Download this article
 Download this article For screen
For printing
Recent Issues
Vol. 338: 1
Vol. 337: 1  2
Vol. 336: 1+2
Vol. 335: 1  2
Vol. 334: 1  2
Vol. 333: 1  2
Vol. 332: 1  2
Vol. 331: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
The ramification tree and almost Dedekind domains of prescribed SP-rank

Balint Rago and Dario Spirito

Vol. 337 (2025), No. 2, 273–295
Abstract

Given a valuation v on a field K and a chain 𝒦 : K = K0 K1 of finite extensions of K, we construct a weighted tree 𝒯 (v,𝒦) encoding information about the ramification of v in the extensions Ki; conversely, when v is a discrete valuation, we show that a weighted tree 𝒯 can be expressed as 𝒯 (v,𝒦) under some mild hypotheses on v or on 𝒯. We use this correspondence to construct, for every countable successor ordinal number α and every discrete valuation ring V , an almost Dedekind domain D integral over V whose SP-rank is α. Subsequently, we extend this result to countable limit ordinal numbers by considering integral extensions of Dedekind domains with countably many maximal ideals.

Keywords
almost Dedekind domains, SP-domains, SP-rank, extensions of valuations, ramification
Mathematical Subject Classification
Primary: 13F05
Secondary: 05C05, 12J20, 13A15, 13F30
Milestones
Received: 27 June 2024
Revised: 7 May 2025
Accepted: 7 May 2025
Published: 3 June 2025
Authors
Balint Rago
Department of Mathematics and Scientific Computing
University of Graz
Graz
Austria
Dario Spirito
Dipartimento di Scienze Matematiche, Informatiche e Fisiche
Università di Udine
Udine
Italy

Open Access made possible by participating institutions via Subscribe to Open.