Download this article
 Download this article For screen
For printing
Recent Issues
Vol. 338: 1
Vol. 337: 1  2
Vol. 336: 1+2
Vol. 335: 1  2
Vol. 334: 1  2
Vol. 333: 1  2
Vol. 332: 1  2
Vol. 331: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Regular poles for spinor $L$-series attached to split Bessel models of $\mathrm{GSp}(4)$

Mirko Rösner and Rainer Weissauer

Vol. 337 (2025), No. 1, 137–199
Abstract

For irreducible smooth representations Π of GSp (4,k) over a nonarchimedean local field k, Piatetski-Shapiro and Soudry (1981) have constructed an L-factor depending on the choice of a Bessel model. It factorizes into a regular part and an exceptional part. We determine the regular part for the case of split Bessel models.

Keywords
spinor $L$-function, symplectic groups, Bessel models
Mathematical Subject Classification 2010
Primary: 22E50
Secondary: 11F46, 11F70, 20G05
Milestones
Received: 19 December 2019
Accepted: 18 February 2025
Published: 2 June 2025
Authors
Mirko Rösner
Mathematisches Institut
Ruprecht-Karls-Universität Heidelberg
Heidelberg
Germany
Rainer Weissauer
Mathematisches Institut
Ruprecht-Karls-Universität Heidelberg
Heidelberg
Germany

Open Access made possible by participating institutions via Subscribe to Open.