ P(n) we write |λ| = n.
Collecting equal parts of λ ∈ P, we can write it in the form

(3.1) λ= (lm1
1 , . . . , lmk

k ) with l1 > · · ·> lk > 0 and m1, . . . ,mk ≥ 1.

We then define

(3.2) ∥λ∥q :=

∏
r with p|lr

mr∏
s=1

(1 − (−q2)s),

and

(3.3) h(λ) :=

k∑
r=1

mr , h p(λ) :=

∑
r with p|lr

mr .

In other words, h(λ) is the number of (positive) parts of λ and h p(λ) is the number
of (positive) parts of λ divisible by p. If mr > 1 implies p | lr for all 1 ≤ r ≤ k then λ
is called p-strict. Note that 0-strict also makes sense and means simply strict, i.e., all
parts are distinct. We denote by Pp(n) the set of all p-strict partitions of n, and let
Pp :=

⊔
n≥0 Pp(n).We use the similar notation P0(n) and P0 for strict partitions.
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For λ ∈ P0 we define its parity:

(3.4) pλ :=

{
1 if λ has odd number of positive even parts,
0 otherwise.

Let λ be a p-strict partition. As usual, we identify λ with its Young diagram

λ= {(r, s) ∈ Z>0 × Z>0 | s ≤ λr }.

We refer to the element (r, s) ∈ Z>0 × Z>0 as the node in row r and column s. We
define a preorder ‘≤’ on the nodes via (r, s) ≤ (r ′, s ′) if and only if s ≤ s ′. For
partitions (equivalently Young diagrams) α ⊆ λ, we define

(3.5) q(λ/α) := |{r ∈Z>0 |λ\α has a node in column r but not in column r+1}|.

We label the nodes with the elements of the set I as follows: the labeling follows
the repeating pattern 0, 1, . . . , ℓ−1, ℓ, ℓ−1, . . . , 1, 0, starting from the first column
and going to the right; see Example 3.8 below. If a node A ∈ λ is labeled with i , we
say that A has residue i and write Res A = i . Recalling αi ’s and Q+ from Section 2.1,
define the residue content of λ to be

cont(λ) :=

∑
A∈λ

αRes A ∈ Q+.

We always write cont(λ)=
∑

i∈I cλi αi , and

(3.6) cλ
̸=0 := cλ1 + · · · + cλℓ = |λ| − cλ0 .

Following [Morris 1965; Leclerc and Thibon 1997], we can associate to every
λ ∈ Pp its p̄-core

core(λ) ∈ Pp

obtained from λ by removing certain nodes. Clearly, from the definition, the number
of nodes removed to go from λ to core(λ) is divisible by p, so the p̄-weight of λ

wt(λ) :=
|λ| − |core(λ)|

p

is a nonnegative integer. A partition ρ ∈ Pp is called a p̄-core if core(ρ)= ρ. By
[Kleshchev and Livesey 2022, Lemma 3.1.39], we have:

Lemma 3.7. A p-strict partition λ is a p̄-core if and only if

cont(λ)=30 −w30 for some w ∈ W.
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Example 3.8. Let ℓ = 2, so p = 5. The partition λ = (16, 11, 10, 10, 9, 4, 1) is
5-strict. The residues of the nodes are

0 1 2 1 0 0 1 2 1 0 0 1 2 1 0 0

0 1 2 1 0 0 1 2 1 0 0

0 1 2 1 0 0 1 2 1 0

0 1 2 1 0 0 1 2 1 0

0 1 2 1 0 0 1 2 1

0 1 2 1

0

The 5̄-core of λ is (1).

The partition λ ∈ Pp is determined by its p̄-core core(λ) and p̄-quotient

(3.9) quot(λ)= (λ(0), . . . , λ(ℓ)),

which is an I -multipartition of d, in other words, λ(0), . . . , λ(ℓ) are partitions and
|λ(0)| + |λ(1)| + · · · + |λ(ℓ)| = d. We denote the set of all such multipartitions
by P I (d), and set

P I
:=

⊔
d≥0

P I (d).

We refer the reader to [Morris and Yaseen 1986, p. 27] and [Kleshchev and Livesey
2022, §2.3b] for details on this. For a p̄-core partition ρ, we define

Pp(ρ, d) := {λ ∈ Pp | core(λ)= ρ and wt(λ)= d}.

The map

(3.10) Pp(ρ, d)→ P I (d), λ 7→ cont(λ),

is a bijection; see [Morris and Yaseen 1986, Theorem 2]. The condition λ ∈

Pp(ρ, d) is equivalent to cont(λ) = cont(ρ)+ dδ; see [Kleshchev and Livesey
2022, Lemma 2.3.9].

A multipartition λ= (λ(0), λ(1), . . . , λ(ℓ))∈P I is strict if its 0-th component λ(0)

is a strict partition (and λ(1), . . . , λ(ℓ) are arbitrary partitions). For d ∈ Z≥0, we
denote by P I

0 (d) the set of all strict multipartitions of d . Note that quot(λ)∈P I
0 (d)

if and only if λ ∈ P0(ρ, d), so the bijection (3.10) restricts to the bijection

(3.11) P0(ρ, d)→ P I
0 (d), λ 7→ cont(λ).

We identify a multipartition λ with its Young diagram

λ= {(i, r, s) ∈ I × Z>0 × Z>0 | s ≤ λ(i)r }.
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We refer to the element (i, r, s) ∈ I ×Z>0 ×Z>0 as the node in row r and column s
of component i . For each i , we consider (the Young diagram of) the partition λ(i)

as a subset λ(i) ⊆ λ consisting of the nodes of λ in its i-th component.
Let n ∈ Z>0 and d ∈ Z≥0. A composition of d with n parts is a tuple µ =

(µ1, . . . , µn) with µ1, . . . , µn ∈ Z≥0 such that µ1 + · · · + µn = d. We denote
by 3(n, d) the set of all compositions of d with n parts. We will need a special
composition of d with d parts:

(3.12) ωd := (1d)= (1, . . . , 1).

Recall that J denotes I \{ℓ}. A colored composition of d with n parts is a pair (µ, j)
whereµ= (µ1, . . . , µn) is a composition of d with n parts and j = ( j1, . . . , jn)∈ J n .
We denote by 3col(n, d) the set of all colored compositions of d with n parts.

Let λ= (λ(0), λ(1), . . . , λ(ℓ))∈P I (d) and (µ, j)∈3col(n, d). A colored tableau
of shape λ and type (µ, j) is a function T : λ→ Z>0 such that

(1) T(i, r, s)≤ T(i, r, s + 1) and T(i, r, s)≤ T(i, r + 1, s) whenever these make
sense;

(2) for all k = 1, . . . , n, we have |T−1({k})| = µk and T−1({k})⊆ λ( jk) ⊔ λ( jk+1);

(3) for all k = 1, . . . , n, no two nodes of T−1({k})∩ λ( jk) are in the same column,
and no two nodes of T−1({k})∩ λ( jk+1) are in the same row.

Denote by CT(λ;µ, j) the set of all colored tableaux of shape λ and type (µ, j).
For T ∈ CT(λ;µ, j) and 1 ≤ k ≤ n we denote by qk(T) the number of positive
integers r such that T−1(k)∩λ(0) contains a node in column r but not in column r+1.
We then set q(T)= q1(T)+ · · · + qn(T) and define

(3.13) K (λ;µ, j) :=

∑
T∈CT(λ;µ, j)

2q(T).

3.2. Addable and removable nodes. Let λ be a p-strict partition and i ∈ I . A node
A ∈ λ is called i -removable (for λ) if one of the following holds:

(R1) Res A = i and λA := λ \ {A} is again a p-strict partition; such A’s are also
called properly i-removable.

(R2) The node B immediately to the right of A belongs to λ, Res A = Res B = i ,
and both λB = λ \ {B} and λA,B := λ \ {A, B} are p-strict partitions.

A node B /∈ λ is called i -addable (for λ) if one of the following holds:

(A1) Res B = i and λB
:= λ∪ {B} is again a p-strict partition; such B’s are also

called properly i-addable.

(A2) The node A immediately to the left of B does not belong to λ, Res A=Res B= i ,
and both λA

= λ∪ {A} and λA,B
:= λ∪ {A, B} are p-strict partitions.
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We note that (R2) and (A2) above are only possible if i = 0. For i ∈ I , we denote
by Adi (λ) (resp. Rei (λ)) the set of all i-removable (resp. i-addable) nodes for λ.
We also denote by PAdi (λ) (resp. PRei (λ)) the set of all properly i-removable (resp.
properly i-addable) nodes for λ.

Let λ ∈ Pp be written in the form (3.1). Suppose A ∈ PRei (λ). Then there is
1 ≤ r ≤ k such that

A = (m1 + · · · + mr , lr ).

Recalling the preorder ‘≤’ on the nodes defined above, we set

ηA(λ) := ♯{C ∈ Rei (λ) | C> A} − ♯{C ∈ Adi (λ) | C> A},

ζA(λ) :=

{
(1 − (−q2)mr ) if p | lr ,
1 otherwise,

dA(λ) := qηA(λ)
i ζA(λ).

Note that

(3.14) dA(λ)|q=1 =


0 if p | lr and mr is even,
2 if p | lr and mr is odd,
1 otherwise.

Suppose B ∈ PAdi (λ). Then there is r such that 1 ≤ r ≤ k + 1 and

B = (m1 + · · · + mr−1 + 1, lr + 1),

where we interpret lk+1 as 0. We define

ηB(λ) := ♯{C ∈ Adi (λ) | C< B} − ♯{C ∈ Rei (λ) | C< B},(3.15)

ζ B(λ) :=

{
(1 − (−q2)mr ) if r ≤ k and p | lr ,
1 otherwise,

(3.16)

dB(λ) := qη
B(λ)

i ζ B(λ).(3.17)

Note that

(3.18) dB(λ)|q=1 =


0 if r ≤ k, p | lr and mr is even,
2 if r ≤ k, p | lr and mr is odd,
1 otherwise.

Example 3.19. Let ℓ= 2 so p = 5. The partition λ= (5, 5, 2) is 5-strict, and the
residues of its boxes are labeled on the diagram

0 1 2 1 0

0 1 2 1 0

0 1
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The only 0-removable node is marked as A1, and the 0-addable nodes are marked
as B1, B2:

B2

A1

B1

We have dB1(λ)=1 and dB2(λ)= (1−q4). On the other hand for the partitionµ= (5)
and the node B = (1, 6), we have dB(µ)= (1 + q2).

3.3. Symmetric functions. We denote by 3 the algebra of symmetric functions in
the variables x1, x2, . . . over C with the basis

{sλ | λ ∈ P}

of Schur functions and the inner product ⟨ · , · ⟩ such that ⟨sλ, sµ⟩ = δλ,µ; see [Mac-
donald 1995]. We also have the monomial symmetric functions mλ, the elementary
symmetric functions er = s(1r ) and the complete symmetric functions hr = s(r) for
r ∈ Z≥0. Pieri’s rules [Macdonald 1995, (5.16), (5.17)] say that

(3.20) sλhr =

∑
µ

sµ and sλer =

∑
ν

sν,

where the first sum is over all partitions µ obtained by adding r nodes to λ with no
two nodes added in the same column, and the second sum is over all partitions ν
obtained by adding r nodes to λ with no two nodes added in the same row.

Suppose that for s1, . . . , st ∈ Z≥0, we have that fsu = esu or hsu . Under the charac-
teristic map [Macdonald 1995, I.7], the symmetric function fs1 · · · fst corresponds to
an induced representation of the symmetric group Ss1+···+st of dimension given by
the multinomial coefficient

(s1+···+st
s1···st

)
, while the symmetric function sr

(1) with r ∈Z≥0

corresponds to the regular representation of the symmetric group Sr . Hence,

(3.21) (fs1 · · · fst , s
r
(1))=

{( r
s1···st

)
if s1 + · · · + st = r ,

0 otherwise.

Denoting by pr ∈3 the r -th power sum symmetric function, let � be the (unital)
subalgebra of 3 generated by p1, p3, p5, . . . . Then � has bases

{Pλ | λ ∈ P0} and {Qλ | λ ∈ P0},

where the elements Pλ and Qλ are Schur’s P- and Q-symmetric functions; see
[Stembridge 1989, §6]. We have Pλ = 2−h(λ)Qλ for all λ ∈ P0. Let [ · , · ] be an
inner product on � such that [Pλ,Qλ] = δλ,µ for all λ,µ ∈ P0; see [Stembridge
1989, §§5, 6].
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We also have the symmetric functions

qr = 2P(r) ∈� (r ∈ Z>0)

(and q0 := 1); see [Stembridge 1989, (5.3), (6.6)]. We have the analogue of the
Pieri’s rule (which goes back to [Morris 1964] but can be most easily seen from
[Stembridge 1989, Theorem 8.3]):

(3.22) Pλqr =

∑
µ

2q(µ/λ)Pµ,

where the sum is over all strict partitions µ obtained by adding r nodes to λ with
no two nodes added in the same column and q(µ/λ) is as in (3.5).

By [Stembridge 1989, Proposition 5.6(b)], the inner product [qs1 . . . qst , q
r
1] is the

coefficient of m(s1,...,sr ) in qr
1 = (2x1+2x2+. . . )r (we may assume that s1 ≥ · · ·≥ sr

so (s1, . . . , sr ) is a partition), whence

(3.23) [qs1 . . . qst , q
r
1] =

{
2r

( r
s1···st

)
if s1 + · · · + st = r ,

0 otherwise.

We consider the algebra

SymI
:=�⊗3(1) ⊗ · · · ⊗3(ℓ),

where each algebra 3(i) is just a copy of 3. This has bases

(3.24) {πλ := Pλ(0) ⊗ sλ(1) ⊗ · · · ⊗ sλ(ℓ) | λ= (λ(0), . . . , λ(ℓ)) ∈ P I
0 }

and

(3.25) {κλ := Qλ(0) ⊗ sλ(1) ⊗ · · · ⊗ sλ(ℓ) | λ= (λ(0), . . . , λ(ℓ)) ∈ P I
0 },

which are dual with respect to the inner product ( · , · )Sym defined as

(3.26) ( f0 ⊗ f1 ⊗· · ·⊗ fℓ, g0 ⊗ g1 ⊗· · ·⊗ gℓ)Sym := [ f0, g0]⟨ f1, g1⟩ · · · ⟨ fℓ, gℓ⟩.

Let (µ, j) ∈3col(n, d). Recalling (3.13), set

(3.27) 5µ, j :=

∑
λ∈P I

0 (d)

K (λ;µ, j)πλ.

Example 3.28. Let n = 1 so (µ, j) is of the form ((d), j) ∈3col(1, d). Then

(3.29) 5(d), j :=

{
1 ⊗ ed ⊗ 1⊗ℓ−1

+ 2
∑d

k=1 P(k) ⊗ ed−k ⊗ 1⊗ℓ−1 if j = 0,∑d
k=0 1⊗ j

⊗ hk ⊗ ed−k ⊗ 1⊗ℓ−1− j if 1 ≤ j < ℓ.

Lemma 3.30. Let (µ, j) ∈3col(n, d). Suppose n ≥ 2 and set ν := (µ1, . . . , µn−1),
k := ( j1, . . . , jn−1), m := µn , j := jn . Then

5(µ, j)=5(ν, k)5((m), j).
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Proof. Suppose j ̸= 0. Using (3.29), we see that 5(ν, k)5((m), j) equals( ∑
α∈P I

0 (d−m)

K (α; ν, k)πα
)( m∑

k=0

1⊗ j
⊗ hk ⊗ em−k ⊗ 1⊗ℓ−1− j

)
=

∑
α∈P I

0 (d−m)
0≤k≤m

K (α; ν, k)Pα(0) ⊗ sα(1) ⊗ · · · ⊗ sα( j)hk ⊗ sα( j+1)em−k ⊗ · · · ⊗ sα(ℓ)

=

∑
λ∈P I

0 (d)

K (λ;µ, j)Pλ(0) ⊗ sλ(1) ⊗ · · · ⊗ sλ( j) ⊗ sλ( j+1) ⊗ · · · ⊗ sλ(ℓ),

where the last equality follows from Pieri’s rules (3.20).
Suppose now that j = 0. Using (3.29), we see that 5(ν, k)5((m), 0) equals( ∑
α∈P I

0 (d−m)

K (α; ν, k)πα
)( d∑

k=0

qk ⊗ ed−k ⊗ 1⊗ℓ−1
)

=

∑
α∈P I

0 (d−m)
0≤k≤m

K (α; ν, k)Pα(0)qk ⊗ sα(1)ed−k ⊗ sα(2) ⊗ · · · ⊗ sα(ℓ)

=

∑
λ∈P I

0 (d)

K (λ;µ, j)Pλ(0) ⊗ sλ(1) ⊗ · · · ⊗ sλ(ℓ),

where the last equality follows from Pieri’s rules (3.22) and (3.20). □

Recalling (3.12), we let

(3.31) 5ωd :=

∑
j∈J d

5ωd , j .

Corollary 3.32. We have

5ωd =

∑
k0+k1+···+kℓ=d

2k1+···+kℓ−1
( d

k0 k1 · · · kℓ

)
q

k0
1 ⊗ sk1

(1) ⊗ · · · ⊗ s
kℓ
(1).

Proof. We apply induction on d. In the base case d = 1, by (3.29) and using
q1 = 2P(1) we have

5ω1 =5(1),0 +5(1),1 +· · ·+5(1),ℓ−1

= (1⊗ s(1)⊗1⊗ℓ−1
+2P(1)⊗1⊗ℓ)+(1⊗ s(1)⊗1⊗ℓ−1

+1⊗1⊗ s(1)⊗1⊗ℓ−2)

+· · ·+(1⊗ℓ−1
⊗ s(1)⊗1+1⊗ℓ−1

⊗1⊗ s(1))

= q1 ⊗1⊗ℓ
+1⊗ℓ

⊗ s(1)+2
ℓ−1∑
i=1

1⊗i
⊗ s(1)⊗1⊗ℓ−i ,

as required.
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For the inductive step, for d > 1, it follows from Lemma 3.30 that 5ωd =

5ωd−15ω1 . So, by the inductive assumption, we get

5ωd =5ωd−15ω1

=

( ∑
m0+m1+···+mℓ=d−1

2m1+···+mℓ−1
( d−1

m0 m1 · · · mℓ

)
q

m0
1 ⊗ sm1

(1) ⊗ · · · ⊗ s
mℓ

(1)

)

×

( ∑
n0+n1+···+nℓ=1

2n1+···+nℓ−1q
n0
1 ⊗ sn1

(1) ⊗ · · · ⊗ s
nℓ
(1)

)
=

∑
k0+k1+···+kℓ=d

2k1+···+kℓ−1
( d

k0 k1 · · · kℓ

)
q

k0
1 ⊗ sk1

(1) ⊗ · · · ⊗ s
kℓ
(1)

thanks to the identity
( d

k0 k1···kℓ

)
=

∑
r with kr>0

( d−1
k0···kr−1···kr −1 kr+1 ···kℓ

)
. □

3.4. Another description of 5µ, j . Let Mn,I denote the set of n×I -matrices with
nonnegative integer entries,

Mn,I = {(ar,i )1≤r≤n, i∈I | ar,i ∈ Z≥0}.

For (µ, j) ∈3col(n, d), we define the sets of matrices

Mn,I (µ) :=

{
(ar,i ) ∈ Mn,I

∣∣∣ ∑
i∈I

ar,i = µr for r = 1, . . . , n
}
,

Mn,I ( j) := {(ar,i ) ∈ Mn,I | ar,i = 0 if i ̸= jr , jr + 1 for r = 1, . . . , n},

M(µ, j) := Mn,I (µ)∩ Mn,I ( j).

Let A = (ar,i ) ∈ M(µ, j). For 1 ≤ r ≤ n and i ∈ I \ {0}, we define

ψA(r, i) :=


har,i if i = jr ,
ear,i if i = jr + 1,
1 otherwise.

We now set

ψ
(0)
A := qa1,0 · · · qan,0, ψ

(i)
A := ψA(1, i) · · ·ψA(n, i) (for i ∈ I \ {0}),

and

ψA := ψ
(0)
A ⊗ψ

(1)
A ⊗ · · · ⊗ψ

(ℓ)
A ∈ SymI .

Example 3.33. Suppose n = 1 and so (µ, j) ∈3col(1, d) is of the form ((d), j).
The set M((d), j) consists of all matrices of the form

{A( j, k) := (0 · · · 0 k d − k 0 · · · 0) | 0 ≤ k ≤ d}
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with k in position j . Note that by definition we have

ψA0,0 = q0 ⊗ ed ⊗ 1⊗ℓ−1
= 1 ⊗ ed ⊗ 1⊗ℓ−1,

ψA0,k = qk ⊗ ed−k ⊗ 1⊗ℓ−1
= 2P(k) ⊗ ed−k ⊗ 1⊗ℓ−1 (1 ≤ k ≤ d),

ψA j,k = 1⊗ j
⊗ hk ⊗ ed−k ⊗ 1⊗ℓ−1− j (1 ≤ j < ℓ).

In particular, comparing with (3.29), we deduce that 5(d), j =
∑

A∈M((d), j) ψA.

Proposition 3.34. Let (µ, j) ∈3col(n, d). Then

5µ, j =

∑
A∈M(µ, j)

ψA.

Proof. We apply induction on n. For the base n = 1, see Example 3.33. Suppose
n ≥ 2 and set

ν := (µ1, . . . , µn−1), k := ( j1, . . . , jn−1), m := µn, j := jn.

Then 5(µ, j)=5(ν, k)5((m), j) by Lemma 3.30. By the inductive assumption,

5(ν, k)=

∑
B∈M(ν,k)

ψB and 5((m), j)=

∑
C∈M((m), j)

ψC ,

so it suffices to observe that( ∑
B∈M(ν,k)

ψB

)( ∑
C∈M((m), j)

ψC

)
=

∑
A∈M(µ, j)

ψA,

which comes from the definitions. □

3.5. Computing the inner product (5µ, j , 5ωd )Sym. Recall the inner product
( · , · )Sym from (3.26). Throughout this subsection, we fix (µ, j) ∈ 3col(n, d).
For A = (ar,i ) ∈ M(µ, j) and i ∈ I , we define

|a∗,i | :=

n∑
r=1

ar,i .

Then we have compositions

a∗,i := (a1,i , . . . , an,i ) ∈3(n, |a∗,i |) (i ∈ I )

and multinomial coefficients(
|a∗,i |

a∗,i

)
:=

(
|a∗,i |

a1,i · · · an,i

)
=

|a∗,i |!

a1,i ! · · · an,i !
.

Lemma 3.35. Let A ∈ M(µ, j), and k0, k1, . . . , kℓ ∈ Z≥0. Then

(ψA, q
k0
1 ⊗ sk1

(1) ⊗ · · · ⊗ s
kℓ
(1))Sym =

{
2|a∗,0|

∏
i∈I

(
|a∗,i |
a∗,i

)
if |a∗,i | = ki for all i ∈ I ,

0 otherwise.



206 ALEXANDER KLESHCHEV

Proof. We have

(ψA, q
k0
1 ⊗sk1

(1)⊗· · ·⊗s
kℓ
(1))Sym = (ψ

(0)
A ⊗ψ

(1)
A ⊗· · ·⊗ψ

(ℓ)
A , q

k0
1 ⊗sk1

(1)⊗· · ·⊗s
kℓ
(1))Sym

= [ψ
(0)
A , q

k0
1 ] (ψ

(1)
A , sk1

(1)) · · · (ψ
(ℓ)
A , s

kℓ
(1)).

Now, by (3.23), we have

[ψ
(0)
A , q

k0
1 ] = [qa1,0 · · · qan,0, q

k0
1 ] =

{
2k0

( k0
a1,0···an,0

)
if k0 = a1,0 + · · · + an,0,

0 otherwise.

On the other hand, by (3.21), we have, for i = 1, . . . , ℓ,

(ψ
(i)
A , s

ki
(1)))= (ψA(1, i) · · ·ψA(n, i), ski

(1)))

{( ki
a1,i ···an,i

)
if ki = a1,i + · · · + an,i ,

0 otherwise.

This implies the required equality. □

Recall the notation |µ, j |ℓ−1 from (1.5).

Theorem 3.36. Let (µ, j) ∈3col(n, d). Then

(5µ, j ,5ωd )Sym =

( d
µ1 · · ·µn

)
4d−|µ, j |ℓ−1 3|µ, j |ℓ−1 .

Proof. By Proposition 3.34 and Corollary 3.32, we have that (5µ, j ,5ωd )Sym equals∑
A∈M(µ, j)

∑
k0+k1+···+kℓ=d

2k1+···+kℓ−1
( d

k0 k1 · · · kℓ

)
(ψA, q

k0
1 ⊗ sk1

(1) ⊗ · · · ⊗ s
kℓ
(1))Sym.

By Lemma 3.35, this equals∑
A∈M(µ, j)

2|a∗,1|+···+|a∗,ℓ−1|
( d
|a∗,0| |a∗,1| · · · |a∗,ℓ|

)
2|a∗,0|

∏
i∈I

(
|a∗,i |

a∗,i

)
=

∑
A∈M(µ, j)

2|a∗,0|+|a∗,1|+···+|a∗,ℓ−1|
d!∏

i∈I
∏n

r=1 ar,i !

=

∑
A∈M(µ, j)

2d−|a∗,ℓ|

( d
µ1 · · ·µn

) n∏
r=1

(
µr

ar,0 · · · ar,ℓ

)
,

and it remains to prove that

(3.37)
∑

A∈M(µ, j)

2d−|a∗,ℓ|

n∏
r=1

(
µr

ar,0 · · · ar,ℓ

)
= 4d−|µ, j |ℓ−1 3|µ, j |ℓ−1 .

Define
d j :=

∑
1≤r≤n

jr = j

µr ( j ∈ J ).
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In particular, dℓ−1 = |µ, j |ℓ−1 and d0 + d1 + · · · + dℓ−1 = d. Note that permuting
the parts of (µ1, . . . , µn) and ( j1, . . . , jn) by the same permutation in Sn does not
change the left-hand side of (3.37), so we may assume without loss of generality
that j = (0n0, 1n1, . . . , (ℓ− 1)nℓ−1) with n0 + n1 + · · · + nℓ−1 = n and

µ= (λ
(0)
1 , . . . , λ(0)n0

, . . . , λ
(ℓ−1)
1 , . . . , λ(ℓ−1)

nℓ−1
)

with (λ( j)
1 , . . . , λ

( j)
n j ) ∈ 3(n j , d j ) for all j ∈ J . Then, the matrices A ∈ M(µ, j)

look like

A =

 B(0)
...

B(ℓ−1)

,
where, for each j , the matrix B( j)

= (b( j)
r,i )1≤r≤n j , i∈I is an arbitrary matrix with non-

negative integer values such that b( j)
r,i = 0 unless i ∈{ j, j+1} and b( j)

r, j + b( j)
r, j+1 = λ

( j)
r

for all r = 1, . . . , n j . So, the left-hand side of (3.37) equals XY where

X :=

ℓ−2∏
j=0

n j∏
r=1

∑
b( j)

r, j +b( j)
r, j+1=λ

( j)
r

2λ
( j)
r

( λ
( j)
r

b( j)
r, j b( j)

r, j+1

)
and

Y :=

nℓ−1∏
r=1

∑
b(ℓ−1)

r,ℓ−1+b(ℓ−1)
r,ℓ =λ

(ℓ−1)
r

2b(ℓ−1)
r,ℓ−1

( λ
(ℓ−1)
r

b(ℓ−1)
r,ℓ−1 b(ℓ−1)

r,ℓ

)
.

Now, using the formula
∑

a+b=c

( c
a b

)
= 2c, we get

X = 2d0+···+dℓ−2

ℓ−2∏
j=0

n j∏
r=1

∑
b( j)

r, j +b( j)
r, j+1=λ

( j)
r

2λ
( j)
r = 4d0+···+dℓ−2 = 4d−dℓ−1 = 4d−|µ, j |ℓ−1,

and, using the formula
∑

a+b=c 2a
( c

a b

)
= 3c, we get

Y =

nℓ−1∏
r=1

3λ
(ℓ−1)
r = 3dℓ−1 = 3|µ, j |ℓ−1,

completing the proof. □

4. Fock space

4.1. Fock spaces Fq and F . The (q-deformed) level-1 Fock space Fq , as defined
in [Kashiwara et al. 1996] (see also [Leclerc and Thibon 1997]), is the Q(q)-vector
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space with basis {uλ | λ ∈ Pp} labeled by the p-strict partitions

Fq :=

⊕
λ∈Pp

Q(q) · uλ.

There is a structure of a Uq(g)-module on Fq such that

Ei uλ =

∑
A∈PRei (λ)

dA(λ)uλA,(4.1)

Fi uλ =

∑
B∈PAdi (λ)

dB(λ)uλB,(4.2)

Ti uλ = q(αi |30−cont(λ))uλ.(4.3)

Example 4.4. In the set up of Example 3.19 we have

F0u(5,5,2) = (1 − q4)u(6,5,2) + u(5,5,2,1).

As established in [Kashiwara et al. 1996, Appendix D], there is a bilinear
form ( · , · ) on Fq which satisfies

(4.5) (uλ, uµ)q = δλ,µ∥λ∥q

and
(xv,w)q = (v, σq(x)w)q

for all x ∈ Uq(g) and v,w ∈ Fq . The following well-known result allows us to
identify Vq(30) with the submodule of Fq generated by u∅, where ∅ stands for
the partition (0) of 0; cf. [Kleshchev and Livesey 2022, Lemma 2.4.20].

Lemma 4.6. There exists a unique isomorphism of Uq(g)-modules Vq(30)
∼

−→

Uq(g)·u∅ mapping v+,q onto u∅. Moreover, identifying Vq(30) with the submodule
Uq(g) · u∅ ⊆ Fq via this isomorphism, the Shapovalov form ( · , · )q on Vq(30) is
the restriction of the form ( · , · )q on Fq to Vq(30).

We now apply the construction of Section 2.3 to go from the Uq(g)-module Fq

to the g-module Fq |q=1 = C ⊗Z[q,q−1] Fq,Z[q,q−1] with the lattice Fq,Z[q,q−1] :=⊕
λ∈Pp

Z[q, q−1
] ·uλ. We will denote 1⊗uλ ∈ C⊗Z[q,q−1] Fq,Z[q,q−1] again by uλ.

So we have a g-module

Fq |q=1 =

⊕
λ∈Pp

C · uλ

with the action

(4.7) ei uλ =

∑
A∈PRei (λ)

(dA(λ)|q=1)uλA, fi uλ =

∑
B∈PAdi (λ)

(dB(λ)|q=1)uλB,
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and the form ( · , · ) := ( · , · )q |q=1 which satisfies

(uλ, uµ)= δλ,µ∥λ∥q |q=1

and (xv,w)= (v, σ (x)w) for all x ∈ g and v,w ∈ Fq |q=1.
Recalling (3.14) and (3.18), it is easy to see that R := spanC(uλ | λ ∈ Pp \ P0)

is a g-submodule of Fq |q=1. Consider the reduced Fock space

F := (Fq |q=1)/R.

Denoting uλ + R ∈ (Fq |q=1)/R by uλ again, we have that

F =

⊕
λ∈P0

C · uλ

with the action of the Chevalley generators fi given by

(4.8) fi uλ =

∑
B∈Ai (λ)

c(λ, B)uλB,

where
Ai (λ) := {B ∈ PAdi (λ) | λB

∈ P0}

and, recalling (3.3),

(4.9) c(λ, B) :=

{
2 if h p(λ

B)= h p(λ)− 1,
1 otherwise.

(We are not going to need the action of the Chevalley generators ei .) Moreover, F

inherits the form ( · , · ) which satisfies

(4.10) (uλ, uµ)= δλ,µ2h p(λ),

and (xv,w) = (v, σ (x)w) for all x ∈ g and v,w ∈ F . We now have from Lem-
mas 4.6 and 2.5:

Lemma 4.11. There is a unique isomorphism of g-modules from V (30) to the
submodule U (g) · u∅ ⊆ F generated by u∅, mapping v+ onto u∅. Moreover,
identifying V (30) with U (g) · u∅ ⊆ F via this isomorphism, the Shapovalov
form ( · , · ) on V (30) is the restriction of the form ( · , · ) on F to V (30).

Let ρ be a p̄-core. By definition, we have h p(ρ) = 0 and ρ ∈ P0. Note that
by Lemma 3.7, there is w ∈ W such that cont(ρ) = 30 − w30. We have the
element vw ∈ V (30) defined in Lemma 2.2, and the element uρ ∈ F . The following
lemma shows that these agree:

Lemma 4.12. Let ι : V (30)
∼

−→ U (g) · u∅, v+ 7→ u∅, be the isomorphism of
Lemma 4.11. If ρ is a p̄-core and w ∈ W is such that cont(ρ) = 30 −w30 then
ι(vw)= uρ .
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Proof. By Lemma 2.2, for certain a1, . . . , al , we have

ι(vw)= ι(F (al )
il

· · · F (a1)
i1

v+)= F (al )
il

· · · F (a1)
i1

ι(v+)= F (al )
il

· · · F (a1)
i1

u∅.

It follows from Lemma 3.7 that Fw30 = F30−cont(ρ) is 1-dimensional and hence
spanned by uρ . It follows from the formulas (4.8) and (4.9) that F (al )

il
· · · F (a1)

i1
u∅ =

kuρ for k ∈ Z>0. Now, (uρ, uρ)= 2h p(ρ) = 1. On the other hand,

(F (al )
il

· · · F (a1)
i1

u∅, F (al )
il

· · · F (a1)
i1

u∅)= (ι(vw), ι(vw))= (vw, vw)= 1

by Lemmas 4.11 and 2.2(iii). So k = 1. □

4.2. The elements χλ. In this subsection we introduce a new basis of F . Recalling
(3.3), (3.4) and (3.6), we consider the following rescalings of the basis vectors uλ:

(4.13) χλ := 2(pλ−h p(λ)−cλ
̸=0)/2uλ (λ ∈ P0).

These elements correspond to the irreducible supercharacters of the double covers
of symmetric groups, see [Fayers et al. 2024, §5], and the formula (4.13) was
communicated to us by M. Fayers.

Set

a(λ, B) :=

{
2 if pλ = 1 and pλB = 0,
1 otherwise.

Lemma 4.14. Let i ∈ I and λ ∈ P0. Then fiχλ =
∑

B∈Ai (λ)
a(λ, B)uλB .

Proof. We have

fiχλ = 2(pλ−h p(λ)−cλ
̸=0)/2 fi uλ

= 2(pλ−h p(λ)−cλ
̸=0)/2

∑
B∈Ai (λ)

c(λ, B)uλB

= 2(pλ−h p(λ)−cλ
̸=0)/2

∑
B∈Ai (λ)

c(λ, B)2−(pλB−h p(λ
B)−cλ

B
̸=0)/2χλB,

so we need to prove that

(4.15) a(λ, B)= 2(pλ−pλB−h p(λ)+h p(λ
B)−cλ

̸=0+cλ
B

̸=0)/2c(λ, B).

If i ̸= 0 then either pλ = 1 and pλB = 0, or pλ = 0 and pλB = 1. Moreover,
cλ

B

̸=0 = cλ
̸=0 + 1. Hence

2(pλ−pλB−h p(λ)+h p(λ
B)−cλ

̸=0+cλ
B

̸=0)/2c(λ, B)= 2(pλ−pλB+1)/2

=

{
2 if pλ = 1 and pλB = 0,
1 otherwise,

which is a(λ, B) as required.
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On the other hand, if i = 0 then cλ
̸=0 = cλ

B

̸=0. Let λ be written in the form (3.1),
and consider the following three cases:

(1) B = (m1 + · · · + mk + 1, 1). In this case, we have c(λ, B)= 1, pλ = pλB and
h p(λ)= h p(λ

B), which immediately gives (4.15).

(2) B = (m1 + · · · + mr−1 + 1, 1) for some 1 ≤ r ≤ k and p | lr . In this case, we
have h p(λ

B) = h p(λ)− 1, c(λ, B) = 2 and pλB ̸= pλ. If pλB = 1 and pλ = 0
then both sides of (4.15) equal 1. If pλB = 0 and pλ = 1 then both sides of
(4.15) equal 2.

(3) B = (m1 + · · · + mr−1 + 1, 1) for some 1 ≤ r ≤ k and p ∤ lr . In this case, we
have h p(λ

B) = h p(λ)+ 1, c(λ, B) = 1 and pλB ̸= pλ. If pλB = 1 and pλ = 0
then both sides of (4.15) equal 1. If pλB = 0 and pλ = 1 then both sides of
(4.15) equal 2. □

5. Shapovalov form for RoCK weights

Suppose that θ ∈ Q+ satisfies V (30)30−θ ̸=0. Then θ =30−w30+dδ for somew
in the Weyl group W , and unique d ∈ Z≥0. We say that θ is RoCK if (θ | α∨

0 )≥ 2d
and (θ | α∨

i )≥ d − 1 for i = 1, . . . , ℓ. This is equivalent to the cyclotomic quiver
Hecke superalgebra R30

θ being a RoCK block, as defined in [Kleshchev and Livesey
2022, Section 4.1].

Throughout Section 5, we fix a RoCK weight θ ∈ Q+, so that θ =30−w30+dδ
for some w ∈ W and d ∈ Z≥0, and (θ | α∨

0 )≥ 2d , (θ | α∨

i )≥ d − 1 for i = 1, . . . , ℓ.
We have the element vw ∈ V (30)w30 defined in Lemma 2.2.

5.1. Computation of f (µ, j)uρ . For each m ∈ Z≥0, j ∈ J , (µ, j) ∈ 3col(n, d),
recall the divided power monomials f (m, j) and f (µ, j) defined in (1.2) and (1.3).
We also have a sum f (ωd) of monomials defined in (1.4).

Let µ ∈ P0(ρ, c) with c ≤ d. Recall the notion of a p-quotient quot(µ) =

(µ(0), . . . , µ(ℓ)) of µ from (3.9) and the notation (3.5). Recall that quot(µ)∈P I
0 (c)

since µ is strict. The following result follows immediately from [Fayers et al. 2024,
Proposition 6.6 and (5.1)] and Lemma 4.14.

Lemma 5.1. Let j ∈ J and c, k ∈ Z≥0 satisfy c + k ≤ d. For α ∈ P0(ρ, c), in the
reduced Fock space F , we have

f (k, j)χα =

∑
λ

2q(λ(0)/α(0))+(k(2ℓ−1)+h(α(0))−h(λ(0))+pα−pλ)/2χλ,

where the sum is over all λ ∈ P0(ρ, c + k) such that quot(λ)= (λ(0), . . . , λ(ℓ)) is
obtained from quot(α)= (α(0), . . . , α(ℓ)) by adding k nodes to the components α( j)

and α( j+1), with no two nodes added in the same column of α( j) or in the same row
of α( j+1).
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Corollary 5.2. Let j ∈ J and c, k ∈ Z≥0 satisfy c + k ≤ d. For α ∈ P0(ρ, c), in the
reduced Fock space F , we have

f (k, j)uα =

∑
λ

2q(λ(0)/α(0))+h(α(0))−h(λ(0))uλ,

where the sum is over all λ ∈ P0(ρ, c + k) such that quot(λ)= (λ(0), . . . , λ(ℓ)) is
obtained from quot(α)= (α(0), . . . , α(ℓ)) by adding k nodes to the components α( j)

and α( j+1), with no two nodes added in the same column of α( j) or in the same row
of α( j+1).

Proof. Note that h p(α)= h(α(0)). Moreover, for λ’s appearing in the sum, we have
cλ
̸=0 − cα

̸=0 = k(2ℓ− 1) and h p(λ)= h(λ(0)). So we have by (4.13) and Lemma 5.1,

f (k, j)uα = 2(−pα+h p(α)+cα
̸=0)/2 f (k, j)χα

= 2(−pα+h p(α)+cα
̸=0)/2

∑
λ

2q(λ(0)/α(0))+(k(2ℓ−1)+h(α(0))−h(λ(0))+pα−pλ)/2χλ

= 2q(λ(0)/α(0))+h(α(0))+(k(2ℓ−1)−h(λ(0))−pλ+cα
̸=0)/2

∑
λ

2(pλ−h p(λ)−cλ
̸=0)/2uλ

=

∑
λ

2q(λ(0)/α(0))+h(α(0))−h(λ(0))uλ,

as required. □

Lemma 5.3. Let (µ, j) ∈3col(n, d). Then

f (µ, j)uρ =

∑
λ∈P0(ρ,d)

K (quot(λ);µ, j)2−h(λ(0))uλ.

Proof. We apply induction on n. For the induction base case n = 1 we apply
Corollary 5.2 to see that

f (µ1, j1)uρ =

∑
λ

2q(λ(0)/ρ(0))+h(ρ(0))−h(λ(0))uλ =

∑
λ

2q(λ(0)/ρ(0))2−h(λ(0))uλ,

where the sums are over all λ ∈ P0(ρ, d) such that quot(λ) = (λ(0), . . . , λ(ℓ)) is
obtained from quot(ρ)= (∅, . . . ,∅) by adding k nodes to the components ρ( j)

=∅
and ρ( j+1)

= ∅, with no two nodes added in the same column of ρ( j) or in the
same row of ρ( j+1), and

q(λ(0)/ρ(0))= |{r ∈ Z>0 | λ(0) contains a node in column r but not in column r+1}|.

It follows from the definitions that the λ’s appearing in the latter sum are exactly the
λ’s with K (quot(λ); (µ1), j1) ̸= 0, and for those λ we have K (quot(λ); (µ1), j1)=
2q(λ(0)/ρ(0)). This establishes the induction base.
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For the inductive step, suppose n > 1. Let

ν := (µ1, . . . , µn−1), k := ( j1, . . . , jn−1), c = µ1 + · · · +µn−1.

In particular,

f (µ, j)= f (µn, jn) f (ν, k).

By the inductive assumption, we have

f (µ, j)uρ = f (µn, jn) f (ν, k)uρ

=

∑
α∈P0(ρ,c)

K (quot(α); ν, k)2−h(α(0)) f (µn, jn)uα

=

∑
α∈P0(ρ,c)

K (quot(α); ν, k)2−h(α(0))
∑
λ

2q(λ(0)/α(0))+h(α(0))−h(λ(0))uλ,

where the second sum is over all λ ∈ P0(ρ, d) such that quot(λ)= (λ(0), . . . , λ(ℓ))

is obtained from quot(α)= (α(0), . . . , α(ℓ)) by adding µn nodes to the components
α( jn) and α( jn+1), with no two nodes added in the same column of α( jn) or in the
same row of α( jn+1). It remains to note that λ’s appearing in the expression above
are exactly those with K (quot(λ);µ, j) ̸= 0, and for such λ we have

K (quot(λ);µ, j)=

∑
α

2q(λ(0)/α(0))K (quot(α); ν, k),

where the sum is over all α ∈ P0(ρ, c) such that quot(α)= (α(0), . . . , α(ℓ)) is ob-
tained from quot(λ)= (λ(0), . . . , λ(ℓ)) by removing µn nodes from the components
λ( jn) and λ( jn+1), with no two nodes removed in the same column of λ( jn) or in the
same row of λ( jn+1). □

Recall the definition of 5µ, j from (3.27).

Corollary 5.4. Let (µ, j) ∈3col(m, d) and (ν, i) ∈3col(n, d). Then

( f (µ, j)uρ, f (ν, i)uρ)= (5µ, j ,5ν,i )Sym.

Proof. For λ ∈ P0(ρ, d), we have h p(λ)= h(λ(0)). So, by Lemma 5.3 and (4.10),
taking into account the bijection (3.11), we have

( f (µ, j)uρ, f (ν, i)uρ)

=

∑
λ∈P0(ρ,d)

K (quot(λ);µ, j)K (quot(λ); ν, i)2−2h(λ(0))(uλ, uλ)

=

∑
λ∈P I

0 (d)

K (λ;µ, j)K (λ; ν, i)2−h(λ(0)).
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Since the bases {πλ | λ ∈ P I
0 } from (3.24) and {κλ | λ ∈ P I

0 } from (3.25) are dual
to each other with respect to the inner product ( · , · )Sym, we have∑
λ∈P I

0 (d)

K (λ;µ, j)K (λ; ν, i)2−h(λ(0))

=

( ∑
λ∈P I

0 (d)

K (λ;µ, j)2−h(λ(0))κλ,
∑

λ∈P I
0 (d)

K (λ; ν, i)πλ
)
Sym

=

( ∑
λ∈P I

0 (d)

K (λ;µ, j)πλ,
∑

λ∈P I
0 (d)

K (λ; ν, i)πλ
)
Sym

= (5µ, j ,5ν,i )Sym,

as required. □

Theorem 5.5. Let (µ, j) ∈3col(m, d). Then

( f (µ, j)uρ, f (ωd)uρ)=

( d
µ1 · · ·µn

)
4d−|µ, j |ℓ−1 3|µ, j |ℓ−1 .

Proof. By Corollary 5.4, we have ( f (µ, j)uρ, f (ωd)uρ)= (5µ, j ,5ωd )Sym, and
the theorem follows from Theorem 3.36. □

Recall the vector vw ∈ V (30)w30 defined in Lemma 2.2.

Theorem 5.6. Let (µ, j) ∈3col(m, d). Then

( f (µ, j)vw, f (ωd)vw)=

( d
µ1 · · ·µn

)
4d−|µ, j |ℓ−1 3|µ, j |ℓ−1 .

Proof. In view of Lemmas 4.11 and 4.12, this follows from Theorem 5.5. □
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Let 0 be a cocompact, oriented Fuchsian group which is not on an explicit
finite list of possible exceptions and q a sufficiently large prime power
not divisible by the order of any nontrivial torsion element of 0. Then
|Hom(0, GLn(q))| ∼ cq,nq(1−χ(0))n2 , where cq,n is periodic in n. Within a
fixed congruence class for q and for n, cq,n can be expressed as a Puiseux
series in 1/q. Moreover, this series is essentially the q-expansion of a mero-
morphic modular form of half-integral weight.
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1. Introduction

Let 0 be a cocompact and oriented Fuchsian group (which, in what follows, we
shall call simply a Fuchsian group). Concretely, this means that 0 has a presentation

⟨x1, y1, . . . , xg, yg, z1, . . . , zr |z
a1
1 , . . . , zar

r , [x1, y1] · · · [xg, yg]z1 · · · zr ⟩,

where a1, a2, . . . , ar is a fixed (possibly empty) nondecreasing sequence of integers
ai ≥ 2 such that the Euler characteristic

χ(0) := 2 − 2g −

r∑
i=1

(
1 −

1
ai

)
is negative. Let Fq be a finite field. We investigate the asymptotic growth in n of
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the number of homomorphisms from 0 to the group GLn(q), which we denote Gn

when the value of q is understood.
There are two complementary points of view. On the one hand we can fix n

and consider the homomorphism scheme Hom(0,GLn) := Hom(0,GLn,Z), which
is defined over Z. For a fixed characteristic p > 0, we can think of the fiber of
Hom(0,GLn) over Spec Fp as the variety Hom(0,GLn,Fp) of homomorphisms from
0 to GLn over Fp. (Note that in this paper, a variety will be just an affine scheme
of finite type over a field; in particular, it need not be either irreducible or reduced.)
Applying the Lang–Weil theorem to this variety as q ranges over powers of p, we
see that the number of homomorphisms ρ : 0 → GLn(q) determines its dimension,
by which we mean the maximum dimension of any of its irreducible components.

On the other hand, for fixed q , we can partition homomorphisms ρ according to
the r -tuple of Gn-conjugacy classes

(C1, . . . ,Cr )= (ρ(z1)
Gn , . . . , ρ(zr )

Gn ).

Each Ci must consist of elements of order dividing ai . For given (C1, . . . ,Cr )

satisfying this divisibility condition, the number of homomorphisms 0 → Gn with
ρ(zi ) ∈ Ci for all i is given by a theorem of Hurwitz [Liebeck and Shalev 2004,
Proposition 3.2]:

(1-1) |Gn|
2g−1

|C1| · · · |Cr |
∑

χ∈Irr(Gn)

χ(C1) · · ·χ(Cr )

χ(1)2g+r−2 .

Summing (1-1) over all possible r -tuples (C1, . . . ,Cr ) we obtain a formula which
can potentially be used for fixed q to understand the asymptotic behavior of
|Hom(0,Gn)| as n → ∞.

These two ways of counting Hom(0,GLn(q)) are in some sense complementary.
For instance, just as we can use character methods to determine the dimension of
Hom(0,GLn), we can use the dimension of Hom(0,GLn) to get an upper bound on
Hom(0,GLn(q)) for all large q . For the large n limit, the first way of counting seems
to be the more appropriate, and an analysis of (1-1) has led us to this conjecture:

Conjecture 1. Let A denote the least common multiple of a1, . . . , ar , which we
take to be 1 if r = 0. Let q be a prime power relatively prime to A.

(a) There exists a 2A-periodic sequence cq,1, cq,2, . . . of positive numbers such that

|Hom(0,GLn(q))| ∼ cq,nq(1−χ(0))n2

uniformly in q and 0, that is,
|Hom(0,GLn(q))|

cq,nq(1−χ(0))n2

approaches 1 in the limit as n → ∞, uniformly in q and 0.
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(b) There exist a 2-dimensional array e0,q,n of rational numbers and a 2-dimen-
sional array f0,q,n of half-integral weight meromorphic modular forms, periodic in
both q and n, such that

cq,n = (q − 1)qe0,q,n f0,q,n

(
i log q

2π

)
.

Moreover, f0,q,n is holomorphic on the upper half plane and has integer Fourier
coefficients at i∞.

The problem of estimating the number of representations of a given Fuchsian
group over a finite field seems to have been first considered by Liebeck and Shalev
[2005b]. There are a number of significant differences in emphasis between that
paper and ours; 0 need not be oriented in their paper, and the target of homomor-
phisms from 0 could be a quasisimple group G(q) instead of GLn(q). They were
primarily interested in the “geometric” direction, that is, n fixed and q → ∞. A
key limitation of their paper is that their method requires g ≥ 2.

Under this hypothesis, they showed that the contribution in (1-1) from nonlinear
characters is negligible, which reduces the problem of estimating |Hom(0,GLn(q))|
to that of estimating the numbers jq,n(ai ) of elements x ∈ GLn(q) satisfying xai = 1.
They gave an asymptotic formula for jq,n(a) when n is fixed and q → ∞, using
work of Lawther [2005]. In the case r = 0 (the surface group case) they proved that
|Hom(0,GLn(q))| is asymptotic to (q − 1)|GLn(q)|2g−1. If η(z) is the Dedekind
function, then

|GLn(q)|

q1/24η
( i log q

2π

) = qn2
∞∏

i=n+1

(1 − q−i )−1
∼ qn2

.

Setting e0,q,n =
1
24(2g −1) and f0,q,n = η2g−1 for all q, n, we deduce Conjecture 1

for surface groups. In general, their analysis depends crucially on the fact that for g ≥

2, the trivial upper bound on |χ(Ci )| is good enough to allow us to ignore nonlinear
characters of Gn . This is certainly not the case when g = 1, let alone when g = 0.
However, the new character bounds developed by Bezrukavnikov, Liebeck, Shalev,
and Tiep [Bezrukavnikov et al. 2018] give us hope of making progress even for g =0.

Using these bounds, Liebeck, Shalev, and Tiep proved [Liebeck et al. 2020,
Theorem 1.1] that for every 0 satisfying χ(0) <−2, if q ≡ 1 (mod A), then

|Hom(0,GLn(q))| ≤ f (n)q(1−χ(0))n2
+1

where f (n) does not depend on q . This immediately gives an upper bound for the
dimension of the representation variety Hom(0,GLn,K ) where K is any field in
which A ̸= 0, provided that n is sufficiently large:

dim Hom(0,GLn,K )≤ (1 −χ(0))n2
+ 1.
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They also proved a lower bound on dimension:

dim Hom(0,GLn,K )≥ (1 −χ(0))(n2
− 1)−

∑
i

ai .

Using ideas from [Bezrukavnikov et al. 2018; Taylor and Tiep 2020], we prove
a new exponential character bound Theorem 2.9, which applies to all semisimple
elements and which plays an essential role in the proof of the main theorems of
this paper. The reason we can prove Conjecture 1 only when q is sufficiently large
is that the exponent in our bound only approaches its optimal value as q → ∞.

Proposition 3.2 gives a list, consisting of thirty-one triangle groups and one
quadrilateral group, where even for large q, our bounds are not strong enough to
prove the conjecture. When 0 is not on this list and q is sufficiently large and
relatively prime to the ai , |Hom(0,Gn)| behaves as predicted.

Theorem A. There exists an absolute constant q0 such that if 0 is a Fuchsian
group which is not on the finite list of groups excluded by Proposition 3.2, then
Conjecture 1 holds for 0 for all prime powers q > q0 which are prime to A.

In particular, the theorem holds for all Fuchsian groups 0 with Euler characteristic
less than −

1
6 .

We deduce Theorem A from an analogue of [Liebeck and Shalev 2005b, Theo-
rem 1.2 (i)]. Let Jq,n(a1, . . . , ar ) denote the cardinality of the set

(1-2)
{
(t1, . . . , tr ) ∈ GLn(q) | tai

i = 1 ∀i,
∏
i

det(ti )= 1
}
.

Theorem B. If 0 is not on the excluded list of Proposition 3.2, and q > q0 is prime
to A then

|Hom(0,GLn(q))| = (1 + o(1))(q − 1)Jq,n(a1, . . . , ar )|GLn(q)|2g−1,

where the term o(1) does not depend on q.

Theorem A allows us to compute the exact dimension of Hom(0,GLn) when n
is sufficiently large. Given 0 and n, we define σ0,n to be either 1 or −1 according
to the rule that it is −1 if and only if ai ∈ 2Z implies n/ai ∈ Z, and∑

{i |ai ∈2Z}

n
ai

∈ 1 + 2Z.

Let {x} denote the fractional part of x . We have:

Theorem C. There exists an absolute constant N such that if 0 is not on the
excluded list of Proposition 3.2, n > N , and K is any field of characteristic p ≥ 0,
such that p ∤ ai for any i , we have

dim Hom(0,GLn,K )= σ0,n + (1 −χ(0))n2
−

r∑
i=1

ai

{ n
ai

}{
−

n
ai

}
.
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In particular,

dim Hom(0,GLn,K )≥ −
1
2 + (1 −χ(0))n2

−

r∑
i=1

1
4ai .

Unfortunately, the letter q has a standard meaning both for finite fields and for
modular forms. We use it only in the former sense, but we evaluate modular forms
f at i log q/(2π), which amounts to plugging 1/q into the q-expansion for f .

2. An asymptotic character bound

The goal of this section is to prove an asymptotic version of the character bounds in
[Bezrukavnikov et al. 2018, Theorem 1.1] and [Taylor and Tiep 2020, Theorem 1.9]
when G is a finite group of Lie-type A. We will achieve this by combining the
approach of [Bezrukavnikov et al. 2018] with the character level approach developed
in [Guralnick et al. 2020] to bound |χ(g)|.

To this end, let us recall the approach of [Bezrukavnikov et al. 2018]. Throughout
this section, q is a prime power and G = G(Fq) is the group of Fq-points of a
connected reductive Fq-group scheme. We assume G = G(Fq) = GF is the finite
group of Fq-points, where F : G → G is the Frobenius endomorphism determined
by its structure as a scheme over Fq .

The main case of interest to us will be when the underlying group scheme is
GLϵn , where ϵ ∈ {+,−} and we set GL+

n := GLn , the general linear group, and
GL−

n := GUn , the general unitary group. In this setting,

G = Gn := GLn(Fq)

is the general linear group of dimension n > 0 and F is either Fq or σ Fq , where
Fq : G → G is the standard Frobenius endomorphism and σ : G → G is the inverse
transpose automorphism.

Suppose L = LF, where L< G is a proper F-stable Levi subgroup of G. Assume
g ∈GF is an element such that CG(g)⩽L. By [Taylor and Tiep 2020, Lemma 13.3],
for every irreducible character χ of G, we have

(2-1) χ(g)=
∗RG

L(χ)(g)=

∑
η∈Irr(L)

⟨η, ∗RG
L(χ)⟩η(g),

where ∗RG
L denotes Deligne–Lusztig restriction. We also write RG

L for Deligne–
Lusztig induction.

Following [Bezrukavnikov et al. 2018, Theorem 1.1], we define the constant
α(L) to be the maximum over nontrivial unipotent elements u ∈ L of

dim uL

dim uG ;

if L contains no such elements we take α(L)= 0. Here uG denotes the G-conjugacy
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class of u, and similarly uL denotes the L-conjugacy class. From the proof of
[Bezrukavnikov et al. 2018, Theorem 1.1], see also [Taylor and Tiep 2020, §2],
we get

(2-2) |η(g)| ⩽ η(1)⩽ B1

(
q + 1
q − 1

)D/2

χ(1)α(L),

for any η ∈ Irr(L) with ⟨η, ∗RG
L(χ)⟩ ̸= 0, where B1 > 0 is a constant that depends

on GF. Furthermore, D = dim vG, where vG =O∗
χ is the wave front set of χ , defined

by work of Kawanaka [1986], Lusztig [1984], and Taylor [2016].
If fη ∈ Q[X ] is the degree polynomial of η, so that η(1) = fη(q), then the

constant B1 is chosen such that B1 fη ∈ Z[X ]. When the underlying group scheme
is GLϵn we have that LF is a direct product of groups GLϵi

ni
(q). Therefore, in this

case, the constant B1 can be taken to be 1 because the degree polynomial of any
irreducible character of LF is already contained in Z[X ].

Recall that ∗RG
L(χ) is a virtual character but is a true character if L is split. To

bound |χ(g)| it suffices, by the triangle inequality, (2-1), and (2-2), to bound

(2-3)
∑

η∈Irr(L)

|⟨η, ∗RG
L(χ)⟩| ⩽

∑
η∈Irr(L)

⟨η, ∗RG
L(χ)⟩

2
= ⟨

∗RG
L(χ),

∗RG
L(χ)⟩,

where ⟨−,−⟩ is the usual inner product on class functions.
We know from [Bezrukavnikov et al. 2018, Proposition 2.2] and its proof, as

well as the arguments in [Taylor and Tiep 2020, §13], that (2-3) is always bounded
above by

(2-4) (n!)2.

However, we can do significantly better if n is large compared to both q and the
true level

l∗(χ)= j

of χ , as defined in [Guralnick et al. 2020, Definition 1(i)]. When G = GLn(q)
then j is the smallest integer for which χ is a constituent of τ j , where τ(g) is the
number of fixed points of g acting on the natural module V = Fn

q of G.
In the next subsections we give upper bounds for (2-3) that incorporate the true

level of χ .

2.1. Elements with split centralizer in GLn(q). In this subsection we consider the
group scheme GLn so that

G = Gn := GLn(q).

Fix a proper split Levi subgroup L, and let

(2-5) L = LF
= GLm1(q)× GLm2(q)× · · · × GLmt (q)⊂ G,
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where mi ∈Z≥1 and
∑t

i=1 mi =n. In this case ∗RG
L is just Harish-Chandra restriction.

With 1 ≤ j < 1
2 n fixed, consider a split Levi subgroup M and set

M = MF ∼= GL j (q)× GLn− j (q)⊂ G.

By [Guralnick et al. 2020, Theorem 3.9(i)], l∗(χ)= j implies that χ is an irreducible
constituent of the Harish-Chandra induction

RG
M(α⊠ 1Gn− j )

for a unique irreducible character α of G j . Conjugating M by a suitable element
g ∈ G, we may assume that L and M are block-diagonal subgroups in the same
basis (e1, e2, . . . , en) of V .

To bound (2-3), it therefore suffices to bound

⟨
∗RG

LRG
M(α⊠ 1Gn− j ),

∗RG
LRG

M(α⊠ 1Gn− j )⟩.

By the Mackey formula for Harish-Chandra restriction and induction [Dipper and
Fleischmann 1992, Theorem 1.14],

(2-6) ∗RG
LRG

M(α⊠ 1Gn− j )=

∑
x∈L\S(L,M)/M

RL
L∩xM

∗R
xM
L∩xM((α⊠ 1Gn− j )

x),

where S(L,M) is the set of elements y ∈ G such that L∩
yM contains a maximal

torus of G, and the summation runs through the (L ,M) double cosets of this set.
For our pair of split Levi subgroups (L,M), there is an explicit description of

L\S(L,M)/M, as described in [Brundan et al. 2001, §2.2c]. Embed the symmetric
group Sn in Gn via permutation matrices, and consider the Young subgroups

Sλ = Sm1 × Sm2 × · · · × Smt , Sµ = Sj × Sn− j

of the embedded Sn . Then in (2-6) we can just choose x as representatives of the
set Sλ\Sn/Sµ, one for each double coset. The set of double cosets Sλ\Sn/Sµ is in
bijection with Sλ-orbits on the set of Sn/Sµ, which may be identified with the set of
j-subsets of {1, 2, . . . , n}. Hence each such double coset can be labeled uniquely
by a t-tuple

(2-7) κ = (k1, k2, . . . , kt), 0 ≤ ki ≤ mi ,
t∑

i=1
ki = j.

Correspondingly, we can choose x = xκ to be the element of G that sends the first j
basis vectors e1, . . . , ej of V to

e1, . . . , ek1, em1+1, em1+2, . . . , em1+k2, . . . , em1+···+mt−1+1, . . . , em1+m2+···+mt−1+kt

in the increasing order of the subscripts, and sends the last n − j basis vectors
ej+1, . . . , en to the remaining n − j basis vectors, again in the increasing order of
the subscripts. We will say that xκ(ei )= exκ (i), 1 ≤ i ≤ n.



224 MICHAEL J. LARSEN, JAY TAYLOR AND PHAM HUU TIEP

For the reader’s convenience, let us give a justification for this statement in the
case q ≥ 3. Suppose y ∈ G is such that L∩

yM contains a maximal torus T of G.
Then T is a maximal torus of (L∩

yM)◦ which is F-stable and connected. By the
Lang–Steinberg theorem, conjugating T suitably, we may assume that it is F-stable.
Then

T := T F ∼= C(qa1)−1 × C(qa2)−1 × · · · × C(qas)−1

for some integers a1, a2, . . . , as ≥ 1. Since q ≥ 3, all cyclic direct factors in
this decomposition are nontrivial, and hence V = Fn

q is a direct sum of s simple
Fq T -modules W1, . . . ,Ws of dimension a1, a2, . . . , as , which are pairwise non-
isomorphic (indeed, they have pairwise distinct kernels). On the other hand, the
Fq L-module V decomposes as the sum

⊕t
i=1 Vi of Fq L-modules, where

V1 :=⟨e1,...,em1⟩Fq , V2 :=⟨em1+1,...,em1+m2⟩Fq ,...,Vt :=⟨em1+···+mt−1+1,...,en⟩Fq .

Since T ≤ L , each Vi is a direct sum of some of these Wl , 1 ≤ l ≤ s. Similarly, since
V = F

j
q ⊕F

n− j
q as an Fq

yM-module and T ≤
yM, each of F

j
q and F

n− j
q is a direct sum

of some of these Wl . Using the left multiplication by L and right multiplication
by M if needed, we may assume that F

j
q is spanned by

e1, . . . , ek1, em1+1, em1+2, . . . , em1+k2, . . . , em1+···+mt−1+1, . . . , em1+m2+···+mt−1+kt

(ki first vectors in the indicated basis of Vi for each 1 ≤ i ≤ t), and F
n− j
q is spanned

by the remaining n − j basis vectors.
It is well known (and can be proved by an easy induction on t ≥ 1) that the total

number N of t-tuples κ in (2-7) is

(2-8) N =

( j +t−1
j

)
= t ·

t + 1
2

· · ·
t + j − 1

j
≤ t j

≤ n j

since t ≤ n. For each such κ , x = xκ sends ei to ex(i), and we can write

xM = x Mx−1
= GL(⟨ex(1), . . . , ex( j)⟩Fq )× GL(⟨ex( j+1), . . . , ex(n)⟩Fq )

∼= GL j (q)× GLn− j (q)

Now, L ∩
xM fixes each of the subspaces

⟨e1, . . . , em1⟩Fq ∩ ⟨ex(1), . . . , ex( j)⟩Fq = ⟨e1, . . . , ek1⟩Fq

and
⟨e1, . . . , em1⟩Fq ∩ ⟨ex( j+1), . . . , ex(n)⟩Fq = ⟨ek1+1, . . . , em1⟩Fq

of V1, and similarly for Vi with 2 ≤ i ≤ t . It follows that

L ∩
xM =

t∏
i=1

(Ki × Mi ),
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where for each 1 ≤ i ≤ t , Ki ∼= GLki (q) is contained in the GL j (q)-factor of xM, and
Mi ∼= GLmi −ki (q) is contained in the GLn− j (q)-factor of xM. Moreover,

∏t
i=1 Ki is

a split Levi subgroup of GL j (q), and
∏t

i=1 Mi is a split Levi subgroup of GLn− j (q).
Now, applying [Giannelli et al. 2017, Lemma 2.7(i)] twice, we obtain

∗R
xM
L∩xM((α⊠ 1Gn− j )

x)=
∗RGj

K1×···×Kt
(αx)⊠ 1M1×···×Mt .

Recall that αx is an irreducible character of GL j (q). So, by (2-4), the total sum of
multiplicities of irreducible constituents β in ∗R

xM
L∩xM((α⊠ 1Gn− j )

x) is at most

(2-9) ( j !)2.

Consider any such irreducible constituent

β = α1 ⊠α2 ⊠ · · ·⊠αt ⊠ 1M1×···×Mt .

By [Guralnick et al. 2020, Lemma 2.5(ii)],

RL
L∩xM(β)=

t

⊠
i=1

R
Gmi
Gki ×Gmi −ki

(αi ⊠ 1Gmi −ki
).

Let τq,n denote the permutation character of Gn on Fn
q , see [Guralnick et al. 2020,

Equation 3.1]. Then the character

γi := R
Gmi
Gki ×Gmi −ki

(αi ⊠ 1Gmi −ki
)

is contained in (τmi ,q)
ki by [Guralnick et al. 2020, Proposition 3.2]. If ki = 0, then

the total number N (γi ) of multiplicities of irreducible constituents of γi is 1. If
1 ≤ ki ≤

1
2 mi , then

N (γi )≤ ⟨γi , γi ⟩ ≤ ⟨τ ki
mi ,q , τ

ki
mi ,q⟩ = ⟨τ 2ki

mi ,q , 1Gmi
⟩,

which is the number of Gmi -orbits on ordered 2ki -tuples of vectors in F
mi
q , and

hence is at most 8qk2
i ≤ q4k2

i by [Guralnick et al. 2020, Lemma 2.4]. Suppose
1
2 mi < ki ≤ mi . Then γi is a character of degree at most qmi ki < q2k2

i , and hence
N (γi ) < q2k2

i . Thus in all cases we have

N (γi )≤ q4k2
i .

It follows that the total number N (β) of multiplicities of irreducible constituents of

RL
L∩xM(β)=

t

⊠
i=1

βi

is at most
q4

∑t
i=1 k2

i ≤ q4(
∑t

i=1 ki)
2

= q4 j2
.

Combining this with (2-8) and (2-9), we have proved:
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Proposition 2.1. Let G = GF
= GLn(q) and let χ be any irreducible character G

of true level j ≤
1
2 n. If L = LF is a proper split Levi subgroup of G, then the

total number A of irreducible constituents (counting multiplicities) of the Harish-
Chandra restriction ∗RG

L(χ) is at most n j ( j !)2q4 j2
.

Corollary 2.2. Let G = GLn(q) and let g ∈ G be any element such that CG(g) is
contained in a split Levi subgroup L of G. Let χ ∈ Irr(G) be of true level j ≤

1
2 n,

and let D = dim vG, with vG = O∗
χ being the wave front set of χ . Then

|χ(g)| ≤ n j ( j !)2q4 j2
(

q + 1
q − 1

)D/2

χ(1)α(L).

Proof. As mentioned above, in our case the constant B1 in (2-2) can be taken to
be 1. We now combine (2-1), (2-2), and (2-3) with Proposition 2.1. □

2.2. The general case. For semisimple elements whose centralizer is a nonsplit
Levi subgroup, the bound in Corollary 2.2 can be very poor; for instance, it says
nothing at all about character values for elements in anisotropic tori. However, the
following result is almost as good for all semisimple elements as Corollary 2.2 is
in the split case, and moreover works for both GLn and GUn:

Theorem 2.3. Let G = GLϵn(q) and let g ∈ G be any element such that CG(g) is
contained in a proper F-stable Levi subgroup L1. Define L1 := LF

1 . Let χ ∈ Irr(G)
be of true level j , 0 ≤ j ≤ n, and let D = dim vG, with vG = O∗

χ being the wave
front set of χ . Then

|χ(g)| ≤ n3 j
(

q + 1
q − 1

)D/2

χ(1)α(L1).

To prove this result we will use Deligne–Lusztig theory. However, before
developing the necessary results about Deligne–Lusztig characters we recall a few
facts about cosets. Assume G is a group. The set of conjugacy classes of G will
be denoted by Cl(G) and if x ∈ G then xG

∈ Cl(G) denotes the conjugacy class
containing x . A subcoset of G is a coset Hw ⊆ NG(H) of a subgroup H ⩽ G.
Given any subsets X, Y ⊆ G we define

NX (Y ) := X ∩ NG(Y ), CX (Y ) := X ∩ CG(Y ),

where NG(Y ) and CG(Y ) are the usual normalizer and centralizer of Y. As usual

XY := {xy | x ∈ X and y ∈ Y }.

Now assume that Wγ ⊆ G is a finite subcoset. We denote by cf(Wγ ) the space
of W -invariant functions f : Wγ → C, which we call class functions. This space
has an inner product ⟨−,−⟩ and if Hw⊆ Wγ is a subcoset then we have induction
IndWγ

Hw : cf(Hw)→ cf(Wγ ) and restriction maps ResWγ
Hw : cf(Wγ )→ cf(Hw) which
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satisfy Frobenius reciprocity with respect to ⟨−,−⟩, see [Bonnafé 2006, §1.C] or
[Taylor and Tiep 2020, §4].

The function πw=π
Wγ
w taking the value |CW (w)| at any W -conjugate ofw∈ Wγ

and the value 0 otherwise is clearly contained in cf(Wγ ). We will need the following
elementary calculation.

Lemma 2.4. For any subcoset Hw ⊆ Wγ and x ∈ Wγ we have

ResWγ
Hw(π

Wγ
x )=

∑
z∈H\W/CW (x)

zx∈Hw

|CW (x)|
|CH (zx)|

πHw
zx =

∑
z∈H\W
zx∈Hw

πHw
zx

Proof. The first equality is easy and the second follows because

HzCW (x)=

⊔
c∈CH (zx)\CW (zx)

Hcz. □

We can also produce class functions in the following way. Consider the subgroup
W ⟨γ ⟩ ⩽ NG(W ) and let ρ ∈ Irr(W ) be a γ -invariant irreducible character. The
representation affording ρ can be extended to a representation of W ⟨γ ⟩ containing
γ n in its kernel, for some n > 0. The trace function ρ̃ : W ⟨γ ⟩ → C of such a
representation is what we call an extension of ρ. Note that the group W ⟨γ ⟩ may be
infinite but, by design, ρ̃ factors through a finite quotient.

The restriction ResW ⟨γ ⟩

Wγ (ρ̃) of such an extension, which we usually again denote
by ρ̃, is called an irreducible character of Wγ . The set of irreducible characters is
denoted by Irr(Wγ ). We say B⊆ Irr(Wγ ) is a basis if it is a basis of cf(Wγ ). Every
basis is orthonormal and is obtained by choosing for each γ -stable ρ ∈ Irr(W )

exactly one extension to W ⟨γ ⟩, see [Digne and Michel 2020, Proposition 11.6.3].
We need the following analogue of [Taylor and Tiep 2020, Corollary 4.11]:

Lemma 2.5. Assume Hw ⊆ Wγ is a subcoset and ρi ∈ Irr(W ), with i ∈ {1, 2}, is
γ -invariant. If ρ̃i is an extension of ρi to W ⟨γ ⟩ then

|⟨ResWγ
Hw(ρ̃1),ResWγ

Hw(ρ̃2)⟩| ⩽ ⟨ResW
H (ρ1),ResW

H (ρ2)⟩

Proof. Expanding out in a basis B ⊆ Irr(Hw) and using the triangle inequality,

|⟨ResWγ
Hw(ρ̃1),ResWγ

Hw(ρ̃2)⟩| ⩽
∑
η̃∈B

|⟨η̃,ResWγ
Hw(ρ̃1)⟩⟨η̃,ResWγ

Hw(ρ̃2)⟩|

=

∑
η̃∈B

|⟨IndWγ
Hw(η̃), ρ̃1⟩||⟨IndWγ

Hw(η̃), ρ̃2⟩|.
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Therefore, using [Taylor and Tiep 2020, Lemma 4.10] we obtain

|⟨ResWγ
Hw(ρ̃1),ResWγ

Hw(ρ̃2)⟩| ⩽
∑

η∈Irr(H)

⟨IndW
H (η), ρ1⟩⟨IndW

H (η), ρ2⟩

=

∑
η∈Irr(H)

⟨η,ResW
H (ρ1)⟩⟨η,ResW

H (ρ2)⟩

= ⟨ResW
H (ρ1),ResW

H (ρ2)⟩. □

Recall that G =G(Fq) is the group of Fq -points of a connected reductive Fq -group,
with Frobenius F. We form the semidirect product G⟨F⟩ with the infinite cyclic
group generated by F, defined so that FgF−1

= F(g) for all g ∈ G. If Hn ⊆ GF is
a subcoset then the centralizer CH(n)⩽ CG(n) is a finite group. Moreover, if H⩽ G
is closed and connected, then by the Lang–Steinberg theorem, H acts transitively
by conjugation on Hn. If H is a Levi subgroup of G, resp., maximal torus of G,
then we call Hn a Levi subcoset, resp., a toral subcoset.

We define
C (GF) := {(g, n) ∈ G ×GF | gn = ng}

to be the set of commuting pairs. The group G acts by simultaneous conjugation on
C (GF). We write [g, n] for the orbit of (g, n) ∈ C (GF) and C (GF)/G for the set
of orbits.

Lemma 2.6. The map gCG(F) 7→ [g, F] is a well-defined bijection

Cl(CG(F))→ C (GF)/G.

Proof. Clearly this is injective. If (g, n) ∈ C (GF) then by the Lang–Steinberg
theorem n = Fh for some h ∈ G so [g, n] = [

hg, F]. □

Let cf(C (GF)) be the set of G-invariant functions f : C (GF) → C. Via
Lemma 2.6 we can identify cf(C (GF)) with the space cf(CG(F)) of C-valued
class functions on the finite group CG(F). We define Irr(C (GF)) to be those
functions corresponding to Irr(CG(F)). The advantage of working with C (GF) is
that we can work with the different (inner) forms CG(gF) of G simultaneously.

If Lw ⊆ GF is a Levi subcoset then we can define Deligne–Lusztig induction
and restriction maps

RGF
Lw : cf(C (Lw))→ cf(C (GF)) and ∗RGF

Lw : cf(C (GF))→ cf(C (Lw)).

For our purposes this can be done as follows. We start first with the case of a
coset LF where L⩽ G is an F-stable Levi subgroup. Making the identifications
cf(CG(F))→ cf(C (GF)) and cf(CL(F))→ cf(C (LF)) we define

RGF
LF := RG

L,
∗RGF

LF :=
∗RG

L .
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Now consider a general Levi subcoset Lw⊆ GF. We pick an element g ∈ G such
that Fg

∈ Lw, so that g(Lw)= L1 F where L1 :=
gL is an F-stable Levi subgroup

of G. If ιg : G⟨F⟩ → G⟨F⟩ is the inner automorphism defined by ιg(x) =
gx then

ιg(Lw)= L1 F and we define

RGF
Lw := RGF

L1 F ◦ (ι−1
g )∗ and ∗RGF

Lw := (ιg)
∗
◦

∗RGF
L1 F ,

where (ι−1
g )∗ is the map f 7→ f ◦ ι−1

g and likewise for (ιg)∗.
We note that the maps RGF

Lw and ∗RGF
Lw are defined only up to composition with

(ιn)
∗ for some n ∈ NG(Lw)= NCG(w)(L)L. We need the following interpretation

of the Mackey formula.

Lemma 2.7. If Lw ⊆ GF is a Levi subcoset and T x ⊆ GF is a toral subcoset then

∗RGF
Lw ◦ RGF

T x =

∑
z∈L\G

z(T x)⊆Lw

RLw
z(T x) ◦ (ι

−1
z )∗

Proof. Fix elements hw, hx ∈ G such that w = Fhw and x = Fhx and let L1 :=
hwL

and T1 :=
hxT be corresponding F-stable subgroups of G. According to the Mackey

formula, see [Digne and Michel 2020, Theorem 9.2.6], we have

∗RG
L1

◦ RG
T1

=

∑
u∈L1\G/T1

uT1⩽L1

T L1
uT1

◦ (ι−1
u )∗ =

∑
u∈L1\G
uT1⩽L1

RL1
uT1

◦ (ι−1
u )∗,

where L1 = CL1(F), G = CG(F), and T1 = CT1(F). The second equality follows
because if uT1 ⩽ L1 then uT1 ⩽ L1, so

L1uT1 = L1(
uT1)u = L1u.

Consider the isomorphism of varieties ψ : G → G given by ψ(v)= hwvh−1
x . If

F ′
: G → G is the morphism defined by F ′(v)= wvx−1 then we have Fψ = ψF ′.

From this it follows that we have bijections

(L\G)F ′ ψ
−→ CL1\G(F)−→ L1\G,

where CL1\G(F)= {L1u ∈ L1\G | L1uF = L1 Fu}, and (L\G)F ′

denotes the cosets
fixed by F ′. The second bijection is a simple consequence of the Lang–Steinberg
theorem. If z ∈ G then ψ(z)T1 ⩽ L1 if and only if zT ⩽ L and F ′(Lz)= Lz if and
only if zx ∈Lw. It is clear that the combination of these two conditions is equivalent
to the condition z(T x)⊆ Lw.

Finally, conjugating the expression above we get

∗RGF
Lw ◦ RG

T x =

∑
z∈L\G

z(T x)⩽Lw

(ιhw)
∗
◦ RL1

ψ(z)T1
◦ (ι−1

ψ(z))
∗
◦ (ι−1

hx
)∗.
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It suffices to show that (ιhw)
∗

◦ RL1
ψ(z)T1

= RL
zT ◦ (ιhw)

∗ when F ′(z) = z, where
RL

zT = RLw
(zT )w is defined with respect to the Frobenius w on L. However, the

arguments to prove this are identical to those used to prove [Digne and Michel
2020, Proposition 11.3.10]; see also the arguments by Bonnafé in [Navarro et al.
2008]. We omit the details. □

From now on we assume the underlying group scheme is GLϵn so that

G = Gn = GLn(Fq).

We will assume T ⩽ G is the diagonal maximal torus and we denote by W :=

NG(T )/T ∼= Sn the corresponding Weyl group. The quotient NG⟨F⟩(T )/T = W ⟨F⟩

is isomorphic to the semidirect product W ⋊ ⟨F⟩, where we identify F with its
natural image T F. The coset WF ⊆ W ⟨F⟩ is, by definition, the set of toral subcosets
T n where n ∈ NGF (T ).

We wish to reinterpret Lemma 2.7 in the language of Lusztig’s almost characters.
Recall that GLϵn is self-dual. If (w, s) ∈ WF × T is a pair such that ws = sw then
we set

RGF
w (s) := RGF

x (θ),

where x ∈ WF and θ ∈ Irr(C (w)) correspond to (w, s) under a bijection obtained
as in [Digne and Michel 2020, Proposition 11.1.16] from duality.

If s ∈ T and CWF (s) ̸= ∅ then, following Lusztig [1984, §8.4], we define

RGF
s :cf(CWF (s))→cf(C (GF)), f 7→

1
|CW (s)|

∑
w∈CWF (s)

f (w)RGF
w (s)∈cf(C (GF)),

where, as defined above, CX (s)= {w ∈ X | ws = sw} for any subset X ⊆ W ⟨F⟩.

Corollary 2.8. Assume T ⩽ L⩽ G is a Levi subgroup and w ∈ NWF (L). Then for
any s ∈ T with CWF (s) ̸= ∅ we have

∗RGF
Lw ◦RGF

s =

∑
z∈H\W/CW (s)

CHw(
zs) ̸=∅

RLw
zs ◦ ResCWF (

zs)
CHw(zs) ◦(ι

−1
z )∗

where H = NL(T )/T is the Weyl group of L.

Proof. By linearity it is enough to check both sides agree when evaluated at πCWF (s)
x

for some x ∈ CWF (s). But in that case RGF
s (π

CWF (s)
x ) = RGF

x (s). Assume (x, s)
corresponds to (y, θ). Evaluating at θ we have by Lemma 2.4 that

∗RGF
Lw (R

GF
y (θ))=

∑
z∈L\G
zy⊆Lw

RLw
zy (

zθ).

If zy ⊆ Lw then zT ⩽ L so lzT = T for some l ∈ L. Therefore, we can take the
sum over cosets NL(T )\NG(T ) or similarly H\W. As zy ⊆ NGF (T ) the condition
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zy ⊆ Lw is equivalent to

zy ⊆ NGF (T )∩Lw = NL(T )w

which in turn is equivalent to zy ∈ Hw. Breaking the sum in Lemma 2.7 along
double cosets, as in the proof of Lemma 2.4, gives

∗RGF
Lw (R

GF
y (θ))=

∑
z∈H\W/CW (s)

∑
c∈CH (

zs)/CW (
zs)

czy∈Hw

RLw
czy (

czθ).

Picking a different double coset representative we can assume that zy ∈ Hw. We
claim that CHw(

zs) = CH (
zs)zy. Certainly zx ∈ CHw(

zs) by assumption. Now if
d ∈ CW (

zs) then d(zx)∈ Hw if and only if d ∈ CH (
zs)= H ∩CW (

zs). The statement
now follows from Lemma 2.4. □

We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. By assumption, χ has true level j . Embed the maximal
diagonal torus T in the natural F-stable Levi subgroup M = M1 ×M2, where
M1 ∼= Gj and M2 ∼= Gn− j . Note that F stabilizes M1 and M2. We will identify
M⟨F⟩ with a subgroup of M1⟨F⟩ × M2⟨F⟩, where we again denote by F its
restriction to Mi .

By [Guralnick et al. 2020, Theorem 3.9] our assumption on the level of χ implies
that χ is a constituent of

RGF
MF (α⊠ 1)

for some α ∈ Irr(C (M1 F)). Note that

CM(F)= CM1(F)CM2(F)∼= GLϵj (q)× GLϵn− j (q).

If Wi ⩽ W is the subgroup NMi (T )/T then the subgroup W1W2 ⩽ W is a direct
product with W1 ∼= Sj and W2 ∼= Sn− j .

By [Digne and Michel 2020, Theorem 11.7.3] we have α= ±RM1 F
s (φ̃) for some

s ∈ M1 ∩ T , with CW1 F (s) ̸= ∅, and some irreducible character φ̃ ∈ Irr(CW1 F (s))
afforded by a representation over Q, see [Lusztig 1984, Proposition 3.2]. Note that
CW1W2(s)= CW1(s)W2 is a reflection group and we have

CW1W2 F (s)= CW1 F (s)W2.

It is known, see [Digne and Michel 2020, Proposition 11.6.6], that

RGF
MF (α⊠ 1M2 F )= ±RGF

s (IndCWF (s)
CW1W2 F (s)(φ̃⊠ 1))

from which it follows that χ = ±RGF
s (ψ̃) for some irreducible constituent ψ̃ ∈

Irr(CWF (s)) of the induced function IndCWF (s)
CW1W2 F (s)(φ̃⊠ 1).
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We denote again by φ̃ and ψ̃ irreducible characters of CW1(s)⟨F⟩ and CW (s)⟨F⟩

respectively, yielding φ̃ and ψ̃ upon restriction to the respective cosets. By [Taylor
and Tiep 2020, Lemma 4.10],

|⟨IndCWF (s)
CW1W2 F (s)(φ̃⊠ 1), ψ̃⟩| ⩽ ⟨IndCW (s)

CW1W2 (s)
(φ⊠ 1), ψ⟩.

In particular, ψ is a constituent of IndCW (s)
CW1 (s)W2

(φ⊠ 1).
Following the proof of Corollary 2.2 it suffices to show that

(2-10)
∑

η∈Irr(L1)

|⟨η, ∗RGF
L1 F (χ)⟩| ⩽ ⟨

∗RGF
L1 F (χ),

∗RGF
L1 F (χ)⟩ ⩽ n3 j .

A straightforward argument shows that we may find a Levi subgroup T ⩽ L⩽ G,
an element w ∈ NGF (T ), and an element h ∈ G such that h(Lw)= L1 F, see [Digne
and Michel 2020, Proposition 11.4.1]. With this we need only bound

⟨
∗RGF

Lw (χ),
∗RGF

Lw (χ)⟩ = ⟨
∗RGF

Lw (R
G
s (ψ̃)),

∗RGF
Lw (R

G
s (ψ̃))⟩.

By Corollary 2.8,

∗RGF
Lw (R

G
s (ψ̃))=

∑
z∈H\W/CW (s)

CHw(
zs) ̸=∅

RLw
zs (ResCWF (

zs)
CHw(zs)(

zψ̃)),

where H = NL(T )/T is the Weyl group of L. The number of double cosets
appearing in this sum is bounded above by

|H\W/CW (s)| ⩽ |W/CW (s)| ⩽ |W/W2| = |Sn/Sn− j | ⩽ n j

because W2 ⩽ CW (s).
Now, by the disjointness of Deligne–Lusztig characters, see [Digne and Michel

2020, Proposition 11.3.2], the summands are pairwise orthogonal because each zs
lies in a distinct L-conjugacy class. So, using Lemma 2.5 it suffices to bound

|⟨ResCWF (
zs)

CHw(zs)(ψ̃),ResCWF (
zs)

CHw(zs)(ψ̃)⟩| ⩽ ⟨ResCW (
zs)

CH (zs) (ψ),ResCW (
zs)

CH (zs) (ψ)⟩ ⩽ ψ(1)
2.

But we know ψ is a constituent of IndCW (s)
CW1 (s)W2

(φ⊠ 1) so

ψ(1)2 ⩽ IndCW (s)
CW1 (s)W2

(φ⊠ 1)(1)2 ⩽ IndCW (s)
CW1 (s)W2

(φ⊠ 1)(1)2 ⩽ |W/W2|
2 ⩽ n2 j . □

2.3. An asymptotic version of [Bezrukavnikov et al. 2018, Theorem 1.1] and
[Taylor and Tiep 2020, Theorem 1.9]. Now we can prove the main result of the
section:

Theorem 2.9. For any ϵ > 0, there are some explicit positive constants N0 = N0(ϵ)

and q0 = q0(ϵ) such that the following statement holds for all integers n ≥ N0 and
all prime powers q ≥ q0. Let G = GLn(Fq) and let F : G → G be a Frobenius
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endomorphism so that GF
∈ {GLn(q),GUn(q)}. Suppose we are in one of the

following two cases.

(i) G := GF and g ∈ G is any element such that CG(g) is contained in a proper
F-stable Levi subgroup L of G and L := LF.

(ii) G := [G,G]
F

∈ {SLn(q),SUn(q)}, g ∈ G, and either
(a) C[G,G](g) is contained in a proper split Levi subgroup L of [G,G] and

L := LF, or
(b) g is noncentral semisimple with L := CG(g).

Then, for all χ ∈ Irr(G),

(2-11) |χ(g)| ≤ χ(1)α(L)+ϵ

Proof. Note that (2-11) is obvious if α := α(L)≥ 1− ϵ. So in what follows we will
assume

α+ ϵ < 1,
in particular 0< ϵ < 1.

(A) First we prove (2-11) in the cases of (i) and (ii)(a). Note that the upper bound
on |χ(g)| in Theorem 2.3 is obtained by combining (2-1), (2-2), and (2-10). If L
is split, φ :=

∗RGF
L1 F (χ) is a true character of LF

1 (in the notation of the proof of
Theorem 2.3), hence this upper bound is actually an upper bound on the degree of φ.
Arguing as in part (ii) of the proof of [Bezrukavnikov et al. 2018, Theorem 1.1], it
therefore suffices to prove (2-11) for

G ∈ {GLn(q),GUn(q)}.

Let j = l(χ) be the level of χ in the sense of [Guralnick et al. 2020, Defini-
tion 1(ii)]. This means that multiplying χ by a suitable linear character of G, we
may assume that l∗(χ)= j . Applying Theorem 2.3, it suffices to prove

(2-12) n3 j
(

q + 1
q − 1

)D/2

≤ χ(1)ϵ .

Note that the degree of any irreducible character of G is a monic polynomial in
variable q with integer coefficients, in fact a product of a power of q and cyclotomic
polynomials in q . Writing D = dim vG, with vG =O∗

χ being the wave front set of χ ,
the degree of this polynomial is 1

2 D [Bezrukavnikov et al. 2018, Equation 2.1].
Since 8k(q)≥ (q − 1)deg8k for any cyclotomic polynomial 8k , we therefore have

χ(1)≥ (q − 1)D/2.

Choosing q0 = q0(ϵ)≥ 3 such that
q0 + 1
q0 − 1

≤ (q0 − 1)ϵ/3,
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it remains to prove

(2-13) n3 j
≤ χ(1)2ϵ/3

for q ≥ q0 and n ≥ N0.
Choosing N0 ≥ 4, we have 1

4 n2
− 2 > 1

16 n2 for n ≥ N0, and so, when j > 1
2 n,

we have
χ(1) > qn2/16 > qn2ϵ/16

by [Guralnick et al. 2020, Theorem 1.2(ii)]. Next, if 1
4 n< j ≤ 1

2 n, then j (n− j)> 1
8 n2,

and so
χ(1) > qn2/8

by [Guralnick et al. 2020, Theorem 1.2(i)]. If 0 ≤ j ≤
1
4 n, then j (n − j) ≥

3
4 nj ,

and so

(2-14) χ(1)≥ q3n j/4

again by [Guralnick et al. 2020, Theorem 1.2(i)].
First we work in the setting

1
12 nϵ ≤ j ≤ n.

Then (2-14) and the above arguments show that

χ(1)≥ qn2ϵ/16.

Choose N0 ≥ 4 such that

(2-15) n ≤ qnϵ2/72
0

for all n ≥ N0. Then for q ≥ q0 we now have

n3 j
≤ n3n

≤ qn2ϵ2/24
0 ≤ χ(1)2ϵ/3,

yielding (2-13) in this case.
Assume now that j ≤

1
12 nϵ ≤

1
12 n. Then for n ≥ N0 and q ≥ q0 we now have by

(2-14) and (2-15) that

n3 j
≤ qnϵ2 j/24

0 < qnϵ j/2
≤ χ(1)2ϵ/3,

proving (2-13) in this case as well.

(B) Now we handle the case (ii)(b), embedding G in G̃ := GF. Letting L̃ := CG̃(g),
note that G̃ = GL̃ and g ∈ L̃ . Letting χ̃ ∈ Irr(G̃) lie above χ , by Clifford’s theorem
we have

χ̃ |G =

t∑
i=1

χ xi ,
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where x1, . . . , xt can be chosen from L̃ . Since every xi centralizes g, we have

χ̃(1)= tχ(1), χ̃(g)= tχ(g).

Let L= C[G,G](g) and L̃= CG(g), so that L =LF and L̃ = L̃F. We have L̃=LZ(G)
because G = [G,G]Z(G), and so every unipotent element of L̃ is contained in L .
Moreover, if u ∈ L̃ is unipotent then uL̃

= uL and uG
= u[G,G], whence α(L̃)=α(L).

By the case (i) proved in (A), |χ̃(g)| ≤ χ̃(1)α+ϵ . As α + ϵ < 1, it follows that
|χ(g)| ≤ χ(1)α+ϵ . □

3. Some numerical estimates

This section is devoted to numerical estimates which allow us to determine a finite
list of possible exceptions to Conjecture 1.

Let
fa,x(δ) := min

((1
a

+ δ
)

x, 1
2

(1
a

+
a

a−1
δ2

))
.

The main goal of this section is to give an explicit finite list of possible exceptions
to the rule that if 2 ≤ a1 ≤ a2 ≤ · · · ≤ ar are integers such that

∑r
i=1

1
ai
< r − 2,

then
r∑

i=1

fai,x(δi ) < x +

r∑
i=1

aiδ
2
i

ai − 1

when x ∈
[
0, 1

2

]
and δi ∈

[
0, ai −1

ai

]
for all i . We will see that when the rule holds,

Conjecture 1 holds for the corresponding genus 0 Fuchsian group. There is only
one exception with r ≥ 4, and there are thirty-one with r = 3.

Proposition 3.1. For all a ≥ 2, x ∈
(
0, 1

2

]
, and δ ∈

[
0, 1 −

1
a

]
, the function

fa,x(δ)−
aδ2

a−1

x

is bounded above by max
( x

a ,Ga,x , Ha,x
)
, where

Ga,x =


(a−1)x+4

4a
if x ≤

2
√

3a+1−4
3(a−1)

,

−∞ if x > 2
√

3a+1−4
3(a−1)

,

and

Ha,x =

{√
(a−1)2x2+2(a−1)x−(a−1)

a
−
(a−1)x

a
+

1−x
ax

if (a−1)x2
+ax ≥ 1,

−∞ if (a−1)x2
+ax < 1.

In particular,

(3-1) fa,x(δ) <
2x
√

a
+

aδ2

a − 1
.
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Proof. Let

ga,x(δ) :=

(1
a

+ δ
)

x −
aδ2

a−1
, ha(δ) :=

1
2a

−
aδ2

2(a−1)
,

so
fa,x(δ)−

aδ2

a−1
= min(ga,x(δ), ha(δ)).

For each fixed integer a ≥ 2, we wish to determine as a function of x ∈
(
0, 1

2

]
,

the (unique) element δ0(x) ∈
[
0, a−1

a

]
for which min(ga,x(δ), ha(δ)) achieves its

maximum as a function of δ.
We note first that as functions of δ, ga,x(δ) and ha(δ) are strictly concave, and

ha(δ) is decreasing on [0,∞). Therefore, δ0(x) must either be the unique critical
point (a−1)x

2a of ga,x(δ), the minimum solution of ga,x(δ) = ha(δ) in the interval[
0, a−1

a

]
, or one of the endpoints 0 and a−1

a of the interval. For the endpoints, we
have

min(ga,x(0), ha(0))≤ ga,x(0)=
x
a
,

and
min

(
ga,x

(a−1
a

)
, ha

(a−1
a

))
≤ ha

(a−1
a

)
=

1
a

−
1
2

≤ 0.

If the maximum occurs at (a−1)x
2a , it must be

ga,x

(
(a−1)x

2a

)
=
(a−1)x2

+4x
4a

,

and this quantity must be less than or equal to

ha

(
(a−1)x

2a

)
=

4−(a−1)x2

8a
,

so

x ≤
2
√

3a + 1 − 4
3(a − 1)

.

Thus, for all x ,

(3-2) Ga,x ≤
1
a

+

√
3a + 1 − 2

6a
≤

1
a

+
1

√
2a
<

2
√

a
.

The graphs of ga,x(δ) and ha(δ) intersect only if

(3-3) (a − 1)x2
+ 2x ≥ 1,

in which case the smaller δ-value satisfying ga,x(δ)= ha(δ) is

δ =
(a − 1)x −

√
(a − 1)2x2 + 2(a − 1)x − (a − 1)

a
.

If this is δ0(x), we have

(3-4) Ha,x =

√
(a−1)2x2+2(a−1)x−(a−1)x

a
−
(a−1)x2

a
+

1−x
a

≤
1−x

a
≤

1
a
.
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By (3-3), x > 1
2
√

a
, so (3-4) implies

ga,x(δ0(x))
x

<
2

√
a
.

Together with (3-2), this implies the proposition. □

Proposition 3.2. Let r ≥ 3 be an integer, a1 ≤ a2 ≤ · · · ≤ ar be integers greater
or equal to 2, and δi be nonnegative numbers with 1

ai
+ δi ≤ 1 for all i . We assume

that the tuple a1 · · · ar is not in the following list:

(i) 23c, 7 ≤ c ≤ 24.

(ii) 24c, 5 ≤ c ≤ 9.

(iii) 25c, 5 ≤ c ≤ 7.

(iv) 266.

(v) 33c, 4 ≤ c ≤ 6.

(vi) 344.

(vii) 2223.

Then for all x ∈
(
0, 1

2

]
,

r∑
i=1

fai,x(δi ) <−2r xϵ+ (r − 2)x +

r∑
i=1

aiδ
2
i

ai − 1
,

where ϵ is a positive constant which does not depend on x , r , the ai , or the δi .

Proof. By (3-1) for a ≥ 100 and machine computation for 2 ≤ a < 100,

(3-5)
fa,x(δ)−

aδ2

a−1
x

≤



0.555 if a = 2,
0.399 if a = 3,
0.318 if 4 ≤ a < 100,
0.2 if 100 ≤ a < 10000,
0.02 if 10000 ≤ a.

Therefore, if r ≥ 5,

r − 2 −

r∑
i=1

fai,x(δi )−
aiδ

2
i

ai −1
x

> r − 2 − 0.56r ≥ (2r)0.02.

If r = 4 and a4 ≥ 4, then

r − 2 −

r∑
i=1

fai,x(δi )−
aiδ

2
i

ai −1
x

> 2 − 0.56 · 3 − 0.318 = 0.002,
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while if r = 4 and a3 ≥ 3, then

r − 2 −

r∑
i=1

fai,x(δi )−
aiδ

2
i

ai −1
x

> 2 − 0.56 · 2 − 0.4 · 2 = 0.08.

The only remaining possibility for r = 4 is 2223.
For r = 3, we may assume a2 ≥ 3, so if a3 ≥ 10000,

r − 2 −

r∑
i=1

fai,x(δi )−
aiδ

2
i

ai −1
x

> 1 − 0.56 − 0.4 − 0.02 = 0.02.

The triples with a3< 10000 can be handled exhaustively by machine, by partitioning
the x-interval

[
0, 1

2

]
into subintervals on which Ga,x and Ha,x are bounded above. □

Lemma 3.3. Let g be a positive integer and r a nonnegative integer such that if
g = 1, then r > 0. Let a1 ≤ a2 ≤ · · · ≤ ar be a (possibly empty) sequence of integers
at least 2. Then for all x ∈

[
0, 1

2

]
,

r∑
i=1

fai,x(δi ) <−0.22(r + 1)x + (2g + r − 2)x +

r∑
i=1

aiδ
2
i

ai − 1
.

Proof. If g = 1 and r ≥ 1, (3-5) implies

r∑
i=1

fai,x(δi )−
aiδ

2
i

ai −1
x

< 0.56r ≤ −0.44r + r ≤ −0.22(r + 1)+ (2g + r − 2).

If g ≥ 2 and r ≥ 0,

r∑
i=1

fai,x(δi )−
aiδ

2
i

ai −1
x

≤ 0.56r

<−0.22(r +1)+(2+r)≤ −0.22(r +1)+(2g+r −2). □

4. Asymptotics of jq,n(a)

Let t be an element of Gn = GLn(q) of order a. We assume q is prime to a. Let
ζ = ζa be a primitive a-th root of unity in Fq , so za

− 1 = 0 has distinct roots
ζ, ζ 2, . . . , ζ a

= 1 in Fq . Let mi denote the multiplicity of ζ i as an eigenvalue of t .
We write i ∼ j if ζ i and ζ j have the same Frobenius orbit. Then:

(1) mi ∈ Z for all i .

(2) m1 + · · · + ma = n.

(3) mi = m j whenever i ∼ j .

(4) mi ≥ 0 for all i .
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The element t is determined up to conjugacy in GLn(q) by the vector (m1, . . . ,ma).
For given n, the vector is determined by m1, . . . ,ma−1, so the number of possibilities
is O(na−1).

Let S denote the subset of {1, . . . , a} consisting of the smallest element in each
Frobenius orbit, and let ls be the size of the orbit of s. The centralizer of t in
GLn(q) can be written

∏
s∈S GLms (q

ls ), so the conjugacy class C = tGn satisfies

(4-1) |C | =
qn2 ∏n

j=1(1 − q− j )∏
s∈S

(
qlsm2

s
∏ms

j=1(1 − q−ls j )
)

=
qn2

−
∑a

i=1 m2
i q

1
24 (1−a)η

( i log q
2π

)∏
s∈S η

( ils log q
2π

) ∏
s∈S

∏
∞

j=ms+1(1 − q−ls j )∏
∞

j=n+1(1 − q− j )
,

where η(z) is the Dedekind eta-function. The second multiplicand on the right-hand
side can be bounded above in terms of a, and it approaches 1 as infi mi goes to ∞.

Writing

(4-2) n2
−

a∑
i=1

m2
i = n2

(
1 −

1
a

)
−

a∑
i=1

(n
a

− mi

)2
,

we see that if mi ≤ n/2a, then

|C | = O(q(1−1/a−1/(4a2))n2
),

so the sum of |C | over all conjugacy classes with infi mi ≤ n/2a is o(q(1−1/a)n2
).

We define jq,n,k(a) to be the number of elements t ∈ GLn(q) with ta
= 1 and

det(a) = ζ k . Consider the subset of Za satisfying conditions (1)–(3) and the
congruence condition

(4-3)
r∑

i=1

imi ≡ k (mod a),

which is equivalent to the condition det(t)= ζ k . This is a coset λn +3, where 3
is a subgroup of Za which does not depend on n and λn ∈ Za has coordinate sum n.
Moreover, adding 2 to each mi and 2a to n preserves the sets satisfying conditions
(1)–(3) and (4-3), so

λn+2a = λn + (2, 2, . . . , 2).

Thus,

λ′

n := λn −

(n
a
,

n
a
, . . . ,

n
a

)
is periodic in n with period 2A and has coordinate sum 0.

By (4-1) and (4-2),
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jq,n,k(a)=

∑
(m1,...,ma)∈(λn+3)∩Na

qn2 ∏n
j=1(1 − q− j )∏

s∈S

(
qlsm2

s
∏ms

j=1(1 − q−ls j )
)

=

∑
(m1,...,ma)∈(λn+3)∩Na

qn2
−

∑a
i=1 m2

i q
1

24 (1−a)η
( i log q

2π

)∏
s∈S η

( ils log q
2π

) + o(q(1−1/a)n2
)

=
q

1
24 (1−a)η

( i log q
2π

)∏
s∈S η

( ils log q
2π

) ∑
(m1,...,ma)∈λn+3

qn2
−

∑a
i=1 m2

i + o(q(1−1/a)n2
)

=
q

1
24 (1−a)η

( i log q
2π

)∏
s∈S η

( ils log q
2π

) q(1−1/a)n2 ∑
λ′∈λ′

n+3

q−λ′
·λ′

+ o(q(1−1/a)n2
),

where the implicit constant on the right-hand side does not depend on q . Defining

θv(z) :=

∑
λ∈v+3

e2π i(λ·λ)z and fn(z) :=
η(z)θλ′

n
(z)∏

s∈S η(lsz)
,

we have proved the following:

Proposition 4.1. The periodic sequence f1, f2, f3, . . . of half-integral weight mod-
ular forms with integral q-expansions satisfies

jq,n,k(a)=

(
fn

(
i log q

2π

)
+ o(1)

)
q

1
24 (1−a)q(1−1/a)n2

,

where the o(1) term does not depend on q.

From this, it is easy to deduce:

Corollary 4.2. Let a1, . . . , ar denote positive integers with least common multi-
ple A. Then there exists a 2A-periodic sequence of meromorphic modular forms
f1, f2, f3, . . . with integral Fourier coefficients, holomorphic except possibly at
i∞, such that

Jq,n(a1, . . . , ar )=

(
fn

(
i log q

2π

)
+ o(1)

)
q

1
24 (r−a1−···−ar )q(r−1/a1−···−1/ar )n2

.

Proof. Let

6(a1, . . . , ar ) :=
{
(k1, . . . , kr ) ∈ (Z/a1Z)× · · · × (Z/ar Z) |

∏
ζ ki

ai
= 1

}
.

If tai
i =1, then det(ti )= ζ

ki
ai for a well-defined ki ∈Z/ai Z. Every element (t1, . . . , tr )

of (1-2) determines (k1, . . . , kr ) ∈6(a1, . . . , ar ) such that det(ti )= ζ k1
ai

. Therefore,

Jq,n(a1, . . . , ar )=

∑
(k1,...,kr )∈6(a1,...,ar )

r∏
i=1

jq,n,ki (ai ),

and the corollary follows immediately from Proposition 4.1. □
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5. Counting Fuchsian group representations

We now prove the main results of the paper. We continue with the notation of the
previous section.

If ta
= 1, and m1, . . . ,ma are the eigenvalue multiplicities of t , define δ :=

−1/a + supi mi/n. Thus, δ ≥ 0. Let j be chosen so m j = n/a + δn.

Proposition 5.1. For all ϵ > 0, there exist N and q0 depending only on ϵ such that
if n > N , q > q0, x ∈

(
0, 1

2

]
and χ is an irreducible character of Gn = GLn(q) of

degree qxn2
> 1, then

log |tGn ||χ(t)|
n2 log q

≤

(
1 −

1
a

−
aδ2

a − 1

)
+

1
n

+ ϵx + fa,x(δ).

Proof. Since ∑
i ̸= j

(
n
a

− mi

)
≥ δn,

by the Cauchy–Schwartz inequality,∑
i ̸= j

(
n
a

− mi

)2

≥
δ2n2

a − 1
.

By (4-2), the dimension of the centralizer of t in the algebraic group GLn is

(5-1) n2

a
+

∑
i

(
n
a

− mi

)2

≥
n2

a
+ δ2n2

+ (a − 1)
δ2n2

(a − 1)2
=

n2

a
+

aδ2n2

a − 1
.

The order of the centralizer L of t in Gn is less than or equal to q to the power of
the centralizer dimension, so the centralizer bound |χ(t)| ≤ |L|

1/2 for irreducible
characters χ ∈ Irr(Gn) implies

(5-2) |tGn ||χ(t)| ≤
|Gn|

|L|
1
2

≤ qn2
−

1
2(

n2
a +

aδ2n2
a−1 )(1 − q−1)−

1
2 n

≤ qn2(1−
1

2a −
aδ2

2(a−1))+
1
2 n
.

On the other hand, by [Bezrukavnikov et al. 2018, Theorem 1.10],

α(L)≤
supi mi

n
=

1
a

+ δ.

The character bound Theorem 2.9 therefore implies

|χ(t)| ≤ χ(1)
1
a +δ+ϵ

= qn2x( 1
a +δ+ϵ),

so

|tGn ||χ(t)| ≤ qn2(1−
1
a −

aδ2
a−1)+nqn2x( 1

a +δ+ϵ).
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Combining this with (5-2), we get

log |tGn ||χ(t)|
n2 log q

≤ min
((

1 −
1
a

−
aδ2

a−1

)
+

1
n

+ x
(1

a
+ δ+ ϵ

)
,
(

1 −
1

2a
−

aδ2

2(a−1)

)
+

1
2n

)
≤

(
1 −

1
a

−
aδ2

a−1

)
+

1
n

+ ϵx + min
(

x
(1

a
+ δ

)
,

1
2a

+
aδ2

2(a−1)

)
=

(
1 −

1
a

−
aδ2

a−1

)
+

1
n

+ ϵx + fa,x(δ). □

Proposition 5.2. There exist absolute constants ϵ > 0, q0, and N with the following
property. If 2 ≤ a1 ≤ a2 ≤ · · · ≤ ar is not excluded in Proposition 3.2 above, q > q0

is a prime power relatively prime to all ai , n > N , elements ti ∈ Gn = GLn(q)
satisfy tai

i = 1, and χ is a nonlinear irreducible character of Gn , then∏
i |t

Gn
i |

|Gn|

∏
i |χ(ti )|
χ(1)r−2 ≤ 4qn2(−1+

∑
i (1−

1
ai
))
χ(1)−ϵ .

Proof. Let x := logqn2 χ(1), which by [Landazuri and Seitz 1974] is at least 1/(2n).
We fix q0 as in Proposition 5.1 and ϵ as in Proposition 3.2 and choose N > 2/ϵ.
Let δi := µi − 1/ai , where µi n is the highest multiplicity of any eigenvalue of ti .
By Proposition 5.1 and Proposition 3.2,

log
(∏

i |t
Gn
i |

∏
i |χ(ti )|

)
n2 log q

≤

r∑
i=1

(
1 −

1
ai

−
aiδ

2
i

ai − 1
+

1
n

+ ϵx + fai,x(δi )

)
=

r
n

+ r xϵ+

∑
i

(
1 −

1
ai

)
+

∑
i

(
fai,x(δi )−

aiδ
2
i

ai − 1

)
<

r
n

− r xϵ+

∑
i

(
1 −

1
ai

)
+ (r − 2)x

<−xϵ+

∑
i

(
1 −

1
ai

)
+ (r − 2)x .

Since |Gn| ≥
1
4qn2

, the proposition follows. □

The positive genus variant of this result is as follows:

Lemma 5.3. There exist absolute constants q0 and N such that for every g ≥ 1,
every sequence 2 ≤ a1 ≤ · · · ≤ ar (assumed nonempty if g = 1), every prime power
q > q0 relatively prime to ai for all i ≤ r , every n> N , every tuple (t1, . . . , tr )∈ Gr

n
satisfying tai

i = 1 for all i , and every nonlinear χ ∈ Irr(Gn), we have∏
i

|tGn
i ||Gn|

2g−1
∏

i |χ(ti )|
χ(1)2g+r−2 ≤ qn2(2g−1+

∑
i (1−

1
ai
))χ(1)−0.22.
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Proof. The proof is exactly the same as that of Proposition 5.2 except that we use
Lemma 3.3 instead of Proposition 3.2. □

Lemma 5.4. Let Hi = GLni (qi ), where limi→∞ ni = ∞. Then for all ϵ > 0,∑
χ∈Irr(Hi )

χ(1)−ϵ = qi − 1 + o(q−
1
3 ϵni

i )

Proof. By [Liebeck and Shalev 2005a, Theorem 1.2],∑
χ∈Irr(SLni (qi ))

χ(1)−
1
2 ϵ = 1 + o(1),

so if Di denotes the minimum degree of a nontrivial character of SLni (qi ),∑
χ∈Irr(SLni (qi ))

χ(1)−ϵ = 1 + o(D−
1
2 ϵi )= 1 + o(q−

1
3 ϵni

i )

by [Landazuri and Seitz 1974]. The relation which assigns to each element of
Irr(Hi ) all the elements in Irr(SLni (qi )) which are constituents of its restriction is
at most q − 1 to 1 and nonincreasing in degree. There are qi − 1 linear characters
for Hi , all mapping to the trivial character of SLni (qi )). Therefore,

1 − qi +

∑
χ∈Irr(Hi )

χ(1)−ϵ = o((qi − 1)q−
1
3 ϵni

i ),

and the lemma follows. □

We can now prove Theorems A and B.

Proof. We assume first that g =0, so 0 is determined by 2≤a1 ≤a2 ≤· · ·≤ar . A ho-
momorphism 0→ Gn is determined by the images t1, . . . , tr ∈ Gn of z1, . . . , zr ∈0,
which satisfy tai

i = 1 and t1 · · · tr = 1. We can partition the set of homomorphisms
according to the conjugacy classes C1, . . . ,Cr to which the ti belong. By the
Frobenius formula, the total number of homomorphisms is

(5-3)
∑

(C1,...,Cr )

|C1 × · · · × Cr |

|Gn|

∑
χ∈Irr(Gn)

χ(C1) · · ·χ(Cr )

χ(1)r−2 .

The determinant condition implies that each linear character in the inner sum
contributes 1, and there are a total of q −1 such characters. Their total contribution
is therefore

(5-4) (q − 1)
∑ |C1 × · · · × Cr |

|Gn|
= (q − 1)Jq,n(a1, . . . , ar )|Gn|

−1.

By Proposition 5.2 and Lemma 5.4, the contribution of all nonlinear characters χ
to (5-3) is o(q−

1
3 ϵnq(1−χ(0))n2

), where ϵ is the positive absolute constant defined in
Proposition 5.2. By Corollary 4.2,

|Hom(0,G)| = (q − 1)q
1
24 (r−a1−···−ar )

(
fn

(
i log q

2π

)
+ o(1)

)
q(1−χ(0))n2

,
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which implies Theorem A and Theorem B in the genus 0 case. The proof in
the higher genus case is the same except that we use Lemma 5.3 instead of
Proposition 5.2. □

Proposition 5.5. Let a and n be positive integers, a ≥ 2, and let q be a prime
power which is 1 (mod a). The minimum dimension of the centralizer in GLn of
a semisimple element t ∈ GLn(q) of order dividing a is n2/a + a{n/a}{−n/a}.
If a is odd, t can be chosen to have determinant 1. If a is even and n/a ̸∈ Z,
then t can be chosen to have determinant 1 or −1. If a is even and n/a ∈ Z,
then t must have determinant (−1)n/a; if this is −1, there is no element in GLn(q)
whose centralizer has dimension n2/a + 1, but there is an element t ′

∈ SLn(q) with
centralizer dimension n2/a + 2.

Proof. If the multiplicities m1, . . . ,ma of the eigenvalues ζa, . . . , ζ
a
a of a semisimple

t ∈ GLn(q) satisfying ta
= 1 are written n/a + ϵi , then the centralizer of t has

dimension ∑
i

m2
i =

n2

a
+

∑
i

ϵ2
i .

As
∑

i ϵi = 0, either all are zero (which can only happen in the case that a divides n),
or at least one is positive and at least one is negative. In the latter case, if any ϵi ≥ 1,
then by reducing this by 1 and increasing some negative ϵj by 1, we decrease

∑
i ϵ

2
i ,

and likewise if some ϵi ≤ −1. As all ϵi are {n/a} (mod 1), each must be {n/a} or
{n/a} − 1, and since they sum to zero, there must be a − a{n/a} of the former and
a{n/a} of the latter, implying

∑
i ϵ

2
i = a{n/a}{−n/a}.

Next, we claim that as long as {n/a} ̸= 0, there exists some sequence m1, . . . ,ma

consisting of a{n/a} copies of ⌈n/a⌉ and a − a{n/a} copies of ⌊n/a⌋ such that∏
i ζ

imi
a is any desired power of ζa . To prove this, it suffices to show that if 0< k<a,

the sums of k-element subsets S of {0, 1, . . . , a − 1} represent all residue classes
(mod a). Indeed, if S ̸= {a − 1, a − 2, . . . , a − k}, there exists s ∈ S such that
s + 1 ∈ {0, 1, . . . , a − 1} \ S. Thus, the set of sums of k-element subsets S includes
all integers from

(k
2

)
to

(a
2

)
−

(a−k
a

)
, a total of k(a − k)+1 ≥ a consecutive integers,

which therefore represent all congruence classes (mod a).
Finally, assume a divides n, so m1 = · · · = ma = n/a gives the minimum value

n2/a of
∑

i m2
i . Any other choice of (m1, . . . ,ma) must have all ϵi integral and at

least two nonzero, so
∑

i m2
i ≥ n2/a + 2. If m1 = · · · = ma and n/a is even or a is

odd, then
∑

i imi is divisible by a, so det(t)= 1. If a is even and n/a is odd, then
m1 = · · · = ma gives det(t)= −1. In this last case, setting ϵ1 = 1 and ϵa/2+1 = −1
and all other ϵi = 0, we get

∑
i imi is divisible by a and

∑
i m2

i = n2/a + 2. □

Let E0 denote the set of i such that ai is even. As in the statement of Theorem C,
for each positive integer n, we define σ0,n := −1 if n/ai ∈ Z for all i ∈ E0, and∑

i∈E0 n/ai is odd; otherwise σ0,n := 1.



REPRESENTATION GROWTH OF FUCHSIAN GROUPS AND MODULAR FORMS 245

Proposition 5.6. Suppose q ≡ 1 (mod ai ) for all i . If (t1, . . . , tr ) is an r-tuple of
semisimple elements in GLn(q) such that tai

i = 1 and
∏

i det(ti )= 1, the minimum
possible sum of the dimensions of the centralizers of the ti in GLn is

1 − σ0,n +

r∑
i=1

(n2

ai
+ ai

{ n
ai

}{
−

n
ai

})
.

Proof. If there is at least one ai which is even and such that n/ai ̸∈ Z, then we can
choose ti to have either determinant 1 or −1 and centralizer dimension

(5-5) n2

ai
+ ai

{ n
ai

}{
−

n
ai

}
.

For j ̸= i , we can choose tj to have determinant in {±1} and centralizer n2/aj +

aj {n/aj }{−n/aj }. Therefore, we can choose minimal centralizer dimension for
all ti while imposing the condition

∏
i det(ti )= 1.

If n/ai ∈ Z for all ai even, and the set of i such that ai is even and n/ai is odd
has even cardinality, then we may choose ti whose centralizer has dimension (5-5)
for all i and such that det(ti )= 1 except when ai is even and n/ai is odd. In these
cases, of which there are an odd number, det(ti )= 1, so again

∏
i det(ti )= 1.

What remains is the case σ0,n = −1, and here if ti has centralizer dimension (5-5)
for all i , then the product

∏
i det(ti ) is −1 times a product of elements of odd order,

so it cannot be 1. On the other hand, if we choose one ti with ai even and n/ai

odd, and choose it to have determinant 1 and centralizer dimension n2/ai + 2, and
all other tj have minimal centralizer dimension and det(tj )= ±1, then the product∏

i det(ti ) equals 1. □

Proof of Theorem C. By Theorem B, there exist q0 and N such that if q > q0 is
relatively prime to A and n > N , then

1
2 <

q(1−2g)n2
|Hom(0,GLn(q))|

q Jq,n(a1, . . . , ar )
< 3

2 .

For any fixed such q and n, let Xq,n denote the variety Hom(0,GLn) over the
field Fq . Then, for all positive integers m,

1
2 <

q(1−2g)mn2
|Xq,n(Fqm )|

qm Jqm,n(a1, . . . , ar )
< 3

2 .

By Proposition 5.6,

dim Xq,n = lim supm logqm |Xq,n(Fqm )|

= 1 + (2g − 1)n2
+ lim supm logqm Jqm,n(a1, . . . , ar )

= 1 + (2g − 1)n2
+ rn2

− 1 + σ0,n −

r∑
i=1

(n2

ai
+ ai

{ n
ai

}{
−

n
ai

})
= σ0,n + (1 −χ(0))n2

−

r∑
i=1

ai

{ n
ai

}{
−

n
ai

}
.
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The first claim of the theorem follows in the positive characteristic case.
For characteristic zero, we consider the scheme Hom(0,GLn,Z) over Spec Z

whose Fp fiber is the n-dimensional representation variety of 0 over Fp. By the
constructibility of the set of dimensions of irreducible fiber components [EGA IV3

1966, proposition 9.5.5], the dimension of the generic fiber must be the same as the
common dimension of any infinite set of fibers over closed points.

Finally, for the second claim of the theorem, we observe that {t}{−t} ≤
1
4 for all

real t , so for all i ,

ai

{ n
ai

}{
−

n
ai

}
≤

1
4ai .

We have σ0,n >−
1
2 unless there is at least one value of i for which ai is even and

n/ai is integral. For this value of i , ai ≥ 2, so

σ0,n −

r∑
i=1

ai

{ n
ai

}{
−

n
ai

}
≥ −

1
2 −

r∑
i=1

1
4ai . □
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D4-TYPE SUBGROUPS OF F4(q)

R. LAWTHER

We treat the action of the simple group F4(q) on the cosets of subgroups
D4(q), 2D4(q) and 3D4(q) and their extensions by graph automorphisms. We
obtain the ranks and decompose the corresponding permutation characters;
we show that, even allowing for the application of field automorphisms, the
only two primitive multiplicity-free actions arising are those of F4(2) on
cosets of D4(2).S3 and 3D4(2).3. For these two actions, we calculate the
subdegrees; we find that all suborbits are self-paired, but that the action
gives rise to no distance-transitive graph.

1. Introduction

This paper represents a further contribution to the programs described in [15],
namely the classification of finite primitive permutation groups with the property
that the action is on the vertices of a distance-transitive graph, or (more generally)
all suborbits are self-paired, or (more generally still) the permutation character is
multiplicity-free. Results of [1; 23] essentially reduce these classifications to the
consideration of almost simple groups; many cases have already been studied and
resolved. In [15] the case of the action of F4(q) on cosets of B4(q) was treated; in
this paper, which in many ways may be seen as a continuation of [15], we consider
two further actions of F4(q), on cosets of D4(q).S3 and of 3D4(q).3. In conjunction
with [17] (about which we shall say more later), we shall show that each of these
actions is only multiplicity-free if q = 2 (and, moreover, that if q > 2 the application
of field automorphisms never makes the action multiplicity-free); in these two cases
we shall calculate the subdegrees, and show that all suborbits are self-paired, but
that the action gives rise to no distance-transitive graph.

In fact, we shall consider other subgroups beside the two just mentioned. We shall
say that a subgroup of F4(q) is a D4-type subgroup if it is of the form mD4(q).0,
where m ∈ {1, 2, 3} (interpreting 1D4(q) to mean simply D4(q)), and 0 is a group
of graph automorphisms of mD4(q). For completeness, we shall decompose the
permutation characters of the actions of F4(q) on cosets of all D4-type subgroups.
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We let G be a simple algebraic group of type F4 over k, the algebraic closure of Fp,
where p is a prime. We let T0 be a maximal torus of G, and8 be the set of roots of G
relative to T0; we choose a Borel subgroup B of G containing T0, and let 8+ and
6 be the sets of positive and simple roots determined by B. As in [24; 25], we let

6 =
{
ϵ2 − ϵ3, ϵ3 − ϵ4, ϵ4,

1
2(ϵ1 − ϵ2 − ϵ3 − ϵ4)

}
,

where ϵ1, ϵ2, ϵ3, ϵ4 form an orthonormal basis of a 4-dimensional Euclidean space;
then

8+
= {ϵi ± ϵ j : 1 ≤ i < j ≤ 4} ∪ {ϵi : 1 ≤ i ≤ 4} ∪

{ 1
2(ϵ1 ± ϵ2 ± ϵ3 ± ϵ4)

}
,

and 8=8+
∪−8+. For convenience, where there is no danger of confusion, we

shall write ±i ± j for ±ϵi ± ϵ j , ±i for ±ϵi , and +−−− for 1
2(ϵ1 − ϵ2 − ϵ3 − ϵ4), etc.

in what follows. We write N = NG(T0), and W = N/T0 for the Weyl group of G.
Given a root α ∈ 8, we let Uα be the corresponding root subgroup of G; we

write U =
∏
α∈8+ Uα. For each α there is an isomorphism xα : k → Uα such that

for all λ∈ k and t ∈ T0 we have txα(λ)= xα(α(t)λ) (where as usual a group element
as superscript denotes conjugation on the appropriate side). We assume that the
isomorphisms xα are chosen as in [4, Section 1.9] such that if for all λ ∈ k∗ we set

nα(λ)= xα(λ)x−α(−λ
−1)xα(λ), hα(λ)= nα(λ)nα(−1),

then as in [3, Lemma 6.4.4] for all λ ∈ k∗ we have nα(λ) ∈ N and hα(λ) ∈ T0; the
maps hα : k∗

→ T0 are the coroots. For all λ,µ ∈ k we also have the Chevalley
commutator relations

[xα(λ), xβ(µ)] =
1 if α+β /∈8,

xα+β(Nα,βλµ) if α+β ∈8, 2α+β,α+2β /∈8,
xα+β(Nα,βλµ)x2α+β

(
−

1
2 Nα,βNα,α+βλ

2µ
)

if α+β,2α+β ∈8,

xα+β(Nα,βλµ)xα+2β
(1

2 Nα,βNα+β,βλµ
2
)

if α+β,α+2β ∈8,

where we assume that the structure constants Nα,β are as given in [25]. For each α
we write nα = nα(1), and wα = nαT0 ∈ W .

Much as in [24], we shall write elements of T0 in the form (µ1, µ2, µ3, µ4; ν)

with µ1, µ2, µ3, µ4, ν ∈ k∗ and ν2
= µ1µ2µ3µ4, where for λ ∈ k∗ we set

h2−3(λ)= (1, λ, λ−1, 1; 1),

h3−4(λ)= (1, 1, λ, λ−1
; 1),

h4(λ)= (1, 1, 1, λ2
; λ),

h+−−−(λ)= (λ, λ−1, λ−1, λ−1
; λ−1).
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The action of W on T0 is then determined by

w2−3(µ1, µ2, µ3, µ4; ν)= (µ1, µ3, µ2, µ4; ν),

w3−4(µ1, µ2, µ3, µ4; ν)= (µ1, µ2, µ4, µ3; ν),

w4(µ1, µ2, µ3, µ4; ν)= (µ1, µ2, µ3, µ4
−1

; νµ4
−1),

w+−−−(µ1, µ2, µ3, µ4; ν)= (ν, νµ3
−1µ4

−1, νµ2
−1µ4

−1, νµ2
−1µ3

−1
;µ1).

We let
H = ⟨Uα : α ∈8(H)⟩,

C = ⟨Uα : α ∈8(C)⟩,

A = ⟨Uα : α ∈8(A)⟩,
where

8(H)= {±ϵi ± ϵ j : 1 ≤ i < j ≤ 4},

8(C)=
{
±(ϵ1 − ϵ2),±(ϵ3 ± ϵ4),±ϵ3,±ϵ4,±

1
2(ϵ1 − ϵ2 ± ϵ3 ± ϵ4)

}
,

8(A)=
{
±ϵ4,±

1
2(ϵ1 − ϵ2 − ϵ3 ± ϵ4)

}
;

then H , C and A are simple algebraic groups over k of types D4, C3 and Ã2,
respectively, where as usual a tilde denotes a root system comprising short roots,
and each is simply connected, as it is easy to see that the Z-linear span of the
relevant coroots equals the group of cocharacters of the relevant torus. We let

WH = ⟨w1−2, w2−3, w3−4, w3+4⟩,

WC = ⟨w3−4, w4, w+−−−⟩,

WA = ⟨w4, w+−−−⟩,

so that WH , WC and WA are the Weyl groups of H , C and A, respectively.
We write

τ1 = 1, τ2 = h+−−−(−1)n4, τ3 = n4n+−−−.

For m ∈ {1, 2, 3} the element τm is of order m and acts on H as a graph automor-
phism; moreover τm ∈ A, and C A(τm) is connected (if p ̸= m then τm is semisimple,
so the connectedness of C A(τm) follows from the simple connectedness of A and [4,
Theorem 3.5.6]; if instead p = m then τm is unipotent, and an easy calculation shows
the connectedness of C A(τm)). If p ̸= 2, as in [13] we may set y2 = x4(1)n4x4

( 1
2

)
;

then τ2
y2 = h+−−−(−1)= (−1,−1,−1,−1; −1). If instead p = 2 we may set y2 =

x−4(1); then τ2
y2 = x4(1). Likewise, if p ̸= 3 we may take ω ∈ k∗ with ω3

= 1 ̸=ω,
and set y3 = x+−−+(ω

2)x+−−−(−ω)x4(1)n4n+−−−n4x4
( 1

3

)
x+−−−

( 1−ω
3

)
x+−−+

( 1+2ω
3

)
;

then τ3
y3 = h4(ω) = (1, 1, 1, ω2

;ω). If instead p = 3 we may set y3 = x−++−(1)
x−4(1)x−+++(−1); then τ3

y3 = x4(1)x+−−−(1).
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We let q be a power of p, and let F : G → G be the Frobenius map determined
by xα(λ)F

= xα(λq) for all λ ∈ k and α ∈8. As in [15; 25] we set x = (4, q − 1),
y = (3, q − 1) and z = (3, q + 1). We take d ∈ {0, 1} and e ∈ {0,±1} such that
q ≡ d (mod 2) and q ≡ e (mod 3). For m ∈ {1, 2, 3} we set

f =


3 if m = 1,
1 if m = 2,
0 if m = 3;

the element τm commutes with F , and as τm ∈ C A(τm), by the Lang–Steinberg
theorem we may take gm ∈ C A(τm) with gm

F .gm
−1

= τm (choosing g1 = 1), and
let Hm = Hgm .

For any F-stable subset X of G we write X F for the set of points of X fixed
by F . We set G = GF , T0 = T0

F , B = BF , Uα = UαF for α ∈ 8, U = U F ,
N = N F , A = AF , C = C F and Hm = (Hm)

F for m ∈ {1, 2, 3}; then G = F4(q)
and Hm =

mD4(q) with Hm < G, and we have

|G| = q24(q2
− 1)(q6

− 1)(q8
− 1)(q12

− 1),

|H1| = q12(q2
− 1)(q6

− 1)(q4
− 1)2,

|H2| = q12(q2
− 1)(q6

− 1)(q8
− 1),

|H3| = q12(q2
− 1)(q6

− 1)(q8
+ q4

+ 1).

For m ∈ {1, 2, 3} we define the map Fm = Fτm : G → G by gFm = (gF )τm for
g ∈ G, and set Ĥm =

gmHm = H Fm (where we extend the superscript notation to
mean the set of points fixed by Fm).

Now as g1 = τ1 = 1, and for m ∈ {2, 3} we have chosen gm to commute with τm ,
given m, r ∈ {1, 2, 3} with {m, r} ̸= {2, 3} we have τr

gm = τr . It follows that, up to
conjugacy, the D4-type subgroups of G are H1, H2 and H3; H1.2 and H2.2, where
Hm .2 = Hm⟨τ2⟩; H1.3 and H3.3, where Hm .3 = Hm⟨τ3⟩; and H1.S3 = H1⟨τ2, τ3⟩.
Of these, only H1.S3 and H3.3 are maximal subgroups of G, since H2.2 lies inside
B4(q)= ⟨U±(1−2),U±(2−3),U±(3−4),U±4⟩.

The structure of the rest of the paper is as follows. In Section 2 we develop a
method for decomposing the permutation characters which occur here. In Section 3
we apply this to the cases where the D4-type subgroup is Hm for m ∈ {1, 2, 3}; in
Section 4 we do the same for the other D4-type subgroups. Finally in Section 5 we
consider the contributions of the actions treated here to the classification programs
mentioned above.

2. Decomposing permutation characters

In this section we begin by giving information about conjugacy classes, and then
explain a method for calculating scalar products of characters which uses it; this
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will allow us to decompose the permutation characters of interest here. After some
preliminary results we prove the claim on which the method is based.

In what follows we shall make several statements to the effect that a certain
expression is a ‘polynomial in q’. By this we shall mean that, for a stated set of
zero or more parameters which may take only finitely many possible values, if we
fix their values there is a polynomial with rational coefficients such that, for any
appropriate q , the expression equals the evaluation of the polynomial at q .

2.1. Conjugacy classes in D4-type subgroups. We begin by providing information
concerning conjugacy classes in D4-type subgroups of G, which will be needed
in much of the rest of the paper. We shall see that, for m, r ∈ {1, 2, 3} with
{m, r} ̸= {2, 3}, it suffices to consider the Hm-classes in the coset Hmτr ; equivalently
we may consider the Ĥm-classes in the coset Ĥmτr and then conjugate by gm (note
that Ĥ1 = H1 as g1 = 1, and that Ĥmτr =

gm(Hmτr ) as gm commutes with τr ).
Of fundamental importance is Jordan decomposition, but the way in which this

is applied will depend on whether or not r equals p. We define

r̄ =
r

(r, p)
=

{
r if r ̸= p,
1 if r = p;

given an element of the coset Ĥmτr , its semisimple part lies in the coset Ĥmτr̄ ,
and indeed all semisimple elements of H⟨τr ⟩ lie in H⟨τr̄ ⟩. If r̄ = r we begin with
semisimple classes in Ĥmτr and then take unipotent classes in Ĥm lying in central-
izers of semisimple elements; if however r̄ ̸= r we instead begin with unipotent
classes in Ĥmτr and then take semisimple classes in Ĥm lying in centralizers of
unipotent elements. In the former case, for each unipotent class in the Ĥm-centralizer
we shall need information concerning which unipotent class in the G-centralizer
contains it (sometimes partial information is sufficient for our purposes); frequently
inspection allows us to determine the class precisely, but if necessary we can always
calculate Jordan structure on an appropriate module (the natural module for groups
of classical type, the 26-dimensional module for F4 itself) and use results from
either [18] or [14].

First take r = 1, so that our concern is with the Ĥm-classes in Ĥm itself. We
start with semisimple Ĥm-classes in Ĥm . Recall that any semisimple element of
Ĥm = H Fm lies in an Fm-stable maximal torus of H , and that there is a bijection
between the H Fm -classes of Fm-stable maximal tori of H and the Fm-conjugacy
classes of WH ; as Fm = Fτm , and F acts trivially on W while τm corresponds to the
Weyl group element 1, w4 or w4w+−−− according as m = 1, 2 or 3, we see that the
Fm-conjugacy classes of WH correspond to the WH -classes in the coset WH , WHw4

or WHw+−−−w4, respectively. In fact the semisimple classes of B4(q) are listed in
the Appendix of [15], from which it is straightforward to deduce the semisimple
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Ĥm-classes in Ĥm for m = 1 and m = 2, while those for m = 3 are given in [5,
Table 2.1]. The G-centralizer of a semisimple element is determined by the roots
with respect to a maximal torus containing it which take the value 1 at it, and so may
easily be determined by inspection (in fact for m = 1 and m = 2 this information is
given in the Appendix of [15]).

Next consider Ĥm-classes in Ĥm which are not semisimple. Given a semisimple
element of Ĥm , the unipotent classes lying in its centralizer in either Ĥm or G may
usually be obtained from the various results and tables in [18] (see Theorems 3.1, 7.1
and Tables 8.1a, 8.2a, 8.4a, 8.5a, 22.2.4); the exceptions are that no table is given
for B4(q) (which here appears as the centralizer of a semisimple element only in
odd characteristic) but it may be constructed using the results given in Chapters 3–7
therein (alternatively a list is given in [25], which of course also gives the unipotent
classes of F4(q)), and that 3D4(q) is not treated but results are given in [5]. In this
way we obtain a complete set of representatives of the Ĥm-classes in Ĥm ; conjugation
by gm then gives a complete set of representatives of the Hm-classes in Hm .

Now take r ∈ {2, 3}, so that m ∈ {1, r}. We note that for given r the Ĥm-classes
in Ĥmτr for the two values of m are closely related by Shintani descent (see [6,
I.7.2; 22, Proposition 5]): there is a bijection between the sets of Ĥ1-classes in Ĥ1τr

and Ĥr -classes in Ĥrτr which preserves centralizer orders. Indeed, we may proceed
as follows: given an H1-class in H1τr (i.e., an Ĥ1-class in Ĥ1τr ), we may take
a class representative hτr and use the Lang–Steinberg theorem to write h in the
form x̄ Fr .x̄−1 for some x̄ ∈ H ; Shintani descent gives the corresponding Ĥr -class
in Ĥrτr as that containing h†τr where h†

= x̄−1.x̄ F1 ; conjugating by gr then gives
the corresponding Hr -class in Hrτr as that containing h′τr , where h′

= (h†)gr .
First assume r ̸= p; then τr = τr̄ is a semisimple element of G. Here we begin

by observing that τr̄ is a quasisemisimple automorphism of H (recall from [28,
Section 9] that this means that it stabilizes both a Borel subgroup and a maximal
torus therein). We make use of [20, 1.14]: we write Tr̄ = T0 ∩ CH(τr̄ ), so that Tr̄

is a maximal torus of CH(τr̄ ); we let Nr̄ = {n ∈ H :
n(Tr̄τr̄ )= Tr̄τr̄ }, and then its

identity component Nr̄
◦ is equal to Tr̄ , so that Nr̄/Tr̄ is finite; any quasisemisimple

element lying in Hτr̄ is H-conjugate to an element of Tr̄τr̄ ; any two elements
of Tr̄τr̄ which are H-conjugate are in fact conjugate by an element of Nr̄ , and thus
lie in the same orbit under the action of the finite group Nr̄/Tr̄ . Using this we may
prove the following.

Lemma 2.1. Any semisimple element of Ĥmτr̄ is Ĥm-conjugate to an element (sτr̄ )
x ′

where s ∈ Tr̄ and x ′
∈ H with x ′Fm .x ′−1

∈ Nr̄ .

Proof. Suppose š ∈ Ĥm with šτr̄ semisimple; then š is quasisemisimple, so there
exist h ∈ H and s ∈ Tr̄ such that šτr̄ = (sτr̄ )

h . As both š and τr̄ are Fm-stable we
have (sτr̄ )

h
= (s Fm .τr̄ )

hFm , so sτr̄ = (s Fm .τr̄ )
hFm .h−1

; as Tr̄ is also Fm-stable, both
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sτr̄ and s Fm .τr̄ lie in Tr̄τr̄ , so there exists n ∈ Nr̄ such that sτr̄ = (s Fm .τr̄ )
n . Using

the Lang–Steinberg theorem we may write n = x ′Fm .x ′−1 for some x ′
∈ H ; then

((sτr̄ )
x ′

)Fm = (s Fm .τr̄ )
x ′ Fm

= (s Fm .τr̄ )
nx ′

= (sτr̄ )
x ′

,

so that (sτr̄ )
x ′

is Fm-stable, and

(šτr̄ )
h−1n−1

= (sτr̄ )
n−1

= s Fm .τr̄ = (šτr̄ )
(hFm )−1

,

so that h−1n−1hFm ∈ CH(šτr̄ ). As H is simply connected and šτr̄ is a quasisemisim-
ple automorphism of H , by [28, Theorem 8.2] CH(šτr̄ ) is connected, so we may
again use the Lang–Steinberg theorem to write h−1n−1hFm = c−1cFm for some
c ∈ CH(šτr̄ ); then as h−1x ′(x ′Fm )−1hFm = c−1cFm we see that ch−1x ′

∈ H is Fm-
stable and thus lies in Ĥm , and (šτr̄ )

ch−1x ′

= (šτr̄ )
h−1x ′

= (sτr̄ )
x ′

, so that šτr̄ is
Ĥm-conjugate to (sτr̄ )

x ′

as required. □

Thus Tr̄ and Nr̄/Tr̄ play the roles of ‘maximal torus’ and ‘Weyl group’ for the
coset Ĥmτr̄ . We find that they are as follows: for r̄ = 2 we have

T2 =

{(
λ,µ,

ν2

λµ
, 1; ν

)
: λ,µ, ν ∈ k∗

}
,

N2/T2 = ⟨n1−2T2, n2−3T2, n3−4n3+4T2, (−1,−1,−1,−1; −1)T2⟩;

for r̄ = 3 we have

T3 =

{(
λ,µ,

λ

µ
, 1; λ

)
: λ,µ ∈ k∗

}
,

N3/T3 = ⟨n2−3T3, n1−2n3−4n3+4T3, (ω
2, ω, ω, ω2

; 1)T3⟩.

In each case we see that |Nr̄/Tr̄ | = |CW (τr̄ T0)|. For r̄ = 2 we in fact have
N2/T2 ∼= CW (τ2T0) = CW (w4) = ⟨w1−2, w2−3, w3−4w3+4⟩ × ⟨w4⟩ = W (B3)× 2;
however for r̄ = 3 we have N3/T3 ∼= S3 × S3 but CW (τ3T0) = CW (w4w+−−−) =

⟨w2−3, w1−2w3−4w3+4⟩ × ⟨w4w+−−−⟩ = W (G2)× 3. Write

n0 = n1−2n1+2n3−4n3+4, h0 =

{
(−1,−1,−1,−1; −1) if r = 2,
(ω2, ω, ω, ω2

; 1) if r = 3.

In Nr̄/Tr̄ we then have conjugacy class representatives nTr̄ as follows: if r̄ = 2 we
may take n = n′n′′, where

n′
∈ {1, n0, h0, h0n0}, n′′

∈ {1, n3−4n3+4, n1−2, n1−2n2−4n2+4, n1−2n2−3};

if r̄ = 3 we may take n = n′n′′, where

n′
∈ {1, n0, h0}, n′′

∈ {1, n2−3, n1+3n2−3}.

For each such element n, using the Lang–Steinberg theorem we may write
n = x ′Fm .x ′−1 for some x ′

∈ H ; by Lemma 2.1 the various Fm-stable elements (sτr̄ )
x ′
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with s ∈ Tr̄ between them represent all semisimple Ĥm-classes in Ĥmτr̄ . Note that
the condition for Fm-stability of (sτr̄ )

x ′

is sτr̄ = (s Fm .τr̄ )
n; as s ∈ Tr̄ we have

s Fr̄ = s F1 , so that there is a natural correspondence between the semisimple Ĥ1-
classes in Ĥ1τr̄ and the semisimple Ĥr̄ -classes in Ĥr̄τr̄ , as we expect from Shintani
descent.

Observe that Tr̄ commutes with the element yr̄ defined above, and we have
seen that τr̄

yr̄ = h+−−−(−1) or h4(ω) according as r̄ = 2 or 3, so for all s ∈ Tr̄

we have (sτr̄ )
yr̄ = sτr̄

yr̄ ∈ T0; moreover a straightforward calculation shows that
T0 ∩ H yr̄ = Tr̄ , so that T0 ∩ (H⟨τr̄ ⟩)

yr̄ = Tr̄ ⟨τr̄
yr̄ ⟩. Write

ϒ2 = ⟨ϵ4⟩, ϒ3 =
〈
ϵ4,

1
2(ϵ1 − ϵ2 − ϵ3 − ϵ4)

〉
;

then ϒr̄ is a root subsystem of 8 of type Ãr̄−1 such that Tr̄ =
⋂
β∈ϒr̄

kerβ. Indeed,
given a root subsystem ϒ of 8 of type Ãr̄−1, we define

kerr̄ ϒ =
⋂
β∈ϒ

kerβ ∪
⋂
β∈ϒ

(ker r̄β \ kerβ)

(if r̄ = 2 and β ∈ϒ then kerr̄ ϒ = ker 2β; if however r̄ = 3 and {β1, β2} is a simple
system of ϒ then kerr̄ ϒ = {s ′

∈ T0 : β1(s ′)= β2(s ′) ∈ {1, ω±1
}} because if s ′

∈ T0

and β1(s ′), β2(s ′) ∈ {1, ω±1
} with β1(s ′) ̸= β2(s ′) then exactly one of β1, β2 and

β1 + β2 takes the value 1 at s ′); from the expression above for τr̄
yr̄ we see that

Tr̄ ⟨τr̄
yr̄ ⟩ = kerr̄ ϒr̄ .

Note that if we set T1 = T0, N1 = N ∩ H , y1 = 1 and ϒ1 = ∅, then the above
(apart from the comment about Shintani descent) also holds for r̄ = 1.

For each semisimple Ĥm-class representative (sτr̄ )
x ′

we may then take a set of
representatives of the unipotent conjugacy classes in the Ĥm-centralizer, and form
products in the usual way, to obtain a complete set of representatives of the Ĥm-
classes in Ĥmτr̄ ; finally, conjugation by gm gives a complete set of representatives
of the Hm-classes in Hmτr̄ = Hmτr . Indeed, as a check we find that the sum of the
sizes of the classes so obtained is |Hm |.

Now assume r = p; then τr is a unipotent element of G. Here we refer to [21,
Tables X and VIII], which list representatives and centralizer orders for the unipotent
H1-classes lying in H1τr for r = 2 and r = 3; the elements are given as uiτr for
1 ≤ i ≤ 10 and 1 ≤ i ≤ 7, respectively. Using Shintani descent as described above
it is straightforward to obtain representatives ui

†τr for the unipotent Ĥr -classes
lying in Ĥrτr . Using the expression for τr

yr given above, we may also identify the
unipotent G-classes containing the elements uiτr and ui

†τr , either by inspection
or by computing Jordan blocks on the 26-dimensional module for G and referring
to [14] (whose notation we use), as described above; we find that for each i the
elements uiτr and ui

†τr lie in the same G-class, which we give in Table 1.
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i (uiτ2)
G

= (ui
†τ2)

G

1 Ã1

2 A1 Ã1

3, 4 B2

5 C3(a1)

6 A2 Ã1

7 C3(a1)
(2)

8, 9 B3

10 F4(a1)

i (uiτ3)
G

= (ui
†τ3)

G

1 Ã2

2 Ã2 A1

3 C3

4, 5, 6 F4(a2)

7 F4

Table 1. Unipotent G-classes meeting Ĥmτr for r = 2 and r = 3.

For each unipotent H1-class representative uiτr , we may then identify its central-
izer CH1(uiτr ); we take representatives s of the semisimple classes therein and form
products suiτr . Combining the results for the various values of i gives a complete
set of representatives of the H1-classes in H1τr ; again, as a check we find that the
sum of the sizes of the classes so obtained is |H1|. In fact in almost all cases the
elements s commute with both ui

† and τr , so as they are stable under F1 they are
also stable under Fr = F1τr and hence lie in C Ĥr

(ui
†τr ); in the exceptional cases

we must replace the elements s by conjugates of them. In this way we also obtain a
complete set of representatives of the Ĥr -classes in Ĥrτr ; conjugation by gr then
gives a complete set of representatives of the Hr -classes in Hrτr .

Before concluding this section we note that the semisimple G-classes in G are
listed in [25] for p ̸= 2 and in [24] for p = 2, each of which groups together
classes containing elements with equal centralizers. These groupings, which we
shall call types, may be described combinatorially, in terms of Weyl group elements
by which maximal tori are twisted and root systems of centralizers; the finitely
many possibilities for the type are the same for all q (and p), although for a given q
not all need occur, either because p is a bad prime for G or because q is small.
For each type, both [25] and [24] use a single notation for varying q (although the
notations used by [25] and [24] are different).

Here we shall similarly say that a type of Hm-class in Hmτr is a collection of
such Hm-classes all of which contain elements with equal G-centralizers whose
semisimple parts also have equal G-centralizers. The finitely many possibilities for
the type of such a semisimple Hm-class are again the same for all q (although once
more not all occur for all q); for each type we may likewise use a single notation
for varying q. Classes which are not semisimple are however more complicated,
because the behavior of unipotent classes in bad characteristic differs from that in
good characteristic; nevertheless we may do the following.
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Note that the triple (d, e, x) must be one of

(0, 1, 1), (0,−1, 1), (1, 0, 2), (1, 0, 4), (1, 1, 2), (1, 1, 4), (1,−1, 2), (1,−1, 4)

(the first two cover the cases where p = 2, the second two those where p = 3, and
the last four those where p > 3). Fix one such triple (d, e, x) and restrict attention
to the prime powers q associated to it, of which there are infinitely many. We then
find that there are finitely many possibilities for the type of Hm-class in Hmτr , that
they are the same for all such q , and that for a given type of Hm-class in Hmτr the
order of the Hm-centralizer is a polynomial in q: if p = r then for each unipotent
class appearing in Table 1 we have obtained a collection of semisimple elements
lying in the centralizer, and after forming products to obtain class representatives the
statements follow by inspection; if instead p ̸= r then for a given type of semisimple
Hm-class in Hmτr inspection of tables of unipotent classes in the various simple
factors appearing in the centralizer (see, for example, [18] as mentioned above)
shows that the parametrization of such unipotent classes is the same for all q , and
that for a given unipotent class the centralizer order is a polynomial in q, from
which the statements follow.

Indeed from the above we see that more is true: for a fixed triple (d, e, x) and
type of Hm-class in Hmτr , if we take one such Hm-class and let s be the semisimple
part of an element thereof, then the number of Hm-classes of the type concerned
which contain elements with semisimple part s is the same for all q .

Thus for a fixed triple (d, e, x) we may extend the notion of ‘type of Hm-class
in Hmτr ’ to cover all prime powers q associated to it, and Hm-centralizer orders
are polynomials in q. This will be crucial to the approach to calculating character
scalar products which we now describe.

2.2. Character scalar products. Recall that, for any subgroup H of G, when G
acts on the cosets of H the value at g ∈ G of the permutation character 1H

G is the
number of cosets g′H for g′

∈ G with gg′H = g′H . For any generalized character χ
of G we have by Frobenius reciprocity

(1H
G, χ)G = (1H , χ |H )H =

1
|H |

∑
g∈H

χ(g)=

∑
[g]⊂H

χ(g)
|CH (g)|

,

where the final sum is over all conjugacy classes [g] in H .
We shall be interested in the cases where H = Hm⟨τr ⟩, for m, r ∈ {1, 2, 3} with

{m, r} ̸= {2, 3}; by taking first r =1, and then r ∈{2, 3} (and considering the inverses
of classes if r = 3), in the final sum it will suffice to treat the Hm⟨τr ⟩-classes which
lie in Hmτr , which are of course simply the Hm-classes lying in Hmτr . We may
then see the scalar product as a sum of contributions from the different types of
Hm-class in Hmτr , with each contribution being the fraction with numerator given
by the sum of the character values concerned and denominator equal to the common
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order of the Hm⟨τr ⟩-centralizer (which is r times the order of the Hm-centralizer).
Now take χ to be a generalized Deligne–Lusztig character RT ,θ , where T is an

F-stable maximal torus of G and θ is a linear character of T F , and consider the
contribution to the scalar product (1Hm⟨τr ⟩

G, RT ,θ )G from a given type of Hm-class
in Hmτr . At the end of Section 2.1 we observed that, for a fixed triple (d, e, x), the
order of the Hm-centralizer appearing in the denominator is a polynomial in q , and
we shall see that the same is true of the number of Hm-classes of the type concerned.
We wish to show that the same is also true of the numerator; in order to make such
a statement, we first need to say a little more about the characters RT ,θ .

To begin with, an F-stable maximal torus T of G may be written as gT0 for
some g ∈ G, and then we have g−1gF

∈ N; if we write w = g−1gF T0 ∈ W , we
say that T is obtained from T0 by twisting with w— although different choices
for g may give different elements w of W , the F-conjugacy class [w] of w in W is
uniquely determined by T , and indeed there is a bijection between F-conjugacy
classes in W and G-classes of F-stable maximal tori of G. (All of this is well
known; see, for example, [4, Section 3.3].) In the present case F acts trivially on W ,
so that F-conjugacy in W is simply conjugacy.

Next, if T =
gT0 as above the finite group T F is equal to g(T0

(Fw−1)), where
we write T0

(Fw−1)
= {s0 ∈ T0 : s0 =

w(s0
F )}. Thus given a linear character θ of T F ,

we may write θ =
gθ0, where θ0 is the linear character of T0

(Fw−1) defined by
θ0(s0)=

gθ0(
gs0). We may then define 8θ0 = {α ∈8 : kerα ≥ ker θ0} to be the root

subsystem of 8 comprising those roots whose kernel contains ker θ0; for fixed T
and θ , different choices for g may give different root subsystems 8θ0 , but it is
straightforward to see that the set of possible 8θ0 forms a single orbit under the
action of W . Moreover, in the present case it is easy to see that two root subsystems
of 8 lie in the same W -orbit if and only if they are isomorphic (where we require
an isomorphism to preserve root lengths).

We may therefore associate to each generalized Deligne–Lusztig character RT ,θ
a pair ([w], [8′

]) consisting of an F-conjugacy class [w] in W and an isomorphism
class [8′

] of root subsystems of 8. There are finitely many such pairs, and they
are the same for all q, although for a given q not all pairs may be associated
to a character RT ,θ . We are now in a position to state our claim concerning the
numerator in the contribution to the scalar product (1Hm⟨τr ⟩

G, RT ,θ )G from a given
type of Hm-class in Hmτr .

Claim 1. For a fixed triple (d, e, x), pair ([w], [8′
]) and type of Hm-class in Hmτr ,

the sum over the corresponding Hm-classes [su], where s and u are commuting
semisimple and unipotent elements, respectively, of the character values RT ,θ (su)
is a polynomial in q. Moreover the degree of this polynomial is at most d1 + d2,
where d1 = dim

(
Z(CG(s)) ∩ Hm⟨τr̄ ⟩

)
is the degree of the polynomial giving the

number of Hm-classes of the type concerned, and d2 =
1
2(dim CG(su)− dim T ).
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We shall prove Claim 1 in Section 2.4, following some preliminary results
in Section 2.3. Once this has been done it will follow that, for a fixed triple
(d, e, x), pair ([w], [8′

]) and type of Hm-class, the contribution to the scalar product
(1Hm⟨τr ⟩

G, RT ,θ )G from the type of Hm-class is a ratio of two polynomials in q.
Since this scalar product is an integer, it will suffice to determine the nonnegligible
part of the contribution, where given two polynomials p1 and p2 with p2 ̸= 0 we
let p3 be the unique polynomial such that p1 − p2 p3 is of strictly smaller degree
than p2, and say that the nonnegligible part of p1(q)/p2(q) is p3(q). The scalar
product will then be the sum of the nonnegligible parts of the contributions from the
finitely many different types of Hm-class, and will therefore be a polynomial in q;
by taking linear combinations of Deligne–Lusztig characters it will in fact follow
that the same is true of all multiplicities of irreducible characters in the permutation
character 1Hm⟨τr ⟩

G .
Note that the degree bound in Claim 1 depends only on the type of Hm-class; we

call the type of Hm-class relevant if this bound is greater than or equal to the degree
in q of the order of the Hm-centralizer, and irrelevant otherwise. Nonnegligible
parts of contributions from irrelevant types of Hm-class are then zero for all RT ,θ ;
it therefore suffices to consider relevant types of Hm-class, and our calculations
in subsequent sections will begin by identifying these. We shall see that this
significantly reduces the number of classes requiring consideration.

We conclude this section by observing that the decompositions we shall obtain
will of necessity be more complicated than was the case in the action of G on cosets
of B4(q) treated in [15]. On one level this is simply because the subgroups Hm

are considerably smaller than B4(q) (the ratio of orders is approximately q8);
however, there is a more fundamental difference between the actions here and that
of [15]. In [16] a criterion was established for certain subgroups H of algebraic
groups G to be spherical (i.e., to have finitely many orbits on the flag variety G/B);
the proof proceeded by taking fixed points under Frobenius morphisms F and
considering scalar products of permutation characters 1H F

GF
and principal series

characters 1BF
GF

. It was shown that if H is of the form ⟨T0,Uα : α ∈9⟩ for some
subsystem 9 of 8, then H is spherical if 9 satisfies the following condition: there
do not exist α, β ∈ 8 \9 with α+ β ∈ 8 \9. (Although it is not stated in [16]
that this condition is also necessary for sphericality, it is nevertheless clear from the
proof that if it is not met then the scalar product (1H F

GF
, 1BF

GF
) grows with q.)

In the case of B4, the condition is satisfied; correspondingly, the multiplicities
in 1B4(q)

F4(q) of unipotent characters lying in the principal series are forced to be
constants rather than polynomials in q of positive degree (and indeed they are all
0 or 1). In the case of D4, however, the condition is not satisfied (as we may take
α and β to be the two short simple roots of G); thus some multiplicities in 1Hm⟨τr ⟩

G

must turn out to be polynomials in q of positive degree.
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8(T )s p Z(CG(s))/Z(CG(s))◦

A3 Ã1 ̸= 2 Z4

A2 Ã2 ̸= 3 Z3

B4, A1C3, A3, A1 B2, A1
2 Ã1, A1

2
̸= 2 Z2

F4, B3,C3, A2 Ã1, A1 Ã2, any 1
B2, A2, Ã2, A1 Ã1, A1, Ã1,∅

Table 2. Root subsystems 8(T )s of 8(T ).

2.3. Preliminary results. We begin with some results concerning root subsystems.
Let T be any maximal torus of G. Write 8(T )⊂ Hom(T , k∗) for the root system
of G with respect to the maximal torus T ; for a root subsystem 9 of 8(T ) define

ker9 =
⋂
α∈9

kerα.

For s ∈ T define 8(T )s to be the root subsystem {α ∈8(T ) : α(s)= 1} of 8(T );
by [4, Theorems 3.5.6, 3.5.3] CG(s) is generated by T and the root groups relative
to T corresponding to the roots in 8(T )s , so Z(CG(s))= ker8(T )s .

Lemma 2.2. Up to the action of the Weyl group of T , the possibilities for the root
subsystem 8(T )s and the component group Z(CG(s))/Z(CG(s))◦ are listed in
Table 2.

Proof. The root subsystems 8(T )s may be obtained using [9, Construction 4.1],
which also gives the restrictions on the characteristic p: for example, the subsystem
A1

2 Ã1 is formed from the extended Dynkin diagram by removing the nodes corre-
sponding to the first and third simple roots, whose coefficients in the highest root
are 2 and 4, respectively, so the order of any element s of T having8(T )s = A1

2 Ã1

must be a positive integer linear combination of 2 and 4 and thus must be even,
whence p cannot be 2. A simple calculation in each case then gives the component
group Z(CG(s))/Z(CG(s))◦. □

Given a root subsystem 9 of 8(T ), we define

9(p)
= {β ∈8(T ) : piβ ∈ Z9 for some i ∈ N};

clearly 9(p) is a root subsystem of 8(T ) containing 9, and we call it the p-closure
of 9. We say that 9 is p-closed if 9(p)

= 9; certainly (9(p))(p) = 9(p), i.e.,
9(p) is p-closed. Observe that the eight instances of pairs (9, p) missing from
Table 2 are not p-closed; indeed a simple calculation in each case shows that these
p-closures are as given in Table 3.

Lemma 2.3. Given a root subsystem 9 of 8(T ), the following are true:

(i) ker9 = ker9(p);
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9 p 9(p)

A2 Ã2 3 F4

B4, A3 Ã1, A1C3 2 F4

A3, A1
2 Ã1 2 B3

A1 B2 2 C3

A1
2 2 B2

Table 3. p-closures of root subsystems 9 of 8(T ).

(ii) there exists s ∈ ker9 such that 9(p)
=8(T )s ;

(iii) 9(p)
=

⋂
{8(T )s : s ∈ T , 8(T )s ⊇9}; and

(iv) 9 is not p-closed if and only if 9 is listed in Table 3.

Proof. As the only p-th root of unity in k is 1, for i ∈ N we have ker piβ = kerβ.
Thus if β ∈9(p) so that piβ ∈ Z9, we have ker9 ⊆ ker piβ = kerβ, proving (i).
Since the only root subsystems of 8(T ) which are not of the form 8(T )s for some
s ∈ T are the eight listed in Table 3, which are not p-closed, they cannot be9(p); thus
9(p)

=8(T )s for some s ∈ T , and then for all α ∈9 we have α(s)= 1, proving (ii).
Given s ∈ T with8(T )s ⊇9, for all α ∈8(T )s we have α(s)= 1; if β ∈9(p) then
for some i ∈ N we have piβ ∈ Z9, so s ∈ ker piβ = kerβ, whence 9(p)

⊆8(T )s .
Thus9(p) is contained in all the root subsystems of8(T ) of the form8(T )s which
contain9, and by (ii) it is one such root subsystem, proving (iii). Finally (iii) implies
that every root subsystem of 8(T ) of the form 8(T )s is p-closed, proving (iv). □

Write W (T )= NG(T )/T for the Weyl group of T ; given a root subsystem 9

of 8(T ), let 9⊥ be the root subsystem of 8(T ) consisting of the roots orthogonal
to those in 9, and write W (9) and W (9⊥) for the subgroups of W (T ) generated
by reflections in the roots lying in 9 and 9⊥, respectively.

Lemma 2.4. Given a root subsystem 9 of 8(T ), the index of W (9)W (9⊥) in
NW (T )(W (9)) is 1 or 2 according as the group of graph automorphisms of 9
afforded by W (T ) is trivial or not; if it is nontrivial, then the coset NW (T )(W (9)) \

W (9)W (9⊥) contains the long word of W (T ), unless 9 = A1
2 or A1

2 Ã1, in
which case it contains the reflection in a short root in 8(T ) which is half the sum
or difference of two long roots in 9.

Proof. This is an easy calculation; note that 9 has a nontrivial graph automorphism
if and only if 9 = A3 Ã1, A3, A2 Ã2, A2 Ã1, A1 Ã2, A2, Ã2, A1

2 Ã1 or A1
2, and all

graph automorphisms are afforded by elements of W (T ), unless9= A2 Ã2 in which
case the only such graph automorphism acts nontrivially on each simple factor. □
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For each root subsystem 9 of 8(T ) set

Z9 = {s ∈ T ∩ Hm⟨τr̄ ⟩ :8(T )s ⊇9}, Z̃9 = {s ∈ T ∩ Hm⟨τr̄ ⟩ :8(T )s =9}.

Then Z9 = ker9 ∩ Hm⟨τr̄ ⟩, so for all s ∈ T ∩ Hm⟨τr̄ ⟩ we have

Z8(T )s = Z(CG(s))∩ Hm⟨τr̄ ⟩.

For a subset X of T ∩ Hm⟨τr̄ ⟩, let 1X denote the indicator function of X .

Lemma 2.5. There exist integers n9,9 ′ for root subsystems 9,9 ′ of 8(T ), with
n9,9 = 1, and n9,9 ′ = 0 if 9 ′

̸⊇9, such that 1Z̃9 =
∑

9 ′ n9,9 ′1Z9′
.

Proof. For each root subsystem 9 of 8(T ), the set Z9 is the disjoint union
of the sets Z̃9 ′ as 9 ′ runs over the root subsystems of 8(T ) which contain 9,
so 1Z9 =

∑
9 ′⊇9 1Z̃9′

. We may now use downward induction on subsystem size:
for 9 =8(T ) we have 1Z̃9 = 1Z9 , while for a proper subsystem 9 of 8(T ) we
have 1Z̃9 = 1Z9 −

∑
9 ′⊃9 1Z̃9′

, and by induction we may assume each term 1Z̃9′

with 9 ′
⊃9 is an integer linear combination of terms 1Z9′′

with 9 ′′
⊇9 ′

⊃9.
The result follows. □

The next result concerns commuting elements of N . For convenience we confine
our attention to elements of the group ⟨nα : α ∈ 8⟩, which we call N ′; note that
elements of N ′ are F-stable, and N ′ has the normal subgroup {s ∈ T0 : s2

= 1} =

⟨hα(−1) : α ∈8⟩ ∼= Zd+1
4, with the quotient being naturally isomorphic to W . As

in Section 2.1, write n0 = n1−2n1+2n3−4n3+4 ∈ N ′, so that n0T0 is the long word w0

of W , which is central in W .

Lemma 2.6. For each w ∈ W there exists n ∈ N ′ with nT0 = w such that for all
w′

∈ CW (w) there exists n′
∈ CN ′(n) with n′T0 = w′.

Proof. It suffices to treat representatives w of the 25 conjugacy classes in W ; in
Table 4 we list 25 corresponding elements n lying in N ′, and for each we give
elements n′ of N ′ such that the elements w′

= n′T0 of W generate CW (w). It is
in each case a straightforward calculation to check that n commutes with each
element n′ listed. □

Now suppose T is F-stable, and θ is a linear character of T F . We recall that the
generalized Deligne–Lusztig character RT ,θ takes values as follows: given s, u ∈ G
commuting semisimple and unipotent elements, respectively, by [4, Theorem 7.2.8]
we have

RT ,θ (su)=
1

|CG(s)|

∑
x ′

∈G
sx ′

∈T

θ(sx ′

)QCG(s)
x ′ T

(u)

(as already observed, because G is simply connected the centralizer CG(s) is
connected). Here QCG(s)

x ′ T
is the appropriate Green function; it is defined to be the
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n n′
∈ CN ′(n)

1 n2−3, n3−4, n4, n+−−−

n3−4 n3−4, n2, n+−−−, n3+4
n4 n4, n1−2, n2−3, n3h3−4(−1)

n3−4n3+4 n3−4, n4, n1−2, n2
n1−2n4 n1−2, n4, n1+2, n3h3−4(−1)

n2−3n3−4 n2−3n3−4, n1, n+−−−, n0
n+−−−n4 n+−−−n4, n2−3, n1+2, n0
n3−4n4 n3−4n4, n1−2, n2h3−4(−1)

n3−4n1−2n1+2 n3+4, n2, n+−−+, n3−4
n3−4n3+4n2h1−2(−1) n1, n2−3, n3−4, n4h1−2(−1)

n1−2n2−3n3−4 n1−2n2−3n3−4, n++++, n0
n1−2n3−4n4 n3−4n4, n1−2, n1+2

n+−−+n3−4n4 n+−−+n3−4n4, n1+2
n2−3n3−4n4 n2−3n3−4n4, n1h+−−+(−1)

n++−−n4n1−2 n++−−n4n1−2, n0
n2−3n3−4n1 n2−3n3−4n1, n0

n0 n2−3, n3−4, n4, n+−−−

n++++n1n2−3n3−4 n++++n1, n2−3n3−4, n1−4n3+4, n0
n1−2n1+2n3−4n4 n3−4n4, n1−2, n2h3−4(−1)

n+−+−n1n2n4 n+−+−n3h2−3(−1), n2−4, n1+2, n0
n1−2n2−3n3n4h+−−−(−1) n1−2n2−3n3, n4, n+−+−

n1−2n2n3−4n4h3−4(−1) n1−2n2h3−4(−1), n3−4n4, n1−3n2−4, n2+3n+−−−

n1−2n2−3n3−4n4 n1−2n2−3n3−4n4
n+−−−n3−4n2−3n2 n+−−−n3−4n2−3n2

n+−−−n3+4n2−3n3h1−2(−1) n++++n1, n2−3n3−4, n1−4n3+4, n0

Table 4. Commuting elements of N ′.

restriction of the generalized Deligne–Lusztig character Rx ′ T ,1 for the group CG(s)
to the set of unipotent elements therein.

Some of the values taken by Green functions are given in [4]: if the unipotent
element is the identity then by [4, Theorem 7.5.1] the value is, up to sign, the
p-part of the index of the maximal torus concerned (and in particular, if the torus is
maximally split the sign is ‘+’, as may be seen by comparing the statement of [4,
Theorem 7.5.1] with the definitions on [4, pp. 197, 199]); at the other extreme, if
the unipotent element is regular then by [4, Proposition 8.4.1] the value is 1. Using
[4, Proposition 3.3.5] for the first of these we see that both are polynomials in q
(for all q , not just those for a fixed triple (d, e, x)).

For the purposes of this paper we are interested in Green functions for groups
which occur as centralizers of semisimple elements of G; an easy application of [4,
Property 7.1.9] reduces to the consideration of simple groups appearing as factors
in these centralizers. For these groups Green functions have been known for some
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time: for groups of type A, see Green’s original paper [8]; for other groups of
classical type, see [11] for p > 2 and [27] for p = 2; for the group F4, see [26]
for p> 3, [7] for p = 3 and [22] for p = 2. It follows that for a fixed triple (d, e, x)
all Green function values are polynomials in q .

(It is in fact known that Green function values in general are polynomials in q,
provided one restricts to those q lying in a given residue class modulo an appropriate
modulus; the term ‘polynomial on residue classes’ has been used to describe this
phenomenon. Frank Lübeck has in fact recently completed the determination of all
(ordinary) Green functions for simple groups by computing those for E8(q) in bad
characteristic in [19], the introduction to which contains a useful summary of the
position; the author, who is far from being an expert on these matters, is grateful to
him for his helpful comments.)

We end this discussion of Green functions with two lemmas. The first uses the
orthogonality of Green functions to give a bound on degrees.

Lemma 2.7. Given an F-stable maximal torus T of G, s ∈ T F and u ∈ CG(s)
unipotent, for a fixed triple (d, e, x) the degree as a polynomial in q of the Green
function value QCG(s)

T (u) is at most 1
2(dim CG(su)− dim T ).

Proof. By [4, Proposition 7.6.2] we have∑
u′∈CG(s) unipotent

QCG(s)
T (u′)2 =

|CG(s)| · |NG(T )|
|T F |2

;

restricting to the class uCG(s) we have

|uCG(s)| · QCG(s)
T (u)2 ≤

|CG(s)| · |NG(T )|
|T F |2

,

whence

QCG(s)
T (u)≤

|CCG(s)(u)|
1/2

· |NG(T )|1/2

|T F |

=

(
|CG(su)|

|T F |

)1/2

· |NG(T ) : T F
|
1/2.

As this is true for all q concerned, the result follows. □

The second concerns the effect on a Green function QCG(s)
T of conjugating by an

element of G which normalizes CG(s).

Lemma 2.8. Given an F-stable maximal torus T of G, s ∈ T F and u ∈ CG(s)
unipotent, if x ′

∈ G normalizes CG(s) then QCG(s)
T (u)= QCG(s)

x ′T
(x

′

u).

Proof. As in [4, Section 7.2] we have Lang’s map L : CG(s) → CG(s) defined
by L(g) = g−1gF . Take a Borel subgroup B′ of CG(s) containing T , let U ′ be
its unipotent radical and write X̃ = L−1(U ′). It is then shown in the proof of
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[4, Theorem 7.2.8] that QCG(s)
T (u) = (1/|T F

|)L (u, X̃), where L (u, X̃) is the
Lefschetz number of u on X̃ . Conjugating everything by x ′, and noting that
x ′X̃ = L−1(x

′U ′), we have

QCG(s)
x ′T

(x
′

u)=
1

|(x
′T )F

|

L (x
′

u, x ′

X̃).

As x ′ is F-stable we have (x
′T )F

=
x ′T F ; and if we take the map f : X̃ →

x ′X̃ given
by conjugation by x ′ and apply [4, Property 7.1.5] we obtain L (u, X̃)=L (x

′

u, x ′X̃).
Thus QCG(s)

T (u)= QCG(s)
x ′T

(x
′

u) as required. □

2.4. Proof of Claim 1. Take a triple (d, e, x), a pair ([w], [8′
]) and a type of

Hm-class in Hmτr ; take a representative w of the (F-)conjugacy class [w] in W ,
and take n ∈ N with nT0 =w as in Lemma 2.6. All of these will be fixed throughout
this section; the statement that an expression is ‘a polynomial in q’ or that a set or
number is ‘independent of q’ will always make this assumption.

Take a prime power q associated to (d, e, x), and let F be the corresponding
Frobenius map. Take g ∈ G satisfying g−1gF

= n; write T =
gT0, so that T is an F-

stable maximal torus of G twisted by w, and T = T F . Take a linear character θ of T
such that, if as in Section 2.2 we write θ =

gθ0 and8θ0 ={α∈8 : kerα≥ ker θ0}, the
root subsystem 8θ0 of 8 lies in the isomorphism class [8′

]. Take an Hm-class [su]

in Hmτr of the type concerned, where s and u are commuting semisimple and
unipotent elements, respectively, such that s ∈ T ∩ Hmτr̄ and u ∈ Hmτr/r̄ ; write
s =

gs0 with s0 ∈ T0, and 8s0 =8(T0)s0 .
Our first result links w and s0.

Lemma 2.9. We have s0
F

= s0
w, and the element w normalizes CW (s0).

Proof. As gs0 = (gs0)
F

=
gF

s0
F we have s0

F
= s0

g−1gF
= s0

w. If c ∈ CW (s0), as F
acts trivially on W we have s0

wcw−1
= (s0

F )cw
−1

= (s0
F )(c

F )w−1
= ((s0

c)F )w
−1

=

(s0
F )w

−1
= s0, whence wcw−1

∈ CW (s0) as required. □

Note that Lemma 2.9 implies that w acts by conjugation on the set of right
cosets of CW (s0); let the number of fixed points in this action be l, and choose
w(1) = 1, . . . , w(l) ∈ W such that the fixed points are CW (s0)w(i) for i ≤ l.

Lemma 2.10. The distinct G-conjugates of s lying in T are g(s0
w(i)) for i ≤ l.

Moreover, for each i ≤ l, if we take n(i) ∈ N with n(i)T0 = w(i), there exists
y(i) ∈ CG(s) such that if we set xi = y(i).gn(i) then xi ∈ G and sxi =

g(s0
w(i)).

Proof. Any G-conjugate of s =
gs0 lying in T =

gT0 is of the form s
gn′

=

g(s0
n′

) for some n′
∈ N; if it is also F-stable and we write w′

= n′T0 then
g(s0

n′

) =
gF
((s0

F )(n
′)F
) =

gF
(s0

n(n′)F
), so n(n′)F (gF )−1gn′−1

∈ CG(s0), whence
ww′w−1w′−1

∈ CW (s0), i.e., ww′w−1
∈ CW (s0)w

′. Thus for some i ≤ l the
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conjugate is g(s0
w(i)); as distinct values i give distinct conjugates, the first state-

ment follows. Given n(i) ∈ N with n(i)T0 = w(i), we have s
gn(i) = (s F )(

gn(i))F
=

s(
gn(i))F

, so gn(i)((gn(i))F )−1
∈ CG(s); by [4, Theorem 3.5.6] CG(s) is connected,

so by the Lang–Steinberg theorem there exists y(i) ∈ CG(s) with y(i)−1 y(i)F
=

gn(i)((gn(i))F )−1. Set xi = y(i).gn(i); then xi ∈ G and sxi =
g(s0

w(i)) as required. □

In Lemma 2.10 we shall assume that n(1) = y(1) = x1 = 1. Now set

Z = Z8(T )s = Z(CG(s))∩ Hm⟨τr̄ ⟩, Z̃ = Z̃8(T )s = {s̃ ∈ Z : CG(s̃)= CG(s)}.

Note that as s ∈ T we have T ≤ CG(s), so Z(CG(s)) ≤ CG(T ) = T and hence
Z ≤ T . Write Z = ZF , so that Z ≤ T ∩ Hm⟨τr̄ ⟩, and Z̃ = Z̃F ; for each root
subsystem 9 of 8(T ) write Z9 = Z9 F and Z̃9 = Z̃9 F .

Our next result indicates that the elements of Z̃ all behave similarly when it
comes to taking conjugates in T .

Lemma 2.11. If s̃ ∈ Z̃ , the distinct G-conjugates of s̃ lying in T are s̃xi for i ≤ l.

Proof. Take s̃ ∈ Z̃ . For i ≤ l we have s̃xi ∈ G, and as y(i) ∈ CG(s) = CG(s̃) and
gn(i) ∈

gN = NG(T ) we have s̃xi = s̃ y(i).gn(i) = s̃
gn(i) ∈ T , so s̃xi ∈ T . For i, i ′

≤ l
with i ̸= i ′, the elements s̃xi and s̃xi ′ are distinct since xi and xi ′ lie in distinct right
cosets of CG(s)= CG(s̃). Interchanging the roles of s and s̃ we see that the distinct
G-conjugates of s̃ lying in T are s̃xi for i ≤ l as required. □

It is useful to characterize the set Z in terms of root subsystems of 8.

Lemma 2.12. The following are true:

(i) there is a root subsystem ϒ of 8 of type Ãr̄−1 with s0 ∈ kerr̄ ϒ \ kerϒ ;

(ii) if ϒ ′ is another such root subsystem then ⟨8s0, ϒ⟩ = ⟨8s0, ϒ
′
⟩;

(iii) for any such root subsystem ϒ we have Z =
g(ker8s0 ∩ kerr̄ ϒ).

Proof. As s ∈ Hmτr̄ we have gms ∈ Hτr̄ ; because gms is a quasisemisimple element
of Hτr̄ , as in Section 2.1 there exists h ∈ H such that hgms ∈ Tr̄τr̄ . Set g′

= yr̄
−1hgm ;

then g′

s ∈ (Tr̄τr̄ )
yr̄ = Tr̄τr̄

yr̄ ⊂ T0, so Z(CG(
g′

s))≤ T0. As g′gs0 =
g′

s is a conjugate
of s0 lying in T0, there exists n′

∈ N such that g′gs0 = s0
n′

, and then if we write
c = n′g′g we have c ∈ CG(s0); set w′

= n′T0 ∈ W and ϒ =
w′

ϒr̄ , then we have
s0
w′

=
g′gs0 ∈ kerr̄ ϒr̄ \ kerϒr̄ so that s0 ∈ kerr̄ ϒ \ kerϒ , proving (i).

To prove (ii), suppose ϒ ′ is also a root subsystem of 8 of type Ãr̄−1 with
s0 ∈ kerr̄ ϒ

′
\ kerϒ ′. The result is immediate if r̄ = 1; we shall treat separately the

cases r̄ = 2 and r̄ = 3.
First suppose r̄ = 2; write ϒ = ⟨β⟩ and ϒ ′

= ⟨β ′
⟩, so that β(s0)= β ′(s0)= −1.

There are 12 possibilities for a root subsystem of 8 of type Ã1. If ϒ ′
=ϒ the result

is immediate. If not, then according as β ′ is or is not orthogonal to β, either both
β+β ′ and β−β ′ are long roots, or exactly one of β+β ′ and β−β ′ is a short root;
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thus we may take a root γ ∈8∩{β±β ′
}, and then as β(s0)= β

′(s0)= −1 we have
γ (s0)= 1, so γ ∈8s0 , and hence β ′

∈ ⟨8s0, ϒ⟩ and β ∈ ⟨8s0, ϒ
′
⟩, proving (ii) in

the case where r̄ = 2.
Now suppose instead r̄ = 3; write ϒ = ⟨β1, β2⟩ and ϒ ′

= ⟨β1
′, β2

′
⟩, so that

β1(s0), β2(s0), β1
′(s0), β2

′(s0) ∈ {ω±1
}. There are 16 possibilities for a root sub-

system of 8 of type Ã2 (the 12 positive short roots fall into three sets of 4
mutually orthogonal roots, namely {1, 2, 3, 4}, {+−−−,+−++,++−+,+++−} and
{+−−+,+−+−,++−−,++++}, and such a subsystem must contain exactly one root
from each set, with the choices in any two sets determining that in the third). If
ϒ ′

= ϒ the result is immediate. If not, then in at least two of the three sets of 4
mutually orthogonal short roots the root β ′ which lies in ϒ ′ is different from the
root β which lies in ϒ , and then both β + β ′ and β − β ′ are long roots. Since in
each case β(s0), β

′(s0) ∈ {ω±1
}, for one of the two long roots (say γ ) we have

γ (s0)= 1, so γ ∈8s0 , and hence β ′
∈ ⟨8s0, ϒ⟩ and β ∈ ⟨8s0, ϒ

′
⟩, proving (ii) in

the case where r̄ = 3.
Finally, given š ∈ Z(CG(s)), write š =

gš0 with š0 ∈ Z(CG(s0)); then as c∈CG(s0)

we have cš0 = š0, so

g′

š =
g′gš0 =

n′−1cš0 = š0
n′

= š0
w′

.

Since g′

š ∈ Z(CG(
g′

s))≤ T0, we have

š ∈ Hm⟨τr̄ ⟩ ⇐⇒
gm š ∈ H⟨τr̄ ⟩

⇐⇒
hgm š ∈ H⟨τr̄ ⟩

⇐⇒
g′

š ∈ (H⟨τr̄ ⟩)
yr̄

⇐⇒ š0
w′

=
g′

š ∈ T0 ∩ (H⟨τr̄ ⟩)
yr̄ = Tr̄ ⟨τr̄

yr̄ ⟩ = kerr̄ ϒr̄

⇐⇒ šg
= š0 ∈ kerr̄

w′

ϒr̄ = kerr̄ ϒ.

Thus

Z = Z(CG(s))∩ Hm⟨τr̄ ⟩ =
g(Z(CG(s0))∩ kerr̄ ϒ

)
=

g(ker8s0 ∩ kerr̄ ϒ),

proving (iii). □

Define
I = {i ≤ l : sxi ∈ Z};

this set will be of some importance. Using Lemma 2.12 we may characterize I in
terms of the Weyl group elements w(i).

Lemma 2.13. We have

I = {i ≤ l : w(i) preserves both 8s0 and ⟨8s0, ϒ⟩},

where the root subsystem ϒ is as in Lemma 2.12.
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Proof. Take i ≤ l. As sxi = s
gn(i) =

g(s0
n(i))=

g(s0
w(i)), and |8s0

w(i) | = |8s0 |, using
the characterization of Z given in Lemma 2.12(iii) we have

sxi ∈ Z ⇐⇒ s0
w(i) ∈ ker8s0 ∩ kerr̄ ϒ

⇐⇒ s0
w(i) ∈ ker8s0 ∩ (kerr̄ ϒ \ kerϒ)

⇐⇒ s0 ∈ ker w(i)8s0 ∩ (kerr̄
w(i)ϒ \ ker w(i)ϒ)

⇐⇒
w(i)8s0 =8s0 and w(i)⟨8s0, ϒ⟩ = ⟨8s0,

w(i)ϒ⟩ = ⟨8s0, ϒ⟩

by Lemma 2.12(ii). □

Thus the set I is independent of q . Our next result shows that membership of I
has consequences.

Lemma 2.14. If i ∈ I , conjugation by xi preserves the algebraic groups CG(s)
and Z, the finite groups CG(s) and Z , and the set Z̃ ; in particular sxi ∈ Z̃ .

Proof. Take i ∈ I , so sxi ∈ Z. As dim CG(s)= dim CG(sxi ), both centralizers are
connected, and G-centralizers of elements of Z contain CG(s), we have CG(s)=

CG(sxi )= CG(s)xi . In addition, by Lemma 2.13 w(i) preserves 8s0 and ⟨8s0, ϒ⟩,
so n(i) normalizes ker8s0 ∩ kerr̄ ϒ ; thus by Lemma 2.12(iii) gn(i) normalizes Z,
and as y(i) ∈ CG(s) commutes with Z we see that xi normalizes Z. As xi lies
in G it also normalizes CG(s) and Z ; thus given s̃ ∈ Z̃ we have s̃xi ∈ Z , and
CG(s̃xi )= CG(s̃)xi = CG(s)xi = CG(s), so s̃xi ∈ Z̃ as required. □

We now show that the elements of I give rise to permutations.

Lemma 2.15. Given i ∈ I , there exists a permutation πi of {1, . . . , l} such that for
all i ′

≤ l and s̃ ∈ Z̃ we have xπi (i ′) ∈ CG(s)xi xi ′ and s̃xπi (i ′) = (s̃xi )xi ′ .

Proof. Take i ∈ I . By Lemma 2.14 we have sxi ∈ Z̃ , so by Lemma 2.11

{(sxi )x1, . . . , (sxi )xl } = {sx1, . . . , sxl };

thus there exists a permutation πi of {1, . . . , l} such that for all i ′
≤ l we have

sxπi (i ′) = (sxi )xi ′ , whence xπi (i ′) ∈ CG(s)xi xi ′ . For all s̃ ∈ Z̃ we have CG(s̃)= CG(s),
so s̃xπi (i ′) = (s̃xi )xi ′ as required. □

Define 5= {πi : i ∈ I }; as may be expected, this is a group.

Lemma 2.16. The set 5 is a group which preserves I and acts without fixed points
on {1, . . . , l}.

Proof. Take i, i ′
∈ I . Lemmas 2.14 and 2.15 give sxπi (i ′) = (sxi )xi ′ ∈ Z, so πi (i ′)∈ I ;

thus πi preserves I . For all i ′′
≤ l we have sxπi (πi ′ (i

′′))
= (sxi )

xπi ′ (i
′′)

= ((sxi )xi ′ )xi ′′ =

(sxπi (i ′))xi ′′ = s
xπ
πi (i ′)

(i ′′) , so πi (πi ′(i ′′))=ππi (i ′)(i ′′); therefore πi ◦πi ′ =ππi (i ′). Since
π1 = 1 because x1 = 1, and πi ◦ ππi −1(1) = π1, we see that 5 is a group, with
πi

−1
= ππi −1(1). Also if i ̸= i ′ then for all i ′′

≤ l we have sxπi (i ′′) = (sxi )xi ′′ ̸=

(sxi ′ )xi ′′ = sxπi ′ (i
′′) , so πi (i ′′) ̸= πi ′(i ′′) as required. □
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Our next result concerns root subsystems 9 of 8(T ) which contain 8(T )s .

Lemma 2.17. Given a root subsystem9 of8(T ) containing8(T )s , the order |Z9 |

is a polynomial in q.

Proof. Write 9 =
g90, so that 90 is a root subsystem of 8 containing 8s0 . As

Z9 = ker9 ∩ Hm⟨τr̄ ⟩ and Z = Z8(T )s = ker8(T )s ∩ Hm⟨τr̄ ⟩, if we take a root
subsystem ϒ as in Lemma 2.12 we have

Z9 = Z ∩ ker9 =
g(ker8s0 ∩ kerr̄ ϒ)∩

gker90 =
g(ker90 ∩ kerr̄ ϒ)

by Lemma 2.12(iii). Now

|
g(ker90 ∩ kerr̄ ϒ) :

gker⟨90, ϒ⟩| = |(ker90 ∩ kerr̄ ϒ) : ker⟨90, ϒ⟩|

=

{
1 if 90 ⊇ ⟨8s0, ϒ⟩,

r̄ if 90 ̸⊇ ⟨8s0, ϒ⟩.

Set 90 = ⟨90, ϒ⟩ and 9 =
g90; then we have gker90 = ker9 = ker9

(p)
by

Lemma 2.3(i), and it suffices to prove that the order |Z9 | is a polynomial in q .
By Lemma 2.3(ii) there exists š ∈ ker9 such that 9

(p)
= 8(T )š , so Z9 =

Z(CG(š)). The connected reductive group CG(š) has derived group CG(š)′ and
F-stable maximal torus T ; thus as in [4, Section 3.3] T ∩ CG(š)′ is an F-stable
maximal torus of CG(š)′. Applying [4, Proposition 3.3.5] to G and CG(š) shows
that the orders |T F

| and
∣∣(T ∩ CG(š)′)F

∣∣ are both polynomials in q; by [4, Propo-
sition 3.3.7] the order

∣∣(Z(CG(š))◦
)F ∣∣ is their ratio, so as it is an integer for all q

it must itself be a polynomial in q. The possibilities for the component group
Z(CG(š))/Z(CG(š))◦ are given in Table 2: in all but the first two cases F must act
trivially on Z(CG(š))/Z(CG(š))◦; consideration of these two cases shows that the
action of F on Z(CG(š))/Z(CG(š))◦ is independent of q (as the triple (d, e, x) is
fixed), so the order |Z9 | =

∣∣Z(CG(š))F
∣∣ is also a polynomial in q as required. □

As a consequence, certain sums of values taken by θ are polynomials in q .

Lemma 2.18. Given i ′
≤ l and s ′

∈ Z , the sums∑
š∈Z8(T )s′

θ(šxi ′ ) and
∑

š∈Z̃8(T )s′

θ(šxi ′ )

are polynomials in q.

Proof. Given s ′
∈ Z , as8(T )s′ ⊇8(T )s Lemma 2.17 shows that the order |Z8(T )s′ |

is a polynomial in q. The sum over a finite group of the values taken by a linear
character is either 0 or the group order (as can be seen by considering the scalar
product of the character with the trivial character). Applying this for i ′

≤ l to the
group Z8(T )s′ and its linear character whose value at the element š =

gš0 is θ(šxi ′ )=
gθ0((

gš0)
gn(i ′))= θ0(š0

w(i ′)), where θ =
gθ0, shows that the first sum is a polynomial

in q; Lemmas 2.5 and 2.17 then show that the same is true of the second sum. □
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So far we have considered only semisimple elements. Recall that we have the
Hm-class [su]; write u1 = u and let [su1], . . . , [sua] be the distinct Hm-classes
in Hmτr of the type concerned containing elements with semisimple part s, where
for j ≤ a the element u j is unipotent, commutes with s and lies in Hmτr/r̄ . For
any s̃ ∈ Z̃ , likewise [s̃u1], . . . , [s̃ua] are then the distinct Hm-classes in Hmτr of
the type concerned containing elements with semisimple part s̃. As explained at
the end of Section 2.1, the number a of these classes is independent of q .

Take j ≤ a. If i ∈ I , then as u j ∈ CG(s)= CG(sxi ) by Lemma 2.14, the element
sxi u j has semisimple part sxi and unipotent part u j . For sxi u j to lie in the G-class
(su j )

G there must exist g′
∈ G with sg′

= sxi and u j
g′

= u j ; the first condition gives
g′

∈ CG(s)xi , and then the second forces xi to preserve the CG(s)-class u j
CG(s).

We therefore set
I j = {i ∈ I : xi preserves u j

CG(s)}.

Lemma 2.19. For j ≤ a the set I j is independent of q.

Proof. Take i ∈ I ; then xi normalizes CG(s) by Lemma 2.14. We seek to show that
the action of xi on the unipotent classes in CG(s) is the same for all q associated to
the triple (d, e, x); the result will then follow.

We have s =
gs0. Since we know by [4, Theorem 3.5.6] that CG(s0) is connected,

by [4, Theorem 3.5.3] we have CG(s0)= ⟨T0,Uα : α(s0)= 1⟩ = ⟨T0,Uα : α ∈8s0⟩;
thus unipotent classes in CG(s) lie in ⟨

gUα :α∈8s0⟩, and CW (s0)=⟨wα :α∈8s0⟩=

W (8s0). By Lemma 2.9 we know that w normalizes CW (s0); by Lemma 2.13 we
know that w(i) preserves 8s0 and so normalizes W (8s0). Thus both w and w(i) lie
in NW (CW (s0))= NW (W (8s0)).

By Lemma 2.4 we see that the index of W (8s0)W (8s0
⊥) in NW (W (8s0)) is 1

or 2. We shall say that we are in case (i) if the index is 1, case (ii) if the index is 2
and 8s0 /∈ {A1

2, A1
2 Ã1}, and case (iii) if the index is 2 and 8s0 ∈ {A1

2, A1
2 Ã1}.

In case (ii) we then have NW (W (8s0)) = W (8s0)W (8s0
⊥)⟨w0⟩, where w0 =

w1−2w1+2w3−4w3+4 is the long word of W ; in case (iii) we may assume the long
roots in 8s0 are ±ϵ3 ±ϵ4 (and if there are short roots in 8s0 they are ±ϵ2), and then
we have NW (W (8s0))= W (8s0)W (8s0

⊥)⟨w4⟩. Set

W ∗
=


W (8s0) in case (i),
W (8s0) in case (ii),

W (8s0)⟨w4⟩ in case (iii),
W †

=


W (8s0

⊥) in case (i),
W (8s0

⊥)⟨w0⟩ in case (ii),
W (8s0

⊥) in case (iii);

then NW (W (8s0))= W ∗
×W †. Asw,w(i)∈ NW (W (8s0))we may writew=w∗w†

and w(i) =w(i)
∗w(i)

† with w∗, w(i)
∗
∈ W ∗ and w†, w(i)

†
∈ W †. Moreover the right

coset W (8s0)w(i) is fixed under conjugation by w, so we have ww(i) ∈ W (8s0)w(i)

and therefore [w,w(i)] ∈ W (8s0)≤ W ∗; as [w,w(i)] = [w∗, w(i)
∗
].[w†, w(i)

†
] we

must have [w†, w(i)
†
] = 1, whence [w,w(i)] = [w∗, w(i)

∗
].
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Note that we may choose w(i) to be any representative of the appropriate
right coset of W (8s0). In cases (i) and (ii) we may choose w(i)∗ = 1, and then
[w∗, w(i)

∗
] = 1. In case (iii) the fact that W (8s0) is a proper subgroup of W ∗ makes

the situation rather more complicated. Write w∗
= w∗∗w4

b and w(i)∗ = w(i)
∗∗w4

c

with w∗∗, w(i)
∗∗

∈ W (8s0) and b, c ∈ {0, 1}. If c = 0 we may choose w(i)∗∗
= 1;

if c = b = 1 we may choose w(i)∗∗
=w∗∗; if c = 1, b = 0 and w∗∗ involves an even

number of reflections in long roots we may choose w(i)∗∗
= 1 — in each of these

instances we then have [w∗, w(i)
∗
] = 1. If however c = 1, b = 0 and w∗∗ involves

an odd number of reflections in long roots then for any choice of w(i)∗∗ we have
[w∗, w(i)

∗
] =w3−4w3+4. Thus overall the commutator [w,w(i)] is 1, unless we are

in the particular situation in case (iii) where it is w3−4w3+4.
Suppose [w,w(i)] = 1; then w commutes with w(i), and as the element n was

chosen as in Lemma 2.6, we may assume that in Lemma 2.10 the element n(i) with
n(i)T0 = w(i) was chosen to lie in CN ′(n). It follows that (gn(i))F

=
g.g−1gF

n(i)F
=

g(nn(i))= gn(i), so that gn(i) ∈ G; we may therefore assume that in Lemma 2.10 the
element y(i) was chosen to be 1, whence xi =

gn(i). Thus xi is an F-stable element
of NG(T ) corresponding to a fixed element of W (T )= NG(T )/T ; any two such
elements act identically on the set of unipotent classes in CG(s), because they differ
by an F-stable element of T , which thus lies in CG(s). As the element of W (T ) is
fixed, we see that the action of xi on the set of unipotent classes in CG(s) is the
same for all q associated to the triple (d, e, x).

Now suppose instead that we are in the particular situation in case (iii) where
[w,w(i)] = w3−4w3+4. Observe that, if w(i) and w(i ′) represent two different
right cosets of W (8s0) and both involve w4, the action of xi on unipotent classes
in CG(s) determines that of xi ′ , since the quotient corresponds to a right coset
representative w(i ′′) which commutes with w and therefore by the above its action
is known; we may thus choose the right coset representative w(i) to be w4. By
conjugating w by w4 if necessary we may assume that w = w3−4w

† for some
w†

∈W †
=W (8s0

⊥)≤⟨w1−2, w2⟩. Again we have the element n. Write n =n3−4n†,
where inspection of Table 4 shows that we may take n†

∈ ⟨n1−2, n2⟩; by taking
n(i) = n4h1−2(−1) we may ensure that n(i) commutes with n†. We then have

n(i)(nn(i))−1
= n(i)n3−4n†n(i)−1(n†)−1n3−4

−1

= n(i)n3−4n(i)−1n3−4
−1

= n4h1−2(−1)n3−4h1−2(−1)n4
−1n3−4

−1

= n4n3−4n4
−1n3−4

−1

= n3+4n3−4
−1.

Take λ,µ ∈ k∗ satisfying λq2
−1

= −1 and µq
−µ= λq+1, and set

y(i) = g(x3+4(µ)h3+4(λ)n3+4x3+4(−λ
1−q)x3−4(λ

1−q)h3−4(λ)n3−4x3−4(−µ));
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then y(i) ∈ CG(s) and calculation shows that y(i)−1 y(i)F
=

g(n3+4n3−4
−1) =

g(n(i)(nn(i))−1) =
gn(i).gnn(i)−1

=
gn(i)((gn(i))F )−1 as required in Lemma 2.10,

while the square of the F-stable element xi = y(i).gn(i) fixes g
⟨U±3±4⟩ pointwise.

Assume 8s0 = A1
2. If p > 2 and we write the nontrivial unipotent classes of

(g⟨U±(3−4)⟩)
F as C1 and C2, then those of (g⟨U±(3+4)⟩)

F are C1
xi and C2

xi ; the ele-
ment xi then acts on the unipotent classes in CG(s) by fixing {1}, C1C1

xi and C2C2
xi ,

and interchanging C1 with C1
xi , C2 with C2

xi , and C1C2
xi with C2C1

xi . If instead
p = 2 and we write the nontrivial unipotent class of (g⟨U±(3−4)⟩)

F as C, then that
of (g⟨U±(3+4)⟩)

F is Cxi ; the element xi then acts on the unipotent classes in CG(s)
by fixing {1} and CCxi , and interchanging C with Cxi . Thus in all characteristics the
action of xi on the unipotent classes in CG(s) is the same for all q associated to the
triple (d, e, x).

Now assume instead 8s0 = A1
2 Ã1. The action of xi on the unipotent classes

in (g⟨U±2⟩)
F is determined as in the cases above where w commutes with w(i);

combined with the previous paragraph this now determines the action of xi on the
unipotent classes in CG(s), which again therefore is the same for all q associated
to the triple (d, e, x). □

Take j ≤ a. Define 5 j = {πi : i ∈ I j }; clearly 5 j is a subgroup of 5 which pre-
serves I j . Let I j

′ be a set of orbit representatives for the action of 5 j on {1, . . . , l};
by Lemma 2.19 we may choose I j

′ to be independent of q , and as by Lemma 2.16
each orbit has size |I j | we have |I j | · |I j

′
| = l. Our final lemma in this section gives,

for s̃ ∈ Z̃ , the value taken by the generalized Deligne–Lusztig character RT ,θ at s̃u j .

Lemma 2.20. Given j ≤ a and s̃ ∈ Z̃ , we have

RT ,θ (s̃u j )=

∑
i ′∈I j

′

QCG(s)
xi ′ T (u j )

∑
i∈I j

θ((s̃xi )xi ′ ).

Proof. Take j ≤ a and s̃ ∈ Z̃ . Since CG(s̃) = CG(s), by Lemma 2.11 the set
{x ′

∈ G : s̃x ′

∈ T } is the disjoint union of the right cosets CG(s)x1, . . . ,CG(s)xl ;
each element of this set is thus of the form cxπi (i ′) for unique c ∈ CG(s), i ∈ I j

and i ′
∈ I j

′. By Lemma 2.15 we have xπi (i ′) = c′xi xi ′ for some c′
∈ CG(s), and

s̃cxπi (i ′) = s̃xπi (i ′) = (s̃xi )xi ′ ; then

QCG(s)
cx
πi (i ′)T

(u j )= QCG(s)
cc′xi xi ′ T

(cc′

u j )

= QCG(s)
xi ′ T (u j

xi )

= QCG(s)
xi ′ T (u j ),

where we obtain the first equality because QCG(s)
cc′xi xi ′ T

is a CG(s)-class function, the
second by Lemma 2.8 and the third because xi preserves u j

CG(s).
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The formula of [4, Theorem 7.2.8] quoted before Lemma 2.7 now gives

RT ,θ (s̃u j )=
1

|CG(s)|

∑
c∈CG(s)

i∈I j
i ′
∈I j

′

θ(s̃cxπi (i ′))QCG(s)
cx
πi (i ′)T

(u j )

=

∑
i∈I j

i ′
∈I j

′

θ((s̃xi )xi ′ )QCG(s)
xi ′ T (u j )=

∑
i ′∈I j

′

QCG(s)
xi ′ T (u j )

∑
i∈I j

θ((s̃xi )xi ′ )

as required. □

We may now prove our claim.

Proposition 2.21. Claim 1 is true.

Proof. Take j ≤ a. By Lemma 2.14, for all i ∈ I j and s̃ ∈ Z̃ the element s̃xi u j has
semisimple part s̃xi ∈ Z̃ and unipotent part u j , and lies in the G-class containing s̃u j ;
thus (s̃u j )

G
∩ Z̃u j = {s̃xi u j : i ∈ I j }. Choose a subset Z̃ j of Z̃ such that each

element of Z̃ lies in the set {s̃xi : i ∈ I j } for precisely one element s̃ of Z̃ j ; then for
distinct elements s̃ ∈ Z̃ j the classes (s̃u j )

G are distinct, and by Lemma 2.20 we have∑
s̃∈Z̃ j

RT ,θ (s̃u j )=

∑
i ′∈I j

′

QCG(s)
xi ′ T (u j )

∑
s̃∈Z̃ j

∑
i∈I j

θ((s̃xi )xi ′ )

=

∑
i ′∈I j

′

QCG(s)
xi ′ T (u j )

∑
s̃∈Z̃

θ(s̃xi ′ ).

For each i ′
∈ I j

′, by Lemma 2.18 the sum
∑

s̃∈Z̃ θ(s̃
xi ′ ) is a polynomial in q;

since I j
′ is independent of q , and as stated in Section 2.3 we know that the Green

functions here are also polynomials in q , we see that
∑

s̃∈Z̃ j
RT ,θ (s̃u j ) is likewise a

polynomial in q . Summing over j (and recalling that a is independent of q) we see
that the sum of the values taken by RT ,θ over the Hm-classes of the type concerned
is a polynomial in q as required.

Finally we consider degrees. Fix j ≤ a and i ′
∈ I j

′. The degree of the polynomial∑
s̃∈Z̃ θ(s̃

xi ′ ) is at most dim Z = dim
(
Z(CG(s))∩ Hm⟨τr̄ ⟩

)
= d1; moreover taking

θ = 1 and observing that |Z̃ | = |I j | · |Z̃ j | we see that d1 equals the degree of the
polynomial giving the number of Hm-classes of the given type. Since by Lemma 2.7
the degree of QCG(s)

xi ′ T (u j ) is at most d2, it follows that the degree of each polynomial∑
s̃∈Z̃ j

RT ,θ (s̃u j ) is at most d1 + d2, whence the same is true of the polynomial at
the end of the previous paragraph. □

To conclude this section we observe that if s ∈ Hm is a regular semisimple
element of G, so that 8(T )s = ∅ and Z = CG(s) = T , and we take j ≤ a and
i ′

∈ I j
′, then if θ ̸= 1 the degree of the polynomial

∑
s̃∈Z̃ θ(s̃

xi ′ ) is strictly less
than dim T (whereas if θ = 1 it equals dim T ): this follows from Lemmas 2.5
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and 2.18, because if θ ̸= 1 then
∑

š∈Z θ(š
xi ′ ) = 0, while for each nonempty root

subsystem9 ′ the sum
∑

š∈Z9′
θ(šxi ′ ) is a polynomial in q of degree less than dim T .

It follows that if s ∈ Hm is regular, the bound d1 + d2 (which then equals dim T ) is
not achieved if θ ̸= 1.

3. The permutation characters 1Hm
G

In this section we employ the method of Section 2 to decompose the permutation
characters 1Hm

G . In Section 3.1 we identify the relevant types of Hm-class in Hm ,
and give information about them and the notation for them which we will use
throughout. In Section 3.2 we treat the geometric conjugacy class of unipotent
characters; in Section 3.3 we deal with the other geometric conjugacy classes; finally
in Section 3.4 we combine the results to obtain the full decomposition of 1Hm

G .

3.1. Relevant types of Hm-class in Hm. As explained in Section 2.2, in calculating
scalar products of 1Hm

G with generalized Deligne–Lusztig characters it suffices to
consider contributions from types of Hm-class in Hm which are relevant, meaning
that the degree bound given in Claim 1 is greater than or equal to the degree in q
of the order of the Hm-centralizer. We find that most types of Hm-class in Hm are
irrelevant.

We take as an example the type of semisimple Hm-class [s] for m ∈{1, 2} denoted
by t15 in [15]; according as p ̸= 2 or p = 2 such Hm-classes lie in ones called h37

in [25] or h6 in [24], and they contain elements
(
1, 1, λµ, λ

µ
; λ

)
for λ,µ ∈ k∗

satisfying λq−1
=µq−1

= 1 and λ2, µ2, λµ±1
̸= 1. The number of such Hm-classes

is 1
8(q −3)(q −5) if p ̸= 2 and 1

8(q −2)(q −4) if p = 2, so that dim Z(CG(s))= 2;
the Hm-centralizer is ⟨T0,U±(1−2),U±(1+2)⟩, of type A1

2, while the G-centralizer
is ⟨T0,U±(1−2),U±2⟩ of type C2. Write ϵ = 1 or −1 according as m = 1 or 2.
There are four types of Hm-class [su], depending on whether the projection of u
on each A1 factor of CHm (s) is trivial or not. If both are trivial then u = 1, and
so dim CG(su)= 12 while |CHm (su)| = q2(q2

− 1)2(q − 1)(q − ϵ). If exactly one
is trivial then it is clear that u lies in the C2-class labeled W (1)+ V (2) in [18,
Table 8.1a] (this is the class with Bala–Carter label A1), and so dim CG(su) = 8
while |CHm (su)| = q2(q2

− 1)(q − 1)(q − ϵ). Finally if neither is trivial then
consideration of Jordan blocks on the natural C2-module shows that u lies in
the C2-class labeled W (2) (if p ̸= 2) or V (2)2 (if p = 2) in [18, Table 8.1a],
and so dim CG(su) = 6 while |CHm (su)| = q2(q − 1)(q − ϵ). Thus the bound
d1 + d2 = dim

(
Z(CG(s))∩ Hm⟨τr̄ ⟩

)
+

1
2(dim CG(su)− dim T ) given in Claim 1

is 6, 4 or 3, respectively, while the degree of the order of the Hm-centralizer is 8, 6
or 4, respectively.

Treating all types of Hm-class in this manner, we find that for a type of Hm-class
to be relevant the root system of the G-centralizer of the semisimple part of an
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element in one of the classes concerned must be C3, A1 Ã2, Ã2, Ã1 or ∅; moreover,
if it is Ã2 the nonnegligible part of the contribution can be of degree 1 in q , but in
the remaining cases it can only be a constant. We shall deal with each of these five
possibilities in turn.

In order to do so we require some further notation. Firstly, there are 25 conjugacy
classes in W ; in [15, Section 4] the following representatives w(1), . . . , w(25) are
listed.

w(1) = 1 w(10) = w2w3w4 w(18) = w1w3−4w2−3w++++

w(2) = w3−4 w(11) = w3−4w2−3w1−2 w(19) = w1w2w4w3−4

w(3) = w4 w(12) = w1−2w4w3−4 w(20) = w1w2w4w+−+−

w(4) = w3w4 w(13) = w4w3−4w+−−+ w(21) = w3w2−3w1−2w4

w(5) = w1−2w4 w(14) = w4w3−4w2−3 w(22) = w2w1−2w4w3−4

w(6) = w3−4w2−3 w(15) = w1−2w4w++−− w(23) = w4w3−4w2−3w1−2

w(7) = w4w+−−− w(16) = w1w3−4w2−3 w(24) = w2w2−3w3−4w+−−−

w(8) = w4w3−4 w(17) = w1w2w3w4 w(25) = w3w2−3w3+4w+−−−

w(9) = w1w2w3−4

Next, forw∈ W we write Tw={s ∈ T0 : (s F )w= s}; moreover we write T(n) for Tw(n) .
The tori T(1), . . . , T(25) are also given in [15, Section 4]; for reasons of space we shall
not reproduce them here. For each n ∈ {1, . . . , 25} we may choose g ∈ G satisfying
(gF )−1g ∈ N and (gF )−1gT0 =w(n), and define T(n) = gT0; then T(n) is an F-stable
maximal torus of G, and we have T(n)F

=
gT(n). The T(n) are representatives of

the G-classes of F-stable maximal tori of G, with T(n) being obtained from T0 by
twisting with w(n). (In fact as things stand the twisting element is w(n)−1, but this
is only defined up to F-conjugacy in W , which is simply conjugacy because the
map F fixes each element of W , and all conjugacy classes in W are self-inverse, as is
evident from the fact that the character table of W given in [10] has only real entries.)

Now for each of the five possibilities mentioned above, we shall concentrate on
the semisimple classes. We shall give the notation used in [25] (for p ̸= 2) and [24]
(for p = 2) for the semisimple G-classes (and shall hereafter employ the former,
which is of the form ‘hℓ’ for some ℓ); we shall give the form of elements within
them (where instead of an actual G-class representative we will provide an element
of T0 lying in the appropriate G-class, as is customary); we shall state how such
a G-class meets Hm , giving the notation used in [15] for the corresponding class
in B4(q) in the cases of H1 and H2, and that used in [5] in the case of H3; we shall
specify the centralizers in G and Hm ; we shall give as much information as we
shall need on the number of Hm-classes (as noted in Section 2.4, this number is a
polynomial in q , and we shall give the leading one or two terms as appropriate, with
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[25] [24] [15] [5] ϵ # Hm-classes n

h7 h2 t10 s3 1 1
2 q + · · · 1 2 3 4 5 7 8 9 12 13

h8 h14 t37 s7 −1 1
2 q + · · · 17 9 10 4 5 20 19 2 12 15

Table 5. Semisimple G-classes with G-centralizer having root system C3.

‘ + · · · ’ denoting the presence of lower-degree terms which may be ignored); and
we shall indicate the tori T(n) which meet the classes (again, up to G-conjugacy).
Finally, for each such type of semisimple Hm-class we shall specify (if this is not
obvious) the corresponding types of Hm-class which are relevant.

In what follows we often write ϵ = ±1; we set A1
2(q) = A2(q) and A−1

2 (q) =

2A2(q), and we write T ϵ
m for a maximal torus of Aϵ2(q) of order (q − ϵ)2, q2

− 1 or
q2

+ ϵq + 1 according as m = 1, 2 or 3.
There are two types of semisimple G-class whose G-centralizer has root sys-

tem C3; they contain elements
(
1, λ, 1

λ
, 1; 1

)
for appropriate λ. Each such class

meets Hm in a single class. The centralizers in G and Hm are C3(q).T1 and
A1(qm).A1(q)3−m .T1, respectively, where T1 is a torus of order q −ϵ. The notation
used for the type of class in [25], [24], [15] and [5], the value of ϵ, the leading term
in the number of Hm-classes, and the ten values of n such that the class meets the
torus T(n) are given in Table 5. For each such hℓ, there are two types of relevant
Hm-class: the Hm-classes concerned are the semisimple classes themselves, and the
classes of regular elements of Hm whose semisimple parts are of type hℓ, in which
the unipotent part lies in the class in C3(q) labeled W (2)+V (2) in [18, Table 8.2a].

There are two types of semisimple G-class whose G-centralizer has root system
A1 Ã2; they contain elements

(
λ, 1

λ
, λ2, 1; λ

)
for appropriate λ. Each such class

meets Hm in a single class. The centralizers in G and Hm are A1(q).Aϵ2(q).T1 and
A1(q).T ϵ

m .T1, respectively, where T1 is a torus of order q − ϵ. The notation used
for the type of class in [25], [24], [15] and [5], the value of ϵ, the leading term
in the number of Hm-classes, and the six values of n such that the class meets
the torus T(n) are given in Table 6. For each such hℓ, there is only one type of
relevant Hm-class: the Hm-classes concerned contain regular elements of Hm with
semisimple parts of type hℓ, in which the unipotent part projects nontrivially on the
A1(q) factor and trivially on the Aϵ2(q) factor.

[25] [24] [15] [5] ϵ # Hm-classes n

h9 h5 t23 s5 1 1
2 q + · · · 1 2 3 5 7 15

h10 h17 t50 s10 −1 1
2 q + · · · 17 9 10 5 20 13

Table 6. Semisimple G-classes with G-centralizer having root system A1 Ã2.
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[25] [24] [15] [5] ϵ |T | # Hm-classes n

h31 h9 t27 s6 1 (q − 1)2 1
12 q2

−
2
3 q + · · · 1 3 7

h32 h21 t54 s15 −1 (q + 1)2 1
12 q2

−
1
3 q + · · · 17 10 20

h33 h28 t86 s8 1 q2
− 1 1

4 q2
−

1
2 q + · · · 2 5 15

h34 h42 t92 s11 −1 q2
− 1 1

4 q2
−

1
2 q + · · · 9 5 13

h35 h45 t108 s12 1 q2
+ q + 1 1

6 q2
+

1
6 q + · · · 6 16 18

h36 h48 t112 s13 −1 q2
− q + 1 1

6 q2
−

1
6 q + · · · 21 14 25

Table 7. Semisimple G-classes with G-centralizer having root system Ã2.

For each of the remaining three possibilities, the semisimple elements concerned
are regular in Hm ; thus the centralizer in Hm is a maximal torus, and for each hℓ
the only Hm-classes containing elements with semisimple parts of type hℓ are the
semisimple Hm-classes themselves.

There are six types of semisimple G-class whose G-centralizer has root sys-
tem Ã2; they contain elements

(
λ,µ, λ

µ
, 1; λ

)
for appropriate λ and µ. Each such

class meets Hm in a single class. The centralizers in G and Hm are Aϵ2(q).T
and T ϵ

m .T , respectively, where T is a torus. The notation used for the type of class
in [25], [24], [15] and [5], the values of ϵ and |T |, the leading terms in the number
of Hm-classes, and the three values of n such that the class meets the torus T(n) are
given in Table 7.

There are ten types of semisimple G-class whose G-centralizer has root sys-
tem Ã1; they contain elements

(
λ,µ, ν

2

λµ
, 1; ν

)
for appropriate λ, µ and ν. Each

such class fails to meet H3, but meets B4(q) in two classes, one of which is regular
in B4(q); this regular class in B4(q) fails to meet H2, but meets H1 in two classes,
while the other class in B4(q) meets both H1 and H2 in a single class. The number
of classes of a given type in Hm is thus f times the number of such classes in H2.
The centralizers in G and Hm are A1(q).T and T1.T , respectively, where T is a
torus and T1 is a torus of order q −ϵ. The notation used for the type of class in [25],
[24] and [15], the values of ϵ and |T |, the leading term in the number of Hm-classes,
and the two values of n such that the class meets the torus T(n) are given in Table 8;
in each case the first t j listed in the third column meets both H1 and H2, while the
second meets just H1.

Finally, there are 25 types of semisimple G-class whose G-centralizer has root
system ∅; they contain elements

(
λ,µ, ν2

λµπ
, π; ν

)
for appropriate λ, µ, ν and π .

Each such class meets Hm for exactly one value of m, and does so in six Hm-classes;
this is because WH is normal in W , with quotient ⟨WHw4,WHw+−−−⟩ ∼= S3, so that
each class in W meets exactly one of the cosets WH , WHw4 and WHw4w+−−−. The
centralizer in both G and H of such an element is a torus T . The notation used for
the type of class in [25], [24] and either [15] or [5], the value of m such that the class
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[25] [24] [15] ϵ |T | # Hm-classes n

h66 h10 t28, t29 1 (q − 1)3 1
48 f q3

+ · · · 1 3
h67 h22 t55, t56 −1 (q + 1)3 1

48 f q3
+ · · · 17 10

h68 h33 t67, t122 1 (q2
− 1)(q − 1) 1

16 f q3
+ · · · 4 3

h69 h37 t74, t123 −1 (q2
− 1)(q + 1) 1

16 f q3
+ · · · 4 10

h70 h29 t87, t88 1 (q2
− 1)(q − 1) 1

8 f q3
+ · · · 2 5

h71 h43 t93, t94 −1 (q2
− 1)(q + 1) 1

8 f q3
+ · · · 9 5

h72 h54 t99, t129 1 (q2
+ 1)(q − 1) 1

8 f q3
+ · · · 11 8

h73 h59 t102, t130 −1 (q2
+ 1)(q + 1) 1

8 f q3
+ · · · 11 19

h74 h46 t109, t110 1 q3
− 1 1

6 f q3
+ · · · 6 16

h75 h49 t113, t114 −1 q3
+ 1 1

6 f q3
+ · · · 21 14

Table 8. Semisimple G-classes with G-centralizer having root system Ã1.

meets Hm , the value of |T |, the leading term in the number of Hm-classes, and the
single value of n such that the class meets the torus T(n) are given in Table 9. (Note
that the W -classes containing w(4) and w(11) each split into two W (B4)-classes, so
that there are two types of semisimple class given in [15]; in each case the second
of the two W (B4)-classes splits further into two WH -classes, so that there are in
fact three types of semisimple class in H1 in these cases.)

As stated above, from now on we shall refer to the types of semisimple class
described above by the notation of [25]. Thus we have h7 and h8; h9 and h10;
h31, . . . , h36; h66, . . . , h75; and h76, . . . , h100. Of these five collections, for the first
three each semisimple G-class meets each Hm in a single class; in the fourth, each
G-class meets Hm in f classes; in the fifth, each G-class meets just one Hm and
does so in 6 classes. In all cases, in the calculations to follow we shall need to
consider the classes of regular elements of Hm whose semisimple parts are of the
types concerned; for h7 and h8 we must also treat the semisimple classes themselves.

3.2. Unipotent characters. We first consider the geometric conjugacy class of
unipotent characters of G; the RT ,θ lying in this class are those with θ = 1. We
write R(n) for RT(n),1.

We begin with types h7 and h8; we must treat the semisimple classes and those
containing regular elements of Hm . We shall take as an example the contribution
from elements with semisimple part s of type hℓ to the scalar product of 1Hm

G

with R(n) in the case (ℓ, n)= (7, 1). The number of classes is 1
2q + · · · ; there are

1152
48 = 24 distinct conjugates of s lying in T(1). For the semisimple classes, the

Green function value is

(q2
− 1)(q4

− 1)(q6
− 1)

(q − 1)3
= (q4

+ q2
+ 1)(q2

+ 1)(q + 1)3,
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[25] [24] [15] or [5] m |T | # Hm-classes n

h76 h12 t30 1 (q − 1)4 1
192 q4

+ · · · 1
h77 h24 t57 1 (q + 1)4 1

192 q4
+ · · · 17

h78 h30 t89 1 (q2
− 1)(q − 1)2 1

16 q4
+ · · · 2

h79 h36 t68 2 (q2
− 1)(q − 1)2 1

48 q4
+ · · · 3

h80 h39 t81, t124 1 (q2
− 1)2 3

32 q4
+ · · · 4

h81 h44 t105 2 (q2
− 1)2 1

8 q4
+ · · · 5

h82 h47 t111 1 (q3
− 1)(q − 1) 1

6 q4
+ · · · 6

h83 h68 s6 3 (q3
− 1)(q − 1) 1

12 q4
+ · · · 7

h84 h56 t100 2 (q2
+ 1)(q − 1)2 1

16 q4
+ · · · 8

h85 h57 t95 1 (q2
− 1)(q + 1)2 1

16 q4
+ · · · 9

h86 h58 t75 2 (q2
− 1)(q + 1)2 1

48 q4
+ · · · 10

h87 h60 t107, t131 1 q4
− 1 3

8 q4
+ · · · 11

h88 h62 t125 2 q4
− 1 1

8 q4
+ · · · 12

h89 h72 s11 3 (q3
+ 1)(q − 1) 1

4 q4
+ · · · 13

h90 h51 t117 2 (q3
+ 1)(q − 1) 1

6 q4
+ · · · 14

h91 h73 s8 3 (q3
− 1)(q + 1) 1

4 q4
+ · · · 15

h92 h52 t116 2 (q3
− 1)(q + 1) 1

6 q4
+ · · · 16

h93 h74 s12 3 (q2
+ q + 1)2 1

24 q4
+ · · · 18

h94 h64 t103 2 (q2
+ 1)(q + 1)2 1

16 q4
+ · · · 19

h95 h71 s15 3 (q3
+ 1)(q + 1) 1

12 q4
+ · · · 20

h96 h50 t115 1 (q3
+ 1)(q + 1) 1

6 q4
+ · · · 21

h97 h63 t128 1 (q2
+ 1)2 1

16 q4
+ · · · 22

h98 h65 t132 2 q4
+ 1 1

4 q4
+ · · · 23

h99 h76 s14 3 q4
− q2

+ 1 1
4 q4

+ · · · 24
h100 h75 s13 3 (q2

− q + 1)2 1
24 q4

+ · · · 25

Table 9. Semisimple G-classes with G-centralizer having root system ∅.

while the order of the centralizer in Hm is a polynomial in q with leading term q10;
thus the contribution here is

24 · (q4
+ q2

+ 1)(q2
+ 1)(q + 1)3 ·

( 1
2q + · · ·

)
q10 + · · ·

,

whose nonnegligible part is 12. For the classes of regular elements of Hm , the Green
function value is a polynomial in q with leading term 3q3 (as may be seen from
[11; 22]), while the order of the centralizer in Hm is q4

+· · · ; thus the contribution
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here is
24 · (3q3

+ · · · ) ·
( 1

2q + · · ·
)

q4 + · · ·
,

with nonnegligible part 36. Treating the other cases (ℓ, n) similarly gives the
following, in which the two values listed in each case correspond to the semisimple
and regular classes of Hm , respectively.

h7 h8

R(1) 12 36 R(17) −12 −36
R(2) −3 3 R(9) 3 −3
R(3) −6 −6 R(10) 6 6
R(4) 2 −2 R(4) −2 2
R(5) 1 1 R(5) −1 −1
R(7) 3 0 R(20) −3 0
R(8) 2 −2 R(19) −2 2
R(9) −1 −3 R(2) 1 3
R(12) −1 1 R(12) 1 −1
R(13) −1 0 R(15) 1 0

Next we consider types h9 and h10; here we treat only the classes of regular
elements of Hm . As an example, take the contribution from such elements su with s
of type hℓ to the scalar product of 1Hm

G with R(n) in the case (ℓ, n)= (9, 1). The
number of classes is 1

2q + · · · ; there are 1152
12 = 96 distinct conjugates of s lying

in T(1). Since the projections of u in the A1(q) and A2(q) factors of CG(s) are
regular and trivial, respectively, the Green function value at u is

1 · (q2
− 1)(q3

− 1)
(q − 1)2

= (q2
+ q + 1)(q + 1);

and |CHm (su)| is a polynomial in q with leading term q4. Thus the contribution is

96 · (q2
+ q + 1)(q + 1) ·

( 1
2q + · · ·

)
q4 + · · ·

,

whose nonnegligible part is 48. Dealing similarly with the other pairs (ℓ, n) gives
the following.

h9 :
R(1) R(2) R(3) R(5) R(7) R(15)

48 4 −12 −2 3 1

h10 :
R(17) R(9) R(10) R(5) R(20) R(13)

−48 −4 12 2 −3 −1
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For types h31, . . . , h36 the calculations are a little more delicate; consideration
of leading terms alone is insufficient, since here nonnegligible parts of contributions
are linear polynomials in q rather than merely constants. As an example, take the
contribution from semisimple elements s of type hℓ to the scalar product of 1Hm

G

with R(n) in the case (ℓ, n)= (31, 1). The number of classes is 1
12q2

−
2
3q + · · · ;

there are 1152
6 = 192 distinct conjugates of s lying in T(1). The Green function

value is
(q2

− 1)(q3
− 1)

(q − 1)2
= (q2

+ q + 1)(q + 1);

and
|CHm (s)| = (q − 1)2|T 1

m | = q4
− ( f + 1)q3

+ · · · .

Thus the contribution is

192 · (q3
+ 2q2

+ · · · ) · 1
12(q

2
− 8q + · · · )

q4 − ( f + 1)q3 + · · ·
= 16(q + ( f − 5)+ · · · ).

Dealing similarly with the other pairs (ℓ, n) gives the following.

h31 R(1) 16q +16 f −80 R(3) −4q −4 f +28 R(7) q + f −8

h32 R(17) −16q +16 f +112 R(10) 4q −4 f −20 R(20) −q + f +4

h33 R(2) 4q +4 f −4 R(5) −2q −2 f +6 R(15) q + f −4

h34 R(9) −4q +4 f +12 R(5) 2q −2 f −2 R(13) −q + f

h35 R(6) q + f +1 R(16) −q − f +1 R(18) 4q +4 f −8

h36 R(21) −q + f +1 R(14) q − f +1 R(25) −4q +4 f −8

The remaining types hℓ are more easily handled. For types h66, . . . , h75 the
Green function value concerned is always ±q + 1. Proceeding as above we obtain
the following.

h66 R(1) 12 f R(3) − f

h67 R(17) −12 f R(10) f

h68 R(4) −2 f R(3) 3 f

h69 R(4) 2 f R(10) −3 f

h70 R(2) 6 f R(5) − f

h71 R(9) −6 f R(5) f

h72 R(11) − f R(8) 2 f

h73 R(11) f R(19) −2 f

h74 R(6) 3 f R(16) − f

h75 R(21) −3 f R(14) f

Finally, the types h76, . . . , h100 contain regular semisimple elements of G, so
that the Green function value is just 1. For each such type hℓ, the classes meet T(n)
for just one value of n, and Hm for just one value of m. It follows that for this
choice of n and m the nonnegligible part of the contribution from classes of type hℓ
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H1 H2 H3

R(1) 16q + 106 16q + 44 16q + 16
R(2) 4q + 40 4q + 14 4q + 4
R(3) −4q − 2 −4q + 4 −4q + 4
R(4) 6 0 0
R(5) −8 2 4
R(6) q + 19 q + 5 q + 1
R(7) q + 1 q − 1 q + 1
R(8) 6 4 0
R(9) −4q + 4 −4q + 2 −4q + 4
R(10) 4q − 14 4q 4q + 4
R(11) 6 0 0
R(12) 0 2 0
R(13) −q + 1 −q − 1 −q + 1
R(14) q + 1 q + 3 q + 1
R(15) q + 1 q − 1 q + 1
R(16) −q − 5 −q + 1 −q + 1
R(17) −16q + 34 −16q + 20 −16q + 16
R(18) 4q + 4 4q − 4 4q − 5
R(19) −6 0 0
R(20) −q + 1 −q − 1 −q + 1
R(21) −q + 1 −q − 1 −q + 1
R(22) 6 0 0
R(23) 0 2 0
R(24) 0 0 3
R(25) −4q + 4 −4q − 4 −4q − 5

Table 10. Scalar products (1Hm
G, R(n))G .

to the scalar product of 1Hm
G with R(n) is simply |CW (w(n))| times the coefficient

of q4 in the number of such classes, as given above; this value is always 6, 2 or 3
according as m = 1, 2 or 3.

Summing all of the above nonnegligible parts gives the values in Table 10 for
the scalar products (1Hm

G, R(n))G .
There are now two steps in forming the irreducible unipotent characters of G

from the Deligne–Lusztig generalized characters R(n). Firstly, for each irreducible
character φ of W we form

Rφ =

25∑
n=1

φ(w(n))R(n)
|CW (w(n))|

.
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The class functions obtained in this way are among the set of almost characters. The
second step is to transform the almost characters by nonabelian Fourier transform
matrices to obtain the irreducible characters.

For the first of these steps, the character table of W is given in [10], and we have

(1Hm
G, Rφ)G =

25∑
n=1

φ(w(n))

|CW (w(n))|
(1Hm

G, R(n))G;

it is therefore straightforward to calculate the scalar products of 1Hm
G with those

almost characters of the form Rφ . We find that the only such scalar products which
are nonzero for some m are as follows.

φ (1Hm
G, Rφ)G

φ1,0, φ9,2, φ12,4 1
φ′′

8,3 q + f
φ′′

8,9 q
φ4,1, φ

′′

2,4, φ
′′

9,6 f
φ′′

6,6 f − 1
φ′′

1,12 3,−1, 0 according as m = 1, 2, 3

The second step is complicated by the fact that not all almost characters are of the
form Rφ; however, it turns out that it is still possible to deduce the scalar products
of 1Hm

G with all irreducible unipotent characters. The almost characters Rφ for
φ = φ1,0, φ9,2, φ′′

8,3 and φ′′

8,9 all lie in families of size one, and are thus themselves
irreducible characters χφ; they therefore appear in 1Hm

G with multiplicities 1, 1,
q + f and q , respectively. The almost characters Rφ for φ = φ4,1 and φ′′

2,4 lie in a
family of size four, whose other members are Rφ′

2,4
and a class function Y0, say; the

corresponding unipotent characters are χφ4,1 , χφ′′

2,4
, χφ′

2,4
and χB2,1 (in the notation

of [4, 13.9]), and we have

χφ4,1 =
1
2(Rφ4,1 + Rφ′′

2,4
+ Rφ′

2,4
+ Y0),

χφ′′

2,4
=

1
2(Rφ4,1 + Rφ′′

2,4
− Rφ′

2,4
− Y0),

χφ′

2,4
=

1
2(Rφ4,1 − Rφ′′

2,4
+ Rφ′

2,4
− Y0),

χB2,1 =
1
2(Rφ4,1 − Rφ′′

2,4
− Rφ′

2,4
+ Y0).

If we let (1Hm
G, Y0)G = y0, then the values above imply that the scalar products

of 1Hm
G with the four irreducible characters are

f +
1
2 y0, f −

1
2 y0, −

1
2 y0,

1
2 y0;

as these must all be nonnegative, it follows that y0 = 0 and the scalar products are
f , f , 0, 0.
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The remaining almost characters Rφ listed above, those for which φ=φ12,4, φ′′

9,6,
φ′′

6,6 and φ′′

1,12, all lie in a single family of size 21; of the other 17 almost characters
in this family, only 7 are also of the form Rφ . The corresponding nonabelian Fourier
transform matrix is given in [4, p. 456] and repeated in the Appendix of [12]. We
shall use an analysis similar to that employed in [12] to determine the scalar products
with irreducible characters. We number the rows and columns of the 21×21 matrix
in the order in which they appear in [4, p. 456]; for 1 ≤ i, j ≤ 21 let mi and n j

be the scalar products of 1Hm
G with the i-th almost character and j-th irreducible

character in the family, respectively. Each n j is therefore the linear combination
of the mi with coefficients given by the j-th column of the matrix. The values
calculated above imply that mi = 0 for i = 2, 3, 6, 9, 13, 15, 18. In addition, there
are two pairs of irreducible characters, and correspondingly two pairs of almost
characters, which are complex conjugates of each other; since the values taken
by 1Hm

G are all real, it follows that the scalar products concerned must be equal, so
that m16 = m17, m20 = m21, n16 = n17 and n20 = n21. Note that the scalar product
with Rφ′′

1,12
means that the cases with m = 1, 2 and 3 must be handled separately.

First assume that m = 1; we thus have m1 = 1, m5 = 2, and m10 = m12 = 3. By
adding together the appropriate columns of the matrix we see that

n15 + n16 + n17 = −1 + m4,

n18 + n19 + n20 + n21 = 1 − m4;

thus m4 = 1, and n15 = · · · = n21 = 0. Since we then have n20 = −
1
4 m11 and

n16 =
1
3 m16, it follows that m11 = m16 = 0. Next,

n6 = −
1
2 m7 and n7 =

1
2 m7,

so that m7 = n6 = n7 = 0. Similarly,

n8 =
1
2 m8 and n9 = −

1
2 m8,

so that m8 = n8 = n9 = 0;

n18 = −
1
2 m19 and n19 =

1
2 m19,

so that m19 = n18 = n19 = 0;

n14 =
1
2 m14 and n2 + n3 = −

1
2 m14,

so that m14 = n14 = n2 = n3 = 0; and

n11 = −
1
2 m20 and n13 =

1
2 m20,

so that m20 = n11 = n13 = 0. All the mi having now been determined, the remaining
n j may be found; we obtain n1 = n4 = 1, n5 = 2, n10 = n12 = 3. It follows that the
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irreducible constituents of 1H1
G lying in this family are χφ12,4 , χφ′′

9,6
, χφ′′

1,12
, χφ′′

6,6
,

χF II
4 [1]

, with multiplicities 1, 3, 3, 2, 1, respectively.
The analyses for m = 2 and m = 3 are very similar. In both cases we find that

the irreducible constituents of 1Hm
G lying in the family all have multiplicity 1;

for m = 2 they are χφ′′

4,7
, χφ16,5 , χB2,ϵ′ and χF4[−1], while for m = 3 they are χφ′

6,6
,

χF4[θ ] and χF4[θ2]. This completes the treatment of the geometric conjugacy class
of unipotent characters of G.

3.3. Other geometric conjugacy classes. We now turn to the other geometric
conjugacy classes, which contain the RT ,θ with θ ̸= 1. In most such instances, the
contribution to the scalar product (1Hm

G, RT ,θ )G from a relevant type of Hm-class
will have zero nonnegligible part; this is because adding together the roots of
unity θ(s), as s runs through the elements of T lying in Hm-classes of the type
concerned, usually results in a cancellation of terms. In fact, this is exactly what
happens for all θ ̸= 1 in the case of types of Hm-class containing regular semisimple
elements of G, as noted at the end of Section 2.4; we shall therefore not need to
consider types h76, . . . , h100 any further here.

We shall use notation akin to that of [15] for the geometric conjugacy classes of
characters of G. Recall that there is a bijective correspondence between geometric
conjugacy classes of G and semisimple classes of the dual group, which in this
case is isomorphic to G itself; in [15] we have provided for each n an explicit
correspondence, involving certain roots of unity ξi in k∗ and ζi in C∗, between the
linear characters of the torus T(n) and the elements of the dual torus. We shall say
that a geometric conjugacy class is of type κc if the corresponding semisimple class
is termed hc in [25]. Writing Zn for the integers modulo n for appropriate n ∈ N,
we shall define a set Sc, and an equivalence relation ∼ on it, such that the set Sc

of equivalence classes [i] for i ∈ Sc parametrizes the semisimple classes of type hc;
accordingly an individual geometric conjugacy class of type κc will be denoted by
κc,[i]. (This notation differs slightly from that employed in [15], where such geomet-
ric conjugacy classes were indexed by the element i of Sc rather than the equivalence
class [i]. The only such equivalence relation required there was that defined by
i ∼ −i , so that the list of all such geometric conjugacy classes could be obtained as
κc,i as i ran through the first half of the set Sc; here by contrast more complicated
equivalence relations will be needed, so that it will be clearer to index geometric
conjugacy classes explicitly by equivalence classes.) The irreducible characters lying
in a given geometric conjugacy class are parametrized by the unipotent characters of
the centralizer of an element of the corresponding semisimple class; an irreducible
character lying in the geometric conjugacy class κc,[i] will be written in the form
χ∗
κc,[i]

, where the superscript indicates the corresponding unipotent character.
We shall refrain from giving full details, because there are several types requiring

consideration, and the calculation for each is fairly involved (as may be surmised
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from the treatment of the unipotent geometric conjugacy class above). Instead we
shall deal at some length with two types of geometric conjugacy class, κ31 and κ7,
and indicate briefly how the behavior for other classes is related to one or other of
these. Note that it was only in handling semisimple classes of types h76, . . . , h100

that H1, H2 and H3 had to be treated separately in the calculations above; since
these classes play no further role, at all stages it will be possible to work with all
three permutation characters 1Hm

G simultaneously.
For convenience we repeat from [15] the notation used for roots of unity, as

this will be needed in much of what follows. We let ξ ∈ k∗ be a primitive
(q4

+1)(q12
−1)-st root of unity, and for s = 1, . . . , 15 we set ξs = ξ rs , where rs

and (q4
+1)(q12

−1)/rs = o(ξs) (the order of ξs in the multiplicative group k∗) are

r1 = (q + 1)(q2
+ 1)(q4

+ 1)(q8
+ q4

+ 1), o(ξ1)= q − 1,

r2 = (q − 1)(q2
+ 1)(q4

+ 1)(q8
+ q4

+ 1), o(ξ2)= q + 1,

r3 = (q2
+ 1)(q4

+ 1)(q8
+ q4

+ 1), o(ξ3)= q2
− 1,

r4 = (q2
− 1)(q4

+ 1)(q8
+ q4

+ 1), o(ξ4)= q2
+ 1,

r5 = (q − 1)(q3
+ 1)(q4

+ 1)(q6
+ 1), o(ξ5)= q2

+ q + 1,

r6 = (q + 1)(q3
− 1)(q4

+ 1)(q6
+ 1), o(ξ6)= q2

− q + 1,

r7 = (q3
+ 1)(q4

+ 1)(q6
+ 1), o(ξ7)= q3

− 1,

r8 = (q3
− 1)(q4

+ 1)(q6
+ 1), o(ξ8)= q3

+ 1,

r9 = (q + 1)(q4
+ 1)(q8

+ q4
+ 1), o(ξ9)= (q2

+ 1)(q − 1),

r10 = (q − 1)(q4
+ 1)(q8

+ q4
+ 1), o(ξ10)= (q2

+ 1)(q + 1),

r11 = (q4
+ 1)(q8

+ q4
+ 1), o(ξ11)= q4

− 1,

r12 = q12
− 1, o(ξ12)= q4

+ 1,

r13 = (q2
− q + 1)(q4

+ 1)(q6
+ 1), o(ξ13)= (q3

− 1)(q + 1),

r14 = (q2
+ q + 1)(q4

+ 1)(q6
+ 1), o(ξ14)= (q3

+ 1)(q − 1),

r15 = (q4
+ q2

+ 1)(q8
− 1), o(ξ15)= q4

− q2
+ 1.

Likewise we write

ζ = e2π i/(q4
+1)(q12

−1)
∈ C∗,

and for s = 1, . . . , 15 we set ζs = ζ rs .

3.3.1. Geometric conjugacy classes of type κ31. The geometric conjugacy classes
of type κ31 correspond to semisimple classes in G containing elements

(ξ1
i+ j , ξ1

i , ξ1
j , 1; ξ1

i+ j ) with ξ1
i , ξ1

j , ξ1
i± j , ξ1

2i+ j , ξ1
i+2 j

̸= 1.
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The centralizer in G of these elements is given in the paragraph of Section 3.1
relating to Table 7; the number of classes is 1

12(q
2
− 8q + 10 + 3d + 2y). To

parametrize these geometric conjugacy classes, we set

S31 = {(i, j) ∈ Zq−1
2
: i, j, i ± j, 2i + j, i + 2 j ̸= 0},

so that (i, j) ∈ S31 corresponds to the element given; we define an equivalence
relation on S31 by

(i, j)∼ ( j, i)∼ (−i,− j)∼ (i + j,− j),

and let S31 be the set of equivalence classes [(i, j)]. The geometric conjugacy
classes of type κ31 are in bijective correspondence with S31; we shall write κ31,[(i, j)]

for the class corresponding to [(i, j)] ∈ S31.
There are three distinct characters RT ,θ lying in κ31,[(i, j)]; in the notation of [15]

we may take the pairs (T , θ) as

(T(1), θ
(1)
i00 j ), (T(2), θ

(2)
i0 j ), (T(6), θ

(6)
−(q2+q+1)i,2i+ j ).

For convenience of reference, we repeat the definition of the characters θ here:

θ
(1)
i00 j (ξ1

a, ξ1
b, ξ1

c, ξ1
2d−a−b−c

; ξ1
d)= ζ1

ia+ jd ,

θ
(2)
i0 j (ξ1

a, ξ1
2c−a−b, ξ3

b, ξ3
qb

; ξ1
c)= ζ1

ia+ jc,

θ
(6)
−(q2+q+1)i,2i+ j (ξ1

2b−a, ξ7
a, ξ7

qa, ξ7
q2a

; ξ1
b)= ζ1

−ia+(2i+ j)b.

We shall take each character RT ,θ in turn, and find the scalar product with 1Hm
G ;

to do this we shall take each type of class handled above containing elements with
semisimple parts lying in the torus concerned, and calculate the nonnegligible part
of its contribution. We begin with the pair (T(1), θ

(1)
i00 j ).

The semisimple classes of type h7 contain elements (1, ξ1
a, ξ1

−a, 1; 1) with
ξ1

2a
̸= 1; each such element has 24 distinct conjugates in T(1). Of these, 6 are

of the form (1, ∗, ∗, ∗; 1), and are thus sent to 1 by θ (1)i00 j ; the remaining 18 are
sent to various other powers of ζ1. On summing over the 1

2(q − 2 − d) classes of
such elements, the values obtained from the conjugates of the form (1, ∗, ∗, ∗; 1)
combine to give a sum of 3(q − 2 − d); on the other hand the values obtained
from the conjugates not of the form (1, ∗, ∗, ∗; 1) cancel each other out to give a
sum of 9(d − 1), which is too small to affect the rest of the calculation. We may
now proceed as in the unipotent case already treated, multiplying by the Green
function value and dividing by the order of the centralizer in Hm ; since the leading
term is obtained from only 6 of the 24 values taken by θ (1)i00 j on each class, each
nonnegligible part is one quarter of the corresponding value in the unipotent case.
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Thus the nonnegligible part of the contribution from the semisimple classes is 3,
while that from the regular classes is 9.

The classes with semisimple part of type h9 behave in a very similar fashion.
The semisimple elements here are (ξ1

a, ξ1
−a, ξ1

2a, 1; ξ1
a) with ξ1

2a, ξ1
3a

̸= 1; each
such element has 96 distinct conjugates in T(1). Again, 6 of these are of the form
(1, ∗, ∗, ∗; 1), and are thus sent to 1 by θ (1)i00 j , while the remainder are sent to various
other powers of ζ1. Only the former need be considered, because summing over the
1
2(q − 1 − d − y) classes of such elements produces cancellation among the latter.
Since the proportion of roots of unity which are 1 is 6

96 , multiplying by the Green
function value and dividing by the order of the centralizer in Hm gives a rational
polynomial whose leading term is one sixteenth of that obtained in the unipotent
case; thus the nonnegligible part of the contribution from the classes of regular
elements of Hm with semisimple part of type h9 is 3.

The semisimple classes of type h31 require somewhat more care. The elements
are (ξ1

a+b, ξ1
a, ξ1

b, 1; ξ1
a+b) with ξ1

a, ξ1
b, ξ1

a±b, ξ1
2a+b, ξ1

a+2b
̸= 1 (as above);

each such element has 192 distinct conjugates in T(1). However, it is not sufficient
here simply to count how many are sent to 1 by θ (1)i00 j ; because the calculation will
involve not just the leading term, but the next term as well, we must consider the sum
of roots of unity more carefully than was necessary in the previous two paragraphs.

Let s be the element given. The 192 distinct conjugates of s in T(1) are ob-
tained as sw

′w′′w′′′

, where w′
∈ ⟨w1, w2, w3⟩, w′′

∈ {1, w1−2, w1−3, w1−4} and
w′′′

∈ ⟨w2−3, w3−4⟩. Since the effect of w′′′ is simply to permute the second,
third and fourth coefficients, we have

θ
(1)
i00 j (s

w′w′′w′′′

)= θ
(1)
i00 j (s

w′w′′

);

moreover, conjugation by w2w3w4 inverts s. Thus the sum of the values taken by
θ
(1)
i00 j on the conjugates of s is∑

w′,w′′

6(θ (1)i00 j (s
w′w′′

)+ θ
(1)
i00 j (s

w′w′′

)−1),

where w′ is restricted to run over {1, w1, w2, w3}. For each of the 16 possibilities
for the pair (w′, w′′), we consider the sum of the values over the different classes of
type h31. There are 1

12(q
2
−8q +10+3d +2y) such classes; the conditions which a

and b must satisfy mean that we must sum over the square 0 ≤ a, b ≤ q −2, subtract
the sums over the six lines a =0, b =0, a−b =0, a+b =0, 2a+b =0 and a+2b =0
(where all equalities are of course taken modulo q−1), and then divide by 12 to allow
for the fact that the points (a, b), (b, a), (−a,−b) and (a, a − b) all give the same
class (for points (a, b) lying on more than one such line a further compensation is re-
ally required, but this is too small to affect the nonnegligible part of the contribution).

If (w′, w′′)= (w1, w1−4) then θ (1)i00 j (s
w′w′′

)= 1; thus the sum over the different
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classes here is q2
− 8q + · · · (note that we require only the terms of positive

degree in q here, since any remaining terms are small enough to be ignored).
If (w′, w′′) = (w1, w1−2) we have θ (1)i00 j (s

w′w′′

) = ζ1
ia; the sum of these values

over the square and five of the lines is zero, but the sum over the line a = 0
is q − 1, so that the sum over the classes is −q + · · · . If (w′, w′′) = (w3, w1−4)

or (w3, w1−2) we have θ (1)i00 j (s
w′w′′

)= ζ1
ja or ζ1

(i+ j)a , respectively, which behave
entirely similarly. Likewise if (w′, w′′)= (w1, w1−3), (w2, w1−4) or (w2, w1−3) we
have θ (1)i00 j (s

w′w′′

)= ζ1
ib, ζ1

jb or ζ1
(i+ j)b, respectively, while if (w′, w′′)= (w1, 1),

(1, w1−4) or (1, 1) we have θ (1)i00 j (s
w′w′′

) = ζ1
−i(a+b), ζ1

j (a+b) or ζ1
(i+ j)(a+b), re-

spectively; thus there are nine pairs (w′, w′′) giving a sum −q + · · · . If however
(w′, w′′)= (w2, w1−2) then θ (1)i00 j (s

w′w′′

)= ζ1
−ia+ jb; the sum of these values over

the square and all six of the lines is zero. The remaining five pairs behave similarly.
We therefore obtain a total sum of q2

− 17q + · · · . Multiplying by the Green
function value and dividing by the order of the centralizer in Hm gives q + f −14 as
the nonnegligible part of the contribution from the semisimple classes of type h31.

Finally, we treat the semisimple classes of type h66, which contain elements
(ξ1

a+b, ξ1
a+c, ξ1

b+c, 1; ξ1
a+b+c) with both ξ1

a, ξ1
b, ξ1

c, ξ1
a±b, ξ1

a±c, ξ1
b±c

̸= 1
and ξ1

a+b+c
̸= 1, ξ1

−a, ξ1
−b, ξ1

−c. Each such element has 576 distinct conjugates in
T(1), but none of these is of the form (1, ∗, ∗, ∗; 1). In this case, therefore, summing
over all classes of such elements produces cancellation in all instances; accordingly,
the nonnegligible part of the contribution from these classes is 0. This completes
the consideration of the pair (T(1), θ

(1)
i00 j ).

We turn to the pair (T(2), θ
(2)
i0 j ). The semisimple classes of type h7 are as

above; the elements lying in T(2) are (1, 1, ξ1
a, ξ1

a
; ξ1

a), (ξ1
a, ξ1

a, 1, 1; ξ1
a) and

(ξ1
a, ξ1

−a, 1, 1; 1), together with their inverses. None is of the form (1, ∗, ∗, ∗; 1),
so that the values taken by θ (2)i0 j are all roots of unity other than 1. Summing over
the classes therefore produces cancellation as above, and so the nonnegligible part
of the contribution from both the semisimple classes and the regular classes is 0.

The semisimple classes of type h8 contain elements (1, ξ2
a, ξ2

−a, 1; 1) with
ξ2

2a
̸= 1; the elements lying in T(2) are (1, 1, ξ2

a, ξ2
−a

; 1) and its inverse. Since
each of these is sent to 1 by θ (2)i0 j , the contributions here are the same as in the
unipotent case: the nonnegligible parts are 1 from the semisimple classes and 3
from the regular classes.

The semisimple classes of type h9 are again as above. The element given has
8 conjugates lying in T(2), of which only (1, ξ1

−2a, ξ1
a, ξ1

a
; 1) and its inverse are

of the form (1, ∗, ∗, ∗; 1); thus the nonnegligible part of the contribution from the
classes of regular elements of Hm with semisimple part of type h9 is one quarter of
that in the unipotent case, and therefore is 1.

The semisimple classes of type h33 contain elements (ξ1
a, ξ3

a, ξ3
qa, 1; ξ1

a) with
ξ1

a, ξ2
a
̸= 1; there are 1

4(q
2
−2q +d) such classes. As with type h31 above, simply
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counting the number of roots of unity equal to 1 is insufficient here. If we let s
be the element given, then to cover all classes we must sum from a = 0 to q2

− 2,
subtract the sums of the terms in which a is a multiple of q + 1 or q − 1, and
divide by 4 (again, an adjustment should really be made for terms with a = 0 or
a =

1
2(q

2
− 1), but this is too small to affect the final nonnegligible parts). There

are 16 conjugates of s in T(2). Of these, 4 are of the form (1, ∗, ∗, ∗; 1), so that
the value taken by θ (2)i0 j is 1; summing over the classes here gives q2

− 2q + d . For
the remaining 12 conjugates, the value taken by θ (2)i0 j is ζ1

±ia , ζ1
± ja or ζ1

±(i+ j)a;
summing from a = 0 to q2

− 2 gives zero, as does the sum of the terms with a a
multiple of q+1, but the terms with a a multiple of q−1 sum to q+1. Thus the total
sum is q2

− 5q + · · · ; multiplying by the Green function value and dividing by the
order of the centralizer in Hm gives a contribution with nonnegligible part q + f −4.

Finally, we treat the semisimple classes of type h70, which contain elements
(ξ1

2b−a, ξ3
a, ξ3

qa, 1; ξ1
b)with ξ3

(q±1)a, ξ1
b, ξ1

a−b, ξ1
a−2b

̸=1. No conjugate in T(2)
is of the form (1, ∗, ∗, ∗; 1), so that summing over all classes of such elements pro-
duces cancellation in all instances; accordingly, the nonnegligible part of the contri-
bution from these classes is 0. This completes consideration of the pair (T(2), θ

(2)
i0 j ).

The third and final pair is (T(6), θ
(6)
−(q2+q+1)i,2i+ j ); there are only two types of

class requiring consideration. For the semisimple classes of type h35, the elements
are (ξ5

a, ξ5
−qa, ξ5

(q+1)a, 1; ξ5
a) with ξ5

3a
̸= 1; all 6 conjugates lying in T(6) are

sent to 1 by θ (6)
−(q2

+q+1)i,2i+ j , so the contribution is the same as in the unipotent
case, with nonnegligible part q + f + 1. For the semisimple classes of type h74,
the elements are (ξ7

(q+1)a, ξ7
(q2

+q)a, ξ7
(q2

+1)a, 1; ξ7
(q2

+q+1)a) with ξ5
a, ξ1

a
̸= 1;

here none of the conjugates is sent to 1 by θ (6)
−(q2+q+1)i,2i+ j , so the contribution has

nonnegligible part 0.
Table 11 lists these nonnegligible parts of contributions to scalar products with

the RT ,θ lying in κ31,[(i, j)], where for types h7 and h8 the first row relates to the
semisimple classes and the second row to the classes of regular elements of Hm .
It follows that the scalar product of 1Hm

G with each of the three characters RT ,θ
treated here is q + f + 1. Taking linear combinations given by the character table
of the Weyl group of type A2, we see that the only constituent of 1Hm

G lying in the
geometric conjugacy class κ31,[(i, j)] is the semisimple character, whose multiplicity
is q + f + 1; we shall call this character χ1

κ31,[(i, j)]
.

3.3.2. Geometric conjugacy classes of types κ32, κ33, κ34, κ35 and κ36. The geomet-
ric conjugacy classes of types κ32, κ33, κ34, κ35 and κ36 correspond to semisimple
classes in G containing elements as follows:

κ32 : (ξ2
i+ j , ξ2

i , ξ2
j , 1; ξ2

i+ j ) with ξ2
i , ξ2

j , ξ2
i± j , ξ2

2i+ j , ξ2
i+2 j

̸= 1;

κ33 : (ξ1
i , ξ3

i , ξ3
qi , 1; ξ1

i ) with ξ1
i , ξ2

i
̸= 1;
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T(1) T(2) T(6)

h7 3 0 −

9 0 −

h8 − 1 −

− 3 −

h9 3 1 −

h31 q + f − 14 − −

h33 − q + f − 4 −

h35 − − q + f + 1

h66 0 − −

h70 − 0 −

h74 − − 0

q + f + 1 q + f + 1 q + f + 1

Table 11. Contributions to scalar products (1Hm
G, RT ,θ )G for RT ,θ in κ31,[(i, j)].

κ34 : (ξ2
i , ξ3

−i , ξ3
qi , 1; ξ2

i ) with ξ1
i , ξ2

i
̸= 1;

κ35 : (ξ5
i , ξ5

−qi , ξ5
(q+1)i , 1; ξ5

i ) with ξ5
3i

̸= 1;

κ36 : (ξ6
i , ξ6

qi , ξ6
−(q−1)i , 1; ξ6

i ) with ξ6
3i

̸= 1.

The centralizer in G of these elements is given in the paragraph of Section 3.1
relating to Table 7; the number of classes is 1

12(q
2
−4q−2+3d+2z), 1

4(q
2
−2q+d),

1
4(q

2
−2q +d), 1

6(q
2
+q +1− y) or 1

6(q
2
−q +1− z), respectively. To parametrize

these geometric conjugacy classes, we set

S32 = {(i, j) ∈ Zq+1
2
: i, j, i ± j, 2i + j, i + 2 j ̸= 0},

S33 = S34 = {i ∈ Zq2−1 : (q ± 1)i ̸= 0},

S35 = {i ∈ Zq2+q+1 : 3i ̸= 0},

S36 = {i ∈ Zq2−q+1 : 3i ̸= 0},

so that (i, j) ∈ S32 or i ∈ Sc for c = 33, . . . , 36 corresponds to the element given;
define an equivalence relation on the set S32 by

(i, j)∼ ( j, i)∼ (−i,− j)∼ (i + j,− j),

and similarly define equivalence relations on S33, S34, S35 and S36 by

i ∼ −i ∼ qi.
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Let S32 denote the set of equivalence classes [(i, j)] of S32, and Sc denote the set of
equivalence classes [i] of Sc for c = 33, . . . , 36. The geometric conjugacy classes
of type κc are then in bijective correspondence with the set Sc for c = 32, . . . , 36;
we shall write κ32,[(i, j)] for the class corresponding to [(i, j)] ∈ S32, and κc,[i] for
the class corresponding to [i] ∈ Sc for c = 33, . . . , 36.

We shall give less detail for these types, as the behavior in each case is very similar
to κ31. For each κc there are three characters RT ,θ in each geometric conjugacy
class; in the notation of [15] we may take the pairs (T , θ) as follows:

κ32,[(i, j)] : (T(17), θ
(17)
i00 j ), (T(9), θ

(9)
−i j0), (T(21), θ

(21)
−(q2−q+1)i,2i+ j );

κ33,[i] : (T(3), θ
(3)
00i ), (T(5), θ

(5)
0i ), (T(16), θ

(16)
(q2+q+1)i );

κ34,[i] : (T(10), θ
(10)
00i ), (T(5), θ

(5)
−i i ), (T(14), θ

(14)
(q2−q+1)i );

κ35,[i] : (T(7), θ
(7)
(q−1)i0), (T(15), θ

(15)
(q2−1)i ), (T(18), θ

(18)
i0 );

κ36,[i] : (T(20), θ
(20)
(q+1)i0), (T(13), θ

(13)
(q2−1)i ), (T(25), θ

(25)
i0 ).

In each case, we find as with κ31 that the scalar product with 1Hm
G is the same for

all three; thus the only constituent of 1Hm
G lying in each such geometric conjugacy

class is the semisimple character, which we call χ1
κ32,[(i, j)] or χ1

κc,[i] for c = 33, . . . , 36.
The multiplicities of these constituents are q − f − 1 for κ32,[(i, j)]; q + f − 1 for
κ33,[i]; q − f + 1 for κ34,[i]; q + f − 1 for κ35,[i]; and q − f + 2 for κ36,[i].

3.3.3. Geometric conjugacy classes of types κ9 and κ10. The geometric conjugacy
classes of types κ9 and κ10 correspond to semisimple classes in G containing
elements as follows:

κ9 : (ξ1
i , ξ1

−i , ξ1
2i , 1; ξ1

i ) with ξ1
2i , ξ1

3i
̸= 1,

κ10 : (ξ2
i , ξ2

−i , ξ2
2i , 1; ξ2

i ) with ξ2
2i , ξ2

3i
̸= 1.

The centralizer in G of these elements is given in the paragraph of Section 3.1
relating to Table 6; the number of classes is 1

2(q − 1 − d − y) or 1
2(q + 1 − d − z),

respectively. To parametrize these geometric conjugacy classes, we write ϵ = 1
for κ9 and ϵ = −1 for κ10, and for c = 9, 10 we set

Sc = {i ∈ Zq−ϵ : 2i, 3i ̸= 0},

so that i ∈ Sc corresponds to the element given; we define an equivalence relation
on Sc by

i ∼ −i,

and let Sc be the set of equivalence classes [i]. The geometric conjugacy classes of
type κc are in bijective correspondence with Sc; we shall write κc,[i] for the class
corresponding to [i] ∈ Sc. There are six distinct characters RT ,θ lying in κc,[i]; by
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a temporary abuse of notation we may say that κ9,[i] is the union of κ31,[(i,i)] and
κ33,[(q+1)i], while κ10,[i] is the union of κ32,[(i,i)] and κ34,[(q−1)i] (by which we mean
that the characters RT ,θ lying in κ9,[i] are obtained from those lying in κ31,[(i, j)] and
κ33,[i] by setting j = i in the former and replacing i by (q + 1)i in the latter, and
similarly for κ10,[i]).

We find that the calculations to find nonnegligible parts of contributions proceed
almost exactly as for types κ31 and κ33, or κ32 and κ34; the only differences occur
with semisimple classes of types h9 and h31 for κ9, or h10 and h32 for κ10. For
type h9, it was found in the treatment of κ31 above that only 6 of the 96 conjugates
of (ξ1

a, ξ1
−a, ξ1

2a, 1; ξ1
a) were sent to 1 by θ (1)i00 j ; here we find that setting j = i

means that an extra 12 conjugates of the form (ξ1
−a, ∗, ∗, ∗; ξ1

a)±1 are sent to 1,
and thus the nonnegligible part of the contribution from these classes increases by 6
from 3 to 9. For type h31, on the other hand, the treatment above divided into a
consideration of 16 cases, in 6 of which the sum of the roots of unity concerned
was too small to affect matters; here we find that these 6 behave in the same
manner as the other 9 where the root of unity is not simply 1, and accordingly
the nonnegligible part of the contribution from these classes decreases by 6 from
q + f − 14 to q + f − 20. Since these two changes cancel each other out (and
the same is true for κ10 with types h10 and h32), the scalar products with 1Hm

G of
the RT ,θ are the same as above: for κ9,[i] we have

q + f + 1 for (T(1), θ
(1)
i00i ), (T(2), θ

(2)
i0i ), (T(6), θ

(6)
−(q2+q+1)i,3i ),

−q − f + 1 for (T(3), θ
(3)
00(q+1)i ), (T(5), θ

(5)
0(q+1)i ), (T(16), θ

(16)
(q2+q+1)(q+1)i ),

while for κ10,[i] we have

−q + f + 1 for (T(17), θ
(17)
i00i ), (T(9), θ

(9)
−i i0), (T(21), θ

(21)
−(q2−q+1)i,3i ),

q − f + 1 for (T(10), θ
(10)
00(q−1)i ), (T(5), θ

(5)
−(q−1)i,(q−1)i ), (T(14), θ

(14)
(q2−q+1)(q−1)i ).

Taking linear combinations given by the character table of the Weyl group of
type A2 A1, we see that there are two constituents of 1Hm

G lying in each such
geometric conjugacy class. The first constituent, which has multiplicity 1, is the
semisimple character. The second constituent, which has multiplicity q + ϵ f ,
corresponds to the unipotent character of the centralizer A1(q).Aϵ2(q).T1 whose
restrictions to the A1(q) and Aϵ2(q) factors are the Steinberg and the trivial characters,
respectively. We shall call these characters χ1,1

κc,[i]
and χSt,1

κc,[i]
.

3.3.4. Geometric conjugacy classes of types κ3 and κ4. The geometric conjugacy
classes of types κ3 and κ4 correspond to semisimple classes in G containing elements
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as follows:

κ3 : (ξ1
i , ξ1

−i , ξ1
−i , 1; ξ1

i ) with ξ1
i
̸= 1 = ξ1

3i ,

κ4 : (ξ2
i , ξ2

−i , ξ2
−i , 1; ξ2

i ) with ξ2
i
̸= 1 = ξ2

3i .

If we write ϵ = 1 for κ3 and ϵ = −1 for κ4, the centralizer in G is a product of two
groups Aϵ2(q) (one factor involving long root groups and the other short), while the
number of such classes is 1

2(y −1) for κ3 and 1
2(z −1) for κ4. Since there is at most

one such class, we shall simply call it κc for c = 3, 4, with the understanding that
the class does not exist unless q is congruent to ϵ modulo 3. There are nine distinct
characters RT ,θ lying in κc; by a temporary abuse of notation similar to that above
we may say that κ3 is the union of κ9,[(q−1)/3] and κ35,[(q2+q+1)/3], while κ4 is the
union of κ10,[(q+1)/3] and κ36,[(q2−q+1)/3].

We find that the calculations to find nonnegligible parts of contributions proceed
exactly as for types κ9, κ10, κ35 and κ36 above. Thus the scalar products with 1Hm

G

of the RT ,θ are the same as above: for κ3, writing q+

i for (q i
− 1)/3 we have

q + f + 1 for (T(1), θ
(1)
q+

1 00q+

1
), (T(2), θ

(2)
q+

1 0q+

1
), (T(6), θ

(6)
q+

3 0
),

−q − f + 1 for (T(3), θ
(3)
00q+

2
), (T(5), θ

(5)
0q+

2
), (T(16), θ

(16)
(q+1)q+

3
),

q + f − 2 for (T(7), θ
(7)
q+

3 0
), (T(15), θ

(15)
(q+1)q+

3
), (T(18), θ

(18)
(q2+q+1)/3,0),

while for κ4, writing q−

i for (q i
− (−1)i )/3 we have

−q + f + 1 for (T(17), θ
(17)
q−

1 00q−

1
), (T(9), θ

(9)
−q−

1 q−

1 0
), (T(21), θ

(21)
q−

3 0
),

q − f + 1 for (T(10), θ
(10)
00q−

2
), (T(5), θ

(5)
−q−

2 q−

2 )
), (T(14), θ

(14)
(q−1)q−

3
),

−q + f − 2 for (T(20), θ
(20)
q−

3 0
), (T(13), θ

(13)
(q−1)q−

3
), (T(25), θ

(25)
(q2−q+1)/3,0).

Taking linear combinations given by the character table of the Weyl group of
type A2 A2, we see that there are again two constituents of 1Hm

G lying in each such
geometric conjugacy class. To describe them, we shall say that the Aϵ2(q) factors of
the centralizer involving long and short root groups are the long and short factors,
respectively. The first constituent, which has multiplicity 1, corresponds to the
unipotent character of the centralizer whose restrictions to the long and short factors
are ρ and the trivial character, respectively (where ρ is the third unipotent character
of the long factor after the trivial and Steinberg characters). The second constituent,
which has multiplicity q + ϵ( f − 1), corresponds to the unipotent character of the
centralizer whose restrictions to the long and short factors are the Steinberg and the
trivial characters, respectively. We shall call these characters χρ,1κc and χSt,1

κc
.
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3.3.5. Geometric conjugacy classes of type κ7. The geometric conjugacy classes
of type κ7 correspond to semisimple classes in G containing elements

(1, ξ1
i , ξ1

−i , 1; 1) with ξ1
2i

̸= 1.

The centralizer in G of these elements is given in the paragraph of Section 3.1
relating to Table 5; the number of classes is 1

2(q − 2 − d). To parametrize these
geometric conjugacy classes, we set

S7 = {i ∈ Zq−1 : 2i ̸= 0},

so that i ∈ S7 corresponds to the element given; we define an equivalence relation
on S7 by

i ∼ −i,

and let S7 be the set of equivalence classes [i]. The geometric conjugacy classes of
type κ7 are in bijective correspondence with S7; we shall write κ7,[i] for the class
corresponding to [i] ∈ S7.

There are ten distinct characters RT ,θ lying in κ7,[i]; in the notation of [15] we
may take the pairs (T , θ) as

(T(1), θ
(1)
i000), (T(2), θ

(2)
i00), (T(3), θ

(3)
i00), (T(4), θ

(4)
i00),

(T(5), θ
(5)
−(q+1)i,(q+1)i ), (T(6), θ

(6)
0i ), (T(8), θ

(8)
i0 ),

(T(10), θ
(10)
00(q+1)i ), (T(11), θ

(11)
q(q2+1)(q+1)i/2,i ), (T(14), θ

(14)
(q3+1)i ).

We shall give rather less detail here than for κ31, both to save space and because
the calculations are similar to those that have already been seen; we shall therefore
not bother to repeat from [15] the definitions of the characters θ here.

To begin with, in all instances involving semisimple classes of types other than
h31, . . . , h36 the nonnegligible part of the contribution is a constant; as was seen in
the treatment of κ31, the value concerned is then determined by the proportion of con-
jugates sent to 1. As an example, take the pair (T(1), θ

(1)
i000) and semisimple classes

of type h7; as has been stated, the elements are (1, ξ1
a, ξ1

−a, 1; 1) with ξ1
2a

̸= 1. Of
the 24 conjugates of such an element in T(1), there are 12 of the form (1, ∗, ∗, ∗; ∗),
which are therefore sent to 1 by θ (1)i000. Thus the nonnegligible part of the contribution
from classes with semisimple part of type h7 is one half of the value in the unipotent
case, and is therefore 6 for the semisimple classes and 18 for the regular classes. All
other such cases are similar; we thus need say no more about these contributions.

We must therefore consider the semisimple classes of types h31, . . . , h36. For
some of the instances where the classes of such a type hℓ meet one of the T(n)
involved here, the character θ is such that all conjugates are taken to 1; as a result
the contribution is the same as in the unipotent case. This occurs when the pair
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(ℓ, n) is (32, 10), (34, 5), (35, 6) or (36, 14); the pairs left to be considered are
(31, 1), (31, 3), (33, 2) and (33, 5).

We begin with (ℓ, n)= (31, 1). When dealing with this instance in the treatment
of κ31, we divided into 16 cases. Of these, we find that 4 are such that the conjugates
are sent to 1 by θ (1)i000, giving a sum over the different classes of 4q2

−32q +· · · ; the
remaining 12 each give a sum −q +· · · . The total sum is therefore 4q2

−44q +· · · ;
multiplying by the Green function value and dividing by the order of the centralizer
in Hm gives a contribution with nonnegligible part 4q + 4 f − 32.

The instance where (ℓ, n) = (31, 3) is a little different. As before, we let
s = (ξ1

a+b, ξ1
a, ξ1

b, 1; ξ1
a+b); there are then 48 conjugates of s in T(3). None of

these is of the form (1, ∗, ∗, ∗; ∗) to be sent to 1 by θ (3)i00; instead, the sum over the
conjugates of the values taken by θ (3)i00 is

8(ζ1
ia

+ ζ1
−ia

+ ζ1
ib

+ ζ1
−ib

+ ζ1
i(a+b)

+ ζ1
−i(a+b)).

As before, we sum over the square 0 ≤ a, b ≤ q − 2, subtract the sums over the six
lines a = 0, b = 0, a − b = 0, a + b = 0, 2a + b = 0 and a + 2b = 0 (where all
equalities are once more taken modulo q − 1), and then divide by 12. For each of
the six powers of ζ1, the sums over the square and five of the lines are zero, but the
sum over the other line is q − 1. Thus the total sum is −4q + · · · ; proceeding as
usual then gives a contribution with nonnegligible part 4.

Next we take (ℓ, n)= (33, 2). Of the 16 conjugates lying in T(2) mentioned in the
treatment of κ31, we find that 8 are sent to 1 by θ (2)i00, giving a sum of 2q2

−4q +2d;
the remaining 8 give a sum −2q − 2. The total sum is therefore 2q2

− 6q + · · · ;
multiplying by the Green function value and dividing by the order of the centralizer
in Hm gives a contribution with nonnegligible part 2q + 2 f − 4.

Lastly we turn to (ℓ, n)= (33, 5). As before, we let s = (ξ1
a, ξ3

a, ξ3
qa, 1; ξ1

a);
there are 8 conjugates of s in T(5). None of these is sent to 1 by θ (5)

−(q+1)i,(q+1)i ;
instead, the sum over the conjugates of the values taken by θ (5)

−(q+1)i,(q+1)i is

4(ζ1
ia

+ ζ1
−ia).

As before, we then sum from a = 0 to q2
− 2, subtract the sums of the terms in

which a is a multiple of q + 1 or q − 1, and then divide by 4; this gives a total sum
of −2q +· · · , and proceeding as usual then gives a contribution with nonnegligible
part 2.

Table 12 lists all nonnegligible parts of contributions to scalar products with
the RT ,θ lying in κ7,[i]; again, for types h7 and h8 the first row relates to the
semisimple classes and the second to classes of regular elements of Hm . We have
therefore found the scalar products of 1Hm

G with the RT ,θ lying in κ7,[i]. On taking
linear combinations given by the character table of the Weyl group C3, we obtain
nonzero scalar products with four of the resulting characters. Two of these are
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T(1) T(2) T(3) T(4) T(5) T(6) T(8) T(10) T(11) T(14)

h7 6 −1 −2 0 1 − − − − −

18 1 −2 0 1 − − − − −

h8 − 1 − −2 −1 − − 6 − −

− 3 − 2 −1 − − 6 − −

h9 12 2 0 − 0 − − − − −

h10 − − − − 2 − − 12 − −

h31 4q+4 f −32 − 4 − − − − − − −

h32 − − − − − − − 4q−4 f −20 − −

h33 − 2q+2 f −4 − − 2 − − − − −

h34 − − − − 2q−2 f −2 − − − − −

h35 − − − − − q+ f +1 − − − −

h36 − − − − − − − − − q− f +1

h66 f − 0 − − − − − − −

h67 − − − − − − − f − −

h68 − − f 0 − − − − − −

h69 − − − f − − − 0 − −

h70 − f − − 0 − − − − −

h71 − − − − f − − − − −

h72 − − − − − − f − 0 −

h73 − − − − − − − − f −

h74 − − − − − f − − − −

h75 − − − − − − − − − f

4q+5 f +4 2q+3 f +2 f f 2q− f +2 q+2 f +1 f 4q−3 f +4 f q+1

Table 12. Contributions to scalar products (1Hm
G, RT ,θ )G for RT ,θ in κ7,[i].

irreducible characters: they correspond to the trivial character and the unipotent
character χ1,2, and the multiplicities are q + f + 1 and q + 1, respectively. (Here
for a pair of partitions (α, β) with |α|+|β| = 3 we write χα,β for the corresponding
unipotent character of C3(q) lying in the principal series, as in [4, Section 13.8].)
The remaining two lie in a family of size four, and the scalar products are both f ;
an analysis using the nonabelian Fourier transform matrix which is entirely similar
to that employed with the unipotent characters χφ4,1 and χφ′′

2,4
above shows that

there are two other constituents, each with multiplicity f , corresponding to the
unipotent characters χ2,1 and χ−,3. We shall call these four characters χ1

κ7,[i]
, χχ1,2

κ7,[i] ,
χ
χ2,1
κ7,[i] and χχ−,3

κ7,[i] .
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3.3.6. Geometric conjugacy classes of type κ8. The geometric conjugacy classes
of type κ8 correspond to semisimple classes in G containing elements

(1, ξ2
i , ξ2

−i , 1; 1) with ξ2
2i

̸= 1.

The centralizer in G of these elements is given in the paragraph of Section 3.1
relating to Table 5; the number of classes is 1

2(q−d). To parametrize these geometric
conjugacy classes, we set

S8 = {i ∈ Zq+1 : 2i ̸= 0},

so that i ∈ S8 corresponds to the element given; we define an equivalence relation
on S8 by

i ∼ −i,

and let S8 be the set of equivalence classes [i]. The geometric conjugacy classes of
type κ8 are in bijective correspondence with S8; we shall write κ8,[i] for the class
corresponding to [i] ∈ S8.

There are ten distinct characters RT ,θ lying in κ8,i ; in the notation of [15] we
may take the pairs (T , θ) as

(T(17), θ
(17)
i000), (T(9), θ

(9)
i00), (T(10), θ

(10)
i00 ), (T(4), θ

(4)
0i0), (T(5), θ

(5)
0(q−1)i ), (T(21), θ

(21)
0i ),

(T(19), θ
(19)
i0 ), (T(3), θ

(3)
00(q−1)i ), (T(11), θ

(11)
q(q2+1)(q−1)i/2,i ), (T(16), θ

(16)
(q3−1)i ).

The working is very similar to that of κ7; we again find that there are four constituents
of 1Hm

G in each such geometric conjugacy class. They correspond to the trivial
character and the unipotent characters χ1,2, χ2,1 and χ−,3 of the centralizer, and the
multiplicities are q + f − 1, q − 1, f and f , respectively. We shall call these four
characters χ1

κ8,[i]
, χχ1,2

κ8,[i] , χ
χ2,1
κ8,[i] and χχ−,3

κ8,[i] .

3.3.7. The geometric conjugacy class of type κ1. The geometric conjugacy class of
type κ1 occurs only in odd characteristic, when it corresponds to the semisimple
class in G containing the involution

(1,−1,−1, 1; 1).

The centralizer in G is the product of groups C3(q) and A1(q). Since there is at
most one such class, we shall simply call it κ1, with the understanding that the class
does not exist unless q is odd. There are twenty distinct characters RT ,θ lying in κ1;
by a temporary abuse of notation similar to those employed previously we may say
that κ1 is the union of κ7,[(q−1)/2] and κ8,[(q+1)/2].

As before, the calculations to find nonnegligible parts of contributions proceed
exactly as for types κ7 and κ8. We find that there are six constituents of 1Hm

G . In two
cases, the restriction to the A1(q) factor of the corresponding unipotent character
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of the centralizer is the trivial character; the restrictions to the C3(q) factor are the
trivial character and the unipotent character χ1,2, and both multiplicities are 1. In
the other four cases, the restriction to the A1(q) factor is the Steinberg character; the
restrictions to the C3(q) factor are the trivial character and the unipotent characters
χ1,2, χ2,1 and χ−,3, and the multiplicities are q + f , q , f and f , respectively. We
shall call these six characters χ1,1

κ1
, χχ1,2,1

κ1 , χ1,St
κ1

, χχ1,2,St
κ1 , χχ2,1,St

κ1 and χχ−,3,St
κ1 .

3.4. The complete decomposition of 1Hm
G . If we now add together the degrees of

the constituents of 1Hm
G found so far, taken with multiplicity, we obtain

q12(q8
+ q4

+ 1)(q4
+ 1) if m = 1,

q12(q12
− 1) if m = 2,

q12(q8
− 1)(q4

− 1) if m = 3,

which in each case is equal to |G : Hm |. We have therefore proved the following.

Proposition 3.1. If G = F4(q) and Hm =
mD4(q), the decomposition of 1Hm

G into
irreducible characters is

χφ1,0 +χφ9,2 + (q + f )χφ′′

8,3
+ qχφ′′

8,9
+ f χφ4,1 + f χφ′′

2,4

+


χφ12,4 + 3χφ′′

9,6
+ 3χφ′′

1,12
+ 2χφ′′

6,6
+χF4

II
[1]

if m = 1
χφ′′

4,7
+χφ16,5 +χB2,ϵ′ +χF4[−1] if m = 2
χφ′

6,6
+χF4[θ ] +χF4[θ2] if m = 3


+χ1,1

κ1
+χ

χ1,2,1
κ1 + (q + f )χ1,St

κ1
+ qχχ1,2,St

κ1 + f χχ2,1,St
κ1 + f χχ−,3,St

κ1

+ (q + f − 1)χSt,1
κ3

+χρ,1κ3
+ (q − f + 1)χSt,1

κ4
+χρ,1κ4

+

∑
[i]∈S7

((q + f + 1)χ1
κ7,[i]

+ (q + 1)χχ1,2
κ7,[i] + f χχ2,1

κ7,[i] + f χχ−,3
κ7,[i] )

+

∑
[i]∈S8

((q + f − 1)χ1
κ8,[i]

+ (q − 1)χχ1,2
κ8,[i] + f χχ2,1

κ8,[i] + f χχ−,3
κ8,[i] )

+

∑
[i]∈S9

(χ1,1
κ9,[i]

+ (q + f )χSt,1
κ9,[i]

)+
∑

[i]∈S10

(χ1,1
κ10,[i]

+ (q − f )χSt,1
κ10,[i]

)

+

∑
[(i, j)]∈S31

(q + f + 1)χ1
κ31,[(i, j)]

+

∑
[(i, j)]∈S32

(q − f − 1)χ1
κ32,[(i, j)]

+

∑
[i]∈S33

(q + f − 1)χ1
κ33,[i]

+

∑
[i]∈S34

(q − f + 1)χ1
κ34,[i]

+

∑
[i]∈S35

(q + f − 2)χ1
κ35,[i]

+

∑
[i]∈S36

(q − f + 2)χ1
κ36,[i]

.

It is now straightforward to calculate the ranks of the three actions as the sums
of the squares of the multiplicities of the constituents; we obtain the following.
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Corollary 3.2. The rank of the action of G = F4(q) on cosets of Hm =
mD4(q) is

q4
+ q3

+ 9q2
+ 17q + 24 if m = 1,

q4
+ q3

+ q2
+ q + 4 if m = 2,

q4
+ q3

− q + 3 if m = 3.

Indeed, this is confirmed by a separate calculation of (1Hm
G, 1Hm

G)G , which does
not require Deligne–Lusztig theory. If H is any subgroup of G, then, for g ∈ G,

1H
G(g)=

∑
[h]⊆[g]

|CG(h)|
|CH (h)|

,

where the sum is over the H -classes [h] lying in the G-class [g]; thus

(1H
G, 1H

G)G =

∑
[g]⊂G

1H
G(g)2

|CG(g)|
=

∑
[g]⊂G

|CG(g)|
( ∑

[h]⊆[g]

1
|CH (h)|

)2

.

Knowledge of the fusion of classes from H into G enables this to be calculated;
applying this to each Hm gives the values above.

Before concluding this section we note that the three permutation characters
1H1

G , 1H2
G and 1H3

G are given by a formula which, outside a single family of
unipotent characters, is linear in the parameter f . As the values taken by f are 3, 1
and 0, respectively, another way of saying this is that if we define the generalized
character

ψ(G; H)= 1H1
G

− 3.1H2
G

+ 2.1H3
G,

then the coefficient in ψ(G; H) of any irreducible character lying outside this
family is zero.

The reason for this may be traced back to the contributions to scalar products
(1Hm

G, RT ,θ ) from regular semisimple classes of types h76, . . . , h100 (these were
the only contributions whose nonnegligible parts could not be expressed as linear
polynomials in f ): for each such type hℓ, the nonnegligible part was nonzero only
when θ = 1, so that RT ,θ = R(n) for some n, and only for one value of m, when its
value was 6, 2 or 3 according as m = 1, 2 or 3. From this we see that for all n we
have (ψ(G; H), R(n))G = 6(−1)m−1 where the regular semisimple elements in the
torus T(n) lie in Hm ; it follows that ψ(G; H)= 6Rφ′′

1,12
, where Rφ′′

1,12
is an almost

character of degree q12, after which applying the appropriate nonabelian Fourier
transform matrix produces the observed linear combination of irreducible unipotent
characters.

If we successively remove long simple roots to reduce from G to C and then to A,
in each case replacing H by its intersection with the reduced group (first a group A1

3,
then a 2-dimensional torus), the behavior is very similar. The groups (H ∩ C)m
are A1(q)3, A1(q2)A1(q) and A1(q3), respectively, while the groups (H ∩ A)m are
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tori of order (q − 1)2, q2
− 1 and q2

+ q + 1, respectively. Using the notation of
[4, Section 13.8], we find that ψ(C; H ∩ C)= 6Rφ111,− , where Rφ111,− is an almost
character of degree q6; the family here is of size 4, and applying the appropriate
nonabelian Fourier transform matrix gives

6Rφ111,− = 3χφ111,− + 3χφ1,11 − 3χφ−,21 − 3χB2,ϵ .

Likewise ψ(A; H ∩ A)= 6Rφ111 , where Rφ111 is an almost character of degree q3;
this time the family is of size 1, so 6Rφ111 = 6χφ111 . (In fact in this last case the
unipotent character χφ111 is the Steinberg character St; indeed it follows from [4,
Proposition 7.5.4, Corollary 7.6.5] that ψ(A; H ∩ A)= 6 St.)

4. Extensions of Hm by graph automorphisms

In this section we shall decompose the permutation characters 1Hm .0
G , where 0

is a nontrivial group of graph automorphisms of Hm . Recall that the cases to
be considered are as follows: Hm .2 = Hm⟨τ2⟩ for m = 1, 2; Hm .3 = Hm⟨τ3⟩

for m = 1, 3; and H1.S3 = H1⟨τ2, τ3⟩. Note that each constituent of 1Hm .0
G is also

one of 1Hm
G , so we need only consider the types of geometric conjugacy class

treated in Section 3.
For convenience, writing r = |0| we shall define an integer qr which is close to q

r ,
and express multiplicities in 1Hm .0

G in terms of qr . Although the details of the calcu-
lations to follow will depend upon whether or not the characteristic p divides r , the
use of the notation qr means that in each case it will still be possible to give a single
expression for the decomposition of 1Hm .0

G which is valid for all characteristics.
In contrast to the results obtained in Section 3, we shall see that the multiplicity

of a constituent may depend upon the particular geometric conjugacy class in which
it lies, rather than simply being determined by the type of the geometric conjugacy
class. We shall therefore require some further notation: we set

ϵ2
i, j =

{
1 if 2 | (q − 1) and either 2∤i or 2∤ j (or both),
0 otherwise;

ϵ2
i = ϵ2

i,i =

{
1 if 2 | (q − 1) and 2∤i ,
0 otherwise;

ϵ
3,+
i =

{
1 if 3 | (q − 1) and 3∤i ,
0 otherwise;

ϵ
3,−
i =

{
1 if 3 | (q + 1) and 3∤i ,
0 otherwise;

ϵ4
=

{
1 if 4 | (q − 1),
0 otherwise.
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We shall again use the method described in Section 2 to determine scalar products
(1Hm⟨τr ⟩

G, RT ,θ ) as sums of contributions from types of Hm-class. For those classes
lying in Hm the value is that obtained in Section 3, multiplied by a factor of
|Hm |/|Hm⟨τr ⟩| = 1/r ; we therefore consider types of Hm-class lying in Hmτr .
Much as in Section 3, we begin in Section 4.1 by determining the relevant types of
Hm-class in Hmτr ; we then decompose the permutation characters 1Hm .0

G , firstly
in Section 4.2 where 0 = ⟨τ2⟩ and m ∈ {1, 2}, and secondly in Section 4.3 where
0=⟨τ3⟩ and m ∈{1, 3}; finally in Section 4.4 we combine these results to decompose
the permutation character 1Hm .0

G where 0 = ⟨τ2, τ3⟩ and m = 1.

4.1. Relevant types of Hm-class in Hmτr for r ∈ {2, 3}. Using the information on
Hm-classes in Hmτr described in Section 2.1, as in Section 3.1 we treat all types of
Hm-class in Hmτr to determine those which are relevant. We find that the number
of such types is small; we describe them here.

In each case the elements concerned are simply of the form sτr , and the nonnegli-
gible parts of contributions are simply constants; as we shall explain, the Hm-classes
are related to those of types h31, . . . , h36 or h66, . . . , h75, and we shall refer to the
information given in Tables 7 and 8 of Section 3.1 concerning numbers of Hm-
classes and the tori T(n) which meet them. In particular we note the following
concerning what is stated there. For all these types we may take s of the form(
λ,µ, ν

2

λµ
, 1; ν

)
. For types hℓ with ℓ ∈ {31, . . . , 36} (which here occur for both

r = 2 and r = 3), we have ν = λ so that the G-centralizer has root system Ã2,
with Weyl group ⟨w4, w+−−−⟩; there exists w[ℓ] ∈ ⟨w2−3, w1−2w3−4w3+4⟩ such that
s Fm =

w[ℓ]s, so that s lies in the three tori Tw[ℓ]
, Tw[ℓ]w4 and Tw[ℓ]w4w+−−−

, and up to
conjugacy they are listed in that order in Table 7. For types hℓ with ℓ∈ {66, . . . , 75}

(which here occur only for r = 2), we have ν ̸= λ so that the G-centralizer has root
system Ã1, with Weyl group ⟨w4⟩; there existsw[ℓ] ∈ ⟨w1−2, w2−3, w3−4w3+4⟩ such
that s Fm =

w[ℓ]s, so that s lies in the two tori Tw[ℓ]
and Tw[ℓ]w4 , and up to conjugacy

they are listed in that order in Table 8.
If p = r , the expression for τr

yr given in Section 1 shows that τr lies in the
unipotent class Ã1 or Ã2 according as r = 2 or 3. If the type of the Hm-class
containing s is hℓ, we shall denote the type of the Hm-class containing sτr by hℓτr ;
in each case the number of Hm-classes and the tori containing s are as given in
Tables 7 and 8 (if we replace f by 1 in the latter table).

If p ̸= r , the classes all consist of semisimple elements whose H-centralizer is a
torus, of dimension 5−r . This time the expression for τr

yr given in Section 1 shows
that sτr

yr = s(−1,−1,−1,−1; −1) or s(1, 1, 1, ω2
;ω) according as r =2 or 3. The

situation here is however somewhat more complicated than in the above paragraph.
First suppose r =2, and s lies in an Hm-class of type hℓ for some ℓ∈{31, . . . , 36}.

Here things are simple: we shall denote the type of the Hm-class containing sτ2



304 R. LAWTHER

by hℓτ2; the corresponding element sτ2
y2 is of the form

(
−λ,−µ,− λ

µ
,−1; −λ

)
,

its G-centralizer has root system Ã1, up to conjugacy it lies in the first and second
tori given in Table 7, and the number of Hm-classes is as given there.

Next suppose r =2, and s lies in an Hm-class of type hℓ for some ℓ∈{66, . . . , 75}.
We have ((τ2

y2)Fm )w[ℓ] = τ2
y2 ; thus ((sτ2

y2)Fm )w[ℓ] = sτ2
y2 so that sτ2

y2 ∈ Tw[ℓ]
, and

we obtain a type of Hm-class in Hmτ2 which we may call hℓτ2; however, the
number of Hm-classes is one half of that given in Table 8 (replacing f by 1),
because conjugation by w4 multiplies sτ2

y2 by (1, 1, 1, 1; −1) which lies in the
torus Tw[ℓ]

. To compensate for this we may take s∗
∈ T2 satisfying

((s∗)Fm )w[ℓ] = s∗(1, 1, 1, 1; −1)

(so that s∗ depends only on ℓ and not on s), and then ((s∗sτ2
y2)Fm )w[ℓ]w4 = s∗sτ2

y2 ,
so that s∗sτ2

y2 ∈ Tw[ℓ]w4 , and we obtain another type of Hm-class in Hmτ2 which
we may call hℓ′τ2; again the number of Hm-classes is one half of that given
in Table 8 (replacing f by 1). The elements sτ2

y2 and s∗sτ2
y2 are of the form(

−λ,−µ,− ν2

λµ
,−1; −ν

)
, their G-centralizer has root system ∅, and up to conju-

gacy they lie in the first and second tori, respectively, given in Table 8.
Finally suppose r = 3, and s lies in an Hm-class of type hℓ for some ℓ ∈

{31, . . . , 36}. Recall that we take e ∈ {0,±1} such that q ≡ e (mod 3) (so here
e = ±1 since p ̸= 3); temporarily take ℓ′ ∈ {0, 1} such that ℓ ≡ ℓ′ (mod 2). The
details from now on depend on the pair (e, ℓ′). The element τ3

y3 is fixed or inverted
by Fm according as e = 1 or −1, and is fixed or inverted by w[ℓ] according as
ℓ′ = 1 or 0; and it is inverted by w4. First assume (e, ℓ′)= (1, 0) or (−1, 1). Then
((τ3

y3)Fm )w[ℓ] = (τ3
y3)−1, so ((τ3

y3)Fm )w[ℓ]w4 = τ3
y3 ; thus ((sτ3

y3)Fm )w[ℓ]w4 = sτ3
y3

so that sτ3
y3 ∈ Tw[ℓ]w4 , and we obtain a type of Hm-class in Hmτ3 which we may

call hℓτ3, whose elements lie in the second torus given in Table 7, with the number
of Hm-classes being as given there. Now assume (e, ℓ′)= (1, 1) or (−1, 0). Then
((τ3

y3)Fm )w[ℓ] = τ3
y3 ; thus ((sτ3

y3)Fm )w[ℓ] = sτ3
y3 so that sτ3

y3 ∈ Tw[ℓ]
, and we

obtain a type of Hm-class in Hmτ3 which we may call hℓτ3; however, the number of
Hm-classes is one third of that given in Table 7, because conjugation by w4w+−−−

multiplies sτ3
y3 by (ω2, ω, ω, 1;ω2) which lies in the torus Tw[ℓ]

. To compensate
for this we may take s∗

∈ T3 satisfying

((s∗)Fm )w[ℓ] = s∗(ω, ω2, ω2, 1;ω)

(so that s∗ depends only on ℓ and not on s), and then

((s∗sτ3
y3)Fm )w[ℓ]w4w+−−− = s∗sτ3

y3,

so that s∗sτ3
y3 ∈ Tw[ℓ]w4w+−−−

, and we obtain another type of Hm-class in Hmτ3

which we may call hℓ′τ3; this time the number of Hm-classes is two thirds of that
given in Table 7, because replacing w4w+−−− by its inverse w+−−−w4 gives another
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type # Hm-classes n

h31τ2
1
12 q2

+ · · · 1 3 7

h32τ2
1
12 q2

+ · · · 17 10 20

h33τ2
1
4 q2

+ · · · 2 5 15

h34τ2
1
4 q2

+ · · · 9 5 13

h35τ2
1
6 q2

+ · · · 6 16 18

h36τ2
1
6 q2

+ · · · 21 14 25

Table 13. Hm-classes in Hmτ2 related to those of types h31, . . . , h36.

collection of Hm-classes and the maximal tori Tw[ℓ]w4w+−−−
and Tw[ℓ]w+−−−w4 are

conjugate. The elements sτ3
y3 and s∗sτ3

y3 are of the form
(
λ,µ, λ

µ
, ω2

;ωλ
)
, their

G-centralizer has root system ∅, and up to conjugacy they lie in the first and third
tori, respectively, given in Table 7.

We conclude this section by summarizing the notation and the information about
numbers of Hm-classes and the tori T(n) containing the semisimple parts of elements
therein. Recall that we take d ∈ {0, 1} with q ≡ d mod 2, as well as e ∈ {0,±1}

with q ≡ e mod 3 as in the previous paragraph. We observe that, for fixed ℓ and r ,
the number of Hm-classes of type hℓτr , combined with those of type hℓ′τr if they
exist, is given by the same polynomial in q for both values of d (if r = 2) or for
all three values of e (if r = 3). If r = 2 we have Hm-classes as given in Table 13,
where the last entries in the final column are to be ignored if d = 1, and Table 14;
if r = 3 we have Hm-classes as given in Table 15.

4.2. The characters 1Hm.2
G for m = 1, 2. Recall that we take d ∈ {0, 1} with

q ≡ d mod 2. We define

q2 =
1
2(q + d), f2 =

1
2( f + 1)=

{
2 if m = 1,
1 if m = 2.

We proceed as in Section 3, determining nonnegligible parts of contributions to
the scalar product (1Hm .2

G, RT ,θ ) from the various types of class. Contributions
from classes lying in Hm are of course exactly as already calculated, except for a
factor of 1

2 ; it remains to consider the classes in Hmτ2.

4.2.1. Unipotent characters. We begin with the classes of type hℓτ2 with ℓ ∈

{31, . . . , 36}; for example, we take ℓ= 31, in which case the elements concerned
have semisimple parts lying in tori T(n) for n = 1, 3 and 7 (the last of which is
absent if d = 1). If d = 0, we see from the Appendix of [8] that the Green function
value is 2q + 1, 1 or −q + 1 according as n = 1, 3 or 7; thus the contributions to
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d = 0 d = 1

type # Hm-classes n # Hm-classes n

h66τ2
1
48 q3

+ · · · 1 3 1
96 q3

+ · · · 1
h66

′τ2
1

96 q3
+ · · · 3

h67τ2
1
48 q3

+ · · · 17 10 1
96 q3

+ · · · 17
h67

′τ2
1

96 q3
+ · · · 10

h68τ2
1
16 q3

+ · · · 4 3 1
32 q3

+ · · · 4
h68

′τ2
1

32 q3
+ · · · 3

h69τ2
1
16 q3

+ · · · 4 10 1
32 q3

+ · · · 4
h69

′τ2
1

32 q3
+ · · · 10

h70τ2
1
8 q3

+ · · · 2 5 1
16 q3

+ · · · 2
h70

′τ2
1

16 q3
+ · · · 5

h71τ2
1
8 q3

+ · · · 9 5 1
16 q3

+ · · · 9
h71

′τ2
1

16 q3
+ · · · 5

h72τ2
1
8 q3

+ · · · 11 8 1
16 q3

+ · · · 11
h72

′τ2
1

16 q3
+ · · · 8

h73τ2
1
8 q3

+ · · · 11 19 1
16 q3

+ · · · 11
h73

′τ2
1

16 q3
+ · · · 19

h74τ2
1
6 q3

+ · · · 6 16 1
12 q3

+ · · · 6
h74

′τ2
1

12 q3
+ · · · 16

h75τ2
1
6 q3

+ · · · 21 14 1
12 q3

+ · · · 21
h75

′τ2
1

12 q3
+ · · · 14

Table 14. Hm-classes in Hmτ2 related to those of types h66, . . . , h75.

the scalar product with R(n) are

192 · (2q +1) ·
( 1

12q2
+· · ·

)
2(q3 +· · · )

,
48 ·1 ·

( 1
12q2

+· · ·
)

2(q3 +· · · )
,

12 · (−q +1) ·
( 1

12q2
+· · ·

)
2(q3 +· · · )

,

having nonnegligible parts 16, 0 and −
1
2 , respectively. If however d = 1, the Green

function value is q + 1 or −q + 1 according as n = 1 or 3; thus the contributions to
the scalar product with R(n) are

576 · (q + 1) ·
( 1

12q2
+ · · ·

)
2(q3 + · · · )

,
48 · (−q + 1) ·

( 1
12q2

+ · · ·
)

2(q3 + · · · )
,

having nonnegligible parts 24 and −2, respectively. The other instances may be
dealt with similarly.
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e = 0 e = 1 e = −1

type # Hm-classes n # Hm-classes n # Hm-classes n

h31τ3
1
12 q2

+ · · · 1 3 7 1
36 q2

+ · · · 1 1
12 q2

+ · · · 3

h31
′τ3

1
18 q2

+ · · · 7

h32τ3
1
12 q2

+ · · · 17 10 20 1
12 q2

+ · · · 10 1
36 q2

+ · · · 17

h32
′τ3

1
18 q2

+ · · · 20

h33τ3
1
4 q2

+ · · · 2 5 15 1
12 q2

+ · · · 2 1
4 q2

+ · · · 5

h33
′τ3

1
6 q2

+ · · · 15

h34τ3
1
4 q2

+ · · · 9 5 13 1
4 q2

+ · · · 5 1
12 q2

+ · · · 9

h34
′τ3

1
6 q2

+ · · · 13

h35τ3
1
6 q2

+ · · · 6 16 18 1
18 q2

+ · · · 6 1
6 q2

+ · · · 16

h35
′τ3

1
9 q2

+ · · · 18

h36τ3
1
6 q2

+ · · · 21 14 25 1
6 q2

+ · · · 14 1
18 q2

+ · · · 21

h36
′τ3

1
9 q2

+ · · · 25

Table 15. Hm-classes in Hmτ3 related to those of types h31, . . . , h36.

Combining the two cases, we obtain the following table of nonnegligible parts.

h31τ2 R(1) 8(d + 2) R(3) −2d R(7) 1
2(d − 1)

h32τ2 R(17) −8(d + 2) R(10) 2d R(20) −
1
2(d − 1)

h33τ2 R(2) 2(d + 2) R(5) −d R(15)
1
2(d − 1)

h34τ2 R(9) −2(d + 2) R(5) d R(13) −
1
2(d − 1)

h35τ2 R(6) 1
2(d + 2) R(16) −

1
2 d R(18) 2(d − 1)

h36τ2 R(21) −
1
2(d + 2) R(14)

1
2 d R(25) −2(d − 1)

Note that the coefficients of d above are precisely the same, apart from the factor of 1
2

already mentioned, as those of q obtained from consideration of types h31, . . . , h36

in Section 3.2. This means that when the sets of contributions are added and q is
replaced by 2q2 − d , the terms in d cancel to leave linear polynomials in q2.

We now consider the classes of type hℓτ2 or hℓ′τ2 with ℓ ∈ {66, . . . , 75}; for
example, we take ℓ= 66, in which case the elements concerned have semisimple
parts lying in tori T(n) for n = 1 and 3. In all cases the element is regular in Hm ,
so the Green function value is 1. If d = 0 the contributions to the scalar product
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with R(n) are

576 · 1 ·
( 1

48q3
+ · · ·

)
2(q3 + · · · )

,
48 · 1 ·

( 1
48q3

+ · · ·
)

2(q3 + · · · )
,

having nonnegligible parts 6 and 1
2 , respectively. If however d = 1, the contributions

to the scalar product with R(n) are

1152 · 1 ·
( 1

96q3
+ · · ·

)
2(q3 + · · · )

,
96 · 1 ·

( 1
96q3

+ · · ·
)

2(q3 + · · · )

(the former from h66τ2 and the latter from h66
′τ2), having nonnegligible parts 6

and 1
2 , respectively. Once more, the other instances may be dealt with similarly, to

produce the following table of nonnegligible parts.

h66τ2 or h66
′τ2 R(1) 6 R(3) 1

2

h67τ2 or h67
′τ2 R(17) 6 R(10)

1
2

h68τ2 or h68
′τ2 R(4) 1 R(3) 3

2

h69τ2 or h69
′τ2 R(4) 1 R(10)

3
2

h70τ2 or h70
′τ2 R(2) 3 R(5) 1

2

h71τ2 or h71
′τ2 R(9) 3 R(5) 1

2

h72τ2 or h72
′τ2 R(11)

1
2 R(8) 1

h73τ2 or h73
′τ2 R(11)

1
2 R(19) 1

h74τ2 or h74
′τ2 R(6) 3

2 R(16)
1
2

h75τ2 or h75
′τ2 R(21)

3
2 R(14)

1
2

Summing the nonnegligible parts gives the values in Table 16 for the scalar
products (1Hm .2

G, R(n))G .

H1 H2

R(1) 16q2 + 75 16q2 + 44
R(2) 4q2 + 27 4q2 + 14
R(3) −4q2 + 1 −4q2 + 4
R(4) 5 2
R(5) −3 2
R(6) q2 + 12 q2 + 5
R(7) q2 q2 − 1
R(8) 4 3
R(9) −4q2 + 1 −4q2

R(10) 4q2 − 5 4q2 + 2
R(11) 4 1
R(12) 0 1
R(13) −q2 + 1 −q2

H1 H2

R(14) q2 + 1 q2 + 2
R(15) q2 q2 − 1
R(16) −q2 − 2 −q2 + 1
R(17) −16q2 + 7 −16q2

R(18) 4q2 4q2 − 4
R(19) −2 1
R(20) −q2 + 1 −q2

R(21) −q2 + 1 −q2

R(22) 3 0
R(23) 0 1
R(24) 0 0
R(25) −4q2 + 4 −4q2

Table 16. Scalar products (1Hm .2
G, R(n))G .
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We may now proceed as before to find the scalar products of 1Hm .2
G with irre-

ducible unipotent characters. On taking linear combinations given by the character
table of W , we find that the only scalar products of 1Hm .2

G with almost characters Rφ
which are nonzero for some m are as follows.

φ (1Hm .2
G, Rφ)G

φ1,0, φ9,2 1
φ′′

8,3 q2 + f2

φ′′

8,9 q2

φ4,1, φ
′′

2,4 f2

φ12,4, φ
′′

4,7, φ16,5
1
2

φ′′

6,6 f2 − 1
φ′′

9,6 f2 −
1
2

φ′′

1,12 2 f2 −
5
2

For φ = φ1,0, φ9,2, φ′′

8,3 and φ′′

8,9 we again have irreducible characters χφ , appearing
in 1Hm .2

G with multiplicities 1, 1, q2+ f2 and q2, respectively. For φ=φ4,1 and φ′′

2,4,
in the family of size four, as in Section 3.2 we obtain two irreducible characters χφ4,1

and χφ′′

2,4
, each appearing with multiplicity f2. Separate analyses of the family of

size 21 for the two values of m lead to the following: if m = 1 we have constituents
χφ12,4 , χφ′′

9,6
, χφ′′

1,12
and χφ′′

6,6
, with multiplicities 1, 2, 1 and 1, respectively; if m = 2

we have constituents χφ′′

4,7
and χφ16,5 , each with multiplicity 1. This completes the

treatment of unipotent characters.

4.2.2. Other geometric conjugacy classes. We begin with the geometric conjugacy
classes of type κ31; here the only types of Hm-class we need consider are hℓτ2 for
ℓ ∈ {31, 33, 35}. We briefly deal with type h31τ2, containing elements sτ2 with
s = (ξ1

a+b, ξ1
a, ξ1

b, 1; ξ1
a+b); the other types are very similar. The calculations are

in some ways simpler than those in Section 3.3.1, because the nonnegligible parts
are constants and it therefore suffices to consider leading terms of polynomials; on
the other hand, some of the details depend on the precise geometric conjugacy class
rather than just its type. Recall that there are three distinct characters RT ,θ lying in
the geometric conjugacy class κ31,[(i, j)], and the one with T = T(1) (in which s lies)
has θ = θ

(1)
i00 j .

If d = 0, we saw in Section 3.3.1 that of the 192 conjugates of s lying in T(1),
only 12 were of the form (1, ∗, ∗, ∗; 1) and thus sent to 1 by θ (1)i00 j , with the values
taken at other elements producing cancellation. Since the Green function value at
τ2 is 2q + 1, the contribution to the scalar product from these elements is
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12 · (2q + 1) ·
( 1

12q2
+ · · ·

)
2(q3 + · · · )

= 1 + · · · .

If instead d = 1, we have (sτ2)
y2 = (−ξ1

a+b,−ξ1
a,−ξ1

b,−1; −ξ1
a+b); of the

conjugates of this element in T(1), we need only consider those of the form
(±1, ∗, ∗, ∗; ±1), since the values obtained from the others will again produce
cancellation. There are 12 conjugates of the form (−1, ∗, ∗, ∗; 1), where the value
taken by θ (1)i00 j is (−1)i ; likewise there are 12 each of the forms (1, ∗, ∗, ∗; −1)
and (−1, ∗, ∗, ∗; −1), where the value is (−1) j or (−1)i+ j , respectively. Since
(−1)i + (−1) j

+ (−1)i+ j
= 3 − 4ϵ2

i, j , and the Green function value here is q + 1,
we obtain a contribution to the scalar product of

12(3 − 4ϵ2
i, j ) · (q + 1) ·

( 1
12q2

+ · · ·
)

2(q3 + · · · )
=

3
2 − 2ϵ2

i, j + · · · .

Thus for both values of d the extra nonnegligible part is 1 +
1
2 d − 2ϵ2

i, j . We saw
in Section 3.3.1 that the scalar product of 1Hm

G with the appropriate RT ,θ with
T = T(1) is q + f + 1; halving and adding the nonnegligible part just found gives
q2 + f2 + 1 − 2ϵ2

i, j .
We find that the additional contributions from Hm-classes of type h33τ2 and h35τ2

to the scalar product with the appropriate RT ,θ with T = T(2) and T(6), respectively,
are the same as those just calculated; thus the scalar product of 1Hm .2

G with each
of the three characters RT ,θ treated here is q2 + f2 +1−2ϵ2

i, j , which is therefore
the multiplicity of the semisimple character χ1

κ31,[(i, j)]
in 1Hm .2

G .
The geometric conjugacy classes of types κ32, . . . , κ36 behave very similarly.

For κ33 and κ35 the types of class requiring attention are as for κ31; for κ32, κ34

and κ36 they are hℓτ2 for ℓ∈{32, 34, 36}. For κ35 and κ36, the additional contribution
is in fact 0 if d = 1, because the elements (sτ2)

y2 do not lie in the tori concerned;
if however d = 0, the extra nonnegligible part is ±

1
2 . On the other hand, for κ33

and κ34 the nonnegligible part of the additional contribution is 0 if d = 0, because
the Green function in each case is merely 1 and is thus too small to affect matters;
however if d = 1 we have an extra term ±

1
2(−1)i . Upon combining these terms

with those already found, and taking linear combinations as before, we obtain the
following multiplicities in 1Hm .2

G :

χ1
κ32,[(i, j)]

: q2 − f2 + 1 − 2ϵ2
i, j ,

χ1
κ33,[i]

: q2 + f2 − 1 − ϵ2
i ,

χ1
κ34,[i]

: q2 − f2 + 1 − ϵ2
i ,

χ1
κ35,[i]

: q2 + f2 − 2,

χ1
κ36,[i]

: q2 − f2 + 1.
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Next we turn to the geometric conjugacy classes of types κ9, κ10, κ3 and κ4. As
described in Sections 3.3.3 and 3.3.4, these may loosely be regarded as the unions
of certain of those of types κ31, . . . , κ36 just considered, for appropriate values of
the parameters. The details of the calculations of additional nonnegligible parts
are just as above; note that if d = 1 then ϵ2

(q±1)i and ϵ2
(q±1)/3 are both zero because

the subscripts are even. Upon taking linear combinations to obtain the irreducible
characters, we obtain the following multiplicities in 1Hm .2

G :

χSt,1
κ9,[i]

: q2 + f2 − ϵ2
i , χ1,1

κ9,[i]
: 1 − ϵ2

i ,

χSt,1
κ10,[i]

: q2 − f2 + 1 − ϵ2
i , χ1,1

κ10,[i]
: ϵ2

i ,

χSt,1
κ3

: q2 + f2 − 1, χρ,1κ3
: 1,

χSt,1
κ4

: q2 − f2 + 1, χρ,1κ4
: 0.

We now treat the geometric conjugacy classes of type κ7, where there are ten
distinct characters RT ,θ lying in the geometric conjugacy class κ7,[i]; the one with
T = T(1) has θ = θ

(1)
i000, and we must consider Hm-classes of types h31τ2 and h66τ2.

For the former we may again take s = (ξ1
a+b, ξ1

a, ξ1
b, 1; ξ1

a+b) and argue much
as above. If d = 0 there are 48 conjugates of s of the form (1, ∗, ∗, ∗; ∗), so the
contribution to the scalar product is

48 · (2q + 1) ·
( 1

12q2
+ · · ·

)
2(q3 + · · · )

= 4 + · · · .

If instead d = 1, there are 48 conjugates of (sτ2)
y2 of the form (1, ∗, ∗, ∗; ∗) and

96 of the form (−1, ∗, ∗, ∗; ∗), so the contribution is

(48 + 96(−1)i ) · (q + 1) ·
( 1

12q2
+ · · ·

)
2(q3 + · · · )

= 2 + 4(−1)i + · · · .

For Hm-classes of type h66τ2 we may take s = (ξ1
a+b, ξ1

a+c, ξ1
b+c, 1; ξ1

a+b+c); as
the element is regular the Green function value is 1. If d = 0, there are again 48
conjugates of s of the form (1, ∗, ∗, ∗; ∗), so the contribution is

48 · 1 ·
( 1

48q3
+ · · ·

)
2(q3 + · · · )

=
1
2 + · · · .

If instead d = 1, there are 96 conjugates of (sτ2)
y2 of the form (−1, ∗, ∗, ∗; ∗)

(and none of the form (1, ∗, ∗, ∗; ∗)), so the contribution is

96(−1)i · 1 ·
( 1

96q3
+ · · ·

)
2(q3 + · · · )

=
1
2(−1)i + · · · .
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Thus for both values of d the extra nonnegligible part is 2d +
9
2 − 9ϵ2

i . We saw
in Section 3.3.5 that the scalar product of 1Hm

G with the appropriate RT ,θ with
T = T(1) is 4q +5 f +4; halving and adding the nonnegligible part just found gives
4q2 + 5 f2 + 4 − 9ϵ2

i .
For each of the nine other characters RT ,θ lying in κ7,[i], there is precisely one

type hℓτ2 or hℓ′τ2 with ℓ ∈ {66, . . . , 75} giving a contribution with nonnegligible
part 1

2 or 1
2(−1)i according as d = 0 or 1. In addition, for the character with T = T(2)

we obtain a contribution from type h33τ2 with nonnegligible part 2 or 1 + 2(−1)i

according as d = 0 or 1; likewise for the character with T = T(6) we obtain a
contribution from type h35τ2 with nonnegligible part 1 or 1

2 + (−1)i according as
d = 0 or 1. (There are also various other types where the contribution has zero
nonnegligible part.) Combining with the values found in Section 3.3.5 we obtain
the following scalar products of 1Hm .2

G with the RT ,θ lying in κ7,[i]:

T = T(1) : 4q2 + 5 f2 + 4 − 9ϵ2
i ,

T = T(10) : 4q2 − 3 f2 + 4 − ϵ2
i ,

T = T(2) : 2q2 + 3 f2 + 2 − 5ϵ2
i ,

T = T(5) : 2q2 − f2 + 2 − ϵ2
i ,

T = T(6) : q2 + 2 f2 + 2 − 3ϵ2
i ,

T = T(14) : q2 + 1 − ϵ2
i ,

T = T(3), T(4), T(8), T(11) : f2 − ϵ2
i .

Using the character table of the Weyl group C3 and the appropriate nonabelian
Fourier transform matrix as in Section 3.3.5 shows that the irreducible characters
χ1
κ7,[i]

and χχ1,2
κ7,[i] have multiplicities in 1Hm .2

G equal to q2+ f2+1−2ϵ2
i and q2+1−ϵ2

i ,
respectively, while both χχ2,1

κ7,[i] and χχ−,3
κ7,[i] have multiplicity f2 − ϵ2

i .
The geometric conjugacy classes of type κ8 behave entirely similarly; here we

find that the irreducible characters χ1
κ8,[i]

and χχ1,2
κ8,[i] have multiplicities in 1Hm .2

G

equal to q2 + f2 − 1 and q2 − ϵ2
i , respectively, while both χχ2,1

κ8,[i] and χχ−,3
κ8,[i] have

multiplicity f2 − 1 + ϵ2
i .

The geometric conjugacy class κ1 may again be treated in similar fashion; we find
that the irreducible characters χ1,1

κ1
and χχ1,2,1

κ1 both have multiplicity ϵ4 in 1Hm .2
G ,

while χ1,St
κ1

, χχ1,2,St
κ1 , χχ2,1,St

κ1 and χχ−,3,St
κ1 have multiplicities q2 + f2 − 1 + ϵ4, q2,

f2 − 1 + ϵ4 and f2 − 1 + ϵ4, respectively.

4.2.3. The complete decomposition of 1Hm .2
G for m = 1, 2. Combining the multi-

plicities obtained above gives the complete decomposition of 1Hm .2
G for m = 1, 2

as follows.



D4-TYPE SUBGROUPS OF F4(q) 313

Proposition 4.1. If G = F4(q) and Hm =
mD4(q) for m = 1, 2, the decomposition

of 1Hm .2
G into irreducible characters is

χφ1,0 +χφ9,2 + (q2 + f2)χφ′′

8,3
+ q2χφ′′

8,9
+ f2χφ4,1 + f2χφ′′

2,4

+

{
χφ12,4 + 2χφ′′

9,6
+χφ′′

1,12
+χφ′′

6,6
if m = 1

χφ′′

4,7
+χφ16,5 if m = 2

}
+ ϵ4χ1,1

κ1
+ ϵ4χ

χ1,2,1
κ1 + (q2 + f2 − 1 + ϵ4)χ1,St

κ1
+ q2χ

χ1,2,St
κ1

+ ( f2 − 1 + ϵ4)χ
χ2,1,St
κ1 + ( f2 − 1 + ϵ4)χ

χ−,3,St
κ1

+ (q2 + f2 − 1)χSt,1
κ3

+χρ,1κ3
+ (q2 − f2 + 1)χSt,1

κ4

+

∑
[i]∈S7

(
(q2 + f2 + 1 − 2ϵ2

i )χ
1
κ7,[i]

+ (q2 + 1 − ϵ2
i )χ

χ1,2
κ7,[i]

+ ( f2 − ϵ2
i )χ

χ2,1
κ7,[i] + ( f2 − ϵ2

i )χ
χ−,3
κ7,[i]

)
+

∑
[i]∈S8

(
(q2 + f2 − 1)χ1

κ8,[i]
+ (q2 − ϵ2

i )χ
χ1,2
κ8,[i]

+ ( f2 − 1 + ϵ2
i )χ

χ2,1
κ8,[i] + ( f2 − 1 + ϵ2

i )χ
χ−,3
κ8,[i]

)
+

∑
[i]∈S9

((1 − ϵ2
i )χ

1,1
κ9,[i]

+ (q2 + f2 − ϵ2
i )χ

St,1
κ9,[i]

)

+

∑
[i]∈S10

(ϵ2
i χ

1,1
κ10,[i]

+ (q2 − f2 + 1 − ϵ2
i )χ

St,1
κ10,[i]

)

+

∑
[(i, j)]∈S31

(q2 + f2 + 1 − 2ϵ2
i, j )χ

1
κ31,[(i, j)]

+

∑
[(i, j)]∈S32

(q2 − f2 + 1 − 2ϵ2
i, j )χ

1
κ32,[(i, j)]

+

∑
[i]∈S33

(q2 + f2 − 1 − ϵ2
i )χ

1
κ33,[i]

+

∑
[i]∈S34

(q2 − f2 + 1 − ϵ2
i )χ

1
κ34,[i]

+

∑
[i]∈S35

(q2 + f2 − 2)χ1
κ35,[i]

+

∑
[i]∈S36

(q2 − f2 + 1)χ1
κ36,[i]

.

Again we may now calculate the ranks of the actions; we obtain the following.

Corollary 4.2. The rank of the action of G = F4(q) on cosets of Hm .2 =
mD4(q).2

for m = 1, 2 is

1
4(q

4
+ q3

+ 12q2
+ 20q + 28) if m = 1 and d = 0,

1
4(q

4
+ q3

+ 12q2
+ 27q + 39) if m = 1 and d = 1,

1
4(q

4
+ q3

+ 4q2
+ 4q + 8) if m = 2 and d = 0,

1
4(q

4
+ q3

+ 4q2
+ 7q + 11) if m = 2 and d = 1.
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4.3. The characters 1Hm.3
G for m = 1, 3. Recall that we take e ∈ {0,±1} with

q ≡ e mod 3. We define

q3 =
1
3(q + 2e), f3 =

1
3 f =

{
1 if m = 1,
0 if m = 3.

Again we proceed as in Section 3. This time contributions from classes lying
in Hm are as already calculated, except for a factor of 1

3 ; it remains to consider the
classes in Hmτ3 and Hmτ3

2 (clearly the contributions from the two outer cosets will
be complex conjugates of each other).

4.3.1. Unipotent characters. We must consider the Hm-classes of type hℓτ3 or hℓ′τ3

with ℓ ∈ {31, . . . , 36}; for example, we again take ℓ = 31, so that the elements
concerned have semisimple parts lying in tori T(n) for n = 1, 3 and 7. In all cases the
elements are regular, so the Green function value is 1. Thus if e = 0 the contributions
to the scalar product with R(n) are

192 · 1 ·
( 1

12q2
+ · · ·

)
3(q2 + · · · )

,
48 · 1 ·

( 1
12q2

+ · · ·
)

3(q2 + · · · )
,

12 · 1 ·
( 1

12q2
+ · · ·

)
3(q2 + · · · )

,

having nonnegligible parts 16
3 , 4

3 and 1
3 , respectively; if e = 1 the contributions to

the scalar product with R(1) and R(7) are

1152 · 1 ·
( 1

36q2
+ · · ·

)
3(q2 + · · · )

,
36 · 1 ·

( 1
18q2

+ · · ·
)

3(q2 + · · · )

(the latter from h31
′τ3), having nonnegligible parts 32

3 and 2
3 , respectively; if e = −1

the contribution to the scalar product with R(3) is

96 · 1 ·
1
12(q

2
− · · · )

3(q2 + · · · )
,

having nonnegligible part 8
3 . The other instances are precisely similar.

Combining the three possibilities for e gives the following table of nonnegligible
parts.

h31τ3 or h31
′τ3 R(1) 16

3 (1 + e) R(3) 4
3(1 − e) R(7) 1

3(1 + e)

h32τ3 or h32
′τ3 R(17)

16
3 (1 − e) R(10)

4
3(1 + e) R(20)

1
3(1 − e)

h33τ3 or h33
′τ3 R(2) 4

3(1 + e) R(5) 2
3(1 − e) R(15)

1
3(1 + e)

h34τ3 or h34
′τ3 R(9) 4

3(1 − e) R(5) 2
3(1 + e) R(13)

1
3(1 − e)

h35τ3 or h35
′τ3 R(6) 1

3(1 + e) R(16)
1
3(1 − e) R(18)

4
3(1 + e)

h36τ3 or h36
′τ3 R(21)

1
3(1 − e) R(14)

1
3(1 + e) R(25)

4
3(1 − e)
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H1 H3

R(1) 16q3 + 46 16q3 + 16

R(2) 4q3 + 16 4q3 + 4

R(3) −4q3 + 2 −4q3 + 4

R(4) 2 0

R(5) 0 4

R(6) q3 + 7 q3 + 1

R(7) q3 + 1 q3 + 1

R(8) 2 0

R(9) −4q3 + 4 −4q3 + 4

R(10) 4q3 − 2 4q3 + 4

R(11) 2 0

R(12) 0 0

R(13) −q3 + 1 −q3 + 1

H1 H3

R(14) q3 + 1 q3 + 1

R(15) q3 + 1 q3 + 1

R(16) −q3 − 1 −q3 + 1

R(17) −16q3 + 22 −16q3 + 16

R(18) 4q3 + 4 4q3 + 1

R(19) −2 0

R(20) −q3 + 1 −q3 + 1

R(21) −q3 + 1 −q3 + 1

R(22) 2 0

R(23) 0 0

R(24) 0 1

R(25) −4q3 + 4 −4q3 + 1

Table 17. Scalar products (1Hm .3
G, R(n))G .

Much as before, note that the coefficients of e above are precisely the same, apart
from the factor of 1

3 already mentioned, as those of q obtained from consideration
of types h31, . . . , h36 in Section 3.2. This means that when the sets of contributions
are added and q is replaced by 3q3 − 2e, the terms in e cancel to leave linear
polynomials in q3.

Summing the nonnegligible parts gives the values in Table 17 for the scalar
products (1Hm .3

G, R(n))G .
We may now proceed as before to find the scalar products of 1Hm .3

G with irre-
ducible unipotent characters. On taking linear combinations given by the character
table of W , we find that the only scalar products of 1Hm .3

G with almost characters Rφ
which are nonzero for some m are as follows.

φ (1Hm .3
G, Rφ)G

φ1,0, φ9,2 1
φ′′

8,3 q3 + f3

φ′′

8,9 q3

φ4,1, φ
′′

2,4, φ
′′

9,6, φ
′′

1,12 f3

φ12,4
1
3

φ′′

6,6 f3 −
1
3

φ′

6,6
2
3
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For φ = φ1,0, φ9,2, φ′′

8,3 and φ′′

8,9 we again have irreducible characters χφ , appearing
in 1Hm .3

G with multiplicities 1, 1, q3 + f3 and q3, respectively. For φ = φ4,1

and φ′′

2,4, in the family of size four, as in Section 3.2 we obtain two irreducible
characters χφ4,1 and χφ′′

2,4
, each appearing with multiplicity f3. Separate analyses

of the family of size 21 for the two values of m lead to the following: if m = 1 we
have constituents χφ12,4 , χφ′′

9,6
, χφ′′

1,12
and χF4

II
[1]

, each with multiplicity 1; if m = 3
we have a constituent χφ′

6,6
with multiplicity 1. This completes the treatment of

unipotent characters.

4.3.2. Other geometric conjugacy classes. We begin again with geometric conju-
gacy classes of type κ31; we consider Hm-classes of type h31τ3, containing elements
sτ3 with s = (ξ1

a+b, ξ1
a, ξ1

b, 1; ξ1
a+b). These contribute if e = 0 or 1, but not if

e = −1. As in Section 4.2.2 we recall that there are three distinct characters RT ,θ
lying in the geometric conjugacy class κ31,[(i, j)], and the one with T = T(1) (in
which s lies) has θ = θ

(1)
i00 j .

If e = 0, we saw in Section 3.3.1 that 12 of the conjugates of s lying in T(1) were
of the form (1, ∗, ∗, ∗; 1) and thus sent to 1 by θ (1)i00 j , with the values taken at other
elements producing cancellation. Thus the contribution to the scalar product from
these elements is

12 · 1 ·
( 1

12q2
+ · · ·

)
3(q2 + · · · )

=
1
3 + · · · .

If e = 1, we have (sτ2)
y2 = (ξ1

a+b, ξ1
a, ξ1

b, ω2
;ωξ1

a+b); of the conjugates of this
element in T(1), we need only consider those of the form (ω±1, ∗, ∗, ∗;ω±1), since
the values obtained from the others will again produce cancellation. If we write ζ̄
for the cube root of unity in C corresponding to ω in k, there are 36 conjugates
of the form (ω2, ∗, ∗, ∗;ω), where the value taken by θ (1)i00 j is ζ̄−i+ j , and 36 of the
form (ω, ∗, ∗, ∗;ω2), where the value taken is ζ̄ i− j . Since

ζ̄−i+ j
+ ζ̄ i− j

= 2 − 3ϵ3,+
i− j ,

we obtain a contribution to the scalar product of

36(2 − 3ϵ3,+
i− j ) · 1 ·

( 1
36q2

+ · · ·
)

3(q2 + · · · )
=

2
3 − ϵ

3,+
i− j + · · · .

Thus for all three values of e the extra nonnegligible part is 1
3(1 + e)− ϵ3,+

i− j . We
saw in Section 3.3.1 that the scalar product of 1Hm

G with the appropriate RT ,θ with
T = T(1) is q + f + 1; dividing by three and adding twice the nonnegligible part
just found gives q3 + f3 + 1 − 2ϵ3,+

i− j .
We find that the additional contributions from Hm-classes of type h33τ3 and h35τ3

to the scalar product with the appropriate RT ,θ with T = T(2) and T(6), respectively,
are the same as those just calculated; thus the scalar product of 1Hm .3

G with each



D4-TYPE SUBGROUPS OF F4(q) 317

of the three characters RT ,θ treated here is q3+ f3+1−2ϵ3,+
i− j , which is therefore

the multiplicity of the semisimple character χ1
κ31,[(i, j)]

in 1Hm .3
G .

The geometric conjugacy classes of types κ32, . . . , κ36 behave very similarly; we
obtain the following multiplicities in 1Hm .3

G :

χ1
κ32,[(i, j)]

: q3 − f3 − 1 + 2ϵ3,−
i− j ,

χ1
κ33,[i]

: q3 + f3 − 1 + 2ϵ3,−
i ,

χ1
κ34,[i]

: q3 − f3 + 1 − 2ϵ3,+
i ,

χ1
κ35,[i]

: q3 + f3 − 2ϵ3,+
i ,

χ1
κ36,[i]

: q3 − f3 + 2ϵ3,−
i .

Next we turn to the geometric conjugacy classes of types κ9, κ10, κ3 and κ4. As
before, these may loosely be regarded as the unions of certain of those of types
κ31, . . . , κ36 just considered, for appropriate values of the parameters. The details
of the calculations of additional nonnegligible parts are just as above; we obtain
the following multiplicities in 1Hm .3

G :

χSt,1
κ9,[i]

: q3 + f3, χ1,1
κ9,[i]

: 1,

χSt,1
κ10,[i]

: q3 − f3, χ1,1
κ10,[i]

: 1,

χSt,1
κ3

: q3 + f3 − 1, χρ,1κ3
: 1,

χSt,1
κ4

: q3 − f3 + 1, χρ,1κ4
: 1.

For the geometric conjugacy classes of type κ7, we again treat Hm-classes of
type h31τ3, containing elements sτ2 with s = (ξ1

a+b, ξ1
a, ξ1

b, 1; ξ1
a+b). These

contribute if e = 0 or 1, but not if e = −1; the appropriate RT ,θ with T = T(1) has
θ = θ

(1)
i000.

If e = 0, we saw in Section 3.3.5 that 48 of the conjugates of s lying in T(1) were
of the form (1, ∗, ∗, ∗; ∗) and thus sent to 1 by θ (1)i000, with the values taken at other
elements producing cancellation. Thus the contribution to the scalar product from
these elements is

48 · 1 ·
( 1

12q2
+ · · ·

)
3(q2 + · · · )

=
4
3 + · · · .

If instead e = 1, we have (sτ2)
y2 = (ξ1

a+b, ξ1
a, ξ1

b, ω2
;ωξ1

a+b); there are 144
conjugates of the form (ω2, ∗, ∗, ∗; ∗), where the value taken by θ (1)i000 is ζ̄−i , and
144 of the form (ω, ∗, ∗, ∗; ∗), where the value taken is ζ̄ i . Since

ζ̄−i
+ ζ̄ i

= 2 − 3ϵ3,+
i ,
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we obtain a contribution to the scalar product of

144(2 − 3ϵ3,+
i ) · 1 ·

( 1
36q2

+ · · ·
)

3(q2 + · · · )
=

8
3 − 4ϵ3,+

i + · · · .

Thus for all three values of e the extra nonnegligible part is 4
3(1 + e)− 4ϵ3,+

i . We
saw in Section 3.3.5 that the scalar product of 1Hm

G with the appropriate RT ,θ with
T = T(1) is 4q + 5 f + 4; dividing by three and adding twice the nonnegligible part
just found gives 4q3 + 5 f3 + 4 − 8ϵ3,+

i .
There are seven other pairs (ℓ, n) such that the geometric conjugacy class contains

a character RT ,θ with T = T(n) and the classes of type hℓτ3 contain elements whose
semisimple parts lie in the torus T(n). For (ℓ, n)= (31, 3) or (33, 5) we find that all
roots of unity concerned produce cancellation, so the nonnegligible part is 0 (these
are the two pairs where the classes meet the torus if e = −1). For the other five
pairs the calculations are very similar to the above: the extra nonnegligible part is
1
3(1 + e)− ϵ3,+

i times the coefficient of q + 1 in the value obtained in Section 3.3.5,
and it follows that the scalar product of 1Hm .3

G with the appropriate RT ,θ is obtained
from that value by replacing q + 1 by q3 + 1 − 2ϵ3,+

i and f by f3. Accordingly
the irreducible characters χ1

κ7,[i]
and χχ1,2

κ7,[i] have multiplicities in 1Hm .3
G equal to

q3 + f3 + 1 − 2ϵ3,+
i and q3 + 1 − 2ϵ3,+

i , respectively, while both χχ2,1
κ7,[i] and χχ−,3

κ7,[i]

have multiplicity f3.
Again the geometric conjugacy classes of type κ8 behave entirely similarly; here

we find that the irreducible characters χ1
κ8,[i]

and χχ1,2
κ8,[i] have multiplicities in 1Hm .3

G

equal to q3 + f3 − 1 + 2ϵ3,−
i and q3 − 1 + 2ϵ3,−

i , respectively, while both χχ2,1
κ8,[i]

and χχ−,3
κ8,[i] have multiplicity f3.

Finally the geometric conjugacy class κ1 may again be treated in similar fashion;
we find that the irreducible characters χ1,1

κ1
and χχ1,2,1

κ1 both have multiplicity 1
in 1Hm .3

G , while χ1,St
κ1

, χχ1,2,St
κ1 , χχ2,1,St

κ1 and χχ−,3,St
κ1 have multiplicities q3 + f3, q3,

f3 and f3, respectively.

4.3.3. The complete decomposition of 1Hm .3
G for m = 1, 3. Combining the multi-

plicities obtained above gives the complete decomposition of 1Hm .3
G for m = 1, 3

as follows.

Proposition 4.3. If G = F4(q) and Hm =
mD4(q) for m = 1, 3, the decomposition

of 1Hm .3
G into irreducible characters is

χφ1,0 +χφ9,2 +(q3 + f3)χφ′′

8,3
+q3χφ′′

8,9
+ f3χφ4,1 + f3χφ′′

2,4

+

{
χφ12,4 +χφ′′

9,6
+χφ′′

1,12
+χF4

II
[1]

if m = 1
χφ′

6,6
if m = 3

}
+χ1,1

κ1
+χ

χ1,2,1
κ1 +(q3+ f3)χ

1,St
κ1

+q3χ
χ1,2,St
κ1 + f3χ

χ2,1,St
κ1 + f3χ

χ−,3,St
κ1 (continues)
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+ (q3 + f3 −1)χSt,1
κ3

+χρ,1κ3
+(q3− f3+1)χSt,1

κ4
+χρ,1κ4

+

∑
[i]∈S7

(
(q3 + f3 +1−2ϵ3,+

i )χ1
κ7,[i]

+(q3 +1−2ϵ3,+
i )χ

χ1,2
κ7,[i] + f3χ

χ2,1
κ7,[i] + f3χ

χ−,3
κ7,[i]

)
+

∑
[i]∈S8

(
(q3 + f3 −1+2ϵ3,−

i )χ1
κ8,[i]

+(q3 −1+2ϵ3,−
i )χ

χ1,2
κ8,[i] + f3χ

χ2,1
κ8,[i] + f3χ

χ−,3
κ8,[i]

)
+

∑
[i]∈S9

(χ1,1
κ9,[i]

+(q3 + f3)χ
St,1
κ9,[i]

)+
∑

[i]∈S10

(χ1,1
κ10,[i]

+(q3 − f3)χ
St,1
κ10,[i]

)

+

∑
[(i, j)]∈S31

(q3 + f3 +1−2ϵ3,+
i− j )χ

1
κ31,[(i, j)]

+

∑
[(i, j)]∈S32

(q3 − f3 −1+2ϵ3,−
i− j )χ

1
κ32,[(i, j)]

+

∑
[i]∈S33

(q3 + f3 −1+2ϵ3,−
i )χ1

κ33,[i]
+

∑
[i]∈S34

(q3 − f3 +1−2ϵ3,+
i )χ1

κ34,[i]

+

∑
[i]∈S35

(q3 + f3 −2ϵ3,+
i )χ1

κ35,[i]
+

∑
[i]∈S36

(q3 − f3 +2ϵ3,−
i )χ1

κ36,[i]
.

Again we may now calculate the ranks of the actions; we obtain the following.

Corollary 4.4. The rank of the action of G = F4(q) on cosets of Hm .3 =
mD4(q).3

for m = 1, 3 is

1
9(q

4
+ q3

+ 13q2
+ 21q + 36) if m = 1 and e = 0 or 1,

1
9(q

4
+ q3

+ 13q2
+ 21q + 44) if m = 1 and e = −1,

1
9(q

4
+ q3

+ 4q2
+ 3q + 9) if m = 3 and e = 0 or 1,

1
9(q

4
+ q3

+ 4q2
+ 3q + 17) if m = 3 and e = −1.

4.4. The character 1H1.S3
G . We define

q6 =
1
6(q + 3d + 2e)=

1
3(q2 + d + e)=

1
2(q3 + d).

If we write 1H1
H1.S3 = 1 + ϵ + 2ρ where ϵ is linear and ρ has dimension 2, then

1H1.2
H1.S3 = 1 + ρ and 1H1.3

H1.S3 = 1 + ϵ, whence

1H1.S3
H1.S3 = 1H1.2

H1.S3 −
1
2(1H1

H1.S3 − 1H1.3
H1.S3);

inducing up from H1.S3 to G gives

1H1.S3
G

= 1H1.2
G

−
1
2(1H1

G
− 1H1.3

G).

It is therefore now easy to calculate the decomposition of 1H1.S3
G to be as follows.
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Proposition 4.5. If G = F4(q) and H1 = D4(q), the decomposition of 1H1.S3
G into

irreducible characters is

χφ1,0 +χφ9,2 + (q6 + 1)χφ′′

8,3
+ q6χφ′′

8,9
+χφ4,1 +χφ′′

2,4
+χφ12,4 +χφ′′

9,6

+ ϵ4χ1,1
κ1

+ ϵ4χ
χ1,2,1
κ1 + (q6 + ϵ4)χ1,St

κ1
+ q6χ

χ1,2,St
κ1 + ϵ4χ

χ2,1,St
κ1 + ϵ4χ

χ−,3,St
κ1

+ q6χ
St,1
κ3

+χρ,1κ3
+ q6χ

St,1
κ4

+

∑
[i]∈S7

(
(q6 + 2 − ϵ

3,+
i − 2ϵ2

i )χ
1
κ7,[i]

+ (q6 + 1 − ϵ
3,+
i − ϵ2

i )χ
χ1,2
κ7,[i]

+ (1 − ϵ2
i )χ

χ2,1
κ7,[i] + (1 − ϵ2

i )χ
χ−,3
κ7,[i]

)
+

∑
[i]∈S8

((q6 + ϵ
3,−
i )χ1

κ8,[i]
+ (q6 + ϵ

3,−
i − ϵ2

i )χ
χ1,2
κ8,[i] + ϵ

2
i χ

χ2,1
κ8,[i] + ϵ

2
i χ

χ−,3
κ8,[i] )

+

∑
[i]∈S9

((1 − ϵ2
i )χ

1,1
κ9,[i]

+ (q6 + 1 − ϵ2
i )χ

St,1
κ9,[i]

)+
∑

[i]∈S10

(ϵ2
i χ

1,1
κ10,[i]

+ (q6 − ϵ2
i )χ

St,1
κ10,[i]

)

+

∑
[(i, j)]∈S31

(q6 + 2 − ϵ
3,+
i− j − 2ϵ2

i, j )χ
1
κ31,[(i, j)]

+

∑
[(i, j)]∈S32

(q6 + ϵ
3,−
i− j − 2ϵ2

i, j )χ
1
κ32,[(i, j)]

+

∑
[i]∈S33

(q6 + ϵ
3,−
i − ϵ2

i )χ
1
κ33,[i]

+

∑
[i]∈S34

(q6 − ϵ
3,+
i − ϵ2

i )χ
1
κ34,[i]

+

∑
[i]∈S35

(q6 − ϵ
3,+
i )χ1

κ35,[i]
+

∑
[i]∈S36

(q6 − 1 + ϵ
3,−
i )χ1

κ36,[i]
.

Yet again we may now calculate the rank of the action; we obtain the following.

Corollary 4.6. The rank of the action of G = F4(q) on cosets of H1.S3 = D4(q).S3 is

1
36(q

4
+ q3

+ 28q2
+ 48q + 84) if d = 0 and e = 1,

1
36(q

4
+ q3

+ 28q2
+ 48q + 92) if d = 0 and e = −1,

1
36(q

4
+ q3

+ 28q2
+ 75q + 99) if d = 1 and e = 0,

1
36(q

4
+ q3

+ 28q2
+ 75q + 111) if d = 1 and e = 1,

1
36(q

4
+ q3

+ 28q2
+ 75q + 119) if d = 1 and e = −1.

5. Contribution to classification programs

In this final section we consider the part played by D4-type subgroups of F4(q)
in the classification programs mentioned in Section 1, namely those of primitive
actions which are multiplicity-free, or have all suborbits self-paired, or arise from
a distance-transitive graph. Recall that the primitive actions (in which the action
is on the cosets of a subgroup which is maximal) are those where the subgroup is
either D4(q).S3 or 3D4(q).3.
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5.1. Primitive multiplicity-free actions. From the decompositions of Section 4
we can see that the permutation character 1H

F4(q), where H is either D4(q).S3

or 3D4(q).3, is multiplicity-free if and only if q = 2. Indeed, the multiplicity of the
constituent χφ′′

8,3
in the former case is q6 + 1, which is greater than 1 for all q apart

from 2, and in the latter case is q3, which is greater than 1 for all q apart from 2, 3
and 5; if q is 3 or 5 the multiplicity of the constituent χ1

κ34,[1]
in the latter case is

q3 + 1, which is greater than 1.
However, if q = pa for some a> 1, the possibility arises of extending both F4(q)

and H by field automorphisms. Write φ for the field automorphism which for each
α ∈ 8 and λ ∈ k sends xα(λ) to xα(λp); then F4(q).⟨φ⟩ acts on cosets of H.⟨φ⟩,
and we have the corresponding permutation character 1H.⟨φ⟩

F4(q).⟨φ⟩. Given an
irreducible character χ of F4(q), there exist a′, a′′

≥ 1 with a = a′a′′ such that
applying φ fuses together a′ irreducible characters of F4(q) including χ and the
resulting character extends to a′′ distinct characters of the group F4(q).⟨φ⟩. If the
multiplicity of χ as a constituent of the permutation character 1H

F4(q) is greater
than a′′ (which in particular is true if it is greater than a), then at least one of the
extensions to F4(q).⟨φ⟩ must have multiplicity greater than 1 in 1H.⟨φ⟩

F4(q).⟨φ⟩.
We claim that, if q = pa with a > 1, then 1H.⟨φ⟩

F4(q).⟨φ⟩ is not multiplicity-free.
For most such values of q we may see this by again considering the multiplicity of
the constituent χφ′′

8,3
. Indeed, if H = D4(q).S3 we have q6 + 1> a for all q apart

from 4, 8 and 16, while if H =
3D4(q).3 we have q3 > a for all q apart from 4

and 8. We are therefore left with five pairs (H, q) to treat.
Two of these five pairs may be settled by considering a single constituent. If

H = D4(q).S3 and q = 16, the multiplicity in 1H
F4(q) of the constituent χ1

κ7,[3]
is

equal to q6 + 2 = 5> 4 = a. Likewise if H =
3D4(q).3 and q = 8, the multiplicity

in 1H
F4(q) of the constituent χ1

κ36,[1]
is equal to q3 + 2 = 4> 3 = a. Thus in neither

case is 1H.⟨φ⟩
F4(q).⟨φ⟩ multiplicity-free.

Another two may be settled by considering how φ fuses geometric conjugacy
classes. Suppose H = D4(q).S3 and q = 8; here the constituents χ1

κ8,[i]
for i =

1, 2, 4 all have multiplicity q6 + 1 = 2. However, these three characters are fused
by φ, because the semisimple classes corresponding to the geometric conjugacy
classes κ8,[i] for i = 1, 2, 4 contain elements (1, ξ2

i , ξ2
−i , 1; 1), and as φ squares

entries in root elements xα(λ), and therefore in torus elements (µ1, µ2, µ3, µ4; ν),
it fuses these semisimple classes; so a′

=3 and hence a′′
=1. Likewise suppose H =

3D4(q).3 and q = 4; here the constituents χ1
κ36,[i]

for i = 1, 2 both have multiplicity
q3 =2. However, these two characters are fused by φ, because the semisimple classes
corresponding to the geometric conjugacy classes κ36,[i] for i =1, 2 contain elements
(ξ6

i , ξ6
qi , ξ6

−(q−1)i , 1; ξ6
i ), and φ similarly fuses these semisimple classes; so a′

=2
and hence a′′

= 1. Thus in each case the single extension of the fused character has
multiplicity 2 in the permutation character 1H.⟨φ⟩

F4(q).⟨φ⟩.
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This leaves the pair where H = D4(q).S3 and q = 4. Here the rank is 29; there
are two constituents of multiplicity 2, namely χφ′′

8,3
and χ1

κ7,[1]
, and all other con-

stituents have multiplicity 1. There is therefore no fusion among the constituents of
multiplicity greater than 1; consequently the methods used until now are insufficient
to determine whether or not either multiplicity persists in 1H.⟨φ⟩

F4(q).⟨φ⟩. In this case
we refer to [17], which calculates (P, D4(q))-double cosets in F4(q) (where P is
the maximal parabolic subgroup whose Levi subgroup has derived group B3(q)),
and in fact concludes that if q> 2 then the action of F4(q) on the cosets of D4(q).S3

is never multiplicity-free, even if field automorphisms are applied.
(A word is in order regarding the relationship of the current article to [17]. As

stated in the very first paragraph here, the project on D4-type subgroups of F4(q)
is essentially a continuation of [15], which was published at the end of the previous
millennium. Almost all of the work on D4-type subgroups was completed more
than twenty years ago; in particular it became clear that something beyond the
character decompositions presented here was required to settle the case of the
preceding paragraph, and the double coset calculations of [17] were performed
to do this. However, some issues remained unresolved and the material ended up
being set aside. A few years ago the opportunity arose of publishing the double
coset material as a paper in its own right; but there seemed no prospect of applying
similar methods to treat the action on cosets of 3D4(q).3. More recently the issues
which had prevented publication of the work as a whole were finally resolved, and
the present article is the result; but [17] should really be regarded as an addendum
to it. The author apologizes for the inordinate delay in completing the project,
especially to those who have waited patiently for decades to see the results appear.)

Thus the only two primitive multiplicity-free actions here are those of F4(2) on
cosets of D4(2).S3 and 3D4(2).3. The first permutation character has rank 9 and
decomposition

χφ1,0 +χφ9,2 +χφ′′

8,3
+χφ4,1 +χφ′′

2,4
+χφ12,4 +χφ′′

9,6
+χ1

κ8,[1]
+χ

χ1,2
κ8,[1]

;

the constituents have degrees 1, 22932, 44200, 1377, 1105, 584766, 541450, 23205
and 1949220, respectively. The second has rank 7 and decomposition

χφ1,0 +χφ9,2 +χφ′

6,6
+χSt,1

κ4
+χρ,1κ4

+ +χ1
κ8,[1]

+χ
χ1,2
κ8,[1]

;

the constituents have degrees 1, 22932, 519792, 2165800, 541450, 23205 and
1949220, respectively.

For the remainder of the paper we take q = 2; we have G = F4(2), and we write
H = D4(2).S3 or 3D4(2).3. As T0 = {1} we may identify W with N .

5.2. Subdegrees and pairing of suborbits. We recall that in the action of G on
the left cosets of H , the suborbit containing the left coset gH is its orbit under the
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stabilizer H , and thus is the set of left cosets whose union is the (H, H)-double
coset HgH . The size of the suborbit is called the subdegree, and is equal to
|HgH |/|H | = |H |/|H ∩

gH |; the subgroup H ∩
gH consists of the elements of G

fixing both H and gH , and is known as the 2-point stabilizer. The sum of the
subdegrees is the index |G : H |. For any double coset HgH , the set of the inverses
of its elements is the double coset Hg−1 H ; the corresponding suborbits are said to
be paired, and if they are equal the suborbit is called self-paired.

Our goal here is to compute the subdegrees and show that all suborbits are
self-paired (for which the multiplicity-freeness of the permutation character is a
necessary condition).

As we shall be performing explicit calculations here, we need to know the exact
location of the subgroup H of G. In the case where H = D4(2).S3 this is immediate,
but in the other case where H =

3D4(2).3 it depends on the choice of the element g3,
which we recall was chosen to lie in A, commute with τ3 = n4n+−−− and satisfy
g3

F .g3
−1

= τ3. We begin with some comments which apply for any such choice
of g3, and in fact for all values of q .

Label the simple roots of G as

α1 = ϵ2 − ϵ3, α2 = ϵ3 − ϵ4, α3 = ϵ4, α4 =
1
2(ϵ1 − ϵ2 − ϵ3 − ϵ4);

then any root in 8 has the form
∑4

i=1 ciαi with all ci ∈ Z. We may partition 8
according to the pair of values (c1, c2), and write the corresponding equivalence
class as [c1c2]. Roots in the equivalence class [00] lie in the Ã2 subsystem 8(A).
There are two other types of equivalence class containing positive roots: each
of [10], [13] and [23] is a singleton class containing a long root; by contrast each
of [01], [11] and [12] is of size six, containing three short roots and three long
roots, with the union of the class with 8(A)∩8+ being the set of positive roots
of a C3 subsystem (and the corresponding six root subgroups of G all commute
with each other) — indeed in the case of [01] the C3 subsystem is 8(C). Taking
similarly negative roots (and writing −[c1c2] for [(−c1)(−c2)]), we see that the
‘nonzero’ equivalence classes effectively form a root system 8 of type G2, with
positive roots a = [01], b = [10], a+ b = [11], 2a+ b = [12], 3a+ b = [13] and
3a+ 2b = [23]. For each such r = [c1c2] ∈8 there is a root subgroup Ur in 3D4(q),
of order q3 or q according as r is short or long.

Now return to the case where q = 2. Take λ∈ F8 satisfying λ3
=λ+1. We choose

g3 = x4(λ)x+−−−(λ
6)x+−−+(λ

5)h4(λ
2)h+−−−(λ)n4n+−−−n4x4(λ

6)x+−−−(λ)x+−−+(λ
5);

a straightforward calculation in A shows that

g3
F

= τ3g3 = g3τ3,
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so that g3 commutes with τ3 and satisfies g3
F .g3

−1
= τ3. We then have

3D4(2)= (Hg3)F
= (H Fτ3)g3,

and the group H is obtained by adjoining ⟨τ3⟩ to 3D4(2).
For each short root r ∈ 8̄, we see that τ3 cycles both the three short roots and the

three long roots in r; if α ∈8 is one of the long roots, the corresponding elements
of H Fτ3 are xα(µ)xτ32(α)(µ

2)xτ3(α)(µ
4) for µ ∈ F8. Conjugation by g3 gives the

root subgroup Ur = {xr(t1, t2, t3) : t1, t2, t3 ∈ F2} in 3D4(q), where

xa(t1, t2, t3)= x3−4(t1)x3+4(t2)x1−2(t3)x+−+−(t1 + t2)x+−++(t1 + t3)x3(t2 + t3),

xa+b(t1, t2, t3)= x2−4(t1)x2+4(t2)x1−3(t3)x++−−(t1 + t2)x++−+(t1 + t3)x2(t2 + t3),

x2a+b(t1, t2, t3)= x1+4(t1)x1−4(t2)x2+3(t3)x++++(t1 + t2)x+++−(t1 + t3)x1(t2 + t3),

and x−r(t1, t2, t3) is obtained from xr(t1, t2, t3) by negating all roots. For each long
root r ∈8, the corresponding root α ∈8 is orthogonal to 8(A), whence the root
subgroup Uα < H commutes with both g3 and τ3; we therefore have the root
subgroup Ur = {xr(t) : t ∈ F2} in 3D4(q), where

xb(t)= x2−3(t), x3a+b(t)= x1+3(t), x3a+2b(t)= x1+2(t),

and x−r(t) is obtained from xr(t) by negating the root.
We may proceed as usual to obtain elements of the maximal torus of 3D4(2).

This is a cyclic subgroup ⟨s⟩ of A of order 7, where

s = x4(1)x+−−+(1)n+−−−n4x4(1),

s2
= x+−−−(1)x4(1)n4n+−−−n4,

s3
= x+−−−(1)x+−−+(1)n+−−−n4x+−−+(1),

s4
= x+−−+(1)n4n+−−−x+−−−(1)x+−−+(1),

s5
= n4n+−−−n4x4(1)x+−−−(1),

s6
= x4(1)n4n+−−−x4(1)x+−−+(1);

according as r ∈8 is short or long, the A1 subgroup ⟨Ur,U−r⟩ either contains ⟨s⟩
or intersects it trivially, and either

sxr(t1, t2, t3)= xr(t1 + t2, t1 + t2 + t3, t2) or sxr(t)= xr(t).

We also obtain elements nr ∈
3D4(q) for r ∈8, where

na = n3−4n3+4n1−2, nb = n2−3,

na+b = n2−4n2+4n1−3, n3a+b = n1+3,

n2a+b = n1+4n1−4n2+3, n3a+2b = n1+2;
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the subgroup N †
= ⟨nr : r ∈8⟩ = ⟨na, nb⟩ of N is dihedral of order 12 and is the

Weyl group of 3D4(q), and according as r ∈8 is short or long we have

nrs = s−1 or nrs = s.

Finally the effect of τ3 on all of these elements of 3D4(q) is as follows: it
commutes with each nr, and with xr(t) if r ∈8 is long; if r ∈8 is short then

τ3xr(t1, t2, t3)= xr(t3, t1, t2);

and
τ3s = s2.

5.2.1. The action of F4(2) on cosets of D4(2).S3. Here we take H = D4(2).S3.
There are 9 subdegrees |HgH |/|H |, and they sum to |G : H | = 3168256; we shall
prove the following.

Proposition 5.1. In the action of G = F4(2) on cosets of H = D4(2).S3, the
subdegrees are as given in Table 18, and all suborbits are self-paired.

In the calculations in this section we shall frequently use Bruhat decomposition
(see [3, Corollary 8.4.4]). Given n ∈ N , write Un =

∏
{Uα : α ∈8+, n(α) /∈8+

}

(recall that we identify W with N ). Then each element of G has a unique expression
in the form unv, where u ∈ U , n ∈ N and v ∈ Un; and unv ∈ H ⇐⇒ u, v ∈ H .

We shall work through the rows of Table 18 in turn. Taking g = 1 clearly gives
the suborbit HgH = H , and the subdegree is 1.

Take g = x1(1), x++++(1)x1(1) or x+++−(1)x++++(1)x1(1); then g2
= 1, so the sub-

orbit is self-paired. As g centralizes U ∩ H , given h = unv ∈ H we have h ∈
gH ⇐⇒

(unv)g ∈ H ⇐⇒ng
∈ H ⇐⇒ g−1.ng ∈ H . We have ng = xn(1)(1), xn(++++)(1)xn(1)(1)

g |H ∩
gH |

|HgH |

|H |

1 1045094400 1
x1(1) 2580480 405

x++++(1)x1(1) 172032 6075
x+++−(1)x++++(1)x1(1) 73728 14175

x++−−(1)x+−++(1) 10752 97200
x++−−(1)x+−++(1)x2(1) 1536 680400

x3(1)x++−−(1)x+−++(1)x2(1) 1536 680400
x4(1)x+−−+(1)n+−−+x4(1)x+−−−(1) 672 1555200

x3+4(1)x+−−−(1)x4(1)x3(1)x+−+−(1) 7776 134400
× n3+4n+−−+x4(1)x+−−+(1)x3+4(1)

3168256

Table 18. Suborbits and subdegrees for the action of F4(2) on cosets of D4(2).S3.
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or xn(+++−)(1)xn(++++)(1)xn(1)(1), respectively; thus g−1.ng ∈ H ⇐⇒
ng = g ⇐⇒

n preserves the set {1}, {++++, 1} or {+++−,++++, 1}, respectively. In the first case
this gives n ∈ ⟨n2−3, n3−4, n4⟩; so

H ∩
gH = ⟨U1±2,U1±3,U1±4⟩⟨U±(2−3),U±(3−4),U±(3+4)⟩⟨n4⟩,

of order 2q12(q2
− 1)(q3

− 1)(q4
− 1)= 2580480, and the subdegree is 405. In the

second case it gives n ∈ ⟨n2−3, n3−4, n+−−−⟩; so

H ∩
gH = ⟨U1±2,U1±3,U1±4,U2+3,U2+4,U3+4⟩⟨U±(2−3),U±(3−4)⟩⟨n+−−−⟩,

of order 2q12(q2
− 1)(q3

− 1)= 172032, and the subdegree is 6075. In the third
case it gives n ∈ ⟨n2−3, n4, n+−−−⟩; so

H ∩
gH = ⟨U1±2,U1±3,U1±4,U2±4,U3±4,U2+3⟩⟨U±(2−3)⟩⟨n4, n+−−−⟩,

of order 6q12(q2
− 1)= 73728, and the subdegree is 14175.

In the next few cases we shall find it helpful to define a symmetric relation on
the set of short roots in 8+: given such roots α and β, we say that α is related to β,
and write α ∼ β, if α+β is another short root in 8+.

Now take g = x++−−(1)x+−++(1); then g−1
= gn2−3n4 , so the suborbit is self-paired.

Given h = unv ∈ H we have h ∈
gH ⇐⇒ (unv)g ∈ H ⇐⇒ (gu)−1.n(vg) ∈ H . Here

g centralizes the root groups U1±2, U1±3, U1±4, U2+3, U2+4, U3−4; so conjugating
g by an element of U ∩ H gives an element of

x++−−(1)x+−++(1)U++−+U+++−U++++U1+4U1+3U1+2.

Thus if we write

S = {++−−,+−++,++−+,+++−,++++},

the condition (gu)−1.n(vg)∈ H forces n(++−−), n(+−++)∈ S. As the only instance
of roots in S being related is

++−− ∼ +−++,

we see that n must either fix or interchange ++−− and +−++; but if it interchanged
them then (gu)−1.n(vg) would involve x1(1) which is not in H , so n must fix them,
whence n ∈ ⟨n3−4, n2+4⟩. As v ∈ Un , any short root elements appearing in n(vg)
apart from those in g must lie in root subgroups Uα for α of height less than that of
++−− or +−++, whereas any short root elements appearing in (gu)−1 apart from
those in g must lie in root subgroups Uα for α of height greater than that of ++−−

or +−++; so both u and v must centralize g. Therefore we have

H ∩
gH = ⟨U1±2,U1±3,U1±4⟩⟨U±(3−4),U±(2+4)⟩,

of order q9(q2
− 1)(q3

− 1)= 10752, and the subdegree is 97200.
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Now take g = x++−−(1)x+−++(1)x2(1); then g−1
= gn+−−− , so the suborbit is

self-paired. Given h = unv ∈ H we again have h ∈
gH ⇐⇒ (unv)g ∈ H ⇐⇒

(gu)−1.n(vg) ∈ H . Here g centralizes the root groups U1+2, U1±3, U1±4, U2+3,
U2+4, U3−4; so conjugating g by an element of U ∩ H gives an element of

x++−−(1)x+−++(1)x2(1)U++−+U+++−U++++U1U1+4U1+3U1+2.

Thus if we write

S = {++−−,+−++, 2,++−+,+++−,++++, 1},

the condition (gu)−1.n(vg) ∈ H forces n(++−−), n(+−++), n(2) ∈ S. As the only
instances of roots in S being related are

++−− ∼ +−++ ∼ 2,

we see that n must fix +−++, and either fix or interchange ++−− and 2; thus
n ∈ ⟨n3−4, n+−−−⟩, and as v ∈ Un ∩ H we must have v ∈ U3−4 so that v centralizes g.
If n ∈⟨n3−4⟩ then n also centralizes g, as then must u; if instead n ∈n+−−−⟨n3−4⟩ then
as x1−2(1)x3+4(1)n+−−− centralizes g we see that x1−2(1)x3+4(1)u must. Therefore
we have

H ∩
gH = ⟨U1+2,U1±3,U1±4,U2+3,U2+4, x1−2(1)x3+4(1)n+−−−⟩⟨U±(3−4)⟩,

of order q9(q2
− 1)= 1536, and the subdegree is 680400.

Now take g = x3(1)x++−−(1)x+−++(1)x2(1); then g−1
= gn2−3n4 , so the suborbit

is self-paired. Given h = unv ∈ H we again have h ∈
gH ⇐⇒ (unv)g ∈ H ⇐⇒

(gu)−1.n(vg) ∈ H . Here g centralizes the root groups U1+2, U1+3, U1±4, U2+3,
U2+4, U3−4, while its commutator with x1−2(1)x1−3(1) is x1+3(1)x1+2(1); so con-
jugating g by an element of U ∩ H gives an element of

x3(1)x++−−(1)x+−++(1)x2(1 + t)x++−+(t)U+++−U++++U1U2+3U1+4U1+3U1+2,

where the projection of the element of U ∩ H on the root group U2−3 is x2−3(t).
Thus if we write

S = {3,++−−,+−++, 2,++−+,+++−,++++, 1},

the condition (gu)−1.n(vg) ∈ H forces n(3), n(++−−), n(+−++), n(α) ∈ S, where
α is 2 or ++−+ according as the projection of v on the root group U2−3 is trivial or
not. As the only instances of roots in S being related are

++−+ ∼ 3 ∼ ++−− ∼ +−++ ∼ 2,

if α is 2 the chain n(3), n(++−−), n(+−++), n(2) must be 3,++−−,+−++, 2 or
its reverse, or ++−+, 3,++−−,+−++ or its reverse, while if α is ++−+ the same
must be true of the chain n(++−+), n(3), n(++−−), n(+−++). In each case this
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uniquely determines n, which we find lies in ⟨n2−3, n4, n+−−−⟩; as v ∈ Un this
forces v ∈ U2−3. If α is 2 we must then have v = 1; if however α is ++−+ we must
then have v = x2−3(1), which eliminates two of the four possibilities since they
have n ∈ ⟨n4, n+−−−⟩. There are therefore six possibilities for n, and for each we
may find an element u giving (gu)−1.n(vg) ∈ H : for example, if n = n2−3n4 then
v = 1 and we may take u = x1−3(1)x2−4(1)x3+4(1), while if n = n2−3n+−−−n4 then
v = x2−3(1) and we may take u = 1. Therefore we have

H ∩
gH = ⟨U1+2,U1+3,U1±4,U2+3,U2+4,U3−4, x1−2(1)x1−3(1)⟩

.⟨x1−3(1)x2−4(1)x3+4(1)n2−3n4, n2−3n+−−−n4x2−3(1)⟩,

of order 6q8
= 1536, and the subdegree is 680400. Note that the center of the

2-point stabilizer here is trivial, while that of the 2-point stabilizer in the previous
case is U1+2; so the two suborbits must be distinct.

At this point we note that the remaining two subdegrees sum to 1689600, and
of course each divides |H | = 21336527. It is now a simple matter to determine
the pairs of factors of |H | with the correct sum (the larger must lie in the range
[844800, 1689600), so given each of the 42 possibilities for the powers of 3, 5
and 7 there is at most one for the power of 2): we find they are (1658880, 30720),
(1382400, 307200), (1555200, 134400), (860160, 829440), (1075200, 614400)
and (1612800, 76800). (In fact by using [29, Theorem 30.1(C)] we could reduce
this list of six pairs to the third and fifth, but we shall see that this is unnecessary.)

Now take g = x4(1)x+−−+(1)n+−−+x4(1)x+−−−(1); then g−1
= gn4, so the suborbit

is self-paired. Since g ∈ A it is immediate that g commutes with ⟨U±(2−3),U±(1+3)⟩,
and it certainly commutes with its square n4; moreover calculation in C shows that
(n1−2n3−4n3+4)

g
= n1−2n3. Thus we have

H ∩
gH ≥ ⟨U±(2−3),U±(1+3)⟩⟨n1−2n3−4n3+4, n4⟩,

of order 4q3(q2
−1)(q3

−1)= 672, and the subdegree divides 1555200. Since none
of the (nontrivial) 2-point stabilizers found to date contains a group A2(q) with a
graph automorphism, the suborbit is one of the remaining two; as the only one of the
twelve possible subdegrees given in the previous paragraph which divides 1555200
is 1555200 itself, we have equality in the previous sentence in both the 2-point
stabilizer and the subdegree; moreover the remaining subdegree must be 134400,
so the 2-point stabilizer must be of order 7776.

For the final suborbit take

g = x3+4(1)x+−−−(1)x4(1)x3(1)x+−+−(1)n3+4n+−−+x4(1)x+−−+(1)x3+4(1);

then g2
= 1, so the suborbit is self-paired. Clearly g commutes with ⟨U±(1+2)⟩;

calculation shows that g also commutes with n4, and that conjugation by g multiplies
x1−2(1)x3−4(1)x3+4(1) by n4, and it sends n+−−− to x3−4(1)n3−4n3+4x3+4(1), and
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x2−3(1)x2−4(1)x2+4(1)x1−3(1)x1+3(1) to x2−3(1)x2+3(1)x1−4(1)x1+4(1)x1+3(1).
As g has order 2, it follows that each of these elements lies in H∩

gH . The last two of
them generate a quaternion group of order 8 with center U1+2; adding n1+2 extends
it to a group PSU3(2) of order 72. The group generated by x3−4(1)n3−4n3+4x3+4(1)
and its images under ⟨n4, n+−−−⟩ is Z3×Z3 of order 9; adding x1−2(1)x3−4(1)x3+4(1)
extends it to (Z3 × Z3).2 of order 18, and this group normalizes PSU3(2). The
group ⟨n4, n+−−−⟩ commutes with PSU3(2) and normalizes (Z3 ×Z3).2, so we have
a group of order 72 ·18 ·6 = 7776. Since none of the (nontrivial) 2-point stabilizers
found to date has order divisible by 7776, the suborbit is indeed the remaining one.
As conjugation by x1−2(1)x3−4(1)x3+4(1) takes the first generator of the quaternion
group to the inverse of the second, we have

H ∩
gH = ⟨x2−3(1)x2−4(1)x2+4(1)x1−3(1)x1+3(1), n1+2,

x3−4(1)n3−4n3+4x3+4(1), x1−2(1)x3−4(1)x3+4(1), n4, n+−−−⟩,

of order 7776, and the subdegree is 134400.
This concludes the proof of Proposition 5.1.

5.2.2. The action of F4(2) on cosets of 3D4(2).3. Here we take H =
3D4(2).3.

There are 7 subdegrees |HgH |/|H |, and they sum to |G : H | = 5222400; we shall
prove the following.

Proposition 5.2. In the action of G = F4(2) on cosets of H =
3D4(2).3, the

subdegrees are as given in Table 19, and all suborbits are self-paired.

In the calculations in this section we shall again use Bruhat decomposition, but
here we shall require a slightly different form. First set

UA = U ∩ A =
∏

{Uα : α ∈8+
∩8(A)}, U ′

=
∏

{Uα : α ∈8+
\8(A)};

then U = UAU ′
= U ′UA and UA ∩ U ′

= {1}. Next recall that we have the Weyl
groups WA and WH , with W = WAWH = WH WA and WA ∩WH = {1}. Now given

g |H ∩
gH |

|HgH |

|H |

1 634023936 1
x+++−(1)x++++(1)x1(1) 36864 17199

n+−−+ 36288 17472
x+++−(1)x++++(1)x1(1)n+−−+ 576 1100736

x++−−(1)x+−++(1) 768 825552
x4(1)n3−4 216 2935296

x1−2(1)x4(1)n3−4 1944 326144

5222400

Table 19. Suborbits and subdegrees for the action of F4(2) on cosets of 3D4(2).S3.
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an element of N = W we may write it uniquely as n An with n A ∈ WA, n ∈ WH ; as
before we have Un An =

∏
{Uα : α ∈8+, n An(α) /∈8+

}. Set

(Un An)A =
∏

{Uα : α ∈8+, n An(α) /∈8+, n(α) ∈8(A)},

(Un)
′
=

∏
{Uα : α ∈8+, n An(α) /∈8+, n(α) /∈8(A)}

=
∏

{Uα : α ∈8+, n(α) /∈8+
∪8(A)}

(where the final line justifies the notation (Un)
′); then Un An = (Un An)A(Un)

′
=

(Un)
′(Un An)A and (Un An)A ∩ (Un)

′
= {1}. Standard Bruhat decomposition now

shows that any element of G may be uniquely written as (uu A)(n An)(vAv) with
u ∈ U ′, u A ∈ UA, n A ∈ WA, n ∈ WH , vA ∈ (Un An)A and v ∈ (Un)

′; setting a =

u An A
nvA ∈ A we see that the element may be written as uanv with u ∈ U ′, a ∈ A,

n ∈ WH and v ∈ (Un)
′.

To see that this last expression is unique, suppose we have uanv = ûân̂v̂ with
u, û ∈ U ′, a, â ∈ A, n, n̂ ∈ WH and v, v̂ ∈ (Un)

′. Writing the left side in standard
Bruhat decomposition gives an expression (uu A)(n An)(vAv), where u A ∈ U ∩ A,
n A ∈ WA and vA ∈ Un An; doing the same with the right side and using uniqueness
of standard Bruhat decomposition we see that uu A = ûû A ∈ U and n An = n̂ An̂ ∈ N ,
and then the factorizations of the previous paragraph give u = û and n = n̂.
Therefore anv = ânv̂, so â−1a = nv̂v−1n−1; the left side here is in A and the
right side is in n(Un)

′, which is a product of negative root subgroups each lying
outside A, so both sides must be the identity, whence a = â and v= v̂. We therefore
have uniqueness in the expression uanv. Since by [3, Proposition 13.5.3] each
element of H may be written in the form u1si n1v1τ3

j
= u1siτ3

j n1v1
τ3

j
, where

u1 ∈ U ∩ H < U ′, siτ3
j
∈ A ∩ H , n1 ∈ N † < WH and v1

τ3
j
∈ Un1 ∩ H < (Un1)

′,
we see that uanv ∈ H ⇐⇒ u, a, n, v ∈ H .

In some cases our approach will require the following. We have the Weyl
group WC of C , and |W : WC |= 24. Recall from [3, Theorem 2.5.8, Corollary 2.5.9]
that there is a set of right coset representatives of WC in W , each of which is of
minimal length in its coset; we shall call these n(1), . . . , n(24). (Note that [3] uses
left cosets instead of right cosets, so our elements are the inverses of those there.)
Likewise we have |WH : WH ∩ WC | = 24, where WH ∩ WC is the Weyl group
of H ∩ C , which is a Levi subgroup of H of type A1

3; if we regard ϵ1 −ϵ2, ϵ2 −ϵ3,
ϵ3 − ϵ4, ϵ3 + ϵ4 as simple roots of H then again we have coset representatives
of WH ∩ WC in WH of minimal length, which we shall call n(1)′, . . . , n(24)

′. We
choose notation such that for all j we have n( j)

′
∈ WCn( j).

Now as N †
∩ WC = ⟨na⟩ we have |N †

: N †
∩ WC | = 6, so that just six of the

cosets WCn( j) contain elements of N †; write J = { j ≤ 24 : N †
∩WCn( j) ̸=∅}. The

elements n( j)
′ for j ∈ J are 1, nb, nbna, na+b, na+bna, n3a+2b, each of which in fact

lies in N †; we have n( j)
′
= n( j) in the first, second, fifth and sixth of these cases
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and n( j)
′
= n+−−+n( j) in the third and fourth. As roots in 8(A) are either fixed or

negated by elements of N †, we see that for j ∈ J we have either Un( j) ′ = Un( j) or
Un( j) ′ = UAUn( j) , whence in either case (Un( j) ′)

′
= Un( j) .

Write P = UC , so that P is a maximal parabolic subgroup of G. For each j ≤ 24
we have Pn( j) = Pn( j)

′; moreover G is the disjoint union of the double cosets
Pn( j)U for j ≤ 24, and for fixed j the double coset Pn( j)U is the disjoint union of
the cosets Pn( j)v as v runs through Un( j) . Given such a coset Pn( j)v, if j ∈ J and
v ∈ H then evidently the coset meets H ; we claim that the converse is also true.

Thus suppose we have h ∈ Pn( j)v ∩ H , and as above write h = uanv0 with
u ∈ U ′

∩ H , a ∈ A ∩ H , n ∈ N † and v0 ∈ (Un)
′
∩ H ; then Pn( j)v = Ph = Pnv0,

so n ∈ WCn( j) = WCn( j)
′, whence j ∈ J and n is either n( j)

′ or nan( j)
′. In the

former case we have v0 ∈ (Un( j) ′)
′
= Un( j) , so as Pn( j)v = Pn( j)

′v0 = Pn( j)v0

we must have v = v0 ∈ H as required. In the latter case we have v0 ∈ (Unan( j) ′)
′,

and we may write nv0 = nan( j)
′v0 = nav1.n( j)

′v2, where v1 ∈
∏
α∈[01]

Uα < P and
v2 ∈ (Un( j) ′)

′
= Un( j) ; as v1

n( j)
′

.v2 = v0 ∈ H and the sets of roots involved in v1
n( j)

′

and v2 are disjoint, both v1 and v2 must lie in H . Thus

Pn( j)v = Pnv0 = Pn( j)
′v2 = Pn( j)v2

with v2 ∈ Un( j) , so we must have v = v2 ∈ H as required. We have thus shown
that the converse is indeed true; we shall use this in some of the arguments in this
section.

We shall work through the rows of Table 19 in turn. Taking g = 1 clearly gives
the suborbit HgH = H , and the subdegree is 1.

Take g = x+++−(1)x++++(1)x1(1); then g2
= 1, so the suborbit is self-paired. As g

centralizes U ∩ H , given h = uanv ∈ H we have h ∈
gH ⇐⇒ (uanv)g ∈ H ⇐⇒

(an)g ∈ H ⇐⇒ (ga)−1.ng ∈ H . We have ng = xn(+++−)(1)xn(++++)(1)xn(1)(1),
while τ3 and g commute and ⟨s⟩ acts simply transitively on U+++−U++++U1 \ {1};
thus (ga)−1.ng ∈ H ⇐⇒ ga

=
ng = g ⇐⇒ a ∈ ⟨τ3⟩ and n preserves the set

{+++−,++++, 1}, which forces n ∈ ⟨nb⟩. So

H ∩
gH = ⟨U ∩ H, nb⟩⟨τ3⟩,

of order 3q12(q2
− 1)= 36864, and the subdegree is 17199.

Take g = n+−−+; then g2
= 1, so the suborbit is self-paired. As g preserves U ′, A

and N †, given h = uanv ∈ H we have h ∈
gH ⇐⇒ (uanv)g = ugagngvg

∈ H ⇐⇒

ug, ag, ng, vg
∈ H . For all n ∈ N † we have ng

= n; calculation shows that sg /∈ H ,
while (τ3)

g
= τ3

−1; and given r ∈8, if r is long then g commutes with Ur, while if r
is short then g preserves the set of roots α lying in r, and Ur

g
∩ H = ⟨xr(1, 1, 1)⟩. So

H ∩
gH = ⟨Ub,U−b, xa(1, 1, 1), x−a(1, 1, 1)⟩⟨τ3⟩,

of order 3q6(q2
− 1)(q6

− 1)= 36288, and the subdegree is 17472.



332 R. LAWTHER

Now take g = x+++−(1)x++++(1)x1(1)n+−−+; then g2
= 1, so the suborbit is self-

paired. Write g′
= x+++−(1)x++++(1)x1(1); using the comments of the previous

two paragraphs about g′ and n+−−+ centralizing and inverting certain elements,
we see that given h = uanv ∈ H we have h ∈

gH ⇐⇒ (uanv)g ∈ H ⇐⇒

(un+−−+)g′(an+−−+)ng′vn+−−+ ∈ H , with (un+−−+)g′
∈ U ′ and an+−−+ ∈ A. If

n(1) /∈ 8+ then as n ∈ N † and g′vn+−−+ ∈ (Un)
′ the expression is in the desired

form; if instead n(1) ∈8+ we rewrite it as

(un+−−+)g′(xn(+++−)(1)xn(++++)(1)xn(1)(1))a
n+−−+

.an+−−+ .n.vn+−−+ .

In either case the element of A is an+−−+ ; for this to be in H we require a ∈ ⟨τ3⟩,
so an+−−+ ∈ ⟨τ3⟩. Now observe that if r ∈8 is a short root, then in each element
of Ur the sum of the coefficients in the three short root subgroups is 0, and n+−−+

permutes these coefficients. Thus g′vn+−−+ cannot lie in H , so if n(1) /∈ 8+

we cannot have (uanv)g ∈ H ; assuming n(1) ∈ 8+ we have (uanv)g ∈ H ⇐⇒

un+−−+ g′(xn(+++−)(1)xn(++++)(1)xn(1)(1))a
n+−−+

, vn+−−+ ∈ H , and the first of these
implies that n preserves the set {+++−,++++, 1}, which forces n ∈ ⟨nb⟩. It now
follows that

H ∩
gH = ⟨xa(1, 1, 1), xa+b(1, 1, 1), x2a+b(1, 1, 1)⟩U3a+bU3a+2b⟨U±a⟩⟨τ3⟩,

of order 3q6(q2
− 1)= 576, and the subdegree is 1100736.

Now take g = x++−−(1)x+−++(1); then g−1
= gxa+b(0,1,1), so the suborbit is self-

paired. Given h =uanv∈ H we have h ∈
gH ⇐⇒ (uanv)g ∈ H ⇐⇒ (gua)−1(n(vg))∈

H . Here g centralizes the root groups U2a+b,U3a+b,U3a+2b; so conjugating g by
an element of U ∩ H gives an element of

x++−−(1)x+−++(1)U++−+U+++−U++++U1U1+4U1+3U1+2.

Thus the projection of vg on the product of the root groups Uα for α ∈ a or for
α ∈ a+ b involves short root elements but no long root elements; so the condition
(gua)−1(n(vg)) ∈ H forces n ∈ N † to send both a and a+ b to positive roots in
8, whence n ∈ ⟨nb⟩ and so v ∈ Ub. A straightforward calculation shows that
h′

= xa+b(1, 0, 1)xb(1)nbs2τ3 ∈ H ∩
gH . Thus if n = nb, according as v = 1 or

v = xb(1) we may multiply h on the right by h′−1 or h′ to reduce to the case where
n = 1; so we may assume (gua)−1g ∈ H . The projection of gu on the product of
the root groups whose roots lie in a is x+−++(1), which thus must be centralized
by a; this forces a ∈ {1, s3τ3, s2τ3

2
}. Likewise the projection of gu on the product

of the root groups whose roots lie in a+ b is either x++−−(1) or x++−−(1)x++−+(1);
since conjugating each of these by either s3τ3 or s2τ3

2 gives a term x2(1), we must
have a = 1, so (gu)−1g ∈ H . After calculation in U ∩ H it now follows that

H ∩
gH = {xa(t1, t2, t3)xa+b(t2 + t3, t1 + t2, t1) : ti ∈ F2}U2a+bU3a+bU3a+2b

.⟨xa+b(1, 0, 1)xb(1)nbs2τ3⟩,
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of order 3q8
= 768, and the subdegree is 825552.

Finally take g = x4(1)n3−4 or x1−2(1)x4(1)n3−4; then g−1
= gxa(0,0,1), so the

suborbit is self-paired. Here we shall use the approach involving cosets of P . Take
h = uanv ∈ H as usual and consider (uanv)g ∈ (Pnv)g = Pnvn3−4x3(1)x1−2(δ)

where δ = 0 or 1. If v involves the term x3−4(1) we must have either n ∈ ⟨na⟩nbna

or n ∈ ⟨na⟩na+bna. In the former possibility we have v = xa(1, t2, t3)x3a+b(t4) for
some ti ∈ F2: conjugating each term in v other than x3−4(1) by n3−4 and using the
relation n3−4x3−4(1)n3−4 = x3−4(1)n3−4x3−4(1) gives the coset

Pn2−3n1−2n3+4x3−4(1)n3−4x3−4(1)x3+4(t2)x1−2(t3)

× x+−−+(1 + t2)x+−++(1 + t3)x4(t2 + t3)x1+4(t4)x3(1)x1−2(δ);

now moving all possible terms to the left gives

Pn2−3n1−2n3+4n3−4x3−4(1)x3+4(t3)x1−2(1 + t2 + t3 + δ)

× x+−+−(1 + t2)x+−++(1 + t2t3)x3(1 + t2 + t3)x1+3(t4).

The sum of the coefficients in the three short root subgroups is 1 + t2t3 + t3, which
is 0 only when t3 = 1 and t2 = 0; but then the sum of the coefficients in the three root
subgroups U3−4, U3+4 and U+−+− is not 0. Thus the product of the root elements with
roots in a does not lie in H , so the coset Pnvn3−4x3(1) contains no elements of H .
In the latter possibility we have v = xa(1, t2, t3)x2a+b(t4, t5, t6)x3a+b(t7)x3a+2b(t8)
for some ti ∈ F2; although the expression is more complicated, the above approach
gives on the right the same root elements with roots in a, and thus yields the same con-
clusion. Thus we may assume that v does not involve the term x3−4(1), so the coset
is Pnn3−4(v

n3−4)x3(1)x1−2(δ). Unless n ∈ ⟨na⟩ or ⟨na⟩n3a+2b we see that nn3−4

is an element n( j)
′ for some j /∈ J , so again the coset contains no elements of H ;

we have therefore reduced to the possibilities where n ∈ {1, na, n3a+2b, nan3a+2b}.
From now on we treat the two cases δ = 0 and δ = 1 separately, although we shall
see that there are considerable similarities between them.

First assume δ = 0, so that g = x4(1)n3−4. If n = 1 then v = 1; a straightforward
calculation shows that {ua : (ua)g ∈ H} is

Q = ⟨xb(1)xa+b(1, 1, 1)x2a+b(0, 0, 1), xa+b(1, 0, 0)x2a+b(1, 0, 1)x3a+b(1)⟩,

a quaternion group with center U3a+2b. If n = na we obtain two further cosets of Q,
containing the element h0 = xa(1, 1, 1)snaxa(0, 1, 1) and its inverse (note that h0

has order 3, and centralizes Q). If n = n3a+2b then as g ∈ C it commutes with n, so
we obtain all elements q1nq2 with q1, q2 ∈ Q. Finally if n = nan3a+2b we obtain
all elements h0

±1q1nq2. Thus

H ∩
gH =

〈
xb(1)xa+b(1, 1, 1)x2a+b(0, 0, 1), xa+b(1, 0, 0)x2a+b(1, 0, 1)x3a+b(1),

xa(1, 1, 1)snaxa(0, 1, 1), n3a+2b

〉
,
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of order q3(q2
− 1)(q3

+ 1)= 216, and the subdegree is 2935296.
Now assume δ = 1, so that g = x1−2(1)x4(1)n3−4. Here we first note that

(xa(0, 1, 1)s3τ3)
g

= s3τ3, so it suffices to work in 3D4(2). If n = 1 then v = 1; a
straightforward calculation shows that {usi

: (usi )g ∈ H} is

Q = ⟨xb(1)xa+b(0, 0, 1)x2a+b(0, 0, 1), xa+b(1, 1, 0)x2a+b(0, 1, 0)x3a+b(1)⟩,

a quaternion group with center U3a+2b. If n = na we obtain eight further cosets
of Q, containing the element h0 = xa(1, 0, 0)naxa(0, 1, 0) and its powers (note
that h0 has order 9, and normalizes Q). If n = n3a+2b then as g ∈ C it commutes
with n, so we obtain all elements q1nq2 with q1, q2 ∈ Q. Finally if n = nan3a+2b

we obtain all elements h0
i q1nq2 for 1 ≤ i ≤ 8. Thus

H ∩
gH =

〈
xb(1)xa+b(0, 0, 1)x2a+b(0, 0, 1), xa+b(1, 1, 0)x2a+b(0, 1, 0)x3a+b(1),

xa(1, 0, 0)naxa(0, 1, 0), n3a+2b

〉
⟨xa(0, 1, 1)s3τ3⟩,

of order 9q3(q2
− 1)(q3

+ 1)= 1944, and the subdegree is 326144.
This concludes the proof of Proposition 5.2.

5.3. Distance-transitive graphs. We recall further that in the action of G on the
left cosets of a maximal subgroup H , given a self-paired suborbit corresponding
to a double coset HgH which is not simply H itself, we may obtain a graph as
follows: the vertices are the left cosets g′H for g′

∈ G, and there is an edge between
the vertices g′H and g′′H if and only if g′−1g′′

∈ HgH (note that this makes sense
because the suborbit is self-paired). The graph is regular, of valency |HgH |/|H |;
it is connected as H is a maximal subgroup of G; and G acts transitively on it.

If we consider the vertex H itself, the vertices at distance 1 from H are the cosets
lying in HgH , those at distance 2 from H are those lying in HgHgH which are
not at distance 0 or 1, and so on. Writing r for the rank of the action, the graph
is distance-transitive if, for each i < r , the left cosets at distance i from H form a
single suborbit; in this case we may order the subdegrees k0, k1, . . . , kr−1 so that the
number of left cosets at distance i from H is ki (so that k0 =1, and k1 =|HgH |/|H |).

Our goal here is to show that for no choice of suborbit HgH the graph is distance-
transitive. To do this we shall make use of [2, Proposition 5.1.1], which among other
things implies the following: if the graph as above is distance-transitive with r ≥ 4,

(i) there exist h, l with 1 ≤ h ≤ l ≤ r − 1 such that 1 < k1 < · · · < kh = · · · =

kl > · · ·> kr−1, and

(ii) if i < j and i + j ≤ r − 1 then ki ≤ k j .

5.3.1. The action of F4(2) on cosets of D4(2).S3. Here we take H = D4(2).S3. We
have r = 9; our result is the following.
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Proposition 5.3. The action of G = F4(2) on cosets of H = D4(2).S3 gives rise to
no distance-transitive graph.

Proof. Suppose the statement is false. The smallest nontrivial subdegree is 405,
corresponding to the suborbit HgH where g = x1(1). If we had k1 = 405 then
HgHgH would contain only one double coset other than H or HgH ; but we have

x1(1)x++++(1)= g.n+−−−.g.n+−−− ∈ HgHgH
and

x++−−(1)x+−++(1)= n+−++.g.n+−++n++−−.g.n++−− ∈ HgHgH,

and the two left-hand sides lie in the double cosets corresponding to subdegrees 6075
and 97200. Thus by (i) above we must have k8 = 405. The next smallest subdegree
is 6075, corresponding to the suborbit HgH where g = x1(1)x++++(1). By (ii)
above we cannot have k7 = 6075 as this would force k1 > k7, so by (i) above we
must have k1 = 6075; but

x1(1)= n+−++x−3−4(1).g.x−3−4(1).g.x1+2(1)n+−++ ∈ HgHgH,

so that x1(1)H would be at distance 2 from H instead of 8. This contradiction
proves the result. □

5.3.2. The action of F4(2) on cosets of 3D4(2).3. Here we take 3D4(2).3. We have
r = 7; our result is the following.

Proposition 5.4. The action of G = F4(2) on cosets of H =
3D4(2).3 gives rise to

no distance-transitive graph.

Proof. Suppose the statement is false. The smallest nontrivial subdegree is 17199,
corresponding to the suborbit HgH where g = x+++−(1)x++++(1)x1(1); as al-
ready mentioned, ⟨s⟩ acts simply transitively on U+++−U++++U1 \ {1}, and indeed
gs2

= x1(1). We have x3(1)= x1(1)nanb ∈ HgH , and then

n3−4 = x−a(1, 1, 1)s.x3(1).xa(1, 1, 1)nasxa(1, 1, 1) ∈ HgH ;

thus n4(1)n3−4 = n3−4n3(1) ∈ HgHgH . It follows that if we had k1 = 17199
then we would have k2 = 2935296; but this is the largest subdegree, so we would
have k2 > k3, contrary to (ii) above. Thus by (i) above we must have k6 = 17199.
The next smallest subdegree is 17472, corresponding to the suborbit HgH where
g = n+−−+. By (ii) above we cannot have k5 = 17472 as this would force k1 > k5,
so by (i) above we must have k1 = 17472; but

x+++−(1)x++++(1)x1(1)= s5τ3.g.x2a+b(0, 0, 1).g.x2a+b(1, 0, 0)τ3
2s2

∈ HgHgH,

so that x+++−(1)x++++(1)x1(1)H would be at distance 2 from H instead of 6. This
contradiction proves the result. □
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AND CATALAN NUMBERS

GEORGE LUSZTIG AND ERIC SOMMERS

Dedicated to the memory of Gary Seitz

We establish a connection between constructible representations (arising in
the study of left cells in Weyl groups) and Catalan numbers.

0. Introduction

0.1. The sequence of Catalan numbers is the sequence Catn , n = 1, 2, 3, . . . , where
Catn = (2n)!/(n!(n + 1)!). According to [3], Catalan numbers first appeared in the
work of Ming Antu (1692–1763). They were rediscovered by Euler (1707–1783).
See also [13].

In this paper we give a new way in which Catalan numbers appear in connection
with Lie theory.

0.2. Let G be a connected reductive algebraic group of adjoint type over C whose
Weyl group W is assumed to be irreducible. Let Ŵ be the set of (isomorphism
classes of) irreducible representations (over Q) of W .

In [4], a partition of Ŵ into subsets called families was defined and in [6]
a class of not necessarily irreducible representations (later called constructible
representations, see [9]) of W with all components in a family c (which we now
fix) was defined by an inductive procedure. Let Con(c) be the set of constructible
representations (up to isomorphism) attached to c. In [6] it was conjectured that
the representations in Con(c) are precisely the representations associated in [2] to
the various left cells of W contained in the two-sided cell of W defined by c; this
conjecture was proved in [7]. It is known that |c| = 1 if W is of type A, |c| =

(D+1
D/2

)
(with D ∈ 2N) if W is of type B, C or D, and |c| is one of 1, 2, 3, 4, 5, 11, 17 if W
is of exceptional type.

0.3. We would like to find an explicit formula for |Con(c)|.
If |c| is one of 1, 2, 3, 4, 5, 11, 17 then |Con(c)| is 1, 1, 2, 2, 3, 5, 7 respectively.
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In the remainder of this paper we assume that:

(a) |c| =

( D+1
D/2

)
with D = 2d ∈ 2N.

In Section 1 we prove the following result.

Theorem 0.4. We have |Con(c)| = Catd+1.

It is known (see [12, §2.13]) that if W is of type D then |Con(c)| = |Con(c′)|

for some family c′ in a Weyl group of type B or C . We will therefore assume in
the rest of the paper that W is of type B or C .

0.5. According to [1, Corollary 4], we have

(a) Catn =

n∑
p=1

N (n, p)

where
N (n, p) =

1
n

( n
p

)( n
p−1

)
are the Narayana numbers.

We denote by F the field with two elements.
In [8] a bijection between Con(c) and a certain collection Xc of subgroups of Fd

is described. For each p, 1 ≤ p ≤ d +1, let Xc,p be the set of subgroups of cardinal
2p−1 in Xc. The following refinement of Theorem 0.4 is proved in Section 2.

Theorem 0.6. We have |Xc,p| = Nd+1,p.

0.7. In Section 3 we state a conjecture according to which Catalan numbers appear
in connection with the study of Springer fibers for G.

0.8. For any i ≤ j in Z we set [i, j] = {h ∈ Z; i ≤ h ≤ j}.

1. Proof of Theorem 0.4

1.1. Let D ∈ 2N. Let VD be an F-vector space with a nondegenerate symplectic
form ⟨ · , · ⟩ : VD × VD → F and with a given subset {e1, e2, e3, . . . , eD} such that
⟨ei , ej ⟩ = 1 if i − j = ±1 and ⟨ei , ej ⟩ = 0 otherwise.

Assuming that D ≥ 2 and i ∈ [1, D], we define a linear (injective) map Ti :

VD−2 → VD by:

• ea 7→ ea if a < i − 1.

• ei−1 7→ ei−1 + ei + ei+1.

• ea 7→ ea+2 if a ≥ i .

(We regard VD−2 as a subspace of VD in an obvious way.)
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Let F(VD) be the family of isotropic subspaces associated in [11, §1.17] to
VD and its basis {e1, e2, . . . , eD}. (The characteristic functions of these subspaces
form a basis of the C-vector space of functions VD → C.) We have a partition
F(VD) =

⊔
k≥0 F

k(VD). We will only give here the definition of F 0(VD) and
F1(VD). The definition is by induction on D. When D = 0, F 0(VD) consists of
0 and F1(VD) is empty. Assume now that D ≥ 2. A subspace E of VD is said
to be in F 0(VD) if either E = 0 or if there exists i ∈ [1, D] and E ′

∈ F 0(VD−2)

such that E = Ti (E ′) + Fei (this is a direct sum). A subspace E of VD is said to
be in F1(VD) if either E = F(e1 + e2 + · · ·+ eD) or if there exists i ∈ [1, D] and
E ′

∈ F1(VD−2) such that E = Ti (E ′) + Fei .
For example, if D = 2, F 0(VD) consists of 0, Fe1, Fe2 and F1(VD) consists of

F(e1 + e2). If D = 4, F 0(VD) consists of

0, Fe1, Fe2, Fe3, Fe4, Fe1+Fe3, Fe1+Fe4, Fe2+Fe4, F(e1+e2+e3)+Fe2,

F(e2 + e3 + e4) + Fe3

and F1(VD) consists of

F(e1 + e2 + e3 + e4), F(e1 + e2 + e3 + e4) + Fe2, F(e1 + e2 + e3 + e4) + Fe3,

F(e1 + e2) + Fe4, Fe1 + F(e3 + e4).

We have
F 0(VD) = F 0

D/2(VD) ⊔F 0
<D/2(VD)

where
F 0

D/2(VD) =
{

E ∈ F 0(VD); dim(E) =
1
2 D

}
,

F 0
<D/2(VD) =

{
E ∈ F 0(VD); dim(E) < 1

2 D
}
.

1.2. Let G 0
D (resp. G1

D) be the set of lines in VD of the form F(ea +ea+1 +· · ·+eb)

where a ≤ b in [1, D] satisfy b − a = 1 (mod 2) (resp. b − a = 0 (mod 2)). Let
GD = G 0

D ⊔ G1
D. For E ∈ F(VD) let BE = {L ∈ GD; L ⊂ E}. According to [12,

§1.2(e), (f), (g)], if E ∈ F(VD) then

(a) E =

⊕
L∈BE

L;

moreover we have E ∈ F 0(VD) if and only if BE ⊂ G1
D; we have E ∈ F1(VD) if

and only if BE contains a unique line LE in G 0
D .

It follows that if E ∈ F1(VD) we can write

(b) E = E0 ⊕ LE where E0 =
⊕

L∈BE ;L ̸=LE
L .

We show:

(c) E0 ∈ F 0(VD).
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We argue by induction on D. If D = 0 then F1
D =∅ and there is nothing to prove.

Assume now that D ≥ 2. If E = F(e1+e2+· · ·+eD), then E0 = 0 and (c) is obvious.
If E is not of this form then there exists i ∈ [1, D] and E ′

∈ F1
D−2 such that E =

Ti (E ′)+Fei . By the induction hypothesis we have E ′
= E ′

0⊕LE ′ where E ′

0 ∈F 0
D−2.

We have E = Ti (E ′

0)+Fei +Ti (LE ′)= Ẽ0+ L̃ where Ẽ0 = Ti (E ′

0)+Fei ∈F 0(VD)

and L̃ = Ti (LE ′) ∈ G 0
D (from the definition of Ti ). Since L̃ ⊂ E we must have

L̃ = LE . We have BE = BẼ0
∪{LE } (the union is disjoint since BẼ0

⊂G1
D , LE ∈G 0

D).
Thus BẼ0

= BE − {LE }. Since Ẽ0 =
∑

L∈BẼ0
=

∑
L∈BE−{LE }

L = E0 we see that

E0 = Ẽ0 ∈ F 0(VD). This proves (c).
Note that in (c) we have dim(E) ≤

1
2 D, dim(LE) = 1, hence dim(E0) < 1

2 D.
Thus we can define a map 4D : F1(VD) → F 0

<D/2(VD) by E 7→ E0 (notation
of (c)).

We show:

(d) The map 4D is surjective.

We argue by induction on D. If D = 0 then F 0
<D/2(VD) is empty and there

is nothing to prove. Assume now that D ≥ 2. Let E0 ∈ F 0
<D/2(VD). If E0 = 0

then E = F(e1 + e2 + · · · + eD) is as required. Now assume that E0 ̸= 0. Then
there exists i ∈ [1, D] and E ′

0 ∈ F 0(VD−2) such that E0 = Ti (E ′

0) ⊕ Fei . We
see that dim(E ′

0) = dim(Ti (E ′

0)) = dim(E0) − 1 < 1
2 D − 1 =

1
2(D − 2) so that

E ′

0 ∈ F 0
<(D−2)/2(VD−2). By the induction hypothesis there exists L ∈ G 0

D−2 such
that E ′

0 + L ∈ F1(VD−2). Let E = Ti (E ′

0 + L) + Fei . We have E ∈ F1(VD) and
E = E0 + Ti (L). Note that Ti (L) ∈ G 0

D and is contained in E , hence it is equal to
LE (see (b)). It follows that E0 = 4D(E). This proves (d).

We show:

(e) 4D is injective.

Assume that E, E ′ in F1(VD) satisfy 4D(E) = 4D(E ′). We must show that
E = E ′.

We have E = E0 ⊕ L , E ′
= E0 ⊕ L ′ where E0 ∈F 0(VD) and L = F(ea +ea+1 +

· · ·+ eb), L ′
= F(ea′ + ea′+1 +· · ·+ eb′), where a < b and a′ < b′ in [1, D] satisfy

b − a = 1 (mod 2), b′
− a′

= 1 (mod 2). (In fact, from [11, §1.3(e), see (P2)]
we have that a = 1 (mod 2), b = 0 (mod 2), a′

= 1 (mod 2), b′
= 0 (mod 2).)

Assume first that a < a′ so that a ≤ a′
− 2. From [11, §1.3(e), see (P2)] we

see that there exist 1 ≤ c ≤ c′
≤ D such that c ≤ a ≤ c′ and such that the line

L= F(ec +ec+1 +· · ·+ec′) is contained in E0, hence also in G1
D . But then the pair

of distinct lines L, L would violate [11, §1.3(e), see (P0)]. We see that we must
have a ≥ a′. Similarly we have a′

≥ a, hence a′
= a.

Assume next that b < b′ so that b + 2 ≤ b′. From [11, §1.3(e), see (P2)] we
see that there exist 1 ≤ c ≤ c′

≤ D such that c ≤ b′
≤ c′ and such that the line
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L = F(ec + ec+1 +· · ·+ ec′) is contained in E0 hence also in G1
D . But then the pair

of distinct lines L, L ′ would violate [11, §1.3(e), see (P0)]. We see that we must
have b ≥ b′. Similarly we have b′

≥ b, hence b′
= b.

We see that L = L ′, hence E = E ′. This proves (e).

1.3. From §1.2(c), (d), (e) we see that |F 0
<D/2(VD)| = |F1(VD)|; hence

|F 0(VD)| − |F 0
D/2(VD)| = |F1(VD)|,

that is, |F 0
D/2(VD)| = |F 0(VD)| − |F1(VD)|. According to [11, §1.27] we have

|F 0(VD)| =

( D+1
D/2

)
, |F1(VD)| =

( D+1
(D−2)/2

)
.

It follows that

|F 0
D/2(VD)| =

( D+1
D/2

)
−

( D+1
(D−2)/2

)
=

(2d + 2)!

(d + 1)!(d + 2)!
= Cd+1,

where D = 2d .

1.4. In [5] the set c is identified with a subset of VD . Now any object in Con(c) is
multiplicity-free, hence may be identified with a subset of c, hence with a subset
of VD. This subset is a Lagrangian subspace of VD. Thus Con(c) is identified
with a subset of the set of Lagrangian subspaces of VD . This subset is the same as
F 0

D/2(VD) (see [10, §2.8(iii)]). We see that |Con(c)| = Cd+1 and Theorem 0.4 is
proved.

1.5. An alternative proof of Theorem 0.4 can be given using the parametrization of
Con(c) in terms of “admissible arrangements” in [6, p. 220].

2. Proof of Theorem 0.6

2.1. We preserve the notation of VD . We have VD = V 0
D ⊕ V 1

D where V 0
D has basis

{e2, e4, . . . , eD} and V 1
D has basis {e1, e3, . . . , eD−1}. Assuming that D ≥ 2 we

define for any i ∈ [1, D] a linear map Ti : V 1
D−2 → V 1

D by:

• ek 7→ ek if k ≤ i − 2.

• ek 7→ ek+2 if k ≥ i .

• ei−1 7→ ei−1 + ei+1 if i is even.

Following [10, §2.3] we define a collection C(V 1
D) of subspaces of V 1

D by induction
on D. If D = 0, C(V 1

D) consists of {0}. Assume now that D ≥ 2. A subspace
E of V 1

D is said to be in C(V 1
D) if either E = {0} or there exists i ∈ [1, D] and

E ′
∈ C(V 1

D−2) such that:

• E = Ti (E ′) + Fei if i is odd.

• E = Ti (E ′) if i is even.
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For example, C(V 1
2 ) consists of two subspaces: 0, Fe1; C(V 1

4 ) consists of five
subspaces:

0, Fe1, Fe3, F(e1 + e3), Fe1 + Fe3;

C(V 1
6 ) consists of 14 subspaces:

0, Fe1, Fe3, Fe5, F(e1 + e3), F(e3 + e5), F(e1 + e3 + e5), Fe1 + Fe3,

Fe1+Fe5, Fe3+Fe5, F(e1+e3)+Fe5, Fe1+F(e3+e5), F(e1+e3+e5)+Fe3,

Fe1 + Fe3 + Fe5.

2.2. If E ∈ C(V 1
D) we set E !

= {x ∈ V 0
D; ⟨x, E⟩ = 0}. The following result appears

in [10, §2.4].

(a) E 7→ E ⊕ E ! defines a bijection C(V 1
D) ∼

−→ F 0
D/2(VD). The inverse bijection is

given by E 7→ E ∩ V 1
D .

2.3. Let Z∗

D be the set of all elements of V 1
D of the form

ea,b = ea + ea+2 + ea+4 + · · · + eb

for various numbers a ≤ b in {1, 3, . . . , D − 1}.
For any s ≥ 0, let Zs

D be the set of all finite unordered sequences

ea1,b1, ea2,b2, . . . , eas ,bs

in Z∗

D such that for any n ̸= m in {1, 2, . . . , s} we have either

an ≤ bn < am ≤ bm or am ≤ bm < an ≤ bn,

or an < am ≤ bm < bn or am < an ≤ bn < bm .

Let ZD =
⋃

s≥0 Z
s
D (a disjoint union).

For example, Z2 consists of the two sequences ∅, {e1}; Z4 consists of the five
sequences ∅, {e1}, {e3}, {e1 + e3}, {e1, e3}; and Z6 consists of 14 sequences:

∅, {e1}, {e3}, {e5}, {e1 + e3}, {e3 + e5}, {e1 + e3 + e5},

{e1, e3}, {e1, e5}, {e3, e5}, {e1+e3, e5}, {e1, e3+e5}, {e1+e3+e5, e3}, {e1, e3, e5}.

Theorem 2.4. The assignment

2D : (ea1,b1, ea2,b2, . . . , eas ,bs ) 7→ Fea1,b1 + Fea2,b2 + · · · + Feas ,bs

defines a bijection ZD
∼

−→ C(V 1
D).

When D ≤ 6 this follows from §2.1, §2.3. Note that Theorem 2.4 gives an
order-preserving bijection between the set of noncrossing partitions (see [13]) and
C(V 1

D) (with the order given by inclusion).

2.5. Assuming that D ≥ 2 we define for any i ∈ [1, D] a map σi : Z∗

D−2 → Z∗

D by:
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• ea,b 7→ ea+2,b+2 if i ≤ a.

• ea,b 7→ ea,b+2 if a < i ≤ b + 1.

• ea,b 7→ ea,b if i > b + 1.

Note that

• σi (ea,b) = Ti (ea,b) if i is even.

• σi (ea,b) = Ti (ea,b) if i is even and i ≤ a or i > b.

• σi (ea,b) = Ti (ea,b) + ei if i is odd and a < i ≤ b.

2.6. Assume that D ≥ 2 and i ∈ [1, D]. Let ea,b, ea′,b′ be in Z∗

D−2 and let eã,b̃ =

σi (ea,b), eã′,b̃′ = σi (ea′,b′). We show:

(i) If b < a′ then b̃ < ã′.

(ii) If a < a′ and b′ < b then ã < ã′ and b̃′ < b̃.

(iii) If i is odd and ã ≤ i ≤ b̃ then ã < i < b̃.

In the setup of (i) assume that ã′
≤ b̃. Then we have a′

≤ b or a′
+ 2 ≤ b or

a′
+ 2 ≤ b + 2 or a′

≤ b + 2. The first three cases are clearly impossible; in the 4th
case we have b + 2 = a′ (since b + 2 ≤ a′

≤ b + 2), b′
+ 1 < i and b + 1 ≥ i , so

that b > b′
≥ a′, a contradiction.

In the setup of (ii) assume that ã ≥ ã′. Then we have a ≥ a′ or a + 2 ≥ a′
+ 2

or a ≥ a′
+ 2 or a + 2 ≥ a′. The first three cases are clearly impossible; in the 4th

case we have a +2 = a′ (since a +2 ≤ a′
≤ a +2), a′ < i and a ≥ i , so that a > a′,

a contradiction. Thus, ã < ã′.
Again, in the setup of (ii) assume that b̃′

≥ b̃. Then we have b′
≥b or b′

+2≥b+2
or b′

≥ b + 2 or b′
+ 2 ≥ b. The first three cases are clearly impossible. In the 4th

case we have b′
+ 2 = b (since b ≥ b′

+ 2 ≥ b), b + 1 < i and b′
+ 1 ≥ i so that

b′ > b, a contradiction. Thus, b̃′ < b̃′.
In the setup of (iii) assume that ã = i . We have ã = a or ã = a + 2. If ã = a

we have a = i and b < i , hence b < b̃ so that b̃ = b + 2; this implies i ≤ b, a
contradiction. If ã = a + 2 we have a + 2 = i , i ≤ a, a contradiction. Thus ã < i .

In the setup of (iii) assume that b̃ = i . We have ã = b or b̃ = b + 2. If b̃ = b we
have b = i and b < i , a contradiction. If b̃ = b + 2 we have b + 2 = i and either
a ≥ i or a < i ≤ b. In the first case we have a ≥ b + 2 > b, a contradiction; in the
second case we have b + 2 ≤ b, a contradiction. Thus, i < b̃.

2.7. From §2.6(i)–(iii) we see that when D ≥2 and i ∈[1, D], there is a well-defined
map 6i : ZD−2 → ZD given by

(ea1,b1, ea2,b2, . . . , eas ,bs ) 7→

{
(σi (ea1,b1), σi (ea2,b2), . . . , σi (eas ,bs ), ei ) if i is odd,
(σi (ea1,b1), σi (ea2,b2), . . . , σi (eas ,bs )) if i is even.
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2.8. Let ϵ ∈ ZD , ϵ ̸= ∅. Let ea,b ∈ ϵ be such that b − a is minimum. If b − a = 0
we set i = a = b; we have i ∈ [1, D] and i is odd. If b −a > 0 we define i ∈ [1, D]

by a = i − 1 < i + 1 ≤ b; then i is even. We will show that

(a) ϵ is in the image of 6i : ZD−2 → ZD .

If i is odd we can write ϵ = (eã1,b̃1
, eã2,b̃2

, . . . , eãs ,b̃s
, ei ).

If i is even we can write ϵ = (eã1,b̃1
, eã2,b̃2

, . . . , eãs ,b̃s
), where at = a, bt = b for

some t .
To eãt ,b̃t

, t = 1, 2, . . . , s, we associate the element

eat ,bt = eãt−2,b̃t−2 if i ≤ ãt − 2,

eat ,bt = eãt ,b̃t−2 if ãt < i ≤ b̃t − 1,

eat ,bt = eãt ,b̃t
if b̃t < i.

(Note that we cannot have i = ãt or i = b̃t . Moreover when i is even we see from
the definitions that we cannot have i = ãt − 1.) This element is in Z∗

D−2.
Consider n ̸= m in {1, 2, . . . , s}. We set

(ãn, b̃n, ãm, b̃m) = (ã, b̃, ã′, b̃′), (an, bn, am, bm) = (a, b, a′, b′).

We show:

(i) If b̃ < ã′, then b < a′.

(ii) If ã′ < ã ≤ b̃ < b̃′, then a′ < a ≤ b < b′.

In the setup of (i) assume that a′
≤ b. Then we have ã′

≤ b̃ or ã′
− 2 ≤ b̃ or

ã′
− 2 ≤ b̃ − 2 or ã′

≤ b̃ − 2. The first three cases are clearly impossible. In the 4th
case we have b̃ < ã′

≤ b̃ − 2, hence b̃ < b̃ − 2, a contradiction. Thus b < a′.
In the setup of (ii), a′, a, b, b′ are as follows:

• ã′
− 2, ã − 2, b̃ − 2, b̃′

− 2 if i ≤ ã′
− 2.

• ã′, ã − 2, b̃ − 2, b̃′
− 2 if ã′ < i ≤ ã − 2 (so that ã′ < ã − 2).

• ã′, ã, b̃ − 2, b̃′
− 2 if ã < i ≤ b̃ − 1 (so that ã ≤ b̃ − 2).

• ã′, ã, b̃, b̃′
− 2 if b̃ < i ≤ b̃′

− 2 (so that b̃ < b̃′
− 2).

• ã′, ã, b̃, b̃′ if b̃′ < i .

Since i is distinct from each of ã′, ã′
− 1, ã, ã − 1, b̃, b̃′, b̃′

− 1 we see that we
must be in one of the five cases above. Note that a′ < a ≤ b < b′ in each case.

From (i), (ii) we see that ϵ′
:= (ea1,b1, ea2,b2, . . . , eas ,bs ) belongs to ZD−2. From

the definitions we see that ϵ = 6i (ϵ
′). Hence (a) holds.

2.9. We define a subset Z ′

D of ZD by induction on D. If D = 0, Z ′

D consists of
the empty sequence. Assume now that D ≥ 2. A sequence ϵ ∈ ZD is said to be
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in Z ′

D if either ϵ is the empty sequence or if there exists i ∈ [1, D] and ϵ′
∈ Z ′

D−2
such that ϵ = 6i (ϵ

′). (Note that 6i (ϵ
′) is well defined.) Using §2.8(a) we see by

induction on D that

(a) ZD = Z ′

D .

2.10. Assume that D ≥ 2 and i ∈ [1, D]. For ϵ′
∈ ZD−2 we show:

(a) 2D(6i (ϵ
′)) = Ti (2D−2ϵ

′) + Fei if i is odd.

(b) 2D(6i (ϵ
′)) = Ti (2D−2ϵ

′) if i is even.

We can write ϵ′
= (ea1,b1, ea2,b2, . . . , eas ,bs ). Then

2D(6i (ϵ
′)) =

{
Fσi (ea1,b1) + Fσi (ea2,b2) + · · · + Fσi (eas ,bs ) + Fei if i is odd,
Fσi (ea1,b1) + Fσi (ea2,b2) + · · · + Fσi (eas ,bs ) if i is even.

Using the definitions we see that

2D(6i (ϵ
′)) = FTi (ea1,b1) + FTi (ea2,b2) + · · · + FTi (eas ,bs ) + Fei

= Ti (Fea1,b1 + Fea2,b2 + · · · + Feas ,bs ) + Fei = Ti (X D−1(ϵ
′)) + Fei

if i is odd,

2D(6i (ϵ
′)) = FTi (ea1,b1) + FTi (ea2,b2) + · · · + FTi (eas ,bs )

= Ti (Fea1,b1 + Fea2,b2 + · · · + Feas ,bs ) = Ti (X D−1(ϵ
′))

if i is even. This proves (a), (b).

2.11. We prove the following part of Theorem 2.4.

(a) The map 2D in Theorem 2.4 is well defined (it has image contained in C(V 1
D)).

We argue by induction on D. When D = 0, (a) is obvious. Assume now that
D ≥ 2. Let ϵ ∈ ZD. If ϵ = ∅ then 2D(ϵ) = 0 ∈ FD. Assume now that ϵ ̸= ∅.
Using §2.8, we can find i ∈ [1, D] and ϵ′

∈ ZD−2 such that ϵ = 6i (ϵ
′) so that

2D(ϵ) = 2D(6i (ϵ
′)). By the induction hypothesis we have 2D−2ϵ

′
∈ C(V 1

D−2).
By the definition of C(V 1

D) we then have

Ti (2D−2ϵ
′) + Fei ∈ C(V 1

D) if i is odd;

Ti (2D−2ϵ
′) ∈ C(V 1

D) if i is even.

Using §2.10, we can rewrite this as 2D(ϵ) ∈ C(V 1
D). This proves (a).

2.12. We prove the following part of Theorem 2.4.

(a) The map 2D in Theorem 2.4 (see §2.11(a)) is surjective.

We argue by induction on D. When D = 0, (a) is obvious. Assume now that D ≥ 2.
Let E ∈ C(V 1

D). If E = 0 then E = 2D(∅). Assume now that E ̸= 0. We can find
i ∈ [1, D] and E ′

∈ C(V 1
D−2) such that E = Ti (E ′)+ Fei if i is odd and E = Ti (E ′) if



348 GEORGE LUSZTIG AND ERIC SOMMERS

i is even. By the induction hypothesis we have E ′
= 2D−2(ϵ

′) for some ϵ′
∈ ZD−2.

Thus we have E = Ti (2D−2ϵ
′)+ Fei if i is odd, E = Ti (2D−2ϵ

′) if i is even. Using
§2.10 we can rewrite this as E = 2D(ϵ) where ϵ = 6i (ϵ

′) ∈ ZD . This proves (a).

2.13. We have C(V 1
D) =

⊔
s∈[0,d]

Cs(V 1
D) where Cs(V 1

D) = {E ∈ C(V 1
D); dim E = s}.

Clearly, the map 2 in Theorem 2.4 restricts to a map 2s
: Zs

D → Cs(V 1
D) for any

s ∈ [0, d]. From §2.12(a) it follows that 2s is surjective for any s ∈ [0, d]. In [1] it
is shown that |Zs

D| = Nd+1,s+1 (see §0.5) for any s ∈ [0, d]. Using this and §0.5(a)
we see that

Catd+1 =

∑
s∈[0,d]

N (d + 1, s + 1) =

∑
s∈[0,d]

|Zs
D| = |ZD|.

We see that 2D is a surjective map from a set with cardinal |ZD| = Catd+1 to a
set with the same cardinal |C(V 1

D)| = |F 0
D/2(VD)| = Catd+1 (the first equality holds

by §2.2(a); the second equality follows from Theorem 0.4). It follows that 2 is a
bijection and Theorem 2.4 is proved.

This implies that 2s
:Zs

D → Cs(V 1
D) is a bijection for any s ∈ [0, d]. We see that

Theorem 0.6 holds. (We use that Xc in §0.5 is the same as Cs(V 1
D) if we identify

V 1
D = Fd .)

3. A conjecture

3.1. In this section we fix a unipotent element u ∈ G. We assume that either

• G is of type Cd(d+1), d ≥ 1 and u has Jordan blocks of sizes 2d, 2d, 2d − 2,
2d − 2, . . . , 2, 2 or that

• G is of type Bd(d+1), d ≥ 1 and u has Jordan blocks of sizes 2d + 1, 2d − 1,
2d − 1, . . . , 1, 1.

Let Bu be the variety of Borel subgroups of G that contain u and let [Bu] be the
set of irreducible components of Bu . Let A(u) be the group of components of the
centralizer of u in G. Note that A(u) acts naturally by permutations on [Bu]. For
each ξ ∈ [Bu] we denote by A(u)ξ the stabilizer of ξ in A(u). Let 1u be the set of
subgroups of A(u) of the form A(u)ξ for some ξ ∈ [Bu].

We assume that c is the family containing the Springer representation of W
associated to u and to the unit representation of A(u). We conjecture that

(a) there exists an isomorphism A(u) ∼
−→ V 1

D, D = 2d which carries 1u to the
collection C(V 1

D) (see §2.1) of subspaces of V 1
D .

(This would imply that |1u| is a Catalan number.)
We have verified that (a) is true when d = 1, 2, 3.
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FOR SIMPLE GROUPS WITH e(G) = 3

RICHARD LYONS AND RONALD SOLOMON

In memory of our dear friend, Gary Seitz

This paper highlights the use of transfer to analyze an unbalancing con-
figuration in the GLS classification project for finite simple groups. The
configuration occurs when e(G) = 3, m2, p(G) = m p(G) = 3 for some odd
prime p, and a p-component of p-rank 1 is responsible for the unbalancing.

1. Introduction

An important step in the GLS approach to the classification of the K-proper finite
simple groups G of restricted even type with e(G) ≥ 3, as it was for Michael
Aschbacher [1981; 1983] in his classification of such groups of characteristic-2
type with e(G) = 3, is to establish a dichotomy quite analogous to the Gorenstein–
Walter alternative for generic groups [Gorenstein et al. 2002, Theorem C∗

7: Stage 1,
Chapter 3, p. 49].

Throughout this paper, G is a K-proper finite simple group of restricted even type.
For a suitable odd prime divisor p of G such that m2,p(G) = e(G), and a suitable

subgroup A ∼= E pn of G, n ≥ 3, the dichotomy is, roughly speaking:

(1A1) the p-layer L p′(CG(a)) of CG(a) is semisimple for all a ∈ A#; or

(1A2) G has a strong p-uniqueness subgroup M .

Without defining the technical term “strong p-uniqueness subgroup”, we remark
that the archetype of a strong p-uniqueness subgroup is a strongly p-embedded
subgroup such that Op′(M) has even order. However, various weaker conditions
also suffice to qualify a subgroup M as a strong p-uniqueness subgroup. See, for
example, [Gorenstein et al. 1994, Chapter 2, Section 8] for the case m2,p(G) ≥ 4.
And for the case m2,p(G) = 3 = e(G), GLS is using the condition 0o

P,2(G) ≤ M
for some P ∈ Sylp(G) instead of requiring strong p-embedding.

We shall call this the fundamental dichotomy, and its verification when e(G) ≥ 4,
along with the identification of G in (1A1), forms a large part of [Gorenstein et al.
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2002; 2018a; 2018b]. When e(G) = 3 = m2,p(G) < m p(G) for some odd prime p,
G has been classified in [Capdeboscq et al. 2023] (and without any reference to
strong p-uniqueness subgroups).

In this paper, we shall consider the remaining case in which e(G) = 3, so that
m p(G) = 3 for any odd prime p such that m2,p(G) = 3. To avoid complications
that are of little interest, we shall assume for simplicity that there exists such a
prime p for which p > 3. In Section 3, we will reduce the proof of the fundamental
dichotomy to one very specific subcase, and in Section 4, we will outline our proof
that the fundamental dichotomy holds in this subcase as well. As noted above,
when G is of characteristic-2 type (a somewhat more restrictive condition than
restricted even type) and e(G) = 3, this result was proved by Aschbacher. Our
approach to the necessary signalizer analysis, however, is different from his, using
elementary p-transfer arguments to reduce to the single subcase of Section 4, where
signalizer functors seem to be unavoidable. We thank Michael for his assistance in
the treatment of this subcase.

Throughout we shall focus on an odd prime divisor p of |G|. For any subgroup H
of G such that H = L p′(H), we shall let

H †
= H/Op′(H).

In the Gorenstein–Walter alternative, the second option is that G is 3
2 -balanced

with respect to A, and 23/2(G; A) is a nontrivial p′-group. This option is then to
be pursued further, to the existence of a strong p-uniqueness subgroup, the first
approximation being NG(23/2(G; A)). A similar connection between 3

2 -balance
and strong p-uniqueness subgroups can be seen in the context of this paper. Hence,
given our purpose here, we shall assume the following proposition.

Proposition 1.1. Let G be a K-proper finite group of even type with e(G) = 3. Let
p > 3 be a prime such that m2,p(G) = m p(G) = 3. Let A ≤ G with A ∼= E p3 .
Then either the fundamental dichotomy holds for G, p, and A, or A can be chosen
such that for some x, a, b ∈ A# and L ≤ CG(x), A = ⟨x, a, b⟩, L is an A-invariant
p-component of CG(x), and

[Op′(CAutCG (x) L†(b)), a] ̸= 1.

The conclusion of this proposition, in the language of [Gorenstein et al. 2002,
Chapter 2, 3.2–3.4], is that (x, L) is a 3

2 , A-obstruction, i.e., an obstruction to A’s
being 3

2 -balanced in G. In the absence of such obstructions, the fundamental
dichotomy follows by applications of [Gorenstein et al. 1996, 20.7, 5.19(i)], and the
standard construction (due to Aschbacher) of a 3

2 -balanced functor on A [Gorenstein
et al. 1996, 21.9, 21.10]. Accordingly, as this functor is trivial or nontrivial, (1A1)
or (1A2) can be proved. (The reader may have noticed that there is a second type of
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possible obstruction, due to failure of local 2-balance. But such obstructions cannot
occur, it turns out, under our hypotheses that p > 3, e(G) = 3, and G is K-proper.)

2. Statement of results

In view of the foregoing, we shall proceed under the following hypothesis:

(2A1) G is a K-proper finite simple group of restricted even type with e(G) = 3.

(2A2) For all odd primes q such that m2,q(G) = 3, we have mq(G) = 3.

(2A3) There is a prime p > 3 such that m p(G) = m2,p(G) = 3.

(2A4) There is an elementary abelian p-subgroup A of G with m p(A)= 3 and a 3
2 ,

A-obstruction (x, L) in CG(x) for some x ∈ A#.

As G is a K-proper finite simple group, every proper simple section of G is a
known simple group. The principal application of the K-proper assumption (in
conjunction with the assumption that p >3 and m p(G)=3) will be via the following
K-group fact, which we accept here without proof. The assumption p > 3 is critical
for this proposition.

Proposition 2.1. Let G, p and A be as above with (x, L) a 3
2 , A-obstruction. Then

L† is a simple group of Lie type in characteristic s ̸= p with m p(L) = 1 and
L ◁ NG(⟨x⟩). Also, A = ⟨x, a, b⟩, where b ∈ L and a induces a field automorphism
of order p on L†. Moreover, [Op′(CL†(b)), a] ̸= 1 and L p′(CL†(a)) ̸= 1.

We will therefore assume that the following configuration holds (here we let
Cy := CG(y) for all y ∈ A#):

(2B1) x ∈ Ip(G) (Ip(X) is the set of elements of X of order p).

(2B2) P ∈ Sylp(G) and T = CP(x) ∈ Sylp(Cx).

(2B3) L is a p-component of Cx and R = ⟨r⟩ = T ∩ L is cyclic with �1(R) = ⟨b⟩.

(2B4) Q = CT (L†).

(2B5) Ip(T − Q R) ̸= ∅.

(2B6) For any a ∈Ip(T −Q R), Qa =CQ(a), and Pa ∈Sylp(Ca) with CP(a)≤ Pa .

(2B7) For any a ∈ Ip(T − Q R), a induces a nontrivial field automorphism on L†,
La := L p′(CL(a)) ̸= 1, and Ka is the subnormal closure of La in Ca .

Our main aim in this paper is to prove:

Theorem 2.2. Assume (2A1)–(2A4) and (2B1)–(2B7). Then:

(a) T = P.

(b) Q ∼= R.
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(c) P/Q R is cyclic and embeds in Out(L†); the image of P/Q R consists of
images of field automorphisms.

(d) There exists a ∈ Ip(P − Q R) such that a P
= a⟨x, b⟩ = a�1(Q R).

(e) L p′(Ca) = L1L2 with L†
1

∼= L†
2

∼= L†
a , Qa ∈ Sylp(L1), and Ra := CR(a) ∈

Sylp(L2).

(f) There exists t ∈ NG(P) inverting a and interchanging ⟨x⟩ with ⟨b⟩, Q with R,
and L1 with L2.

As a consequence, GLS will obtain the following theorem in a forthcoming
volume. We shall make a few remarks about the proof of this result in Section 4.

Theorem 2.3. Suppose that (2A1)–(2A4) and (2B1)–(2B7) hold. Then G has a
strongly p-embedded subgroup M such that Op′(M) has even order.

3. Proof of Theorem 2.2

In this section we prove Theorem 2.2. We let

(3A)
A = {a0 ∈ Ip(T − Q R) | Ka0 is a nontrivial pumpup of La0};

E = ⟨x, b⟩ = A ∩ Q R.

Lemma 3.1. The following conditions hold:

(a) L ◁ Cx .

(b) For every a ∈ A, Ka is a vertical pumpup of La .

(c) �1(T ) ≤ Q⟨a⟩ × ⟨b⟩ for any a ∈ Ip(T − P Q).

(d) Qa is cyclic for any a ∈ Ip(T − P Q).

(e) E = �1(Z(T )).

Proof. Proposition 2.1 contains (a). As m p(G) = 3, (d) holds and Ka cannot
be a diagonal pumpup of La . Then (b) holds by L p′-balance and the definition
of A. Since �1(T/Q R) = ⟨Q Ra⟩, we have �1(T/Q) ≤ Q R⟨a⟩/Q. As R is
cyclic, �1(R⟨a⟩) = ⟨b, a⟩, and (c) follows. As m p(G) = 3 and L ◁ Cx , we
have E ≤ �1(Z(T )) ≤ E⟨a⟩ for any a ∈ Ip(T − P Q). But as a induces a field
automorphism of order p on L†, [R, a] ̸= 1. This implies (e). □

Lemma 3.2. We have that m p(Q) = 1.

Proof. Suppose not and choose B ∼= E p2 with B ◁ T and B ≤ Q.
Suppose first that xg

∈ E − ⟨x⟩ for some g ∈ G. Then by Lemma 3.1(e)
and Burnside’s lemma, we may assume that g ∈ NG(T ). Now, E = Eg and so
E ∩ Lg

= (E ∩ L)g
= ⟨bg

⟩. Let Q0 = CQ⟨a⟩((Lg)†). As Q⟨a⟩ normalizes Lg,
we have Q0 ◁ Q⟨a⟩. Hence, if Q0 ̸= 1, then Q0 ∩ �1(Z(Q⟨a⟩)) ̸= 1, and so in
view of Lemma 3.1(d), x ∈ Q0. But then E = ⟨xg, x⟩ ≤ CT ((Lg)†), contrary to
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E ∩ Lg
̸= 1. Hence, Q⟨a⟩ acts faithfully on (Lg)†, so Q⟨a⟩ embeds in T/Q. But

�1(T/Q) ∼= �1(R⟨a⟩) = ⟨a, b⟩, so �1(Q⟨a⟩) = ⟨a, x⟩. But B⟨a⟩ ≤ �1(Q⟨a⟩), a
contradiction. Hence xG

∩ E ⊆ ⟨x⟩. Thus, ⟨x⟩ ◁ NG(P), so P = T .
Since Qa is cyclic, [B, a] ̸= 1, so B shears a to ⟨x⟩, centralizing ⟨b⟩. Likewise

R shears a to ⟨b⟩, centralizing ⟨x⟩.
Suppose that ag

∈ E for some g ∈G. Then Pa ∈Sylp(G). Then E and �1(Z(Pa))

are commuting E p2-subgroups of Pa , so E ∩�1(Z(Pa)) contains some d ̸= 1. As
a ̸∈ E , �1(Z(Pa)) = ⟨a, d⟩. But then by the previous paragraph, some p-element in
AutG(⟨a, d⟩) shears a to ⟨d⟩. As ⟨a, d⟩ is contained in a Sylow p-center, however,
AutG(⟨a, d⟩) is a p′-group, a contradiction. Hence aG

∩ E =∅. Consequently, ⟨x⟩

is weakly closed in ⟨a, b, x⟩.
Now let d be an extremal conjugate of a in P . Then we may choose g ∈ G

such that ag
= d and CP(a)g

≤ CP(d). As d ̸∈ E , we have ⟨b, x, d⟩ = �1(CP(d)),
so ⟨a, b, x⟩

g
= ⟨b, x, d⟩. By the weak closedness of ⟨x⟩, g ∈ N := NG(⟨x⟩). As

Q R ∈ Sylp(LCN (L†)), LCN (L†) ◁ N , and the image of P/Q R in Out(L†) is
disjoint from [Out(L†), Out(L†)], we must have ag

∈ Q Ra. But P/Q R is cyclic,
so by the Thompson transfer lemma [Gorenstein et al. 1996, 15.15], a ̸∈ O p(G),
contradicting the simplicity of G. The proof is complete. □

We immediately deduce:

Lemma 3.3. We have A = �1(T ).

Lemma 3.4. Suppose that a ∈ A, with x inducing a nontrivial field automorphism
on K †

a . Then:

(a) CQ(a) = ⟨x⟩ and |Q| ≤ p2.

(b) If |Q| = p2, then T = Q R⟨a⟩ and E1(T ) − E1(Q R) ⊆ ⟨a⟩
Cx .

(c) There is a complement F to Q R in T such that F faithfully induces field
automorphisms on L†.

Proof. As CQ(a) acts faithfully on K †
a centralizing the image of La = L p′(CKa (x)),

we have CQ(a)=⟨x⟩. Therefore |Q|≤ p2, so (a) holds. By the structure of Aut(L†),
there is a complement F1 to R in T with a ∈ F1.

Suppose first that Q = ⟨x⟩. Then F1/⟨x⟩ is cyclic. If F1 is cyclic, then �1(T ) =

⟨x⟩ × �1(R), contrary to a ∈ �1(T ). Hence, F1 is noncyclic abelian with F1/⟨x⟩

cyclic, whence F1 = F ×⟨x⟩ for some F which induces field automorphisms on L†,
so (c) holds in this case.

If Q has order p2, then as CQ(a) = ⟨x⟩, [Q, a] ̸= 1. But T/Q R is cyclic
and [Q R, Q] = 1, so T/Q R embeds in Aut(Q) and hence has order p. Thus
T = Q R⟨a⟩ and Q shears a to ⟨x⟩. As R shears a to ⟨b⟩, (b) and (c) hold and the
proof is complete. □

Lemma 3.5. If A = ∅, then the conclusions of Theorem 2.2 hold.
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Proof. If A = ∅, then La pumps up trivially in Ca for every a ∈ A − E . As
L = L p′(Cx) ̸∼= La and A = �1(T ), xG

∩T ⊆ E . If ⟨x⟩ is weakly closed in E , then
T = P and ⟨x⟩ is weakly closed in P ; so by [Gorenstein et al. 1996, 16.20], NG(⟨x⟩)

controls G-fusion, hence G-transfer, in P . As a ̸∈ [NG(⟨x⟩), NG(⟨x⟩)], we conclude
that a ̸∈ [G, G], contradicting the simplicity of G. So there exists t ∈ NG(T ) such
that x1 := x t

∈ xG
∩ E − ⟨x⟩. Let L t

0 = L p′(CL t (a)) and let Ma be the (trivial)
pumpup of L t

0 in Ca . As CE(K †
a ) = ⟨x⟩ ̸= ⟨x1⟩ = CE(M†

a ), while Ka and Ma

are normal in L p′(Ca), we have [Ka, Ma] ≤ Op′(Ca) with ℧1(R) ∈ Sylp(Ka) and
bt

∈ Ma . Now ⟨bt
⟩ ∈ CE(K †

a ) = ⟨x⟩. But t was arbitrary in NG(T ) − NG(⟨x⟩).
Hence we must have ⟨x⟩

NG(T )
= {⟨x⟩, ⟨b⟩}. In particular, P = T , as p is odd.

If Q = Qa , then ⟨b⟩ = [T, �1(T )] ◁ NG(T ), contradicting bt
= x . Hence,

|Q : Qa| = p and aT
= Ea. Also Ka Ma = L p′(CG(a)) as m p(G) = 3. Also

Q × R = Ja(T ). In particular, ⟨a⟩
NG(T )

= ⟨a⟩
T , whence we may modify t by an

element of T and assume that t ∈ NG(⟨a⟩).
Indeed, there exists a p′-element h ∈ NL(Q R) such that [Q R, h] = R and

CQ R(h) = Q. As T t
= T , Q R = (Q R)t induces inner automorphisms on (L t)†

=

L p′(CG(b))†, and Q R is invariant under h ∈ NG(⟨b⟩). Therefore the only two
largest h-invariant cyclic subgroups of Q R are {Q, R} = {CQ R(h), [Q R, h]} =

{CQ R((L t)†), Q R∩L t
}, so R =CQ R((L t)†) and Q = Q R∩L t . So t interchanges Q

and R.
Now E = Z(P) is the weak closure of ⟨x⟩ in P , so by the Hall–Wielandt

theorem (see [Gorenstein et al. 1996, 15.27]) and the simplicity of G, we have
NG(E) = O p(NG(E)). However, NG(E) =

(
NG(E) ∩ NG(⟨x⟩)

)
⟨t⟩ with

t2
∈ NG(⟨x⟩) ∩ NG(⟨a⟩) ≤ CG(a).

If [t, a]=1, then a ∈ NG(E)−O p(NG(E)), an impossibility. Hence as t ∈ NG(⟨a⟩),
t inverts a. All the other conclusions of Theorem 2.2 then follow easily, completing
the proof of the lemma. □

Our remaining strategy for Theorem 2.2 is to consider various cases for the
possible isomorphism types of K †

a , as a varies over A. By inspection of the
possibilities, we reduce to the following cases.

Lemma 3.6. Let a ∈ A. Then one of the following holds:

(a) m p(Ka) = 1 and x induces a nontrivial field automorphism on K †
a ;

(b) Pa ∩ Ka is abelian of rank 2; or

(c) Pa ∩ Ka ∼= p1+2, and (p, K †
a ) = (5, HS), (5, Ru), or (7, He).

In particular, Op(K †
a ) = 1.

Proof. If m p(Ka) = 1, then as La = L p′(CKa (x)), x induces an outer automorphism
on K †

a . Then as p >3, certainly K †
a ∈Chev(s), s ̸= p, and (a) follows as m p(Ka)=1.
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Suppose that m p(Ka) > 1. Since m p(G) = 3, Op(K †
a ) = 1 by inspection, and then

m p(Ka) = 2 and again K †
a ∈ Chev(s) ∪ Alt ∪Spor, s ̸= p. Again by inspection

since p > 3, p does not divide the order of the Weyl group of K †
a if Ka ∈ Chev(s),

so Pa ∩ Ka is abelian and (b) holds in that case. Finally we may assume that
Ka ∈Alt ∪Spor and Pa ∩ Ka is not abelian, and (c) follows easily by inspection. □

We next eliminate case (b).

Lemma 3.7. Let a ∈ A. Then Pa ∩ Ka is not abelian of rank 2.

Proof. In the case that K †
a ∈ Chev(s), as p > 3, we have that s ̸= p, p does not divide

|Outdiag(K †
a )|, and K †

a is simple. If x induces a field automorphism on K †
a , then

m p(Ka) = m p(La) = 1, contradiction. Hence x induces an inner automorphism
on K †

a , corresponding to an element x0 ∈ Pa ∩ Ka . This conclusion is also obvious
if K †

a ∈ Alt ∪Spor. In any case, since A = �1(P) ≤ Pa , A = A0 × ⟨a⟩ where
A0 = A ∩ Ka .

In all cases, NKa (A) is irreducible on A0 [Gorenstein and Lyons 1983, I-(11.1)].
But also AutR(A) contains a transvection shearing a onto ⟨b⟩ ≤ A ∩ La ≤ A0 and
centralizing x . If AutG(A) is irreducible on A, then by McLaughlin’s theorem
[1967], it contains SL(A), so it is transitive on A#. But a ̸∈ xG . Thus AutG(A) is
reducible on A. As the irreducible constituents of NKa (A) on A are A0 and ⟨a⟩,
AutG(A) embeds in the maximal parabolic subgroup M of GL(A) stabilizing A0,
with Op(AutG(A)) ∼= E p2 centralizing A0 and AutG(A) irreducible on A0. As the
p2 members of E1(A)−E1(A0) are permuted transitively by AutG(A) and ⟨a⟩ ̸≤ A0,
we must have ⟨x⟩ ≤ A0. Hence, A0 = ⟨x, b⟩ = E .

Suppose that |AutG(A)|p = p3. As AutG(A) is irreducible on E , it follows that
AutG(E) covers O p′

(M/Op(M)) ∼= SL(E). In particular as

�1(Z(P)) ≤ �1(Z(T )) = E,

every element of E# is p-central in G and T ∈ Sylp(G). But then p does not divide
|AutG(E)|, a contradiction.

Hence, |AutG(A)|p = p2, so if T ≤ T ∗
∈ Sylp(NG(A)), then

T ∗
= CT ∗(E) = T .

As A = �1(T ) char T , T ∈ Sylp(G); and then NG(A) controls G-fusion in T by
[Gorenstein et al. 1996, 16.20].

We have E =�1(Pa ∩Ka). Suppose that aNG(A)
∩⟨a⟩= {a}. As a is T -conjugate

to every element of order p in Ea, i.e., in Q Ra, it follows that if g ∈ G with ag
∈ T ,

then ag
∈ Q Ra. Then VG→T/Q R(a) ̸= 1, so a ̸∈ [G, G], a contradiction.

We conclude that ag
∈ ⟨a⟩ − {a} for some g ∈ NG(A). Since a does not belong

to [NG(⟨x⟩), NG(⟨x⟩)], NG(⟨a⟩) ∩ NG(⟨x⟩) ≤ Ca , so

(3B) Ka
(
NG(⟨a⟩) ∩ NG(⟨x⟩)

)
≤ Ca < NG(⟨a⟩).
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In particular, NCa (Pa ∩ Ka) does not control NNG(⟨a⟩)(Pa ∩ Ka)-fusion in E1(E)

(otherwise equality would hold in (3B), by a Frattini-type argument). It follows1

that K †
a

∼= Sp4(2
n) for some n > 1, and p divides 22n

−1. Moreover, NCa (Pa ∩ Ka)

maps into the subgroup X of Out(K †
a ) of index 2 consisting of images of field

automorphisms, whereas the image of NNG(⟨a⟩)(Pa ∩ Ka) in Out(K †
a ) does not lie

in X . Therefore NG(⟨a⟩)/Ca has even order, so there exists g ∈ NG(⟨a⟩) inverting a.
As E = Z(T ) is weakly closed and p-central we may take g ∈ NE := NG(E). Also
N0 := NKa (E) ≤ NE . Set N E = NE/Op′(NE). By the structure of Cx , T ◁ N E .
Since [Q, a] ̸= 1 ̸= [R, a], we have Q R = Ja(T ), so Q R ◁ N E . Now N 0 ∼= D8 has
equivalent absolutely irreducible representations on E =�1(Q R) and Q R/8(Q R),
and one equivalence is the pm-power mapping, where Q ∼= R ∼= Z pm+1 . By absolute
irreducibility, the mapping Q R/8(Q R) → E induced by commutation with a must
also be a power mapping, and so it commutes with the conjugation action of g.
That is,

[yg, a] = [y, a]
g for all y ∈ Q R.

Hence [yg, a] = [yg, ag
] = [yg, a−1

] for all y ∈ Q R, so a2
∈ CG(Q R). As a has

order p, [Q R, a] = 1, a final contradiction. □

Lemma 3.8. Let a ∈ A. Then ⟨b⟩ is weakly closed in A.

Proof. Let Pa ≤ S ∈ Sylp(G). Since R shears ⟨a⟩ to ⟨b⟩, ⟨b⟩ = Z(S) is weakly
closed in E . Suppose that d ∈ A − E and ⟨d⟩ ∈ ⟨b⟩

G . Since d is p-central in G
and Kd ̸= 1, Op(K †

d ) ̸= 1. As Op(L†
d) = 1, we must have d ∈ A. But then by

Lemma 3.6, Op(K †
d ) = 1, completing the proof. □

Finally, we eliminate Lemma 3.6(c).

Lemma 3.9. Let a ∈ A. Then m p(Ka) = 1, and x induces a nontrivial field
automorphism on K †

a .

Proof. Suppose not. Then K †
a

∼= Ru or HS (with p = 5) or He (with p = 7). Let
S0 = Pa ∩ Ka ∈ Sylp(Ka), so that S0 ∼= p1+2. Let S1 = ⟨a⟩× S0 ≤ S ∈ Sylp(G), so
that Z(S1) = ⟨a, b⟩ and S1 = �1(CS(a)), and set S2 = NS(S1). Now a is sheared
to ⟨b⟩ by R, and that fusion must occur in S2 as well. So ⟨a⟩ ∈ Syl3(C(a, Ka)) and
S1 ∈ Sylp(Ca), and we may assume that S2 = S1 R.

Let N0 = NG(S1) and Na = NN0(⟨a⟩). Let S1 = S1/⟨b⟩∼= E p3 and S̃1 = S1/⟨ā⟩∼=

S1/Z(S1). Then as ⟨b⟩ is not conjugate to ⟨a⟩, but aR
= a⟨b⟩, N0 acts on S1 and S̃1.

Moreover, aN0 ⊇ a⟨b⟩, so |N0 : Na| = p and N0 = Na R0 for some R0 ∈ Sylp(N0).

1By the following K-group lemma, whose proof we omit. Suppose K is a known finite simple
group with e(K ) ≤ 3, and R ∈ Sylp(K ) is abelian of rank 2 for some prime p > 3. Suppose also
that L p′(CK (x)) ̸= 1 for some x ∈ P#. Let g ∈ NAut(K )(R) and suppose that for some X ∈ E1(R),
X g

̸∈ X NK (R). Then for some q = 2n > 2, K ∼= Sp4(q), p divides q2
− 1, and the image of g

in Out(K ) is not the image of a field automorphism.



A REDUCTION THEOREM FOR SIMPLE GROUPS WITH e(G) = 3 359

Let X0 = AutN0(S1) and Xa = AutNa (S1), and Y0 = AutN0(S̃1) and Ya = AutNa (S̃1).
Thus |X0 : Xa| divides p, as does |Y0 : Ya|. From [Gorenstein et al. 1998, 5.3],
|Ya| = 16m, 18m, or 32 according as Ka ∼= HS, He, or Ru. Here m = 1 or 2. In
any case, |SL2(p)| does not divide p |Ya|, so Y0 does not contain SL2(p). But Ya

is irreducible on S̃1, so p does not divide |Y0|. Therefore Y0 = Ya .
The image of R0 in X0 therefore stabilizes the chain

S1 > ⟨ā⟩ > 1.

But the stabilizer of this chain in Aut(S1) ∼= GL3(p) is of order p2 and isomorphic
to S̃1 as GL(S̃1)×GL(⟨ā⟩)-module. In particular, Xa is irreducible on Op(X0). As
|Op(X0)|≤ p, Op(X0)= 1. Hence X0 = Xa stabilizes S0/⟨b⟩ and S0, and it follows
that S1 R0 is extraspecial of order p1+4 and exponent p2, with S1 = �1(S1 R0).
Thus, NS(S1 R0) ≤ NS(S1), forcing S = S1 R0. As R0 ∼= Z p2 , NG(S) has equivalent
representations on S/S1 and Z(S), so [S/CS(R0), NG(S)] = 1. By theorems of
Yoshida or Wielandt [Gorenstein et al. 1996, 15.19, 15.20], G is not simple, a final
contradiction. □

For the rest of this section, we assume for a contradiction that

(3C1) A ̸= ∅;

(3C2) for all a ∈ A, m p(Ka) = 1; and

(3C3) x induces a nontrivial field automorphism on K †
a .

We first prove:

Lemma 3.10. Assume (3C1)–(3C3). Then:

(a) ⟨x⟩
NG(T )

= E1(E) − {⟨b⟩}.

(b) T < P and �1(Z(P)) = ⟨b⟩.

Proof. As b ∈ La ≤ Ka , and m p(Ka) = 1 with x inducing a nontrivial field
automorphism on K †

a , we have E1(E) − ⟨b⟩ = ⟨x⟩
S for some S ∈ Sylp(CKa (b)).

In particular, p divides |AutG(E)|. As E = �1(Z(T )), we have T < P and
�1(Z(P)) ≤ C�1(Z(T ))(S) = ⟨b⟩R, so (b) holds. But then x is not p-central in G
so (a) follows as well. □

Lemma 3.11. Assume (3C1)–(3C3). Then A = A − E , and (2B1)–(2B7) are
satisfied with any element of A − ⟨b⟩ in place of a.

Let a1 ∈ Ip(T − ⟨b⟩) and set K1 = L p′(CG(a1)). Then K †
1

∼= L†. Let T1 ∈

Sylp(CG(a1)) and Q1 = CT1(L†
1). Then |Q1| ≤ p2. Finally, if a1 ̸∈ E , then

CQ1(x) = ⟨a1⟩ and x acts as a nontrivial field automorphism on K †
1 .

Proof. If a1 ∈ E − ⟨b⟩, then ⟨a1⟩ ∈ ⟨x⟩
G by Lemma 3.10 and the lemma holds by

Lemma 3.4(a). Suppose then that the lemma fails for some a1 ∈ ⟨a, x⟩− ⟨x⟩ with
La1 := L p′(CL(a1)) and with Ka1 the trivial pumpup of La1 in CG(a1).
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Let x1 ∈ x⟨b⟩ − {x}. By Lemma 3.10, x1 ∈ xCL (b), and we take g ∈ CL(b)

with x1 = xg. Let L2 := L p′(CLg (a1)) and let K2 be the pumpup of L2 in CG(a1).
Then L2 ≤ L p′(CG(a1)) with b ∈ Ka1 ∩ K2, so K2 = [⟨b⟩, Ka1] ≤ Ka1 . Thus K2 is
a trivial pumpup of L2, so K †

2 is centralized by both x1 and (like K †
a1

) x . Hence,
K †

2 is centralized by b, a contradiction.
Therefore, Ka1 is a vertical pumpup of La1 , and x acts as a nontrivial field

automorphism on L†
a1

by (3C1)–(3C3). We then apply Lemma 3.4 to a1, La1 , x , T1,
and Q1 in place of x , L , a, T , and Q to obtain the conclusions of the lemma. □

We now fix U ◁ P with U ∼= E p2 , and set P0 = CP(U ).

Lemma 3.12. Assume (3C1)–(3C3). Then the following conditions hold for some
x0 ∈ A − ⟨b⟩ satisfying (2B1)–(2B7) (in the role of x).

(a) One of the following holds:

(1) ⟨a⟩ ∈ Sylp(C(a, Ka)) for all a ∈ A − E ; or
(2) E1(A) − {⟨b⟩} is completely fused in G.

(b) x0 ∈ U ≤ A.

(c) |P : Tx0 | = p for some Tx0 ∈ Sylp(CG(x0)).

Proof. Suppose that (a1) fails, so that for every x0 ∈ A−⟨b⟩, there is y ∈ A−⟨x0, b⟩

such that |C(y, K y)|p = p2. Then we may assume we started with x0 ∈ A−⟨b⟩ such
that |C(x0, Kx0)| = p2. By Lemma 3.4, y is sheared to ⟨x0⟩. Applying Lemma 3.4
again in CG(y), we see that x0 is sheared to ⟨y⟩. Hence E1(⟨x0, y⟩) is completely
fused in G. As x0 and y are each fused to ⟨x0 y⟩ in the centralizer of the other, (a2)
holds, and (a) follows.

Next, assume that x0 has been chosen so that (a) holds. Let a0 ∈ A − ⟨x0, b⟩.
Since E p2 ∼= U ◁ P , there exists 1 ̸= y ∈ C⟨x0,a0⟩(U ). Then U ≤ CG(y). If (a2)
holds, then we may vary x0 to satisfy (b). We have y ∈ U , and taking a Sylow
p-subgroup Ty of CG(y) containing CP(y) ≥ ⟨U, A⟩, we have U ≤ �1(Ty) = A,
so (b) holds for y. So assume that (a1) holds (for x0). Let Qx0 ∈ Sylp(C(x0, Kx0)).
If |Qx0 | = p, then ⟨a⟩ ∈ Sylp(C(a, Ka)) for all a ∈ A − ⟨b⟩. (We set Kx = L and
Kx ′ = Lg for any x ′

∈ ⟨x, b⟩−⟨x⟩−⟨b⟩, where g ∈ NP(⟨x, b⟩) is such that xg
= x ′.)

Hence we can again vary x0 to satisfy (b). We again use y ∈ C⟨x0,a0⟩(U ) in place of
x0 to get (b). If, on the other hand, |Qx0 |p = p2, then ⟨x0⟩ = 8(Qx0) ≤ CP(U ) so
U ≤ CP(x0) =: Tx0 . If U ̸= ⟨x0, b⟩ then by Lemma 3.4 again, ⟨x0⟩ = [Qx0, U ] ≤ U
so U = ⟨x0, b⟩, contradiction. Thus (b) holds in all cases. Finally ⟨b⟩ is 3-central
and weakly closed in A, so x0 must be half p-central, proving (c) and the lemma. □

We replace our original x by x0 as in Lemma 3.12.

Lemma 3.13. Let a ∈ A. Then Q = ⟨x⟩ and T = ⟨x⟩ × R⟨a⟩.
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Proof. Suppose first that |Q| = p2, and let a ∈ A. Note that if y ∈ P − T ,
then CQ(y) = 1. Also CQ×R(a) = ⟨x⟩ × 8(R). So Q × R is the unique largest
abelian subgroup of P . By Lemma 3.4(b), T = Q R⟨a⟩. Consider N := NG(Q R),
C = CG(Q R), and N = N/C . Then CN (E) ≤ Op(N ) and so CN (E) = ⟨ā⟩. Let
Ñ = N/CN (E). Then Ñ embeds in GL(E) and |Ñ : NÑ (⟨x⟩)| = p. It follows that
Ñ = P̃ NÑ (⟨x⟩), and so N = P NN (⟨x⟩). As |P|= p2 and [ā, NN (⟨x⟩)]=1, we have
ā ̸∈ [N , N ]. By the generalized Hall–Wielandt theorem of Yoshida [Gorenstein
et al. 1996, 15.27] applied to the weakly closed subgroup Q R of P , a ̸∈ [G, G],
contrary to the simplicity of G. Therefore, Q = ⟨x⟩.

Now, there is a complement F to R in T containing ⟨x⟩. Then F/⟨x⟩ is cyclic,
so F = ⟨x⟩ × F1 for some F1 as m p(Cx) = 3. Write �1(F1) = ⟨a⟩, so that
a ∈ A. Then F1/⟨a⟩ acts on Ka and faithfully induces field automorphisms on
L†

a
∼= L p′(CK †

a
(x)). As x induces a field automorphism of order p on K †

a , F1/⟨a⟩=1.
Hence T = ⟨x⟩ × R⟨a⟩, as claimed. □

Lemma 3.14. A = ∅.

Proof. Suppose this is false and continue the above argument. Again let a ∈ A

and set N = NG(A), C = Op′(CG(A)), and N = N/C . Let Z = CR(a) = 8(R).
Thus, CG(A) = (⟨a, x⟩× Z)C and |AutG(A)|p = p2, by Lemma 3.13. Moreover a
generator r of R acts as a transvection on A.

Now, AutG(A) is p-closed.2 As CG(A) is p-nilpotent, P ◁ N = N 0 where
N0 = NNG(A)(P). As A ◁ T1 for some T1 ∈ Sylp(Ca), CP(a) contains some r1

centralizing ⟨a, b⟩ and shearing x to b. Modifying r1 by an element of ⟨a, x⟩, we
may choose r1 ∈ Ka . Then P ∩ Ka ≥ ⟨r1, Z⟩ =: R1, so R1 = P ∩ Ka = ⟨r1⟩ and
P = ⟨Z , a, x, r, r1⟩. Hence, Z ≤ Z(P).

We consider the structure of

P/Z = ⟨aZ , x Z , r Z , r1 Z⟩ = �1(P/Z).

Now |P : CP(a)| = |P : CP(x)| = p, so [r, r1] ∈ CP(A) = Z A and [P/Z , P/Z ] =

⟨[r, r1]Z⟩ ≤ Z(P/Z). Thus, either [P, P] = ⟨b⟩ and P/[P, P] ∼= E p4 , or, by
Lemma 3.12(a), we may choose notation so that [r, r1] = x and [P, P] = E .

Suppose first that [P, P]= E . Then E char P and so E ◁ N 0. Hence ⟨x⟩
N0 =⟨x⟩

P

and so N0 = P NN0(⟨x⟩). Also P/Z ∼= Z p × p1+2 with [P/Z , P/Z ] = ⟨x Z⟩. Now,
⟨b⟩ ◁ N0 and so Ñ0 := N0/CN0(E) embeds in a Borel subgroup of GL(E). Also,
there is a p′-element t ∈ NLa (⟨b⟩) such that for some integer λ ̸≡ 1 (mod p), bt

= bλ.
Then if H̃ is a complement to R̃1 in Ñ0 containing t̃ , then H̃ normalizes CE(t)=⟨x⟩.
Let H be a Hall p′-subgroup of N0 mapping onto H̃ . Then H normalizes T =

CP(E) and as TH ≤ NG(⟨x⟩), we have [T, H ] ≤ T ∩[NG(⟨x⟩), NG(⟨x⟩)] ≤ R⟨x⟩.
Then RE ◁ N0 and [H, a] ≤ RE . Set N̂0 = N0/RE . Then P̂ = ⟨â, r̂1⟩ ◁ N̂0

2As is any H ≤ GL3(p) with |H |p = p2 [Gorenstein et al. 1998, 6.5.3]
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with P̂ ∼= E p2 and â ̸∈ [P̂, Ĥ ]. Hence O p(N0) ∩ P < P . Now, Z = Z(P) and
Z(P/Z) = ⟨aZ , x Z⟩. Thus Z2(P) = ⟨a, x, Z⟩ and A = �1(Z2(P)) char P . So
N0 = NG(P). By Yoshida’s transfer theorem [Gorenstein et al. 1996, 15.19], P has
a quotient P/Y ∼= Z p ≀ Z p. As |[P, P]| = p2 and p > 3, this is impossible. This
proves that [P, P] = ⟨b⟩.

It follows that R R1 ≤ P with R R1 having distinct cyclic maximal subgroups R
and R1. Thus R R1 = R�1(R R1) = R⟨e⟩ where e has order p. Now the eigenvalues
of t on R/8(R), ⟨b⟩=�1(R)=�1(R1), and R1/8(R1) are all equal, so [R R1, t]=
R R1. But if R R1 is not abelian, then [R, e] = �1(R), and conjugating by t we see
that [e, t] = 1, whence [R R1, t] = R, a contradiction.

It follows that R R1 = R × ⟨e⟩ for some e ∈ Ip(P). Then (⟨x⟩ × R)⟨e⟩ =

CP(R) ∈ Sylp(CG(R)). So, CP(R) = ⟨x, e⟩ ∗ R with ⟨x, e⟩ ∼= p1+2. Similarly
CP(R1) = ⟨a, e⟩ ∗ R1 for some a ∈ A. Hence e normalizes A and S := A⟨e⟩ ∼=

Z p × p1+2. Let e1 ∈ Z(S) − ⟨b⟩. As e1 ∈ CP(A), e1 ∈ A and [e1, e] = 1. Let
S ≤ P1 ∈ Sylp(CG(e1)). As e1 ∈ A − ⟨b⟩, A = �1(P1), so �1(S) ≤ A, contrary to
S = �1(S), a final contradiction. □

Now Lemmas 3.5 and 3.14 prove Theorem 2.2.

4. Remarks on Theorem 2.3

As the hypotheses of Theorem 2.3 yield that �1(P) = A ∼= E p3 , the theorem will
be proved once we prove that 0A,1(G) ≤ M for some M ≤ G such that Op′(M)

has even order. Using Theorem 2.2 and the hypothesis that G has even type, we
prove that L†

∈ Chev(2). (Recall that L := L p′(CG(x)).) We are then able to
prove that for all e ∈ E#, CG(e) is p-solvable unless e ∈ ⟨x⟩ ∪ ⟨b⟩, in which case
L p′(CG(e)) ∼= L . Then, as e(G) = 3, we can show that L/O2(L) is quasisimple,
and for every a ∈ A − E , each 2-component of L p′(CG(a))/O2(L p′(CG(a)) is
quasisimple as well. Next we follow Aschbacher [1981] and use a functor 2

(2)
3/2

which is an analogue of the standard 3
2 -balanced functor, but with O2 replacing Op′ .

The standard 3
2 -balanced functor does not exist in this case because L is not weakly

locally balanced with respect to A; but the saving grace is that the obstructing
cores are of odd order. We then set 6 = 2

(2)
3/2(G; A). If 6 ̸= 1, it is immediate

that 0A,2(G) ≤ NG(6) =: M < G. On the other hand, if 6 = 1, then L p′(CG(a))

is semisimple for all a ∈ A#, and setting 0(B) = ⟨L p′(CG(a)) | a ∈ B#
⟩ for any

hyperplane B of A, we deduce that 0(B) = L L t (for t as in Theorem 2.2(f)) and
0A,2(G)≤ NG(L L t)=: M < G. This step uses Gary Seitz’s fundamental generation
theorem for finite groups of Lie type [Seitz 1982]. Further applications of that result
yield in both cases that 0A,1(G) ≤ M . Finally, since e(G) = 3, A normalizes a
nontrivial 2-subgroup of G, which fairly quickly leads to a contradiction if Op′(M)

has odd order, completing the proof of Theorem 2.3.
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5. Concluding remarks

We take this opportunity to recognize Gary Seitz’s fundamental contributions to the
classification of finite simple groups in the 1970s and early 1980s, when he was
also a player in the concurrent effort to classify the finite doubly transitive groups.
This of course represents only a small fraction of his complete mathematical work.
Alone or with collaborators, he proved many landmark results that each served to
propel these classification efforts. We give several examples.

On doubly transitive groups, he worked with Christoph Hering, Bill Kantor, and
Mike O’Nan [Kantor and Seitz 1971; 1972; Hering et al. 1972; Kantor et al. 1972],
in particular completing the classification of finite split BN -pairs of rank 1. Seitz
and Paul Fong then classified finite split BN -pairs of rank 2 [1973; 1974].

He made major contributions to the classification of finite simple groups of
component type. With Michael Aschbacher he classified simple groups with a
known quasisimple standard subgroup centralized by a four-group [1976b; 1981].
Partly with Bob Griess and David Mason he classified most simple groups with
a standard subgroup in Chev(2) whose centralizer has a cyclic Sylow 2-subgroup
[Seitz 1979a; 1979b; 1979c; Griess et al. 1978].

On top of all these, Gary proved many useful results illuminating the structure of
finite groups of Lie type. Outstanding examples are the classification of involutions
in groups in Chev(2) [Aschbacher and Seitz 1976a], and the generation properties
of r ′ elementary abelian subgroups of odd order acting on groups in Chev(r) [Seitz
1982]. The latter has been mentioned in the above discussion of Theorem 2.3, and
in general is vital for the ultimate success of the signalizer functor method.
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DECOMPOSITION NUMBERS IN THE PRINCIPAL BLOCK
AND SYLOW NORMALISERS

GUNTER MALLE AND NOELIA RIZO

To the memory of Gary Seitz

If G is a finite group and p is a prime number, we investigate the relationship
between the p-modular decomposition numbers of characters of height zero
in the principal p-block of G and the p-local structure of G. In particular we
prove that, under certain conditions on the nonabelian composition factors
of G, dχ1G ̸= 0 for all irreducible characters χ of degree prime to p in the
principal p-block of G if, and only if, the normaliser of a Sylow p-subgroup
of G has a normal p-complement.

1. Introduction

Let G be a finite group, p a prime number, Irr(G) the set of irreducible ordinary
characters of G and IBr(G) the set of irreducible p-Brauer characters of G. Then
the restriction χ◦ of any χ ∈ Irr(G) to the set of p-regular elements of G can be
written as

χ◦
=

∑
ϕ∈IBr(G)

dχϕϕ,

where the dχϕ are uniquely determined nonnegative integers. These are called the
p-modular decomposition numbers of G, and a great deal of literature is devoted to
understanding them.

Navarro and Tiep [2020; 2022] initiated the investigation on relations between
p-decomposition numbers and properties of Sylow p-normalisers, considering two
different settings. In [Navarro and Tiep 2020] they conjectured that if p > 3 then
dχ1G ̸= 0 for all χ ∈ Irrp′(G), that is, for all irreducible characters of G of degree
prime to p, if and only if G has self-normalising Sylow p-subgroups, and that this
happens if and only if dχ1G = 1 for all χ ∈ Irrp′(G). Note that irreducible characters
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of degree prime to p lie in p-blocks of maximal defect, so this situation can only
happen when the principal block is the only Brauer p-block of maximal defect
of G. It is then natural to wonder what can be said when this is not the case and
one restricts attention to the principal p-block B0(G). In this sense, in [Navarro
and Tiep 2022] they conjectured that dχ1G ̸= 0 for all χ ∈ Irr(B0(G)) if and only
if G has a normal p-complement. In this paper we consider the intersection of the
two conditions in [Navarro and Tiep 2020] and [2022], namely what happens if
dχ1G = 1 just for all χ ∈ Irrp′(B0(G)). Our main result is:

Theorem A. Let G be a finite group and p > 3 be a prime. Assume that all non-
abelian simple composition factors of G of order divisible by p satisfy Property (∗)
below. The following are equivalent:

(i) For every χ ∈ Irrp′(B0(G)) we have dχ1G ̸= 0.

(ii) For every χ ∈ Irrp′(B0(G)) we have dχ1G = 1.

(iii) For P ∈ Sylp(G) we have NG(P)= P × K for some K ≤ G.

Moreover, if G is p-solvable, this equivalence holds for every prime p.

Notice that, as pointed out in [Navarro and Tiep 2020], all irreducible characters of
odd degree of the alternating group A5 contain the trivial character in their 2-modular
reduction, and similarly, all irreducible characters of the Ree group 2G2(27) of
nonzero 3-defect contain the trivial character in their 3-modular reduction, while the
respective Sylow p-normalisers have no normal p-complement, so the equivalence
in Theorem A fails for nonsolvable groups with p ≤ 3.

Theorem A involves the following property that a finite nonabelian simple group
might, or might not, satisfy:

Property (∗). Let S be nonabelian simple and p > 3 a prime dividing |S|. Then
for all almost simple groups H with socle S and |H : S| a p-power, there exists
χ ∈ Irrp′(B0(H)) such that dχ1H = 0.

We prove Property (∗) does hold for many simple groups: for sporadic groups,
alternating groups, and simple groups of Lie type in characteristic different from p.
We also show it for some groups of Lie type in characteristic p. (The general case
of groups of Lie type in their defining characteristic was also left open in [Navarro
and Tiep 2020; 2022].) As the knowledge on p-decomposition numbers for groups
of Lie type in their own characteristic is too weak at present we refrain from making
a general conjecture and just leave it as a question as to whether Property (∗) holds
for all nonabelian finite simple groups.

Structure of the paper. In Section 2 we prove Property (∗) for S a sporadic simple
group, an alternating group, a simple group of Lie type in characteristic different
from p as well as for some groups of Lie type in characteristic p. In Section 3 we
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show that Theorem A holds for p-solvable groups and in Theorem 3.4 we reduce the
general case to the validity of Property (∗) on composition factors, thus completing
the proof of Theorem A.

2. Almost simple groups

In this section, we discuss instances of Property (∗) from the introduction.

Alternating and sporadic groups. We start out with simple groups not of Lie type.

Proposition 2.1. Property (∗) holds for S a sporadic simple group or the Tits group.

Proof. Let S be as in the assumption and H ≥ S as in Property (∗). Since p > 2
this means H = S. By [Navarro and Tiep 2022, Proposition 3.2] there exists
χ ∈ Irr(B0(H)) such that dχ1H = 0. If S has abelian Sylow p-subgroups, by one
direction of Brauer’s height zero conjecture [Kessar and Malle 2013], we then have
χ ∈ Irrp′(B0(H)) as required. Now assume Sylow p-subgroups are nonabelian. By
[Navarro and Tiep 2020, Lemma 3.2], there is χ ∈ Irrp′(H)= Irrp′(B0(H)) with
dχ1H = 0, and again we are done since by inspection in [GAP 2020], S has just one
p-block of maximal defect. □

Proposition 2.2. Property (∗) holds for S an alternating group.

Proof. Let S = An with n ≥ 5. As p > 2 again we have H = S. Set G := Sn .
Recall that the irreducible characters of Sn are naturally labelled by partitions of n.
If p divides n, then let χ = χ (n−2,12)

∈ Irr(B0(G)), as in [Navarro and Tiep 2022,
Proposition 3.1]. Then χ◦ is the sum of two irreducible Brauer characters of degrees
n −2 and 1

2(n −2)(n −3) and hence it is of degree prime to p and does not contain
any irreducible Brauer character of degree 1. Now, any θ ∈ Irr(S) under χ lies in
Irrp′(B0(S)) and dθ1S = 0, as wanted.

So we may assume that p does not divide n. Let n = ak pk
+ · · · + a1 p + a0 be

the p-adic expansion of n. Since p does not divide n, we have a0 > 0. Suppose
first that a0 > 1. Consider χ = χ (a0,1n−a0 ). By Peel’s theorem (see [James 1978,
Theorem 24.1]), χ◦

∈ IBr(G). Hence, it is enough to show that χ(1) ̸= 1, χ(1)
is p′, and χ ∈ Irr(B0(G)). By the hook length formula, χ has degree

χ(1)=
n!

n · (a0 − 1)!(n − a0)!
=

(
n − 1
n − a0

)
.

Then χ(1) ̸= 1 since 1< a0 < n. Moreover

n − 1 = ak pk
+ · · · + a1 p + (a0 − 1)

and
n − a0 = ak pk

+ · · · + a1 p,



370 GUNTER MALLE AND NOELIA RIZO

so by Lucas’ theorem we have

χ(1)=

(
n − 1
n − a0

)
≡

k∏
i=1

(
ai

ai

)(
a0 − 1

0

)
≡ 1 (mod p).

Thus, χ(1) is not divisible by p. Finally since the p-core of λ= (a0, 1n−a0) is (a0),
we have that χ lies in the principal p-block by the Nakayama conjecture, as desired.
Now take θ ∈ Irr(S) under χ , so θ ∈ Irrp′(B0(S)) and dθ1S = 0.

Finally, suppose that a0 = 1, so p divides n − 1. In this case consider χ =

χ (n−3,2,1), so χ lies in B0(G). This is the character in the proof of [Navarro and
Tiep 2020, Lemma 3.1(ii)], so we are done in this case as well. □

Groups of Lie type in nondefining characteristic. For groups of Lie type in cross
characteristic we consider the following setup. Let G be a simple linear algebraic
group of adjoint type over an algebraically closed field of characteristic r and
F : G → G a Steinberg map, with group of fixed points G := GF . It is well
known that any simple group of Lie type can be obtained as S = [G,G] for G, F
chosen suitably. Moreover, if Gsc denotes a simply connected covering of G, with
corresponding Steinberg map also denoted F , then S ∼= GF

sc/Z(GF
sc), if S is not the

Tits simple group, which was already discussed in Proposition 2.1. Let (G∗, F) be
dual to (G, F) and G∗

:= G∗F .
We let B ≤ G denote an F-stable Borel subgroup of G, and set B := BF .
We recall that outer automorphisms of prime order p ≥ 5 of simple groups of

Lie type are either field automorphisms, or diagonal automorphisms for groups of
types PSLn(ϵq), with ϵ ∈ {±1}.

Proposition 2.3. Property (∗) holds for S as above if |B| is prime to p.

Proof. By assumption p divides |S|, hence also |G| = |G∗
|. Let 1 ̸= s ∈ G∗

be a (semisimple) p-element in the centre of a Sylow p-subgroup of G∗, and let
χ ∈ Irr(G) be the semisimple character in the Lusztig series E(G, s), unique since G
has connected centre, see [Geck and Malle 2020, Definition 2.6.9]. By the degree
formula for Jordan decomposition [Geck and Malle 2020, Corollary 2.6.6], χ(1) is
then prime to p, and also χ(1)>1 as p does not divide |Z(G∗)| and so CG∗(s)<G∗.
Furthermore, by [Hiss 1990b, Corollary 3.4], the semisimple character χ lies in the
same p-block of G as the semisimple character in E(G, 1), i.e., the trivial character,
so in the principal p-block. Since p does not divide |B|, the permutation module
1G

B is projective, and thus contains the projective cover of the trivial module. But
all constituents of 1G

B are unipotent, so lie in E(G, 1); see [Geck and Malle 2020,
Example 3.2.6]. Hence, by Brauer reciprocity, 1◦

G does not occur as a constituent
of χ◦. Taking for θ any character of S below χ we see that θ ∈ Irrp′(B0(S)) and
dθ1S = 0.
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Next observe that the order of any outer diagonal automorphism of S divides the
order of B. Thus, H is an extension of S by a p-power order field automorphism γ .
Note that any such automorphism of S extends to G and then also induces a dual
automorphism on G∗, which we denote γ ∗; see, e.g., [Taylor 2018, §5.6]. Now
choose s more precisely to be also γ ∗-invariant (which is possible as γ ∗ is a p-
element, so necessarily has nontrivial fixed points on the centre of a γ ∗-stable Sylow
p-subgroup of G∗). Then χ is also γ -invariant by [Taylor 2018, Proposition 7.2].
Since the index |G : S| is a divisor of |B|, hence prime to p, there exists a γ -invariant
θ ∈ Irrp′(B0(S)) below χ , with dθ1S = 0. Let θ̃ be an extension of θ to H = S⟨γ ⟩

in B0(H). Then θ̃ is as desired. □

Proposition 2.4. Property (∗) holds for S as above if F is a Frobenius map with
respect to an Fq -structure and p divides q − 1.

Proof. Let W be the Weyl group of G, that is, the F-fixed points of the Weyl
group of G. As p divides q − 1, the p-decomposition matrix of the group algebra
of W embeds into the p-modular decomposition matrix of G; see [Dipper 1990,
Corollary 4.10]. Let ϵ ∈ Irrp′(W ) be the (linear) sign character. Then ϵ◦

̸= 1◦

W since
p > 2, whence dϵ1W = 0. Now ϵ corresponds to the Steinberg character St of G.
Then dSt1G = dϵ1W = 0, St lies in the principal p-block of G (e.g., by [Enguehard
2000, Theorem A]) and its degree is a power of the defining characteristic, so prime
to p. Now note that any p-automorphism of S is realised inside the extension of G
(which induces all diagonal automorphisms) by a generator γ of the cyclic group
of p-power order field automorphisms, so we may assume H ≤ G̃ := G⟨γ ⟩. By
[Geck and Malle 2020, Theorem 4.5.11], St is invariant under γ . Let S̃t be an
extension of St to G̃ in B0(G̃), so dS̃t1G̃

= 0. Then S̃t|H is irreducible, since St
restricts irreducibly to S, hence lies in B0(H) and so is as required. □

Theorem 2.5. Property (∗) holds for S of Lie type when p is not the defining
characteristic.

Proof. By Proposition 2.3 we may assume that p divides the order of a Borel
subgroup B of G. If F is a Frobenius map with respect to an Fq-structure and p
divides q − 1, we are done by Proposition 2.4. If G is a Suzuki or Ree group and p
divides |B|, then p |(q2

− 1) where F2 defines an Fq2-structure, and the exact same
arguments as in the proof of Proposition 2.4 apply.

We are reduced to the case that F is a Frobenius map with respect to an Fq-
structure and p divides |B| but not q − 1. Since p is not the defining prime, this
implies that G is a twisted group of Lie type 2An−1, 2Dn , or 2E6 and p divides q +1,
respectively of type 3D4 and p divides q2

+ q + 1. Let d = 2, 3 in the respective
cases. Then the centraliser of a Sylow d-torus of G is a maximal torus, so has a
unique d-cuspidal unipotent character. Thus, by [Enguehard 2000, Theorem A]
there is a unique unipotent block of G of maximal defect, the principal block, which
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hence contains the Steinberg character St of G. By [Hiss 1990a, Theorem B] we
have dSt1G = 0 in our case unless G = PGU3(q). Except for that latter case, we can
now argue as in the proof of Proposition 2.4 to conclude. For G = PGU3(q) let χ
be the cuspidal unipotent character of degree q(q − 1), prime to p. By [Geck 1990,
Theorem 4.3(a)] it lies in B0(G) and satisfies dχ1G =0. Again, χ restricts irreducibly
to S and is invariant under all automorphisms, so we can argue as before. □

Groups of Lie type in defining characteristic. We do not see how to approach
Property (∗) for groups of Lie type in their defining characteristic in general. All
characters of positive defect lie in the principal block and decomposition numbers
tend to be large and little is known.

Proposition 2.6 (Navarro and Tiep). Property (∗) holds if S = PSp2n(p
f ), n ≥ 1,

with either p > 3 or p = 3 and n even.

Proof. In this case the principal block of S is the only p-block of positive defect. Let
H be almost simple with H/S a p-group. By [Navarro 1998, Corollary 9.6] there
is just one p-block of H covering B0(S), necessarily the principal block B0(H).
Now the irreducible character χ ∈ Irrp′(H) with dχ1H = 0 constructed in [Navarro
and Tiep 2020, Proposition 3.11] lies above a character of S of positive defect,
hence in the principal p-block of H and we are done. □

Observe that this does not extend to p = 3 and n odd: the group H = PSp2(3
3).3

has no irreducible character χ ∈ Irr3′(H) with dχ1H = 0.
[Navarro and Tiep 2022] also contains results for special linear and unitary

groups but these are not applicable here as the considered characters are not of
p′-degree. Nevertheless, we can follow their general approach.

For G = SLn(q) we let τ j , j = 1, . . . , q − 2 denote the nonunipotent Weil
characters of degree (qn

− 1)/(q − 1), ordered so that τ j is trivial on the centre
Z(SLn(q)) of order z := gcd(n, q − 1) if and only if z | j .

Proposition 2.7. Let S = PSLn(q) with q = p f , p ̸= 2 and n ≥ 3.

(a) If either gcd(p − 1, (q − 1)/ gcd(n, q − 1)) > 1 or 2 f < (q − 1)/z − 1 then
there is χ ∈ Irrp′(B0(S)) such that dχ1S = 0.

(b) Write f = pa f ′ with gcd(p, f ′)= 1 and set q ′
:= p f ′

. If

a = 0 or 2 f < (q ′
− 1)/ gcd(q ′

− 1, n)− 1

then Property (∗) holds for S = PSLn(q).

Proof. Let G := SLn(q) and set z = gcd(n, q − 1). We are interested in the
characters τ j of G that are trivial on Z(G), that is, for which j = z j ′ for some
integer 1 ≤ j ′

≤ (q − 1 − z)/z. By [Zalesski and Suprunenko 1990, Theorem 1.11]
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the decomposition number dτ j 1G equals the number of solutions xs ∈ {0, 1} of the
congruence

n(p − 1)
f −1∑
s=0

xs ps
≡ j (mod (q − 1)).

Dividing by z, we need to count solutions to

n
z(p − 1)

f −1∑
s=0

xs ps
≡ j ′ (mod (q − 1)/z).

If there is a prime ℓ dividing p − 1 and (q − 1)/z, then reducing modulo ℓ we
see there is no solution for j ′

= 1. Also, the left hand side can take at most
2 f distinct values. Since there are (q − 1)/z − 1 admissible values for j ′, there
is j ′ with no solutions whenever 2 f < (q − 1)/z − 1. Thus, under either of our
assumptions we find j ′ with τ j = τz j ′ ∈ Irrp′(G) with dτ j 1G = 0. Since G has a
single p-block of positive defect, τ j lies in the principal block. Furthermore, by
construction Z(SLn(q)) lies in the kernel of τ j and hence τ j deflates to a character
of S = PSLn(q). Thus we get (a).

(b) Since p > 2 does not divide q − 1, the p-power order automorphisms of S are
field automorphisms, of order dividing pa where f = pa f ′ is as in the statement.
If a = 0, Property (∗) follows from (a) since necessarily H = S. For a > 0 let γ be
a field automorphism of G (and hence of S) of order pa . There are exactly q ′

− 2
Weil characters of G invariant under γ , which hence extend to G⟨γ ⟩. Of these,
(q ′

− 1)/ gcd(q ′
− 1, n)− 1 are trivial on Z(G), so define characters in Irrp′(S)

invariant under γ . By the argument above, if this number is bigger than 2 f then
there exists such a character χ with dχ1S = 0. Hence any character of H in B0(H)
lying above it verifies Property (∗). □

Note that the case n =2 is addressed in Proposition 2.6. Observe that the condition
in Proposition 2.7(a) is satisfied if gcd(n, q−1)= 1, for example. It also holds when
p>n+1 (since p−1 always divides q−1), or if q>n(2 f

+1). Thus, Proposition 2.7
extends and complements [Navarro and Tiep 2022, Proposition 3.3(ii)].

Corollary 2.8. Let S = PSLn(q) with q = p f , p ̸= 2 and 3 ≤ n ≤ 9. Then there is
χ ∈ Irrp′(B0(S)) with dχ1S = 0 unless possibly S is one of

PSL4(5), PSL6(3), PSL6(7), PSL8(3), PSL8(9), PSL8(5), PSL8(25).

Proof. For the groups PSLn(q), n ≤ 9, considered here, either the conditions
in Proposition 2.7(a) are satisfied, or if not, a direct checking with the Zalesski–
Suprunenko formula shows the claim, except for the groups listed in the conclusion
and for PSL4(3). The decomposition matrix of PSL4(3) is available in [GAP 2020]
from which the claim can be verified for that group. □
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For G = SUn(q)we let τ j , j = 1, . . . , q , denote the nonunipotent Weil characters,
constructed by Seitz [1975], of degree (qn

− (−1)n)/(q + 1), again ordered so that
τ j is trivial on the centre Z(SUn(q)) of order z := gcd(n, q + 1) if and only if z | j .

Proposition 2.9. Let S = PSUn(q) with q = p f , p ̸= 2 and n ≥ 3.

(a) If 2 f < (q + 1)/z − 1 then there is χ ∈ Irrp′(B0(S)) such that dχ1S = 0.

(b) Write f = pa f ′ with gcd(p, f ′)= 1 and set q ′
:= p f ′

. If

a = 0 or 2 f < (q ′
+ 1)/ gcd(q ′

+ 1, n)− 1

then Property (∗) holds for S = PSUn(q).

Proof. The argument is very similar to the one for the special linear groups. Let
G = SUn(q) and set z = gcd(n, q +1)= |Z(G)|. Again, we consider characters τ j

trivial on Z(G), that is, for which j = z j ′ for some integer 1 ≤ j ′
≤ (q + 1 − z)/z.

By [Zalesski 1990, Main Theorem] the decomposition number dτ j 1G equals the
number of solutions xs ∈ {0, 1} of the congruence

n
(
(p − 1)

f −1∑
s=0

xs ps
− 1

)
≡ j (mod (q + 1)).

(In fact, [Zalesski 1990] has an additional summand of 1
2(q + 1) on the right-hand

side, but this disappears here due to a different numbering of the τ j , see [Navarro
and Tiep 2022, p. 612]; in any case, this difference will not matter for our argument
here.) Since the left-hand side can take at most 2 f distinct values, while there are
(q + 1)/z − 1 admissible values for j ′ the assertion in (a) follows. For (b) we can
argue exactly as in the proof of Proposition 2.7. □

As in [Navarro and Tiep 2020; 2022] we have no general results for orthogonal
or exceptional type groups in their defining characteristic.

3. The reduction

In this section we prove Theorem A. We will need the following results, which we
collect here for the reader’s convenience.

Lemma 3.1 [Murai 1994, Lemma 4.3]. Let N ◁G and let θ ∈ Irrp′(B0(N )). Suppose
that θ extends to P N , where P ∈ Sylp(G). Then there exists χ ∈ Irrp′(B0(G))
satisfying [θG, χ] ̸= 0.

The following argument is inside the proof of [Navarro and Tiep 2020, Theo-
rem 2.6].

Lemma 3.2. Let G be a finite group and suppose that dχ1G ̸= 0 for every χ ∈

Irrp′(B0(G)). Let M ◁ G and let P ∈ Sylp(G). Then dψ1MP ̸= 0 for every ψ ∈

Irrp′(B0(MP)).
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Proof. Since MP/M is a p-group, we have that ψM = τ ∈ Irrp′(B0(M)). By
Lemma 3.1 there exists χ ∈ Irrp′(B0(G)) lying over τ . By hypothesis, dχ1G ̸= 0,
and then χ◦

M contains 1M , so dτ1M ̸= 0. Since MP/M is a p-group, we have that
(MP)◦ = M◦ and then dψ1MP ̸= 0, as wanted. □

We next prove Theorem A for p-solvable groups.

Theorem 3.3. Let G be a p-solvable group. Then the following are equivalent:

(i) For every χ ∈ Irrp′(B0(G)) we have dχ1G ̸= 0.

(ii) For every χ ∈ Irrp′(B0(G)) we have dχ1G = 1.

(iii) For P ∈ Sylp(G) we have NG(P)= P × K for some K ≤ G.

Proof. We first prove (iii) implies (ii). By [Navarro et al. 2014, Theorem 3.2] we
have K ⊆ Op′(G) =: X . Now, let G = G/X and P = P X/X , then (iii) implies
that NG(P)∼= P . Since Irrp′(B0(G))= Irrp′(B0(G/X)) we know by [Navarro and
Tiep 2020, Theorem B] that (i) and (ii) hold.

Since (ii) implies (i) trivially, we just need to show that (i) implies (iii). We
proceed by induction on |G|. Let N = Op′(G) and use the bar notation. Since
Irrp′(B0(G))= Irrp′(B0(G)), if N > 1, we have by induction that NG(P)= P × K .
By [Navarro et al. 2014, Theorem 3.2] we have that K ⊆ Op′(G) = 1 so K = 1
and hence NG(P)= P . This implies that NG(P)= P × CN (P) and we are done.
So we may assume that N = 1. But in this case the principal p-block is the only
p-block of G, and we are done by [Navarro and Tiep 2020, Theorem B]. □

We finally prove Theorem A.

Theorem 3.4. Let G be a finite group. Assume that p > 3 and all nonabelian
composition factors of G of order divisible by p satisfy Property (∗). Then the
following are equivalent:

(i) For every χ ∈ Irrp′(B0(G)) we have dχ1G ̸= 0.

(ii) For every χ ∈ Irrp′(B0(G)) we have dχ1G = 1.

(iii) For P ∈ Sylp(G) we have NG(P)= P × K for some K ≤ G.

Proof. Since [Navarro et al. 2014, Theorem 3.2] holds for odd primes, we can argue
as in the first part of the proof of Theorem 3.3 to show that (iii) =⇒ (ii) =⇒ (i)
(notice that, as happens in [Navarro and Tiep 2020], (iii)=⇒ (ii)=⇒ (i) is always
true if p > 3, with no extra conditions on the composition factors of G). So we
just need to prove that (i) implies (iii). We work by induction on |G|. Arguing
as in the second paragraph of the proof of Theorem 3.3 we may then assume that
Op′(G)= 1.

Let M◁G be the largest p-solvable normal subgroup of G. We claim that M = 1.
Let G = G/M and use the bar notation. Suppose M > 1. Since Irrp′(B0(G)) is
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contained in Irrp′(B0(G)) we have by induction that NG(P)= P × K . By [Navarro
and Tiep 2020, Theorem 3.2] this implies that K ⊆ Op′(G). Since M is the largest
normal p-solvable subgroup of G, Op′(G) is trivial and hence NG(P) = P . By
[Guralnick et al. 2004, Theorem 1.1] this forces G to be solvable. Hence G is
p-solvable and we are done by Theorem 3.3.

Let N be a minimal normal subgroup of G; thus N = S1×· · ·×St where Si ∼= S is a
nonabelian simple group of order divisible by p and the Si are transitively permuted
by G. Let X/N = Op′(G/N ) and let H =

⋂
NG(Si ). We claim that G = (H ∩X)P .

Write Y = (H ∩X)P . We first show that Op′(Y )= 1. Indeed, since Op′(G), we have
that Op′(Y )∩(H ∩ X)⊆ Op′(H ∩ X)= 1. Now, Op′(Y )∼= (H ∩ X)Op′(Y )/(H ∩ X)
is a p-group, so Op′(Y )= 1 as wanted. By Lemma 3.2 applied to H ∩ X in place
of M , we have that Y satisfies (i). Since the nonabelian composition factors of Y
are composition factors of G, if Y <G, by induction this gives NY (P)= P × K for
some K . But then K ⊆ Op′(Y ) by [Navarro et al. 2014, Theorem 3.2], so K = 1.
This means that NY (P)= P and then by [Guralnick et al. 2004, Theorem 1.1] the
group Y is solvable. But then N is solvable, a contradiction. Hence Y = G, as
wanted.

Since G = (H ∩ X)P and H acts trivially on {S1, . . . , St }, P must act transitively
on the set {S1, . . . , St }. Write S = S1 and, for i = 2, . . . , t , write Si = Sxi with
xi ∈ P . We proceed now as in the proof of [Navarro and Tiep 2020, Theorem 2.6].
Let R = NP(S). If S R = G, then S = N and CG(S) is a normal p-subgroup of G.
Since there are no nontrivial p-solvable normal subgroups of G, we conclude that
CG(S)= 1 and hence G is almost simple with socle S and |G : S| is a power of p.
Since S satisfies Property (∗) by assumption, we have a contradiction. Hence we
may assume that S R < G.

Let Q = P ∩ N and let R1 = R ∩ S = Q ∩ S = P ∩ S ∈ Sylp(S). Let γ ∈

Irrp′(B0(S R)) and notice that γS =ψ ∈ Irrp′(B0(S)) since S R/S is a p-group. For
i =2, . . . , t , letψi =ψ

xi ∈ Irrp′(B0(Si )) and let η=ψ×ψ2×· · ·×ψt ∈ Irrp′(B0(N )),
which is P-invariant by [Navarro et al. 2007, Lemma 4.1(ii)]. Then η extends to
P N . By Lemma 3.1 and hypothesis we have dη1N ̸= 0. By [Navarro and Tiep
2020, Lemma 2.3] we have that dψ1S ̸= 0 and then, since S R/S is a p-group, we
conclude that dγ 1S R ̸= 0. Since S R < G and S is a composition factor of G, this
implies NS R(R)= R × K for some K . Then K ⊆ Op′(S R). Arguing as before, we
have that Op′(S R)= 1, so K = 1 and then NS R(R)= R. Now by [Guralnick et al.
2004, Theorem 1.1], S R is solvable, and hence S is solvable, which is our final
contradiction. □
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Let k be a field, and let G be a linear algebraic group over k for which
the unipotent radical U of G is defined and split over k. Consider a finite,
separable field extension ℓ of k and suppose that the group Gℓ obtained by
base-change has a Levi decomposition (over ℓ). We continue here our study of
the question previously investigated (Arch. Math. 100:1 (2013), 7–24): does
G have a Levi decomposition (over k)?

Using nonabelian cohomology we give some condition under which this
question has an affirmative answer. On the other hand, we provide an(other)
example of a group G as above which has no Levi decomposition over k.
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1. Introduction

Let k be a field, and let G be a linear algebraic group over k. Thus G is a group
scheme which is smooth and affine over k.

If kalg denotes an algebraic closure of k, the unipotent radical of Gkalg is the max-
imal connected, unipotent, normal subgroup. The unipotent radical of G is defined
over k if G has a k-subgroup U such that Ukalg is the unipotent radical of Gkalg .
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Definition 1.1. We say that G satisfies condition (R) if the unipotent radical U of G
is defined and split over k. (See Definition 2.1 for the notion of split unipotent group).
Write π : G → G/U for the quotient morphism; we say that G/U is the reductive
quotient of G. Thus G/U is a (not necessarily connected) reductive algebraic group.

Remark 1.2. If k is perfect then (R) holds for any linear algebraic group G over k.
Indeed, the unipotent radical U is defined over k by Galois descent. Every (smooth)
connected unipotent group over a perfect field k is k-split; see Remark 2.2.

Definition 1.3. Suppose that G satisfies condition (R). The group G has a Levi
decomposition (over k) if there is a closed k-subgroup scheme M of G such that
the restriction of the quotient mapping determines an isomorphism

π|M : M ∼
−→ G/R.

The subgroup M is then a Levi factor of G.

If G satisfies (R) and if M is a Levi factor of G then Proposition 2.7 below shows
that G may be identified with the semidirect product U ⋊ M as algebraic groups.

Remark 1.4. When k has characteristic 0, Mostow showed that G always has a
Levi decomposition; see, e.g., [McNinch 2010, §3.1]. For any field k of character-
istic p > 0, there are linear algebraic groups G over k with no Levi factor; see, e.g.,
Conrad, Gabber, and Prasad’s work [Conrad et al. 2015, A.6] for a construction.

We now fix a linear algebraic k-group G satisfying (R). Suppose that ℓ is a finite,
separable field extension of k, and suppose that Gℓ has a Levi decomposition. We
pose this question:

(♦) If Gℓ has a Levi decomposition (over ℓ), does G have a Levi decomposition
(over k)?

This question about descent of Levi factors was already considered in [McNinch
2013] whose main result gave the following partial answer:

Theorem 1.5. Assume that ℓ is a finite, Galois field extension of k with Galois
group 0 = Gal(ℓ/k), and assume that Gℓ has a Levi decomposition. If |0| is
invertible in k then G has a Levi decomposition.

We introduce the nonabelian cohomology set H 1
coc(M, U ) in Section 3, and in

Section 4 we prove the following result providing a different partial answer to (♦):

Theorem 1.6. If ℓ is a finite separable extension of k, suppose

(a) Gℓ has a Levi decomposition,

(b) the group scheme Uℓ
Mℓ is trivial, and

(c) H 1
coc(Mℓ, Uℓ) = 1.

Then G has a Levi decomposition.
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We also prove Corollary 4.5 which gives a reformulation of Theorem 1.6 using a
filtration of U . After some preliminaries in Sections 5 and 6, we prove the following
related result in Section 7:

Theorem 1.7. Suppose

(a) Gℓ has a Levi decomposition,

(b) Inn(Uℓ)
Mℓ is trivial,

(c) the center Z of U is a vector group on which G acts linearly, and

(d) H 1
coc(Mℓ, Inn(Uℓ)) = 1.

Then G has a Levi decomposition.

The reader should compare these results with [McNinch 2010, Theorem 5.2].
This older result shows that a certain condition involving the vanishing of second
cohomology H 2 unconditionally guarantees the existence of a Levi factor. These
newer results — Theorems 1.6, 1.7 and Corollary 4.5 — instead give conditions
using vanishing of (some form of) first cohomology to descend Levi factors over
finite separable field extensions.

We note that some additional hypotheses are required to answer the question (♦).
Indeed, Section 8 provides an example of an algebraic group G satisfying con-
dition (R) for which Gℓ has a Levi factor for some cyclic Galois extension ℓ of
degree p over k, but G has no Levi factor over k.

Every example currently known to the author of a group G satisfying (R) for
which (♦) has a negative answer is not connected. This suggests the following
natural problem for which a solution would be desirable:

Problem 1.8. Let ℓ be a finite, separable field extension of k and G a connected
linear algebraic group over k satisfying (R). Either find a proof of the assertion “Gℓ

has a Levi factor implies that G has a Levi factor” or find an example of a group
for which this condition fails.

2. Preliminaries

We fix an arbitrary field k. Throughout the paper, G will denote a linear algebraic
group over k. Thus G is a group scheme which is smooth, affine, and of finite type
over k.

If V is a linear representation of G, then for i ≥ 0, H i (G, V ) denotes the i-th
(Hochschild) cohomology group of V ; see, for instance, [Jantzen 2003, I.4].

Automorphism group functors. By a k-group functor, we mean a functor from
the category of commutative k-algebras to the category of groups. Of course, any
group scheme — and in particular, any linear algebraic group — over k is a fortiori
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a k-group functor, but we will consider a few group functors which are in general
not representable (i.e., which fail to be group schemes).

For a linear algebraic group G over k, we write Aut(G) for the k-group functor
which assigns to a commutative k-algebra 3 the group Aut(G)(3) = Aut(G(3)).

If Z denotes the (scheme-theoretic) center of G, there is a natural homomorphism
of k-group functors Inn : G/Z → Aut(G) whose image determines a normal k-
subgroup functor Inn(G) of Aut(G); see [SGA 3 III 2011, XXIV §1.1].

Now, the k-group functor Out(G) is defined for each 3 by the rule

Out(G)(3) = Aut(G)(3)/ Inn(G)(3)).

The quotient mappings Aut(G(3)) → Aut(G(3))/ Inn(G(3)) determine a ho-
momorphism of k-group functors

(2-1) 9 : Aut(G) → Out(G).

Unipotent groups. Recall from [Borel 1991, §15.1] the following:

Definition 2.1. A connected, unipotent linear algebraic group U over k is said to
be k-split provided that there is a sequence

1 = U0 ⊂ U2 ⊂ · · · ⊂ Um−1 ⊂ Um = U

of closed, connected, normal k-subgroups of U such that Ui+1/Ui ≃ Ga/k for
i = 0, . . . , m − 1, where Ga = Ga/k is the additive group.

Remark 2.2. When k is not a perfect field, there are connected unipotent k-groups
which are not k-split; see, for example, [Serre 2002, III.§2.1, Exercise 3]. On the
other hand, if k is perfect, every connected unipotent k-group is k-split; see [Borel
1991, Corollary 15.5(ii)].

Proposition 2.3. Let U be a k-split unipotent group. If V is a normal k-subgroup
of U , then U/V is again a k-split unipotent group.

Proof. The assertion follows from [Borel 1991, Theorem 15.4(i)]. □

A substantial reason for our focus on split unipotent groups is the following
result of Rosenlicht:

Proposition 2.4. Suppose that U is a connected, k-split unipotent subgroup of G
and write π : G → G/U for the quotient morphism. Then there is a morphism of
k-varieties

σ : G/U → G,

which is a section to π — that is, π ◦ σ is the identity. In particular, the mapping
π : G(k) → (G/U )(k) on k-points is surjective.

Proof. See [Springer 2009, Theorem 14.2.6]. □
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Extensions, group actions and semidirect products. Let A and M be linear alge-
braic k-groups.

Definition 2.5. An extension of M by A is a linear algebraic k-group E together
with a sequence

(2-2) 1 → A i
−→ E π

−→ M → 1,

where i and π are morphisms of algebraic groups over k, i determines an isomor-
phism of A onto ker π , and the homomorphism π is faithfully flat.

Definition 2.6. If A and M are linear algebraic groups, we say that A is an M-group
provided that there is a morphism of k-group functors M → Aut(A).

If A is an M-group via the homomorphism of k-group functors

α : M → Aut(A)

then we can form the semidirect product A ⋊α M ; it is an extension of M by A.
(We omit the subscript α from ⋊α when it is clear from context).

If E is an extension (2-2), observe that the conjugation action of E determines a
morphism of group functors Inn : E → Aut(A).

We record the following two results; their proofs are straightforward and left to
the reader:

Proposition 2.7. Let A and M be linear algebraic k-groups and consider an
extension (2-2)

1 → A → G π
−→ M → 1.

If s : M → G is a group homomorphism that is a section to π then the multiplication
mapping (x, m) 7→ xm induces an isomorphism

A⋊φ M ∼
−→ G

of algebraic k-groups, where φ : M → Aut(A) is the composite Inn ◦ s.

Proposition 2.8. Let A and M be linear algebraic k-groups and consider an
extension (2-2)

1 → A → G π
−→ M → 1.

There is a unique homomorphism of k-group functors φ : M → Out(A) such that
for any section s0 : M → G to π as in Proposition 2.4, for any commutative k-
algebra 3, and for any m ∈ M(3), φ(m) is the class of the inner automorphism
Inn(s0(m)) in Out(A).

Remark 2.9. A unipotent k-group U is wound if every mapping A1
→ U of k-

schemes is constant. A connected, wound unipotent group of positive dimension is
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not k-split. If M is a connected and reductive k-group and if U is a wound unipotent
k-group, then

(∗) any homomorphism of k-group functors M → Aut(U ) is trivial.

If M is a torus then (∗) follows from [Conrad et al. 2015, Corollary B.44]. Now
(∗) follows in general since the connected reductive group M is generated by its
maximal k-tori — see [Springer 2009, Theorem 13.3.6].

Observation (∗) provides some partial justification for our focus on groups
satisfying (R).

Linear actions. Let G and U be linear algebraic groups, suppose that U is con-
nected and unipotent, and suppose that U is a G-group.

Definition 2.10. If U is a vector group, the action of G on U is said to be linear if
there is a G-equivariant isomorphism of algebraic groups U ≃ Lie(U ).

Definition 2.11. A filtration

1 = U0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Um−1 ⊂ Um = U

by G-invariant closed k-subgroups Ui with Ui normal in Ui+1 for each i is a linear
filtration for the action of G if Ui+1/Ui is a vector group on which G acts linearly
for each i = 0, . . . , m − 1.

A linear filtration is a central linear filtration if Ui+1/Ui is central in U/Ui for
each i ≥ 0.

The following result was proved already in [Stewart 2013] under the assumption
that k is algebraically closed.

Theorem 2.12. Assume that the unipotent radical U of G is defined and split over k.

(a) If G is connected, there is a linear filtration of U for the action of G.

(b) If U has a linear filtration for the action of U ⋊G then it has a central linear
filtration.

Proof. (a) is the main result of [McNinch 2014].
To see (b), suppose that the subgroups Ui form a linear filtration of U for the action

of U ⋊G. We may clearly refine this filtration to arrange that Lie(Ui )/ Lie(Ui+1)

is an irreducible representation of U ⋊ G for each i .1 We claim that this refined
filtration is central. We proceed by induction on the length m of the linear filtration.
If m = 1 then U is abelian and the result is immediate.

Suppose now that m > 1 and that one knows that any linear filtration of U for
the action of U ⋊G of length < m for which the factors of consecutive terms form
irreducible U ⋊G-representations is central.

1Since U is unipotent, an irreducible representation of U ⋊G amounts to an irreducible represen-
tation of G.
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Now, the conjugation action of U on U1 is a linear action; thus, the fixed points
for the conjugation action of U on U1 form a G-invariant subgroup scheme which
is smooth over k. Since U1 ≃ Lie(U1) is an irreducible G-representation, it follows
that U acts trivially on U1; thus U1 is central in U . Now, it is clear that

(2-3) 1 ⊂ U2/U1 ⊂ · · · ⊂ Um/U1 = U/U1

forms a linear filtration of U/U1 for the action of G for which the factors of
consecutive terms form irreducible U ⋊G-representations. Thus by induction (2-3)
is a central linear filtration; this completes the proof. □

Remark 2.13. In the proof of Theorem 2.12, we constructed a central linear filtra-
tion by arranging that the action of U ⋊G on each quotient Ui+1/Ui is irreducible.
This condition is sufficient, but not necessary — in general, there are central linear
filtrations for which Lie(Ui+1)/ Lie(Ui ) is a reducible G-representation for some i .

Galois cohomology. Write 0 = Gal(ksep/k) for the absolute Galois group of k
where ksep is a separable closure of k.

Let G be a k-group functor satisfying the conditions spelled out in [Serre 2002,
II.§1.1]. Then 0 acts continuously on the group G(ksep) and we may consider the
Galois cohomology set H 1(k, G) := H 1(0, G(ksep)) [Serre 2002, II.§5.1].

Proposition 2.14. Let U be a connected, split unipotent algebraic group over k.
Then the Galois cohomology set satisfies H 1(k, U ) = 1.

Proof. The necessary tools are recalled in [McNinch 2004, Proposition 30]. □

3. Nonabelian cohomology

Let A and M be linear algebraic k-groups and suppose that A is an M-group.
Following [Demarche 2015, §2.1], we introduce the cohomology set H 1

coc(M, A)

as follows. Let Z1
coc(M, A) denote the set of regular maps f : M → A such that

for each commutative k-algebra 3 and each x, y ∈ M(3), the 1-cocycle condition

(3-1) f (xy) = f (x) ·
x f (y)

holds. Two cocycles f, f ′
∈ Z1

coc(M, A) are cohomologous provided there is
u ∈ U (k) such that for each 3 and each x ∈ M(3) we have

f (x) = u−1
· f ′(x) ·

xu.

This defines an equivalence relation on Z1
coc(M, A) and we write H 1

coc(M, A) for
the quotient set.

We view H 1
coc(M, A) as a pointed set; the marked point 1 ∈ H 1

coc(M, A) is the
class of the cocycle in Z1

coc(M, A) which takes the constant value 1. The pointed
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set H 1
coc(M, A) is trivial if H 1

coc(M, A) = {1}; we often indicate this condition by
the shorthand H 1

coc(M, A) = 1.
One interpretation or application of this cohomology set arises from examination

of a semidirect product G = A ⋊ M . Consider a linear algebraic group G with
normal subgroup A and a quotient mapping π : G → M = G/A. We suppose that
there is a group homomorphism s0 : M → G which is a section to π . According to
Proposition 2.7, s0 determines an isomorphism G ≃ A⋊ M .

Definition 3.1. Consider the set of all homomorphisms of k-groups M → G which
are sections to π ; two such homomorphisms s, s ′ will be considered equivalent if
there is a ∈ A(k) such that s = as ′a−1. Then Sect(G π

−→ M) denotes the quotient
of the set of all such homomorphisms by this equivalence relation.

Proposition 3.2. Write µ : G ×G → G for the multiplication mapping. For a given
homomorphism s0 : M → G which is a section to π , the assignment

f 7→ µ ◦ ( f, s0),

— where ( f, s0) : M → M ×G is the mapping m 7→ ( f (m), s0(m)) — determines a
bijection

As0 : H 1
coc(M, A) → Sect(G π

−→ M).

Proof. As already observed above, the choice of s0 determines an isomorphism of
linear algebraic groups G ≃ A ⋊ M ; see Proposition 2.7. Now the result follows
from [Demarche 2015, Proposition 2.2.2]. □

Remark 3.3. H 1
coc(M, A) is a pointed set — i.e., a set with a distinguished element.

That distinguished element is the class of the trivial mapping (x 7→ 1) : G → A. In
the bijection of Proposition 3.2 the section corresponding to the trivial class is s0.

Remark 3.4. When Z is a vector group with a linear action of M , H 1
coc(M, Z) coin-

cides with the usual Hochschild cohomology group H 1(M, Z) ≃ H 1(M, Lie(Z)).

In that case H 1
coc(M, Z) is a k-vector space.

Suppose now that A = U is a split unipotent M-group and that Z ⊂ U is a central
k-subgroup that is M-invariant. Then U/Z is a split unipotent M-group, and there
is a mapping

(3-2) 1 : H 1
coc(M, U/Z) → H 2(M, Z),

where H 2(M, Z) denotes the second Hochschild cohomology; it is defined as
follows. First, use Rosenlicht’s result Proposition 2.4 to choose a regular mapping
s : U/Z → U which is a section to the quotient homomorphism U → U/Z . Let
α = [ f ] ∈ H 1

coc(M, A/Z with f ∈ Z1
coc(M, A/Z).



LEVI DECOMPOSITIONS OF LINEAR ALGEBRAIC GROUPS AND COHOMOLOGY 387

As in [Demazure and Gabriel 1970, II, Subsection 3.2.3] — see also [McN-
inch 2010, §4.4] — the rule (g, h) 7→ s( f (g))s( f (h))s( f (gh))−1 determines a
Hochschild 2-cocycle whose class in H 2(G, Z) we denote by 1(α).

Proposition 3.5. Let U be a split unipotent M-group, and let Z be a central,
closed and smooth k-subgroup of U that is M-invariant. Write i : Z → U and
π : U → U/Z for the inclusion and quotient mappings, respectively.

(a) The sequence of pointed sets

H 1(M, Z)
i∗−→ H 1

coc(M, U )
π∗−→ H 1

coc(M, U/Z)
1

−→ H 2(M, Z)

is exact.

(b) If (U/Z)M
= 1 then i∗ is injective.

Sketch. (a) The proof of the corresponding statement for cohomology of pro-finite
groups given in [Serre 2002, I.§5.7] may be applied here mutatis mutandum. The
main required adaptation is the definition (given above) of the mapping 1 (which
required the existence of a regular section U/Z → U ).

(b) Suppose that f1, f2 : M → Z are 1-cocycles and that i∗([ f1]) = i∗([ f2]).
Thus f1, f2 are cohomologous in Z1

coc(M, U ), so there is u ∈ U (k) such that

f1(x) = u−1
· f2(x) · xu

for every commutative k-algebra 3 and every x ∈ M(3). Passing to the quotient
U/Z we see that 1 = u−1xu, so that the class of u lies in (U/Z)M(3). □

Remark 3.6. Assume that ℓ is a finite, Galois extension of k with Galois group
0 = Gal(ℓ/k). Then 0 acts on the Galois cohomology H 1(Mℓ, Aℓ) through its
action on regular mappings Mℓ → Aℓ.

If A is a vector group on which M acts linearly, then H 1(Mℓ, Aℓ) may be
identified with H 1(M, A) ⊗k ℓ. In that case H 1(M, A) may be identified with
H 1(Mℓ, Aℓ)

0.
This observation prompts several questions. Suppose U is a split unipotent

M-group and that U has a central linear filtration for the action of M .

(a) Under what conditions is it true that H 1
coc(M, U ) = H 1

coc(Mℓ, Uℓ)
0?

(b) Under what conditions is it true that the condition H 1
coc(M, U )=1 is equivalent

to the condition H 1
coc(Mℓ, Uℓ) = 1?

4. Descent of Levi factors, I

Proof of Theorem 1.6. Recall that G is a linear algebraic group satisfying condition
(R), U is the unipotent radical and M = G/U is the reductive quotient. Moreover,
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ℓ is a finite, separable field extension of k. We must show that under assumptions
(a), (b), and (c), the group G has a Levi decomposition.

First, note that the assumptions are unaffected if we pass to a finite separable
extension of ℓ. Thus, we may and will suppose that ℓ is Galois over k; write
0 = Gal(ℓ/k) for the Galois group.

According to (a), Gℓ has a Levi decomposition. Thus we may choose a ho-
momorphism s : Mℓ → Gℓ which is a section to π . According to (c), we have
H 1

coc(Mℓ, Uℓ) = 1. Together with Proposition 3.2, this shows that Sect(Gℓ
π

−→ Mℓ)

contains a single element. In particular, every homomorphism u : Mℓ → Gℓ which
is a section to π differs from s by conjugation with an element of U (ℓ).

There is a natural action of 0 on homomorphisms Mℓ → Gℓ which determines in
turn an action of 0 on Sect(Gℓ

π
−→ Mℓ). For each γ ∈ 0, we thus find an element

uγ ∈ U (ℓ) such that γs = u−1
γ · s · uγ .

We now contend that (♣): uγ is a 1-cocycle on 0 with values in U (ℓ). Well, for
γ, τ ∈ 0 we see that

(4-1) γ τs = u−1
γ τ · s · uγ τ ,

while on the other hand

(4-2) γ τs =
γ(u−1

τ · s · uτ ) =
γu−1

τ ·
γs ·

γuτ =
γu−1

τ · u−1
γ · s · uγ ·

γuτ .

Now, assumption (b) guarantees that U Mℓ

ℓ is trivial, and it follows that the
stabilizer in Uℓ of the section s is trivial. Thus together (4-1) and (4-2) imply that

uγ τ = uγ ·
γuτ .

This confirms (♣). Since U is a split unipotent k-group, H 1(k, U ) = 1; see
Proposition 2.14. Thus there is u ∈ U (ℓ) such that

(4-3) uγ = u−1
·
γu

for each γ ∈ 0; that is, γu = uuγ .
Now set s0 =u·s·u−1

∈Sect(Gℓ
π

−→ Mℓ). We claim that s0 is a k-homomorphism.
It is enough to argue that s is fixed by the Galois group 0. For γ ∈ 0 we note that

γs0 =
γu · s · u−1

=
γu ·

γs ·
γu−1

= u · uγ · u−1
γ · s · uγ · u−1

γ · u = usu−1
= s0.

Thus s0 : M → G is a k-morphism which is a section to π ; this shows that G has a
Levi factor as required. □

In the remainder of this section, we are going to formulate a variant of Theorem 1.6
using a filtration of U . We are going to assume that U has a central linear filtration

1 = Z0 ⊂ Z1 ⊂ · · · Zm = U

for the action of G; see Definition 2.11. Note that such a filtration always exists in
the case G is connected; see Theorem 2.12.
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Proposition 4.1. For each n ≥ 0 the homomorphism of k-group functors

φ0 : M → Out(U )

of Proposition 2.8 determines an action of M on the quotient Zn+1/Zn .

Proof. Since Zn+1/Zn is abelian, Out(Zn+1/Zn)=Aut(Zn+1/Zn). For each natural
number n, φ0 determines by restriction and passage to the quotient a homomorphism
of k-group functors

φ0|Zn+1 : M → Out(Zn+1/Zn) = Aut(Zn+1/Zn),

i.e., an action of M on Zn+1/Zn . □

Lemma 4.2. Suppose that H 1(M, Zi+1/Zi ) = 0 for each i = 0, . . . , m − 1. Then

H 1
coc(M, U ) = 1 and H 1

coc(Mℓ, Uℓ) = 1.

Proof. First observe that for a linear representation V of G, H 1(G, V ) = 0 if and
only if H 1(Gℓ, Vℓ) = 0. Now the result follows from Proposition 3.5. □

Remark 4.3. Viewing a finite-dimensional linear representation V of M as an
algebraic group, the scheme-theoretic fixed-point subgroup V M coincides with the
vector group given by the M-fixed points on the linear representation V . In particular,
if V is an irreducible representation of M , the group scheme V M is equal to {0}.

Lemma 4.4. Suppose that (Zi+1/Zi )
M

= {1} for each i = 0, . . . , m − 1. Then
U M

= {1} is the trivial group scheme.

Proof. We proceed by induction on m, the length of the central linear filtration of U .
If m = 0, U = 1 and the result is immediate.

Now suppose that m > 0 and that the result is known for connected and split
unipotent M-groups having a central linear filtration of length < m. Thus by
induction we know (U/Z1)

M
= {1}. Thus U M is contained in the kernel of the

quotient mapping U → U/Z1, that is, U M is contained in Z1. Since (Z1)
M is the

trivial group scheme, the proof is complete. □

We now obtain a corollary to Theorem 1.6:

Corollary 4.5. Assume that U has a central linear filtration for the action of G
and suppose

(a) Gℓ has a Levi decomposition (over ℓ),

(bb) the group scheme (Zi+1/Zi )
M is trivial for i = 0, . . . , m − 1, and

(cc) H 1(M, Zi+1/Zi ) = 0 for i = 0, . . . , m − 1.

Then G has a Levi decomposition.

Proof. Note that according to Lemma 4.4, condition (bb) implies hypothesis (b)
of Theorem 1.6. Similarly, according to Lemma 4.2 (cc) implies hypothesis (c) of
Theorem 1.6. Thus the result follows from Theorem 1.6. □
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5. Automorphisms of extensions

Let A and M be linear algebraic groups over k, and let E and E ′ be extensions
of M by A as in Definition 2.5.

Definition 5.1. A morphism of extensions φ : E → E ′ is a morphism of algebraic
groups for which the following diagram is commutative:

1 A E M 1

1 A E ′ M 1

i π

i ′ π

Remark 5.2. If φ : E → E ′ is a morphism of extensions, then φ is necessarily an
isomorphism of algebraic groups E ∼

−→ E ′.

Write Autext(E) for the group of automorphisms of E . Let Z be the (schematic)
center of A. Since Z is characteristic in A, E acts on Z by conjugation. Since A
acts trivially on Z , the action of E on Z factors through M ≃ E/A.

Write Z1
coc(M, Z) for the Hochschild 1-cocycles as in Section 3. Since Z is

commutative, Z1
coc(M, Z) is a group. The following result is a consequence of

[Florence and Lucchini Arteche 2019, Proposition 2.3].

Proposition 5.3. There is a canonical isomorphism of groups Z1
coc(M, Z) ∼

−→

Autext(E).

Now suppose that ℓ is a finite, separable field extension of k.

Theorem 5.4. Assume that the center Z of A is a vector group and that the action
of M on Z is linear. If the extensions Eℓ and E ′

ℓ of Mℓ by Aℓ are isomorphic, then
E and E ′ are isomorphic extensions of M by A.

Proof. Write ksep for a separable closure of k containing ℓ and write E for the set of
isomorphism classes of extensions of M by A over k which after scalar extension
to ksep become isomorphic to the extension Eksep of Mksep by Aksep .

As in [Serre 2002, III.§1], one knows that there is a bijection

(5-1) E ∼
−→ H 1(k, Autext(E)) := H 1(Gal(ksep/k), Autext(Eksep)).

Thus, the theorem will follow if we argue that the Galois cohomology set
H 1(k, Autext(E)) is trivial — i.e., contains a unique element.

By assumption, Z is a vector group with linear action of M , so that Z1(M, Z) is
a k-vector space (possibly of infinite dimension). Now Proposition 5.3 shows that
Autext(E)= Z1(M, Z) is a k-vector space; it follows from “additive Hilbert 90” that

H 1(k, Aut(E)) ≃ H 1(k, Z1(A, Z))

is trivial; see, for example, [McNinch 2013, (4.1.2)]. □
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6. Automorphisms and cohomology

Let A and M be a linear algebraic k-groups, and suppose that A is a M-group via
the mapping

φ : M → Aut(A).

Let Z denote the center of A as a group scheme. Then Inn(A) ≃ A/Z is also an
M-group via φ; for h ∈ Inn(A)(3) and g ∈ M(3), we have gh = φ(g)hφ(g)−1.

Denote by φ0 = 9 ◦ φ the homomorphism of group functors

M φ
−→ Aut(A)

9
−→ Out(A),

where 9 : Aut(A) → Out(A) is the natural map of (2-1).
Consider those homomorphisms of k-group functors θ : M → Aut(A) satisfying

(∗) 9 ◦ θ1 = φ0.

We say that two such homomorphisms θ1 and θ2 are equivalent if they are conjugate
by Inn(A)(k); that is, if there is h ∈ Inn(A)(k) for which

θ1(g) = h−1θ2(g)h

for each commutative k-algebra 3 and each g ∈ M(3). We write Lift(φ0) for
the quotient of the set of all homomorphisms M → Aut(A) satisfying (∗) by the
equivalence relation just described.

Proposition 6.1. Write µ : Aut(A) × Aut(A) → Aut(A) for the group operation.
For f ∈ Z1

coc(M, A), define 8 f : M → Aut(A) by the rule

8 f = µ ◦ ( f, φ) : M → Aut(A) × Aut(A) → Aut(A).

Then the assignment f 7→ 8 f determines a bijection

8 : H 1
coc(G, Inn(A)) → Lift(φ0).

Proof. For any 1-cocycle f ∈ Z1
coc(G, M), one checks that the mapping 8 f : G →

Aut(A) is homomorphism of k-group functors contained in Lift( f φ).
We now claim for f1, f2 ∈ Z1

coc(M, A) that f1 and f2 are cohomologous if and
only if 8 f1 and 8 f2 are equivalent.

(⇒): By assumption there is h ∈ Inn(U )(k) such that for each commutative k-
algebra 3 and each g ∈ M(3), the following identity holds:

f1(g) = h−1 f2(g)gh.
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Now observe that

8 f1(g) = f1(g)φ(g) = h−1 f2(g)gh · φ(g)

= h−1 f2(g)φ(g)hφ(g)−1φ(g) = h−1 f2(g)φ(g)h = h−18 f2(g)h,

so that 8 f1 and 8 f2 are equivalent.

(⇐): By assumption there is h ∈ Inn(A)(k) for which

8 f1 = h−18 f2h.

Then for each commutative k-algebra 3 and each g ∈ M(3) we have

f1(g) = 8 f1(g) · φ(g)−1
= h−18 f2(g)h · φ(g)−1

= h−18 f2(g)φ(g)−1gh = h−1 f2(g)gh,

so that f1 and f2 are cohomologous.
It now follows that f 7→ 8 f determines a well-defined injective mapping

8 : H 1
coc(M, Inn(A)) → Lift(φ0).

To see that 8 is surjective, suppose θ : M → Aut(A) represents a class in Lift(φ0).
For each commutative k-algebra 3 and each g ∈ M(3), we have θ(g)φ(g)−1

∈

Inn(A)(3). Thus we have a morphism of k-functors f : M → Inn(A) given by

f (g) = θ(g)φ(g)−1.

By the Yoneda lemma, the assignment f is a morphism of varieties, and a calculation
confirms that f is a 1-cocycle for the action of M on Inn(A) determined by φ. Then
[θ ] = [8 f ] = 8([ f ]) which proves that 8 is surjective. □

7. Descent of Levi factors, II

We are going to prove Theorem 1.7. We first prove the following:

Lemma 7.1. Let M, A be linear algebraic groups, and suppose that A is an M-
group via the homomorphism φ : M →Aut(A) of k-group functors. Let x ∈ A(k) and
consider the mapping φ1 : M → Aut(A) given for each commutative k-algebra 3

and each g ∈ M(3) by the rule φ1(g) = Inn(x)φ(g) Inn(x)−1. Then there is a
k-isomorphism of extensions of M by A:

A⋊φ M ≃ A⋊φ1 M.

Proof. Write G = A⋊φ M for the semidirect product constructed using the action de-
fined by φ. Now, the mapping φ : M →Aut(A) may be identified with the composite

M m 7→(1,m)
−−−−−→ G = A⋊φ M Inn

−−→ Aut(A)
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and φ1 : M → Aut(A) identifies with the composite

M m 7→(x,1)(1,m)(x,1)−1
−−−−−−−−−−−→ A⋊φ M Inn

−−→ Aut(A).

Write s1 : M → G = A⋊φ M for the section given by the rule

s1(m) = (x, 1)(1, m)(x, 1)−1.

It now follows from Proposition 2.7 that the product mapping

((a, m) 7→ a · s1(m)) : A × M → G

determines an isomorphism A⋊φ1 M ∼
−→ G = A⋊φ M of extensions, as required. □

We now prove Theorem 1.7 from Section 1:

Proof. By assumption (a), Gℓ has a Levi factor Mℓ; this choice determines a
homomorphism

φ : Mℓ → Aut(Uℓ)

such that φ0,ℓ = 9 ◦ φ where φ0 : M → Out(U ) is the mapping determined by
Proposition 2.8 and 9 : Aut(U ) → Out(U ) is the natural mapping of (2-1).

There is a natural action of the Galois group 0 on Aut(Uℓ) and on Out(Uℓ) for
which 9 is equivariant. For any γ ∈ 0 it follows that

9 ◦
γφ = φ0,

i.e., in the notation of Proposition 6.1, γφ determines a class in Lift(φ0,ℓ).
According to Proposition 6.1 there is a bijection H 1

coc(Mℓ, Inn(Uℓ))
∼

−→ Lift(φ0).
Since H 1

coc(Mℓ, Inn(Uℓ)) = 1 it follows that classes of the automorphisms γφ

in Lift(φ0) all coincide; that is, all γφ are equivalent.
By the definition of the equivalence relation defining Lift(φ0), we find for each

γ ∈ 0 an element hγ ∈ Inn(U )(ℓ) such that

γφ = h−1
γ · φ · hγ .

If γ, τ ∈ 0 we see that

(7-1) γ τφ = h−1
γ τ · φ · hγ τ ,

while on the other hand

(7-2) γ(τφ) =
γ(h−1

τ · φ · hτ ) =
γh−1

τ ·
γφ ·

γhτ =
γh−1

τ · h−1
γ φ · hγ ·

γhτ .

By assumption (b) we know that the stabilizer in Inn(U ) of the automorphism φ

is trivial. Thus taken together (7-1) and (7-2) imply that

hγ τ = hγ
γhτ ;
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i.e., hγ is a 1-cocycle on 0 with values in Inn(U )(ℓ). Since U is connected and
split unipotent, so is Inn(U ); see Proposition 2.3. Thus H 1

coc(Mℓ, Inn(Uℓ)) = 1 by
Proposition 2.14.

It follows that the cocycle hγ is trivial. Thus there is h ∈ Inn(U )(ℓ) such that
for each γ ∈ 0 we have

hγ = h−1
·
γh.

We now claim that the mapping φ1 : Mℓ → Aut(Uℓ) defined by

φ1 = h · φ · h−1

is 0-stable. For γ ∈ 0 we have

γφ1 =
γ(h · φ · h−1) =

γh ·
γφ ·

γh−1
= hhγ · h−1

γ φhγ · h−1
γ h−1

= φ1.

Thus φ1 is 0-stable and hence defines a morphism φ1 : M → Aut(U ) of k-group
functors which we may use to define a semidirect product G1 = U ⋊φ1 M over k.

The center Z of U is a connected and split unipotent group; thus H 1(ℓ, Z) = 1.
It follows that the mapping U (ℓ) → Inn(U )(ℓ) is surjective, so we may choose an
element u ∈ U (ℓ) for which Inn(u) = h ∈ Inn(U )(ℓ).

Thus we have
φ1 = Inn(u) · φ · Inn(u)−1.

It now follows from Lemma 7.1 that there is an isomorphism of extensions

Gℓ = Uℓ ⋊φ Mℓ ≃ G1,ℓ = Uℓ ⋊φ1 Mℓ

of Mℓ by Uℓ.
According to Theorem 5.4, assumption (c) implies that the extension Gℓ has a

unique k-form. Since G and G1 are both k-forms of this extension, it follows that
G ≃ G1 are k-isomorphic extensions and in particular are k-isomorphic algebraic
groups; since G1 has a Levi factor over k, we conclude that G has a Levi factor
over k as well. □

8. An example

In [McNinch 2013, §5] we gave an example of an extension

1 → W → E → Z/pZ → 1

with E commutative and W a connected, commutative unipotent group of expo-
nent p2. The group E was constructed by twisting, and it provided a negative
answer to the question (♦) from Section 1. Namely, for a suitable finite Galois
extension ℓ of k the group Eℓ has a Levi factor, but E had no Levi factor.
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We conclude with another example of a linear algebraic group over k which
provides a negative answer to the question (♦).

The example below gives a noncommutative extension of a finite abelian p-group
by a connected, noncommutative unipotent group; in this case, the construction of
the extension is perhaps slightly more straightforward.

Suppose that the characteristic of k is p > 2. Consider the additive polynomial
X p

− X ∈ k[X ] defining the Artin–Schreier mapping P: for any commutative
k-algebra 3, this mapping P : 3 → 3 is given by the rule x 7→ x p

− x .
Recall that if s ∈ k is not in the image of P : k → k then the polynomial

F(X) = X p
− X − s ∈ k[X ] is irreducible. If α is a root of F(X) in an extension

field of k then ℓ = k(α) is a Galois extension of k with Gal(ℓ/k) ≃ Z/pZ.
Let V be a vector space of dimension 2 over k with a basis e, f , and write

β : V × V → k for the unique nondegenerate symplectic form satisfying β(e, f ) =

1 = −β( f, e). Viewing P ◦β as a factor system, we define a unipotent group H as
an extension of V by Ga; see [Serre 1988, VII.§1.4]. Explicitly, for a commutative
k-algebra 3 we have

H(3) = 3 × V ⊗k 3

with operation

(t, v) · (s, w) = (t + s + P(β(v, w)), v + w)

= (t + s + β(v, w)p
− β(v, w), v + w)

for v, w ∈ V ⊗ 3 and s, t ∈ 3.
Thus H is the nonabelian central extension

(8-1) 0 → Ga
i

t 7→(0,t)−−−−→ H
(v,t)7→v
−−−−→ V → 0.

Write Z for the center of H ; then Z ≃ Ga is the image of the mapping i of (8-1).
Fix t ∈ k and let V0,t = ⟨te, f ⟩ ⊂ V , so that V0,t ≃ (Z/pZ)2. Let µt be the

central extension of V0,t by Z ≃ Ga defined by β (not by P ◦β)). Thus there is an
exact sequence

0 → Ga → µt → V0,t = (Z/pZ)2
→ 0

and the group operation is given by (a, v) · (b, w) = (a + b +β(v, w), v +w), for
v, w ∈ V0,t ⊗ 3 = V0,t and a, b ∈ 3.

Write E for the fiber product E = H ×Ga µt ; thus E is an extension of V0,t ≃

(Z/pZ)2 by H . By the definition of the fiber product, there is a commuting diagram

0 Ga µt (Z/pZ)2 0

0 H H ×Ga µt (Z/pZ)2 0π
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Proposition 8.1. If X p
− X + t has no root in k, then the group E = H ×Ga µt

has no Levi factor over k. If α is a root X p
− X + t and ℓ = k(α) then Eℓ has a

Levi factor.

Sketch. We may represent elements of E(k) as tuples (a, v, w) where v ∈ V0,t ,
w ∈ V and a ∈ k. We have

(a, v, w) · (a′, v′, w′) = (a + a′
+ β(v, v′) + Pβ(w, w)′, v + v′, w + w′).

Now, any elements ẽ, f̃ of E(k) mapping to te, f ∈ V0,t via π must have the
form ẽ = (a, te, v) for some v ∈ V and a ∈ k and f̃ = (b, f, w) for some w ∈ V
and b ∈ k.

We see that

ẽ · f̃ = (a, te, v) · (b, f, w) = (a + b + t + Pβ(v, w), te + f, v + w)

while

f̃ · ẽ = (b, f, w) · (a, te, v) = (a + b + −t − Pβ(v, w), te + f, v + w)

Since the characteristic of k is not 2, ẽ · f̃ = f̃ · ẽ if and only if

0 = Pβ(v, w)+ t = β(v, w)p
− β(v, w)+ t.

If X p
− X + t has no root in k, it follows that the group ⟨ẽ, f̃ ⟩ is nonabelian for

any choice of ẽ, f̃ . This shows that E has no Levi factor.
On the other hand, Eℓ always has a Levi factor since we may take ẽ = (0, te, αe)

and f̃ = (0, f, f ); then ⟨ẽ, f̃ ⟩ ≃ (Z/pZ)2, so that ⟨ẽ, f̃ ⟩ provides a Levi factor. □

Remark 8.2. The group E of Proposition 8.1 fails to satisfy hypotheses (b) and (c)
of Theorem 1.6: Let M = E/H ≃ (Z/pZ)2 be the reductive quotient of E . Then:

• Mℓ acts trivially on Hℓ. Thus, H Mℓ

ℓ = Hℓ ̸= {1}, so that condition (b) fails.

• The cohomology group H 1
coc(Z/pZ, Ga) is nontrivial. Using a Künneth for-

mula, we see that H 1
coc(M, Ga) ̸= 1. Now use Proposition 3.5 to conclude that

H 1
coc(M, H) ̸= 1 and H 1

coc(Mℓ, Hℓ) ̸= 1. Thus condition (c) fails.
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ON THE INTERSECTION OF PRINCIPAL BLOCKS

GABRIEL NAVARRO, A. A. SCHAEFFER FRY AND PHAM HUU TIEP

To the memory of Gary Seitz

If p and q are two primes, G is a finite group, and Bp(G) is the set of
complex irreducible characters in the principal p-block of G, we study
|Bp(G) ∩ Bq(G)| and its possible relation with some local subgroup.

1. Introduction

It is not often the case that one finds interactions between the representation theory
of finite groups with respect to different primes p and q. If G is a finite group
and Bp(G) is the set of the complex irreducible characters of G in the principal
p-block of G, the p-block containing the principal character 1G , relations between
the sets Bp(G) and Bq(G) are an exception. For instance, it was proved in [Bessen-
rodt et al. 2007] that Bp(G) = Bq(G) implies that p = q (following pioneering
work in [Navarro and Willems 1997]). The study of the other end case, when
Bp(G)∩ Bq(G)= {1G}, has led to the main conjecture in [Liu et al. 2020] (and its
strengthening in [Navarro et al. 2022]): G should have a Sylow p-subgroup P and
a Sylow q-subgroup Q such that xy = yx for all x ∈ P and y ∈ Q (in other words,
[P, Q] = 1). This conjecture, which in turn would generalize the main theorem in
[Bessenrodt and Zhang 2008], has been reduced to almost simple groups in [Liu
et al. 2020] but, as surprising as it may seem, the values of the characters of the
almost simple groups are not yet understood well enough in order to solve this
problem. The local condition [P, Q] = 1 is not isolated in character theory and has
already appeared in the so-called Brauer’s height zero conjecture for two primes,
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formulated in [Malle and Navarro 2020], and solved recently in [Liu et al. 2024].
(See also [Beltrán et al. 2016].) The global condition Bp(G)∩ Bq(G) = {1G} is
definitely less transparent. (For a recent group-theoretical characterization of this
condition, see [Robinson 2024].)

Our aim is to propose a new counting global/local conjecture which at the same
time implies a characterization of the trivial intersection block property.

Conjecture A. Let p and q be primes, and let G be a finite group.

(a) Assume that there exist P ∈ Sylp(G) and Q ∈ Sylq(G) such that [P, Q] = 1,
and let N = NG(PQ). Then

|Bp(G)∩ Bq(G)| = |Bp(N )∩ Bq(N )|.

(b) We have that Bp(G)∩ Bq(G) = {1G} if and only if there exist P ∈ Sylp(G)
and Q ∈ Sylq(G) such that [P, Q] = 1 and Bp(N )∩ Bq(N ) = {1N }, where
N = NG(PQ).

As we will prove below (see Lemma 2.2(ii)), we have that Bp(N )∩Bq(N )={1N }

(for N = NG(PQ)) if and only if N = KL , where K and L are normal subgroups
of N of order not divisible by p and q , respectively. This would give, together with
Conjecture A(b), another purely group-theoretical characterization of the trivial
intersection block property.

We will give solid evidence that Conjecture A is true, but we cannot be optimistic
about a general proof of it at the present time. As we have already mentioned, the
“only if” implication of Conjecture A(b) seems out of reach. On the other hand,
notice that Conjecture A(a) for p = q implies the Alperin–McKay conjecture for
principal blocks and abelian Sylow p-subgroups, a conjecture which is still open
(for odd primes) in its full generality. Interestingly enough, Conjecture A(a) does
not seem implied by it or by the inductive Alperin–McKay condition [Späth 2013].
A reduction theorem of Conjecture A along the lines of the global/local inductive
conditions will appear elsewhere.

The main result is the following.

Theorem B. Conjecture A is true for quasisimple groups, symmetric groups and
p-solvable groups.

We also prove Conjecture A for several almost (quasi)simple groups, including
GLn(q0) and GUn(q0) for any prime power q0. (See Theorem 4.2 and Corollary 4.3.)

2. Preliminaries

Our notation for blocks follows [Navarro 1998], and for characters [Navarro 2018].
To simplify notation, we have chosen to write Bp(G) for what we usually write
Irr(Bp(G)). Also, when there is no possible confusion, we write 1 = 1X to be the
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principal character of any finite group X , and we write Bp(X)∩ Bq(X)= 1X when
Bp(X)∩ Bq(X)= {1X }.

As usual, we identify the irreducible characters of G/N with the irreducible
characters of G having N in their kernel. Although the following is well-known, it
seems convenient to write it down.

Lemma 2.1. Let G be a finite group, N ⊴ G, and suppose that χ ∈ Irr(G) has N
in its kernel. Let χ̂ ∈ Irr(G/N ) be the character of G/N naturally associated to χ .

(i) If χ̂ ∈ Bp(G/N ), then χ ∈ Bp(G). Therefore Bp(G/N )⊆ Bp(G).

(ii) If N is a central p-subgroup of G, then χ ∈ Bp(G) if and only if χ̂ ∈ Bp(G/N ).

(iii) If N is a p′-subgroup of G, then χ ∈ Bp(G) if and only if χ̂ ∈ Bp(G/N ).
Therefore Bp(G/N )= Bp(G).

(iv) G is a p′-group if and only if Bp(G)= 1.

Proof. By the comments in pages 198 and 199 of [Navarro 1998], we have that
B = Bp(G/N ) is contained in a unique block B of G. Also, B is contained
in B if and only if Irr(B)∩ Irr(B) ̸= ∅. Since the principal character 1G belongs
to Irr(B)∩ Irr(Bp(G)), then (i) is done. For the second part, recall that the map
G0

→ (G/N )0 given by x 7→ x N is a bijection. Then
∑

x∈G0 χ̂(x N )=
∑

x∈G0 χ(x).
The proof is complete using Corollary 3.25 of [Navarro 1998]. The third part follows
from Theorem 9.9(c) of [Navarro 1998].

If G is a p′-group, then Bp(G) = 1 by part (iii). For the converse, apply, for
instance, weak block orthogonality Corollary 3.7 of [Navarro 1998]. □

Of course, the converse of Lemma 2.1(i) does not hold: if χ ∈ Irr(Bp(G)) and
N ⊆ ker(χ), it is not true that χ̂ ∈ Bp(G/N ). (For instance, the sign character in S3

for p = 3.) In what follows, Op′(G) denotes the largest normal subgroup of G of
order not divisible by p.

Lemma 2.2. Let G be a finite group, and let p and q be primes.

(i) If Bp(G)∩ Bq(G)= 1 and N ⊴ G, then Bp(G/N )∩ Bq(G/N )= 1.

(ii) If Op′(G)Oq ′(G) = G, then Bp(G) ∩ Bq(G) = 1. If G is p-solvable and
q-solvable, then the converse holds.

(iii) Let Q ∈ Sylq(G), N ⊴ G, and let M = N CG(Q ∩ N ). Then Bq(G) is the only
block covering Bq(M), and Irr(G/M)⊆ Bq(G). Therefore, if Bp(G)∩ Bq(G)= 1,
then Bp(M)∩ Bq(M)= 1 and G/M is a p′-group.

(iv) Suppose that N ⊴ G, and that |N | is not divisible by p nor q. Then

Bp(G)∩ Bq(G)= Bp(G/N )∩ Bq(G/N ).



402 GABRIEL NAVARRO, A. A. SCHAEFFER FRY AND PHAM HUU TIEP

(v) Suppose that Z is a central subgroup of G and p ̸= q. Then

Bp(G)∩ Bq(G)= Bp(G/Z)∩ Bq(G/Z).

If p ̸= q and Conjecture A(a) holds for G/Z , then it also holds for G, and similarly
for Conjecture A(b).

Proof. Part (i) follows from Lemma 2.1(i).
We prove (ii). Recall that if N ,M ⊴ G and G = NM , then the only irreducible

character of G lying over 1N and 1M is 1G . If χ ∈ Bp(G), then Op′(G)⊆ ker(χ)
by Lemma 2.1(iii), and the first part easily follows. For the second, recall that
Bp(G)= Irr(G/Op′(G)) if G is p-solvable, by Theorem 10.20 of [Navarro 1998].
Let L = Op′(G)Oq ′(G). Hence, Irr(G/L) ⊆ Bp(G) ∩ Bq(G), and (ii) is easily
completed.

For (iii), notice that M ⊴ G, using the Frattini argument. We have that Q ∩ N ⊆

Q∩M , and therefore CG(Q∩M)⊆ M . Then the first part follows from Lemma 9.20
and Theorem 9.19 of [Navarro 1998]. Now assume that Bp(G)∩ Bq(G)= 1. Let
τ ∈ Bp(M)∩ Bq(M). Since Bp(G) covers Bp(M), there is some χ ∈ Bp(G) over τ
(by Theorem 9.4 of [Navarro 1998]). Now χ lies in some q-block that covers Bq(M),
by Theorem 9.2 of [Navarro 1998]. By the previous part, χ ∈ Bq(G), and then
χ = 1. Thus τ = 1. Finally, let γ ∈ Bp(G/M)⊆ Bp(G). Then γ lies over 1M , and
therefore the q-block of γ covers the q-block of M . It follows that γ lies in the
principal q-block of G, and therefore γ = 1, by hypothesis. Thus G/M is a group
with Bp(G/M) = 1, and this implies that G/M is a p′-group by Lemma 2.1(iv).
This finishes (iii).

Part (iv) is obvious since Bp(G)= Bp(G/N ) if |N | is not divisible by p.
Now, we prove part (v). Arguing by induction on |G : Z |, we may assume that |Z |

is a prime. Using part (iv), we may assume that |Z | = p. Let χ ∈ Bp(G)∩ Bq(G).
Since q ̸= p and χ ∈ Bq(G), we have that Z ⊆ ker(χ). Also, χ ∈ Bq(G/Z), by
Lemma 2.1(iii). By Lemma 2.1(ii), we have that χ ∈ Bp(G/Z). This finishes the
proof of the first statement.

For the second statement, let P ∈ Sylp(G) and Q ∈ Sylq(G), so that PZ/Z ∈

Sylp(G/Z) and Q Z/Z ∈ Sylq(G/Z). Observe that [P, Q] = 1 if and only if
[PZ/Z , Q Z/Z ] = 1. (Indeed, if x ∈ P and y ∈ Q commute modulo Z , then
xyx−1 y−1

= z ∈ Z . Now xyx−1
= yz is a q-element, and so z is a q-element. Sim-

ilarly, z is a p-element, and thus [x, y] = 1.) If [P, Q] = 1 then NG/Z (PQ Z/Z)=
N/Z for N = NG(PQ). (Indeed, writing Z = Op(Z)× Oq(Z)× Z1 and Z1 =

O{p,q}′(Z), we have PQ Z = PQ × Z1 and PQ = O{p,q}(PQ Z). Hence if h ∈ G
normalizes PQ Z , then it normalizes PQ.) Now apply the first statement. □

Remark 2.3. Suppose that G is a finite group and N ⊴ G. If Bp(N )∩ Bq(N )= 1
and Bp(G/N )∩ Bq(G/N )= 1, then it is false in general that Bp(G)∩ Bq(G)= 1,
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as shown by A4, with p = 2 and q = 3. Also, if Bp(G)∩ Bq(G)= 1, then it is false
in general that Bp(N )∩ Bq(N )= 1, as shown by G =D10 ×S3 for p = 3 and q = 5.

We will use the Alperin–Dade theorem on isomorphic blocks several times.

Theorem 2.4. (Alperin–Dade) Let p be a prime. Suppose that S is a normal
subgroup of a finite group G such that p does not divide |G/S|, and let P ∈ Sylp(S).
If G = SCG(P), then restriction from G to S defines a bijection Bp(G)→ Bp(S).

Proof. See Theorem 2.4 of [Navarro et al. 2022], for instance. □

Now we work towards proving that Conjecture A holds if G is p-solvable.

Lemma 2.5. Suppose that G has a normal p′-subgroup K containing Q ∈ Sylq(G).
Then restriction of characters defines a natural bijection

Bp(G)∩ Bq(G)→ Bp(NG(Q))∩ Bq(NG(Q)).

Also,
Bp(G)∩ Bq(G)= Irr(G/KCG(Q)),

and therefore Bp(G)∩ Bq(G)= 1 if and only if G = KCG(Q).

Proof. Let H = NG(Q). By the Frattini argument, we have that G = K H . Thus
restriction defines a bijection Irr(G/K )→ Irr(H/NK (Q)).

Let M = KCG(Q) ⊴ G. Let V = Oq ′(H) ⊆ CG(Q). Since Q ∈ Sylq(G), we
have that CG(Q)= Z(Q)× V , using the Schur–Zassenhaus theorem. Since H is
q-solvable, we have that Bq(H)= Irr(H/V ), by Theorem 10.20 of [Navarro 1998].
Also, M = K V . By Alperin–Dade Theorem 2.4, we have that restriction defines a
bijection Bq(M)→ Bq(K ).

We claim that Bp(G) ∩ Bq(G) = Irr(G/M). Let χ ∈ Bp(G) ∩ Bq(G). Then
χ ∈ Irr(G/K ) by Lemma 2.1(iii). Let η ∈ Irr(M) be under χ . Then η ∈ Bq(M) and
since η lies over 1K , we have that η= 1M , by Alperin–Dade. Hence χ ∈ Irr(G/M).
Conversely, if χ ∈ Irr(G/M), then χ ∈ Bp(G)∩ Bq(G), using Lemma 2.2(iii) and
Lemma 2.1(iii). This proves the claim. The claim, applied now in H (with respect
to its normal subgroup NK (Q)), proves that

Bp(H)∩ Bq(H)= Irr(H/NK (Q)V ).

The proof of the lemma now easily follows. □

Lemma 2.6. Suppose that P ∈ Sylp(G) is normal in G. Let q be any prime.

(i) Suppose that Q ∈ Sylq(G) centralizes P. Then

|Bp(G)∩ Bq(G)| =
∣∣Bp(NG(Q))∩ Bq(NG(Q))

∣∣.
(ii) We have that Bp(G)∩ Bq(G)= 1 if and only if there is Q ∈ Sylq(G) such that

[P, Q] = 1 and Bp(NG(Q))∩ Bq(NG(Q))= 1.
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Proof. Both parts of the lemma are trivial if p = q . So we may assume that p ̸= q .
Let C = CG(P), Z = Z(P) and K = Op′(G). Then C = Z × K .

If we assume that [Q, P] = 1, then Q ⊆ K and (i) follows from Lemma 2.5.
So we prove (ii). Now, we assume that Bp(G) ∩ Bq(G) = 1 and we prove that
there exists Q ∈ Sylq(G) such that [P, Q] = 1 by induction on |G|. Since G
is p-solvable, we know that Bp(G) = Irr(G/K ). Assume that K > 1. Then
Bp(G/K ) ∩ Bq(G/K ) = 1 and we have that there is Q ∈ Sylp(G) such that
[P, Q] ⊆ K . Since P ⊴ G, [P, Q] ⊆ P , and thus [P, Q] = 1. Hence, we may
assume that K = 1. Therefore Bp(G) = Irr(G) and therefore Bq(G) = 1. Thus
q does not divide |G| by Lemma 2.1(iv). Hence, in (ii), we may assume that
[P, Q] = 1, where Q ∈ Sylq(G). Then Q ⊆ K , and we apply Lemma 2.5. □

Theorem 2.7. Suppose that G is p-solvable.

(i) Suppose that there are P ∈ Sylp(G), Q ∈ Sylq(G) such that [P, Q] = 1. Then
|Bp(G)∩ Bq(G)| = |Bp(N )∩ Bq(N )|, where N = NG(PQ).

(ii) We have that Bp(G)∩ Bq(G) = 1 if and only if there are P ∈ Sylp(G), Q ∈

Sylq(G) such that [P, Q] = 1 and Bp(N )∩ Bq(N )= 1, where N = NG(PQ).

Proof. Suppose first that p = q. In this case, the second part is trivial, using
Lemma 2.1(iv). For the first part, this is the Alperin–McKay conjecture for p-
solvable groups with abelian Sylow p-subgroups, which is nearly trivial. (By the
Hall–Higman 1.2.3 lemma, we have that KP ⊴ G, where K = Op′(G). Since we
may also assume that K = 1 by Lemma 2.1(iii), the result easily follows.)

We may assume that p ̸= q. We start with the first part, which we argue by
induction on |G|. Let K = Op′(G). Since [P, Q] = 1, then we have that Q ⊆ K
by the Hall–Higman 1.2.3 lemma. Let H = NG(Q). By Lemma 2.5, we have that
|Bp(G)∩ Bq(G)| = |Bp(H)∩ Bq(H)|. Since NG(PQ)= NG(P)∩ H , by induction,
we may assume that Q ⊴ G. By Lemma 2.6, we conclude that

|Bp(G)∩ Bq(G)| = |Bp(NG(P))∩ Bq(NG(P))|

and this proves (ii).
Finally we prove (ii). The “if” part is immediate from (i). Assume now that G is

p-solvable and that Bp(G)∩ Bq(G)= 1. By Theorem 1.4 of [Liu et al. 2020] we
know that there exists P ∈ Sylp(G) and Q ∈ Sylq(G) such that [P, Q] = 1. Then
we apply part (i). □

3. (Quasi)simple groups

For a finite group G and a prime p, continue to let Bp(G) denote the irreducible
complex characters in the principal p-block of G. The goal of this section is to
show that for quasisimple groups, the following holds:
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Theorem 3.1. Let p and q be two primes (not necessarily distinct) and let S be a
finite quasisimple group. Let P ∈Sylp(S) and Q ∈Sylq(S). Assume that [P, Q]=1.
Then

|Bp(S)∩ Bq(S)| = |Bp(N )∩ Bq(N )|,

where N := NS(PQ).

We remark that when p = q, the statement is the Alperin–McKay conjecture
together with Brauer’s height zero conjecture for principal blocks of quasisimple
groups with abelian Sylow p-subgroups.

As a corollary, we obtain Theorem B for quasisimple groups:

Corollary 3.2. Conjecture A holds for finite quasisimple groups.

Proof. Thanks to Theorem 3.1, it remains to show that if S is a quasisimple
group such that Bp(S)∩ Bq(S) = 1, then [P, Q] = 1 for some P ∈ Sylp(S) and
Q ∈Sylq(S). We assume p ̸=q , as otherwise this is trivially true. Let S = S/Z(S) be
the corresponding simple group, and note that Bp(S)⊆ Bp(S) and Bq(S)⊆ Bq(S).
Then |Bp(S)∩ Bq(S)| = 1, which implies (S, p, q) is one of very few possibilities
thanks to [Brough et al. 2021], and these satisfy [P, Q] = 1 for some P ∈ Sylp(S)
and Q ∈ Sylq(S) (see the discussion after Conjecture 1.3 in [Liu et al. 2020]).
Hence by [Malle and Navarro 2020, Lemma 3.1] (or Lemma 2.2(v)), we also have
[P, Q] = 1 for some P ∈ Sylp(S) and Q ∈ Sylq(S), completing the proof. □

Given a connected reductive group G and Steinberg endomorphism F : G → G,
we write GF for the corresponding finite group of Lie type obtained as the fixed
points under F . If p is a prime and n an integer prime to p, we write dp(n) for the
order of n modulo p if p is odd and modulo 4 if p = 2.

The main results of [Malle and Navarro 2020, Section 3] yield:

Proposition 3.3 (Malle–Navarro). Let G be a finite quasisimple group and p ̸= q
two primes dividing |G|. Assume that there are P ∈ Sylp(G) and Q ∈ Sylq(G) such
that [P, Q] = 1. Then one of the following holds:

(i) G = J1 and {p, q} = {3, 5}.

(ii) G = J4 and {p, q} = {5, 7}.

(iii) S = G/Z(G) is a simple group of Lie type defined in characteristic r distinct
from p and q. In this case, if G = GF is a quasisimple group of Lie type, then:

• dp(r f )= dq(r f )=: d , where G is defined over Fr f .

• p and q are odd.

• P and Q are abelian, and PQ ≤ S for an (F-stable) Sylow d-torus S of G.

• p and q are good for G, larger than 3 if G is of type 3D4, and do not divide
|Z(G)F

: (Z(G)◦)F
| · |Z(G∗)F

: (Z(G∗)◦)F
|, where (G∗, F) is dual to (G, F).
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Proof. This is [Malle and Navarro 2020, Propositions 3.2–3.5]. The last item of (iii)
follows from [Malle 2014, Lemma 2.1 and Proposition 2.2]. □

Before working on simple groups of Lie type, we settle Conjecture A (when
p ̸= q) for sporadic groups:

Lemma 3.4. If p ̸= q , then Conjecture A holds for sporadic quasisimple groups.

Proof. By Lemma 2.2(v), we need only consider sporadic simple groups G.
On the one hand, by [Brough et al. 2021, Theorem 1.2], Bp(G)∩ Bq(G) = 1

precisely when (G, p, q) occurs in Proposition 3.3(i) and (ii). On the other hand,
assume G admits commuting Sylow p- and q-subgroups P and Q. Then we are in
(i) or (ii) of Proposition 3.3. Using the information in [GAP 2018] on centralizer
size and power fusion of elements of order p, q, and pq in G, one can show that
N = NG(PQ)= PQ⋊ O{p,q}′(N ) is S3 ×D10 in the case of Proposition 3.3(i), and
(C5⋊C4)×(C7⋊C3) in the case of Proposition 3.3(ii). It follows from Lemma 2.2(ii)
that Bp(N )∩ Bp(N )= 1. □

Proposition 3.5. Let G be a simple, simply connected algebraic group such that
G = GF is a quasisimple group of Lie type. Assume P ∈ Sylp(G) and Q ∈

Sylq(G) for primes p and q (not necessarily distinct) satisfying assertion (iii) of
Proposition 3.3 and let L := CG(S). Then L = CG(P)= CG(Q) and NG(PQ)=

NG(Q)= NG(P)= NG(L). Further, LF
= P × O p(LF )= Q × Oq(LF ).

Proof. Note that NG(PQ) ≤ NG(P)∩ NG(Q). Then the statements follow from
[Malle 2014, Propositions 2.3 and 2.4]. □

Lemma 3.6. Keep the situation of Proposition 3.5. Write N := NG(PQ) and
L := LF ◁ N. Then Bq(N ) is the unique q-block of N covering Bq(L) and Bp(N )
is the unique p-block of N covering Bp(L).

Proof. This follows from Proposition 3.5 and [Navarro 1998, Corollary (9.21)]. □

For G = GF a finite reductive group, let (G∗, F∗) be dual to (G, F) and write
G∗

:= (G∗)F∗

. Then Irr(G) is partitioned into rational Lusztig series E(G, s), where
s ranges over semisimple elements of G∗, up to G∗-conjugacy. (See, for example,
[Cabanes and Enguehard 2004, Theorem 8.24].) We will write UCh(G) := E(G, 1)
for the set of unipotent characters, and will similarly denote by UCh(Bp(G)) the
set E(G, 1)∩ Bp(G) of unipotent characters in the principal p-block for a given
prime p.

Proposition 3.7. Keep the situation of Proposition 3.5, but now assume p ̸= q are
distinct primes. Then we have a bijection between the sets Bp(G) ∩ Bq(G) and
Irr(N/L) and between the sets Bp(N )∩ Bq(N ) and Irr(N/L).

In particular, we have

|Bp(G)∩ Bq(G)| = |Bp(N )∩ Bq(N )|.
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Proof. First, by [Cabanes and Enguehard 2004, Theorem 9.12], and using that
neither p nor q is the defining prime for G, we have Bp(G) contains only characters
in rational series E(G, s) with |s| a power of p. Similarly, Bq(G) is comprised
only of characters in series with s a power of q . This means that Bp(G)∩ Bq(G)=
UCh(Bp(G))∩ UCh(Bq(G)) contains only unipotent characters.

Recall that P is abelian, so every character in Bp(G) has degree prime to p
by the “if” direction of Brauer’s height zero conjecture [Kessar and Malle 2013].
Further, note that the last item of Proposition 3.3 implies that both p and q satisfy
the necessary hypotheses for [Cabanes and Enguehard 1994, Theorem]. Now,
by [Cabanes and Enguehard 1994, Theorem], UCh(Bp(G)) = UCh(Bq(G)) is
comprised of those characters χ ∈ Irr(G) in the d-Harish–Chandra series of (L, 1L),
with L as in Proposition 3.5 and L := LF . Note that L is as stated due to [Malle
2007, Corollary 6.6].

Then we have Bp(G)∩ Bq(G)= UCh(Bp(G))= UCh(Bq(G)). Further, this set
is in bijection with the irreducible characters of the so-called relative Weyl group
WG(L)= N/L by [Broué et al. 1993, Theorem 3.2], completing the claim for G.

Now, note that every character in Bp(N ) ∩ Bq(N ) lies above some character
in Bp(L) ∩ Bq(L). Recall from Proposition 3.5 that L = P × X = Q × Y for
some p′, respectively q ′, subgroups X, Y ◁ L , so Irr(Bp(L))= Irr(P)⊗{1X } and
similar for q. Then this forces Bp(L)∩ Bq(L)= {1L}, and hence every character
of Bp(N )∩ Bq(N ) lies above the trivial character of L .

Conversely, by Lemma 3.6, Bp(N ), respectively Bq(N ), is the unique block
above Bp(L), respectively Bq(L). Hence, the characters of N above 1L are exactly
the members of Bp(N )∩ Bq(N ). By Gallagher’s theorem, this set is in bijection
with Irr(N/L), completing the proof. □

We can now complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Let S = G/Z with Z ≤ Z(G), where G is the Schur cover
of the simple group S := S/Z(S), and write P, Q as P = P̂Z/Z and Q = Q̂ Z/Z
for P̂ ∈ Sylp(G) and Q̂ ∈ Sylq(G).

First, assume that p ̸= q. Then [Malle and Navarro 2020, Lemma 3.1] yields
that [P, Q] = 1 implies [P̂, Q̂] = 1. It follows that G is of one of the forms in
Proposition 3.3. In cases (i) and (ii), the result is Lemma 3.4. In case (iii), we may
apply Lemma 2.2(v) to replace the Schur cover with a group of Lie type G of the
form in Proposition 3.5. Then every character in Bp(NG(P̂ Q̂))∩ Bq(NG(P̂ Q̂)) is
trivial on Z(G)≤ L by the second-to-last paragraph of the proof of Proposition 3.7.
Further, we have N = NS(PQ)= NG(P̂ Q̂)/Z . Using, e.g., [Cabanes and Enguehard
2004, Lemma 17.2], we have Bp(N ) is the set of characters in Bp(NG(P̂ Q̂)) lying
above 1Z and similar for q. Then we have, by Proposition 3.7,

|Bp(G)∩ Bq(G)| = |Bp(N )∩ Bq(N )|.
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For the same reason, we have Bp(S) is the set of characters in Bp(G) lying
above 1Z and similar for Bq(S). But recall from the proof of Proposition 3.7 that
Bp(G)∩ Bq(G)= UCh(Bp(G)). Since unipotent characters are trivial on Z(G),

|Bp(S)∩ Bq(S)| = |Bp(G)∩ Bq(G)| = |Bp(N )∩ Bq(N )|,

which completes the proof when p ̸= q .
Now let p =q and assume that P ∈ Sylp(S) is abelian. Since the Alperin–McKay

conjecture is known when p = 2 by [Ruhstorfer ≥ 2025] (alternatively, we can use
Walter’s classification of simple groups with abelian Sylow 2-subgroups [1969]),
we assume p is odd. By [Koshitani and Späth 2016], we may further assume that
P is not cyclic.

If S is a covering group of an alternating group An , then the Alperin–McKay
conjecture holds for S by the main result of [Michler and Olsson 1990]. If S is
a sporadic simple group or the Tits group, the Alperin–McKay conjecture has
been checked by T. Breuer [≥ 2025]. In the cases where a Sylow p-subgroup
of S is abelian, we note that the Schur multiplier is a p′-group, so we are done by
Lemma 2.1(iii). Similarly, when S is a group of Lie type with an exceptional Schur
multiplier and an abelian noncyclic Sylow p-subgroup, we have that the Schur
multiplier has size not divisible by p, except for the case PSL4(3), which can be
checked in [GAP 2018]. Hence in these cases, we may work with a quasisimple
group of Lie type G such that G/Z(G)= S, rather than the full Schur multiplier.

So we now assume G = GF is a quasisimple group of Lie type and S = S/Z(S)=
G/Z(G) is not isomorphic to any An . If p is the defining prime for G, then the
assumption that P is abelian yields that S = PSL2(pa) for some positive integer a.
In this case, |Z(G)| is prime to p, and Bp(S)= Bp(S)= Irrp′(S)= Irr(S) \ {StS}

and the result follows from the considerations in [Isaacs et al. 2007, Section (15F)]
(see also the proof of [Späth 2013, Theorem 8.4]). Hence, we may assume that p is
not the defining characteristic for G.

If p ≥ 5, we have that P̂ is also abelian (see the discussion after [Malle 2014,
Proposition 2.2]), and we are again in the situation of Proposition 3.3(iii). As
p ∤|Z(G)|, we then have Bp(G)= Bp(S) and Bp(NG(P̂))= Bp(N ), by [Navarro
1998, Theorem 9.9]. Recall that Bp(L)= Irr(P̂)⊗{1X } where X is the p′-group such
that L = CG(P̂)= P̂ × X guaranteed by Proposition 3.5. Note that every ψ ∈ Irr(P̂)
extends to its inertia group in NG(P̂)= NG(L) by [Isaacs 2006, Theorem (6.26)].
Then [Malle 2014, Theorem 2.9] yields a bijection between Bp(G) and Bp(NG(P̂)),
and hence between Bp(S) and Bp(N ), as long as p ≥ 5.

Suppose p = 3. Then the assumption that P is abelian implies that S = PSL2(q0),
S = PSLϵn(q0) with 3 ≤ n ≤ 5 and ϵ ∈ {±1}, or S = PSp4(q0), considering the order
polynomials and using [Malle 2014, Proposition 2.2] and the discussion after. If
P̂ is abelian, then the same considerations from before hold, noting that in this
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situation for the principal blocks, the conclusions of [Malle 2014, Proposition 2.7
and Theorem 2.8] continue to hold. That is, Bp(G) and Bp(NG(P̂)) are both in
bijection with pairs (ψ, φ) with ψ ∈ Irr(P) and φ ∈ Irr(NG(L)ψ/L).

Then we assume P̂ is nonabelian, and hence S = PSLϵ3(q0) with (q0 − ϵ)3 = 3.
Recall that by the “if” direction of BHZ [Kessar and Malle 2013], we have B3(S)
and B3(N ) consist only of 3′-characters. From here, the proof of [Malle 2008,
Corollary 3.9 and Theorem 3.12] yields the result. Indeed, note that the group N is
described in loc. cit., and its construction in GAP shows that it contains a unique
block of maximal defect. On the other hand, the six members of Irrp′(S) are the defla-
tions of three unipotent characters of G and the three irreducible constituents of the
restriction to G of a semisimple character of GLϵ3(q0) corresponding to a semisimple
element with eigenvalues {ω,ω−1, 1}, where |ω|= 3. The three unipotent characters
of GLϵ3(q0) and the stated semisimple character all lie in B3(GLϵ3(q0)), using [Fong
and Srinivasan 1982, Theorem 7A]. Hence these six characters all lie in B3(S). □

4. Almost simple groups

Proposition 4.1. (a) Let p ̸= q be primes. Then Conjecture A holds for any finite
group G with a central subgroup Z such that G/Z ∼= An or Sn with n ≥ 5.

(b) Let p = q be any prime. Then Conjecture A holds for covering groups G of An

and Sn with n ≥ 5.

Proof. (a) By Lemma 2.2(v), we may assume that G ∼=An or Sn , and that n ≥ p> q .
By [Beltrán et al. 2016, Lemma 2.4], see also Proposition 3.3, G has no Hall
{p, q}-subgroup if q > 2. Furthermore, by [Beltrán et al. 2016, Theorem 2.2], An

contains a p-element x such that CAn (x) contains no Sylow 2-subgroup of An . It
follows that G has no Hall {p, 2}-subgroup. Thus G does not admit any pair (P, Q)
of commuting Sylow p-subgroup P and Sylow q-subgroup Q. Finally, [Bessenrodt
and Zhang 2008, Proposition 3.2] and its proof show that Bp(G)∩ Bq(G) ̸= 1G .

(b) If p ̸= 2 then the statement follows from [Michler and Olsson 1990]. If p = 2,
then Bp(G) ̸= 1G , and G can have abelian Sylow 2-subgroups P only when G =A5,
in which case |Bp(G)| = 4 = |Bp(NG(P))|. □

Our next result proves Conjecture A for almost simple Lie-type groups of adjoint
type.

Theorem 4.2. Let p and q be (not necessarily distinct) primes, and let Gad be a
simple algebraic group of adjoint type over a field of positive characteristic, with
a Steinberg endomorphism F such that GF

ad is almost simple. Then Conjecture A
holds for any G with [GF

ad, GF
ad]◁G ≤ GF

ad.

Proof. Since Conjecture A holds trivially if p or q does not divide |G|, we will
assume p and q both divide |G|. Now, as shown in the proof of [Brough et al. 2021,
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Lemma 5.4], Bp(G)∩ Bq(G) ̸= 1G if p ̸= q . If p = q , then Bp(G) ̸= 1G because
p | |G|.

It remains to show that if G admits P ∈ Sylp(G) and Q ∈ Sylq(G) with
[P, Q] = 1, then

(4-1) |Bp(G)∩ Bq(G)| = |Bp(N )∩ Bq(N )|.

Inspecting the orders of G and the simple subgroup S = [G,G], we see that p and
q both divide |S|.

(a) Here we consider the case p ̸= q. As S admits the Hall {p, q}-subgroup
(P ∩ S)(Q ∩ S), we can apply Proposition 3.3 and Theorem 3.1 to S. In particular,
Gad is defined over a field of characteristic r ̸= p, q .

Assume first that

G = GF
ad.

To work on the local side, we identify Gad = G/Z where G is a simple, simply con-
nected algebraic group and Z a finite central subgroup, and S = GF Z/Z ∼= GF/Z F

for a suitable Steinberg endomorphism F : G → G. As in the proof of Lemma 2.2(v),
P ∩S = P1 Z/Z and Q ∩S = Q1 Z/Z for some P1 ∈ Sylp(GF ) and Q1 ∈ Sylq(GF )

with [P1, Q1] = 1. By Proposition 3.3, we have p, q > 2 and P1 Q1 ≤ T F for an
F-stable maximal torus T of G. We also observe that

(4-2) gcd(pq, |G/S|)= 1.

Indeed, since p, q > 2, the claim follows unless G = PGLϵn(q0) or G = Eϵ6(q0)ad

with ϵ = ±. In the former case, it was shown in the proof of [Beltrán et al. 2016,
Proposition 2.7] that the existence of the commuting pair (P1, Q1) in GF

= SLϵn(q0)

in the case gcd(pq, q0 − ϵ) > 1 implies that n <min(p, q), and so (4-2) follows as
|G/S| = gcd(n, q0 − ϵ). In the latter case, [Beltrán et al. 2016, Proposition 2.12(a)]
shows that p, q > 3, and so (4-2) follows as |G/S| = gcd(3, q0 − ϵ).

Thus P, Q ≤ S, and so P, Q ≤ T := (T/Z)F . Next we note that

(4-3) G = ST .

(Indeed, suppose gZ ∈ G = (G/Z)F for g ∈ G. Then g−1 F(g)∈ Z . Since Z ≤ T , by
the Lang–Steinberg theorem, there is t ∈ T such that t−1 F(t)= g−1 F(g). It follows
that t Z ∈ (T/Z)F , gt−1

∈ GF , and gZ = (gt−1 Z)(t Z) ∈ (GF Z/Z)(T/Z)F .) Let

N := NG(PQ), C := CG(PQ)= PQ × O{p,q}′(C), N1 := NS(PQ).

As T centralizes PQ, (4-3) shows that G = SC and N = N1C ; in particular,

(4-4) G = SCG(P)= SCG(Q), N = N1CN (P)= N1CN (Q).
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It therefore follows from Theorem 2.4 that

|Bp(G)∩ Bq(G)| = |Bp(S)∩ Bq(S)|, |Bp(N )∩ Bq(N )| = |Bp(N1)∩ Bq(N1)|.

Together with Theorem 3.1 applied to S, these equalities yield (4-1).
In the general case S ◁ G ≤ GF

ad, note that (4-2) and (4-4) still hold for any
such G, and hence we are again done by using Theorems 2.4 and 3.1.

(b) Now we consider the case p = q. Arguing as in the proof of Theorem 3.1, we
may assume that p> 2 and that Gad is defined over a field of characteristic r ̸= p, q .
Suppose in addition that both assertion (iii) of Proposition 3.3 (with p = q) and
(4-2) hold. (Note that |G1| = |G| for G1 = GF , so p ∤|G1|/|S| in this case as well.)
Then the arguments in (a) apply to show that (4-4) holds, and so we are done again
by using Theorems 2.4 and 3.1.

The same considerations as in the proof of Theorem 3.1 show that the only re-
maining case is when p =3, S =PSLϵ3(q0), G =PGLϵ3(q0), ϵ=±, and (q0−ϵ)3 =3.
In this case, H ∼= O3′(Z(H))× G for H := GLϵ3(q0). Hence, by Lemma 2.1(iii),
(4-1) follows from the main result of [Michler and Olsson 1983] applied to H . □

Corollary 4.3. Conjecture A holds for GLn(q0) and GUn(q0), for any n ≥ 2 and
any prime power q0.

Proof. It suffices to consider the case G = GLϵn(q0) is nonsolvable. In this case,
G/Z(G)= PGLϵn(q0) satisfies Conjecture A by Theorem 4.2 when p ̸= q. Hence
we are done using Lemma 2.2(v) if p ̸= q , and by the main results of [Michler and
Olsson 1983], which prove the Alperin–McKay conjecture for these groups, when
p = q. □
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HESSELINK STRATA IN SMALL CHARACTERISTIC
AND LUSZTIG–XUE PIECES

ALEXANDER PREMET

In memory of Gary Seitz

Let G be a connected reductive algebraic group over an algebraically closed
field k of characteristic p ≥ 0 and g = Lie(G). We show that the nilpo-
tent pieces LX(1) introduced by Lusztig form a partition of the nilpotent
cone of g and hence coincide with the Hesselink strata H(1) where 1 runs
through the set of all weighted Dynkin diagrams of G. Thanks to earlier
results obtained by Lusztig, Xue and Voggesberger this boils down to describ-
ing the pieces LX(1) for groups of type E7 in characteristic 2 and for groups
of type E8 in characteristic 2 and 3. Our arguments are computer-free, but
rely very heavily on the results of Liebeck and Seitz (2012).

1. Introduction

Let G be a connected reductive algebraic group of rank ℓ over an algebraically
closed field k and T a maximal torus of G. Let 6 be the root system of G with
respect to T and 5 a basis of simple roots of 6. Write X (T ) (resp. X∗(T )) for the
lattice of rational characters (resp. cocharacters) of T and X+

∗
(T ) for the intersection

of X∗(T ) with the dual Weyl chamber of X∗(T ) ⊗Z R associated with 5. Each
rational cocharacter λ ∈ X∗(G) gives rise to a Z-grading

g =
⊕
i∈Z

g(λ, i), g(λ, i) = {x ∈ g | (Ad λ(t))x = t i x for all t ∈ k×
},

of the Lie algebra g = Lie(G). For d ∈ Z, we put g(λ, ≥ d) :=
⊕

i≥d g(λ, i)
and g(λ, < d) :=

⊕
i<d g(λ, i), and denote by P(λ) = L(λ)Ru(λ) the parabolic

subgroup of G associated with λ. Here L(λ) = ZG(λ) is a Levi subgroup of G.
Recall that Lie(P(λ)) = g(λ, ≥ 0) and Lie(L(λ)) = g(λ, 0).

We let N (g) denote the nilpotent cone of g, the variety of all (Ad G)-unstable
vectors of g, and write DG for the set of all Dynkin labels attached to the nilpotent
orbits of a complex Lie algebra with root system 6. As explained in [4], the
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Hesselink strata of N (g) are parametrised by the set of cocharacters τ1 ∈ X+
∗
(T )

with 1 ∈ DG and form a partition of N (g), so that

N (g) =
⊔

1∈DG

H(1).

The cocharacter τ1 can be read off the weighted Dynkin diagram (a1, . . . , aℓ)

associated with the complex nilpotent orbit with label 1 as follows: if x is a root
vector of g corresponding to a simple root αi ∈ 5 then (Ad τ1(t))(x) = tai x for all
t ∈ k×. The Hesselink stratum attached to τ1 has the form

H(1) = (Ad G)(V(τ1, 2)ss + g(τ1, ≥ 3)),

where V(τ1, 2)ss ̸= ∅ is the set of all (Ad L(τ1))-semistable vectors of g(τ1, 2)

(see [4] for more detail).
Given 1 ∈DG we write g1,!

2 for the set of all x ∈ g(τ1, 2) such that Gx ⊂ P(τ1)

where Gx = ZG(x) is the stabiliser of x in G. As explained in [4, Remark 7.3] each
set g1,!

2 contains V(τ1, 2)ss , a nonempty Zariski open subset of g(τ1, 2). The set

LX(1) := (Ad G)(g1,!
2 + g(τ1, ≥ 3))

containing H(1) will be referred to as the Lusztig–Xue piece of N (g) associated
with 1. The pieces LX(1) and their analogues for N (g∗) and for the unipotent vari-
ety of G were introduced by Lusztig. Viability of these pieces has to do with the fact
that g1,!

2 is defined in a more transparent fashion than its elusive subset V(τ1, 2)ss .
In [11, Appendix A], Lusztig and Xue proved that the pieces LX(1) form a

partition of N (g) in the case where G is a classical group. Very recently, the same
property was established by Voggesberger for groups of type G2, F4 and E6 (see our
discussion in Section 2.1 for more detail). These results imply that LX(1) =H(1)

for all 1 ∈ DG provided that G is not of type E7 or E8.
The partition property of the coadjoint analogues of LX(1) was established by

Lusztig [10] and Xue [18] in all cases where G is a simple algebraic group and
p = char(k) equals the ratio of the squared lengths of long and short roots in 6. In
all other cases there is a G-equivariant bijection between N (g) and N (g∗) which
enables one to identify the nilpotent coadjoint orbits and pieces of g∗ with those
of g; see [13, Section 5.6].

It was conjectured in [17] that LX(1) = H(1) should also hold for all 1 ∈ DG

in the case where G is a group of type E7 or E8. Our goal is to prove this conjecture.
The orbits O(e) = (Ad G)e with e ∈ N (g) will be denoted by their Dynkin la-

bels 1 or their variants (1)p. The latter are attached to a small number of new nilpo-
tent orbits which appear when (6, p) ∈ {(G2, 3), (F4, 2), (E7, 2), (E8, 2), (E8, 3)};
see [9] for detail. Combining our results obtained in Section 2 with the results of
Lusztig, Xue and Voggesberger mentioned above we obtain the following:
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Theorem 1.1. Let G be a connected reductive group over an algebraically closed
field k of characteristic p ≥ 0. Then H(1) = LX(1) for all 1 ∈ DG and hence

N (g) =
⊔

1∈DG

LX(1).

Since proving Theorem 1.1 reduces quickly to the case where 6 is an irreducible
root system, we may assume without loss of generality that our algebraic group G
is simple and simply connected.

We use Steinberg’s notation xα(t) for elements of the unipotent root subgroups Uα

of G; see [15, §3]. Simple root vectors eαi with αi ∈ 5 are denoted by ei , and we
always use Bourbaki’s numbering [2] of simple roots. We assume that root vectors
eγ ∈ gγ come from a Chevalley basis of an admissible lattice gZ ⊂ gC, where gC

is a complex Lie algebra with root system 6. Since we mostly work over fields of
characteristic 2, the signs of structure constants do not really affect our computations.

The Weyl group of 6 is denoted by W and we write ⟨ · , · ⟩ for the canonical
pairing between X (T ) and X∗(T ) with values in Z. We fix a W -invariant Q-valued
inner product ( · | · ) on X∗(T )Q = X∗(T ) ⊗Z Q which enables one to identify
X∗(T )Q with the dual vector space X (T )Q = X (T ) ⊗Z Q.

When we need to specify a particular root vector, we sometimes follow the
conventions of [9]. For example, a root vector eγ with γ = α2 +α3 +2α4 +2α5 +α6

is denoted by e2342526. When confusion is unlikely, we prefer standard conventions
for specifying root vectors.

We occasionally use the (Ad G)-invariant Z-valued bilinear form κ on a minimal
admissible lattice gZ ⊂ gC introduced in [4, 7.2]. Its reduction modulo p will be
denoted by the same symbol. When describing certain cocharacters τ ∈ X∗(T ) we
often specify their effect on the root vectors ei where 1 ≤ i ≤ ℓ. More precisely, if
(Ad τ(t))ei = tri ei for all t ∈ k×, then we write τ = (r1, . . . , rℓ). This will cause
no confusion since 5 = {α1, . . . , αℓ} is a Q-basis of X (T )Q.

If char(k) = p > 0 then g = Lie(G) carries a canonical restricted Lie algebra
structure g∋ x 7→ x [p]

∈g equivariant under the adjoint action of G. It is well known
that the nilpotent cone N (g) coincides with the set of all x ∈ g such that x [p]

N
= 0

for N ≫ 0. A restricted Lie subalgebra a of g is called [p]-nilpotent (resp. toral) if
a ⊆ N (g) (resp. if the [p]-mapping x 7→ x [p] is one-to-one on a). Given x ∈ g we
write gx for the centraliser of x in the Lie algebra g, and we often use the fact that
Lie(Gx)⊆ gx . If x ∈ g(λ, r) for some λ∈ X∗(G) and r ∈ Z then gx =

⊕
i∈Z ge(λ, i)

where ge(λ, i) = ge ∩ g(λ, i). We say that x ∈ g is toral if x [p]
= x .

2. Hesselink strata and Lusztig–Xue pieces

2.1. Let τ = τ1 ∈ X∗(T ) be the cocharacter associated with 1 ∈DG and write g1,!
2

for the set of all x ∈g(τ, 2) such that Gx ⊂ P(τ ). Since the parabolic subgroup P(τ )
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is optimal for all x ∈ V(τ, 2)ss in the sense of Kempf–Rousseau theory, we have
the inclusion V(τ, 2)ss ⊆ g1,!

2 . From [4, Theorem 6.1(iii)] it follows that V(τ, 2)ss

is a nonempty Zariski open subset of g(τ, 2). The set

LX(1) := (Ad G)(g1,!
2 + g(τ, ≥ 3))

is called the Lusztig–Xue piece of N (g) associated with 1. By the above, LX(1)

contains H(1) for every 1 ∈ DG .
The pieces LX(1) were first introduced by Lusztig [11] in the Lie algebra case.

In [10], the definition was extended to cover the coadjoint nullcone N (g∗) and the
unipotent variety U(G) of G. In [11, Appendix A], Lusztig and Xue proved that
the decomposition

(1) N (g) =
⊔

1∈DG

LX(1)

holds for all groups of type A, B, C, D, the key point being that the union is disjoint.
Very recently, the same property was established by L. Voggesberger for groups of
type G2, F4 and E6 with the help of Magma; see [17, Theorem 1.1].

Note that if (1) holds for G then LX(1) = H(1) for all 1 ∈ DG ; see [4,
Remark 7.3.1] for detail. It was conjectured in [17, Conjecture 1.2] that (1) should
also hold for the k-groups of type E7 and E8. A similar expectation (covering N (g),
N (g∗) and U(G)) was expressed by Lusztig in [10, 2.3].

We aim to confirm Voggesberger’s conjecture. Lusztig’s expectation related
to partitioning the unipotent variety of G will be discussed in Section 2.12. For
completeness, we also provide a new proof for groups of type G2, F4 and E6.

Our task will become much simpler if we establish the following:

(2) If e ∈ g(τ1, 2) and Ge ⊂ P(τ1) then e ∈ H(1).

Proving statement (2) will occupy the main body of the paper. From now on
we assume that the group G is simple, simply connected, and has type E6, E7, E8,
F4 or G2. Let κ denote the normalised Killing form introduced in [4, 7.3]. If all
roots of 6 have the same length then the radical of κ coincides with the central
toral subalgebra of g; see [4, Lemma 7.3]. We start with a reduction lemma which
will also explain why (1) always holds in good characteristic.

Lemma 2.1. Suppose G is a group of type E and let τ = τ1, where 1 ∈ DG . If
e ∈ g(τ, 2) is such that Ge ⊂ P(τ ) and ge = Lie(Ge), then e ∈ H(1).

Proof. As G is simply connected, the centre of the Lie algebra g is spanned by a
toral element z ∈ g(τ, 0) which is nonzero if and only if (6, p) is one of (E6, 3)

or (E7, 2). For i ≥ 0, we let [e, g(τ, i)]⊥ denote the set of all x ∈ g(τ, −i −2) such
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that κ
(
x, [e, g(τ, i)]

)
= 0. Since κ is (Ad G)-invariant we have that

[e, g(τ, i)]⊥ = {x ∈ g(−i − 2) | [e, x] ∈ Rad κ}.

As Rad κ = kz ⊂ g(τ, 0), we get [e, g(τ, i)]⊥ = ge(τ, −i − 2) for i ≥ 1 and
[e, g(τ, 0)]⊥ = {x ∈ g(τ, −2) | [e, x] ∈ kz}.

By our assumption, ge = Lie(Ge) ⊂ Lie(P(τ )) =
⊕

i≥0 g(τ, i). Since ge =⊕
i∈Z ge(τ, i) it follows that ge(τ, i)=0 for i ≤−1, forcing g(τ, i +2)=[e, g(τ, i)]

for all i ≥ 1. Also, g(τ, 2) = [e, g(τ, 0)] when z = 0. If z ̸= 0 we can only say at
this point that the subspace [e, g(τ, 0)] has codimension ≤ 1 in g(τ, 2).

Since ge = Lie(Ge) we have that

dim(Ad G)e = dim g− dim ge =
∑
i∈Z

dim g(τ, i) −
∑
i≥0

dim ge(τ, i)

=
∑
i<0

dim g(τ, i) +
∑
i≥0

dim [e, g(τ, i)]

= dim [e, g(τ, 0)] +
∑

i ̸∈{0,1,2}

dim g(τ, i).

Since it follows from [7, Theorem 2] that dim (Ad G)e and
∑

i ̸∈{0,1}
dim g(τ, i) are

even numbers, it must be that dim [e, g(τ, 0)] ≡ dim g(τ, 2) mod 2. In view of our
earlier remarks this yields g(τ, 2) = [e, g(τ, 0)].

Let L(τ ) = ZG(τ ), a Levi subgroup of P(τ ) with Lie algebra g(τ, 0). Since
[g(τ, 0), e] is contained in the tangent space Te

(
(Ad L(τ ))e

)
, the (Ad L(τ ))-orbit

of e is Zariski open in g(τ, 2) and hence intersects with V(τ, 2)ss ̸= ∅. This yields
e ∈ H(1). □

2.2. Given a connected reductive k-group H and a nilpotent element e ∈ Lie(H)

(i.e., an unstable vector of the (Ad H)-module Lie(H)), we write 3̂H (e) for the set
of all cocharacters in X∗(H) optimal for e in the sense of Kempf–Rousseau theory.
By [5, Theorem 7.2], this set of cocharacters does not depend on the choice of an
H -invariant R≥0-valued norm mapping on X∗(H).

Let τ = τ1, where 1 ∈ DG , and let e ∈ g(τ, 2) be such that Ge ⊂ P(τ ). As e
is a G-unstable vector of g it affords an optimal cocharacter τ ′

∈ X∗(G) with the
property that e ∈ g(τ ′, ≥ 2); see [4] for detail. Since Ad τ(k×) preserves the line ke
and the cocharacter τ ′ is optimal for any nonzero scalar multiple of e, it follows from
the main results of Kempf–Rousseau theory that Ad τ(k) normalises the optimal
parabolic subgroup P(τ ′) of e; see [12, Theorem 2.1(iv)], for example. Since
the latter is self-normalising and contains Ge we have τ(k×)Ge ⊂ P(τ ′). Hence
Ne := NG(ke) = τ(k×)Ge is a subgroup of P(τ ′). It follows from [1, 11.14(2)]
(applied to tori) that for any maximal torus D of Ge there is a maximal torus D̃ of
Ne such that D ⊆ D̃ ∩ Ge. Since τ(k×) is contained in a maximal torus of Ne and
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all maximal tori of Ne are conjugate, this shows that Ge contains a maximal torus
which commutes with τ(k×); we call it T0.

As Ne ⊂ P(τ ′), there is a maximal torus T ′ of P(τ ′) which contains the maximal
torus τ(k×)T0 of Ne. Since L := ZG(T0) is a Levi subgroup of G, there exists g ∈ G
such that gLg−1 is a standard Levi subgroup L of G. Replacing e and τ by (Ad g)e
and gτg−1 we may assume without loss of generality that L is a standard Levi
subgroup of G. By the main results of Kempf–Rousseau theory (and the description
of Hesselink strata in [4]), there exists a unique cocharacter τ ′′

∈ 3̂G(e)∩ X∗(T ′)

conjugate to τ ′ under P(τ ′) and such that e =
∑

i≥2 ei where ei ∈ g(τ ′′, i) and
e2 ∈ V(τ, 2)ss ; see [12, Theorem 2.1(iii)].

By construction, T ′ is a maximal torus of L containing τ(k×) and τ ′′(k×).
Furthermore, e ∈ gAd T0 = Lie(L). Let L ′

= DL , the derived subgroup of L , and
l′ = Lie(L ′). It is immediate from Jacobson’s formula for [p]-th powers in the
restricted Lie algebra (l, [p]) that e ∈ l′.

2.3. Let d = dim T0 and r = ℓ − d where ℓ = rk G. We begin to investigate the
case where d > 0, that is, the case where e is not distinguished in g. The group
L ′

= DL is semisimple and T ′
∩ L ′ contains a maximal torus of L ′; we call it T1.

The subtorus T0 · T1 of T ′ being self-centralising, it must be that T ′
= T0 · T1. As

the central subgroup T0 ∩ L ′ of L ′ is finite, we have a direct sum decomposition

(3) X (T ′)Q = X (T0)Q ⊕ X (T1)Q

of the Q-spans of X (T0) and X (T1) in X (T ′)Q = X (T ′) ⊗Z Q. This shows that

rk L ′
= dim T1 = ℓ − dimQ X (T0)Q = ℓ − d = r.

Since we identify the dual spaces X (T ′)Q and X∗(T ′)Q = X∗(T ′) ⊗Z Q by means
of a W -invariant inner product ( · | · ) we have that η(µ(t)) = t (µ|η) for all η ∈ X (T ),
µ ∈ X∗(T ′), and t ∈ k×. As the subgroup NL(T ′)/T ′ of W acts trivially on X (T0)

and has no nonzero fixed points on X (T1), the Q-spans X∗(T0)Q and X∗(T1)Q are
orthogonal to each other with respect to ( · | · ).

Lemma 2.2. Suppose ν ∈ X∗(T ′) is such that e ∈ g(ν, 2) and (Ge)
◦
⊂ P(ν). If the

group (Ge)
◦/Ru(Ge) is semisimple then ν = τ .

Proof. As T0 ⊆ T ′
∩ Ge is a maximal torus of Ge it must be that T0 = (T ′

∩ Ge)
◦.

As ν−1(t) · τ(t) ∈ T ′
∩ Ge for all t ∈ k× we have that ν − τ ∈ X∗(T0). As Ru(Ge)

is a unipotent group, the torus T0 ⊂ Ge maps isomorphically onto a maximal torus
of the semisimple group Se := (Ge)

◦/Ru(Ge). It follows that rk S0 = dim T0 = d.
We identify T0 with its image in Se. As ν(k×) ⊂ Ne normalises Ru(Ge), it acts
on Se by rational automorphisms.

It is straightforward to see that the connected algebraic group S̃e := ν(k×)Se is
reductive and ν(k×)T0 is a maximal torus of S̃e. So, if γ̄ ∈ X (ν(k×)T0) is a root
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of S̃e then so is −γ̄ . On the other hand, our assumption on ν implies that Ad ν has
nonnegative weights on Lie(Se). This entails that ν(k×) is a central torus of S̃e.
Repeating this argument with τ in place of ν we deduce that the torus ν(k×) is
central in S̃e as well.

Since rk Se = d there are Q-independent weights γ1, . . . , γd ∈ X (T0) which
serve as a basis of simple roots for the root system of S̃e with respect to T0. As
dim X (T0)Q = d , they must form a basis of the vector space X (T0)Q. On the other
hand, the preceding discussion shows that γi (ν(t)) = γi (τ (t)) = 1 for all t ∈ k×

and i ≤ d. Our identification of X (T ′)Q and X∗(T ′)Q now yields that ν − τ is
orthogonal to X (T0)Q with respect to ( · | · ). Since ν − τ ∈ X∗(T0) ⊆ X (T0)Q this
forces ν − τ = 0. □

2.4. Recall from Section 2.2 that our nilpotent element e ∈ l′ affords an optimal
cocharacter τ ′′

∈ 3̂G(e) ∩ X∗(T ′) such that e =
∑

i≥2 ei with ei ∈ l′(τ ′′, i) and
e2 ∈ V(τ ′′, 2)ss . Identifying X∗(T ′)Q and X (T ′)Q as in Section 2.3 and using (3)
we get τ ′′

= τ ′′

0 + τ ′′

1 where τ ′′

0 ∈ X (T0)Q and τ ′′

1 ∈ X (T1)Q. Since

(τ ′′
| τ ′′) = (τ ′′

0 | τ ′′

0 ) + (τ ′′

1 , τ ′′

1 ) ≥ (τ ′′

0 | τ ′′

0 )

and (τ ′′

0 | γ ) = 0 for all γ ∈ X (T1), it follows from the optimality of τ ′′ that τ ′′

0 = 0;
see [12, p. 348] for a similar (characteristic-free) argument.

As τ ′′
∈ X∗(T ′) we thus obtain that τ ′′ is an optimal cocharacter for e contained

in X∗(T1). Therefore, the orbit OL(e) := (Ad L)e is contained in the Hesselink
stratum HL(τ ′′) of the nilpotent cone N (l′), the variety of all (Ad L)-unstable
vectors of l′. Since T0 is a maximal torus of Ge the group (Le)

◦ is unipotent. In
other words, e is a distinguished nilpotent element of l′.

Lemma 2.3. If the (Ad L)-orbit OL(e) coincides with its stratum HL(τ ′′) and the
group (Ge)

◦/Ru(Ge) is semisimple, then τ is L-conjugate to τ ′′ and e ∈ H(1).

Proof. Recall that e =
∑

i≥2 ei where ei ∈ l′(τ ′′, i) and e2 ∈V(τ ′′, 2)ss . As one of the
(Ad L)-orbits of HL(τ ′′) intersects with l′(τ ′′, 2), our assumption on HL(τ ′′) implies
that e is (Ad L)-conjugate to e2. Since τ ′′

∈ 3̂G(e2) we have Ge2 ⊂ P(τ ′′). As the
group (Ge2)

◦/Ru(Ge2)
∼= (Ge)

◦/Ru(Ge) is semisimple, it follows from Lemma 2.2
that τ is L-conjugate to τ ′′. As τ ′′ is G-conjugate to τ1 by our discussion in
Section 2.2, we deduce that e2 ∈ H(1). But then e ∈ H(1) as wanted. □

Let e ∈N (g) and write Se for the factor group (Ge)
◦/Ru(Ge). When char(k)= 0,

one can use the tables in [3, pp. 401–407] to quickly compile a full list of the nilpotent
orbits O(e) = (Ad G)e for which Se is a semisimple group. Then one can use [8] to
find out that the same list is still valid in good characteristic. Since we are mainly
concerned with the case where p = char(k) is very bad for G, we must rely instead
on the following important classification result obtained in [9].
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Proposition 2.4 [9]. Suppose G is exceptional and e is not distinguished in g. Then
either Se is a semisimple group or O(e) has one of the following labels:

Type E6: A2
1, A2A1, A2A2

1, A3, A3A1, D4(a1), A4, A4A1, D5(a1), D5.

Type E7: A2A1, A3A2 (p ̸= 2), A4, A4A1, D5(a1), E6(a1).

Type E8: A3A2 (p ̸= 2), A4A1, A4A2
1, D5A2 (p ̸= 2), D7(a2), E6(a1)A1, D7(a1)

(p ̸= 2).

If G is of type G2 or F4 then Se is a semisimple group for any e ∈ N (g).

Proof. The statement is obtained by examining Tables 22.1.1–22.1.5 in [9]. One also
observes in the process that if a nilpotent orbit O(e) coincides with its Hesselink
stratum then the type of Se is independent of the characteristic of k. This is curious,
but will not be required in what follows. □

2.5. It is well known that dim ge ≥ dim Ge for any e ∈ g, and if dim ge = dim Ge,
the orbit O(e) is called smooth. For all exceptional types, the smooth nilpotent
orbits of g can be determined from Stewart’s tables [16] which record the Jordan
blocks of all ad e with e ∈N (g). We note that the representatives of nilpotent orbits
used in Stewart’s tables are compatible with those in [9, Tables 12.1, 13.3 and 14.1].

Remark 2.5. Suppose G is exceptional. Although Liebeck and Seitz do not discuss
Hesselink strata in [9], they can be spotted as follows. For each representative
e ∈ N (g) listed in the tables of [9] there exists a cocharacter µ ∈ X∗(G) conjugate
to τ1 with 1 ∈ DG and such that e ∈ g(µ, ≥ 2) and Ge ⊂ P(µ). Of course, in
characteristic 2 and 3 there are a few special cases where two representatives of
different orbits, say e and ẽ, are attached to the same µ (and the same 1). If
there is no ẽ, then e is homogeneous (that is, lies in g(µ, 2)) and (Ad P(µ))e =

g(µ, ≥ 2). Then the orbit (Ad ZG(µ))e is dense in g(µ, 2) and the description of
Hesselink strata in [4] implies that e is ZG(µ)-semistable. This is an excellent case
since H(1) = O(e) is a single orbit and dim Ge = dim g(µ, 0) + dim g(µ, 1) is
independent of p.

If ẽ does exist then one may assume without loss of generality that e ∈ g(µ, 2)

and ẽ = e + eβ for some root vector eβ ∈ g(µ, d) with d ≥ 2. Moreover, ẽ always
lies in the new orbit with label (1)p and (Ad P(µ))ẽ is Zariski dense in g(µ, ≥ 2).
Then dim G ẽ = dim g(µ, 0) + dim g(µ, 1), but dim Ge > dim G ẽ.

If d > 2 then it is still true that the orbit (Ad ZG(µ))e is dense in g(µ, 2).
Therefore, both e and ẽ lie in the stratum H(1). In fact, it follows from the main
results of [9] that H(1) = O(e) ∪O(ẽ). So this case is not too bad either.

In order to describe the strata of H(1) explicitly, one has to clarify the remaining
(problematic) case where ẽ = e + eβ and d = 2. Here g(µ, 2) contains both e and ẽ,
but the orbit (Ad ZG(µ))e is no longer dense in g(µ, 2). So we cannot conclude
at this point that e is ZG(µ)-semistable. However, since µ is G-conjugate to τ1
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and it is shown in [9] that Ge ⊂ P(µ), we see that e ∈ LX(1). Therefore, the main
results of [9] together with Theorem 1.1 provide a very satisfactory description
of the Hesselink strata of N (g) for G exceptional. Namely, if there is no ẽ then
H(1) = O(e) and if ẽ does exist then H(1) = O(e) ∪O(ẽ).

Remark 2.6. Suppose e is as in Remark 2.5 and O(e) = H(1). Then dim Ge =

dim g(µ, 0) + dim g(µ, 1) is independent of the characteristic of k. Since the
representatives e used in [16] agree with those of [9] one can compute dim Ge by
counting the number of Jordan blocks of ad e under the assumption that p ≫0. If the
number obtained coincides with the actual number of Jordan blocks of ad e ∈ End g
then the orbit (Ad G)e is smooth.

Thanks to Proposition 2.4 and Lemma 2.1 we can reduce proving statement (2)
to a much smaller number cases.

Lemma 2.7. Suppose τ ∈ X∗(G) is conjugate to τ1 with 1 ∈ DG and e ∈ g(τ, 2)

is such that Ge ⊂ P(τ ). If the group Se is not semisimple, then e ∈ H(1).

Proof. Since Se is not semisimple, e lies in one of the orbits listed in Proposition 2.4.
Our discussion in Remark 2.5 (based on results of [9]) shows that any such or-
bit O(1) coincides with the corresponding Hesselink stratum H(1). Using [16,
Tables 10, 11, 12] and the method described in Remark 2.6 one now checks directly
that dim ge = dim Ge unless G is of type E6, p = 2, and O(e) is one of O(A3A1)

or O(D5). If dim ge = dim Ge then applying Lemma 2.1 gives e ∈ H(1).
Now suppose G is of type E6 and p = 2. In the remaining two cases e is a regular

nilpotent element of a Levi subalgebra of type A3A1 or D5, hence no generality
will be lost by assuming that e is as in [8, pp. 85, 91].

We first suppose that e ∈O(A3A1). Then e = e1 +e3 +e4 +e6. Since e ∈ g(τ, 2)

and all maximal tori of Ne are conjugate we may also assume that τ = (2, r, 2, 2, s, 2)

for some r, s ∈ Z. If α̃ = 122321, the highest root of 6 with respect to 5, then
{x±α̃(t) | t ∈ k} generate a subgroup of type A1 in Ge. Since Ge ⊂ P(τ ) it must
be that (τ | α̃) = 0 forcing 14 + 2(r + s) = 0. Therefore, τ = (2, r, 2, 2, −7 − r, 2).
Since x−α5(t) ∈ Ge for all t ∈ k we also have 7+r ≥ 0. Let β = α3 + α4 + α5 + α6

and β ′
= α1 + α3 + α4 + α5. Then β ± β ′

̸∈ 6 and xβ(t)xβ ′(t) ∈ Ge for all t ∈ k
yielding eβ + eβ ′ ∈ Lie(Ge). Hence 6 − (7 + r) ≥ 0, i.e., r ≤ −1. As a result,
r ∈ {−7, −6, −5, −4, −3, −2, −1}. For r in this set we denote by τr the W -
conjugate of τ = (2, r, 2, 2, −7 − r, 2) contained in X+

∗
(T ).

It is straightforward to check that τ−7 = (0, 1, 1, 0, 1, 2), τ−6 = (1, 1, 0, 0, 1, 2),
τ−5 = (1, 0, 0, 1, 0, 2), τ−4 = (1, 1, 0, 0, 1, 1), τ−3 = (0, 1, 1, 0, 1, 0), τ−2 =

(1, 1, 1, 0, 0, 1), and τ−1 = (2, 0, 0, 1, 0, 1). Using [3, p. 402] we now observe
that only τ−3 has form τ1 with 1 ∈ DG . Furthermore, 1 = A3A1. Since
O(A3A1) = H(A3A1) by Remark 2.5, we get e ∈ H(1).
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Finally, suppose e ∈O(D5). Then e = e1+e2+e3+e4+e5. As e ∈ g(τ, 2) and all
maximal tori of Ne are conjugate we may assume that τ = (2, 2, 2, 2, 2, r) for some
r ∈ Z. Let γ = α3 +α4 +α5 +α6 and γ ′

= α2 +α4 +α5 +α6. Then γ ±γ ′
̸∈ 6 and

x−γ (t)x−γ ′(t)∈ Ge for all t ∈k. It follows that e−γ +e−γ ′ ∈Lie(Ge). Hence r ≤−6.
Now let δ = α1 +α2 +2α3 +2α4 +α5 +α6 and δ′

= α1 +α2 +α3 +2α4 +2α5 +α6.
Then again δ ± δ′

̸∈ 6 and xδ(t)xδ′(t) ∈ Ge for all t ∈ k, so that eδ + eδ′ ∈ Lie(Ge).
It follows that r ≥ −14.

As a result, r ∈ {−14, −13, −12, −11, −10, −9, −8, −7, −6}. Let τr be the
W -conjugate of τ = (2, 2, 2, 2, 2, r) contained in X+

∗
(T ). Direct computations

show that τ−14 = (2, 0, 2, 2, 2, 2), τ−13 = (2, 1, 2, 1, 1, 1), τ−12 = (2, 2, 2, 0, 2, 0),
τ−11 = (2, 2, 1, 1, 1, 1), τ−10 = (2, 2, 0, 2, 0, 2), τ−9 = (1, 2, 1, 1, 1, 2), τ−8 =

(0, 2, 2, 0, 2, 2), τ−7 = (1, 1, 1, 1, 2, 2), τ−6 = (2, 0, 0, 2, 2, 2). Using [3, p. 402]
we observe that only τ−10 has the form τ1 with 1 ∈DG . Moreover, 1 = A5. Since
O(D5) = H(D5) by Remark 2.5, we get e ∈ H(1), completing the proof. □

2.6. We are now in a position to reduce proving statement (2) to the case where
e ∈ g(τ, 2) is distinguished in g and O(e) is a proper subset of its Hesselink stratum.

Suppose e ∈ g(τ, 2) is not distinguished in g. By Section 2.2, the group Ge

contains a maximal torus T0 commuting with τ(k×). We also know that the
centraliser L = ZG(T0) is a standard Levi subgroup of G containing a maximal
torus T ′ such that τ(k×)T0 ⊆ T ′. Let L ′

= DL and l′ = Lie(L ′). By our discussion
in Section 2.2, there exists τ ′′

∈ 3̂G(e) ∩ X∗(T ′) such that e =
∑

i≥2 ei where
ei ∈ l′(τ ′′, i) and e2 ̸= 0. If e is (Ad L)-conjugate to e2 then e ∈H(1) by Lemma 2.3.
Therefore, we may assume that e and e2 lie in different orbits of HL(τ ′′). Thanks
to Section 2.4 we may also assume that the group Se is semisimple.

If follows from [6, Table 4] that if H is a group of type Dr with r ∈ {4, 5} then
every Hesselink stratum of Lie(H) is a single (Ad H)-orbit. Since the same holds
for H of type E6 and Ar with r ≥ 1, the proper Levi subgroup L of G must have a
component of type D6, D7, E7, B2, B3 or C3, where in the last three cases G is a
group of type F4. Thanks to [9, Tables 22.1.1–22.1.5] we now see that the case we
consider can occur only when p = 2 and G is not of type E6 or G2.

Suppose p = 2 and G is of type E7. As HL(τ ′′) contains more than one orbit, the
group L ′ must have type D6. By [6, Table 4], the Lie algebra l′ has a unique new
distinguished nilpotent orbit, and the above discussion shows that this new orbit,
labelled (A3A2)2 in [9], must coincide with OL(e). By [9, Lemma 12.6], there exists
µ ∈ X∗(L ′) such that e ∈ l′(µ, 2) and the orbit ((Ad PL(µ))e is dense in l′(µ, ≥ 2).
From this it is immediate that e is a ZL(µ)-semistable vector of l′(µ, 2), so that
µ ∈ 3̂L(e). Since 3̂L(e) contains 3̂G(e) ∩ X∗(T ′) and e2 ̸= 0, the cocharacters µ

and τ ′′ are L-conjugate. But then Ge ⊂ P(ν) and applying Lemma 2.2 with ν = µ

we get µ = τ . As a result, e ∈ H(1).
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Suppose p = 2 and G is of type E8. Then L ′ has type D6, D7 of E7. If L ′

has type D6 we can repeat verbatim the argument from the previous paragraph to
conclude that e ∈H(1). Suppose L ′ is of type D7. By [6, Table 4], the Lie algebra l′

has two new orbits, denoted by (A3A2)2 and (D4A2)2 in [9, Table 15.3]. Since the
orbit OL ′((A3A2)2) is not distinguished in l′ it must be that e ∈ OL ′((D4A2)2). As
[9, Lemma 12.6] is also applicable for e ∈ OL ′((D4A2)2), we can argue as in the
second part of the previous paragraph to conclude that e ∈ H(1).

2.7. Retain the assumptions of Section 2.6 and suppose that p = 2 and L ′ is of
type E7. Since e is distinguished in l′ and OL ′(e) ̸= OL ′(e2), it follows from [9,
Tables 22.1.2] that e ∈ OL ′((A6)2). Conjugating e by a suitable element of L ′ we
may assume that

(4) e = e56 + e67 + e134 + e234 + e345 + e245 + e1232425,

where all summands eγ involved in (4) are root vectors of L ′ with respect to T ′; see
[9, Table 14.1]. Let W ′

= NL ′(T ′)/T ′, the Weyl group of L ′. It is easy to check that
the cocharacter µ = (−2, −2, −2, 6, −2, 4, −2) has the property that e ∈ l′(µ, 2).
Since e is distinguished in l′, the group L ′

e is unipotent and NL ′(ke) = µ(k×)ZL ′(e),
so that µ(k×) is a maximal torus of NL ′(ke). Since e ∈ g(τ, 2) and τ ∈ X∗(T ′) this
entails that

(Ad µ(t))x = (Ad τ(t))x for all x ∈ l′ and t ∈ k×.

A direct computation shows that µ is W ′-conjugate to τ1′ = (2, 0, 0, 2, 0, 0, 2)

which corresponds to the distinguished L ′-orbit with label E7(a4). The latter coin-
cides with its Hesselink stratum HL ′(1′). From this it is immediate that l′(µ, 2)

contains a Zariski open ZL ′(µ)-orbit consisting of ZL ′(µ)-semistable vectors. Since
e ̸∈ HL ′(1′) the orbit (Ad ZL ′(µ)e is not dense in l′(µ, 2). Let

UL ′(µ) := Ru(PL ′(µ)).

Then PL ′(µ) = ZL ′(µ)UL ′(µ). Furthermore, we have Lie(UL ′(µ)) = l′(µ, ≥ 2) and
Lie(ZL ′(µ)) = l′(µ, 0). In type E7, the present case was investigated in [9, pp. 209].
It was shown there that L ′

e is a connected unipotent group of dimension 19 and
A := L ′

e ∩ ZL ′(µ) is a 1-dimensional connected subgroup of L ′
e with the property

that Lie(A) = l′e(µ, 0).
Straightforward computations show that [e, l′(µ, 4)] has codimension 1 in l′(µ, 6)

and [e, l′(µ, 2i)]= l′(µ, 2i+2) for i =1 and all i ≥3. Since the group UL ′(µ) is gen-
erated by the root elements xα(t)∈ L ′ with (µ |α)≥ 2 we have that (Ad UL ′(µ))e ⊆

e + l′(µ, ≥ 4). Since [e, l′(µ, 2i)] ⊂ Te(Ad UL ′(µ)e) for all i ≥ 1, the preceding
remark yields that Te(Ad UL ′(µ)e) has codimension ≤ 1 in l′(µ, ≥ 4). Therefore,
dim UL ′(µ)e = dim Lie(UL ′(µ))−dim Te(Ad UL ′(µ)e)≤ dim l′(µ, 2)+1 = 18 (one
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should keep in mind that PL ′(µ) is a distinguished parabolic subgroup of L ′ and
l′(µ, 0) has dimension 17). Hence A · UL ′(µ)e ⊆ PL ′(µ)e has dimension 18 or 19.

Since L ′
e is a connected group of dimension 19 there are two possibilities one

of which would be very bad for us: either L ′
e ⊂ PL ′(µ) or L ′

e ̸⊂ PL ′(µ) and
Te(Ad UL ′(µ)e) = l′(µ, ≥ 4). In the second case we would have (Ad UL ′(µ))e =

e + l′(µ, ≥ 4) by Rosenlicht’s theorem [14, Theorem 2].
Once again our main source of reference comes to the rescue: it is proved in [9,

p. 208] that L ′
e contains the 1-parameter unipotent subgroup

U = {xα1(c)xα1+α3(c
2)xα2(c)xα5(c)xα7(c) | c ∈ k}.

The Lie algebra of U is spanned by v = e1 + e2 + e5 + e7 ∈ l′(µ, −2) (and one can
check directly that [e, v] = 0). Therefore, L ′

e ̸⊂ PL ′(µ). As a byproduct we obtain
that the orbit (Ad PL ′(µ))e has codimension 1 on l′(µ, ≥ 2).

In type E8 the present case was investigated in [9, pp. 247, 248] where the element
in (4) was replaced by its (Ad G)-conjugate

e′
= e1 + e3 + e4 + e5 + e6 + e7 + e123425267.

The cocharacter µ used above was replaced by µ′
= (2, −14, 2, 2, 2, 2, 2, −3). (In

[9, p. 248], the torus µ′(k×) is denoted by T̃ .) Direct computations show that there
is w ∈ W (E8) such that w(µ′) = (0, 0, 0, 1, 0, 1, 0, 2) = τ1′ where 1′

= E7(a4).
Let α̃ = 23465432, the highest root of 6 with respect to 5, and denote by α̃∨

the corresponding coroot in X∗(T ), so that (Ad α̃∨(t))(eγ ) = t ⟨γ,α̃∨
⟩eγ for all

t ∈ k× and γ ∈ 6. The adjoint action of α̃∨(k×) endows g with a short Z-grading
g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 such that dim g±2 = ke±α̃ and g0 = Lie(L̃) where
L̃ = ZG(α̃∨).

The derived subgroup L̃ ′ of L̃ has type E7 and L̃ = T0 L̃ ′ where T0 = α̃∨(k×) is a
1-dimensional central torus of L̃ . The type-A1 subgroup S generated by x±α̃(k) and
T0 commutes with L̃ ′. We pick σ ∈ NS(α̃

∨(k×)) such that σ(α̃∨) = −α̃∨. Then
(Ad σ)(g1)=g−1 implying that g1 and g−1 are isomorphic as (Ad L̃ ′)-modules (both
modules have dimension 56 and are irreducible over L̃ ′). The parabolic subgroup
P(α̃∨) = L̃ Q, where Q = Ru(P(α̃∨)), has the property that Lie(Q) = g1 ⊕ g2 and
DQ = xα̃(k).

Computations in [9, p. 248] show that T̃ =µ′(k×)⊂ T ∩ L̃ ′, and Q∩Ge′ contains
an 8-dimensional abelian connected unipotent subgroup V =

∏8
i=1 Vi such that

each Vi is 1-dimensional subgroup of V normalised by the torus µ′(k×). The
Vi ’s are described explicitly in [loc. cit.] and it is straightforward to check that
µ′(k×) acts on V1, V2, V3, V4, V5, V6, V7 and V8 with weights 11, 5, 3, 9, 9, 1, 3
and 7, respectively. As µ′(k×) ⊂ L̃ ′ commutes with S and e′

∈ Lie(L̃ ′), the group
(Ad σ)(V ) =

∏8
i=1(Ad σ)(Vi ) ⊂ Ge′ has the same properties. As a consequence,

both V and (Ad σ)(V ) are contained in P(µ′)e′ .
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As e′
∈ Lie(L̃ ′) we also have that S ⊂ P(µ′)e′ . Since e and e′ are (Ad G)-

conjugate, our discussion at the beginning of this subsection shows that PL̃ ′(µ
′)e′

has codimension 1 in L̃ ′

e′ . In particular, Ge′ ̸⊂ P(µ′).
On the other hand, we have that

Lie(V ) ⊕ (Ad σ)(Lie(V )) ⊕ Lie(S) ⊕ Lie(PL̃ ′(µ
′)e′) ⊆ Lie(P(µ′)e′),

and the subspace on the left has dimension 8+8+3+18 = 37. As Ge′ is a group of
dimension 38 by [9, Table 22.1.1], we have that P(µ′)e has codimension 1 in Ge′

This, in turn, implies that the orbit (Ad P(µ′)e′ has codimension 1 in g(µ′, ≥ 2)

and (Ad Ru(P(µ′))e′
= e′

+ g(µ′, ≥ 4) (since this will not be required in what
follows we omit the details).

We mention for completeness that if ν ∈ X∗(T ) is such that e′
∈ g(ν, 2) and

Ge′ ⊂ P(ν) then the root vectors e±α̃ ∈ Lie(Ge′) must have weight 0 with respect
to ν. Since Ge′ ̸⊂ P(µ′), we have thus excluded the only available option for ν,
namely, ν = µ′. Therefore, O((A6)2) ∩

( ⋃
1∈DG

g1,!
2

)
= ∅, that is, the present

case cannot occur in types E7 and E8.

2.8. Retain the assumptions of Section 2.6 and suppose that p = 2 and L ′ is of
type F4. Since this case has already been treated in [17], our goal here is to offer a
different proof. In view of our remarks in Section 2.6 we may assume that the Hes-
selink stratum of N (l′) has more than one orbit and L ′ is of type B2, B3 or C3. The
tables in [6] show that in these cases l′ has a unique new distinguished nilpotent orbit.

The corresponding nilpotent orbits of g are denoted in [9, Table 22.1.4] by (Ã1)2,
(B2)2 and (Ã2)2, respectively. Parts (i) and (iii) of the proof Lemma 16.9 in [9]
show that in the first two cases there exists µ ∈ X∗(L ′) such that e ∈ l′(µ, 2)

and the orbit ((Ad PL(µ))e is dense in l′(µ, ≥ 2). As before, this enables us to
deduce that e is ZL(µ)-semistable in l′(µ, 2), so that µ∈ 3̂L(e). As 3̂L(e) contains
3̂G(e)∩ X∗(T ′) and e ∈ g(τ, 2), applying Lemma 2.2 gives µ= τ . Hence e ∈H(1).

Suppose e ∈O((Ã2)2). Then we may assume that e = e0121+e1111+e2342 and T ′

is the torus used in the proof of part (ii) of [9, Lemma 16.9]. Let τ = (a1, a2, a3, a4)

where ai ∈ Z. As e ∈ g(µ, 2) we have a2 + 2a3 + a4 = 2, a1 + a2 + a3 + a4 = 2
and 2a1 + 3a2 + 4a3 + 2a4 = 2. Solving this system of linear equations gives
τ = (r, −2−r, r, 4) where r ∈ Z. By [9, p. 274], the group Ge contains x±α2(t) and
xα1(t)xα3(t) for all t ∈ k. Therefore, Lie(Ge) contains e±α2 and eα1 + eα3 . Since
Ge ⊂ P(τ ), we must have −2−2r = 0 and r ≥ 0. This shows that τ does not exist,
that is, the present case cannot occur.

2.9. From now on we may assume that e ∈ g(τ1, 2) is a distinguished nilpotent
element of g. If O(e) = H(1′) then there is µ ∈ 3̂G(e) such that e ∈ g(µ, 2). As
Lemma 2.2 is still applicable in the present case we get µ = τ1 forcing e ∈ H(1).
In other words, statement (2) holds for e.
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This shows that we may assume further that O(e) ⊊ H(1). Thanks to the
classification results of [9] it remains to consider the case where e ∈ N (g) is
distinguished and nonstandard (see Remark 2.5 for more detail). No such orbits
exist when G has type E6 and when G is of type G2 and p = 2.

If G is of type E7 then p = 2 and O(e) = O((A6)2). In Section 2.7, we have
shown that this case cannot occur in our situation.

Lemma 2.8. Suppose e ∈ g(τ1, 2) is distinguished in N (g) and Ge ⊂ P(τ1). If
e′

∈O(e)∩g(µ, 2), where µ ∈ X∗(G), then there is g ∈ G such that e′
= (Ad g)(e)

and µ = gτ1g−1. Consequently, Ge′ ⊂ P(µ).

Proof. Let g ∈ G be such that (Ad g)e = e′. Then e′
∈ g(gτ1g−1, 2) and Ge′ ⊂

P(gτ1g−1). Since the group (Ge′)◦ is unipotent and all maximal tori of NG(ke′)◦ =

τ1′(k×)(Ge′)◦ are conjugate, there is u ∈ (Ge′)◦ such that ugτ1g−1u−1
= µ. Hence

(Ad ug)(e) = (Ad u)(e′) = e′ and Ge′ = uGe′u−1
⊂ P(ugτ1g−1u−1) = P(µ). □

It remains to investigate the case where (6, p) is one of (E8, 3), (E8, 2), (F4, 2)

or (G2, 3). If (6, p) = (E8, 3) then O(e) = O((A7)3). Recall our standing assump-
tion that e ∈ g(τ, 2), where τ = τ1, and Ge ⊂ P(τ ). By [9, Table 4.1], we may
assume that e is (Ad G)-conjugate to

e′′
= e567 + e1234 + e1345 + e3456 + e2456 + e23425 + e678 + e45678.

The cocharacter µ = (0, 2, 2, −2, 2, 0, 0, 2) ∈ X∗(T ) has the property that e ∈

g(µ, 2) and is W -conjugate to τ1′ = (0, 0, 0, 2, 0, 0, 0, 2) with 1′
= E8(b6); see

[9, p. 210]. Replacing e′′ by its NG(T )-conjugate, e′ say, we may assume that e′
∈

g(τ1′, 2). By Lemma 2.8, there is g ∈ G such that e′
= (Ad g)(e) and τ1′ = gτ1g−1.

Since both τ = τ1 and τ1′ lie in X+
∗
(T ) it must be that 1 = 1′.

We claim that contrary to our standing assumption on τ the group Ge is not
contained in P(τ ) = P(τ1′). Indeed, it follows from [9, Theorem 3.2] that the
nonempty open subset V(τ, 2)ss of g(τ, 2) contains the open ZG(τ )-orbit of g(τ, 2),
we call it V . It has the property that (Ad P(τ ))v is dense in g(τ, ≥ 2) for every
v ∈ V . If x ∈ V then dim Gx = 28, whilst dim Ge′ = 30 by [9, Table 22.1.1]. Since
e′

∈ O((A7)3) it must be that e ̸∈ V(τ, 2)ss . But then the orbit (Ad ZG(τ ))e is not
dense in g(τ, 2) implying that [e, g(τ, 0)] is a proper subspace of g(τ, 2).

In the present case, the normalised Killing form κ is nondegenerate and induces
a perfect pairing between g(τ, 2) and g(τ, −2). This yields that ge(τ, −2) =

[e, g(τ, 0)]⊥ is nonzero (a different proof can be found in [9, p. 211]). On the other
hand, dim ge = dim Ge = 30 by [16, Table 10]. If Ge ⊂ P(τ ) then ge = Lie(Ge)

is contained in g(τ, ≥ 0) = Lie(P(τ )). As ge(−2) ̸= 0, we reach a contradiction.
This shows that the present case cannot occur. In other words, O((A7)3) has no
elements contained in the union of g1,!

2 with 1 ∈ DG .
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2.10. Suppose (6, p) = (E8, 2). In this case we have to consider the new distin-
guished nilpotent orbits, namely, O((D5A2)2), O((D7(a1)2) and O((D7)2). Thanks
to [9, Table 14.1] we may choose, in the respective cases, the representatives

e′
= e12345 + e23425 + e13456 + e23456 + e34567 + e24567 + e78 + e678,

e′
= e5 + e45 + e2342567 + e13 + e2456 + e3456 + e78 + e8,

e′
= e1 + e234 + e345 + e245 + e456 + e567 + e678 + e12345678.

It is easy to check that in the first case e′
∈g(τ1′, 2) where τ1′ = (0, 0, 0, 0, 2, 0, 0, 2)

is attached to the orbit O(D5A2). By Lemma 2.8, there is g ∈ G be such that e′
=

(Ad g)e and τ1′ = gτg−1. Since dim Ge′ = 34 = dim g(τ1′, 0) by [9, Table 22.1.1]
and Ge′ ⊂ P(τ1′) by Lemma 2.8, the orbit (Ad P(τ1′))e must be open in g(τ1′, ≥2).
But then e must lie in the open (Ad ZG(τ1′))-orbit of g(τ1′, 2). As a consequence,
e belongs to the nonempty open subset V(τ1′, 2)ss of g(τ1′, 2). Since τ = τ1 and
τ1′ are G-conjugate and lie in X+

∗
(T ) we conclude that 1′

= 1. Hence e ∈ H(1).
In the second case, one checks that e′

∈g(τ1′, 2) where τ1′ = (2, 0, 0, 0, 2, 0, 0, 2)

is attached to the orbit O(D7(a1)). By [9, Table 22.1.1], we have dim Ge = 26 =

dim g(τ1′, 0). Since (Ge)
◦ is unipotent, applying Lemma 2.8 and arguing as in the

previous case we deduce that τ = τ1 and τ1′ are G-conjugate and e ∈ V(τ1′, 2)ss .
Therefore, e ∈ H(1) as wanted.

The case where e ∈O((D7)2) is more complicated. First we note that e′
∈ g(µ, 2)

where µ = (2, −4, −4, 10, −4, −4, 10, −4) ∈ X∗(T ). One checks directly that
µ is W -conjugate to (2, 0, 0, 2, 0, 0, 2, 2) = τ1′′ , where 1′′

= E8(b4). Since both
τ = τ1 and τ1′′ lie in X+

∗
(T ), it follows from Lemma 2.8 that τ = τ1′′ and there is

v ∈ O((D7)2) ∩ g(τ, 2) such that Gv ⊂ P(τ ). Let

v′
= e13 + e234 + e345 + e245 + e567 + e456 + e7 + e8,

an element of g(τ, 2). By [9, Tables 13.3 and 22.1.1], we have that v′
∈ O(E8(b4))

and dim Gv′ = 18 = g(τ, 0). Since Gv′ ⊂ P(τ ) by [9, Theorem 15.1(ii)] the orbit
(Ad P(τ )v′ is open in g(τ, ≥2). It follows that the orbit V ′

:= (Ad ZG(τ ))v′ is open
in g(τ, 2). As v ̸∈O(v′) we have that v ̸∈ V ′. Hence dim (Ad ZG(τ ))v <dim g(τ, 2)

and, as a consequence, [v, g(τ, 0)] is a proper subspace of g(τ, 2).
By [9, Table 13.4], the maps ad v′

:g(τ, 4)→g(τ, 6) and ad v′
:g(τ, 8)→g(τ, 10)

are not surjective (this also follows from the fact that 0 ̸= (v′)[2]
∈ gv′(τ, 4) and

0 ̸= (v′)[4]
∈ gv′(τ, 8) which is easy to see directly by applying Jacobson’s formula

for [p]-th powers with p = 2). Using the perfect pairings between g(τ, i) and
g(τ, −i) induced by the normalised Killing form κ (which is nondegenerate in the
present case) one observes that gv′(τ, r) ̸= 0 for r ∈ {−6, −10}. As v ∈ g(τ, 2)

lies in the Zariski closure of (Ad ZG(τ ))v′, the semicontinuity of the nullity of a
rectangular matrix yields that gv(τ, −6) ̸= 0 and gv(τ, −10) ̸= 0, whilst our earlier
remarks entail that gv(τ, −2) = [v, g(τ, 0)]⊥ ̸= 0. Therefore, dim gv(τ, < 0) ≥ 3.
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As v ∈ O(e) = O((D7)2) it follows from [16, Table 10] that dim gv = 24. If
Gv ⊂ P(τ ) then [9, Table 22.1.1] shows that Lie(Gv) is a Lie subalgebra of
dimension 22 in g(τ, ≥ 0). But then

dim gv = dim gv(τ, < 0) + dim gv(τ, ≥ 0) ≥ 3 + 22 = 25.

This contradiction shows that this case does not occur, that is, e ∈ O((D7)2) cannot
appear as an element of g1,!

2 with 1∈D. We thus conclude that (2) holds in type E8.

2.11. Suppose (6, p) is one of (F4, 2) or (G2, 3). These cases have been treated
in [17] by computational methods. The argument below will provide an alternative
proof. In type F4, we only need to consider the nonstandard distinguished orbits with
labels (Ã2A1)2, (C3(a1))2 and (C3)2. Indeed, [9, Theorem 16.1(ii)] implies that
every standard distinguished orbit in N (g) has a representative e ∈ g(µ, 2) such that
the orbit (Ad P(µ))e is open in g(µ, ≥ 2), thereby forcing e ∈ V(µ, 2)ss . Thanks
to Lemma 2.8 we also know that µ is G-conjugate to τ = τ1. This yields e ∈H(1).

In view of [9, Table 14.1] we may assume that e is (Ad G)-conjugate to one of
the elements e(i) with i ∈ {1, 2, 3}, where

e(1) = e234 + e1121 + e1220 + e0122 in type (Ã2A1)2,

e(2) = e123 + e0122 + e0120 + e1222 in type (C3(a1))2,

e(3) = e123 + e0120 + e4 + e1222 in type (C3)2.

By Lemma 2.8, there is a unique τi ∈ X∗(T ) conjugate to τ and such that e(i) ∈

g(τi , 2) and Ge(i) ⊂ P(τi ). Direct computations show that τ1 = (2, 2, −2, 2),
τ2 = (2, −2, 2, 0) and τ3 = (6, −10, 6, 2). Using [2, Planche VIII] one checks
directly that in the last two cases Ge(i) contains xα2(t) for every t ∈ k. Then the
simple root vector e2 lies in Lie(Ge)∩ g(τ, < 0). As noted in [9, p. 215] we have
x−α1(t)xα3(t) ∈ Ge(1) for all t ∈ k which yields Lie(Ge(1))∩g(τ, −2) ̸= 0. So none
of the three cases can occur in our situation.

Finally, suppose (6, p) = (G2, 3). Thanks to [9, Proposition 13.5] we only need
to consider the orbit O((Ã1)3) which has a nice representative e′

= e21 + e32; see
[9, Table 14.1]. As e is distinguished and e′

∈ g(µ, 2), where µ = (2 − 2) ∈ X∗(T ),
it follows from Lemma 2.8 that µ is G-conjugate to τ and Ge′ ⊂ P(µ). But
xα2(t) ∈ Ge′ for all t ∈ k, forcing Lie(Ge′) ∩ g(µ, −2) ̸= 0. This contradiction
shows that this case cannot occur either.

Summarising, we have proved that statement (2) holds for all simple algebraic
groups of exceptional types over algebraically closed fields of characteristic p ≥ 0.
This means that LX(1) =H(1) for all 1 ∈DG . Since N (g) ⊂ Lie(DG) and Z(G)

acts trivially on g, proving Theorem 1.1 reduces quickly to the case where G is a
simple algebraic group. For G exceptional, the theorem is a direct consequence of



HESSELINK STRATA IN SMALL CHARACTERISTIC AND LUSZTIG–XUE PIECES 431

statement (2). For G classical, the result is known from [11, Theorem A.2]. The
groups of type G2, F4 and E6 were treated earlier in [17].

2.12. We would like to finish this paper by a brief discussion of the unipotent
analogues of the Lusztig–Xue pieces, LXu(1), introduced by Lusztig in [11, 2.3].

Let U(G) denote the unipotent variety of G, the set of all (Ad G)-unstable
elements of G. The Hesselink stratification

U(G) =
⊔

1∈DG

Hu(1)

is described in [4] as follows. Let τ = τ1 and write P(τ ) = ZG(τ )U (τ ) where
U (τ ) = Ru(P(τ )). Given k ∈ Z>0 we denote by U≥k(τ ) the connected normal
subgroup of U (τ ) generated by all xγ (t) with t ∈k and all γ ∈6 such that ⟨γ, τ ⟩≥ k.
It is well known that the factor group U≥2(τ )/U≥3(τ ) is endowed with a natural
vector space structure over k and Ad ZG(τ ) acts k-linearly on U≥2(τ )/U≥3(τ ). Fur-
thermore, U≥2(τ )/U≥3(τ ) ∼= g(τ, 2) as (Ad ZG(τ ))-modules, and there is a module
isomorphism π̄1 : U≥2(τ )/U≥3(τ ) ∼

−→ g(τ, 2) sending a coset
∏r

i=1 xβi (ti )U≥3(τ )

with ⟨βi , τ ⟩ = 2 to
∑r

i=1 ti eβi , where eβi are root vectors independent of the choice
of (t1, . . . , tr ) ∈ kr ; see [4, 3.6], [9, Lemma 18.1] or [11, 2.2]. Composing π̄1

with the canonical homomorphism U≥2(τ ) → U≥2(τ )/U≥3(τ ) we obtain a natural
surjection π1 : U≥2(τ ) ↠ g(τ, 2).

It follows from [4, Theorems 3.6 and 5.2] that

Hu(1) = (Ad G)
(
π−1

1 (V(τ1, 2)ss)
)

for every 1 ∈ DG . In [11, 2.3], the unipotent pieces LXu(1) are defined in a
similar fashion except that V(τ1, 2)ss is replaced by an a priori larger set g1,!

2 .
More precisely,

LXu(1) = (Ad G)(π−1
1 (g1,!

2 )).

In [11, Theorem 2.4], Lusztig proved that

(5) U(G) =
⊔

1∈DG

LXu(1)

when G is a simple algebraic group of type A, B, C or D, and he expected that (5)
would continue to hold for all connected reductive groups. Our next result shows
that this expectation was correct.

Corollary 2.9. Let G be a connected reductive group over an algebraically closed
field. Then LXu(1) = Hu(1) for all 1 ∈ DG and (5) holds for U(G).

Proof. Theorem 1.1 in conjunction with the preceding discussion shows that
LXu(1) = Hu(1) for all 1 ∈DG . Since the Hesselink strata Hu(1) with 1 ∈DG

form a partition of U(G) by [4, Theorem 5.2], we deduce that (5) holds for U(G). □
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We dedicate this paper to the memory of the esteemed mathematician, Gary Seitz,
whose work and mentorship have a continuing impact on the field and on our lives

Let G be a simple algebraic group defined over an algebraically closed
field k of characteristic p > 0. For p ≥ h, the Coxeter number of G,
any regular unipotent element of G lies in an A1-subgroup of G; there is
a unique G-conjugacy class of such subgroups and any member of this
class is a so-called “principal A1-subgroup of G”. Here we classify all
irreducible kkkG-modules whose restriction to a principal A1-subgroup of G
has no repeated composition factors, extending the work of Liebeck, Seitz
and Testerman which treated the same question when k is replaced by an
algebraically closed field of characteristic zero.

1. Introduction

We consider a question in the representation theory and subgroup structure of simple
algebraic groups defined over an algebraically closed field k of characteristic p > 0.
The main aim of our work is to generalise the results of [Liebeck et al. 2015; 2022;
2024], where the authors consider so-called “multiplicity-free subgroups” of simple
algebraic groups defined over an algebraically closed field K of characteristic zero.
More precisely, the authors consider triples (X, Y, V ) where X and Y are simple
algebraic groups defined over K with X a closed subgroup of Y , and V is an
irreducible K Y -module such that the K X -module V , obtained by restricting the
action of Y to the subgroup X , is a sum of nonisomorphic irreducible K X -modules
(a so-called “multiplicity-free” K X -module). The above cited articles provide a
complete classification of such triples when either X has rank 1 and does not lie in a
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proper parabolic subgroup of Y , or Y is a classical group with natural module W and
X is of type Aℓ acting irreducibly on W . Note that the case where X acts irreducibly
(and hence multiplicity freely) on V was settled by Dynkin [1952] in characteristic
zero, and by Seitz [1987] and Testerman [1988] in positive characteristic.

The ultimate far-reaching aim of what we undertake in this paper would be
to investigate the “multiplicity-free” triples (X, Y, V ) as in [Liebeck et al. 2015;
2022; 2024], described above, replacing the field K by the field k of positive
characteristic p, and considering composition factors rather than summands. The
proofs in [Liebeck et al. 2022; 2024] use induction on the rank of the group X ; the
case where X is simple of rank 1 is considered in [Liebeck et al. 2015]. Here we
treat the rank-1 case for the groups defined over k, but consider a slightly more
general setting than would strictly speaking be required for use in an inductive set-up.
Namely, we consider all simple algebraic groups G (classical and exceptional),
defined over k, and A a closed A1-subgroup of G containing a regular unipotent
element of G, which we will call a “principal A1-subgroup of G”. (Such subgroups
exist precisely when p ≥ h, the Coxeter number of G; see [Testerman 1995,
Corollary 0.5 and Theorem 0.1]. In addition, there is at most one conjugacy class of
principal A1-subgroups in G; see [Seitz 2000, Theorem 1.1].) We then determine
all irreducible kG-modules V such that the set of composition factors of the kA-
module V consists of nonisomorphic kA-modules, and obtain a classification
analogous to [Liebeck et al. 2015, Theorem 1]. Much of the analysis follows the
same line of reasoning as that used in [Liebeck et al. 2015]; the main differences
and difficulties arise from the lack of precise knowledge about the dimensions of
irreducible kG-modules and the multiplicities of their weights. In addition, while
irreducible kA1-modules are completely understood, the description of the set of
weights is not as simple as in characteristic zero. In [Liebeck et al. 2022; 2024],
another essential ingredient of the proof is the work of Stembridge [2003], where
he determines when the tensor product of two irreducible modules for a simple
algebraic group defined over the field K is a direct sum of nonisomorphic irreducible
modules. There has been recent progress on the analogous question for the simple
groups defined over fields of positive characteristic in [Gruber 2021] and [Gruber
and Mancini 2024]. The combination of the rank-1 theorem proven here and the
work of Gruber and Mancini lays the foundation for the study of multiplicity-free
subgroups of higher rank for groups defined over fields of positive characteristic.

In order to state our main result, we introduce some notation; further notation will
be set up in Section 2. Fix G a simply connected simple algebraic group of rank ℓ≥2
defined over the algebraically closed field k. We fix a maximal torus T of G, a
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Borel subgroup B of G with T ⊂ B, the root system 8 of G with respect to T , and
a base 5 = {α1, . . . , αℓ} of 8, associated with the choice of Borel subgroup B. Let
8+ be the associated set of positive roots. Let X (T ) denote the associated weight
lattice, with fundamental dominant weights {ω1, . . . , ωℓ} defined by the choice of 5.
(We label Dynkin diagrams as in [Bourbaki 2002].) Throughout, we fix λ ∈ X (T )

a dominant weight and set V = L(λ), the irreducible kG-module with highest
weight λ. Assume that p ≥ h, so that each regular unipotent element of G lies in
an A1-subgroup of G. Let A ⊂ G be a principal A1-subgroup of G. Fix a maximal
torus TA of A with TA ⊂ T and TAUα , a Borel subgroup of A, with root group Uα ,
lying in B. For α the unique positive root of A (with respect to the given choices),
we have TA = α∨(k∗), the image of the coroot α∨. Henceforth, we will write V↓H
for the k H -module obtained by restricting the action of G to a subgroup H . We
say that V↓A is MF if all composition factors in the restriction are nonisomorphic.

We will also require a notation for the corresponding modules and subgroups for
the groups defined over the algebraically closed field K of characteristic zero. We
write G K for a simply connected simple algebraic group defined over the field K ,
with root system of type 8, and AK for a principal A1-subgroup of G K (see [Jacob-
son 1951; Morozov 1942] for the proofs of existence and conjugacy of A1-subgroups
of G K intersecting the class of regular unipotent elements). For the weight λ as
above, we write 1K (λ) for the corresponding irreducible G K -module. We will use
the same terminology of “MF” for the action of AK on 1K (λ). Our main result is:

Theorem 1. Suppose that λ is p-restricted. Then L(λ)↓A is MF if and only if one
of the following holds:

(i) We have that p > (λ↓TA) and 1K (λ)↓AK is MF.

(ii) The group G is of type A2, λ = ω1 + ω2 and p = 3.

(iii) The group G is of type B2, λ = 2ω1 and p = 5.

Corollary 2. Let λ =
∑t

i=0 piλi where each λi is a p-restricted dominant weight.
Then L(λ)↓A is MF if and only if one of the following holds:

(i) The module 1K (λi )↓AK is MF and p > (λi↓A), for all 0 ≤ i ≤ t .

(ii) The group G is of type A2, p =3 and there exists 0≤ i ≤ t such that λi =ω1+ω2.
For all 0 ≤ j ≤ t we have λ j ∈ {0, ω1 + ω2, ω1, ω2} and if λ j = ω1 + ω2 for
some 0 ≤ j ≤ t − 1, then λ j+1 = 0.

(iii) The group G is of type B2, p = 5 and there exists 0 ≤ i ≤ t such that λi = 2ω1.
For all 0 ≤ j ≤ t we have λ j ∈ {0, 2ω1, ω1, ω2} and if λ j = 2ω1 for some
0 ≤ j ≤ t − 1, then λ j+1 ∈ {0, ω2}.
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G K weight λ

Aℓ ω1, ω2, 2ω1, ω1 + ωℓ

ω3 (5 ≤ ℓ ≤ 7)

3ω1 (ℓ ≤ 5), 4ω1 (ℓ ≤ 3), 5ω1 (ℓ ≤ 3)

A3 110
A2 c1, c0

Bℓ ω1, ω2, 2ω1

ωℓ (ℓ ≤ 8)

B3 101, 002, 300
B2 b0, 0b (1 ≤ b ≤ 5), 11, 12, 21

Cℓ ω1, ω2, 2ω1

ω3 (3 ≤ ℓ ≤ 5)

ωℓ (ℓ = 4, 5)

C3 300

Dℓ (ℓ ≥ 4) ω1, ω2 (ℓ = 2m + 1), 2ω1 (ℓ = 2m)

ωℓ (ℓ ≤ 9)

E6 ω1, ω2

E7 ω1, ω7

E8 ω8

F4 ω1, ω4

G2 10, 01, 11, 20, 02, 30

Table 1. Multiplicity-free restrictions in characteristic zero.

For the reader’s convenience and for completeness, we list in Table 1 the nonzero
weights λ for which 1K (λ)↓AK is MF, as obtained in [Liebeck et al. 2015].

We conclude the introduction with a few remarks about the proof. We first
note that if p > (λ↓TA), then one can show that the Weyl module with highest
weight λ is an irreducible kG-module (see [Korhonen 2018, Corollary 2.7.6]), and
then the considerations of [Liebeck et al. 2015] for the groups defined over K
yield the result (see Proposition 2.3). The arguments therefore focus on the cases
where p ≤ (λ↓TA). Many aspects of the proof follow closely the arguments used
in [Liebeck et al. 2015]. In particular, we use the fact that all irreducible kA1-
modules have multiplicity-one weight spaces and therefore considering the set of
TA-weights and their multiplicities in V can directly be used to detect multiplicities
of composition factors of V ↓A. Moreover, there are certain dimension bounds
which must be respected by an MF-module. Thus, many of our preliminary lemmas
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are inspired by the results in [Liebeck et al. 2015, Section 2]. In addition, we
rely on a result from [Hague and McNinch 2013] where the authors prove that
certain tilting modules for G have a filtration by tilting modules for a principal
A1-subgroup A of G. Since reducible indecomposable tilting modules for groups
of type A1 necessarily have repeated composition factors, this result is quite useful
for showing that many kG-modules are not MF as kA-modules (see Lemma 2.4).

2. Preliminary lemmas

Let us fix additional notation to be used throughout the paper.
Recall that G is a simply connected simple algebraic group with principal A1-

subgroup A. We assume throughout that ℓ≥ 2, respectively 2, 3, 4, for G of type Aℓ,
respectively Bℓ, Cℓ, Dℓ. For 1 ≤ i ≤ ℓ, let si denote the simple reflection associated
to the root αi . For λ ∈ X (T ), a dominant weight, we write 1G(λ) for the Weyl
module for G of highest weight λ, and LG(λ) for the irreducible module for G of
highest weight λ. We will suppress the G in this notation if there is no ambiguity.
For a kG-module V and µ∈ X (T ), we write Vµ for the µ-weight space with respect
to T of the module V . When we say that roots are adjacent, or end-nodes, we mean
with respect to the Dynkin diagram associated to the root system 8.

For a group of type A1, we identify the weight lattice of a fixed maximal torus
with the ring Z and for a nonnegative integer s we write (s) for the irreducible
kA1-module of highest weight s. If we want to underline that we are talking about
the fixed principal A1-subgroup A, we may write as well L A(s). Similarly, we write
1(s) for the Weyl module of highest weight s and T (s) for the indecomposable
tilting module of highest weight s. For a kA-module (s), we write (s)(pi ) for the
module whose structure is induced by the composition of the pi -Frobenius map on
A and the morphism defining the module structure on (s). For AK , the principal
A1-subgroup of G K , and s a nonnegative integer, we will write 1AK (s) for the
irreducible K AK -module of highest weight s.

Here and in Sections 3 and 4, we fix a p-restricted dominant weight λ∈ X (T ) and
set V = LG(λ). Throughout the paper, set r = λ↓TA, that is, λ(α∨(c)) = cr , for all
c∈k∗. The cocharacter α∨

:Gm →T , which defines the maximal torus of A, satisfies
αi (α

∨(c)) = c2 for all c ∈ k∗; that is, αi↓TA = 2 for all 1 ≤ i ≤ ℓ. The value for r
can then be determined by writing λ as a linear combination of simple roots and then
using that each simple root takes value 2 on TA. We list the values of r in Table 2.

Recall that the existence of a principal A1-subgroup in G implies that p ≥ h,
the Coxeter number of G, a hypothesis which allows us to apply the following
proposition, a consequence of [Premet 1987, Theorem 1].
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G r

Aℓ

∑ℓ
1 i(ℓ + 1 − i)ci

Bℓ

∑ℓ−1
1 i(2ℓ + 1 − i)ci +

ℓ(ℓ+1)
2 cℓ

Cℓ

∑ℓ
1 i(2ℓ − i)ci

Dℓ

∑ℓ−2
1 i(2ℓ − 1 − i)ci +

ℓ(ℓ−1)
2 cℓ−1 +

ℓ(ℓ−1)
2 cℓ

G2 6c1 + 10c2

F4 22c1 + 42c2 + 30c3 + 16c4

E6 16c1 + 22c2 + 30c3 + 42c4 + 30c5 + 16c6

E7 34c1 + 49c2 + 66c3 + 96c4 + 75c5 + 52c6 + 27c7

E8 92c1 + 136c2 + 182c3 + 270c4 + 220c5 + 168c6 + 114c7 + 58c8

Table 2. Values of r = λ↓TA for λ =
∑ℓ

1 ciωi .

Proposition 2.1. Let p ≥ h and let µ be a p-restricted weight for G. Then the
irreducible kG-module L(µ) has precisely the same set of weights as the kG-
module 1(µ).

Proof. This follows from [Premet 1987, Theorem 1] since the parameter e(8)

appearing in the statement of [loc. cit.] is the maximum of the squares of the ratios
of the lengths of the roots in 8. □

We now introduce a shorthand notation for weights of V . For λ −
∑ℓ

i=1 aiαi ,
we write λ − i

ai1
1 · · · iaim

m , where a j = 0 for j ̸∈ {i1, . . . , im}, and suppress those a j

with a j = 1; for example, the weight λ−α2 − 2α3 −α5 will be written as λ− 2325.
For G of rank 2, we write λ − ab for the weight λ − aα1 − bα2.

The following result is Corollary 2.7.6 from [Korhonen 2018]; we include a
sketch of the proof for completeness.

Lemma 2.2. If p > r , then 1(λ) is irreducible.

Proof. By the Jantzen sum formula [2003, Part II, 8.19], it suffices to prove that
for all α ∈ 8+, we have r ≥ ⟨λ + δ, α⟩ − 1, where δ =

∑ℓ
i=1 ωi . It is easy to see

that ⟨λ, α⟩ is maximal when α is the highest root of the dual root system 8∨, i.e.,
when α is the highest short root β of 8. By [Serre 1994, Proposition 5], we
have ⟨λ + δ, β⟩ ≤ 1 +

∑
α∈8+⟨λ, α⟩. It is therefore sufficient to show that r =∑

α∈8+⟨λ, α⟩, which is a simple calculation using the fact that for a simple root αi

we have
∑

α∈8+\{αi }
⟨αi , α⟩=

∑
α∈8+\{αi }

⟨si (αi ), si (α)⟩=
∑

α∈8+\{αi }
⟨−αi , α⟩ and

so
∑

α∈8+\{αi }
⟨αi , α⟩ = 0. □

The next proposition establishes Theorem 1 when p > r .
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Proposition 2.3. Assume p > r . Then V↓A is MF if and only if 1K (λ)↓AK is MF.

Proof. By Lemma 2.2, the Weyl module is irreducible and therefore V = 1(λ). We
have 1K (λ)↓AK =

∑k
0 1AK (ri ) for some integers r0 ≥ r1 ≥· · ·≥ rk ≥ 0 with r0 = r .

Since p > r , a comparison of characters gives 1(λ)↓A =
∑k

0 1A(ri ) =
∑k

0(ri ),
which then implies the result. □

As the next result shows, in many cases when 1(λ) is irreducible and r ≥ p, we
can still directly conclude that V↓A is not MF.

Lemma 2.4. Assume that 1(λ) is irreducible, r ≥ p, and r ̸≡ −1 mod p. If G is
of type Bℓ, respectively Dℓ, and λ does not lie in the root lattice of G, assume that
p >

(
ℓ+1

2

)
, respectively p >

(
ℓ
2

)
. Then V↓A is not MF.

Proof. Here we use [Hague and McNinch 2013, Theorems 4.1.2, 4.1.4 and 4.2.1]
to see that A is a so-called “good filtration” subgroup, which then implies that
the irreducible Weyl module 1(λ) = V has an A-filtration by both Weyl modules
and by induced modules. So in particular, V↓A is a tilting module. Furthermore,
since r is the highest TA-weight in V , the module T (r) is a summand of V↓A. The
hypotheses on r imply that the indecomposable tilting module T (r) is reducible (see
[Carter and Cline 1976, Theorem 1.2]). Since tilting modules for A are self-dual, no
reducible indecomposable tilting module is MF, which then concludes the proof. □

We now turn to a sequence of definitions and lemmas which provide tools for
studying the set of composition factors of V↓A based upon knowing the set of
weights of V .

Definition 2.5. For n ∈ Z, let nd be the multiplicity of the TA-weight r −2d in V↓A
and let md be the multiplicity of the composition factor (r − 2d) in V↓A. Also,
let Sd denote the multiset of composition factors whose highest weight is greater
than r − 2d and in which r − 2d does not occur as a weight, and let sd denote the
cardinality of Sd .

Lemma 2.6. Assume that V↓A is MF. Then nd ≤ d + 1.

Proof. Let B be the multiset of composition factors of V↓A where r −2d occurs as
a weight. Since V↓A is MF, we have B ⊆ {(r), (r − 2), . . . , (r − 2d)}. Therefore
|B| ≤ d + 1 and we can conclude that nd ≤ d + 1. □

Lemma 2.7. For all 0 ≤ d ≤ r we have

(1) md = nd − nd−1 + sd − sd−1.

Proof. We prove this by induction on d. If d = 0 the statement holds. Indeed,
m0 = n0 = 1 since r is the highest weight and is afforded only by λ, and n−1 = s−1 =
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s0 = 0. Assume that (1) holds up to an arbitrary d . In general, the multiplicity md+1

can be determined by taking the difference between nd+1 and the number of times
the TA-weight r − 2(d + 1) appears in composition factors with greater highest
weight. Thus,

md+1 = nd+1 −

( ∑
0≤k≤d

mk − sd+1

)
.

By the inductive hypothesis mk = nk − nk−1 + sk − sk−1 for all k ≤ d . Substituting
we get

md+1 = nd+1 + sd+1 −
∑

0≤k≤d
(nk − nk−1 + sk − sk−1) = nd+1 − nd + sd+1 − sd ,

concluding the proof. □

Lemma 2.8. For all 1 ≤ d < p we have Sd−1 ⊆ Sd . In particular sd ≥ sd−1.

Proof. We begin by analysing what weights occur in an arbitrary irreducible
module (t). We will write [a0, a1, . . . , am] to denote the integer

∑m
i=0 ai pi . Then

t = [a0, a1, . . . , am] where the ai ’s are the coefficients in the p-adic expansion of t .
By Steinberg’s tensor product theorem, we have

(t) ∼= (a0) ⊗ (a1)
(p)

⊗ · · · ⊗ (am)(pm).

The weights occurring in (t) are therefore of the form [a0−2i0,a1−2i1, . . . ,am−2im]

where 0 ≤ i j ≤ a j . Let t − 2q ≥ 0, with q ∈ N, be an integer denoting a weight not
occurring in (t). Then t − 2q lies in an open interval (δ, γ ) with

δ = [a0, . . . , a j , a j+1 − 2i j+1 − 2, . . . , am − 2im],

γ = [−a0, . . . ,−a j , a j+1 − 2i j+1, . . . , am − 2im],

where 0 ≤ i j+1 < a j+1 and 0 ≤ ik ≤ ak for k > j +1. Conversely, any integer t −2q
lying in such an interval corresponds to a weight not occurring in (t). We call these
intervals the gaps of (t), so that a composition factor (t) is in Sd if and only if
r − 2d is in a gap of (t).

Assume for a contradiction that (t)∈ Sd−1\Sd for some t ≤ r . Then t > r −2d+2
and the composition factor (t) has a gap (δ, γ ) as above containing r − 2d + 2, but
not containing r − 2d. This means that

r − 2d = [a0, . . . , a j , a j+1 − 2i j+1 − 2, . . . , am − 2im],

implying that

2d − (r − t) = t − (r − 2d) = t − [a0, . . . , a j , a j+1 − 2i j+1 − 2, . . . , am − 2im]

= 2p j+1
[i j+1 + 1, i j+2, . . . , im] ≥ 2p.

This contradicts the assumption that d < p. □
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Lemma 2.9. Let 1 ≤ d < min
{⌊ r+2

2

⌋
, p

}
.

(i) If nd − nd−1 = 1 then r − 2d is a composition factor of V↓A.

(ii) If nd − nd−1 ≥ 2 then md ≥ 2 and V↓A is not MF.

(iii) If λ = cωi and nd ≥ d + 1 then V↓A is not MF.

(iv) If nd − nd−1 = 1 and Sd−1 ̸= Sd , then md ≥ 2 and V↓A is not MF.

Proof. Parts (i), (ii) and (iv) follow directly from combining Lemmas 2.7 and 2.8.
If λ = cωi then n1 = 1, and since nd ≥ d + 1, there exists 2 ≤ d ′

≤ d such that
nd ′ − nd ′−1 ≥ 2, concluding by part (ii). □

We can often deduce the value nd from the characteristic-zero case.

Lemma 2.10. Assume that V ∼= 1(λ). Then nd = dim(1K (λ)↓AK )r−2d .

Proof. This follows from [Jantzen 2003, Part II, 5.8], since TA is uniquely determined
by the property αi↓TA = 2 for all 1 ≤ i ≤ ℓ. □

We now establish two dimension bounds for multiplicity-free kA1-modules.

Definition 2.11. Given r ∈ N, define B(r) and BK (r) as

B(r) =
∑

r−2k≥0
dim L A(r − 2k) and BK (r) =

∑
r−2k≥0

dim 1AK (r − 2k).

In particular BK (r) is either
( r

2 + 1
)2 or r+1

2
r+3

2 according to whether r is even
or odd, respectively.

Lemma 2.12. We have B(r) ≤ BK (r) and if V↓A is MF, then dim V ≤ B(r).

Proof. We have B(r)≤ BK (r) immediately since dim L A(r−2k)≤dim 1AK (r−2k)

for all k such that r−2k ≥0. Now if V↓A is MF, it can have at most one composition
factor (r − 2d), i.e., md = 1, for every 0 ≤ d ≤

⌊ r
2

⌋
. Therefore dim V ≤ B(r). □

Lemma 2.13. Suppose that λ = aωi and r ̸≡ 0 mod p. If V↓A is MF, then
dim V ≤ B(r) − dim(r − 2).

Proof. The TA-weight r −2 occurs with multiplicity 1 in V , and since r ̸≡ 0 mod p,
it occurs as a weight in the composition factor (r). Therefore r − 2 does not afford
a composition factor of V↓A, i.e., m1 = 0. Since V↓A is MF, we have md ≤ 1 for
all d ≥ 0 such that r − 2d ≥ 0. This proves that dim V ≤ B(r) − dim(r − 2). □

The following result is our main reduction tool, showing that if V ↓A is MF, then
λ satisfies some highly restrictive conditions. The proof follows closely that of
[Liebeck et al. 2024, Lemma 2.6].
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Proposition 2.14. Let λ=
∑ℓ

i=1 ciωi . Assume that there exist i < j with ci ̸= 0 ̸= c j

and that V↓A is MF. Then:

(i) ck = 0 for k ̸= i, j .

(ii) If αi and α j are nonadjacent, then ci = c j = 1.

(iii) If αi and α j are nonadjacent then they are both end-nodes.

(iv) Either αi or α j is an end-node.

(v) If both ci > 1 and c j > 1, then G has rank 2 and λ − i j has multiplicity 1.

(vi) If either ci > 1 or c j > 1, then either G has rank 2, or αi is adjacent to α j and
λ − i j has multiplicity 1.

Proof. We will use Proposition 2.1 throughout the proof, without direct reference.

(i) If ck ≥ 1 for k ̸= i, j , we have n1 ≥ 3 as the TA-weight r − 2 is afforded by
λ − i , λ − j and λ − k. This contradicts Lemma 2.6.

(ii) Suppose αi and α j are not adjacent and that ci ≥ 2. Let k ̸= i, j such that αk

is adjacent to αi and let k ′
̸= i, j such that αk′ is adjacent to α j . Then n2 ≥ 4, as

the TA-weight r − 4 is afforded by λ− i2, λ− ik, λ − jk ′, λ− i j . This contradicts
Lemma 2.6.

(iii) Assume that αi and α j are nonadjacent and that αi is not an end-node. Then
there exist distinct simple roots αk, αl , both adjacent to αi , and a simple root αm ̸=αi

adjacent to α j . Then n2 ≥ 4, as the TA-weight r − 4 is afforded by λ− ik, λ− il,
λ − jm and λ − i j . This contradicts Lemma 2.6.

(iv) Assume that neither αi nor α j is an end-node. Then by (iii), the roots αi and
α j are adjacent. Let 1 ≤ k, l ≤ ℓ be distinct indices such that {i, j}∩ {k, l} =∅ and
such that αi is adjacent to αk and α j is adjacent to αl . Then the TA-weight r − 8 is
afforded by λ− ki jl, λ− ki j2, λ− i2 j2, λ− i2 jl, λ− ki2 j and λ− i j2l. Therefore
n4 ≥ 6, contradicting Lemma 2.6.

(v) If both ci > 1 and c j > 1, then by (ii), the roots αi and α j are adjacent. If the
rank of G is not 2 we can find k ̸= i, j , such that αk is adjacent to either αi or α j .
But then the TA-weight r − 4 is afforded by λ− i j , λ− i2, λ− j2 and either λ− ik
or λ − jk. Therefore n2 ≥ 4, contradicting Lemma 2.6. In addition, λ − i j has
multiplicity 1, else n2 ≥ 4, again contradicting Lemma 2.6.

(vi) Assume ci ≥ 2 and that G has rank at least 3. Then αi and α j are adjacent
by (ii), and r − 4 is afforded by λ− i2, λ− i j and either λ− ik or λ− jk for some
k ̸= i, j . Therefore, Lemma 2.6 implies that λ−i j has multiplicity 1, as claimed. □
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Lemma 2.15. Assume that λ = ωi and that there exist {βi−3, . . . , βi+3} ⊆ 5 such
that for i − 3 ≤ s < t ≤ i + 3, (βs, βt) ̸= 0 if and only if t = s + 1. Then V↓A is
not MF.

Proof. Here p > 7, as rank(G) ≥ 7, and Table 2 shows that r > 15. It is now a
simple check to see that n4 ≥ 5, concluding by Lemma 2.9(iii). □

Lemma 2.16. Assume that λ = bωi with b ≥ 2. If V↓A is MF, then αi is an
end-node.

Proof. If αi is not an end-node, it is easy to see that n2 ≥ 3. As rank(G) ≥ 3 we
have p > 3, and Table 2 shows that r > 7, so Lemma 2.9(iii) implies that V↓A is
not MF. □

Remark 2.17. In the previous two proofs, we have applied Lemma 2.9, and in each
case it was straightforward to see that the condition d < min

{⌊ r+2
2

⌋
, p

}
is satisfied.

In what follows, we will apply the lemma without systematically pointing out how
we conclude that this hypothesis holds.

The following lemma provides a classification for the second possibility of
Proposition 2.14(vi).

Lemma 2.18 [Testerman 1988, 1.35]. Assume that λ = ciωi + c jω j with αi and α j

adjacent and ci c j ̸= 0. Let d = dim Vλ−i j . Then 1 ≤ d ≤ 2 and the following hold:

(i) If (αi , αi ) = (α j , α j ), then d = 1 if and only if ci + c j = p − 1.

(ii) If (αi , αi ) = 2(α j , α j ), then d = 1 if and only if 2ci + c j + 2 ≡ 0 mod p.

(iii) If (αi , αi ) = 3(α j , α j ), then d = 1 if and only if 3ci + c j + 3 ≡ 0 mod p.

Finally, we conclude this section with two further results on the dimensions of
certain weight spaces in V .

Lemma 2.19 [Seitz 1987, 8.6]. Let G = Aℓ. Suppose that λ = ciωi + c jω j and
1 ≤ s ≤ i < j ≤ t ≤ k, with ci c j ̸= 0. Let d = dim Vλ−s(s+1)···(t−1)t . Then:

(i) If a + b + j − i ̸≡ 0 mod p, then d = j − i + 1.

(ii) If a + b + j − i ≡ 0 mod p, then d = j − i .

Lemma 2.20 [Burness et al. 2016, Lemma 2.2.8]. Let λ =
∑ℓ

i=1 diωi and let
µ = λ −

∑
β∈S cββ ∈ X (T ) for some subset S ⊆ 5. Set X = ⟨U±β | β ∈ S⟩,

where for γ ∈ 8, Uγ is the T -root subgroup associated to γ , λ′
= λ↓(T ∩ X) and

µ′
= µ↓(T ∩ X). Then dim Vµ = V ′

µ′ , where V ′
= L X (λ′).
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3. The case where G has rank 2

Here we establish Theorem 1 in the case where G has rank 2. Let us recall our
setup. Throughout the section we assume that λ is a p-restricted dominant weight
for G, and we let r = λ↓TA and V = L(λ). We write λ = ab as shorthand notation
for λ = aω1 + bω2, and λ − ab for λ − aα1 − bα2. We assume that p ≤ r , as
Proposition 2.3 settles the case r < p, and we have that p ≥ h since we are
assuming the existence of a principal A1-subgroup in G.

3.1. The case where G is A2. We begin with the case G = A2, where p ≥ h = 3.
The following is the main result, which we will prove after a sequence of lemmas.

Proposition 3.1. Let G = A2 and assume p ≤ r . Then V↓A is MF if and only if
λ = ω1 + ω2 and p = 3.

Lemma 3.2. Let λ = ab. Then λ − i j , with i + j ≤ a + b, is a weight of 1(λ) if
and only if one of the following holds:

(i) i ≤ j and j − i ≤ b.

(ii) i ≥ j and i − j ≤ a.

Proof. By [Bourbaki 1975, VIII, §7, Proposition 10], the weights in 1(λ) are
precisely the same as those occurring in 1(a0)⊗1(0b). Let λ1 = a0 and λ2 = 0b
and recall that 1(ciωi ), for i = 1, 2, is the ci -th symmetric power of the natural,
respectively, dual module for G. Hence, λ1−i1 j1 is a weight of 1(λ1) if and only if

i1 + j1 ≤ 2a and 0 ≤ i1 − j1 ≤ a.

Similarly, λ2 − i2 j2 is a weight of 1(λ2) if and only if

i2 + j2 ≤ 2b and 0 ≤ j2 − i2 ≤ b.

By symmetry it suffices to show that the statement of the lemma is valid when
i ≥ j . First of all, it is clear that all weights λ− i j of 1(λ) satisfy i − j ≤ a, since
a weight λ2 − i2 j2 of 1(λ2) satisfies i2 − j2 ≤ 0, and a weight λ1 − i1 j1 of 1(λ1)

satisfies i1 − j1 ≤ a.
For the converse, consider a pair (i, j), such that i ≥ j , i + j = d ≤ a + b

and i − j ≤ a. If d ≤ a, then j ≤ i ≤ a, so λ1 − i j is a weight of 1(λ1) and
λ1 + λ2 − i j is then a weight of 1(λ). If d > a, write d = a + k, where k ≤ b.
To conclude we show that we can find (i1, j1) with i1 + j1 = a and (i2, j2) with
i2 + j2 = k, such that λ1 − i1 j1 is a weight of 1(λ1), λ2 − i2 j2 is a weight of 1(λ2)

and i1 − j1 + i2 − j2 = i − j . Fix i1 + j1 = a and i2 + j2 = k. Note that we are
allowed to pick i1 − j1 to be any integer between a and 1 if a is odd, and between a
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and 0 if a is even. Similarly, we are allowed to choose i2 − j2 between −k and −1
if k is odd, and between −k and 0 when k is even, concluding easily. □

Lemma 3.3. Let λ = ab with a ≥ b > 0 and a + b = p − 1.

(i) For 0 ≤ d ≤ b, we have nd = d + 1.

(ii) For b + 1 ≤ d ≤ a, we have that nd increases alternatingly by respectively 0
and 1 with respect to nd−1.

(iii) For a < d ≤ a + b, we have that nd alternates between
⌈a+b

2

⌉
and

⌈a+b+1
2

⌉
.

Proof. Here we use the fact that all T -weights in V are of multiplicity 1. (See
[Zalesskii and Suprunenko 1987, Proposition 2].) Hence, the proof consists of
counting the pairs (i, j) with i + j = d and satisfying the conditions of Lemma 3.2.

(i) Let 0 ≤ d ≤ b. The statement then follows immediately from noting that
λ − i(d − i) is a weight for 0 ≤ i ≤ d .

(ii) Let us start from d = b + 1, where the weights are given by λ − (b − i + 1)i
for 0 ≤ i ≤ b. This means that nb+1 = b + 1 = nb by part (i). For d = b + 2, still
assuming that d ≤ a, we find weights of the form λ− (b − i +2)i for 0 ≤ i ≤ b +1.
The same reasoning continues until d = a, proving the statement.

(iii) Let a < d ≤ a + b. We must count the weights of the form λ− i(d − i) where
a ≥ 2i − d and b ≥ d − 2i . The conditions on i are equivalent to the inequalities
d−b

2 ≤ i ≤
a+d

2 . Considering the various possibilities for the evenness of the terms
in the inequality gives the result. □

Lemma 3.4. Let λ = ab with a ≥ b > 0 and a + b = p − 1. Then V↓A is MF if
and only if a = b = 1.

Proof. Note that r = 2(a + b) < 2p and that a − b is an even number. For clarity
we split the proof into four cases, depending on whether a − b ≥ 6, a − b = 4,
a − b = 2 or a = b. Suppose first that a − b ≥ 6. By Lemma 3.3, all weights of the
form r − 2d with b + 1 ≤ d ≤ a follow the pattern in (ii) of the same lemma. Since
r − 2(b + 1) = 2a − 2 ≥ a + b + 4 = p + 3, and r − 2a = 2b ≤ b + a − 6 = p − 7,
this includes weights that restrict to p + 3, p + 1, p − 1, p − 3, p − 5. Therefore
by Lemma 2.9(i) either (p + 3) or (p + 1) is a composition factor for V↓A. In the
first case p − 5 occurs with multiplicity 1 more than p − 3, and does not occur
as a weight in the composition factor (p + 3), while p − 3 does. Therefore by
Lemma 2.9(iv) the module V↓A is not MF. In the second case (p − 3) is similarly
a repeated composition factor.

Now suppose that a−b = 4. We have p+3 = a+b+4 = r −2
(a+b

2 −2
)
= r −2b.

Therefore by Lemma 3.3(i), we have that (p + 3) is a composition factor for V↓A.
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The weights p+1, p−1, p−3, p−5 follow the pattern described in Lemma 2.9(ii).
Therefore we can conclude like in the previous case.

Now suppose that a = b+2. Then by Lemma 3.3 we know that r −2k occurs with
multiplicity k + 1 for k ranging between 0 and b. In particular (r − 2b) = (p + 1)

is a composition factor by Lemma 2.9(i). Again by Lemma 3.3, the TA-weight
r − 2(b + 1) = 2b + 2 occurs with multiplicity b + 1 and r − 2a = 2b occurs with
multiplicity b + 2. Since 2b = p − 5 does not occur as a weight in the composition
factor (p+1), while p−3 = 2b+2 does, Lemma 2.9(iv) implies that V↓A is not MF.

Finally assume that a = b. Then by Lemmas 3.3 and 2.9(i), the weights
r = 4a, 4a − 2, . . . , 2a afford composition factors for V↓A, with the last weight
occurring with multiplicity a + 1. If a ≥ 2 we find that 2a − 2 occurs with
multiplicity

⌈a+b
2

⌉
= a and 2a −4 occurs with multiplicity

⌈a+b+1
2

⌉
= a +1. Since

2a − 4 = p − 5 does not occur as a weight in the composition factor (p + 3),
while p − 3 does, Lemma 2.9(iv) implies that V↓A is not MF. On the other hand
if a = b = 1 we find that V↓A = (4) ⊕ (2). □

Proof of Proposition 3.1. Suppose that V↓A is MF, with λ = ab and a ≥ b. Since
the Weyl module 1(c0) is irreducible, the assumption that r = 2a + 2b ≥ p > a,
together with Lemma 2.4, implies that b ≥ 1. If dim Vλ−11 = 2, then a + b ̸= p − 1
by Lemma 2.18, and b = 1 by Proposition 2.14(v). In this case, using the Jantzen
p-sum formula [2003, Part II, 8.19] (for example), one sees that 1(λ) is irreducible,
a contradiction by Lemma 2.4. If dim Vλ−11 = 1, then by Lemma 2.18 we have
a + b = p − 1, and we conclude by Lemma 3.4. □

3.2. The case where G is B2. We proceed with the case G = B2, where p ≥ h = 4.
The main result is the following, which we shall prove after a series of lemmas.

Proposition 3.5. Let G = B2 and assume that p ≤ r . Then V↓A is MF if and only
if λ = 2ω1 and p = 5.

We begin by recalling some information about the structure of B2 Weyl modules
(with p-restricted highest weights). Let λ = ab be a p-restricted dominant weight;
here α1 is long.

We consider the following alcoves in which a p-restricted weight can lie:

• C0 = {λ | 2a + b + 3 < p};

• C1 = {λ | a + b + 2 < p < 2a + b + 3};

• C2 = {λ | b + 1 < p < a + b + 2 and 2a + b + 3 < 2p};

• C3 = {λ | 2a + b + 3 > 2p and max{b + 1, a + 1} < p}.



REPRESENTATIONS OF A1-SUBGROUP IN A SIMPLE ALGEBRAIC GROUP 447

Lemma 3.6. (i) If λ ∈ Ci for i = 1, 2, 3, then 1(λ) has exactly two composition
factors, namely V and L(µ), where µ = (p − a − b − 3)ω1 + bω2, respectively
aω1 + (2p − 2a − b − 4)ω2, (2p − a − b − 3)ω1 + bω2, when i = 1, 2, 3.

(ii) For λ = aω1 + (p − 1)ω2 with 2a + (p − 1) + 3 > 2p and a < p − 1, we
have that the module 1(λ) has exactly two composition factors, V and L(µ) for
µ = (p − a − 2)ω1 + (p − 1)ω2.

For λ a p-restricted dominant weight not lying in
⋃3

i=1 Ci and not of the form
described in (ii) above, 1(λ) is irreducible.

Proof. This follows from the Jantzen p-sum formula [2003, Part II, 8.19]. □

Remark 3.7. Recall that here ω1 = α1 + α2. It follows from Lemma 3.6 that
for a p-restricted weight λ = ab, if 1(λ) is reducible then the module 1(λ) has
exactly one composition factor in addition to the composition factor L(λ). The
highest weight of the second composition factor is of the form (a − k)ω1 + bω2

or aω1 + (b − k)ω2, for some k ≥ 1. More precisely, for λ ∈ Ci , i = 1, 2, 3, and
µ as in the statement of the lemma, we have µ = λ − (2a + b + 3 − p)(α1 + α2),
respectively λ − (a + b + 2 − p)(α1 + 2α2), λ − (2a + b + 3 − 2p)(α1 + α2). And
in case (ii) of the lemma, µ = λ − (2a − p + 2)(α1 + α2).

We record for convenience the dimension of the Weyl module 1(ab), namely

dim 1(ab) =
1
6(a + 1)(b + 1)(a + b + 2)(2a + b + 3).

Lemma 3.8. Let λ = c0. Then λ− i j , with i + j ≤ 2c, is a weight of V if and only
if one of the following holds:

(i) i ≤ j and j − i ≤ i .

(ii) i ≥ j and i − j ≤ c −
⌊ j+1

2

⌋
.

Proof. By Proposition 2.1, the set of weights of V is precisely the same as the set of
weights of the corresponding KG K -module 1K (λ). First we show that all weights
satisfying either (i) or (ii) are weights of 1K (λ).

Suppose i ≤ j ≤ 2i . Since i + j ≤ 2c, we have that i ≤ c. In particular, λ− i0
is a weight of 1K (λ). Now the weight sα2(λ − i0) = λ − i(2i) is also a weight
of 1K (λ) and by [Bourbaki 1975, VIII, §7, Proposition 3] for all 0 ≤ m ≤ 2i we
have that λ − im is a weight of 1K (λ). So in particular, λ − i j is a weight of V .

Suppose now that j ≤ i ≤ c + j −
⌊1

2( j + 1)
⌋
. As i + j ≤ 2c, we have that

j ≤ c and so
⌊1

2( j + 1)
⌋

≤ c and µ = λ−
(⌊1

2( j + 1)
⌋)

α1 is a weight of V . Hence,
sα2(µ) = µ−2

⌊1
2( j +1)

⌋
α2 is a weight of 1K (λ), which again by [Bourbaki 1975,

VIII, §7, Proposition 3] implies that ν = λ −
(⌊1

2( j + 1)
⌋)

j is a weight of 1K (λ).
Further, we have that ⟨ν, α1⟩ = c + j − 2

⌊ 1
2( j + 1)

⌋
and using again [loc. cit.] for
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all 0 ≤ m ≤ c + j − 2
⌊ 1

2( j + 1)
⌋

, we have that ν − mα1 = λ−
(
m +

⌊ 1
2( j + 1)

⌋)
j

is a weight of 1K (λ), giving that λ − i j is a weight of V .
We now show that any weight λ − i j with i + j ≤ 2c satisfies either (i) or (ii).

To this end, we use the fact that the set of weights of 1K (λ) is the same as the set
of weights of the module V ⊗

c

1 , the c-fold tensor product of the module V1 with
itself, where V1 is the KG K -module with highest weight ω1. (See [Bourbaki 1975,
VIII, §7, Proposition 10].) Let µ be a weight of V ⊗

c

1 , so that

µ = cω1 − a1α1 − a2(α1 + α2) − a3(α1 + 2α2) − a4(2α1 + 2α2)

= λ − (a1 + a2 + a3 + 2a4)α1 − (a2 + 2a3 + 2a4)α2,

with ai ∈ N such that a1 + a2 + a3 + a4 ≤ c.
There are two cases to consider; suppose first that a1 ≤ a3, so that

a1 + a2 + a3 + 2a4 ≤ a2 + 2a3 + 2a4.

Then a2 + 2a3 + 2a4 ≤ 2a1 + 2a2 + 2a3 + 4a4 = 2(a1 + a2 + a3 + 2a4) and the
weight µ satisfies the conditions of (i).

Now suppose a1 ≥ a3, so that a1 + a2 + a3 + 2a4 ≥ a2 + 2a3 + 2a4 and as usual

(2) a1 + a2 + a3 + 2a4 + a2 + 2a3 + 2a4 = a1 + 2a2 + 3a3 + 4a4 ≤ 2c,

and

(3) a1 + a2 + a3 + a4 ≤ c.

Note that j −
⌊ j+1

2

⌋
=

⌊ j
2

⌋
. If

a1 + a2 + a3 + 2a4 > c +
⌊ 1

2(a2 + 2a3 + 2a4)
⌋

= c + a3 + a4 +
⌊1

2a2
⌋
,

then a1 +a2 −
⌊a2

2

⌋
+a4 > c and 2a1 +a2 +1+2a4 > 2c. If 2a1 +2a2 +2a3 +2a4 ≥

2a1 + a2 + 1 + 2a4 we obtain a contradiction to (3). Hence we may now assume
2a2 + 2a3 < a2 + 1, that is, a2 = 0 = a3. Now (3) becomes a1 + a4 ≤ c and so
a1 + 2a4 ≤ c +

⌊ 2a4
2

⌋
and the weight satisfies condition (ii). □

Lemma 3.9. Let λ = c1, c < p. Then λ − i j , with i + j ≤ 2c, is a weight of V if
and only if one of the following holds:

(i) i ≤ j and j − i ≤ i + 1.

(ii) i ≥ j and i − j ≤ c −
⌊ j

2

⌋
.

Proof. By [Bourbaki 1975, VIII, §7, Proposition 10] and Proposition 2.1, the
weights occurring in V are the same as the weights occurring in c0 ⊗ 01. The
statement then follows from Lemma 3.8. □
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Lemma 3.10. Let λ = ab with p > a ≥ 1, p > b ≥ 2 and 2a + b + 2 ≡ 0 mod p.
Then V↓A is not MF.

Proof. Since 2a + b + 2 ≡ 0 mod p, by Lemma 3.6 we have

dim V =dim L(ab)=dim 1(ab)−dim L((a−1)b)≥dim 1(ab)−dim 1((a−1)b).

Using the Weyl character formula, we have that

(4) dim V ≥
1
6(1 + b)(6 + 6a2

+ 5b + b2
+ 12a + 6ab).

Since p > a and p > b, there are exactly two possibilities for p, either p = 2a+b+2
and b is odd, or p = a +1+

b
2 and b is even. Let us start with the first case, namely

p = 2a + b + 2. Assume that b = 3 and a ≥ 2. Then r = 4a + 3b = 2p − 1 and

(5) B(r) = 2

p+1
2∑

k=1

(2k − 1) +

p−1
2∑

k=1

2k =
1
4(3p2

+ 4p + 1).

Plugging in p = 2a + 5 and combining (5) with (4) gives dim V > B(r) and
Lemma 2.12 implies that V↓A is not MF. The case b = 3, a = 1 and p = 7 can
be handled directly; we observe that n1 = n2 = 2, while n3 = 4, as the weight
space λ − 12 is 2-dimensional (see [Lübeck 2018]). Then Lemma 2.9(ii) implies
that V↓A is not MF.

Next assume that b ≥ 5, in which case r = 2p + (b − 4) < 3p. Then

(6) B(r) = 3

b−3
2∑

k=1

2k + 2

p+1
2∑

k=1

(2k − 1) +

p−1
2∑

k=1

2k =
1
4(3p2

+ 4p + 10 − 12b + 3b2).

Plugging in p = 2a + b + 2 and combining (6) with (4) gives

dim V − B(r) ≥ −39 − 36a − 12a2
+ 5b + 6a2b − 3b2

+ 6ab2
+ b3.

As b ≥ 5 and a ≥ 1, this means that dim V − B(r) > 0, and Lemma 2.12 implies
that V↓A is not MF.

We now consider the second case, where p = a + 1 +
b
2 . Here we have r =

4p+b−4. Suppose that b =2, so that a = p−2≥3 and r =3p+a <4p. If a is even,

(7) B(r) = 4

a+2
2∑

k=1

(2k − 1) + 3

p−1
2∑

k=1

2k + 2

p+1
2∑

k=1

(2k − 1) +

p−1
2∑

k=1

2k

=
1
2(3p2

+ 2p + 7 + 8a + 2a2).

Plugging in p = a + 2 and combining (7) with (4) gives

dim V − B(r) ≥
1
2(a2

+ 2a − 3).
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Therefore dim V − B(r) > 0, and Lemma 2.12 implies that V↓A is not MF. If a is
odd, we have

(8) B(r) = 4

a+1
2∑

k=1

2k + 3

p+1
2∑

k=1

(2k − 1) + 2

p−1
2∑

k=1

2k +

p+1
2∑

k=1

(2k − 1)

=
1
2(3p2

+ 4p + 7 + 8a + 2a2).

Plugging in p = a + 2 and combining (8) with (4) gives

dim V − B(r) ≥
1
2(a2

− 7).

As a ≥ 3, Lemma 2.12 implies that V↓A is not MF. Now suppose that b ≥ 4, in
which case r = 4p + b − 4 < 5p. Then

(9) B(r) = 5

b−2
2∑

k=1

(2k − 1) + 4

p−1
2∑

k=1

2k + 3

p+1
2∑

k=1

(2k − 1) + 2

p−1
2∑

k=1

2k +

p+1
2∑

k=1

(2k − 1)

=
1
4(10p2

+ 8p + 5b2
− 20b + 18).

Plugging in p = a + 1 +
b
2 and combining (9) with (4) gives

dim V −B(r)≥ 1
24(−192−120a−36a2

+80b+12ab+24a2b−21b2
+24ab2

+4b3).

We can write this as

dim V −B(r)≥ 1
24(−192+80b−21b2

+4b3
+12a2(−3+2b)+12a(−10+b+2b2)).

Treating the right-hand side as a quadratic polynomial in a, it is easy to see that
since b ≥ 4, we must again have dim V − B(r) > 0, concluding by Lemma 2.12. □

Lemma 3.11. Let λ = 1b with b ≥ 2. Then V↓A is not MF.

Proof. By Lemma 3.6, we have that one of the following holds:

(i) p > b + 5 and V = 1(1b).

(ii) b = p − 4.

(iii) b = p − 2 and dim V ≥ dim 1(1b) − dim 1(1(b − 2)).

In the first case, for b ≥ 3, dim V exceeds BK (r) and Lemma 2.12 then implies
that V↓A is not MF. For b = 2, we have p ≥ 11 > r , contradicting our assumption
that p ≤ r .

The second case is covered by Lemma 3.10.
Finally, we consider the third case. Here dim V ≥2(3+4b+b2)=2(p−1)(p+1),

r = 3p − 2 > p and b ≥ 3. In addition, we have B(r) =
1
2(p + 1)(3p − 1) so that

dim V > B(r) and V↓A is not MF by Lemma 2.12. □
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Lemma 3.12. Let λ = c1 with c ≥ 1 and p = 2c + 3. Then V↓A is not MF.

Proof. Note that all T -weight spaces of V are 1-dimensional, see [Zalesskii and
Suprunenko 1987, Proposition 2]. By Lemma 3.9, for 1 ≤ d ≤ c and 0 ≤ k ≤ d , we
have that λ− (d − k)k is a weight if and only if 0 ≤ k ≤ 2d − 2k + 1. We then find
that nd =

⌊ 2d+1
3

⌋
+1, for 1 ≤ d ≤ c. Since λ−(c+1−k)k is a weight if and only if

1 ≤ k ≤ 2c+2−2k +1, we find that nc+1 =
⌊2c

3

⌋
+1. Similarly nc+2 =

⌊ 2c+2
3

⌋
+1.

There are now two cases to consider: either c ≡ 1 mod 3 or c ≡ −1 mod 3. In the
first case nc−1 > nc−2 (note that nc−2 = 0 if c = 1), and therefore by Lemma 2.9(i)
we know that (p + 2) is a composition factor of V↓A. We have nc+2 = nc+1 + 1,
and the TA-weight r − 2(c + 2) = p − 4 does not occur in the composition factor
(p +2), but the TA-weight p −2 does. Therefore Lemma 2.9(iv) implies that V ↓A
is not MF. The second case, when c ≡ −1 mod 3, follows similarly. □

Lemma 3.13. Let λ = c1 with 2c + 3 ̸= p and c ≥ 1. Then V↓A is not MF.

Proof. Note that r = 4c + 3. First assume c = 1, so that r = 7; hence p = 7 and the
result follows from Lemma 2.4. When c = 2 we have p ̸= 7 and by Lemma 3.6
1(λ) is irreducible. Since p = 5 or p = 11, the hypotheses of Lemma 2.4 are
satisfied, and V↓A is not MF.

We henceforth assume that c ≥ 3 and will show that V↓A is not MF. Suppose
first that p > 2c + 4, so that by Lemma 3.6 1(λ) is irreducible. Since p ≥ 5 and
r = 4c + 3, the hypotheses of Lemma 2.4 are satisfied and V↓A is not MF.

Assume now that p ≤ 2c + 4, so that in fact p ≤ 2c + 1. Then by Lemma 3.6
and Remark 3.7, either p − 3 ≤ c ≤ p − 1 and 1(λ) is irreducible which implies
dim V = dim 1(λ); or c ≤ p − 4 and dim V ≥ dim 1(c1) − dim 1((c − k)1), for
k = 2c + 4 − p ≥ 3. In particular, dim V ≥ dim 1(c1) − dim 1((c − 3)1) =

4+6c +6c2. In both cases, one checks that dim V > BK (r) so that V↓A is not MF
by Lemma 2.12. □

Lemma 3.14. Let λ = c0 with c > 1 and p = 2c + 1. Then V↓A is MF if and only
if c = 2.

Proof. First note that L(20)↓A = (8) + (4), since here p = 5. Now assume that
c ≥ 3, so that p ≥ 7. By [Zalesskii and Suprunenko 1987, Proposition 2], all
T -weight spaces of V are 1-dimensional. Let 1 ≤ l ≤ c. Then nl =

⌊ 2l
3

⌋
+ 1, since

by Lemma 3.9 we have that λ − (l − k)k is a weight if and only if 0 ≤ k ≤ 2l − 2k.
Similarly nc+1 =

⌊ 2c+2
3

⌋
, nc+2 =

⌊ 2c+1
3

⌋
, nc+3 = nc. Therefore by Lemma 2.9(i)

either both (p +1) and (p +5) or both (p +3) and (p +5) are composition factors
of V↓A, and by Lemma 2.9(iii), the composition factor (p − 7) is repeated. □

Lemma 3.15. Let λ = c0 with c > 1 and p ̸= 2c + 1. Then V↓A is not MF.
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Proof. First assume that p > 2c + 3, so that Lemma 3.6 implies that 1(c0) is
irreducible. Since r = 4c and by hypothesis r ≥ p and p ≥ 2c + 4, we have that p
does not divide r + 1 and Lemma 2.4 gives the result.

So we now assume that p ≤ 2c + 3. If 1(λ) is irreducible, then one checks
that dim V = dim 1(λ) exceeds BK (r) for all c ≥ 9. For c ≤ 8 we combine the
information from the tables in [Lübeck 2001] with the criteria of Lemma 2.4 to
reduce to the case c = 5 and p = 7. But then we have dim V = 91 and B(r) = 88,
so we conclude by applying Lemma 2.12.

Now assume that p ≤ 2c + 3 and 1(λ) is reducible. Then by Lemma 3.6,
c + 2 < p and 2c + 3 > p, and so in particular, 4c = r > p. By Remark 3.7,
dim V = dim 1(c0) − dim 1((c − k)0) for k = 2c + 3 − p, so k is even. Assume
that c ≥ k ≥ 6. We find that

dim V − BK (r) = c2(−4 + k) − c(4 − 3k + k2) +
1
6(−6 + 13k − 9k2

+ 2k3).

Treating this as a quadratic polynomial in c, we find that dim V − BK (r) is certainly
strictly positive if −44+47k −16k2

+k3 > 0. Therefore if k > 12, by Lemma 2.12
we have that V↓A is not MF. If k = 6, 8, 10 or 12, we have dim V − BK (r) > 0
when c ≥ 10. Therefore the only possibilities for (c, k), with k ∈ {6, 8, 10, 12}, are
(8, 6) with p = 13, (7, 6) with p = 11, (8, 8) with p = 11 or (9, 6) with p = 13.
In each of these cases, we find that dim V − B(r) > 0, concluding by Lemma 2.12.

Note that k ̸=2 as p ̸=2c+1. So finally we consider the case k =4 and p =2c−1.
Now r = 4c = 2p + 2 and a direct computation shows that dim V = 4c2

− 4c + 6
while B(r) = 3c2

− 2c + 12. Now we have c ≥ 4 (since k = 4) and hence dim V
exceeds B(r), showing as before that V↓A is not MF. □

Lemma 3.16. Let λ = 0c with c > 1 and p ≤ r . Then V↓A is not MF.

Proof. We have V = 1(0c) (see [Seitz 1987, Table 1]). One checks that dim V =

1
6(1+ c)(2+ c)(3+ c) > BK (r) for c ≥ 9; by Lemma 2.12, the module V↓A is not
MF in these cases. For 2 ≤ c ≤ 8, we may apply Lemma 2.4 to conclude that V↓A
is not MF except for the pairs (c, p) = (3, 5) and (c, p) = (7, 11). Here we apply
Lemma 2.13 to again conclude that V↓A is not MF. □

Proof of Proposition 3.5. Suppose that V↓A is MF, with λ = ab and r ≥ p. By
Proposition 2.14 and Lemma 2.18, if a, b ≥ 2 we must have 2a + b + 2 ≡ 0 mod p.
Therefore Lemma 3.10 implies that either a ≤ 1 or b ≤ 1 and Lemmas 3.12 and 3.13
show that λ ̸= 11. By Lemma 3.11 we conclude that if a = 1, then b = 0 contrary
to our assumption that r ≥ p, and another application of Lemmas 3.12 and 3.13
shows that if b = 1 then a = 0, again contrary to our assumption on p and r . We
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therefore reduce to the case a = 0 or b = 0, the first being ruled out by Lemma 3.16.
If b = 0, by Lemmas 3.14 and 3.15, and the above remarks, we conclude that a = 2
with p = 5, in which case V↓A is MF by Lemma 3.14. □

3.3. The case where G is G2. We now move on to the final case where G has
rank 2, i.e., G = G2. Our main result, to be proven in a sequence of lemmas, is the
following proposition.

Proposition 3.17. Let G = G2 and λ = ab with p ≤ r . Then V↓A is not MF.

Set λ = ab, with 0 ≤ a, b < p, where we take α1 to be short, (α2, α2) = 1. (This
choice of root lengths is required for using the result [Seitz 1987, (6.2)] stated
below in Lemma 3.18.) Here we have r = 6a +10b, and p ≥ 7 since p ≥ h. We set
µ = λ− 11 throughout the entire section and note that µ = (a + 1)ω1 + (b − 1)ω2.
For α ∈ 8, we let eα, fα denote the T -weight vectors in the Lie algebra of G
associated with the root α, respectively −α.

We will use a result from [Seitz 1987], which we state here only for the group G2:

Lemma 3.18 [Seitz 1987, (6.2)]. Assume p > 3. Let ν be a dominant weight such
that L(ν) affords a composition factor of 1(λ). Then

2(λ + ρ, λ− ν) − (λ − ν, λ− ν) ∈
p
6 Z.

In view of applying Lemma 3.18, we record the results of some computations
for particular subdominant weights in 1(λ) in Table 3.

We note that since λ is p-restricted, V is irreducible as a module for the Lie
algebra of G (see [Curtis 1960, Chapter II]). For the following lemmas, we let
v+

∈ Vλ, that is, v+ is a highest weight vector in V . Then by [Testerman 1988,
1.29] we have that, for ν ≤ λ, the weight space Vν is spanned by vectors of the form
f m1
γ1

· · · f mr
γr

v+, where γ j ∈ 8+ and m j ∈ N with λ − ν =
∑

m jγ j .

(a, b) ν dim 1(λ)ν 2(λ + ρ, λ− ν) − (λ − ν, λ− ν)

a ≥ 1, b ≥ 1 λ − 21 3 − δa,1
2a+3b+4

3

a ≥ 1, b ≥ 2 λ − 12 2 a+6b
3

a ≥ 1, b ≥ 1 λ − 22 4 − δa,1 − δb,1
2a+6b+4

3

a = 0, b ≥ 2 λ − 22 2 6b+4
3

a ≥ 1, b ≥ 2 λ − 13 2 − δb,2
a+9b−9

3

a ≥ 1, b ≥ 2 λ − 32 7 − 2δa,1 − δa,2 a + 2b + 2
a ≥ 1, b ≥ 3 λ − 23 4 − δa,1

2a+9b−2
3

a = 1, b ≥ 3 λ − 14 2 − δb,3
a+12b−24

3

Table 3. Weight multiplicities for G2-modules.
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Lemma 3.19. Assume a ≥ 2, b ≥ 1 and set ν = λ − 21.

(i) If a + 3b + 3 ̸≡ 0 mod p and 2a + 3b + 4 ̸≡ 0 mod p, then dim Vν = 3.

(ii) If a + 3b + 3 ≡ 0 mod p, then dim Vν = 2.

(iii) If 2a + 3b + 4 ≡ 0 mod p, then dim Vν = 2.

Proof. Using [Lübeck 2018] and [Cavallin 2017, Proposition A], one checks that
dim 1(λ)ν = 3. Note as well that if η is a dominant weight satisfying ν ≺ η ≺ λ,
then η ∈ {λ − 10, λ − 01 (if b ≥ 2), λ − 20 (if a ≥ 4), µ}. The weight η does not
afford a composition factor of 1(λ), for η ∈ X (T ), η ̸= µ.

First consider the case where a + 3b + 3 ̸≡ 0 mod p. In this case, µ does not
afford a composition factor of 1(λ) (see Lemma 2.18) and the vectors fα1+α2v

+ and
fα2 fα1v

+ are linearly independent. The weight space Vν is spanned by the vectors
v1 = f2α1+α2v

+, v2 = fα1+α2 fα1v
+ and v3 = fα2 f 2

α1
v+. Suppose

∑3
i=1 aivi = 0, for

ai ∈ k. Then applying eα1 and eα2 respectively, and using the fact that f 2
α1

v+
̸= 0,

we obtain the following system of equations:

2a1 + aa2 = 0, 3a2 + a3(2a − 2) = 0, a3(b + 2) − a2 = 0.

(These computations depend on a choice of structure constants; we have used
those given in [Carter 1989, §12.5].) We then have that v1, v2, v3 are linearly
dependent if and only if a3 ̸=0. If a3 ̸=0, then we deduce that 2a+3b+4≡0 mod p.
Moreover, if 2a + 3b + 4 ≡ 0 mod p the three vectors are linearly dependent and it
is easy to check that v1 and v2 are linearly independent. This gives (i).

Now consider the case where a+3b+3≡0 mod p, so that µ affords a composition
factor of 1(λ) and one checks that b fα1+α2v

+
+ fα1 fα2v

+
= 0. Now if a = p − 1

(so that 2a + 3b + 4 ≡ 0 mod p), then ν does not occur in the composition factor
afforded by µ. In addition, arguing as above, we see that v1 ∈ ⟨v2, v3⟩ and v2

and v3 are linearly independent, so that dim Vν = 2. While if a ̸= p − 1, then ν

occurs in the composition factor afforded by µ, with multiplicity 1. Moreover,
2a + 3b + 4 ̸≡ 0 mod p, and Lemma 3.18 implies that the weight ν does not
afford a composition factor of 1(λ) and so dim Vν = 2. These arguments give the
conclusions of (ii) and (iii). □

Lemma 3.20. Let a = 1, b ≥ 1, and set ν = λ− 21. Then dim Vν = 1 if 3b + 4 ≡

0 mod p and dim Vν = 2 otherwise.

Proof. By [Lübeck 2018] and [Cavallin 2017, Proposition A], we have dim 1(λ)ν =

2 and Vν is spanned by v1 = f2α1+α2v
+ and v2 = fα1+α2 fα1v

+. If 3b+4 ≡ 0 mod p,
then by Lemma 2.18, µ affords a composition factor of 1(λ) and ν occurs with
multiplicity 1 there. So by Proposition 2.1, we have dim Vν = 1.
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If 3b + 4 ̸≡ 0 mod p, then µ does not afford a composition factor and fα1+α2v
+

and fα2 fα1v
+ are linearly independent. If a1v1 +a2v2 = 0 for ai ∈ k, then applying

eα1 and eα2 , we deduce that 2a1 + a2 = 0 = 3a2. Hence the two vectors are linearly
independent and dim Vν = 2. □

Lemma 3.21. Assume b ≥ 2, a ≥ 1, and set ν = λ − 12. Then dim Vν = 1 if
a + 3b + 3 ≡ 0 mod p and dim Vν = 2 otherwise.

Proof. As in the preceding lemmas, we find that dim 1(λ)ν = 2. If a + 3b + 3 ≡

0 mod p, then µ affords a composition factor of 1(λ) and using Proposition 2.1
we deduce that dim Vν = 1.

So assume that a + 3b + 3 ̸≡ 0 mod p and then fα1+α2v
+ and fα2 fα1v

+ are
linearly independent. The ν weight space is spanned by v1 = fα1+α2 fα2v

+ and
v2 = f 2

α2
fα1v

+. Suppose a1v1 + a2v2 = 0 for ai ∈ k. Applying eα1 and eα2 and
using that f 2

α2
v+

̸= 0, we deduce that 3a1 + aa2 = 0 and a1b = 0. Hence the two
vectors are linearly independent, giving the result. □

We are now ready to prove the main proposition.

Proof of Proposition 3.17. We treat various cases separately below. In Cases 1
to 4, we use Proposition 2.14(v) and Lemma 2.18 to reduce to the case where
a + 3b + 3 ≡ 0 mod p (as otherwise V↓A is not MF and neither is 1K (λ)↓AK ).
Throughout we rely on the tables in [Lübeck 2018].

Case 1: a ≥ 3 and b ≥ 3. The TA-weight r −6 is afforded by λ−30, λ−03, λ−21
and λ− 12. An application of Lemma 3.19 then shows that n3 ≥ 5 and Lemma 2.6
then shows that V↓A is not MF.

Case 2: a = 2 and b ≥ 4. Here 3b + 5 ≡ 0 mod p, so Lemma 3.18 implies that
neither of the weights λ − 21 and λ − 12 affords a composition factor of 1(λ).
Now, the TA-weight r − 8 is afforded by λ − 31, λ − 22, λ − 13 and λ − 04. By
Lemma 3.18, none of these weights affords a composition factor of 1(λ). Therefore
dim Vλ−31 = dim Vλ−22 = 2, Indeed, for the weight λ − 31 we note that the only
dominant weights µ′ with λ − 31 ≺ µ′ are µ, λ − 01, λ − 10, λ − 21. We have
assumed that µ affords a composition factor of 1(λ), but the second and third
weights occur with multiplicity 1 in 1(λ) and so do not afford a composition factor
of 1(λ) (and as mentioned above, neither does the fourth weight). This then allows
us to determine dim Vλ−31 and similarly for Vλ−22. We conclude that n4 ≥ 6 and
apply Lemma 2.6 to see that V↓A is not MF.

Case 3: a ≥ 3 and b = 2. Here we have a +9 ≡ 0 mod p. Lemma 3.18 implies that
neither of the weights λ−21, λ−12 affords a composition factor of 1(λ). Now con-
sider the TA-weight r−8, afforded by λ−31, λ−22 and λ−13, none of which affords
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a composition factor of 1(λ). Counting the occurrences of these weights in the irre-
ducible L(µ), we see that n4 ≥ 6 and then use Lemma 2.6 to see that V↓A is not MF.

Case 4: a = 2 and b ∈ {2, 3}. Here, we have a + 3b + 3 ≡ 0 mod p. Consider first
the weight λ = 2ω1 + 2ω2 with p = 11; here dim V = 295 and r = 32. One then
checks that B(r) = 204. For the weight λ = 2ω1 +3ω2, with p = 7, we have r = 42,
dim V = 532 and B(r) = 295. In both cases, Lemma 2.12 then implies that V↓A
is not MF.

We now turn to the cases where one or both of a and b is less than 2, in which
case we no longer deduce that dim Vµ = 1.

Case 5: a ≥ 3 and b = 1. If a = p − 6, then n2 = 2, while the TA-weight r − 6 is
afforded by λ− 21, λ− 12 and λ− 30; using Lemma 3.18 we have that n3 = 4 and
so V↓A is not MF by Lemma 2.9.

Now suppose a ̸= p − 6 so that n2 = 3 and µ does not afford a composition
factor of 1(λ). Let ν = λ − 21. Suppose first that 2a + 7 ≡ 0 mod p; then by
Lemma 3.19 we have dim Vν = 2, which implies that the composition multiplicity
[1(λ) : L(ν)] is equal to 1 and n3 = 4. Now count the occurrences of the TA-weight
r − 8 which is afforded by λ − 31, λ − 22 and λ − 40, the latter only if a ≥ 4. If
a ≥ 4, Lemma 3.18 implies that n4 ≥ 6, giving the usual contradiction. The case
where 2a + 7 ̸≡ 0 mod p is easier; here ν does not afford a composition factor of
1(λ) and n3 = 5 = n2 + 3 (even if a = 3).

So we are left with the case a = 3, b = 1 and p = 13, where dim V = 259 and
r = 28. But as above, one checks that dim V > B(r), and Lemma 2.12 implies that
V↓A is not MF.

Case 6: a = 1 and b ≥ 3. Consider first the case where 3b + 4 ≡ 0 mod p, when µ

affords a composition factor of 1(λ). Moreover, we note that b ̸= 4. We claim that
n4 = 4 − δb,3 and n5 ≥ 6 − δb,3, which then shows that V↓A is not MF.

The TA-weight r − 8 is afforded by λ− 31, λ− 22, λ− 13 and λ− 04 (the latter
only if b ≥ 4). The first of these is conjugate to µ and so has multiplicity 1 in V
and the last of these has multiplicity 1 − δb,3. For the remaining two weights, we
use repeatedly Lemma 3.18 and note that

(i) λ − 21 and λ − 12 do not afford composition factors of 1(λ);

(ii) λ − 22 does not afford a composition factor of 1(µ) and so occurs with
multiplicity 2 in L(µ); and

(iii) λ − 13 and λ − 22 do not afford composition factors of 1(λ).

We then deduce that the weights λ − 22 and λ − 13 each occur with multiplicity 1
in V . Hence n4 = 4 − δb,3 as claimed.
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Now we turn to n5; the TA-weight r − 10 is afforded by λ − 41, λ− 32, λ − 23,
λ− 14 and λ− 05 (the latter only if b ≥ 5). The first of these is conjugate to λ. We
now argue that ν = λ−32 has multiplicity 2 in V , which establishes the claim on n5.
Note that ν does not afford a composition factor of 1(λ) nor of 1(µ). Applying
Lemma 3.19, we deduce that ν = µ − 21 has multiplicity 3 in L(µ) and so has
multiplicity 2 in V , as claimed.

Now consider the case where 3b +4 ̸≡ 0 mod p and so n2 = 3. By Lemmas 3.20
and 3.21 we have

dim Vλ−21 = dim Vλ−12 = 2,

which means that n3 = 5, so that V↓A is not MF.

Case 7: (a, b) ∈ {(1, 1), (1, 2), (2, 1)}. Here we have r = 16, respectively 26, 22.
If p ̸= 7, respectively p ̸= 7, p ̸= 11, the Weyl modules are irreducible and we
may apply Lemma 2.4. For the primes p = 7, 7, 11, respectively, an application
of Lemma 2.13 shows that V↓A is not MF in the second and third cases. Now for
the case λ = ω1 +ω2 and p = 7, we must argue more carefully. Here, one checks
that the weights r, r −2, r −4, r −6 occur with multiplicities 1, 2, 1, 2 respectively.
Since r − 6 does not occur as a weight in (r), while r − 4 does, by Lemma 2.9 we
conclude that V↓A is not MF.

Case 8: b =0. Here we view G as a subgroup of B3 via the 7-dimensional irreducible
representation afforded by L(ω1). Then we have that A ⊂ G is the principal A1-
subgroup of B3 and moreover the B3-module L B3(aω1) remains irreducible upon
restriction to G, and affords the module V . (See [Seitz 1987, Table 1].) Hence, we
can use the B3 analysis, which is given in Proposition 4.16, to conclude.

Case 9: a = 0, b ≥ 4. Here the TA-weight r − 6 is afforded by λ − 21, λ − 12 and
λ− 03, each of which has multiplicity 1 in 1(λ) and so n3 = 3. In particular, none
of the listed weights affords a composition factor of 1(λ), nor does λ − 11. Now
we separate into two cases. First suppose that λ− 22 does not afford a composition
factor of 1(λ); then n4 ≥ 5 and V↓A is not MF.

Now suppose that ν = λ − 22 affords a composition factor of 1(λ) and so by
Lemma 3.18 we have 3b+2≡0 mod p. We first treat the case where b ≥6. We claim
that n5 = 4. The TA-weight r −10 is afforded by λ−23, λ−32, λ−14, and λ−05.
The first two occur in the composition factor afforded by ν, each with multiplicity 1,
and using the multiplicities in the Weyl module and Proposition 2.1, we see that
each of the four listed weights occurs with multiplicity 1 in V , establishing the
claim. The TA-weight r − 12 is afforded by λ − 42, λ − 33, λ − 24, λ − 15 and
λ − 06. The second of these weights has multiplicity 4 in 1(λ) and occurs with



458 ALUNA RIZZOLI AND DONNA TESTERMAN

multiplicity 2 in L(ν). Moreover, this weight does not afford a composition factor
of 1(λ) (nor does any dominant weight η ̸= ν with λ− 33 ≺ η ≺ λ) and so occurs
with multiplicity 2 in V . Hence, n6 ≥ 6 and V↓A is not MF.

It remains to consider the cases b = 4 and b = 5 with p = 7, respectively p = 17
and dim V = 267, respectively 546. In both cases, an application of Lemma 2.13
shows that V↓A is not MF.

Case 10: a = 0 and 1 ≤ b ≤ 3. When b = 1, the Weyl module is irreducible and the
result follows from Lemma 2.4. If b = 2 and p ̸= 7, we may apply Lemma 2.4 to
conclude. When (b, p) = (2, 7), we use Lemma 2.10 and the proof of [Liebeck et al.
2015, Lemma 4.5] to deduce that n0 = 1, n1 = 1, n2 = 2, n3 = 2, n4 = 3, n5 = 4, so
that V↓A has composition factors (20), (16) and (12). Since the TA-weight 12 lies
in the composition factor (16) but the TA-weight 10 does not, Lemma 2.9 implies
that V↓A is not MF.

Finally, we consider the case b = 3, where r = 30. Here the Weyl module is
irreducible unless p = 11. If p ̸= 11, the result follows from Lemma 2.4. If p = 11,
we use [Lübeck 2018] to see that n0 = 1, n2 = 1, n2 = 2, n3 = 3, n4 = 3, n5 = 3.
We then deduce that V↓A has no composition factor (22), nor (20). But then
dim V = 148 > B(30) − dim(20) − dim(22), so that V↓A is not MF. □

4. The case where G has rank at least 3

We handle the case where G has rank at least 3, establishing the next proposition.

Proposition 4.1. Suppose that G has rank at least 3 and p ≤ r . Then V ↓A is
not MF.

We assume throughout Section 4 that p ≤ r . By Proposition 2.14(i) we only need
to consider the case λ = ciωi + c jω j (with ci or c j possibly 0), i.e., the weight λ

has support on at most two nodes.

4.1. The case ci c j not 0. We treat the case where λ = ciωi + c jω j with ci c j ̸= 0
in a sequence of lemmas.

Lemma 4.2. Suppose that G has rank at least 4 and λ = ciωi + c jω j with αi and
α j adjacent and ci , c j ≥ 1. Then V↓A is not MF.

Proof. Since p ≥ h we have p ≥ 5, 11, 11, 7 respectively for G = Aℓ, Bℓ, Cℓ, Dℓ

and p ≥ 13, 13, 19, 31 respectively for G = F4, E6, E7, E8. By Proposition 2.14(iv)
and (v), we can assume that ci = 1 or c j = 1, and αi or α j is an end-node. Recall that
by Proposition 2.1, the set of weights of V is the same as the set of weights of 1(λ).
Using this, it is straightforward to see that if ci ≥ 3 or c j ≥ 3, then V↓A is not MF.
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For example if λ = c1ω1 + ω2 (so G is not of type Eℓ) and c1 ≥ 3, the TA-weight
r − 6 is afforded by λ − 123, λ − 234, λ − 122, λ − 122 and λ − 13. Therefore
n3 ≥ 5, and Lemma 2.6 implies that V↓A is not MF. Similarly, if λ = ω1 + c2ω2,
with c2 ≥ 3 (so again G is not of type Eℓ), then the TA-weight r − 6 is afforded
by λ − 123, λ − 234, λ − 122, λ − 223 and λ − 23. As before, n3 ≥ 5, and V↓A is
not MF. If ci = 2 or c j = 2, by Lemma 2.18 we have dim Vλ−αi −α j > 1, and by
Proposition 2.14(vi) the module V↓A is not MF. Thus, we reduce to ci = c j = 1.

Consider the weight λ = ω1 + ω2. For G classical, the weights λ − 123 =

(λ−12)s3, λ−234, λ−122= (λ−2)s1, λ−122
= (λ−1)s2 occur with multiplicities 2,

1, 1, 1 respectively by Lemma 2.18. Therefore n3 ≥ 5 and Lemma 2.6 implies that
V ↓A is not MF. The same argument, with the appropriate relabelling of indices,
handles all remaining cases where (αi , αi ) = (α j , α j ), including the cases G = Eℓ

and λ ∈ {ω1 +ω3, ω2 +ω4, ωℓ−1 +ωℓ}. For the group of type F4 and the weights
ω1 + ω2 and ω3 + ω4, we use the weight space dimensions provided in [Lübeck
2018] to conclude again that n3 ≥ 5.

Therefore we reduce to G = Bℓ or G = Cℓ with λ = ωℓ−1 +ωℓ. Suppose G = Bℓ.
Since p ≥ h, by Lemma 2.18 we have dim Vλ−(ℓ−1)ℓ = 2. The TA-weight r − 6 is
afforded by λ− (ℓ−1)ℓ2

= (λ− (ℓ−1)ℓ)sℓ , λ− (ℓ−2)(ℓ−1)ℓ and λ− (ℓ−1)2ℓ.
If ℓ = 4, the first two weight spaces have dimension 2 by [Lübeck 2018]. By
Lemma 2.20, for any ℓ ≥ 4, we have n3 ≥ 5, and Lemma 2.6 implies that V↓A is
not MF. The Cℓ case is handled similarly. □

Lemma 4.3. Let G = A3 and λ = cω1 +ω2 or ω1 + cω2, with c > 1. Then V↓A is
not MF.

Proof. By Proposition 2.14(vi) we can assume that the weight space λ − 12 is 1-
dimensional. In particular we must have c = p−2 by Lemma 2.18. Let us start with
λ=ω1+(p−2)ω2. Since p ≥ 5, the TA-weight r −6 is afforded by λ−123, λ−122,
λ − 223, λ − 23 and λ − 122. Therefore Lemma 2.6 implies that V↓A is not MF.

For the case λ = (p − 2)ω1 +ω2, we will use a dimension argument. We refer
to the discussion in [Jantzen 2003, Part II, 8.20], where the weight λ satisfies the
conditions of the weight λ2, with s = 1 = t and r = p − 3. Then one has

dim V = dim 1(λ) − dim 1(λ − α1 − α2) + dim 1(λ − 2α1 − 2α2 − α3).

Using the Weyl degree formula we find that dim V =
(p−1)

6 (p2
+ 7p + 18). We

have r = 3p − 2, and a simple calculation shows that B(r) =
(p+1)(3p−1)

2 . Since
B(r) < dim V for all p > 3, by Lemma 2.12 we conclude that V↓A is not MF. □

Lemma 4.4. Let G = B3 or C3 and let λ∈{cω1+ω2, ω1+cω2, cω2+ω3, ω2+cω3},
with c > 1. Then V↓A is not MF.
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Proof. By Proposition 2.14(vii) we can assume that the weight space λ − i j is
1-dimensional, where λ = ciωi + c jω j . Note that p ≥ 7 as p ≥ h.

Case 1: λ = cω1 + ω2. As the weight space λ − i j is 1-dimensional, we have
c = p − 2 by Lemma 2.18. In particular c ≥ 5. The TA-weight r − 6 is afforded by
λ − 13, λ − 122, λ − 122, and λ − 123; in addition, for G = B3, r − 6 is afforded
by λ − 232 and if G = C3, by λ − 223. Hence n3 ≥ 5 and V↓A is not MF by
Lemma 2.6.

Case 2: λ = ω1 + cω2. As in the previous case, we reduce to c = p − 2, so c ≥ 5.
The TA-weight r − 6 is afforded by λ− 122, λ− 122, λ− 223, λ− 123, and λ− 23.
Therefore n3 ≥ 5 and V↓A is not MF by Lemma 2.6.

Case 3: G = B3 and λ = cω2 +ω3. The TA-weight r − 8 is afforded by λ− 1223,
λ − 1222, λ − 233, λ − 233, λ − 1232, λ − 2232 which implies n4 ≥ 6 and V↓A is
not MF by Lemma 2.6.

Case 4: G = C3 and λ = cω2 + ω3. By Lemma 2.18 we may assume that c + 4 ≡

0 mod p, implying c ≥ 3. The TA-weight r − 6 is afforded by λ − 23, λ − 122,
λ−223, λ−123, λ−232, which implies n3 ≥ 5 and V↓A is not MF by Lemma 2.6.

Case 5: G = B3 and λ = ω2 + cω3. As above we reduce to c + 4 ≡ 0 mod p
and so c ≥ 3. The TA-weight r − 6 is afforded by λ − 123, λ − 223, λ − 33 and
λ − 232. By Lemma 3.6, the Weyl module 1B2(1c) has exactly two composition
factors L B2(1c) and L B2(0c), the latter afforded by λ−11. Therefore the multiplicity
of the weight λ − 232 in V is 2 and so n3 ≥ 5, which by Lemma 2.6 implies that
V↓A is not MF.

Case 6: G = C3 and λ = ω2 + cω3. This is entirely similar. Here we may assume
2c + 3 ≡ 0 mod p. If c ≥ 4, the TA-weight r − 8 is afforded by λ− 1223, λ− 233,
λ − 233, λ − 2232, λ − 1232, and λ − 34. Therefore n4 ≥ 6, and V↓A is not MF
by Lemma 2.6. If c ≤ 3, we must have c = 2 and p = 7. By [Lübeck 2018],
all weight spaces of V are 1-dimensional. The TA-weight r − 8 is again afforded
by the first five weights listed above. On the other hand, the TA-weight r − 6 is
afforded precisely by λ−123, λ−232 and λ−223, implying that n3 = 3. Therefore
n4 − n3 ≥ 2, and by Lemma 2.9 we conclude that V↓A is not MF. □

Lemma 4.5. Let G = A3, B3 or C3 and λ = ω1 + ω2 or ω2 + ω3. Then V↓A is
not MF.

Proof. Consider G = A3. Then r = 7 and p = 5 or p = 7 as r ≥ p ≥ h. In both
cases the Weyl module is irreducible and the conditions for Lemma 2.4 are satisfied,
implying that V↓A is not MF.
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Now consider G = B3. Since p ≥ 7, the Weyl module is irreducible. The
conditions for Lemma 2.4 are satisfied, implying that V↓A is not MF.

Finally consider G = C3. If (λ, p) ̸= (ω1 + ω2, 7) we can conclude as for B3.
Therefore assume that λ = ω1 + ω2 with p = 7. By Lemma 2.18 we have
dim Vλ−123 = 2, and it is straightforward to see that n3 ≥ 5, which by Lemma 2.6
implies that V↓A is not MF. □

Lemma 4.6. Assume that G has rank at least 3 and λ = ωi +ω j where αi and α j

are end-nodes. Then V↓A is not MF.

Proof. Consider first the case where G = Aℓ, where p ≥ h = ℓ + 1. By [Lübeck
2001] the Weyl module 1(λ) is irreducible if and only if p ̸= ℓ+1. If p ̸= ℓ+1, the
conditions of Lemma 2.4 are satisfied and therefore V↓A is not MF. We therefore
reduce to the case p = ℓ+1, where V is isomorphic to the quotient of 1(λ) by a 1-
dimensional trivial submodule. For d < ℓ, it is straightforward to see that nd = d +1
(where we use that r = 2ℓ = 2(p − 1)). Therefore by Lemma 2.9(i) we know that
(p + 1) is a composition factor of V↓A. Now the TA-weight p − 3 occurs with
multiplicity one more than the TA-weight p−1, and it does not occur as a weight in
(p + 1), while p − 1 does. Therefore Lemma 2.9(iv) implies that V ↓A is not MF.

If G = Bℓ or Cℓ and ℓ ≥ 4, the first paragraph of the proof of [Liebeck et al.
2015, Lemma 3.5] shows that n3 ≥ 5, so V ↓A is not MF by Lemma 2.6. If G = C3,
we can apply Lemma 2.4 to conclude that V↓A is not MF.

Now assume G = B3. We have p = 7 or p = 11, as r = 12. If p = 11, the
Weyl module is irreducible by [Lübeck 2001], and the conditions of Lemma 2.4
are satisfied, implying that V↓A is not MF. When p = 7, using [Lübeck 2018],
we find that n2 = 3 and (r − 4) is therefore a composition factor by Lemma 2.9(i).
Furthermore, we have n3 = 3, n4 = 4 and the TA-weight r − 8 does not occur as a
weight in (r −4), while the TA-weight r −6 does. Therefore Lemma 2.9(iv) implies
that V↓A is not MF.

Now consider G = Dℓ, with ℓ≥ 4. If λ=ω1+ωℓ−1, the TA-weight r −2(ℓ−1) is
afforded by λ−1 · · · (ℓ−1), λ−2 · · · ℓ, and λ−1 · · · (ℓ−2)ℓ. Since p ≥ h we have
p > ℓ, and therefore by Lemmas 2.19 and 2.20 we have dim Vλ−1···(ℓ−1) = ℓ − 1.
Therefore nℓ−1 ≥ ℓ+ 1 and Lemma 2.6 implies that V↓A is not MF. It is also easy
to see that if λ = ωℓ−1 +ωℓ, we have n3 ≥ 5. Again Lemma 2.6 implies that V↓A
is not MF.

Finally, if G is exceptional, the arguments used in the proof of [Liebeck et al. 2015,
Lemma 3.6] in characteristic zero allow us to conclude, as [Lübeck 2018] shows
that the relevant weight spaces in V have the same dimension as the corresponding
weight spaces in 1K (λ). □
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Proposition 4.7. Suppose that G has rank at least 3 and λ = ciωi + c jω j with
ci , c j ≥ 1. Then V↓A is not MF.

Proof. By Lemma 4.2, if αi and α j are adjacent and G has rank at least 4, the
module V↓A is not MF. If αi and α j are adjacent and G has rank 3, Lemmas 4.3–4.5
combine to imply that V↓A is not MF.

Now assume that αi and α j are not adjacent, in which case by Proposition 2.14
we can assume that ci = c j = 1 and αi and α j are both end-nodes. In this case, by
Lemma 4.6 we conclude that V ↓A is not MF. □

4.2. The case where λ = bωi . We now consider the case λ = bωi . Note that if G
is classical, then λ ̸= ω1, as we are assuming that p ≤ r , and necessarily p ≥ h.

Lemma 4.8. Assume that G = Aℓ, Bℓ, Cℓ with ℓ ≥ 3 or G = Dℓ with ℓ ≥ 4. Let
λ = bω1, with b ≥ 2. Then V↓A is not MF.

Proof. We first consider the case b = 2 and start by assuming that (G, p) ̸=

(Bℓ, 2ℓ + 1). By [Lübeck 2001] and since p ≥ h, the Weyl module is irreducible.
A simple check shows that the conditions of Lemma 2.4 are satisfied, implying
that V↓A is not MF. Consider now the case G = Bℓ and p = 2ℓ + 1, where V is
isomorphic to the quotient of 1(λ) by a 1-dimensional trivial submodule. For all
strictly positive weights r − 2d , we have nd = dim(1K (λ)↓AK )r−2d . By [Liebeck
et al. 2015, Lemma 4.2], we have 1K (λ)↓AK = (4ℓ) + (4ℓ − 4) + · · · , which
implies nd = d +1 for d even with d < 2ℓ, and nd+1 = nd for d odd with d +1 < 2ℓ.
By Lemma 2.9(i), for all 0 ≤ d < 2ℓ we have that (r − 2d) is a composition factor
of V ↓A. In particular, either (p + 1) or (p + 3) is a composition factor of V↓A.
In the first case, the TA-weight p − 3 occurs with multiplicity one more than the
TA-weight p−1, but does not occur as a weight in (p+1). Therefore Lemma 2.9(iv)
implies that V↓A is not MF. Similarly, if (p + 3) is a composition factor of V↓A,
then the TA-weight p − 5 (note that p > 5 since ℓ ≥ 3) occurs with multiplicity
one more than the TA-weight p − 3, but does not occur as a weight in (p + 3),
concluding in the same way.

Now consider the case b ≥ 3. Start with G = Aℓ. Here V = 1(λ) by [Seitz 1987,
1.14]. If ℓ ≥ 6, the first paragraph of the proof of [Liebeck et al. 2015, Lemma 4.4]
shows that n6 ≥ 7, which by Lemma 2.9(iii) implies that V↓A is not MF. If b = 4
and ℓ = 4 or ℓ = 5, we similarly have n4 ≥ 5. If b ≥ 5 and (b, ℓ) ̸= (5, 3), we have
n6 − n5 ≥ 2. Therefore by Lemma 2.9(iii) and (ii), we reduce down to the cases
(b, ℓ) = (4, 3), (5, 3), (3, 3), (3, 4), (3, 5). For these cases we can conclude using
Lemma 2.4, unless ℓ = b = 3 and p = 5. In this case r = 9 and the weights 9, 7, 5, 3
occur respectively with multiplicities 1, 1, 2, 3. By Lemma 2.9(i), we have that
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(5) is a composition factor, and in addition r − 6 does not occur as weight in this
composition factor. Therefore by Lemma 2.9(iv) the module V↓A is not MF.

The Cℓ case follows from the A2ℓ−1 case since A < Cℓ < A2ℓ−1 is a principal
A1-subgroup of A2ℓ−1 and V = Sb(LCℓ

(ω1)) = L A2ℓ−1(bω1)↓Cℓ. Now consider
G = Bℓ. If b ≥ 4, it is straightforward to check that n4 ≥ 5, which by Lemma 2.9(iii)
implies that V↓A is not MF. If b = 3 and ℓ ≥ 4, by the proof of [Liebeck et al.
2015, Lemma 4.4], we have n6 ≥ 7, concluding in the same way. If ℓ = b = 3
we have p ≤ r = 18 and by Lemma 2.4 the module V↓A is not MF. Finally, we
consider the case where G = Dℓ where we have A ≤ Bℓ−1 < G. Since 1Bℓ−1(bω1)

is a composition factor of 1Dℓ
(bω1), if 1Dℓ

(bω1)↓A is MF, so is 1Bℓ−1(bω1).
Therefore by the Bℓ result, we conclude that V↓A is not MF. □

Lemma 4.9. Assume that G = Bℓ, Cℓ with ℓ≥ 3 or G = Dℓ with ℓ≥ 4. Let λ= bωi ,
with i > 1 and b > 1. Then V↓A is not MF.

Proof. By Lemma 2.16 we can assume that λ = bωℓ. We will treat the case G = Dℓ

at the end of the proof.
Assume for now that b ≥ 3. If G = Cℓ, the TA-weight r −6 is afforded by λ−ℓ3,

λ − (ℓ − 2)(ℓ− 1)ℓ, λ − (ℓ − 1)2ℓ, λ− (ℓ − 1)ℓ2. If G = Bℓ, the TA-weight r − 6
is afforded by λ − (ℓ − 1)ℓ2, λ − (ℓ − 2)(ℓ − 1)ℓ and λ − ℓ3, and using the fact
that the B2-module 1(bω2) is irreducible, by Lemma 2.20, we have that the first of
these weights has multiplicity 2. Hence for both of the groups Cℓ and Bℓ, we have
n3 ≥ 4. By Lemma 2.9(iii), the module V↓A is not MF.

We now consider the case b = 2 when G = Cℓ and first assume that ℓ ≥ 5. The
TA-weight r −10 is afforded by λ−(ℓ−1)3ℓ2, λ−(ℓ−2)(ℓ−1)2ℓ2, λ−(ℓ−1)2ℓ3,
λ−(ℓ−2)2(ℓ−1)2ℓ, λ−(ℓ−3)(ℓ−2)(ℓ−1)ℓ2 and λ−(ℓ−4)(ℓ−3)(ℓ−2)(ℓ−1)ℓ.
Again, by Lemma 2.9(iii) the module V↓A is not MF.

Now consider the cases Cℓ, for λ=2ωℓ and ℓ=3, 4 where r =18, respectively 32,
and p ≥ 7, respectively 11. In both cases we have that 1(2ωℓ) is irreducible by
[Lübeck 2001]. For ℓ = 3, the conditions of Lemma 2.4 are satisfied, implying
that V↓A is not MF. If ℓ = 4, by the first paragraph of [Liebeck et al. 2015,
Lemma 4.3] we have dim(1K (λ)↓AK )r−12 ≥ dim(1K (λ)↓AK )r−10+2. Therefore
by Lemma 2.10 we find that n6 − n5 ≥ 2, concluding by Lemma 2.9(ii).

Turn now to the case G = Bℓ and b = 2. Here the TA-weight r −8 is afforded by
λ−(ℓ−2)(ℓ−1)ℓ2, λ−(ℓ−1)2ℓ2, λ−(ℓ−1)ℓ3 and if ℓ≥4, λ−(ℓ−3)(ℓ−2)(ℓ−1)ℓ.
The first of these is conjugate to λ− (ℓ− 1)ℓ2 and so has multiplicity 2 by the first
paragraph of this proof. Thus, if ℓ≥ 4, V↓A is not MF by Lemma 2.9(iii). So finally,
we reduce to b=2 and ℓ=3, where p≥7 and r =12. The Weyl module is irreducible
by [Lübeck 2001]. The conditions of Lemma 2.4 are satisfied, so V↓A is not MF.
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Finally suppose that G = Dℓ and λ = bωℓ. Since A ≤ Bℓ−1 ≤ Dℓ and V ↓Bℓ−1 ∼=

L Bℓ−1(bωℓ−1), we may use the Bℓ−1 result to conclude. □

Lemma 4.10. If G = Eℓ and λ = bωi with b > 1, then V↓A is not MF.

Proof. This follows verbatim from the proof of [Liebeck et al. 2015, Lemma 4.6],
unless i = ℓ and G = E7 or E8 with b = 2 or b = 3. In these remaining cases, it is
not difficult to check that we have n6 ≥ n5 + 2 (as stated in the proof of [Liebeck
et al. 2015, Lemma 4.6]), as this count relies on 1-dimensional weight spaces. By
Proposition 2.14 the module V↓A is not MF. □

Lemma 4.11. If G = F4 and λ = bωi with b > 1, then V↓A is not MF.

Proof. By Lemma 2.16 the simple root αi corresponds to an end-node of the Dynkin
diagram. If i = 1 we can conclude as in the first paragraph of the proof of [Liebeck
et al. 2015, Lemma 4.7].

Assume i = 4. If b ≥ 3, like in [Liebeck et al. 2015, Lemma 4.7] we have n4 ≥ 5,
concluding by Lemma 2.9(iii). If b = 2 we have V = 1(λ) by [Lübeck 2001], and
since r = 32 and r ≥ p > 11, the conditions of Lemma 2.4 are satisfied. Thus, V↓A
is not MF. □

It remains to consider the case λ=ωi . Recall that for G classical, we have λ ̸=ω1.

Lemma 4.12. Assume that G has rank at least 3, λ = ωi and that one of the
following holds:

(i) G = Aℓ, Bℓ, Cℓ with ℓ ≥ 3 or G = Dℓ with ℓ ≥ 4, and 4 ≤ i ≤ ℓ − 3.

(ii) G = Aℓ, i = 3, and ℓ ≥ 5.

(iii) G = Aℓ, Bℓ, Cℓ with ℓ ≥ 3 or G = Dℓ with ℓ ≥ 4 and i = 2.

Then V↓A is not MF.

Proof. (i) Lemma 2.15 applies, except when G = D7, and implies that the mod-
ule V↓A is not MF. For the case G = D7, where i = 4, it is straightforward to see
that n4 ≥ 5 and then Lemma 2.9(iii) implies that V↓A is not MF.

(ii) Here V =
∧3

(L(ω1)). Assume for now that l ≥ 8. The TA-weight r − 12 is
afforded by the wedge of weight vectors in L(ω1) for each of the following triples
of TA-weights: ℓ(ℓ−2)(ℓ−16), ℓ(ℓ−4)(ℓ−14), ℓ(ℓ−6)(ℓ−12), ℓ(ℓ−8)(ℓ−10),
(ℓ − 2)(ℓ − 4)(ℓ − 12), (ℓ − 2)(ℓ − 6)(ℓ − 10), (ℓ − 4)(ℓ − 6)(ℓ − 8). Therefore
n6 ≥ 7, and Lemma 2.9(iii) implies that V↓A is not MF.

For the remaining cases, when 5 ≤ l ≤ 7, we have 1(λ) = V and a quick check
shows that the conditions of Lemma 2.4 are satisfied, implying that V ↓A is not MF.
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(iii) Here λ = ω2, and as p > ℓ we have V = 1(λ) [Lübeck 2001, Table 2]. We
have r = 2ℓ−2, 4ℓ−2, 4ℓ−4 or r = 4ℓ−6 according to whether G = Aℓ, Bℓ, Cℓ

or G = Dℓ. Furthermore we have p greater than ℓ, 2ℓ−1, 2ℓ, 2ℓ−2 respectively. It
is then an easy check to see that the conditions of Lemma 2.4 are satisfied, implying
that V↓A is not MF. □

Lemma 4.13. Assume that G = Bℓ, Cℓ with ℓ ≥ 3 or G = Dℓ with ℓ ≥ 4, and that
λ = ωi for i ≥ 3 and V is not a spin module for Bℓ or Dℓ. Then V↓A is not MF.

Proof. If G = Bℓ or Dℓ, then V =
∧i

(ω1) by [Seitz 1987] and the result follows
from Lemma 4.12(i)(ii) for G = A2ℓ or A2ℓ−1. Indeed, if G = Bℓ, then A is regular
in A2ℓ and V = L A2ℓ

(ωi )↓G, while if G = Dℓ, then A < Bℓ−1 < Dℓ and by the
Bℓ case there is a Bℓ−1-composition factor of V (namely L Bℓ−1(ωi )) that is not
multiplicity-free in its restriction to A, implying that V↓A is not MF.

We now consider the case G = Cℓ. By part (i) of Lemma 4.12 we can furthermore
assume that i = 3 or i > ℓ−3. If i = ℓ−2 > 3, the TA-weight r −8 has multiplicity
at least 5 as it is afforded by five different weights as in the proof of [Liebeck et al.
2015, Lemma 5.3]. Therefore Lemma 2.9(iii) implies that V↓A is not MF.

Assume i = ℓ − 1 > 3. Because ℓ ≥ 5, the TA-weight r − 12 is afforded
by λ − (ℓ − 3)(ℓ − 2)(ℓ − 1)3ℓ, λ − (ℓ − 2)(ℓ − 1)3ℓ2, λ − (ℓ − 2)2(ℓ − 1)3ℓ,
λ − (ℓ − 4)(ℓ − 3)(ℓ − 2)(ℓ − 1)2ℓ, λ − (ℓ − 3)(ℓ − 2)2(ℓ − 1)2ℓ. When ℓ = 5,
the last two weights have multiplicity 2 in V by [Lübeck 2018], and therefore the
same holds for ℓ ≥ 5 by Lemma 2.20. Thus, n6 ≥ 7, and by Lemma 2.9(iii) the
module V↓A is not MF.

Now assume i = ℓ > 3. Start with ℓ = 4 or 5. In both cases the Weyl module is
irreducible. We have r = 16 if ℓ = 4, and r = 25 if ℓ = 5. If (ℓ, p) ̸= (5, 13), the
conditions of Lemma 2.4 are satisfied, showing that V ↓A is not MF. In the remaining
case (when (ℓ, p) = (5, 13)), we find that B(r)−dim(r −2) = 118 < dim V = 132.
Therefore by Lemma 2.13, the module V↓A is not MF.

Now suppose ℓ ≥ 6 with λ = ωℓ. Here the TA-weight r −10 has multiplicity 4 as
it is afforded precisely by λ− (ℓ− 4)(ℓ− 3)(ℓ− 2)(ℓ− 1)ℓ, λ− (ℓ− 2)2(ℓ− 1)2ℓ,
λ − (ℓ − 3)(ℓ − 2)(ℓ − 1)2ℓ, λ − (ℓ − 2)(ℓ − 1)2ℓ2. The TA-weight r − 12 has
multiplicity at least 6 as it is afforded by λ − (ℓ − 5)(ℓ − 4)(ℓ − 3)(ℓ− 2)(ℓ − 1)ℓ,
λ−(ℓ−2)2(ℓ−1)2ℓ2, λ−(ℓ−4)(ℓ−3)(ℓ−2)(ℓ−1)2ℓ, λ−(ℓ−3)(ℓ−2)2(ℓ−1)2ℓ,
λ − (ℓ − 3)(ℓ − 2)(ℓ − 1)2ℓ2, λ − (ℓ − 2)(ℓ − 1)3ℓ2. By Lemma 2.9(ii) V↓A is
not MF.

Finally, assume i = 3. If ℓ ≥ 6, we have n6 ≥ 7, since by the last paragraph of
the proof of [Liebeck et al. 2015, Lemma 5.3] there are seven distinct weights of V
affording the TA-weight r − 12. Therefore V↓A is not MF by Lemma 2.9(iii).
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In the remaining cases, when ℓ ∈ {3, 4, 5}, the Weyl module is irreducible and we
can apply Lemma 2.4, unless ℓ = 5 and p = 11, in which case r = 21 ≡ −1 mod p.
In this case, we find that B(r) − dim(r − 2) = 84 < dim V = 110. Therefore by
Lemma 2.13, the module V↓A is not MF. □

Lemma 4.14. Assume that V is a spin module for Bℓ with ℓ ≥ 3 or Dℓ with ℓ ≥ 4.
Then V↓A is not MF.

Proof. We have V = 1(λ). If G = Dℓ, then A ≤ Bℓ−1 < G and V ↓Bℓ−1 is the
spin module for Bℓ−1; therefore it suffices to prove the lemma for G = Bℓ, where
r = ℓ(ℓ+1)/2 and dim V = 2ℓ. If V↓A is MF the dimension of V is at most BK (r),
by Lemma 2.12. This implies that if ℓ ≥ 10, the module V↓A is not MF.

Now assume ℓ≤ 9. Since p > h = 2ℓ we know that p ∤ r . Therefore if V↓A is MF
the dimension of V is at most B(r)−dim(r −2), by Lemma 2.13. This then reduces
our considerations to the pairs (n, p) in the list (5, 11), (5, 13), (6, 13), (6, 17),
(6, 19), (7, 17), (7, 19), (7, 23), (8, 31). For every 3 ≤ ℓ ≤ 8, by Lemma 2.10 we
can read the dimension of the TA-weight space r − 2k off the table in the proof of
[Liebeck et al. 2015, Lemma 5.4]. In each case we apply part (iii) of Lemma 2.9
to find that V↓A is not MF. The first repeated composition factors are of highest
weight respectively 5, 9, 9, 11, 15, 14, 14, 16, 24. □

Lemma 4.15. Assume G = Eℓ or F4 and λ = ωi . Then V ↓A is not MF.

Proof. If G = Eℓ and λ = ω4, the TA-weight r − 4 is afforded by λ − 34, λ − 24,
λ − 45. Therefore n2 ≥ 3, and by Lemma 2.9(iii), the module V↓A is not MF.

If G = E8 and λ = ω3 or ω6, then r = 182 respectively r = 168, giving BK (r) =

8464 and 7225 respectively. By [Lübeck 2001], we have dim V > BK (r) and
therefore by Lemma 2.12 the module V↓A is not MF. If G = E8 and λ = ω5, by
Lemma 2.15 the module V↓A is not MF.

In all remaining cases, by [Lübeck 2001] we have that V = 1(λ). Lemma 2.12
then allows us to reduce to the case where V is the minimal module for G, or
the adjoint module for E6, E7 or F4. The conditions of Lemma 2.4 are satisfied,
implying that V↓A is not MF. □

Proposition 4.16. Suppose that G has rank at least 3 and λ = bωi , with b ≥ 2 for G
classical and b ≥ 1 for G of exceptional type. Then V↓A is not MF.

Proof. If G is classical, this is a direct consequence of Lemmas 4.8 and 4.9. If G is
exceptional and b ≥ 2, we similarly conclude by Lemmas 4.10 and 4.11.

If b = 1, where G is exceptional, we reach the same conclusion by Lemmas 4.12,
4.13, 4.14, 4.15. □
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Proof of Proposition 4.1. If V is MF, then by Proposition 2.14, the weight λ is of
the form ciωi +c jω j . If ci c j ̸= 0, then the conclusion follows from Proposition 4.7.
If ci c j = 0, then the conclusion follows from Proposition 4.16. □

5. Proof of Corollary 2

We prove Corollary 2, thereby extending Theorem 1 to the case where λ is not
p-restricted. The following lemma serves as an inductive tool.

Lemma 5.1. Let λ =
∑t

i=0 piλi where λi is a p-restricted dominant weight for all
0 ≤ i ≤ t . Assume that for some s with 0 ≤ s < t , we have

( ∑s
i=0 piλi

)
↓TA < ps+1.

Then V↓A is MF if and only if

(i) L
( ∑s

i=0 piλi
)
↓A is MF, and

(ii) L
( ∑t

i=s+1 piλi
)
↓A is MF.

Proof. Let V1 = L
( ∑s

i=0 piλi
)

and V2 = L
( ∑t

i=s+1 piλi
)
, so that V = V1 ⊗ V2.

If V2 = L(0), the statement is trivial. Thus, assume V2 ̸= L(0).
One direction is clear. If either V1↓A or V2↓A is not MF, then V↓A is not MF.

Assume now that both V1↓A and V2↓A are MF, and let V1↓A have composition
factors (r0), (r1), . . . , (rm), so that by the assumption on s, we have ps+1 > r0 >

r1 > · · · > rm . Similarly let V2↓A have composition factors (v0), (v1), . . . , (vn)

where v0 > v1 > · · · > vn ≥ ps+1. Then for all 0 ≤ i ≤ m and 0 ≤ j ≤ n we have

(ri ) ⊗ (v j ) ∼= (ri + v j ),

since ri < ps+1 and v j ≥ ps+1. This implies that the composition factors of V1 ⊗V2

are precisely of the form (ri + v j ), which are all clearly distinct. Therefore V↓A
is MF. □

Let us restate, and prove, Corollary 2.

Corollary 5.2. Let λ =
∑t

i=0 piλi where each λi is a p-restricted dominant weight
and set ri = λi↓TA, for 0 ≤ i ≤ t . Then V↓A is MF if and only if one of the
following holds:

(i) We have p > ri and 1K (λi )↓AK is MF for all 0 ≤ i ≤ t .

(ii) The group G is of type A2, p =3 and there exists 0≤ i ≤ t such that λi =ω1+ω2.
For all 0 ≤ j ≤ t we have λ j ∈ {0, ω1 + ω2, ω1, ω2} and if λ j = ω1 + ω2 for
some 0 ≤ j ≤ t − 1, then λ j+1 = 0.

(iii) The group G is of type B2, p = 5 and there exists 0 ≤ i ≤ t such that λi = 2ω1.
For all 0 ≤ j ≤ t we have λ j ∈ {0, 2ω1, ω1, ω2} and if λ j = 2ω1 for some
0 ≤ j ≤ t − 1, then λ j+1 ∈ {0, ω2}.
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Proof. We use induction on t . If t = 0, then λ is p-restricted and the statement
follows from Theorem 1. Suppose now that t > 0 and that the statement is valid for
all 0 ≤ t ≤ N for some N ∈ N. Let t = N +1 and V1 = L(λ0), V2 = L

( ∑t
i=1 piλi

)
.

If V1 or V2, is the trivial kG-module, then we can conclude by the inductive
assumption (since the Frobenius twist of a module M is MF if and only if the
module M is MF). Therefore we can assume that V1 and V2 are nontrivial.

Suppose first that V↓A is MF. Then certainly V1↓A and V2↓A are both MF. If
r0 < p, by Lemma 5.1 and the inductive assumption, we conclude that (G, λ, p) is
as in one of the three conclusions of the statement. Therefore assume that r0 ≥ p.
By Theorem 1 we have G = A2, p = 3 and λ0 = 11, or G = B2, p = 5 and λ0 = 20.

Consider first the case G = A2. By Theorem 1 and Table 1, we must have
λi ∈ {0, 11, 10, 01} for all 0 ≤ i ≤ t . If λ1 = 0, we conclude by the inductive
assumption combined with Lemma 5.1 for s = 1. If λ1 ∈ {ω1 + ω2, ω1, ω2}

then V1↓A ⊗ L(pλ1)↓A has (4) as a repeated composition factor and so V↓A
is not MF. For G = B2, by Theorem 1 and Table 1, we have λ1 ∈ {0, ω1, 2ω1, ω2}

and a straightforward computation shows that V1↓A ⊗ L(pλ1)↓A has a repeated
composition factor for λ1 ∈ {ω1, 2ω1}.

Suppose now that (i) holds. Then V↓A is MF by the inductive assumption
combined with Lemma 5.1.

If (ii) or (iii) holds, it is easy to verify that the conditions of Lemma 5.1 with
s = 1 are satisfied, concluding again by the inductive assumption. □
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