Download this article
 Download this article For screen
For printing
Recent Issues
Vol. 338: 1
Vol. 337: 1  2
Vol. 336: 1+2
Vol. 335: 1  2
Vol. 334: 1  2
Vol. 333: 1  2
Vol. 332: 1  2
Vol. 331: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
A characterization of quasihomogeneous bivariate polynomials

David Bradley-Williams, Pablo Cubides Kovacsics and Immanuel Halupczok

Vol. 337 (2025), No. 2, 201–214
Abstract

If a reduced bivariate polynomial is quasihomogeneous, then its discriminant is a monomial. Over fields of characteristic 0, we show that if one adds another simple condition, this becomes an equivalence. We also give a third equivalent condition that is stated geometrically.

Keywords
quasihomogeneous, discriminant, resultant, Bernstein–Kouchnirenko, weighted homogeneous
Mathematical Subject Classification
Primary: 12E05, 12E10
Secondary: 14C17
Milestones
Received: 31 July 2024
Revised: 10 April 2025
Accepted: 10 May 2025
Published: 3 June 2025
Authors
David Bradley-Williams
Institute of Mathematics
Czech Academy of Sciences
Prague
Czech Republic
Computer Science Institute
Charles University
Prague
Czech Republic
Pablo Cubides Kovacsics
Departamento de Matemáticas
Universidad de los Andes
Bogotá
Colombia
Immanuel Halupczok
Mathematisches Institut
Heinrich-Heine-Universität Düsseldorf
Duesseldorf
Germany

Open Access made possible by participating institutions via Subscribe to Open.